Chapter 111

Weight Vector Relocating
Algorithm

After all ihe boundary vectors are found, the next step is to relocate the weight
vector by using the boundary vectors as reference points. The new location of
weight vector must be satisfied the condition stated in the previous chapter.
The problem of weight vector relocation in this case can be formulated as an

optimization problem with the following objective cost functions:
e objective 1: B(W) =357 30, (¢ - of)* =0,
e objective 2: E;(W) =31, nt, (Fax + fae)? =0.

We would like to find W/ of each neuron i to make both E,(W) and E(W)
zeros. To achieve the objectives with respect to E, which is less than maximum
target error is allowed, first we must know the value of each element of W; and
then relocate W; to obtain W,. Thus the following two consequent procedures

are needed.

1. Train the network until it converges to a specified limit E,, and obtain
the weight vector W; and boundary vector pairs for each neuron i. This

step is to satisfy the first objective.

2. Find W satisfying the objective 2 with respect to the objective 1. (Lursin-

sap and Tanprasert [11] did not consider objective 1 in this step.)

For the first step, the network can be trained by using any existing learning
rule such as error backpropagation algorithm [12, 15], but in this thesis we use

a hybrid algorithm for finding the global minimum of error function of neural
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networks that was reported in [22]. For the second step, the network will be
trained by the algorithm in section 3.2. Before we present the novel method of

weights relocation we will discuss two important concepts that will be realized

later.

3.1 Pareto’s Optimality Concept and Random
Optimization Algorithm

3.1.1 Compromising E,(W) and E (W}

Sinée we have two objectives to optimize, target error E,(W) and location error
Ey (W), if E(W) = 0 it does not implies that E,(W) will be zero. Thus we will
compromise these two objectives by using concepts of Pareto Optimal Set [23].
The notations of Pareto’s optimality is based on the concept of dominance. Let
f(z) = (fi(z),---, fa(z)) represent a vector valued objective function and u
and v represent two solutions. u dominates v, written u << v, if and only if
for all ¢ fi(u) £ fi(v) and there exists 7, fi(u) < fi(v). Solutions included in
the Pareto Optimal Set are those that cannot be improved along any dimension

without simultaneously being deteriorated along other dimensions.

3.1.2 Random Optimization Algorithm

Again E(W) is the objective function, and W (k) € x the region to be searched.

A. Random optimization Method (Matyas [19])
1. Select the initial weights W(0), and let M be the total number of steps.

2. Generate Gaussian random vector £(k).

If W (k) + €(k) € x, go to step 3. Otherwise go to step 4.
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3. If E(W(k) + £(k)) < E(W(k)), let W (k +1) = W(k) + £(k).
If E(W (k) + £(k)) > E(W(k)), let W(k+1) = W(k).

4, If k = M, stop. If k < M, let k = k + 1, and go to step 2.

B. Modified Random Optimization Method (Solis and Wets [20])

Solis and Wets modified the Matyas’s random optimization method to find
the global minimum of the objective function in a small number of steps and
it has been reported that the random optimization method of Solis and Wets
exhibits a very fast convergence. Moreover, this rneth:;d ensures convergence to
the global minimum of the objective function with probability 1.

The modified part is in step 3 that the search direction is reversed if it fails
to improve the current value of the objection, and it exhibits faster convergence

than the original scheme. Except for step 3, the rest steps are same.

o If E(W(k) + £(k)) < E(W(k)),
let W(k +1) = W(k) + £(k) and b(k + 1) = 0.4£(k) + 0.2b(k).

o If E(W (k) +£(k)) > E(W(k)) and E(W (k) — £(k)) < E(W (k)),
let W(k+1) = W (k) — £(k) and b(k + 1) = —0.4€(k) + b(k).

e Otherwise, let W(k + 1) = W(k) and b(k + 1) = 0.5b(k).

Where b(0) = 0-and b(k) is the bias which becomes the center of the Gaussian
random vector £(k) at the k'th step.
In this thesis, we propose a hybrid of random optimization algorithm and

Pareto’s optimality concept approach to solve two-objective optimization.
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3.2 Hybrid Algorithm: Pareto’s Optimality Con-
cept and Random Optimization

In this thesis, the Pareto’s optimality objective function is formed as follows.

Let E(W) = (E,(W), E(W)), W be a current solutions and W’ be a candi-
date. We will accept W’ as a new solution if and only if E,(W') < E,(W) and
E(W') < E(W).

The random optimization algorithm will change W to W' iteratively such
that the location error Ey(W) is minimized and Ey(W) less than or equal to the
maximum allowable data-fitting error, E;,. The weight change for the (k + 1)
epoch can be expressed as follows. Let M be the maximum number of epochs

and Ejn.: (W) the acceptable maximum location error.
1. Set E,, = E,(W(0)) and k = 1.

2. Generate the Gaussian random vector £(k) with initial center at b = 0
and standard deviation o.
If W (k) + £(k) and W (k) — £(k) still correctly classifies input vectors
then go to step 3 else go to step 4.

3. 1 (W (k) + £(K)) < B (K)) and Ey(W (k) +£(K)) < B,
then let W' (k + 1) = W(k) -+ £(k) and bk + 1) = 0.4€(k) + 0.2b(k)
else If E;(W — €) < Ei(W) and E, (W — &) < Ey,
then let W/(k + 1) = W(k) — £(k) and b(k) = b(k) — 0.4£(k)
otherwise let W'(k + 1) = W (k) and b(k + 1) = 0.5b(k).

4. If k = M or E(W'(k)) € Eimaz then stop the total calculation else let
k =k+1 and go to Step 2.

The basic idea of the weight perturbation by random optimization of Solis

and Wets is to transit the system to a state at which the system has lower square
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error. Consequently, the system is perturbed to a state away from the local
minimum. Since the domain of W; is closed [22] and the next theorem will show
that the random optimization of Solis and Wets converges with probability 1.
It is noteworthy that this evolution is not restricted to one node. The technique

can be simultaneously done at every neuron to achieve lower total location error.

Theorem 4 [22] Let W be a compact region in which we have to find an ap-
propriate weight vector w. Further, let 1) be one of the points that give the global

minimum of E(W) in W:
E(i) = g:el‘r‘n,E(w); wewWw
Let W, be the region such that W, = {w : |[E(w) — E(@)| < ¢,w € W}. Assume
the following: |
1. for any positive number &, the Euclidean measure of Us(w) W is positive,
where Us() = {w : |Jw ~ w'|| < d}.
2. There is no bound on M. That is, one can calculate w(k) (k = 1,2,...)
as many times as one wants.
8. E(w) belongs to class C".
4. E(w) <e.
Then the algorithm ensures the following:

(a) For any positive number ¢, limyse P{w|w® € W} =1.
(3) E{w*) converges to E(W) with probability 1.

Proof see [22].

Another random optimization algorithm is of Sun et al. [24] and the modified
version are adapted to solve the problem. The detail of algorithm was appeared

in Sunat and Lursinsap [27].



	Chapter III Weight Vector Relocating AIgorithm



