การศึกษาทางพฤกษเคมีของลำต้นกล้วยฤาษี

นางสาวอรวรรณ เฑียรฆ์พงษ์

สถาบนวิทยบริการ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต สาขาวิชาเภสัชพฤกษศาสตร์ ภาควิชาเภสัชพฤกษศาสตร์ คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2545 ISBN 974-17-2929-4 ลิขสิทธิ์ของ จุฬาลงกรณ์มหาวิทยาลัย Miss Orawan Theanphong

สถาบนวิทยบริการ

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmaceutical Botany Department of Pharmaceutical Botany Faculty of Pharmaceutical Sciences Chulalongkorn University Academic Year 2002 ISBN 974-17-2929-4

Thesis Title	Phytochemical study of Diospyros glandulosa Lace stems
Ву	Miss Orawan Theanphong
Field of Study	Pharmaceutical Botany
Thesis Advisor	Witchuda Thanakijcharoenpath, Ph.D.

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn

University in Partial Fulfillment of the Requirements for the Master's Degree

Boory 7 Tauhising Dean of Faculty of Pharmacuetical Sciences

(Associate Professor Boonyong Tantisira, Ph.D.)

THESIS COMMITTEE

Ch. Aifh Chairman

(Associate Professor Ekarin Saifah, Ph.D.)

Witchuda ThanakijcharomathThesis Advisor

(Witchuda Thanakijcharoenpath, Ph.D.)

Rapepol Bavovada Member

(Associate Professor Rapepol Bavovada Ph.D.)

Rut Sultin Member

(Assistant Professor Rutt Suttisri, Ph.D.)

Winyo anishintipyoth Member

(Associate Professor Chaiyo Chaichantipyuth, M.Sc. in Pharm.)

อรวรรณ เฑียรฆ์พงษ์ : การศึกษาทางพฤกษเคมีของลำต้นกล้วยฤาษี. (Phytochemical study of *Diospyros glandulosa* Lace stems) อ. ที่ปรึษา : อ.ดร. วิชชุดา ธนกิจเจริญพัฒน์, 221 หน้า, ISBN 974-17-2929-4.

จากส่วนลำต้นของกล้วยฤาษี (*Diospyros glandulosa* Lace) สามารถแยกสารในกลุ่ม ไตรเทอร์ปีนอยด์ได้ 6 ชนิด คือ friedelin, β- amyrin, lupeol, betulin, ursolic acid และ oleanolic acid การพิสูจน์เอกลักษณ์ของสารเหล่านี้ ทำโดยการวิเคราะห์ข้อมูล IR, MS, ¹H-NMR และ ¹³C-NMR ร่วมกับการเปรียบเทียบกับค่าที่ได้มีการรายงานไว้แล้ว

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

ภาควิชาเภสัชพฤกษศาสตร์ สาขาวิชาเภสัชพฤกษศาสตร์ ปีการศึกษา 2545

ลายมือชื่อนิสิต
ลายมือชื่ออาจารย์ที่ปรึกษา
ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

4376645833 : MAJOR PHARMACEUTICAL BOTANY

KEY WORD : DIOSPYROS GLANDULOSA / EBENACEAE / TRITERPENOID
ORAWAN THEANPHONG : PHYTOCHEMICAL STUDY OF DIOSPYROS
GLANDULOSA LACE STEMS. THESIS ADVESOR : WITCHUDA
THANAKIJCHAROENPATH, Ph.D., 221 pp. ISBN 974-17-2929-4.

From the stems of *Diospyros glandulosa* Lace, six triterpenoids: friedelin β - amyrin, lupeol, betulin, ursolic acid and oleanolic acid have been isolated. Identification of these compounds was accomplished by analysis of their IR, MS, ¹H-NMR and ¹³C-NMR data as well as comparison with reported values.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Department Pharmaceutical Botany Field of study Pharmaceutical Botany Academic year 2002

Student's signature
Advisor's signature
Co-advisor's signature

ACKNOWLEDGMENTS

I wish to express my grateful thanks to my thesis advisor, Dr. Witchuda Thanakijcharoenpath of the Department of Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for her guidance, suggestion and encouragement throughout the course of this study.

I would like to express my grateful thanks to Associate Professor Dr. Ekarin Saifah, Associate Professor Dr. Rapepol Bavovada and Assistant Professor Dr. Rutt Suttisri of the Department of Pharmaceutical Botany, and Associate Professor Chaiyo Chaichantipyuth of the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for their valuable critical comment.

I would like to express my thanks to Miss Pranorm Khaowmek of the Faculty of Sciences, Rangsit University, for providing of IR spectral data.

I would also like to acknowledge my thanks to the Graduate School of Chulalongkorn University and to Rangsit University for granting my partial financial support to conduct this investigation.

Finally, I wish to express infinite gratitude to my family for their love, understanding and encouragement.

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

CONTENTS

	Page
ABSTR	RACT (THAI)iv
ABSTR	RACT (ENGLISH)v
ACKN	OWLEDGMENTSvi
CONT	ENTSvii
LIST C	DF FIGURESx
LIST C	DF TABLESxii
LIST C	DF SCHEMESxiii
ABBR	EVIATIONS
CHAP	TER
I	INTRODUCTION1
	HISTORICAL
	Chemical constituents of plants in the genus <i>Diospyros</i> 7
	1. Naphthoquinones7
	2. Triterpenoids46
	EXPERIMENTAL
	Source of plant material
	General techniques
	Extraction
	Isolation
	1. Fractionation of the hexane extract
	2. Fractionation of the chloroform extract
	Characterization of the isolated compounds106
IV	RESULTS AND DISCUSSION
	Identification of compound DG1112
	Identification of compound DG2128
	Identification of compound DG3145
	Identification of compound DG4158
	Identification of compound DG5171

CONTENTS

		Page
	Identification of compound DG6	190
V	CONCLUSION	206
REFER	ENCES	207
VITA		221

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

LIST OF FIGURES

Figure		Page
1.	Diospyros glandulosa Lace	6
2.	EIMS of compound DG1	116
3.	IR spectrum of compound DG1	117
4a.	The 300 MHz ¹ H-NMR spectrum of compound DG1 (in CDCl ₃)	118
4b.	The 300 MHz ¹ H-NMR spectrum of compound DG1 (expanded)	119
5a.	The 300 MHz ¹ H- ¹ H COSY spectrum of compound DG1 (in CDCl ₃)	120
5b.	The 300 MHz ¹ H- ¹ H COSY spectrum of compound DG1 (expanded)	121
6a.	The 75 MHz ¹³ C-NMR spectrum of compound DG1 (in CDCl ₃)	122
6b.	The 75 MHz ¹³ C-NMR spectrum of compound DG1 (expanded)	123
7.	The 75 MHz ¹³ C-DEPT NMR spectrum of compound DG1 (in CDCl ₃)	124
8a.	The 75 MHz ¹ H- ¹³ C HETCOR NMR spectrum of compound DG1 (in CDCl ₃)	125
8b.	The 75 MHz ¹ H- ¹³ C HETCOR NMR spectrum of compound DG1 (expanded)	126
8c.	The 75 MHz ¹ H- ¹³ C HETCOR NMR spectrum of compound DG1 (expanded)	127
9.	EIMS of compound DG2	132
10.	IR spectrum of compound DG2	133
11a.	The 300 MHz ¹ H-NMR spectrum of compound DG2 (in CDCl ₃)	134
11b.	The 300 MHz ¹ H-NMR spectrum of compound DG2 (expanded)	135
12a.	The 300 MHz ¹ H- ¹ H COSY spectrum of compound DG2 (in CDCl ₃)	136
12b.	The 300 MHz ¹ H- ¹ H COSY spectrum of compound DG2 (expanded)	137
13a.	The 75 MHz 13 C-NMR spectrum of compound DG2 (in CDCl ₃)	138
13b.	The 75 MHz ¹³ C-NMR spectrum of compound DG2 (expanded)	139
14a.	The 75 MHz ¹³ C-DEPT NMR spectrum of compound DG2 (in CDCl ₃)	140
14b.	The 75 MHz ¹³ C-DEPT NMR spectrum of compound DG2 (expanded)	141
15a.	The 75 MHz ¹ H- ¹³ C HETCOR NMR spectrum of compound DG2 (in CDCl ₃)	142
15b.	The 75 MHz ¹ H- ¹³ C HETCOR NMR spectrum of compound DG2 (expanded)	143
15c.	The 75 MHz ¹ H- ¹³ C HETCOR NMR spectrum of compound DG2 (expanded)	144
16.	EIMS of compound DG3	149
17.	IR spectrum of compound DG3	150

LIST OF FIGURES

Figure		Page
18a.	The 300 MHz 1 H NMR spectrum of compound DG3 (in CDCl ₃)	.151
18b.	The 300 MHz ¹ H NMR spectrum of compound DG3 (expanded)	152
19a.	The 75 MHz ¹³ C-NMR spectrum of compound DG3 (in CDCI ₃)	.153
19b.	The 75 MHz ¹³ C-NMR spectrum of compound DG3 (expanded)	.154
20a.	The 75 MHz ¹³ C-DEPT NMR spectrum of compound DG3 (in CDCl ₃)	.155
20b.	The 75 MHz ¹³ C-DEPT NMR spectrum of compound DG3 (expanded)	.156
21.	The 75 MHz ¹ H- ¹³ C HETCOR NMR spectrum of compound DG3 (in CDCl ₃)	.157
22.	EIMS of compound DG4	.162
23.	IR spectrum of compound DG4	.163
24a.	The 300 MHz ¹ H-NMR spectrum of compound DG4 (in CDCl ₃)	.164
24b.	The 300 MHz ¹ H-NMR spectrum of compound DG4 (in CDCl ₃)	.165
25a.	The 75 MHz ¹³ C-NMR spectrum of compound DG4 (in CDCl ₃)	.166
25b.	The 75 MHz ¹³ C-NMR spectrum of compound DG4 (expanded)	.167
26.	The 75 MHz ¹³ C-DEPT NMR spectrum of compound DG4 (in CDCl ₃)	.168
27a.	The 75 MHz ¹ H- ¹³ C HETCOR NMR spectrum of compound DG4 (in CDCl ₃)	.169
27b.	The 75 MHz ¹ H- ¹³ C HETCOR NMR spectrum of compound DG4 (expanded)	.170
28.	EIMS of compound DG5	.176
29.	IR spectrum of compound DG5	.177
30a.	The 500 MHz 1 H-NMR spectrum of compound DG5 (in DMSO- d_{6})	.178
30b.	The 500 MHz ¹ H-NMR spectrum of compound DG5 (expanded)	.179
30c.	The 500 MHz ¹ H-NMR spectrum of compound DG5 (expanded)	.180
31.	The 500 MHz 1 H- 1 H COSY spectrum of compound DG5 (in DMSO- d_{6})	.181
32a.	The 125 MHz 13 C-NMR spectrum of compound DG5 (in DMSO- d_6)	.182
32b.	The 125 MHz ¹³ C-NMR spectrum of compound DG5 (expanded)	.183
32c.	The 125 MHz ¹³ C-NMR spectrum of compound DG5 (expanded)	.184
33a.	The 75 MHz ¹³ C-DEPT NMR spectrum of compound DG5 (in DMSO- d_6)	.185
33b.	The 75 MHz ¹³ C-DEPT NMR spectrum of compound DG5 (expanded)	.186
34a.	The 75 MHz 1 H- 13 C HETCOR NMR spectrum of compound DG5 (in DMSO- d_{e}).	.187

LIST OF FIGUES

Figure	Page
34b.	The 75 MHz ¹ H- ¹³ C HETCOR NMR spectrum of compound DG5 (expanded)188
34c.	The 75 MHz ¹ H- ¹³ C HETCOR NMR spectrum of compound DG5 (expanded)189
35.	EIMS of compound DG6194
36.	IR spectrum of compound DG6195
37a.	The 300 MHz ¹ H-NMR spectrum of compound DG6 (in CDCl ₃)
37b.	The 300 MHz ¹ H-NMR spectrum of compound DG6 (expanded)197
38a.	The 300 MHz ¹ H- ¹ H COSY spectrum of compound DG6 (in CDCl ₃)198
38b.	The 300 MHz ¹ H- ¹ H COSY spectrum of compound DG6 (expanded)199
39a.	The 75 MHz ¹³ C-NMR spectrum of compound DG6 (in CDCl ₃)
39b.	The 75 MHz ¹³ C-NMR spectrum of compound DG6 (expanded)201
40a.	The 75 MHz ¹³ C-DEPT NMR spectrum of compound DG6 (in CDCl ₃)202
40b.	The 75 MHz ¹³ C-DEPT NMR spectrum of compound DG6(expanded)203
41a.	The 75 MHz ¹ H- ¹³ C HETCOR NMR spectrum of compound DG6 (in CDCl ₃)204
41b.	The 75 MHz ¹ H- ¹³ C HETCOR NMR spectrum of compound DG6 (expanded)205

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

LIST OF TABLES

Table		Page
1.	Distribution of naphthoquinones in the genus <i>Diospyros</i>	9
2.	Distribution of triterpenoids in the genus <i>Diospyros</i>	48
3.	Combined fractions from the hexane extract	93
4.	Combined fractions from F004	94
5.	Combined fractions from the chloroform extract (A)	96
6.	Combined fractions from F013	97
7.	Combined fractions from F014	97
8.	Combined fractions from F028	98
9.	Combined fractions from F031	98
10.	Combined fractions from the chloroform extract (B)	100
11.	Combined fractions from F038	. 100
12.	Combined fractions from F043 and F044	101
13.	Combined fractions from F012 and F036	102
14.	Results of Liebermann-Burchard test and total amount of the isolated	
	compounds	. 105
15.	¹ H and ¹³ C-NMR assignments of compound DG1 and the reported	
	¹³ C-NMR data of friedelin	. 115
16.	¹ H and ¹³ C-NMR assignments of compound DG2 and the reported	
	$^{13}\text{C-NMR}$ data of β -amyrin	. 131
17.	¹ H and ¹³ C-NMR assignments of compound DG3 and the reported	
	¹³ C-NMR data of lupeol	. 148
18.	¹ H and ¹³ C-NMR assignments of compound DG4 and the reported	
	⁹ ¹³ C-NMR data of betulin	. 161
19.	1 H and 13 C-NMR assignments of compound DG5 and the reported	
	¹³ C-NMR data of ursolic acid	165
20.	¹ H and ¹³ C-NMR assignments of compound DG6 and the reported	
	¹³ C-NMR data of oleanolic acid	. 193

LIST OF SCHEMES

Scheme	Pag	je
1.	Extraction of <i>Diospyros glandulosa</i> stems92	2
2.	Isolation of the hexane extract95	5
3.	Isolation of the chloroform extract (A)99)
4.	Isolation of the chloroform extract (B)	}
5.	Isolation of fraction F012 and fraction F036	1
6.	Mass fragmentation of compound DG1	3
7.	Mass fragmentation of compound DG2 129)
8.	Mass fragmentation of compound DG3 146	3
9.	Mass fragmentation of compound DG4 159)
10.	Mass fragmentation of compound DG5 163	3
11.	Mass fragmentation of compound DG6	I

ABBREVIATIONS

br	=	broad
°C	=	degree Celsius
CC	=	column chromatography
CDCI ₃	=	deuterated chloroform
CHCI ₃	=	chloroform
cm	=	centimeter
¹³ C-NMR	=	Carbon-13 Nuclear Magnetic Resonance
COSY	=	Correlated Spectroscopy
δ	=	chemical shift
1-D	=	one dimensional
2-D	=	two dimensional
d	=	doublet
dd	=	doublet of doublets
DEPT	=	Distortionless Enhancement by Polarization Transfer
DMSO-d ₆	=	deuterated dimethylsulfoxide
EIMS	=	Electron Impact Mass Spectroscopy
EtOH	=	ethanol
eV	=	electron volt
g	=	gram
¹ H-NMR	= 1	Proton Nuclear Magnetic Resonance
HETCOR	=	Heteronuclear Correlation Spectroscopy
Hz	471	Hertz
IR 9	=	Infrared
J	=	coupling constant
KBr	=	potassium bromide
L	=	liter
т	=	multiplet
m	=	meter

M^+	=	molecular ion
MeOH	=	methanol
mg	=	milligram
MHz	=	Megahertz
ml	=	milliliter
mm	=	millimeter
MS	=	Mass Spectrum
m/z	=	mass-to-charge ratio
nm	=	nanometer
NMR	=	Nuclear Magnetic Resonance
ppm	=	part per million
9	=	quartet
rel. int.	=	relative intensity
S	=	singlet
sp.	=	species
t	=	triplet
TLC	=	Thin-Layer Chromatography
var.	=	variety
Vmax	= (wavenumber at maximum absorption

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER I

INTRODUCTION

Diospyros is numerically and economically the most important genus of Ebenaceae. The genus comprises about 400 species widespread chiefly in tropical areas and a few can be found in subtropical areas. (Phengklai, 1981)

Plants in the genus *Diospyros* are usually trees or shrubs, dioecious or sometimes monoecious or polygamous. All parts of these plants often turn blackish when dry. The leaves are distichous and mostly reflexed, penninerved. The inflorescences are cymose or fasciculate, axillary or ramiflorous, rarely cauliflorous, or the flowers are solitary. These flowers are actinomorphic. The calyx is more or less deeply lobed, persistent and usually accrescent in fruit; the lobes are valvate or imbricate in bud. The corolla is gamopetalous, caducous; its segments are patent and contorted in bud. The number of stamens is at least 6. The stamens are free or in pairs, inserted on the base of the corolla-tube, or in bundles on the receptacle. The anthers are basifixed, 2-locular, longitudinally dehiscent. Rudimentary ovary is usually present in male flowers, whereas staminodes are usually present in female flowers. The ovary is superior, (3-) 4 (-16)-locular with 1(-2) pendulous ovules in each locule. The numbers of styles are 1-5. The fruit is indehiscent, fleshy, dry or woody, one to many-seeded with ruminate or smooth endosperm (Phengklai, 1981).

