เกณฑ์ในการออกแบบคอนฟิกกูเรชั่นของระบบควบกุมแบบดีซีไอเอส

สำหรับโรงไฟฟ้าในแง่ของความน่าเชื่อฉือ

นาย อรินทร์ ปวิดาภา

ŝ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต

สาขาวิชา กา<mark>รจัดการทางวิศวกรรม ศูนย์ระดับภูมิภาคทา</mark>งวิศวกรรมระบบการผลิต

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2542

ISBN 974-333-368-1

ลิขสิทธิ์ของ จุฬาลงกรณ์มหาวิทยาลัย

CRITERIA FOR CONFIGURATION DESIGN OF A DCIS SYSTEM FOR POWER PLANT IN TERMS OF RELIABILITY

Mr. Arin Pavidabha

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Engineering Management The Regional Centre for Manufacturing Systems Engineering

Faculty of Engineering Chulalongkorn University Academic Year 1999

Thesis Title	Criteria for configuration design of a DCIS system for power plant
	in terms of reliability
Ву	Mr. Arin Pavidabha
Department	The Regional Centre for Manufacturing Systems Engineering
Thesis Advisor	Associate Professor Tatchai Sumitra, Dr. Ing.
Thesis Co-advisor	Mr. Vudtichai Eksangsri

Accepted by the faculty of Engineering, Chulalongkorn University in Partial Fulfillment of the Requirements for Master's Degree

Tatcheri & Dean of Faculty of Engineering

(Associate Professor Tatchai Sumitra, Dr. Ing.)

Thesis Committee

Bind ... Chairman

(Professor Sirichan Thongprasert, Ph.D.)

اشمم Tatdias In Thesis Advisor

(Associate Professor Tatchai Sumitra, Dr. Ing.)

... Thesis Co-advisor

(Mr. Vudtichai Eksangsri)

Member

(Assistant Professor Rein Boondiskulchok, D.Eng.)

อรินทร์ บวิดาภา : เกณฑ์ในการออกแบบคอนพึกกูเลขันของระบบควบคุมแบบคีซีไอเอลล้ำหรับโรงไฟฟ้าในแง่ของความน่าเชื่อถือ (Criteria for Configuration Design of a Distributed Control and Information System for Power Plant in Terms of Reliability) อ. ที่ปรึกษา รศ. ดร. ธัชชัย สุมิตร อ. ที่ปรึกษาร่วม คุณ วุฒิชัย เอกแลงศรี 182 หน้า ISBN 974-333-368-1

วิทยานิพนธ์ฉบับนี้จัดทำขึ้นเพื่อศึกษาถึงวิธีแก้บัญหาของการออกแบบคอนพิกกูเลชั่น ของ ระบบควบคุมแบบ ดีซีไอเอลในแง่ของความน่าเชื่อถือ บัญหาของการออกแบบคอนพิกกูเลชั่นของระบบควบคุมแบบดีซีไอเอลเป็นบัญหา เกี่ยวกับจำนวนของคอนโทลเลอร์และความน่าเชื่อถือของคอนโทลเลอร์ที่ใช้ในระบบควบคุมแบบดีซีไอเอล วิธีการในการ พยากรณ์ค่าความน่าเชื่อถือโดยใช้โมเดลความน่าเชื่อถือถูกนำมาใช้ลำหรับการวิเคราะห์เพื่อแก้บัญหาในการออกแบบ และหาคอนพิกกูเลชั่นของระบบควบคุมแบบดีซีไอเอลที่เหมาะลม

ขอบเขตของการศึกษาทำการศึกษาเฉพาะกรณีศึกษาของโรงไฟฟ้าพลังความร้อนกระบี่ โดยการศึกษาทำการ ศึกษาเฉพาะในส่วนของการจัดแบ่งคอนโทลเลอร์ของระบบควบคุมแบบดีซีไอเอสเท่านั้น การศึกษาเริ่มจากกระบวนการ ออกแบบดีซีไอเอสคอนฟิกกูเลขั่นจากนั้นข้อมูลที่มีความจำเป็นสำหรับการวิเคราะห์ค่าความน่าเชื่อถือของคอนฟิกกูเลขัน ของระบบควบคุมแบบ ดีซีไอเอส สำหรับ กรณีศึกษาจะถูกนำมาวิเคราะห์ นอกจากนี้บัจจัยที่มีผลกระทบ ต่อ จำนวน คอนโทลเลอร์ ของ ระบบควบคุม แบบ ดีซีไอเอส จะถูกนำมาพิจารณาร่วมด้วย เพื่อที่จะหาเกณฑ์ในการออกแบบ คอนพิกกูเลขันของระบบควบคุมแบบดีซีไอเอสสำหรับโรงไฟฟ้าในแง่ของความน่าเชื่อถือ

