Chapter 1

Introduction

1.1 Introduction to Fault Tolerance of Neural

Networks

The fault tolerance of a neural network refers to the capability of the network to
continue its proper operation while there exist internal failures or other anoma-
lies in the hardware system on which it is implemented [1]. As the power of
neural systems becomes more evident by the increasing of their sophisticated
applications, their usage will become widespread. However, before neural net-
works can be approved to be useful in important or life-critical applications, it
is necessary to study their performance under conditions that are less than the
ideal conditions. Several causes of faults of a neural network have been studied

by many researchers {2, 3, 4]. Some of these causes are:

1. The property of semiconductor matter, which is used for implementing

the neural network circuits.

2. Operating conditions such as the temperature level, the supplied voltage,

and the age of the device used for implementing the network.

Feltham and Maly [5] have shown that the weight vector is the most sensitive
part to fault or damage. There are many fault models that have been proposed
in the past e.g. stuck-at-0, stuck-at-1, stuck-at-x [6, 7, 8, 9]. However, the
most popular one is the techniques of injecting the input noise and retraining
the network. Another solution is based on the redundancy of the neurons [10].

These approaches are efficient and simple to implement.

There is another type of fault occurring at the weights [1, 11]. The fault is
intermittent and can be prevented by a technique called Fault Immunization.
Chun and McNamee [1] originally proposed the idea called fault immunization
which is based on the trial-and-error of retraining the networks to obtain the
best location of each weigh vector. In view of Chun and McNamee, the trained
weights and the thresholds in the network can be viewed as "links” through
which information can flow. Since these links define the performance and the
functionality of the meural network, any perturbation to them, caused by a
hardware malfunction, would jeopardize the proper gpera,tion of the network.
Viewed in a generic manner, one possible method to model faults of hardware
implementations of a neural network could be the deviation in weight and in
threshold values after the network has been trained. Such a fault model would
be simple to implement in a typical neural network simulation environment, and
could be considered as a high-level and generalized case of many failure modes
possible in digital, analog, and optical versions of hardware platforms. The link
perturbation model could also measure the effects of incomplete training.

Chun and McNamee [1] proposed “headroom”, a measure for fault tolerance
capability. Headroom addresses the question of how much each weight and
threshold can be perturbed (in terms of percentage change) and still have the
network producing the answers which are correct to some extent within a certain
tolerance range. An acceptable extended output range, or noise margin of -+0.2
is chosen for their design scenario. They found that error backpropagation,
EBP, did not use fault tolerance as a criteria to be optimized and proposed a
technique to improve fault tolerance capability. To desensitize the weights and
thresholds against the possibility by noise, it is hypothesized that they should
be exposed to noise during the training process. They proposed the concept
of injecting simulated hardware faults into the network while being trained.

This concept has an interesting biologically analogy-that of viral immunization.

The neural network is being "immunized” against faults by inoculating it with
minor occurrences of faults during the training process. The network trained
by adding a random amount of noise to each of its weights, one-at-a-time, in
a cyclic fashion. The effect of noise is simulated using random perturbations
induced by scaling the weights in the network, one at a time, either up or down
by a certain maximum percentage on each pass of EBP training algorithm. The
physical location of the noise is simulated to be roving in nature, moving from
one weight to the next. In this manner, it is hoped that the effects of noise
will be distributed equally throughout the network and will have the minimum
impact upon normal convergence. Since a random number generator is used,
zero-mean white noise can be approximated if a sufficiently large number of
samples is taken, but it took very long time to converge and lack mathematical
support.

Chun and McNamee did not provide any mathematical analysis model.
Lursinsap and Tanprasert [11] extended their concept and proposed a math-
ematical model with analysis of the fault immunization in term of weight vector
relocation for the perceptron unit, but their approach can be used only with one

neuron (perceptron) unit and deteriorated the classification capability of neuron.

1.2 Contributions

The contributions of this thesis are as follows:

1. A feasible mathematical model for measuring fault immunization of su-

pervised feedforward neural networks.

2. A feasible algorithm for enhancing fault immunization of supervised feed-

forward neural networks.

1.3 Scope of Study

This thesis extends the mathematical model of [11] for each neuron in a feed-
forward neural network whose input data are in the interval [0,1]. Here, the
network is considered as data classifier in a real value space. The training set is
expected to be fully representative of the inputs to the net during application.
The results will be shown by the theorem-proving style, and the simulation re-
sults will be shown to confirm the theorems. Before we continue our description
of these concepts, the feedforward neural networks and some learning algorithms

-, -

will be summarized as follows:

1.3.1 The Feedforward Neural Networks

An artificial neural network, a mathematical computational model, consists
of interconnected neurons. A neuron is modeled after McCulloch and Pitts’
proposed model of neural activities in the human brain [12]. The model takes

a simple form:

output = f(z WiT;) (1.1)

1=0

where zg is the unity, wp is the threshold or bias, and f is called the activation
function, which usually takes the form:
fm) =4 tanh(;) +B (1.2)

where 4, T > 0 and B is arbitrary. The most widely used activation functions
are the ones with (4,T,B)=(1,1,0) or (3,2, 3). These two variations of f are
called the tan-hyperbolic, eq. 1.3, and the logistic, eq. 1.4, activation functions,

respectively.

f(z) = tanh(z) : (1.3)

. N <
mugnnnn ljﬂ’llﬂﬂ nuNT NIy
a -
!.mmnmmm nenoay

)
4 ; ™
ANeuron \-\%\ activation
\ J
Figure 1.1: McCulloch and Pitts’ Mathematical Model of a Neuron
1 1 z 1
flz) = T S -2-tanh (E) + > (1.4)

A feedforward neural network is a form of intercgnnected neurons without
having a feedback loop. A typical neural network [13] is shown in Figure 1.2.
This type of neural network was shown by Cybenko [14] that it is a universal
function approximator for any arbitrary real functions. Therefore we can view
this type of network as an implementation of a real mapping g from its input

to its output.

1.3.2 Concised Backpropagation Algorithm

One of the most widely used training algorithms for a feedforward neural net-
work is the backpropagation algorithm proposed by Rumelhart [15]. This learn-
ing algorithm inspired an extensive attention in the neural network theory and
its applications.

Suppose T is a set of training patterns, which is denoted as follows

|4

T={P1,P2,“‘»PN} (1-0)

Each pattern p; is a 2-tuples vector consisting of an input training vector z
and a target vector t. The adjustable optimization parameters for the perfor-
mance of a given neural network using a given training set T' are the weights

w; (eq. 1.1). This learning scheme is called a supervised learning algorithm.

output o

T

A Neural Network g(w) g(w): RA-> RB

NN

input x

output o

00O

A Typical i
Neural Network k

input x

Figure 1.2: A Typical Neural Network

7

Rumelhart et al. [16] shows that the weight w should be adjusted to minimize

the error function E, which is defined over all possible weight w and consists of

two terms:

E(w) = E,(w) + priors(w) = E,(w) + P(w). (1.6)

E, is the data-fitting error function or target error function with variable vector
w. The vector w is adjusted according to the difference between the actual
output vector produced by the neural network and the corresponding target
vector to optimized Ej. J

The priors P, the network complexity penalty function, regulates the learn-
ing algorithm to find another possible characteristics. Typically, the data-fitting
error is defined by employing the L? norm of the difference between the output
vector o of the neural network and the target vector ¢ associated with the input

vector . So the instantaneous data-fitting error function E, for a particular

pattern p;, and the weight vector w can be defined as:

~ 1

Ey(w,p;) = §||ti - of? (1.7)
If the training samples in T (eq. 1.5) are drawn independently, then the appro-
priate data-fitting error function E,; over all the patterns is simply [16]:

N
Eyw) =) E(w,p;) (1.8)

=1

Rumelhart et al. [16] uses a simple priors P as the "weight-decay factor”.
1M
Pw) = EEZ"’? ' (1.9)
i=1

where o > 0 and M=the number of weights. By using this priors function, the
neural network prefers small weights around the origin.

There are two of the weight updating schemes [17, 13, 18]. On-line updating
is based on the gradient of pattern-by-pattern scheme while batch updating is

8

based on the accumulating gradient of all patterns in the training set 7" to form

a global gradient which is updated once at the end of each input-feeding cycle.

1.3.3 Direct Optimization

Another type of learning or training scheme is the direct Jearning. The ad-
justable parameters w are adjusted without computing gradient as in the pre-
vious learning scheme. For each iteration of simple random optimization al-
gorithm (19], the current w are perturbed by dw, which is generated by some
random scheme. If E(w + 6w) < E(w) then w + dw-is accepted to be new w,
otherwise try to generate new dw again and this process is continue until E(w)
is in the acceptable range. A well known technique was proposed by Solis and
Wets [20]. Baba [21] adapted this technique for neural networks training and

succeeded.

1.4 Organization of the Thesis

The rest of this thesis is divided into 4 chapters. Chapter 2 provides the fault
immunization measure as well as proofs of the several related theorems. Chapter
3 provides a n;odiﬁed random optimization algorithm, which will be used for
relocating a weight vector to a more proper location. Chapter 4 shows the
experimental results from three classification problems and discusses several

' related issues. Chapter 5 concludes the thesis.

	Chapter I Introduction