The species of *Diospyros* found in Thailand are as follows (กรมป่าไม้, สำนักงานวิชา การป่าไม้, ส่วนพฤกษศาสตร์ป่าไม้, 2544).

- 1. Diospyros andamanica var. aequabilis Bakh.
- 2. D. apiculata Hiern
- 3. D. areolata King & Gamble
- 4. D. bambuseti Fletcher
- 5. D. bejaudii Lec.
- 6. D. borneensis Hiern
- 7. D. brandisiana Kurz

- 8. D. buxifolia (Bl.) Hiern
- 9. D. castanea Fletcher
- 10. D. cauliflora Bl.
- 11. D. coaetanea (Craib) Fletcher
- 12. D. collinsae Craib
- 13. D. confertiflora (Hiern) Bakh.
- 14. D. curranii Merr.
- 15. D. curraniopsis Bakh.
- 16. D. dasyphylla Kurz
- 17. D. decandra Lour.
- 18. D. dictyoneura Hiern
- 19. D. diepenhorstii Miq.
- 20. D. dumetorum W. W. Sm
- 21. D. ehretioides Wall. ex G. Don
- 22. D. ferrea (Willd.) Bakh.var. ferrea (Willd.) Bakh.
- 23. D. ferrea (Willd.) Bakh.var. littorea (R.Br.) Bakh.
- 24. D. filipendula Pierre ex Lec.
- 25. D. frutescens Bl.
- 26. D. fulvopilosa Fletcher
- 27. D. glandulosa Lace
- 28. D. gracilis Fletcher
- 29. D. hasseltii Zoll.
- 30. D. insidiosa Bakh.
- 31. D. kaki L.*
- 32. D. kerrii Craib
- 33. D. kurzii Hiern
- 34. D. lanceifolia Roxb.
- 35. D. latisepala Ridl.
- 36. D. longipilosa Phengklai
- 37. D. malabarica (Desr.) Kostel. var. malabarica Kostel.
- 38. D. malabarica (Desr.) Kostel. var. siamensis (Hochr.) Phengklai

- 39. D. martabanica Clarke
- 40. D. mollis Griff.
- 41. D. montana Roxb.
- 42. D. oblonga Wall. ex G. Don
- 43. D. pendula Hasselt ex Hassk.
- 44. D. philippensis A.DC.*
- 45. D. pilosanthera Blanco
- 46. D. pilosula (A. DC.) Hiern
- 47. D. pubicalyx Bakh.
- 48. D. pyrrhocarpa Miq.
- 49. D. rhodocalyx Kurz
- 50. D. rubra Lec.
- 51. D. scalariformis Fletcher
- 52. D. scortechinii King & Gamble
- 53. D. sumatrana Miq.
- 54. D. tahanensis Bakh.
- 55. D. thaiensis Phengklai
- 56. D. toposia Ham. var. toposia Ham.
- 57. D. toposia Ham. var. toposioides (King & Gamble) Phengklai
- 58. D. transitoria Bakh.
- 59. D. trianthos Phengklai
- 60. D. truncata Zoll. & Moritzi
- 61. D. undulata Wall. ex G. Don var. cratericalyx (Craib) Bakh.
- 62. D. undulata Wall. ex G. Don var. undulata Wall.
- 63. D. variegata Kurz
- 64. D. venosa Wall ex. A. DC.
- 65. D. wallichii King & Gamble ex King
- 66. D. winitii Fletcher
- * exotic plant

Diospyros glandulosa Lace is an evergreen or partly deciduous tree that can grow up to 15 m and is commonly found in hill forests. The stem bark is dark gray-brown or redbrown, shallowly to quite deeply cracked. The leaves are narrowly elliptic-oblong, 8-18 by 3-6.5 cm, with broadly tapering tip and slightly pointed or blunt base. The young leaves are densely coated with golden-brown hairs, mature leaves are smooth or with scattered dark brown hairs on midvein above and densely pale brown hair below. The leaves have 4-7 pairs of curved, sunken side veins, above; with ladder-like tertiary veins. The male flowers are 4(-5)-merous, in cymose inflorescence. The calyx is campanulate, 4-6 mm long, divided nearly to the base, with long-hair on both sides. The corolla is urceolate 6-8 mm long, globose, divided to a quarter up to a third, glabrous on both sides except along the midline of lobes. The numbers of stamens are 14-30. The female flowers are 4-merous, solitary, larger than the males. The ovary is ovate-shaped, pubescent, 8-locular. The style is solitary, pubescent, with 4 stigmas. The fruit is a globose berry, 2.5-3.5 by 2.5-4 cm, yellow-orange, succulent, slightly sunken at both ends, densely coated with silky hairs. The fruiting calyx is 1.6-1.8 cm long, divided to the base, spreading and wavy, conspicuously veined tomentose on both sides. The seeds are dark-brown, in a star-shaped pattern, with smooth endosperm (Phengklai, 1981; Gardner, 2000) (Figure 1).

Thai vernacular names of this plant are "Kluai ruesi" (Chiang Mai, Mae Hong Son) "Chan pa" (Chiang Mai), "Ma khuea thuean" (Loei) and "Le-ko-mo" (Karen -Chiang Mai) (กรมป่าไม้, สำนักงานวิชาการป่าไม้, ส่วนพฤกษศาสตร์ป่าไม้, 2544).

More than 130 *Diospyros* species have been subjected to chemical screening and a variety of compounds have been isolated. It is interesting to note that triterpenoids and naphthoquinones are widely found and present in almost all parts of the plant species. Several of these compounds have been found to be bioactive. (Mallavadhani, Panda and Rao, 1998).

Diospyros glandulosa Lace is one of *Diospyros* species with no previous report on phytochemical investigation. This study deals with the isolation of chemical constiuents from the stems of this plant, as well as the identification of those compounds. The data obtained from the study might provide useful information on phytochemistry and chemotaxonomy of the plant genus.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Figure 1. Diospyros glandulosa Lace (from Gardner, 2000)

CHAPTER II

HISTORICAL

Chemical Constituents of Plants in the Genus Diospyros

Plants in the genus *Diospyros* are found to contain a wide range of chemical constituents: naphthoquinones triterpenoids, steroids, flavonoids, coumarins, tannins and other miscellaneous substances. Two major groups of compounds which have been found widespread and present in almost all parts of the plants are naphthoquinones and triterpenoids. The occurrence of these compounds in *Diospyros* is summarized as follows.

1. Naphthoquinones

The *Diospyros* genus generates a large number of 1,4- metabolites belonging to the juglone class while only three 1,2- naphthoquinones have so far been found. The juglone - based 1,4-naphthoquinones include several monomers and dimers, together with a few trimers and tetramers. Almost all of them are derivatives of 7-methyljuglone and plumbagin, both of which are found to accumulate in significant quantities in a number of *Diospyros* species. These compounds can be used as chemical markers of the genus for taxonomic study.

The 1,4-naphthoquinones of *Diospyros* can be classified into two major groups: (A) monomeric naphthoquinones (including conjugated compounds with one molecule of naphthoquinone) and (B) oligomeric naphthoquinones.

1.1 Monomeric 1,4-naphthoquinones

About 25 metabolites of this group have so far been isolated. *D. melanoxylon* is found to be the potential source for substituted plumbagin (9-12). The partial quinone reduction products of plumbagin (isoshinanolone, 16) and 7-methyljuglone (shinanolone, 26) have been isolated from a few *Diospyros* plants, but the completely reduced quinone skeletons have not yet been detected in the genus.

1.2 Oligomeric 1,4-naphthoquinones

The majority of the *Diospyros* naphthoquinones are of this group and so far 43 oligomeric metabolites have been isolated. These oligomers are formed by coupling between (X) 7-methyljuglone monomers, (Y) plumbagin monomers and (*Z*) 7-methyljuglone and plumbagin monomers. Oligomers of type 3 are rare and so far only two compounds, ehretione (**70**) and habinone (**71**), have been found.

The distribution of naphthoquinones in the genus *Diospyros* is summerized in Table 1.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Compounds	Sources	References
1. 1,2-Naphthoquinones		
8-Hydroxy-1,2-naphthoquinone (1)	D. tricolor	Pista, 1954a; Pista, 1954b
3-Methyl-8-methoxy-1,2-naphthoquinone (2)	D. melanoxylon	Sidhu, Sankaram and Ali, 1968
6-Methyl-8-methoxy-1,2-naphthoquinone (3)	D. celebica	Maiti and Musgrave, 1986
2. 1,4-Naphthoquinones		
2.1 Monomeric 1,4-naphthoquinones	2	
2.1.1 Plumbagin and derivatives		
Plumbagin (4)	D. canaliculata	Zhong, Waterman and Jeffreys, 1984
	D. ebenum	Cooke and Dowd, 1952
ล	D. elliptifolia	Fallas and Thomson, 1968
	D. gracilipes	Thomson, 1971
จุฬา	D. greeniwayi	Khan and Rwekika, 1998

Compounds	Sources	References
Plumbagin (4)	D. hebecarpa	Cooke and Dowd, 1952; Cooke, Dowd and Webb,
		1952
	D. kaki	Tezuka, <i>et al.,</i> 1972
	D. maritima	Tezuka, <i>et al.,</i> 1973
	D. mesfiliformis	Lajubutu, <i>et al.,</i> 1995
	D. novoguianensis	Khan and Timi, 1999b
	D. olen	Evans, <i>et al.,</i> 1999
	D. siamang	Zakaria, <i>et al.,</i> 1984
	D. siderophylla	Li, Lu and Zhong, 1981
	D. walkeri	Herath , 1978
	D. wallichii	Zakaria, <i>et al.,</i> 1984
	V A A	
3-Hydroxyplumbagin (5)	D. maritima	Higa, <i>et al.,</i> 1987
(Droserone)	г д	
จฬา	ลงกรณมหาวท	ปาลย
3-Chloroplumbagin (6)	D. maritima	Higa, <i>et al.,</i> 1987

Compounds	Sources	References
3-Bromoplumbagin (7)	D. maritima	Higa, <i>et al.,</i> 1987
Methylnaphthazarin (8)	D. heterotricha	Ferreira, Costa and Alves, 1972 ; Van Der Vijver
	ALL ALL CONTRACT	and Gerritsma, 1974
	D. lycioides	Van Der Vijver and Gerritsma, 1974
	(GGGGGGGGGGGGG)	
2-Methyl-5-methoxy-1,4-	D. melanoxylon	Sidhu, <i>et al.,</i> 1968
naphthoquinone (9)		
2-Methyl-3-hydroxy-5-methoxy-1,4-	D. melanoxylon	Sidhu, <i>et al.,</i> 1968
naphthoquinone (10)		~
ด	สาปนาหยับว่าไ	
จฺฬา	ลงกรณ์มหาวิท	ยาลัย
9		

Compounds	Sources	References
2-Methyl-5-methoxy-6-hydroxy -1,4-	D. celebica	Maiti and Musgrave, 1986
naphthoquinone (11)	D. melanoxylon	Sidhu, <i>et al.,</i> 1968
(Diomelaquinone)		
2-Methyl-5,6-dimethoxy-1,4- naphthoquinone (12)	D. melanoxylon	Sidhu, <i>et al.,</i> 1968
Canaliculatin (13)	D. canaliculata	Jeffreys and Zakaria, 1983; Zhong, <i>et al.,</i> 1984
Cyclocanaliculatin (14)	D. canaliculata	Jeffreys and Zakaria, 1983; Zhong, et al., 1984
Ebenone (15)	D. ebenum	Sankaram and Reddy, 1984
	91 7 1 1 3 6 16 94 17 1 1 3 1 1	

Compounds	Sources	References
Isoshinanolone (16)	D. maritima	Tezuka, <i>et al.,</i> 1973
	D. samoensis	Richomme, <i>et al.,</i> 1991
	D. siamang	Zakaria <i>et al.,</i> 1984
	D. wallichii	Zakaria <i>et al.,</i> 1984
Epi-isoshinanolone (17)	D. canaliculata	Zhong, <i>et al., 1984</i>
	(ALLER STORED)	
2.1.2 7-Methuljuglone and derivatives	1997 1998 1998 1998 1998 1998 1998 1998	
7-Methyljuglone (18)	D. alboflavescena	Bouquet, 1973
	D. austro-africana	Van Der Vijver and Gerritsma, 1974
	D. chloroxylon	Sidhu and Prasad, 1967
	D. ebenaster	Dominguez <i>et al.,</i> 1979
	D. ebenum	Ruzicka, Eschenmoser and Heusser, 1953
	D. ferrea	Tezuka <i>et al.,</i> 1973
	D. fischeri	Khan and Rwekika, 1992

Compounds	Sources	References
7-Methyljuglone (18)	D. gilleti	Bouquet, 1973
	D. greeniwayi	Khan and Rwekika, 1998
	D. guianensis	Braneton and Moretti, 1979
	D. hallierii	Khan and Timi, 1999a
	D. heterotricha	Ferreira, Alves and Sousa, 1974
	D. hoyleana	Bouquet, 1973
	D. inhacaensis	Van Der Vijver and Gerritsma, 1974
	D. ismailii	Zakaria <i>et al.,</i> 1984
	D. kaki	Tezuka et al., 1972; Lin, Chou and Chen, 1988
	D. lotus	Yoshihira, Tezuka and Natori, 1971; Hasan,
		Matyikhina and Saltykowa, 1975
	D. lycioides	Cai <i>et al.,</i> 2000
ล	D. mafiensis	Khan and Rwekika, 1992
	D. mannii	Jeffreys, Zakaria and Waterman, 1983
จฬา	D. melanoxylon	Row, Sundar Ramaiah and Rao, 1965
9	D. montana	Lillie, Musgrave and Skoules, 1976a

Compounds	Sources	References
7-Methyljuglone (18)	D. moonii	Waterman and Mbi, 1979
	D. natalensis	Van Der Vijver and Gerritsma, 1974
	D. nicaragunesis	Husbun, <i>et al.,</i> 1988
	D. novoguianensis	Khan and Timi, 1999b
	D. rotundifolia	Van Der Vijver and Gerritsma, 1974
	D. squarrosa	Khan, Nkunya and Wevers, 1979
	D. sumatrana	Zakaria, <i>et al.,</i> 1984
	D. usambarensis	Marston, Msonthi and Hostettmann, 1984; Kahn,
	3	Kishimba and Lockslay, 1989
	D. verrucosa	Khan, Kishimba and Lockslay, 1987
	D. virginiana	Carter, Garlo and Stanley, 1978
	D. whyteana	Tannock,1973
ลิ	D. zombensis	Gafner et al.,1987; Gafner and Rodrignez, 1988
	г <u>А</u>	
2-Methoxy-7-methyljuglone (19)	D. usambarensis	Marston, Msonthi and Hostettmann, 1984

Compounds	Sources	References
3-Methoxy-7-methyljuglone (20)	D. kaki	Yoshihira, Tezuka and Kanchanapee, 1971
	D. usambarensis	Marston, <i>et al.</i> , 1984
Celebaquinone (21)	D. celebica	Maiti and Musgrave, 1986
	A TOTAL N	
Isocelebaquinone (22)	D. celebica	Maiti and Musgrave, 1986
Chromenone acid (23)	D. montana	Lillie, <i>et al.,</i> 1976a
	a survey and a survey a	
Chromenone ester (24)	D. montana	Lillie, <i>et al.,</i> 1976a
Ismailin (25)	D. ismailii	Jeffreys and Zakaria, 1983 ; Waterman <i>et al.,</i> 1985
	V A A	
Shinanolone (26)	D. kaki	Tezuka, et al., 1972; Lin, Chou and Chen, 1988
	D. kaki var. sylvestris	Tezuka, <i>et al.,</i> 1972; Lin, <i>et al.,</i> 1988
จพา	D. maingayi	Zakaria, <i>et al.,</i> 1984
9		