เกณฑ์ในการออกแบบคอนฟิกกูเลขันของระบบควบคุมแบบดีซีไอเอสซึ่งได้จากการศึกษาเป็นผลลัพธ์ที่ได้จาก การทำวิทยานิพนธ์ฉบับนี้ ซึ่งจะสามารถนำมาใช้เป็นเครื่องมือ สำหรับ วิศวกร ออกแบบระบบควบคุมโรงไฟฟ้า ของ การไฟฟ้าฝ่ายผลิตแห่งประเทศไทยเพื่อที่จะนำมาใช้ช่วยในการออกแบบคอนฟิกกูเลขันของระบบควบคุมแบบดีซีไอเอส ในแง่ของความน่าเชื่อถือสำหรับโรงไฟฟ้าในอนาคตของการไฟฟ้าฝ่าผลิตแห่งประเทศไทยนอกจากนี้กระบวนการในการ พยากรณ์ค่าความน่าเชื่อถือที่ใช้ในวิทยานิพนธ์ฉบับนี้ยังสามารถนำไปประยุกต์ใช้ในการวิเคราะห์บัญหาเกี่ยวกับการ พยากรณ์ค่าความน่าเชื่อถือในงานวิเคราะห์ลักษณะเดียวกันได้อีกด้วย

ภากวิชา <mark>สูนย์วิสวกรรมระบบการผฉิตระดับภูมิภาก</mark> ลายมือชื่อนิสิต.. สาขาวิชาการจัดการทางวิศวกรรม......ถายมือชื่ออาจารย์ที่ปรึกษา... ปีการศึกษา.....ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

3972974821 MAJOR ENGINEERING MANAGEMENT

KEY WORD: CONFIGURATION DESIGN / DISTRIBUTED CONTROL AND INFORMATION SYSTEM / RELIABILITY ARIN PAVIDABHA : CRITERIA FOR CONFIGURATION DESIGN OF A DCIS SYSTEM FOR POWER PLANT IN TERMS OF RELIABILITY. THESIS ADVISOR : ASSOCIATE PROFESSOR TATCHAI SUMITRA, DR. ING. THESIS CO-ADVISOR : Mr. VUDTICHAI EKSANGSRI 182 pp. ISBN 974-333-368-1.

This study has been performed to solve the problem of the Distributed Control and Information System (DCIS) configuration design. The problem of DCIS configuration design was about the amount of the DCIS controllers and the DCIS controller system reliability. The reliability analysis technique was used to solve the problem area and find a good fit result.

Firstly, the necessary information of the reliability analysis of the DCIS controller for the case study has been illustrated. Then the case study, which was Krabi thermal power plant project, was analyzed. The DCIS configuration design procedure has been reviewed by taken into account the past experiences and opinions of the concerned expert engineers. The impacts, which affect the number of the DCIS controller, have been reviewed. Finally, by using the result from the analysis of the case study and all impacts, the criteria of configuration design of the DCIS for power plant in the terms of reliability has been developed.

The criteria for configuration design of the DCIS for power plant are the results of the study. It is a good tool for design engineer of EGAT to do the better improvement to the DCIS configuration design in the reliability aspect for future power plant projects of EGAT. The reliability analysis methodology can also be an additional benefit, which can be applied to solve other problem areas in the terms of reliability.

ภาควิชา สูนย์วิศวกรรมระบบการผลิตระดับภูมิภาค ลายมือชื่อนิสิต... ้ ปีการศึกษา......aายมือชื่ออาจารย์ที่ปรึกษาร่วม..

Acknowledgments

Appreciation is given to Associate Professor Dr. Tatchai Sumitra who is thesis advisor and Mr. Vudtichai Eksangsri who is thesis co-advisor for this thesis research. They gave many initiate ideas to create a way to solve the problem in this thesis research. Many thanks are also given to Mr. Vorawit Sanprugsin who is the Power Plant Control System Engineering Department Manager. He gave me many basic principles of the automatic control system and reliability. My thanks are also due to Professor Dr. Sirichan Thongprasert and Assistant Professor Dr. Rein Boondiskulchok for their valuable time and effort in serving member of the examination committee. I would also like to express my gratitude to all my tutors and module coordinators at the Regional Centre for Manufacturing System Engineering of Chulalongkorn University. Finally to my family members and friends, I wish to extend my loving thanks for their valuable help and encouragement.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Contents

Page Abstract (Thai).....iv Abstract (English).....v Acknowledgements.....vi Contents.....vii List of Figures....xi

List of Tables......xiii

Chapter1

Introduction

1.1 Introduction	1
1.2 Background History	
1.3 Statement of Problem	
1.4 Objective of Research	6
1.5 Scope of Research	7
1.6 Methodology	7
1.7 Expected Benefit	

Chapter2

Literature Review

2.1 Introduction	9
2.2 Principle of Distributed Control and Information System	9
2.3 Basic Concepts and Definitions of System Reliability	32
2.4 The literature reviews which are used to perform this thesis	
research	43
2.5 The literatures which relate to the research study	48

