CHAPTER YV

EXPERIMENTS AND RESULTS

We test our technique on the well-kno‘v.vn benéhmarks such as fifth-order elliptic
filter and discrete éosine transformation. We 60mpare our result with the result of the
experiment by Ahmad, Dhodhi and Chén [14] since their results are also based on the
genetic algorithm. Our testing hbas two 'a.spects. The first aspect ié to test whether our
encoding scheme can produce a result as gdod as or better than the previous results
obtained by using different encoding scheme 'Such as that employed by Ahmad, Dhodhi
and Chen [14]. The second aspect is tol compalre the results when the constraints on the
number of chgckpoints, the maximum recovery time, and the number of registers are
enforced in addition to those constraints statt;d 'in [14]). Firstly, the desfgn is fifth-order
elliptic wave filter.. The properties of each functional upit in the experimeﬁt are previously

given in Table 4.1.

{ Three units of type 1 1

’7 NuliuniloﬂypeZ ‘

(3,0,3,0)

I Null unit of type 4

i Three unitsoftﬁgg |
Figure 5.1 An example of the synibol defined in the experiment.

Table 5.1 shows the comparison between the number of control., steps with and
without constraints on the checkpoints. the number of registers, and the maximum
allowable chcc‘kpoints. Each number in the parenthesis in the first column indicates the
| numt;er of units of each type used. For example, as shown in Figure 5.1, (3,0,3,0) means
that we use three units of type 1, zero unit of type 2, three units of type 3, and zero unit of
type ‘4. From Table I, types 1 and 2 are multipliers while types 3 and 4 are
adders/subtracters. Our results are the same as theirs and even better when there is no
lcheckpoinl constraint. In case (1,0,1,1), ouf approach obtains the CDFG without
checkpoint insertion within 21 control step; -és shownin Figure 5.2., Moreover, if the
checkpoints are inserted we s(ill obtain the sarﬁe r;esﬁ]ls in most cases. Figure 5.3-5.7
show the final CDFG with checkpoint insertiéﬁ in case of (3,0,3,0), (2,0,2,0), (1,1.2,1),
(1,1,1,1) and (1,0,1,0) with constraints, which are composed of nine registers, four

checkpoints and six contro! steps for the maximum allowable checkpoints.

Table 5.1 Comparison between the number of control steps with and without

checkpoint constraints

Module Sets| # of CSs # of CSs # of CSs # of CSs
[14] no checkpaint | . #reg=9 Hreg=9
chkpnts = 4 chkpnis = 5
max chkpnts = 6 max chkpnts = 6

(3.0,3.0) 17 17 : 18 18
(2.0,2,0) 18 18 \ 18 18
(1,1.2,1) 20 20 20 20
(1.1,1.1) 21 21 21 21
(1,0,1,1) 22 ' pal - 22 22

ALU's TYPE

Figure 5.2 The final CDFG without checkpoint insertion in case (1,0,1,1)

37

checkpoint 1

/l ALU's TYPE
type 1
1 type 2
T WpeR |
Y El typed I
ot

checkpoint 2

\,
&heckpoint 3

\
I\

\

LA
2

{54 Y
21

(3,030 #reg=9 il
chpt =4, mchpt=6 s

{29 |
__checkpoint 4

Figure 5.3 The final CDFG with checkpoint insertion in case (3,0,3,0)

38

cs1

cs2
cs3
cs4 /]
B | checkpoint 1

cs5 |
cs6 ALU's TYPE

type 1
cs7
: R
cs8 [ﬁ type 3
cs9 e type 4
cs10

checkpoint 2

o e

|
(32) ™\ |
S @o20#reg=e f
T ”I;”\” # chpt =4, mchpt =6 P
34 |
cs18 _?’E) (_/ checkpoint 4

Figure 5.4 The final CDFG with checkpoint insertion in case (2,0,2,0)

ALU's TYPE

cs?2

= o7 type 1
cs3 - type 2
cs4 SR type 3

| _ type 4

csh
cs6 checkpoint 1
cs7
cs8
cs9
cs10
cs11 gre(
cs12 (18"

checkpoint 2

L,

cs15 (26]
csi16

cs17

K1

cs18 (30}

cs19

cs20

(1,1,2,1) # reg =9
S e e ke
L % (34) (29

7 \\\-.
i b8 /l :
—— s B o R
.

checkpoint 4

Figure 5.5 The final CDFG in case (1,1,2,1)

40

ALU's TYPE

cs2 _

= type 1
cs3 type 2
cs4 J type 3
os5 type 4
e checkpoint 1
cs?7 |
cs8
cs9
cs10
cs11

i checkpoint 2

cs12
cs13 @y

cs14
cs15
cs16 | 26)

cs17

cs18

¢s19

cs20
3
cs21 o # Chpt =4, mChpt =6 ’\34 "1 Checkp0|nt 4

Figure 5.6 The final CDFG with checkpoint insertion in case (1,1,1,1)

41

cs1

r ALU's TYPE |
cs2
type 1
o2 BN tpe?
cs4 [__] type 3
o |] type 4

cs5

cs6 checkpoint 1

cs7

cs8

checkpoint 2
cs13 7
. £
cs14 A o
cs15 ‘-\ .
\\ S
cs16 \
vl L \

o i =
cs17 {26) |

|

= !
cs18 (

i = e
es19
A N ol |
cs20
cs21 3 \.}
(10,1,1) #reg=9 R
chpt =4, mchpt =6 Yo

el (\j/’ checkpoint 4

Figure 5.7 The final CDFG with checkpoint insertion in case (1,0,1,1)

42

Secondly, we examine an 8-point Discrete Cosine Transform compression. Data-
flow graph for the DCT example is shown in Figure 5.8. We assume that no module
selection and no checkpoint insertion can be compared with the result in [14]. Our system
gives the schedule using two ALUs, which take one control step, and three multipliers,
which take two control steps. The result shows that our system is able to schedule within
16 control steps whereas their system performs in 17 control steps by using the same

" resource. Table 5.2 presents the microprogram code for this scheduling.

43

Figure 5.8 The Discrete Cosine Transform e;amplc (DCT).

Table 5.2 Microprogr;am of DCT example

CS | Multiplier-1 | Multiplier-2 | Multiplier-3 ALUI1(+,-) ALU2(+,-)
1 x3=a3+ad x5=a2-a$
2 x2=al+ab x8=a0-a7
x22=x28+a22 | x23=x5*a23
3 x4=a0+a7 x6=al-a6
x3=x8*all
4 , x12=x3+x4 x7=a3-a24
x32=x8+%al32 x26=x6*a26
5 ' : x1=a2+as x14=x74-x8
x28=x7*a28
6 x10=x1=x2 x| 1=x3-x4
x25=x6*a25 x29=xT7*a29
7 x9=x1-x2 x13=x5+x6
x30=x14*a30
8 x15=x9+x11 x16=x13-+x14
x20=x10#a20 | x21=x12*a2l
9 . x42=x29+x30 | x44=x30+x32
x24=x13*a24
10 ' : x35=x20+x21 | x36=x20-x21
x19=x11*al9 | x27=x12#a27
11 ! x37=x22+x24 | x39=x24+x25
x17=x19*»al7
12 . x41=x26+x27 | x38=x27+x31
x18=x15+al8
13 x47=x41+x42 | x40=x27+x28
14 x46=x39+x40 | x43=x23+x27
15 x33=x17+x18 | x34=x18+x19
16 x45=x37+x38 | x48=x43+x44

44

	CHAPTER V EXPERIMENTS AND RESULTS