Compounds	Sources	References
Shinanolone (26)	D. morrisiana	Chen <i>et al.,</i> 1987
	D. virginiana	Carter, <i>et al</i> ., 1978
2.1.3 Miscellaneous		
3-Methoxyjuglone (27)	D. morrisiana	Chen <i>et al.,</i> 1987
	121212121	
Yerrinquinone (28)	D. montana	Pardhasaradhi and Rao, 1990
	astrony subser	
2.2 Oligomeric 1,4-naphthoquinones		
2.2.1 Derivatives of plumbagin monomers		
Elliptinone (29)	D. ebenum	Sankaram and Reddy, 1984
	D. elliptifolia	Fallas and Thomson, 1968
	D. ehretioides	Lillie, Musgrave and Skoyles, 1976b
	D. maritima	Tezuka, <i>et al.,</i> 1973
	ลงกรณมหาวท	ปาลย

Compounds	Sources	References
Elliptinone (29)	D. mollis	Yoshihira, <i>et al.,</i> 1971a
	D. samoensis	Richomme, <i>et al.,</i> 1991
	D. siamang	Zakaria, <i>et al.,</i> 1984
	D. walkeri	Herath, <i>et al.,</i> 1987
	D. wallichii	Zakaria <i>et al.,</i> 1984
Elliptinone dimethyl ester (30)	D. mollis	Yoshihira, <i>et al.,</i> 1971a
Undulatanone (31)	D. undulata var. cratericalyx	Aoonpakh, 2001
Maritinone (32)	D. kaki	Yoshihira, <i>et al.,</i> 1971c
	D. maritima	Tezuka, <i>et al.,</i> 1973 ; Higa, 1998
	D. samoensis	Richomme, <i>et al.,</i> 1991
	r 🛆	
3-8'-Biplumbagin (33)	D. greeniwayi	Khan and Rwekika, 1999

Compounds	Sources	References
3,3'-Dimer of 6-hydroxy-5-methoxy-	D. melanoxylon	Sidhu, Sankaram and Ali, 1973
2-methyl-1,4-naphthoquinone (34)		
Ethylidene-6,6'-biplumbagin (35)	D. maritima	Higa,1988
2.2.2 Derivatives of 7-methyljuglone	2010 (2010) (201	
monomers	ANA CONSTRUCTION	
Diospyrin (36)	D. abyssinica	Zhong, <i>et al., 1</i> 984
	D. chamaethammus	Costa, <i>et al.,</i> 1998
	D. chloroxylon	Sidhu and Prasad, 1967
	D. cinnabarina	Waterman and Mbi, 1979
	D. fragrans	Zhong, <i>et al., 1984</i>
র	D. gracilescens	Waterman and Mbi, 1979
01	D. kamerunensis	Zhong, et al., 1984
ລທຳ	D. kaki	Tezuka, <i>et al.,</i> 1972; Lin <i>et al.,</i> 1988
9	D. longiflora	Zhong, <i>et al., 1984</i>

Compounds	Sources	References
Diospyrin (36)	D. lotus	Tezuka, <i>et al.,</i> 1973
	D. mannii	Jeffreys, <i>et al</i> ., 1983
	D. maritima	Kuo, <i>et al.,</i> 1997a
	D. obliquifolia	Sidhu and Prasad, 1967
	D. piscatoria	Adeniyi, <i>et al.,</i> 2000
	D. rotundifolia	Van Der Vijver and Gerritsma, 1974
	D. spinescens	Herath et al., 1978
	D. virginiana	Fallas and Thomson, 1968
8-Hydroxydiospyrin (37)	D. maritima	Kuo, <i>et al.,</i> 1997c
	D. montana	Lillie, <i>et al.,</i> 1976a
	V A A	
3'-Methoxy diospyrin (38)	D. mannii	Jeffreys, <i>et al</i> ., 1983
	г А	
2'-Chlorodiospyrin (39)	D. montana	Lillie, <i>et al.,</i> 1976a
9		

Compounds	Sources	References
3'-Chlorodiospyrin (40)	D. montana	Lillie, <i>et al.,</i> 1976a
3'-Chloro-2'-hydroxydiospyrin (41)	D. montana	Lillie, <i>et al.,</i> 1976a
β'-Dihydrodiospyrin (42)	D. montana	Pardhasaradhi and Sidhu, 1972
Tetrahydrodiospyrin (43)	D. montana	Pardhasaradhi and Krishna Kumari, 1979
Cyclodiospyrin (44)	D. montana	Lillie, <i>et al.,</i> 1976a
Isodiospyrin (45)	D. abyssinica	Uphof, 1968
র	D. alboflavescena	Bouquet , 1972
61	D. bipindensis	Waterman and Mbi, 1979
จุฬา	D. chamaethamnus	Costa <i>et al.,</i> 1998
Compounds	Sources	References
-------------------	--------------------------------	---
Isodiospyrin (45)	D. chloroxylon	Sidhu and Prasad, 1967
	D. dendo	Zhong, <i>et al., 1984</i>
	D. ebenaster	Dominguez, <i>et al.</i> , 1979
	D. ferrea	Tezuka <i>et al.,</i> 1973
	D. gilleti	Bouquet, 1973
	D. gracilescens	Waterman and Mbi, 1979; Zhong, et al., 1984
	D. greeniwayi	Khan and Rwekika, 1998
	D. hoyleana	Bouquet, 1972
	D. japonica	Tezuka <i>et al.,</i> 1973
	D. kaki	Tezuka <i>et al.,</i> 1972; Lin, <i>et al</i> ., 1988
	<i>D. kaki</i> var. sylvestris	Tezuka <i>et al.,</i> 1972; Lin, <i>et al</i> ., 1988
	D. lotus	Yoshihira, et al., 1971a; Yoshihira, Tezuka and
ล	ลาบนวทยบรกา	Natori, 1970b
	D. lycioides	Van Der Vijver and Gerritsma, 1974
จฬา	D. mafiensis	Khan and Rwekika, 1999
9	D. maingayi	Zakaria <i>et al.,</i> 1984

Compounds	Sources	References
Isodiospyrin (45)	D. mespiliformis	Fallas and Thomson, 1968
	D. momtana	Lillie, <i>et al</i> ., 1976a
	D. morrisiana	Yoshihira, <i>et al</i> ., 1971; Yan, <i>et al</i> ., 1989
	D. nicaraguensis	Choudhary, <i>et al</i> ., 1990
	D. piscatoria	Adeniyi <i>et al.,</i> 2000
	D. texana	Dominiguez, <i>et al.</i> , 1979
	D. usambarensis	Marston, <i>et al.,</i> 1984
	D. verrucosa	Khan, <i>et al.,</i> 1987
	D. virginiana	Fallas, and Thomson, 1968
	D. whyteana	Tannock, 1973
	D. zombensis	Gafner <i>et al.,</i> 1987
	e a a	
8-Hydroxyisodiospyrin (46)	D. ferrea	Tezuka <i>et al.,</i> 1973
	D. heterotricha	Ferreira, <i>et al.,</i> 1972
	D. kaki	Tezuka <i>et al.,</i> 1973
	D. lycioides	Ferreira, <i>et al.,</i> 1972

Compounds	Sources	References
2'-Methoxyisodiospyrin (47)	D. morrisiana	Chen <i>et al.,</i> 1987
3'-Methoxyisodiospyrin (48)	D. morrisiana	Chen <i>et al.,</i> 1987
3-Ethoxyisodiospyrin (49)	D. maritima	Kuo <i>et al.,</i> 1998a
2'-Ethoxyisodiospyrin (50)	D. maritima	Kuo <i>et al.,</i> 1998a
3'-Ethoxyisodiospyrin (51)	D. maritima	Kuo <i>et al.,</i> 1998b
8'-Hydroxy-3-methoxyisodiospyrin (52)	D. morrisiana	Chen <i>et al.,</i> 1987
2,2'-dimethoxyisodiospyrin (53)	D. morrisiana	Chen <i>et al.,</i> 1987
2,3'-dimethoxyisodiospyrin (54)	D. morrisiana	Chen <i>et al.,</i> 1987

Compounds	Sources	References	
3,3'-dimethoxyisodiospyrin (55)	D. morrisiana	Chen <i>et al.,</i> 1987	
Biramentaceone (56)	D. chamaethamnus	Costa <i>et al.,</i> 1998	
	D. melanoxylon	Sankaram and Sidhu, 1971 ; Sankaram , Reddy	
		and Sidhu, 1981	
	D. novoguianensis	Khan and Timi, 1999b	
Rotundiquinone (57)	D. ismailii	Zakaria <i>et al.,</i> 1984	
	D. rotundifolia	Maiti, Musgrave and Skoyles, 1976	
Mamegakinone (58)	D. chamaethamnus	Costa <i>et al.,</i> 1998	
	D. japonica	Tezuka <i>et al.,</i> 1973	
	D. kaki	Tezuka <i>et al.,</i> 1972	
	D. lotus	Yoshihira, <i>et al.</i> , 1971b	
ลพั	D. lycioides	Li <i>et al.,</i> 1998	
9	D. mollis	Yoshihira, <i>et al</i> ., 1971a	

Compounds	Sources	References
Mamegakinone (58)	D. montana	Yoshihira, <i>et al.</i> , 1971b
	D. obliquifolia	Waterman and Mbi, 1979
	D. usambarensis	Marston, <i>et al.</i> , 1984
	D. zombensis	Khan, <i>et al.</i> , 1989
Mamegakinone dimethyl ester (59)	D. mollis	Yoshihira, <i>et al.</i> , 1971a
Neodiospyrin (60)	D. ismailii	Zakaria <i>et al.,</i> 1984
	D. kaki	Tezuka <i>et al.,</i> 1972
	D. lotus	Tezuka <i>et al.,</i> 1973
	D. montana	Pardhasaradhi and Krishnakumari, 1979
	e a a	
Lemuninol A (61)	Diospyros sp.	Okuyama <i>et al.</i> ,1999
	r A	
	เลงกรณมหาวทย	าลย

Compounds	Sources	References	
Diosquinone (62)	D. chamaethamnus	Costa <i>et al.,</i> 1998	
	D. mafiensis	Khan and Rwekika, 1992	
	D. mesfiliformis	Constanze <i>et al.,</i> 1998	
	D. tricolor	Alake, 1994	
	D. zombensis	Khan, Kishimba and Lockslay, 1987b	
Batocanone (63)	D. batocana	Alves and Costa, 1980	
	1997 1998 1998 1998 1998 1998 1998 1998		
Diosindigo A (64)	D. bipindensis	Waterman and Mbi, 1979	
	D. buxifolia	Musgrave and Skoyles, 1998	
	D. caulifolia	Musgrave and Skoyles, 1998	
	D. consolatae	Khan, <i>et al</i> ., 1987	
	D dendo	Zhong, et al., 1984	
	D. ehretioides	Musgrave and Skoyles, 1974	
	D. ferrea	Tezuka <i>et al.,</i> 1973	

Compounds	Sources	References	
Diosindigo A (64)	D. fischeri	Khan and Rwekika, 1992	
	D. hirsuta	Herath, <i>et al</i> ., 1978	
	D. kaki	Tezuka <i>et al.,</i> 1973	
	D. kirkii	Tezuka et al., 1973; Khan and Rwekika, 1992	
	D. lotus	Khan and Rwekika, 1998	
	D. mafiensis	Khan and Rwekika, 1998	
	D. maingayi	Musgrave and skoyles, 1974	
	D. melanoxylon	Sankaram <i>et al.,</i> 1981	
	D. moonii	Herath <i>et al.,</i> 1978	
	D. squarrosa	Khan, <i>et al.</i> , 1987b	
	D. sumatrana	Musgrave and Skoyles, 1974	
	D. usambarensis	Khan, <i>et al.</i> , 1989	
ť	D. variegata	Musgrave and Skoyles, 1974	
N	D. villosiuscula	Khan and Timi, 1999c	
	D. verrucosa	Khan, <i>et al.</i> , 1987a	
	D. zenkeri	Zhong <i>et al.,</i> 1984	
	D. zombensis	Khan, <i>et al.</i> , 1987b	

Compounds	Sources	References
Diosindigo B (65)	D. celebica	Maiti, <i>et al.</i> , 1976
	D. melanoxylon	Sankaram, <i>et al</i> ., 1981
	D. usambarensis	Khan, <i>et al.</i> , 1989
	D. villosiuscula	Khan and Timi, 1999c
Pentacyclic quinone (66)	D. melanoxylon	Sankaram, <i>et al.</i> , 1981
Xylospyrin (67)	D. chamaethamnus	Costa <i>et al.,</i> 1998
	D. chloroxylon	Sidhu and Prasad, 1970
	D. ebenaster	Dominguez, <i>et al.</i> , 1979
	D. texana	Dominguez, <i>et al.</i> , 1979
Bis-isodiospyrin (68)	D. japonica	Yoshihira, <i>et al.</i> , 1970
	D. lotus	Yoshihira, <i>et al.</i> , 1971b
	D. maingayi	Zakaria, <i>et al</i> ., 1984
	D. morrisiana	Yoshohira, <i>et al</i> ., 1970
	D. piscatoria	Adeniyi <i>et al.,</i> 2000

Sources	References	
D. usambarensis	Khan, <i>et al.</i> , 1989	
D. mafiensis	Khan and Rwekika, 1998	
D. ehre <mark>ti</mark> oides	Lillie, <i>et al.</i> , 1976b	
and must superior		
D. greeniwayi	Khan and Rwekika, 1998	
e		
ลาบนวทยบรกา	5	
r _		
ลงกรณมหาวท	ยาลย	
	Sources D. usambarensis D. mafiensis D. ehretioides D. greeniwayi	

8-Hydroxy-1,2-naththoquinone (1)

3-Methyl-8-methoxy-1,2-naphthoquinone (2)

6-Methyl-8-methoxy-1,2-naphthoquinone (3)

Plumbagin (4)	$R_1 = R_2 = R_3 = H$	
3-Hydroxyplumbagin (5)	R ₁ = OH	$R_2 = R_3 = H$
3-Chloroplumbagin (6)	R ₁ = CI	R ₂ =R ₃ =H
3-Bromoplumbagin (7)	R ₁ = Br	R ₂ =R ₃ =H
Methylnaphthazarin (8)	$R_1 = R_3 = H$	R ₂ =OH

2-Methyl-5-methoxy-1,4-naphthoquinone (9)	$R_1 = R_2 = H$	
2-Methyl-3-hydroxy-5-methoxyl-1,4- naphthoquinone (10)	R ₁ = OH	$R_2 = H$
Diomelaquinone (11)	$R_1 = H$	R ₂ =OH
2-Methyl-5,6-dimethoxy-1,4- naphthoquinone (12)	R ₁ =H	R ₂ =OCH ₃

Isoshinanolone (16)

Epi-isoshinanolone (17)

 7-Methyljuglone (18)
 $R_1 = R_2 = H$

 2-Methoxy-7-methyljuglone (19)
 $R_1 = OCH_3$ $R_2 = H$

 3-Methoxy-7-methyljuglone (20)
 $R_1 = H$ $R_2 = OCH_3$

Celebaquinone (21)

Isocelebaquinone (22)

Chromenone acid	(23)	R= H
Chromenone ester	(24)	$R = C_2 H_5$

Ismailin (25)

3-8'-Biplumbagin (33)

3-3'-Dimer of 6-hydroxy-5-methoxy-2-methyl-1,4-naphthoquinone (34)

Ethylidene-6,6'-biplumbagin (35)

Diospyrin (36)	$R_1 = R_2 = R_3 = H$	
8-Hydroxydiospyrin (37)	R ₁ =OH	$R_2 = R_3 = H$
3'-Methoxydiospyrin (38)	$R_1 = R_2 = H$	R ₃ =OCH ₃
2'-Chlorodiospyrin (39)	$R_1 = R_3 = H$	$R_2 = CI$
3'-Chlorodiospyrin (40)	$R_1 = R_2 = H$	R ₃ =CI
3'-Chloro-2'-hydroxydiospyrin (41)	R.=H R.=OF	R.=CI

 β' -Dihydrodiospyrin (42)

Tetrahydrodiospyrin (43)

Isodiospyrin (45)	$R_1 = R_2 = R_1 = R_2 = R_3 = H$	
8'-Hydroxyisodiospyrin (46)	$R_1 = R_2 = R_1 = R_2 = H$	R ₃ =OH
2'-Methoxyisodiospyrin (47)	R ₁ =OCH ₃	$R_2 = R_1 = R_2 = R_3 = H$
3'-Methoxyisodiospyrin (48)	$R_1 = R_2 = R_1 = R_3 = H$	$R2' = OCH_3$
3-Ethoxyisodiospyrin (49)	R1=R1'=R2'=R3'=H	R ₂ =OCH ₂ CH ₃
2'-Ethoxyisodiospyrin (50)	R ₁ =R ₂ =R ₂ ,=R ₃ ,=H	R ₁ ,=OCH ₂ CH ₃
3'-Ethoxyisodiospyrin (51)	$R_1 = R_2 = R_1 = R_2 = R_3 = H$	R ₂ =OCH ₂ CH ₃
8'-Hydroxy-3-methoxyisodiospyrin (52)	$R_1 = R_{1'} = R_{2'} = H$ $R_2 = OO$	CH ₃ , R ₃ ,=OH
2,2'-Dimethoxyisodiospyrin (53)	$R_1 = R_1 = OCH_3$,	R ₂ =R _{2'} =R _{3'} =H
2,3'-Dimethoxyisodiospyrin (54)	$R_1 = R_2 = OCH_3$	R ₂ =R ₁ ,=R ₃ ,=H
3,3'-Dimethoxyisodiospyrin (55)	$R_1 = R_1 = R_3 = H$	R ₂ =R ₂ ,= OCH ₃ ,

Mamegakinone dimethyl ester (59) $R = CH_3$

Bis-isodiospyrin (68)

Habinone (71)

2. Triterpenoids

Triterpenoids are widely distributed in the genus *Diospyros*. They are found in more than 90% of *Diospyros* species screened so far and detected in almost all parts of the plants especially in the leaves and heartwood (Mallavadhani, Panda and Rao, 1998). The *Diospyros* triterpenoids isolated so far are all pentacyclic, belonging to the lupane (A), ursane (B), oleanane (C), taraxerane (D) and friedelane (E) types. Some of these compounds are found to prossess interesting pharmacological activities such as anti-tumor [betulinic acid (Yan, *et. al*, 1989), lupeol (Kuo, *et al*, 1997c)] and anti-inflamatory activities [betulin, betulinic acid and ursolic acid (Recio, *et al*, 1995)].

Of the five triterpene skeletal types found in *Diospyros*, the lupane skeleton is the most common. Major compounds of this type are lupeol, betulin and betulinic acid. Two other classes of triterpenoids which are prevalent in *Diospyros* are the ursanes and the oleananes. α -Amyrin, ursolic acid and baurenol are major compounds of the ursane type while β -amyrin and oleanolic acid are of the oleanane type. For the last two skeletal types only 3 taraxeranes and 4 friedelanes have so far been isolated from *Diospyros* species.

Lupane (A)

Ursane (B)

The distribution of triterpenoids within the genus *Diospyros* is summarized in Table 2.

Compounds	Sources	References
1. Lupane type		
Lupeol (72)	D. abyssinica	Zhong, <i>et al.</i> ,1984
	D. acuta	Herath, <i>et al.</i> 1978
	D. argentea	Zakaria, <i>et al.</i> , 1984
	D. bipidensis	Waterman and Mbi, 1979
	D. buxifolia	Bhakuni, <i>et al.</i> , 1971
	D. canaliculata	Zhong, <i>et al</i> .,1984
	D. candolleana	Desai, <i>et al.</i> , 1970
	D. castanea	Musgrave and Skoyles , 1974
	D. cauliflora	Musgrave and Skoyles , 1974
	D. chevalieri	Zhong, <i>et al</i> .,1984
	D. cinnabarina 👝	Waterman and Mbi, 1979 ; Zhong, <i>et al</i> .,1984
ົລ	D. consulatae	Khan, <i>et al</i> ., 1987
	D. cordifolia	Chandra and Shastry, 1989
จุฬา	D. comii	Khan, Nkunya and Wevers, 1980

Compounds	Sources	References
Lupeol (72)	D. crassiflora	Zhong, <i>et al.</i> ,1984
	D. curranii	Musgrave and Skoyles, 1974
	D. dendo	Zhong, <i>et al.</i> ,1984
	D. dipenhorstii	Musgrave and Skoyles, 1974
	D. discolor	Zakaria, <i>et al.</i> , 1984
	D. ebenum	Gupta and Mahadevan, 1967; Gupta and
	(CALLES STATE)	Mahadevan, 1968
	D. ehretioides	Musgrave and Skoyles, 1974
	D. elliptifolia	Musgrave, <i>et al</i> ., 1974
	D. embryopteris	Bhakuni, <i>et al.</i> , 1971
	D. eriantha	Chen, <i>et al.</i> , 1994
	D. evena	Musgrave, <i>et al.</i> , 1974
ົລ	D. exsculpta	Bhakuni, <i>et al.</i> , 1971
	D. fragrans	Zhong, <i>et al.</i> ,1984
	D. gabunensis	Zhong, <i>et al.</i> ,1984

Compounds	Sources	References
Lupeol (72)	D. gracilescens	Wareman and Mbi, 1979 ; Zhong, <i>et al</i> .,1984
	D. greeniwayi	Khan and Rwekika, 1998
	D. guianensis	Braneton and Moretti, 1979
	D. hallierii	Khan and Timi, 1999a
	D. hirsuta	Herath, <i>et al.</i> , 1978
	D. hoyleana	Zhong, <i>et al.</i> ,1984
	D. ismailii	Zakaria, <i>et al</i> ., 1984
	D. iturensis	Zhong, <i>et al</i> .,1984
	D. kaki	Tezuka, <i>et al</i> ., 1972; Lin <i>et al</i> ., 1988
	D. kaki var. sylvestris	Tezuka, <i>et al</i> ., 1972
	D. kamerunensis	Zhong, <i>et al</i> .,1984
	D. kirkii 🔍 👝	Maria, <i>et al.</i> , 1979
ົ	D. longiflora	Zhong, <i>et al</i> .,1984
	D. lotus	Yoshihira, et al., 1971b ; Zakaria, et al., 1984
จุฬา	D. mafiensis	Khan and Rwekika, 1992

Compounds	Sources	References
Lupeol (72)	D. maingayi	Musgrave and Skoyles , 1974 ; Zakaria, <i>et al.</i> , 1984
	D. mannii	Jeffreys, <i>et al</i> ., 1983
	D. maritima	Tezuka, <i>et al.</i> , 1973
	D. melanoxylon	Sankaram and Sidhu, 1964; Gupta and Roa, 1964
	D. mespiliformis	Zhong, <i>et al.</i> ,1984
	D. microphylla	Bhakuni, <i>et al.</i> , 1971
	D. mollis	Yoshihira, et al., 1971a ; Musgrave and Skoyles,
	1997-1997-1997-1997-1997-1997-1997-1997	1974
	D. monobuttensis	Zhong, <i>et al.</i> ,1984
	D. montana	Musgrave and Skoyles , 1974 ; Narayan, Row and
		Satyanarayana, 1978 ; Kapil and Dhar, 1961
	D. moonii	Herath, <i>et al.</i> , 1978
ล	D. morrisiana	Yoshihira, <i>et al.</i> , 1971b
	D. natalensis	Khan and Rwekika, 1992
จุฬา	D. obliquifolia	Waterman amd Mbi, 1979

Compounds	Sources	References
Lupeol (72)	D. oblongifolia	Herath, <i>et al.</i> , 1978
	D. oppositifolia	Herath, <i>et al.</i> , 1978
	D. peregrina	Bhaumik, <i>et al</i> ., 1971 ; Mirsa, <i>et al</i> ., 1971
	D. pseudo-malabarica	Musgrave and Skoyles, 1974
	D. quaesita	Herath, <i>et al.</i> , 1978
	D. rheophytica	Herath, <i>et al.</i> , 1978
	D. rhodocalyx	Musgrave and Skoyles, 1974
	D. rotundifolia	Gupta and Roa, 1964
	D. sanza-minika	Musgrave and Skoyles , 1974 ;Zhong, <i>et al.</i> ,1984
	D. siamang	Zakaria,, <i>et al.</i> , 1984
	D. siamensis	Musgrave and Skoyles , 1974
	D. siderophylla	Li, <i>et al.</i> ,1982
6	D. singaporensis	Zakaria, <i>et al.</i> , 1984
	D. spinescens	Herath, <i>et al</i> ., 1978
จุฬา	D. sumatrana	Zakaria, <i>et al.</i> , 1984

Compounds	Sources	References
Lupeol (72)	D. sylvatica	Rao, <i>et al</i> ., 1966; Gupta and Roa, 1964
	D. thwaitesii	Herath, <i>et al.</i> , 1978
	D. tomentosa	Bhakani, <i>et al</i> ., 1971
	D. toposia	Musgrave and Skoyles, 1974
	D. undulata var. cratericalyx	Aoonpakh, 2001
	D. villosiuscula	Khan and Timi, 1999c
	D. variegata	Musgrave and Skoyles, 1974
	D. virginiana	Shukla and Kapadia, 1989
	D. walkeri	Herath, <i>et al</i> ., 1984
	D. wallichii	Zakaria, <i>et al.</i> , 1984
	D. zenkeri	Zhong, <i>et al</i> .,1984
	2 9 9	
Epi-lupeol (73)	D. ebenaster	Dominguez, <i>et al.</i> , 1979
จุฬา	D. palmeri	Dominguez, <i>et al.</i> , 1979

Compounds	Sources	References
Lupenone (74)	D. mollis	Yoshihira, <i>et al</i> , 1971a
Betulin (75)	D. abyssinica	Zhong, <i>et al</i> .,1984
	D. argentea	Zakaria, <i>et al.</i> , 1984
	D. bipidensis	Waterman and Mbi, 1979
	D. buxifolia	Bhakuni, <i>et al.</i> , 1971
	D. canaliculata	Zhong, <i>et al.</i> ,1984
	D. candolleana	Desai, <i>et al.</i> , 1970
	D. castanea	Musgrave and Skoyles , 1974
	D. cauliflora	Musgrave and Skoyles , 1974
	D. chevalieri	Zhong, <i>et al</i> .,1984
	D. chloroxylon	Matsura, <i>et al.</i> ,1971
	D. cinnabarina	Waterman and Mbi, 1979 ; Zhong, et al.,1984
	D. consolatae	Khan, <i>et al</i> ., 1987
	D. cornii	Khan, Nkunya and Wevers, 1980

Compounds	Sources	References
Betulin (75)	D. crassiflora	Zhong, <i>et al.</i> ,1984
	D. curranii	Musgrave and Skoyles , 1974
	D. dendo	Zhong, <i>et al</i> .,1984
	D. diepenhorstii	Balza, <i>et al</i> ., 1989
	D. discolor	Zakaria, <i>et al.</i> , 1984
	D. ebenaster	Dominguez , <i>et al.</i> , 1979
	D. ebe <mark>num</mark>	Gupta and Mahadevan, 1967; Gupta and
	A DEUX / MUNST	Mahadevan, 1968
	D. elliptifolia	Musgrave <i>et al</i> ., 1974
	D. embryopteris	Bhakuni, <i>et al.</i> , 1971
	D. eriantha	Chen, <i>et al</i> ., 1994
	D. evena	Musgrave and Skoyles , 1974
ลิ	D. exsculpta	Bhakuni, <i>et al.</i> , 1971
	D. fragrans	Zhong, <i>et al</i> .,1984
	D. gabunensis	Zhong, <i>et al.</i> ,1984

Compounds	Sources	References
Betulin (75)	D. guianensis	Zhong, <i>et al.</i> ,1984
	D. gracilescens	Waterman and Mbi, 1979 ; Zhong <i>et al.</i> ,1984
	D. guianensis	Braneton and Moretii, 1979
	D. hirsuta	Herath,, <i>et al</i> ., 1978
	D. hoyleana	Zhong, <i>et al.</i> ,1984
	D. indica	Hayek , <i>et al</i> ., 1989
	D. ismailii	Zakaria,, <i>et al</i> ., 1984
	D. iturensis	Zhong, <i>et al.</i> ,1984
	D. kaki	Matsura et al., 1971 ; Andriamasy and Fouraste,
		1978
	D. kaki var. sylvestris	Tezuka, <i>et al.</i> , 1972
	D. kamerunensis	Zhong, <i>et al.</i> ,1984
6	D. kirkii	Maria, <i>et al.</i> , 1979
	D. leucomelas	Recio, <i>et al.</i> , 1995
	D. longiflora	Zhong, <i>et al.</i> ,1984

Compounds	Sources	References
Betulin (75)	D. lotus	Yoshihira, et al., 1971b ; Zakaria, et al., 1984
	D. maingayi	Musgrave and Skoyles, 1974; Zakaria, et al., 1984
	D. malanonilau	Singh and Prakask, 1988
	D. mannii	Jeffreys, <i>et al</i> ., 1983
	D. maritima	Tezuka, <i>et al.</i> , 1973
	D. melanoxylon	Sankaram and Sidhu, 1964; Gupta and Roa, 1964
	D. mespiliformis	Zhong, <i>et al</i> .,1984
	D. microphyla	Bhakuni, <i>et al</i> ., 1971
	D. mollis	Yoshihira, et al., 1971a ; Musgrave and Skoyles,
		1974
	D. monobuttensis	Zhong, <i>et al</i> .,1984
	D. montana 🦱	Musgrave and Skoyles , 1974 ; Narayan, et al.,
ล	ถาบนวทยบรกา	1978
	D. moonii	Herath, <i>et al.</i> , 1978
จุพา	D. morrisiana	Yoshihira, <i>et al</i> , 1971b

57
Compounds	Sources	References
Betulin (75)	D. obliquifolia	Waterman amd Mbi, 1979
	D. oblongifolia	Herath, <i>et al.</i> , 1978
	D. peregrina	Bhakuni, <i>et al</i> ., 1971 ; Mirsa, <i>et al</i> ., 1971
	D. pseudo-malabarica	Musgrave and Skoyles , 1974
	D. quaesita	Herath, <i>et al.</i> , 1978
	D. rhodocalyx	Musgrave and Skoyles , 1974
	D. rotundifolia	Gupta and Roa, 1964
	D. sanza-minika	Musgrave and Skoyles , 1974 ; Zhong, <i>et al</i> .,1984
	D. siamang	Zakaria, <i>et al.</i> , 1974
	D. siamensis	Musgrave and Skoyles , 1974
	D. siderophylla	Li, <i>et al.</i> ,1981
	D. singaporensis	Zakaria, <i>et al.</i> , 1984
ิล	D. spinescens	Herath, <i>et al.</i> , 1984
จุฬา	D. sumatrana D. sylvatica	Zakaria, <i>et al.</i> , 1984 Rao, <i>et al</i> ., 1966; Gupta and Roa, 1964

Compounds	Sources	References
Betulin (75)	D. thwaitesii	Herath, <i>et al</i> ., 1984
	D. tomentosa	Bhakan <i>i, et al</i> ., 1971
	D. undulata var. cratericalyx	Aoonpakh, 2001
	D. variegata	Musgrave and Skoylas, 1974
	D. verrucosa	Khan, Kishimba and Locksley, 1987
	D. virainiana	Hayek, <i>et al.</i> , 1989
	D. walkeri	Herath, <i>et al</i> ., 1984
	D. wallichii	Zakaria, <i>et al.</i> , 1984
	D. zenkeri	Zhong, <i>et al.</i> ,1984
		~
6	สาปนวทยบวกก	
	MALIJERTIM LIMI	
9		

Compounds	Sources	References
Betulinic acid (76)	D. abyssinica	Zhong, <i>et al.</i> ,1984
	D. alboflavescena	Bouquet, 1972
	D. argentea	Zakaria, <i>et al.</i> , 1984
	D. bipidensis	Waterman and Mbi, 1979
	D. buxifolia	Bhakuni, <i>et al.</i> , 1971
	D. canaliculata	Zhong, <i>et al</i> .,1984
	D. candolleana	Desai, <i>et al.</i> , 1970
	D. castanea	Musgrave and Skoyles, 1974
	D. cauliflora	Musgrave and Skoyles, 1974
	D. chevalieri	Zhong, <i>et al.</i> ,1984; Hayek <i>et al.</i> , 1989
	D. chloroxylon	Matsura, <i>et al.</i> ,1971
	D. cinnabarina 👝	Waterman and Mbi, 1979 ; Zhong, et al.,1984
ົ	D. consolatae	Khan, <i>et al</i> ., 1980
	D. crassiflora	Zhong, <i>et al</i> .,1984
	D. curranii	Musgrave and Skoyles , 1974

Compounds	Sources	References
Betulinic acid (76)	D. dendo	Zhong, <i>et al</i> .,1984
	D. dipenhorstii	Musgrave and Skoyles , 1974
	D. discolor	Lin, 1978 ; Zakaria, <i>et al.</i> , 1984
	D. ebenum	Brown and Thomson, 1965
	D. ehretioides	Musgrave and Skoyles, 1974
	D. ell <mark>iptifolia</mark>	Musgrave <i>et al</i> ., 1974
	D. embryopteris	Bhakun, <i>et al.</i> , 1971
	D. eriantha	Chen, <i>et al</i> ., 1994
	D. evena	Musgrave, <i>et al</i> ., 1974
	D. exsculpta	Bhakuni, <i>et al.</i> , 1971
	D. ferrea	Bhakuni, <i>et al.</i> , 1971
	D. fragrans	Zhong, <i>et al</i> .,1984
ล	D. gabunensis	Zhong, <i>et al</i> .,1984
	D. gilleti	Bouquet, 1973
	D. gracilescens	Wareman and Mbi, 1979 ; Zhong <i>et al.</i> ,1984