ŝ

Chapter3

Description of Design Process

	Page
3.1 Introduction	50
3.2 Background of the Case Study	50
3.3 Electricity Generation Process of Krabi Thermal Power Plant	52
3.3.1 Turbine Generation System	52
3.3.2 Turbine Seals and Drains System	55
3.3.3 Turbine Lube Oil System and Control Oil System	58
3.3.4 Generation Cooling and Purging System	62
3.3.5 Condenser Air Extraction System	63
3.3.6 Steam Generation System	64
3.3.7 Boiler Combustion Air	66
3.3.8 Induced Draft System	68
3.3.9 Air Preheat Water System	68
3.3.10 Boiler Circulating Water System	69
3.3.11 Soot Blowing System	70
3.3.12 Boiler Vents and Drains System	71
3.3.13 Air Heater Wash Water System	73
3.3.14 Flue Gas Treatment	73
3.3.15 Condensate System	75
3.3.16 Heat Rejection System	81
3.3.17 Fuel Supply System	87
3.3.18 Water Supply and Treatment	91
3.3.19 Wastewater Collection and Treatment	96
3.3.20 Electrical System	97

Chapter4

Analysis of DCIS Configuration of the Case Study

4.1 Introduction	01 01 04
4.2 The DCIS to be Implemented to Krabi Project	01 04
	04
4.3 Fault Tree Analysis of Individual DCIS Controller	
4.4 Reliability Modeling for System Prediction of Each Individual	
DCIS Controller	05
4.5 The Problem of DCIS Configuration Design	14
4.6 The DCIS Configuration Design Process	19
4.7 The Reliability Requirements	20
4.8 The Partitioning of the DCIS Controllers for the Case Study	23
4.9 The application of the reliability modeling for system	
prediction to the problem area according to the reliability	
requirements of the case study1	28

Chapter5

Development of DCIS Configuration Design Criteria

5.1	Introduction	135
5.2	The major impacts to the DCIS configuration design	136
5.3	Criteria for configuration design of a DCIS system in terms of	
	Reliability	149
5.4	The limitation of the using of design criteria of the	
	DCIS configuration	156

Chapter 6

Conclusion, Discussion and Recommendation

	Page
6.1 Conclusion of the Thesis Research	
6.2 Discussion	160
6.2 Recommendation	

References	165	
Appendix	167	
Biography	182	

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

List of Figures

-

rage of the second s	je.
Figure 2.1 Basic Structure of Computer	
Figure 2.2 Network Topology	•
Figure 2.3 RS 232 C Interface	
Figure 2.4 The system configuration of DCIS systems from one famous	
Manufacturer	ł
Figure 2.5 Bathtub Curve	,
Figure 2.6 Reliability block diagram for components in series)
Figure 2.7 Reliability block diagram for components in parallel)
Figure 2.8 Reliability block diagram for K-OUT-OF-N redundancy	
Figure 2.9 Reliability block diagram for a system with standby	
Redundancy	,
Figure 4.1 A typical DCIS configuration of K series from	
K manufacturer	2
Figure 4.2 Fault Tree Diagram which shows the cause of DCIS	
Controller Failure	4
Figure 4.3 A reliability block diagram of each individual	
process station of K	5
Figure 4.4 A simplify reliability block diagram of the individual DCIS	
Controller	6
Figure 4.5. The reliability block diagram from figure 4.4 which	
presents the reliability in each block area10	7
Figure 4.6 Reliability block diagram of a simplify success diagram	
(No redundancy)	0
Figure 4.7 Reliability block diagram for individual process station where	
redundancy has been used only for the processor module	1
Figure 4.8 Reliability block diagram for individual process station where	
redundancy has been used for power supply, communication	
module and triple redundancy has used for processor module11	l

List of Figures (continued)

.

ī

:

Page
Figure 4.9 The graphical picture of the reliability in each case which
is calculated in the previous paragraph113
Figure 4.10 The picture which shows the four major parts of the
DCIS configuration116
Figure 4.11 The system life cycle 121
Figure 4.12 The comparison of the reliability between the implementation
of the control software of the same process into the same
controller and the different controllers
Figure 4.13 The comparison of the reliability between the implementation
of the control software into the same controller and the
different three controllers for the case of boiler feed pumps
Figure 4.14 The comparison of the system reliability of the using only one
DCIS controller and more controllers to implement the
opened - loop and closed - loop control of the same
power plant process
Figure 5.1 Flow chart shows the roughly evaluation idea to do the DCIS
configuration design by comparing between probability
of failure and consequence of failure140
Figure 5.2 The example of the control system hierarchy of the coal-fired
power plant of EGAT143
Figure 5.3 The concept of plant protection system which is a current usage
in Krabi thermal power plant project145

.

List of Tables

D--

	I ASC
Table 4.1 The MTBF and MTTR of DCIS controller and its peripheral	
devices of K series	103
Table 4.2 The reliability of each component of an individual process	
station	109
Table 4.3 The reliability of each case of the different configuration in the	9
Individual process station	113
Table 5.1 The DCIS capability from the front line DCIS vendors in the	
current market	137

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย