CHAPTER 111

THEORETICAL BACKGROUND

3.1. The Problem of High Leve! Synthesis with Micro-Rollback Capability

High level synthesis is a sequence .of tasks that transforms a behavioral
representation into a Register Transfer Level (RTL) design. The design consists of
functional units such as ALUs and multipliers, storage units such as registers, and
interconnection units such as multiplexers and buses. Before compiiing into the RTL
description, the behavioral deseription is transformed into intermediate graph-based
representations depicting both a data ﬂow" and.'a control flow called a control-data flow
graph.

The problem of Self-recovery Micrd,—follback Synthesis (SMS) combines the
problem of functional unit scheduling and ass}gnn\ent with the problem of checkpoint
insertion and microprogram optimization. it is well - known that those problems are
inherently interdependent. Thus, the optimal results of all” problems must be
considered simultaneously. }

The scheduling is a process that assigns operations in the data flow graph to
control steps. Then the assignment process-selects ‘eéch operation to an appropriate
type of functional unit from a module library té execute the operations specified in the

data-flow graph.

~ Self-recovery micro-rollback is a technique for recovering from transient faults,
which are temporary interruptions of the logic level of signals. A checkpoint is the
state of a computation at a particular instant of time, ie., the values of all live
variables. Whenever an interruption occurs, there is no need to save the status of the
machine immediately. The status that is saved into the registers at the previous
checkpoint is loaded into the machine to re-execute from that state. 1f the checkpoint
is uncorrupted and the fault is no longef disrupting the system, the new execution will
proceed correctly..

For instance, in Figure 3.1, thc,self-recm;ery micro-roliback process operation
is demonstrated. The checkpoints are inserted at control step 2 and 4. As indicated ih
the figure, exécution proceeds until the end of control step 2. At that point, if an error
is detected, all inputs in the beginning of CDFG are loaded into the machine to re-start.
Otherwise, the execution proceeds to coniro'l ‘stép 3. At the end of control step 4, if an
error is detected, the computation re-executes at control step 3 by loading the status of
the variables which are stored in registers. If ho error occurs, execution completes.

The values of all variables stored in registers at one éontrol step are maintained
until the next checkpoint. Therefore, the live variable graph which is drawn from the
scheduled CDFG vis the starting point of the checkpoint insertion process.” In Figure
3.2, a live-variable graph shows the control étgﬁ iﬁ wﬁiéhveach variable in the CDFG is
active or live. = Lach node at a particular. control step 'in the live-variable graph
represents a register to save the state of the v;ariable a?t ihat control step. | The lifetimes
of variables without the checkpoints are presented in -"Figure 3.2 (a) and three registers

are required. After checkpoint insertion, the number of registers becomes four as

shown in Figure 3.2 (b) since variables d and e are saved and maintained until the end

of control s(ep 4 to be re-executed if an error occurs.

(: ’:) (*» ’ , (*j el checkpoints
rollback AN ,/{3 N7/ /i; | P
a1 %] +) 2’ /
do:o’;:;d? 3 ‘1 7'1 .‘ e — / « //
) F) e
AL, ; rollback

error
detected?

Note that, a, b, ¢, d, e, I and g ere intermediate variables of
CDFG which contains four control steps c1, ¢2, c3 and c4.

Figure 3.1. The self-recovery micrb-rollback process operation.

cl

7 i3 —.
I .

(a) # of regis(érs required = 3
no checkpoint

ct

a b c . c2
-¢——— checkpoint

cd

1]
REE e

(b) # of registers raquired = 4
after checkpoint insertion

Figure 3.2 Lifetimes of intermediate variables for CDFG of Figure 3.1

3.2. Genctic Algorithm

) e Ty

Genetic Algorithm (GA) was first propoqed by John Holland at the University

O e LA o

of Michigan-in 1975 [13]. Hq’;.andghys. students investigated and proved that GA is a
O S

significant contribution for scientific and engineering application. = Since then, the

output of research work in this field has grown rapidly. Now, the GA development has

10

reached a stage of maturity [17). This results from the effort of academics and

engineers all over the world.

Figure 3.3 An error surface

GA is not a technique that requires the use of derivatives. The obtained optima
are evolved from generation to generation without stringent matheméticgl formulation
such as the traditional gradient type ol‘optim;z'ing procedure. Gradient descent which
calculates the slope of error surface at tiw current position works well when the error
surface is rclatively smooth, ;Nilll few local minima.

However, most real-world data has the bvdistorted error surface by noise. Figure
3.3 illustrates an error surface which would proée difficult for. gradient descent
because of the local minima. GA is Ies; sensitive to local minima because it
constitutes a parallel search of the sqlution ~sp‘ace,‘ as opposed to a point-by-point

search.

1"

Hence, GA is usually applied to optimization problems that are difficult to
‘solve or cannot be solved by stringent mathematical formulation. It is also used to
resolve NP-hard and NP-complete such as traveling salesman, scheduling and design

problems. It performs searching throughout the solution space to find the near optimal

answer.

3.3. Genctic Algorithm Basis

Genetic Algorithm (GA) is a technique imitating biological process of natural
selecti(}n (Darwin’s rule) by which only good or fit being can survive [13]. The theory
of Charles Darwin may be summarized as i.‘o‘llows. (a) The individuals of a species
show variation. (b) In genéra], more pfﬁsprings are produced than needed to replace
their parents. (c) Populations cannol expand.indefinitely and, on average, population
sizes remain stable. (d) There must be competition for survival. (e) Therefore the best
adapted variants (the fittest) survive. | |

GA uses a direct similariiy-ovf naluxrt_al bchavior following Darwin’s theory.
Above all, the problem to be solved by GA must be :fi(vst encoded into a gene. There is
no uniform encoding scheme for every problem. The encoding scheme varies from
one problem to another problem. The apprbhriatc cl{c:odil;g for the problem has to be

devised.