Compounds	Sources	References
Betulinic acid (76)	D. greeniwayi	Khan and Rwekika, 1998
	D. guianensis	Braneton and Moretti, 1979
	D. hirsuta	Herath, <i>et al</i> ., 1978
	D. hoyleana	Zhong, <i>et al</i> .,1984
	D. ismailii	Zakaria, <i>et al</i> ., 1984
	D. iturensis	Zhong, <i>et al</i> .,1984
	D. kaki	Tezuka, <i>et al</i> ., 1972; Lin <i>et al</i> ., 1988
	D. kaki var. sylvestris	Tezuka, <i>et al</i> ., 1972
	D. kamerunensis	Zhong, <i>et al</i> .,1984
	D. leucomelas	Recio, <i>et al.</i> , 1995
	D. longiflora	Zhong, <i>et al</i> .,1984
	D. lotus	Yoshihira <i>et al</i> ., 1971b ; Zakaria, <i>et al</i> ., 1984
6	D. mafiensis	Khan and Rwekika, 1999
	D. maingayi	Musgrave and Skoyles , 1974 ; Zakaria, et al.,
	ลงกรณมหาวท	1984

Compounds	Sources	References
Betulinic acid (76)	D. mannii	Jeffreys <i>et al.</i> , 1983
	D. maritima	Tezuka, <i>et al.</i> , 1973
	D. mespiliformis	Zhong, <i>et al</i> .,1984
	D. melanoxylon	Sankaram and Sidhu, 1964; Gupta and Roa, 1964
	D. monobuttensis	Zhong, <i>et al</i> .,1984
	D. montana	Musgrave and Skoyles , 1974 ; Narayan, <i>et al</i> .,
	(Section States)	1978
	D. moonii	Herath, <i>et al.</i> , 1978
	D. morrisiana	Yoshihira, <i>et al</i> ., 1971b
	D. natalensis	Khan and Rwekika, 1992
	D. obliquifolia	Waterman amd Mbi, 1979
	D. palmeri	Dominguez, <i>et al</i> ., 1979
ล	D. peregrina	Bhaumik, <i>et al</i> .,1971
	D. pseudo-malabarica	Musgrave and Skoyles , 1974
จุฬา	D. quaesita	Herath,, <i>et al.</i> , 1978

Compounds	Sources	References
Betulinic acid (76)	D. sanza-minika	Musgrave and Skoyles , 1974 ; Zhong, <i>et al</i> .,1984
	D. siamang	Zakaria, <i>et al.</i> , 1974
	D. siamensis	Musgrave and Skoyles , 1974
	D. siderophylla	Li, <i>et al.</i> ,1982
	D. singaporensis	Zakaria, <i>et al.</i> , 1984
	D. spinescens	Herath, <i>et al</i> ., 1984
	D. sumatrana	Zakaria, <i>et al.</i> , 1984
	D. sylvatica	Rao, <i>et al.</i> , 1966 ; Gupta and Roa, 1964
	D. thwaitesii	Herath, <i>et al</i> ., 1984
	D. tomentosa	Bhakani, <i>et al</i> ., 1971
	D. verrucosa	Khan, Nkunya and Wevers, 1980 ; Khan <i>et al.</i> ,
	V A A	1987a
ิล	D. virginiana	Skukla and Kapadia, 1989
	D. walkeri	Herath, <i>et al</i> ., 1984
จุฬา	D. wallichii	Zakaria, <i>et al.</i> , 1984

Compounds	Sources	References
Betulinic acid (76)	D. zenkeri	Zhong, <i>et al.</i> ,1984
Betulinaldehyde (77)	D. canaliculata	Zhong, <i>et al.</i> ,1984
	D. eriantha	Chen, <i>et al.</i> , 1992
Peregrinol (78)	D. peregrina	Jain and Yadav, 1994
3-(Z)-Coumaroyllupeol (79)	D. maritima	Chang and Kuo, 1999
3-(<i>E</i>)-Coumaroyl-28-palmitoylbetulin (80)	D. maritima	Chang and Kuo, 1998
3-(Z)-Coumaroyl-28-palmitoylbetulin (81)	D. maritima	Chang and Kuo, 1998
3-(<i>E</i>)-Ferulolylbetulin (82)	D. maritima	Kuo, Chang and Kuo, 1997b

Compounds	Sources	References
3-(<i>E</i>)-Ferulolyl-28-palmitoylbetulin (83)	D. maritima	Chang and Kuo, 1998
3-(<i>E</i>)-Coumaroylbetulinaldehyde (84)	D. maritima	Chang and Kuo, 1999
3-(<i>E</i>)-Coumaroylbetulin-28-yl	D. maritima	Kuo and Chang , 2000
ethylnonanedioate (85)	28221212	
3-(<i>E</i>)-Coumaroylbetulin-28-yl ethylsuccinate (86)	D. maritima	Kuo and Chang , 2000
3-(<i>E</i>)-Coumaroylbetulin-28-yl ethyl (2R)-2-hydroxysuccinate (87)	D. maritima	Kuo and Chang , 2000
28-Acetyl-3-(<i>E</i>)-coumaroylbetulin (88)	D. maritima	Kuo, Chang and Kuo, 1997b

Compounds	Sources	References
Diospyrolide (89)	D. maritima	Kuo, Chang and Kuo, 1997a
2. Ursane type		
α-Amyrin (90)	D. cordifolia	Chandra and Shastry, 1989
	D. comii	Gafner, <i>et al.</i> , 1987; Khan, <i>et al.</i> , 1979
	D. ebenum	Brown and Thomson, 1965; Gupta and Mahadevan,
		1967
	D. kaki	Braza, <i>et al</i> .,1989
	D. kirkii	Khan, <i>et al.</i> , 1980; Khan, <i>et al.</i> , 1979
	D. mafiensis	Khan and Rwekika, 1992
	D. maingayi	Zakaria, <i>et al.</i> , 1984
ส	D. melanoxylon	Choudhary, 1973
DA PA	D. mespiliformis	Khan, <i>et al</i> ., 1980; Khan, <i>et al.</i> , 1979
ລາທຳ	D. montana	Misra,Nigam and Mitra, 1972
9	D. natalensis	Khan and Rwekika, 1992

67

Compounds	Sources	References
α-Amyrin (90)	D. sylvatica	Rao, <i>et al.</i> , 1966 ; Gupta and Roa, 1964
α-Amyrone (91)	D. ebenum	Sharma and Gupta., 1985; Gupta and Mahadevan,
		1981
	STATA State Omerica	
Ursolic acid (92)	D. castanea	Musgrave and Skoyles, 1974
	D. cauliflora	Musgrave and Skoyles, 1974
	D. cordifolia	Chandra and Shastry, 1989
	D. curranii	Musgrave and Skoyles, 1974
	D. ebenum	Gupta and Mahadevan, 1968
	D. evena	Musgrave and Skoyles, 1974
	D. ferea	Bhakuni <i>et al</i> ., 1971
	D. hirsuta	Herath, <i>et al.</i> , 1978
	D. kaki	Matsura et al., 1971; Matsura and linuma, 1977
	D. leucomelas	Recio <i>et al.</i> , 1995

Compounds	Sources	References
Ursolic acid (92)	D. lotus	Yoshihira, <i>et al.</i> , 1971b ; Zakaria, <i>et al.</i> , 1984
	D. malanonilau	Singh and Prakash, 1988
	D. melanoxylon	Sankaram and Sidhu, 1964
	D. montana	Musgrave and Skoyles, 1974; Mirsa, et al.,1972
	D. morrisiana	Yoshihira, <i>et al</i> ., 1971
	D. quaesita	Herath, <i>et al</i> ., 1978
	D. tomentosa	Bhakuni <i>et al</i> ., 1971
	1999-1918 - 1918 - 1918 - 1918 - 1918 - 1918 - 1918 - 1918 - 1918 - 1918 - 1918 - 1918 - 1918 - 1918 - 1918 - 1	
Ursolic acid acetate (93)	D. eriantha	Chen, <i>et al.</i> , 1992
	D. lotus	Yoshihira, <i>et al</i> ., 1970; Hasan, <i>et al</i> ., 1975
Ursolic acid palmitate (94)	D. montana 👝	Misra, <i>et al.</i> , 1972
	ลาบนวทยบรก	15
Ursolic acid stearate (95)	D. montana	Misra, <i>et al.</i> , 1972
	ลงกรณมหาวท	ยาลย

Compounds	Sources	References
Uvaol (96)	D. kaki	Lin, <i>et al</i> ., 1988
	D. lotus	Zakaria, et al., 1984
	D. maingayi	Zakaria, <i>et al.</i> , 1984
	D. melanoxylon	Mallavadhani, Panda and Rao, 2001
Epi-uvaol (97)	D. montana	Dutta, Dutta ant Chakravarti, 1972
Bauerenol (98)	D. ebenum	Gupta and Mahadevan, 1967
	D. kirkii	Khan, <i>et al</i> ., 1979; Khan, <i>et al</i> ., 1987
	D. melanoxylon	Mallavadhani, <i>et al.</i> , 1998
	D. mespoliformis	Khan, <i>et al</i> ., 1979; Khan, <i>et al</i> ., 1987
	D. sylvatica	Mallavadhani, <i>et al</i> , 1998
	ลาบนวทยบรก	15
Corsolic acid (99)	D. melanoxylon	Mallavadhani, <i>et al</i> , 2001
	NEL NERTELITR	EINE

Compounds	Sources	References
19α-Hydroxyursolic acid (100)	D. kaki	Matsura and linuma, 1977
Pomolic acid methyl ester (101)	D. melanoxylon	Mallavadhani, <i>et al</i> , 2001
Marsformosanone (102)	D. peregrina	Bhaumik <i>et al</i> ., 1981
3 B -Acetoxy-urs-11-ene-28.13-olide (103)	D. eriantha	Chen <i>et al.</i> , 1992
	ABARUNY NUMBER	
3. Oleanane type		
β-Amyrin (104)	D. cordifolia	Chandra and Shastry, 1989
	D. lotus	Yoshihira, <i>et al</i> ., 1971; Hasan, <i>et al</i> ., 1975
5	D. melanoxylon	Mallavadhani, <i>et al</i> ., 2001
6	D. morrisiana	Yan <i>et al.</i> , 1989
ລາທຳ	D. perigrina	Tandon, Tiwari and Varshney, 1974

Compounds	Sources	References
Oleanolic acid (105)	D. cauliflora	Musgrave and Skoyles , 1974
	D. castania	Musgrave and Skoyles , 1974
	D. curranii	Musgrave and Skoyles , 1974
	D. evena	Musgrave and Skoyles , 1974
	D. kaki	Matsura and linuma, 1977; Lin, <i>et al</i> .,1988
	D. melanilau	Singh and Prakash, 1988
	D. melanoxylon	Mallavadhani, <i>et al</i> , 1998
	D. montana	Musgrave and Skoyles , 1974
	D. moonii	Herath, <i>et al</i> ., 1978
	D. oblongifloria	Herath, <i>et al</i> ., 1978
	D. peregrina	Gupta and Tiwari, 1964b
	D. tomentosa	Bhakuni, <i>et al.</i> , 1971
ล	D. zombensis	Garner, <i>et al.</i> , 1987; Garner, <i>et al</i> ., 1988
	r 🛆	
Olean-12-ene-3-one (106)	D. morrisiana	Yan <i>et al</i> ., 1989

Compounds	Sources	References
Oleanolic acid acetate (107)	D. eriantha	Chen, Yu and Huang, 1992
	D. lotus	Zakaria, <i>et al.</i> , 1984
Oleanolic acid palmitate (108)	D. montana	Misra <i>et al</i> ., 1972
Oleanolic acid stearate (109)	D. montana	Misra <i>et al.</i> , 1972
Oleanolic acid glycoside (110-113)	D. peregina	Gupta and Tiwari, 1964
	D. zombensis	Gafner et al.,1987 ; Gafner and Rodrignez, 1988
Maslinic acid methyl ester (114)	D. melanoxylon	Mallavadhani, <i>et al</i> ., 2001
Morolic acid (115)	D. melanonilau	Mallavadhani, <i>et al</i> , 1998
	ลงกรณ์มหาวิท	ยาลัย

Compounds	Sources	References
Allobetulin (116)	D. montana	Yoshihira, <i>et al.</i> , 1971a
Oxyallobetulin (117)	D. lotus	Bhakani, <i>et al</i> ., 1971 ; Yoshihira, <i>et al</i> ., 1971b
	D. montana	Lillie, <i>et al.</i> , 1976a
	D. morriisiana	Yoshihira, <i>et al</i> ., 1971b
	AN21212	
4. Taraxerane type	(IIIIII)	
Taraxerol (118)	D. cordifolia	Chandra and Shastry, 1989
	D. ferrea	Bhakuni <i>et al</i> ., 1971
	D. hirsuta	Herath, <i>et al</i> ., 1978
	D. kaki	Zhong and Feng, 1987
	D. lotus	Bhakuni <i>et al</i> ., 1971 ; Yoshihira, <i>et al</i> ., 1971b
ຄ	D. mollis	Yoshihira, <i>et al</i> ., 1971a
	D. morrisiana	Yoshihira, <i>et al</i> ., 1971b
จุฬา	D. nicaraguensis	Hasbun, <i>et al</i> ., 1988

Compounds	Sources	References
Taraxerol (118)	D. villosiuscula	Khan and Timi, 1999c
Taraxerone (119)	D. acuta	Herath, <i>et al.</i> , 1978
	D. ferrea	Bhakuni <i>et al</i> ., 1971
	D. lotus	Zakaria, <i>et al.</i> , 1984
	D. maritima	Kuo <i>et al.</i> , 1997c
	D. rhodocalyx	Sutthivaiyakit <i>et al.</i> , 1995
	D. moonii	Herath, <i>et al.</i> , 1978
	D. oblongifolia	Herath, <i>et al.</i> , 1978
	D. oppositifolia	Herath, <i>et al.</i> , 1978
	D. quaesita	Herath, <i>et al.</i> , 1978
	D. rheophytica	Herath, <i>et al.</i> , 1978
ล	D. thwaitasii	Herath, <i>et al.</i> , 1978
จพา	ลงกรณมหาวท	ยาลย
9		

Compounds	Sources	References
Taraxeryl acetate (120)	D. maingayi	Zakaria, <i>et al.</i> , 1984
	D. singaporensis	Zakaria, <i>et al.</i> , 1984
5. Friedelane type and miscellaneous		
Friedelin (121)	D. er <mark>i</mark> antha	Chen <i>et al</i> ., 1992
	D. ferrea	Tiwari, Masood and Minocha, 1979
	D. maritima	Higa, Orihara and Yogi, 1998
	D. undulata var. cratericalyx	Aoonpakh, 2001
Friedelin-3-ol (122)	D. eriantha	Chen <i>et al.</i> ,1994
	D. ferrea	Tiwari, <i>et al</i> ., 1979
ล	ลาบนวทยบรกา	วี
2α -Hydroxyfriedelin (123)	D. iturensis	Zhong, <i>et al.</i> ,1984
จุฬา	D. sanza-minika	Zhong, <i>et al</i> .,1984

Compounds	Sources	References
Glut-5(6)-ene-3-β-ol (124)	D. iturensis	Zhong, <i>et al.</i> ,1984
	D. sanza-minika	Zhong, <i>et al.</i> ,1984
	BASTICOTTAL A	
	13-27-2015 - 21X 11X 12-1-1-	
	2	
3	การเราวิทยุเริกา	
61		
ລທຳ	ลงกรถเมหาวิท	
9	04 411 0 0 M004 FT 1 0 FT	

Lupeol (72)	R ₁ =β-OH	$R_2 = CH_3$
Epi-lupeol (73)	$R_1 = \alpha - OH$	$R_2 = CH_3$
Lupenone (74)	$R_1 = = O$	$R_2 = CH_3$
Betulin (75)	R ₁ =β-OH	R ₂ =CH ₂ OH
Betulinic acid (76)	$R_1 = \beta - OH$	R ₂ =COOH
Betulinaldehyde (77)	$R_1 = \beta - OH$	R ₂ =CHO

3-(Z)-Coumaroyllupeol (79)

 $R_2 = CH_3$

 $R_1 = H$

3-(*E*)-Coumaroyl-28-palmitoylbetulin (80) $R_1 = H$

 $R_2 = CH_2 - O - C - (CH_2)_{14}CH_3$

3-(*Z*)-Coumaroyl-28-palmitoylbetulin (81) $R_1 = H$

3-(E)-Feruloylbetulin (82)

 $R_1 = -OCH_3$

 $R_2 = CH_2OH$

$$\| R_2 = CH_2 - O - C - CH_2 - (CH_2)_{13}CH_3$$

3-(*E*)-Coumaroylbetulinaldehyde (84) $R_1 = H$

 $R_2 = CHO$

3-(E)-Coumaroylbetulin-28-yl ethylnonanedioate (85)

$R_1 = H$ $R_2 = CH_2 - O - C - CH_2(CH_2)_5CH_2CO_2CH_2CH_3$

3-(E)-Coumaroylbetulin-28-yl ethylsuccinate (86)

$$R_{1} = H$$

$$O$$

$$\|$$

$$R_{2} = CH_{2}-O-C-CH_{2}CH_{2}CO_{2}CH_{2}CH_{3}$$

3-(E)-Coumaroylbetulin-28-yl ethyl (2R)-2-hydroxysuccinate (87)

R1 = H

$$\begin{array}{c} \mathsf{O} \\ \| \\ \mathsf{R2} = \mathsf{CH}_2 \text{-} \mathsf{O} \text{-} \mathsf{C} \text{-} \mathsf{CH}_3 \end{array}$$

α-Amyrin (90)	R ₁ =β-OH	$R_2 = CH_3$
α-Amyrone (91)	R ₁ ==0	$R_2 = CH_3$
Ursolic acid (92)	R ₁ =β-OH	R ₂ = COOH
Ursolic acid acetate (93)	$R_1 = \beta - OCOCH_3$	R ₂ = COOH
Ursolic acid palmitate (94)	$R_1 = \beta - OCO(CH_2)_{14}CH_3$	R ₂ = COOH
Ursolic acid stearate (95)	$R_1 = \beta - OCO(CH_2)_{16}CH_3$	R ₂ = COOH
Uvaol (96)	R ₁ =β-OH	$R_2 = CH_2OH$
Epi-uvaol (97)	$R_1 = \alpha - OH$	$R_2 = CH_2OH$

 α -Hydroxyursolic acid (100) R= COOH

Pomolic acid methylester(101) R= $COOCH_3$

Oleanolic acid glycoside ; (110) R1 = R2 = H(111) R1 = Glucosyl R2 = H(112) R1 = Glucosyl R2 = Xylosyl(113) R1 = H R2 = Xylosyl

Maslinic acid methyl ester (114)

Oxyallobetulin (117)

11,

I

CHAPTER III

EXPERIMENTAL

Source of Plant Material

The stems of *Diospyros glandulosa* Lace were collected from Doi Phuka National Park, Nan province, Thailand, in May 2000. The plant material was identified by comparison with the herbarium specimens (KBF no. 130012) at the Royal Forest Department, Ministry of Agriculture and Co-operative, Bangkok, Thailand.

General Techniques

1. Chromatographic Technique

1.1 Thin- Layer Chromatography (TLC)

Technique	: One dimension, ascending
Adsorbent	: Silica gel 60 F254 (E. Merck) precoated plate, layer
	thickness 0.2 mm
Solvent system	: Various solvent systems depending on materials
Distance	: 7 cm
Temperature	: 25-35°C (room temperature)
Detection	: 1) UV light (254 and <mark>36</mark> 5 nm)
	2) 10% sulfuric acid in ethanol, heating at 110°C for
	5-10 minutes
	3) anisaldehyde – sulfuric acid reagent, heating at
	110°C for 5-10 minutes
	4) Liebermann-Burchard reagent

1.2 Column Chromatography (CC)

Column	: Flat bottom glass column (various diameters)
Adsorbent	: Silica gel 60 (No. 9385, E. Merck) particle size
	0.040-0.063 nm (230-400 mesh ASTM)
Packing method	: Wet packing
Sample loading	: 1) Dry packing

The sample was dissolved in a small volume of organic solvent, mixed with a small quantity of adsorbent, triturated, dried and then loaded on the top of the column.

2) Wet packing

The sample was dissolved in a small volume of the eluent, then loaded on the top of the column.

 Solvent system
 : Various solvent systems depending on materials

 Detection
 : Fractions were examined by TLC observed under

 UV light at the wavelengths of 254 and 365 nm.

 The TLC plate was then sprayed with10% sulfuric

 acid in ethanol and heated at 110°C for 5-10

 minutes.
 Fractions of similar chromatographic

 pattern were combined.

2. Spectroscopy

2.1 Infrared (IR) Absorption Spectra

IR spectra (KBr disc) were obtained on a Perkin Elmer infrared spectrophotometer Model 283 (Pharmaceutical Research Equipment Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

2.2 Mass Spectra (MS)

Electron Impact Mass Spectra (EIMS) were obtained on a Polaris Q Finnigan Gas Chromatography – Mass Spectrometer (Department of Chemistry, Faculty of Science, Mahidol University), operating at 50 eV.

2.3 Proton and Carbon 13 Nuclear Magnetic Resonance (¹H- and ¹³C-NMR) Spectra

The ¹H-NMR (300 MHz) and ¹³C-NMR (75 MHz) spectra were obtained with a Bruker Avance DPX-300 FT-NMR spectrometer (Faculty of Pharmaceutical Sciences, Chulalongkorn University).

The ¹H-NMR (500 MHz) spectra were obtained with a JEOL JNM-A500 (Alpha series) 500 MHz NMR spectrometer (Scientific and Technological Research Equipment Center, Chulalongkorn University).

NMR solvents used in this study were deuterated dimethylsulfoxide (DMSO- d_6) and deuterated chloroform (CDCl₃). Chemical shifts were reported in ppm scale using the chemical shift of the solvent as the reference signal.

3. Melting Points

Melting points were obtained on a Fisher/Johns melting point apparatus (Department of Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University). The melting points were uncorrected.

4. Solvent

All organic solvents used in the extraction and isolation procedure were of commercial grade and were redistilled prior to used.

Extraction Procedure

The dried stems of *Diospyros glandulosa* Lace (750 g) were ground into small pieces, macerated eight times in 95% ethanol (3L x 3 days each) and then filtered. The filtrate of each batch was combined and concentrated by removing ethanol under reduced pressure to yield 54.7 g of dried crude extract (7.29% of dry weight). The ethanol extract was diluted with aqueous methanol and partitioned with hexane (12x1.5L) to give hexane

extract (16.1 g, 2.15% of dry weight). The aqueous methanol layer was then partitioned with chloroform (12x1.5L) to give 14.7g (1.96% of dried weight) of chloroform extract.

Scheme 1. Extraction of Diospyros glandulosa stems

Isolation Procedure

1. Fractionation of the Hexane Extract

The hexane extract (10.6 g) was subjected to a silica gel column (250 g, 5 x 60 cm) and eluted with solvent mixtures of increasing polarity (hexane-chloroform to chloroform-methanol). Three hundred 30-ml fractions were collected and combined according to their TLC patterns into seven major fractions (F001-F007) as shown in Table 3. The column was then washed down with methanol.

Fraction	Solvent ratio	Number of eluates	Weight (g)
	(hexane : CHCl ₃ : MeOH)		
F001	60:40:0	1-32	0.67
F002	40:60:0	33-96	1.96
F003	30:70:0	97-139	1.61
F004	20:80:0	140-197	1.74
F005	0:100:0	198-241	1.43
F006	0:98:2	242-263	0.58
F007	0:95:5	264-300	0.92
Methanol eluate		II.	0.99

Table 3. Combined fractions from the hexane extract

1.1 Isolation of Compound DG1

Fraction F002, which gave a major yellow spot upon TLC investigation with anisaldehyde-sulfuric acid reagent, was further purified by recrystallization in methanol to give compound DG1 as colorless needles (50.3 mg).
1.2 Isolation of Compound DG2

Fraction F004 (1.74 g) was subjected to a silica gel column (100 g, 5x50 cm), using chloroform - methanol (99:1) as the eluent. Ninety fractions (5 ml each) were collected and combined according to their TLC patterns into five major fractions (F008 - F011) as shown in Table 4.

Fraction	Number of eluates	Weight (mg)
F008	1-24	216.2
F009	25-52	514.9
F010	53-71	243.1
F011	72-90	227.8

Table 4. Combined fractions from F004

Fraction F009, which appreared as a pink-violet spot upon TLC investigation with 10% ethanolic sulfuric acid reagent, was purified by recrystallization in methanol to give compound DG2 as colorless needles (20.3 mg).

1.3 Isolation of Compound DG3

Fraction F005 gave a major red-violet spot upon TLC investigation with 10% ethanolic sulfuric acid reagent. This fraction was further purified by recrystallization in methanol to give compound DG3 as white powder (33.1 mg).

Scheme 2. Isolation of the hexane extract

2. Fractionation of the Chloroform Extract

The chloroform extract (14.7 g) was divided into 2 parts: A (8.6g) and B (5.3g). Fraction A (8.6 g) was subjected to a silica gel column (300 g, 5 x 60 cm) using chloroformmethanol mixtures of increasing polarity as the eluent. Two hundred and fifty 30-ml fractions were collected and combined according to their TLC patterns into seven major fractions (F012 - F018) as shown in Table 5. The column was then washed down with methanol.

Fraction	Solvent ratio	Number of eluates	Weight (g)
	(CHCl ₃ : MeOH)		
F012	100:0	1-10	0.65
F013	99:1	11-32	0.64
F014	98:2 to 95 : 5	33-128	2.02
F015	93:7	129-154	0.69
F016	90:10	155-176	0.81
F017	85:15	177-213	0.96
F018	80 : 20	214-250	0.88
Methanol eluate			1.01

Table 5. Combined fractions from the chloroform extract

2.1 Isolation of Compound DG4

Fraction F013 (0.64 g), which gave interesting spots upon TLC investigation, was submitted to further separation on a silica gel column (30 g, 2.5x50 cm) eluted with chloroform. Sixty 5-ml fractions were combined into five major fractions (F019 - F023) as shown in Table 6.

Table 6. Combined	l fractions fr	om F013
-------------------	----------------	---------

Fraction	Number of eluates	Weight (mg)
F019	1-17	96.7
F020	18-39	122.4
F021	40-62	137.6
F022	63-78	109.3
F023	79-90	100.4

Fraction F021, which gave a red-violet spot on TLC upon detection with 10% ethanolic sulfuric acid reagent, was further purified by recrystallization in methanol. White amorphous powder (41.1 mg) was obtained and designated as compound DG4.

2.2 Isolation of Compound DG5

Fraction F014, which gave interesting TLC profile, was selected for further investigation. The sample (2.02 g) was chromatographed on a silica gel column (100 g, 5x50 cm) using chloroform - methanol (99:1) as the eluent. One hundred and twenty fractions (10 ml each) were collected and combined according to their TLC patterns into five major fractions (F024 - F028) as shown in Table 7.

Table 7. Combined fractions from F014

Fraction	Number of eluates	Weight (mg)
F024	1-35	344.2
F025	36-52	201.4
F026	53-66	186.6
F027	67-88	248.8
F028	89-120	743.2

Fraction F028 was further separated on a silica gel column (30 g, 2x50 cm) eluted with chloroform - methanol (99:1). One hundred fractions (5 ml each) were collected and, later, pooled into four major fractions (F029 - F032) as shown in Table 8.

Fraction	Number of eluates	Weight (mg)
F029	1-26	114.1
F030	27-64	321.2
F031	65-87	132.8
F032	88-100	102.1

Table 8. Combined fractions from F028

Fraction F030 gave a major pink-violet spot on TLC when detected with 10% ethanolic sulfuric acid reagent. When dissolved in hexane, it could be separated into 2 parts: solid residue and supernatant. The solid residue was filtered and recrystallized in hexane to give compound DG5 as colorless prisms (64.8 mg).

The supernatant was combined with F031 for further isolation. The sample (241.4 mg) was rechromatographed on a silica gel column (15 g, 2x50 cm), eluted stepwise with chloroform-methanol. One hundred 5-ml fractions were collected and combined according to their TLC patterns into three major fractions (F033-F035) as shown in Table 9.

Fraction	Solvent ratio (CHCl ₃ : MeOH)	Number of eluates	Weight (mg)
9 F033	98 : 2	1-18	66.3
F034	97:3	19-74	121.4
F035	95 : 5	75-100	71.8

Table 9. Combined fractions from F031

Compound DG5 was obtained as colorless prisms (43.4 mg) upon recrystallization of F034 in hexane.

Scheme 3. Isolation of the chloroform extract (A)

2.3 Isolation of Compound DG6

The other portion of chloroform extract, named fraction B (5.3 g), was subjected to silica gel column chromatography (250 g, 5 x 50 cm) by elution with chloroform – methanol of increasing polarity. One hundred and fifty 30-ml fractions were collected and combined according to their TLC patterns into five major fractions (F036-F040), as shown in Table 10. The column was then washed down with methanol.

Fraction	Solvent ratio	Solvent ratio		
Fraction	(CHCl ₃ : MeOH)	Number of eluales	weight (mg)	
F036	100 : 0	1-14	0.60	
F037	99 : 1	15-33	0.63	
F038	97:3	34-76	1.14	
F039	95 : 5	77-112	0.83	
F040	90 : 10	113-150	0.91	
Methanol eluate	The second second		0.98	

Table 10. Combined fractions from the chloroform extract (B)

Fraction F038, which gave an interesting spot upon TLC investigation, was submitted for further isolation on a silica gel column (60 g, 2.5x50 cm), eluted with a gradient of chloroform-acetone. One hundred and fifty 15-ml fractions were collected and combined according to their TLC patterns into five major fractions, (F041 -F045), as shown in Table 11.

Table 11.	Combined	fractions	from F	038		

			0.1	
Fraction	Solvent ratio (CHCl ₃ : acetone)	Number of eluates	Weight (mg)	
F041	97:3	1-14	0.60	
F042	97:3	15-33	0.63	
F043	95 : 5	34-76	1.14	
F044	95 : 5	77-112	0.83	
F045	90 : 10	113-150	0.91	
F045	90 : 10	113-150	0.91	

Fraction F043 gave major pink-violet spot on TLC upon detection with 10% ethanolic sulfuric acid reagent. Dissolved in methanol, it could be separated into 2 parts : solid residue and supernatant. The solid residue was filtered and recrystallized in methanol to give compound DG6 as colorless needles (29.6 mg).

The supernatant and F044, both which gave the same TCL pattern, were combined together for further separation. The sample (333.6 mg) was rechromatographed on a silica gel column (20 g, 2x50 cm) using chloroform - acetone (95:5) as the eluent. One hundred and twenty 5-ml fractions were collected and combined according to their TLC patterns into four major fractions (F046 - F049) as shown in Table 12.

Fraction	Number of eluates	Weight (mg)
F046	1-47	114.2
F047	48-59	20.8
F048	60-96	91.4
F049	97-120	48.7

Table 12. Combined fractions from F043 and F044

Compound DG6 was obtained as colorless needles (20.8 mg) upon recrystallization of fraction F047 in methanol.

2.4 Isolation of Compound DG3

Fraction F012 (0.65 g) and fraction F036 (0.60 g) showed a red-violet spot on TLC upon detection. These two fractions were combined together and then further separated on a silica gel column (60 g, 2.5x50 cm) eluted with chloroform. Sixty fractions (15 ml each) were collected and combined according to their TLC patterns into three major fractions (F050 - F052), as shown in Table 13.

Fraction	Number of eluates	Weight (mg)
F050	1-19	214.8
F051	20-37	416.3
F052	38-60	431.7

Table 13. Combined fractions from F012 and F036

Fraction F051 was further purified by recrystallization in methanol to give a pure compound as white powder (25.4 mg). The compound was suggested by TLC comparison to be identical with compound DG3 which previously obtained from the hexane extract.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Scheme 4. Isolation of the chloroform extract (B)

Scheme 5. Isolation of fraction F022 and fraction F040

All isolated compounds were tested with Liebermann-Burchard reagent and the result are shown in Table 14. The total amount of each compound obtained from the plant material is also shown in the same table.

Table 14.	Results of Liebermann-Burchard test and the total amount of the isolated
	compounds

Compoundo	Color with	Total amount	
Compounds	Liebermann-Burchard test	Weight (mg)	% yield
DG1	Purple	50.3	0.01
DG2	Purple	20.3	0.004
DG3	Red-violet	58.5	0.01
DG4	Red-violet	41.1	0.01
DG5	Purple	108.2	0.02
DG6	Purple	50.4	0.01

Characterization of isolated compounds

1. Compound DG1

Appearance	Colorless needles (methanol)		
Solubility	Soluble in hexane and chloroform		
Melting point	262-263 °C		
EIMS <i>m/z</i> (% relative intensity)	426(27),341(24), 302(22), 273(62), 246(66), 231(84), 123(80), 109(100), 95(98) and 81(79)		
	(Figure 2, page 116)		
IR \mathbf{V}_{max} (KBr disc) cm ⁻¹	3404, 2927, 1714, 1463, 1388, 1049 and 788		
(Figure 3, page 117)			
¹ H- NMR (δ ppm, 300 MHz, CDCl ₃): 0.70 (3H, s), 0.85 (3H, s), 0.86 (3H, d, $J = 6.0$ Hz),			
	0.93 (3H, s), 0.98(6H, s), 1.03(3H, s), 1.16(3H, s),		
	2.23 (1H, m), 1.37 (1H, m)		

(Figure 4, page 118)

¹³C- NMR (δ ppm, 75 MHz, CDCl₃): 6.8, 14.6, 17.9, 18.2, 18.6, 20.2, 22.3, 28.2, 30.0, 30.5, 31.8, 32.1, 32.4, 32.8, 35.0, 35.3, 35.6, 36.0, 37.4, 38.3, 39.2, 39.7, 41.3, 41.5, 42.1, 42.8, 53.1, 58.2, 59.5 and 213.2

(Figure 6, page 122)

106

Appearance	: Colorless needles (methanol)	
Solubility	: Soluble in chloroform, acetone	
Melting point	: 195-196 °C	
EIMS <i>m/z</i> (% relative intensity)	: 426(10), 218(100), 203(35) and 189(12)	
	(Figure 9, page 132)	
IR V_{max} (KBr disc) cm ⁻¹	: 3282, 2947, 1464, 1386, 1360, 996 and 660	
	(Figure 10, page 133)	
¹ H- NMR (δ ppm, 300 MHz, CDCl ₃): 0.77(3H, s), 0.81(3H, s), 0.85(6H, s), 0.92(3H, s)		
	0.95(3H, s), 0.98(3H, s), 1.12(3H, s), 3.20	
	(1H, <i>dd, J</i> =10.7, 5.0 Hz) and 5.17(1H, br <i>t</i>)	
	(Figure 11, page 134)	
¹³ C- NMR (δ ppm, 75 MHz, CDCl ₃): 15.5, 15.6, 16.8, 18.4, 23.6, 23.7, 26.0, 26.1,		
	27.2, 28.1, 28.4, 31.1, 32.5, 32.6, 33.3, 34.7, 36.9,	
	37.1, 38.6, 38.8, 39.8, 41.7, 46.8, 47.2, 47.6, 55.2,	
	79.0, 121.7 and 145.2	
	(Figure 13, page 138)	

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Appearance :	White powder (methanol)
Solubility :	Soluble in chloroform
Melting point :	214-215 °C
EIMS <i>m/z</i> (% relative intensity) :	426(25), 411(25), 393(10), 218(93), 204(82), and 189(100)
	(Figure 16, page 149)
IR \mathbf{V}_{max} (KBr disc) cm ⁻¹	3486, 2934, 1474, 1443, 1384, 1037 and 815
	(Figure 17, page 150)
¹ H- NMR (δ ppm, 300 MHz, CDCl ₃):	0.66(1H, d, J=8.7 Hz), 0.74(3H, s), 0.76(3H, s),
	0.81(3H, s), 0.92(3H, s), 0.94(3H, s), 1.01(3H, s),
	1.66 (3H, s), 2.36 (1H, m), 3.17 (1H, m), 4.55
	(1H, br s) and 4.67(1H, br s)
	(Figure 18, page 151)

¹³C- NMR (δ ppm, 75 MHz, CDCl₃):14.5, 15.4, 16.0, 16.1, 18.0, 18.3, 19.3, 20.9, 25.1, 27.4, 28.0, 30.0, 34.3, 35.6, 37.2, 38.0, 38.7, 38.9, 40.0, 40.8, 42.8, 43.0, 48.0, 48.3, 50.4, 55.3, 79.0, 109.3 and 151.0

(Figure 19, page 153)

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Appearance	: White amorphous powder (methanol)
Solubility	: Soluble in chloroform, acetone
Melting point	: 251-252 °C
EIMS <i>m/z</i> (% relative intensity)	: 442 (12), 234 (27), 207 (48), 203 (100), 189 (99), 175 (41), 47 (42), 133 (45), 119 (46), 95 (48) and 81(31)
	(Figure 22, page 162)
IR \mathbf{V}_{max} (KBr disc) cm ⁻¹	: 3443, 2934, 2867, 1641, 1459, 1373, 1011 and 879
	(Figure 23, page 163)
¹ H- NMR (δ ppm, 300 MHz, CDC	Cl ₃): 0.66(1H, <i>d</i> , <i>J</i> = 9.3 Hz), 0.74(3H, <i>s</i>), 0.80(3H, <i>s</i>), 0.95

(3H, s), 0.96(3H, s), 1.00(3H, s), 1.66(3H, s), 2.36
(1H, m), 3.16 (1H, dd, J= 5.1, 10.8 Hz), 3.31
(1H, d, J= 10.8 Hz), 3.78(1H, d, J= 10.8 Hz), 4.56
(1H, s) and 4.66(1H, s)

(Figure 24, page 164)

¹³C- NMR (δ ppm, 75 MHz, CDCl₃):14.7, 15.3, 16.0, 16.1, 18.3, 19.1, 20.8, 25.2, 27.0, 27.3, 28.0, 29.2, 29.7, 33.9, 34.2, 37.1, 37.3, 38.7, 38.8, 40.9, 42.7, 47.8, 47.8, 48.7, 50.4, 55.3, 60.5, 79.0, 109.7 and 150.5

(Figure 25, page 166)

5.	Compound DG5	
	Appearance	: Colorless prisms (hexane)
	Solubility	: Soluble in methanol
	Melting point	: 282-283 °C
EIMS <i>m/z</i> (% relative intensity)		: 248(100), 219(26), 203(68) 189(22) and 133(61)
		(Figure 28, page 176)
	IR V _{max} (KBr disc) cm ⁻¹	: 3417, 2927, 1694, 1456, 1386, 1030, 997 and 759
		(Figure 29, page 177)
	¹ H- NMR (δ ppm, 500 MHz, DMSO- d_6)	: 0.67(3H, s), 0.74(3H, s), 0.80(3H, d, J=6.4
		Hz), 0.86(3H, s), 0.88(3H, s), 0.89(3H, <i>d</i> ,
		J=8.85 Hz), 1.03(3H, s), 2.10 (1H, d, J=11.6
		Hz), 2.99 (1H, <i>dd, J</i> = 5.2, 10.1 Hz) and
		5.12 (1H, <i>t</i> , <i>J</i> = 3.4 Hz)
		(Figure 30, page 178)
	¹³ C- NMR (δ ppm, 75 MHz, DMSO- d_6)	: 15.2, 16.1, 16.9, 17.0, 18.0, 21.0, 22.8, 23.3,
		23.8, 27.0, 27.5, 28.2, 30.2, 32.7, 36.3, 36.5,
		38.2, 38.4, 38.5, 38.5, 39.1, 41.6, 46.8, 47.0,
		52.4, 54.8, 76.8, 124.6, 138.2 and 178.3
		(Figure 31, page 179)

Appearance	: Colorless needles (methanol)	
Solubility	: Soluble in chloroform	
Melting point	: 297 – 298 °C	
EIMS <i>m/z</i> (% relative intensity)	: 248(100), 207(26), 203(75) and 189(12)	
	(Figure 35, page 194)	
IR \mathbf{V}_{max} (KBr disc) cm ⁻¹	: 3432, 2948, 1695, 1463, 1386, 1182 and 1029	
	(Figure 36, page 195)	
¹ H- NMR (δ ppm, 300 MHz, CDCl ₃)	: 0.70 (1H, s), 0.73 (3H, s), 0.75 (3H, s), 0.88 (3H, s),	
	0.89 (3H, s), 0.90 (3H, s), 0.96 (3H, s), 0.11 (3H, s),	
	1.21-2.02 (22H, m), 3.17 (1H, m) and 5.26(1H, s)	
	(Figure 37, page 196)	
¹³ C- NMR (δ ppm, 75 MHz, CDCl ₃): 15.3, 15.5, 17.1, 18.3, 22.9, 23.4, 23.6, 25.9, 27.2,		
	27.7, 28.1, 30.6, 32.4, 32.6, 33.0, 33.8, 37.1, 38.4,	
	38.7, 39.2, 40.9, 41.6, 45.8, 46.5, 47.6, 55.2, 79.0,	
	122.6, 143.6 and 183.6	
	(Figure 39, page 200)	

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER IV

RESULTS AND DISCUSSION

Chromatographic separation of the hexane and chloroform extracts of the stem of *Diospyros glandulosa* Lace led to the isolation of six chemical constituents. The identification of these compounds was based on analysis of their spectroscopic data and also confirmed by comparison with those values previously reported in the literature. The details can be discussed as follows.

1. Identification of Compound DG1

Compound DG1 was recrystallized as colorless needles from methanol (50.3 mg, 0.01% yield). The compound gave purple color to Liebermann-Burchard reagent, suggesting that it is a triterpenoid. Its EIMS (Figure 2) showed a molecular ion peak at m/z 426 which corresponded to the molecular formula of $C_{30}H_{50}O$. Its IR spectrum (Figure 3) displayed the keto absorption at 1714 cm⁻¹.

The ¹H and ¹H-¹H COSY NMR spectra (Figures 4, 5) of DG1 displayed signals due to one secondary (δ 0.86 ppm; *d*) and seven tertiary methyls (δ 0.70, 0.85, 0.93, 0.98, 0.98, 1.03 and 1.16 ppm; *s*), suggestive of the friedelane skeleton. The ¹³C-NMR spectrum of DG1 (Figure 6) showed 30 carbon signals. The DEPT and HETCOR experiments (Figures 7, 8) were employed to classify these signals into those of eight methyl carbons at δ 6.8, 14.6, 17.9, 18.6, 20.2, 31.8, 32.1, and 35.0 ppm, eleven methylene carbons at δ 18.2, 22.3, 30.5, 32.4, 32.8, 35.3, 35.6, 36.0, 39.2, 41.3 and 41.5 ppm, four methine carbons at δ 42.8, 53.1, 58.2 and 59.5 ppm, and seven quaternary carbons at δ 28.2, 30.0, 37.4, 38.3, 39.7, 42.1 and 213.2 ppm. The last signal indicated the presence of the keto group in the molecule of the compound.

The ¹³C-NMR data of DG1 were found to be in full agreement with those values previously reported for friedelin (Akihisa, *et al.*, 1992), a friedelane-type triterpenoid with

3-keto substituent. Comparison of the ¹³C-NMR assignment of DG1 and friedelin is shown in Table 14. The proton signals could then be assigned with the assistance of HETCOR experiment as shown in the same table.

The EIMS also supported the structure of friedelin. The mass fragment peaks at m/z 273, 302 and 341 were the results of cleavage at different positions across the friedelin skeleton as shown in Scheme 6.

Scheme 6. Mass fragmentation of compound DG1

Therefore, it was concluded that DG1 is friedelin, the structure of which is shown below.

Friedelin

Friedelin was previously isolated from several species of ebenaceous plant i.e. *Diospyros ferrea* (Tiwari, *et al.*, 1979), *D. eriantha* (Chen, *et al.*, 1992) and *D. maritima* (Higa, *et al.*, 1998). This compound has been reported as possessing cytotoxic activity (Zheng, 1994).

Desition	Compound DG1		Friedelin
Position	δ Η (ppm)	δC (ppm)	δC (ppm)
1	1.67 (<i>m</i>), 1.96 (<i>m</i>)	22.3	22.3
2	2.23 (<i>m</i>), 2.39 (<i>m</i>)	41.5	41.5
3	-	213.2	213.2
4	2.23(<i>m</i>)	58.2	58.2
5		42.1	42.1
6	1.27 (<i>m</i>), 1.74 (<i>m</i>)	41.3	41.3
7	1.33 (<i>m</i>), 1.45 (<i>m</i>)	18.2	18.2
8	1.37 (<i>m</i>)	53.1	53.1
9	-///9.66	37.4	37.4
10	1.50 (2H, <i>m</i>)	59.5	59.4
11	1.20-1.60 (<i>m</i>)	35.6	35.6
12	1.20-1.60 (<i>m</i>)	30.5	30.5
13	-	39.7	39.7
14	- Queseico	38.3	38.3
15	1.20-1.60 (<i>m</i>)	32.4	32.4
16	1.20-1.60 (<i>m</i>)	36.0	36.0
17	- X	30.0	30.0
18	1.53 (<i>m</i>)	42.8	42.8
19	1.20-1.60 (<i>m</i>)	35.3	35.3
20	ດດວັບເດີຍ	28.2	28.1
21	1.20-1.60 (<i>m</i>)	32.8	32.7
22	0.94 (<i>m</i>), 1.48 (<i>m</i>)	39.2	39.2
23	0.86 (<i>d</i> , <i>J</i> = 6.0 Hz)	6.8	6.8
24	0.70 (<i>s</i>)	14.6	14.6
25	0.85 (<i>s</i>)	17.9	17.9
26	0.98 (s)	20.2	20.2
27	1.03 (s)	18.6	18.6
28	1.16 (<i>s</i>)	32.1	32.1
29	0.93 (s)	35.0	35.0
30	0.98 (s)	31.8	31.8

Table 15. 1 H and 13 C-NMR assignments of compound DG1 (in CDCl3) and the reported 13 C-NMR assignments of friedelin (in CDCl3)

Figure 2. EIMS of compound DG1

116

Figure 3. IR spectrum of compound DG1

Figure 5b. The 300 MHz ¹H-¹H COSY spectrum of compound DG1 (expanded)

Figure 6a. The 75 MHz ¹³C-NMR spectrum of compound DG1 (in CDCl₃)

Figure 6b. The 75 MHz ¹³C-NMR spectrum of compound DG1 (expanded)

Figure 7. The 75 MHz 13 C-DEPT NMR spectrum of compound DG1 (in CDCl₃)

Figure 8b. The 75 MHz ¹H-¹³C HETCOR NMR spectrum of compound DG1 (expanded)

Figure 8c. The 75 MHz ¹H-¹³C HETCORR NMR spectrum of compound DG1 (expanded)

2. Identification of Compound DG2

Compound DG2 was recrystallized as colorless needles from methanol (20.3 mg, 0.004% yield). The compound gave purple color to Liebermann-Burchard reagent, suggesting that it is a triterpenoid. Its EIMS (Figure 9) showed molecular ion peak at m/z 426 which corresponded to the molecular formula of $C_{30}H_{50}O$. The base peak at m/z 218, produced through retro-Diels-Alder fragmentation, is the characteristic feature of a C-12 unsaturated oleanane or ursane triterpenoid containing no substitutents in both ring D and E (Ogunkoya, 1981). The further loss of one methyl group produced the mass fragment peak at m/z 203, and the loss of water from the other retro-Diels-Alder fragment led to the peak at m/z 189 (Sheme 7). The IR spectrum (Figure 10) showed absorption band at 3282 cm⁻¹, suggesting the presence of a hydroxyl substituent.

The ¹H-NMR and ¹H-¹H COSY spectra (Figures 11,12) of DG2 showed eight singlets of tertiary methyls (δ 0.77, 0.81, 0.85, 0.85, 0.92, 0.95, 0.98 and 1.12 ppm), suggestive of the oleanane skeleton. The proton signal at δ 3.20 (*dd*, *J*=5.0, 10.7Hz) ppm confirmed the presence of a hydroxyl substituent. The most downfield signal at δ 5.17 (br. *t*) represents H-12 of a C-12 unsaturated triterpenoid.

The ¹³C-NMR spectrum of DG2 (Figure 13) showed 30 carbon signals. The DEPT and HETCOR experiments (Figures 14, 15) exhibited the signals of eight methyl carbons at δ 15.5, 15.6, 16.8, 23.7, 26.0, 28.1, 28.4 and 33.3 ppm, ten methylene carbons at δ 18.4, 23.6, 26.1, 26.9, 27.2, 32.5, 34.7, 37.1, 38.6 and 46.8 ppm, five methine carbons at δ 47.2, 47.6, 55.2, 79.0 and 121.7 ppm and seven quaternary carbons at δ 31.1, 32.6, 36.9, 38.8, 39.8, 41.7 and 145.2 ppm.

According to all information mentioned above, DG2 was proposed as a C-12 unsaturated triterpenoid of the oleanane type. The downfield carbon signals at δ 121.7 and δ 145.2 ppm represent the characteristic double bond between C-12 and C-13 in the oleanane skeleton. Comparison of the ¹³C-NMR data of DG2 with those previously reported for β -amyrin (Mahato and Kundu, 1994) a known olea-12-ene indicated the structures of

both compounds to be indicated. Comparison of the 13 C-NMR assignment of DG2 and β -amyrin, together with the 1 H-NMR assignment of DG2, are shown in Table 16.

Scheme 7. The mass fragmentation of compound DG2
Therefore, DG2 was identified as $\beta\mbox{-amyrin},$ the structure of which is shown below.