12

Standard Genetic Algofithm 0

1. t=0.
2.Generate initial population (valid genes).
3.Calculate fitness values ol each gene.
4 While the conditions are not satisfied and t<N do
(@ t=1t+1 '
(b) Selcet parents by random.
(c) Recombine the population by cross-over
and mutation opcrations.
(d) Calculate fitness values of valid child
genes.
(e) Select the new population from the old
population and the child population. .

Figure 3.4 Structure of Genetic Algorithm

The structure of GA is iIIustrate‘d‘ in Figure 34 At tliie.beginning, a set of the
first generation of gene population is rando“mly préduced. We élso evaluate their
fitness as different beings possess unequal capability to spwive. ‘After that, the genes
in the set are randomly selected to produce tlfle next generation genes with the high
fitness cost. The genes with low fitness cost Yare elilminated;. The producing process
bcontinues until the number of generations rea'lch'es, tiie specified ‘value or there is no
new gene produced. The set of new genes is generated by three main gene operations,
which are mutation, crossover, and inve’rsion.f Moreover, the conditions in the while
loop depend on the problems to be solved. For example, the condition for the traveling
salesman problem is the minimum total traveling distance. Variable t counts the

number of generations whose maximum value is denoted by a constant N.

13

34. Principal Factors of Genetic Algorithm

The performance of the GA is controlled by the following factors.

34.1. Encoding Scheme

Encoding scheme is referred to as génes of a chromosome wﬁich can be
commonly structured by three ways: binary siring, gray code, and floating point. The
binary scheme is traditionally used in GA szt not appreciated in some problems such
as the problem concerning many variables with large domain. The second scheme is
the gray code which is slightly modified from the bingry coding. Note that the gray
coding has the property that any two pbintsﬁext to each other in the problem spacé
differ by one bit only.

As we altempt to move GA closer 10 the problem space, we manipulate real-
value directly with each chromosome to deal with real parameter problem. The
implementation of each chromosome veclor is encoded as the vector of floating point
numbers. Generally, this implementation would be fnpch better than binary scheme in
many aspects. It is faster in computation and easig:f for designing other operations
incorporating specific problem. 'In addition, it is more consistent from the basié of run-

{o-run,

3.4.2. Cost and Fitness Function

Cost function is the link between the GA and the problem to be solved. It is one of
the most significant elements to assess the GA performance. The value of the cost

function is calculated for an individual of popuialion and fitness value is seltled on its

14

basis. The interaction between a chromosome and a cost function provides a measure
of its fitness that is used when carrying out reproduction. Its fitness is supposed to be

proportional to the utility or ability of the individual which that chromosome

represents.

3.4.3. Crossover and Mutation

Crossover occupies a special place inh the heart of GA. In nature, crossover
occurs when two parents exchange parts of their corresponding chromosomes. In GA,
the crossover recombines the genetic material in two parent chromosomes to make two
children. This i‘s called by John Holland ;‘0116-;;oint crossover” illustrated in Figure 3.5
(a).

In some situation, using one-point crossover is inefficient such as in schemata
of long defining length (building block). A multipoint crossover can be submitted to
overcome this problem and its performance of generating offsprings is satisfying. An
example is demonstrated in Figure »3.5(b) ‘ where‘ multiple crossover points are
randomly selected.

| Another obcrator is-called “uniform crossover” which is similar to multipoint
cfossover. But it needs a randomly generated crossover template which is the pattern
of crossover point. There is an example in Figure 3.5(c). The length of string 0-1 in
the template is equal to the length of chromosome. Therefore, at 0 in the template, the
gene of child 1 is placed by the gene of barenl I and the gene of child 2 by the gene of
parent 2. ALl 1 in the template, the gene of child 1 is placed by the gene of parent 2 and

the gene of child 2 by the gene of parent 1,

15

- AN AN AV,\‘l)

Since the uniform crossover exchanges bits rather than segments, it can
combine features regardless of their relative location. This ability may outweigh the

disadvantage of destroying building blocks and make uniform crossover a superior

operator for some problems.

crossover point

arents l children

p
(a) Example of one-point crossover

R R T R A
LR =EHPIVE TR, : | de %

\ 4

crossover poinls

TR e s

children
(b) Example of multipoint crossover

parent 1

parent 2

template

children 1

children 2

(c) Example of unitform crossover

Figure 3.5 An exgmhle of crossover

Mutation is the process applied to each offspring individually afier the

crossover exercise. In GA, this operator creates new individuals by a small change in

16

a single individual by random selection. When mulation is applied to a bit string, it
sweeps down the list of bits, and replaces'each by a randomly selected bit if the'
probability of test passes. It is called “Bit Mutation” as shown in Figure 3.6. In

addition, it has an associated parameter probability that is typically quite low.

random selection

0000111010111110 an individual
000d011010111110 a new individual
= :

~

Figure 3.6 An cxamble of mutation

17

	CHAPTER III THEORETICAL BACKGROUND
	3.1 The Problem of High Level Synthesis with Micro-Rollback Capability��
	3.2 Genetic AIgorithm������������������������������
	3.3 Genetic AIgorithm Basis�����������������������������������
	3.4 Principal Factor of Genetic AIgorithm