β-Amyrin was previously isolated from several species of ebenceous plants, i.e. *Diospyros peregrina* (Tandon, *et al.*, 1974), *D. morrisiana* (Yan, *et al.*, 1989) and *D. melanoxylon* (Mallavadhani, *et al.*, 2001). The compound has been reported as possessing anti-inflamatory (Akihisa, *et al.*, 1996) and cytotoxic (Yan, *et al.*, 1989) activities.

position	Compound DG2		β -Amyrin
	δ Η (ppm)	δ C (ppm)	δ C (ppm)
1	-	38.6	38.7
2	-	27.2	27.3
3	3.20 (<i>dd</i> , <i>J</i> =5.0, 10.7 Hz)	79.0	79.0
4	-	38.8	38.8
5	-	55.2	55.3
6	-	18.4	18.5
7	- ///	32.5	32.8
8	-	39.8	38.8
9	-// 9.63	47.6	47.7
10		36.9	37.6
11	-	23.6	23.6
12	5.17 (br. <i>t</i>)	121.7	121.8
13		145.2	145.1
14	- Massacri	41.7	41.8
15	- 15-18-11-21	26.1	26.2
16	A -	26.9	27.0
17	<u> -</u>	32.6	32.5
18		47.2	47.4
19		46.8	46.9
20		31.1	31.1
21	661111111	34.7	34.8
22	- r'	37.1	37.2
23	0.98(s)	28.1	28.2
24	0.92 (s)	15.5	15.5
25	0.77 (s)	15.6	15.6
26	0.95 (s)	16.8	16.9
27	1.12 (s)	26.0	26.0
28	0.81 (s)	28.4	28.4
29	0.85 (s)	33.3	33.3
30	0.85 (<i>s</i>)	23.7	23.7

Table 16. ¹H and ¹³C-NMR assignments of compound DG2 (in $CDCI_3$) and the reported ¹³C-NMR assignment of β -Amyrin (in $CDCI_3$)

Figure 9. EIMS of compound DG2

Figure 10. IR spectrum of compound DG2

Figure 11b. The 300 MHz ¹H-NMR spectrum of compound DG2 (expanded)

Figure 13a. The 75 MHz ¹³C-NMR spectrum of compound DG2 (in CDCl₃)

Figure 13b. The 75 MHz ¹³C-NMR spectrum of compound DG2 (expanded)

Figure 15c. The 75 MHz ¹H-¹³C HETCOR NMR spectrum of compound DG2 (expanded)

3. Identification of Compound DG3

Compound DG3 was recrystallized as white powder from methanol (58.5 mg, 0.01% yield). The compound gave purple color to Liebermann-Burchard reagent, suggesting that it is a triterpenoid. Its EIMS (Figure16) showed a molecular ion peak at m/z 426 which corresponded to the molecular formula of $C_{30}H_{50}O$. The base peak at m/z 189 suggested that DG3 has a skeleton structure of the lupane type (Ogunkoya, 1981). The prominent peak at m/z 218 was the result of cleavage across the C ring of the lupane skeleton , and successive loss of a methyl group produced the fragment peak at m/z 204. The peaks at m/z 411 (M-CH₃) and m/z 393 (M-CH₃-H₂O) were also observed (Scheme 8). The IR spectrum (Figure 17) showed absorption band at 3486 cm⁻¹, indicating the presence of a hydroxyl substituent.

The ¹H-NMR spectrum (Figure 18) exhibited seven singlets of tertiary methyls at δ 0.74, 0.76, 0.81, 0.92, 0.94, 1.01, and 1.66 ppm). A double doublet (1H, *J*= 5.1, 10.2 Hz) at δ 3.17 ppm, assignable to the carbinylic proton (H-3), was typical for a triterpenoid with 3-OH substituent. A pair of broad singlets at δ 4.55 and 4.67 ppm could be assigned as exomethylene protons (H-29) in the isopropenyl group of a lupane-type triterpenoid.

The ¹³C-NMR spectrum of DG3 (Figure 19) showed 30 carbon signals, supportive of a triterpenoid structure. The DEPT and HETCOR experiments (Figures 20, 21) displayed signals for seven methyl carbons at δ 14.5,15.4, 16.0, 16.1, 18.0, 19.3 and 28.0 ppm, eleven methylene carbons at δ 18.3, 20.9, 25.1, 27.4, 27.4, 29.9, 34.3, 35.6, 38.7, 40.0 and 109.3 ppm, six methine carbons at δ 38.0, 48.0, 48.3, 50.4, 55.3 and 79.0 ppm and six quaternary carbons at δ 37.2, 38.9, 40.8, 42.8, 43.0 and 151.0 ppm.

¹³C-NMR data of DG3 were found to be in full agreement with those previously reported for lupeol, (Reynolds *et. al*, 1986). Comparison of ¹³C-NMR assignments of DG3, and lupeol together with ¹H-NMR assignment of DG3 are shown in Table 17.

Scheme 8. Mass fragmentation of compound DG3

DG3 was therefore identified as lupeol, the structure of which is shown below.

Lupeol was previously isolated from several species from ebenaceous plants, i.e. *Diospyros ebenum* (Gupta and Mahadevan, 1967), *D. rhodocalyx* (Musgrave and Skoyles, 1974) and *D. greeniwayi* (Khan and Rewekika, 1998). The compound has been reported as possessing antimycobacterial (Cantrell, Franzblau and Fischer, 2001), anti-inflammatory and analgesic activities (Ana, *et al.*, 2000). Lupeol from hexane extract of *D. maritima* showed potent cytotoxicity against Hepa-3B (hepatoma), Hela, (cervix carcinoma), Colo-205 (Colon carcoma) and KB (nasopharynx carcinoma) cell, (Kou, *et al.*, 1997).

สถาบนวทยบรการ จุฬาลงกรณ์มหาวิทยาลัย

	Compound DG3		Lupeol
position	δ Η (ppm)	δ C (ppm)	δ C (ppm)
1	-	38.7	38.7
2	-	27.4	27.4
3	3.17 (<i>dd</i> , <i>J</i> = Hz)	79.0	78.9
4	-	38.9	38.8
5	0.66 (<i>d</i> , <i>J</i> =8.7 Hz)	55.3	55.3
6	-	18.3	18.3
7	-	34.3	34.2
8	-	40.8	40.8
9	- 12	50.4	50.4
10	- 100	37.2	37.1
11	- shaa	20.9	20.9
12	- 3.42.014	25.1	25.1
13	- ANGLES	38.0	38.0
14	_ With the second	42.8	42.8
15	-3-2-2-2-1-4/8	27.4	27.4
16	-	35.6	35.5
17	-	43.0	43.0
18		48.3	48.2
19	2.36 (<i>m</i>)	48.0	47.9
20	สถาบับวิท	151.0	150.9
21		30.0	29.8
22	<u>າວມວ</u> ່ຽວໂບ	40.0	40.0
23	0.94 (<i>s</i>)	28.0	28.0
24	0.74 (s)	15.4	15.4
25	0.81 (<i>s</i>)	16.1	16.1
26	1.01 (<i>s</i>)	16.0	15.9
27	0.92 (<i>s</i>)	14.5	14.5
28	0.76 (<i>s</i>)	18.0	18.0
29	4.55 (br. <i>s</i>), 4.67 (br. <i>s</i>)	109.3	109.3
30	1.66 (<i>s</i>)	19.3	19.3

Table 16. 14 And 13 C-NMR assignments of compound DG3 (in CDCl3) and the reported 13 C-NMR data of lupeol (in CDCl3)

Figure 16. EIMS of compound DG3

Figure 17. IR spectrum of compound DG3

Figure 18a. The 300 MHz ¹H NMR spectrum of compound DG3 (in CDCl₃)

Figure 19a. The 75 MHz 13 C NMR spectrum of compound DG3 (in CDCl₃)

Figure 19b. The 75 MHz ¹³C NMR spectrum of compound DG3 (expanded)

4. Identification of Compound DG4

Compound DG4 was recrystallized as white amorphous powder from methanol (41.1 mg, 0.01% yield). This compound gave purple color to Liebermann-Burchard reagent, suggesting that it is a triterpenoid. Its EIMS (Figure 22) showed a molecular ion peak at m/z 442 which corresponded to the molecular formula of $C_{30}H_{50}O_2$ The intense fragment peak at m/z 189 was important in showing that DG4 has a skeleton structure of the lupane type (Ogunkoya, 1981). The IR spectrum (Figure 23) showed OH band at 3443 cm⁻¹.

The ¹H-NMR spectrum of DG4 (Figure 24) was similar to that of DG3 except for the absence of one methyl singlet and the addition of a pair of doublets (J= 10.8 Hz) at δ 3.31 and 3.78 ppm. This information suggested a structure of lupeol derivative in with one methyl is replaced by the primary alcoholic group. A double doublet (1H, J= 5.1, 10.8 Hz) at δ 3.16 ppm and a pair of broad singlets at δ 4.56 and 4.66 ppm could be assigned to the carbinylic proton (H-3) and the exomethylene protons (H-29), respectively.

The ¹³C-NMR spectrum of compound DG4 (Figure 25) showed 30 carbon signals. The DEPT and HETCOR experiments (Figures 26, 27) were employed to classify these signals into those of six methyl carbons at δ 14.7, 15.3, 16.0, 16.1, 19.1 and 28.0 ppm, twelve methylene carbons at δ 18.3, 20.8, 25.2, 27.0, 27.3, 29.2, 29.7, 33.9, 34.2, 38.7, 60.5 and 109.7 ppm, six methine carbons at δ 37.3, 47.8, 48.7, 50.4, 52.3 and 79.0 ppm, and the six quaternary carbons at δ 37.1, 38.8, 40.9, 42.7, 47.8 and 150.5 ppm.

Comparison of ¹³C-NMR data of DG4 with those values previously reported for betulin (Tinto, *et al.*, 1992) suggested that they are the same compound. The ¹H and ¹³C-NMR assignments of DG4 and the reported ¹³C-NMR data of betulin are shown in Table 18.

The EIMS also confirmed the structure of betulin. The mass fragment peaks at m/z 411 (M-CH₂OH) and 393 (M-CH₂OH-H₂O) could be observed. The peaks at m/z 207 and 234 were the results of cleavage at different positions across the C ring of lupane

skeleton. Successive loss of primary alcoholic group from the fragment ion at m/z 234 produced the mass fragment peak at m/z 203 (234-31). Mass fragmentation of DG4 is shown in Scheme 9.

Scheme 9. Mass fragmentation of compound DG4

Therefore, it was concluded that DG4 is betulin, the structure of which is shown below.

Betulin was previously isolated from several species of ebenaceous plants, i.e. *Diospyros ismailii* (Zakaria, *et al.*, 1984), *D. leucomelas* (Recio, *et al.*, 1995), *D. virainiana* (Hayek, *et al.*, 1989). This compound has been reported as possessing antimycobacterial (Cantrell, *et al.*, 2001) and anti-inflammatory (Recio, *et al.*, 1995) activities.

position	Compound DG4		Betulin
	δ Η (ppm)	δ C (ppm)	δ C (ppm)
1	-	38.7	38.8
2	-	27.0	27.2
3	3.16 (<i>dd</i> , <i>J</i> = 10.8 Hz)	79.0	78.9
4	-	38.8	38.9
5	0.66 (<i>d</i> , <i>J</i> = 9.3 Hz)	55.3	55.3
6	-	18.3	18.3
7	-	34.2	34.3
8	-///_	40.9	40.9
9	-//9.60	50.4	50.4
10	-	37.1	37.2
11	-	20.8	20.9
12	- 3.440	25.2	25.3
13	-	37.3	37.3
14	- (155540.3)	42.7	42.7
15	- 31-21-21/	27.3	27.0
16		29.2	29.2
17	-	47.8	47.8
18		48.7	48.8
19	2.36 (<i>m</i>)	47.8	47.8
20	2 A	150.5	150.6
21	เลกาะเนวท	29.7	29.8
22		33.9	34.0
23	0.95(s)	28.0	28.0
24	0.74(<i>s</i>)	15.3	15.4
25	0.80(<i>s</i>)	16.1	16.1
26	1.00(<i>s</i>)	16.0	16.0
27	0.96(<i>s</i>)	14.7	14.8
28	3.31 (<i>d</i> , <i>J</i> = 10.8 Hz),	60.5	60.2
	3.78 (<i>d</i> , <i>J</i> = 10.8 Hz)		
29	4.56 (br. s), 4.66 (br. s)	109.7	109.6
30	1.66(<i>s</i>)	19.1	19.1

Table 18. 14 And 13 C-NMR assignments of compound DG4 (in CDCl3) and the reported 13 C-NMR data of Betulin (in CDCl3)

Figure 22. EIMS of compound DG4

Figure 23. IR spectrum of compound DG4

Figure 25a. The 75 MHz ¹³C-NMR spectrum of compound DG4 (in CDCl₃)

Figure 26. The 75 MHz ¹³C-DEPT NMR spectrum of compound DG4 (in CDCl₃)

5. Identification of Compound DG5

Compound DG5 was recrystallized as colorless prisms from hexane (108.2 mg, 0.02 % yield). The compound gave purple color to Liebermann-Burchard reagent, suggesting its triterpenoid nature. The base peak at m/z 248 in the EIMS (Figure 28) is the characteristic feature of a C-12 unsaturated triterpenoid with oleanane or ursane skeleton containing carboxylic group in ring D or E (Ogunkoya, 1981). This peak resulted from cleavage through retro-Diels-Alder reaction. The further loss of two methyl groups produced the mass fragment peak at m/z 219, while the loss of the carboxylic group let to the peak at m/z 203. The peak at m/z 189 was produced by the loss of water from the other retro-Diels-Alder fragment (Scheme 10). The IR spectrum of DG5 (Figure 29) displayed the carbonyl band at 1694 cm⁻¹ and a broad band at 3417 cm⁻¹, indicating the presence of a hydroxyl substituent.

The ¹H-NMR and ¹H-¹H COSY spectra (Figures 30, 31) exhibited signals due to two secondary methyl (δ 0.80 and 0.90 ppm; *d*) and five tertiary methyls (δ 0.66, 0.74, 0.85, 0.90 and 1.03 ppm; *s*), suggesting that DG5 is an ursane. The most downfield signal at δ 5.12 (*t*, *J*= 3.4 Hz) ppm, represents H-12 of a C-12 unsaturated triterpenoid. The proton signal at δ 2.99 (*dd*, *J*= 5.2, 10.1 Hz) ppm confirmed the presence of a hydroxyl group substituent.

The ¹³C-NMR spectrum of compound DG5 (Figure 32) showed 30 carbon signals. The DEPT and HETCOR (Figures 33, 34) experiments were employed to classify these signals in to seven methyl carbons at δ 15.2, 16.1, 16.9, 17.0, 21.0, 23.3 and 28.2 ppm, nine methylene carbons at δ 18.0, 22.8, 23.8, 26.9, 27.5, 30.2, 32.7, 36.3 and 38.2 ppm, seven methine carbons at δ 38.4, 38.9, 47.0, 52.4, 54.8, 76.8 and 124.6 ppm and seven quaternary carbons at δ 36.5, 38.5, 39.1, 41.6, 46.8, 138.2 and 178.3 ppm. The most downfield carbon signal at δ 178.3 ppm confirmed the presence of a carboxylic group in the molecule of this compound. Almost all ¹³C-NMR data of DG5 were found to be in agreement with the data of ursolic acid, reported by Lin, *et al.* (1987), except for the assignments of signal for C-11 and C-29 at δ 22.8 and 17.0 ppm (DG5) instead of δ 17.1 and 23.2 ppm (reported values), respectively. However, the assignments for C-11 and C-29 of DG5 were found to be in agreement with the reported data of methyl ursolate (δ 23.3 ppm for C-11 and δ 16.9 ppm for C-29) (Mahato and Kundu, 1994). In addition, the DEPT experiment of DG5 also pointed out that the carbon signal at δ 17.1 and δ 22.8 ppm are due to methyl (C-29) and methylene (C-11) carbons, respectively.

According to all information mentioned above, DG5 was proposed as a C-12 unsaturated triterpenoid of the ursane type. Comparison of ¹³C-NMR data of DG5 with those previously reported for ursolic acid (Lin, 1987; Mahato, 1994) a known urs-12-ene, indicated the structures of both compounds to be identical. The ¹H and ¹³C-NMR assignments of DG5 and the reported ¹³C-NMR data of ursolic acid are shown in Table 19.

Scheme 10. Mass fragmentation of compound DG5

Therefore, DG5 was concluded to be ursolic acid, the structure of which is show below.

Ursolic acid was previously isolated from several species of ebenaceous plants, i.e. *Diospyros ferea* (Bhakumi, *et al.*, 1971), *D. melanonilau* (Singh and Prakash, 1998), *D. melanoxylon* (Sankaram and sidhu, 1964). This compound has been reported as possessing antimycobacterial (Cantrell, *et al.*, 2001), anti-inflammatory (Shimizu, *et al.*, 1986), and antiulcer (Gupta, *et al.*, 1981) activities.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

nonition	Compound DG5		Ursolic acid
position	δ Η (ppm)	δ C (ppm)	δ C (ppm)
1		38.2	38.7
2		27.0	27.2
3	2.99 (<i>dd, J</i> =5.2, 10.1 Hz)	76.8	78.2
4	-	38.5	38.8
5	-	54.8	55.2
6	-	18.0	18.3
7	-	32.7	33.0
8	-	39.1	39.5
9	- 12	47.0	47.5
10	- 100	36.5	36.9
11	- 10000	22.8	17.1
12	5.12 (<i>t</i> , <i>J</i> = 3.4 Hz)	124.6	125.2
13	- <u>AV87658</u>	138.2	138.3
14	_ Question	41.6	42.0
15		27.5	28.2
16	Q -	23.8	24.2
17	-	46.8	47.5
18	2.10(<i>d</i> , <i>J</i> =11.6 Hz)	52.4	52.7
19	<u>,</u>	38.5	39.1
20	สภาบับเวิ่มเ	38.4	38.8
21	ыынымал	d 30.2	30.7
22	and solution	36.3	36.7
23	0.88 (<i>s</i>)	28.2	28.0
24 9	0.86 (<i>s</i>)	15.2	15.7
25	0.67 (<i>s</i>)	16.1	15.4
26	0.74 (s)	16.9	17.0
27	1.03 (s)	23.3	23.5
28	-	178.3	179.9
29	0.80 (<i>d</i> , <i>J</i> = 6.4 Hz)	17.0	23.2
30	0.89 (<i>d</i> , <i>J</i> = 8.9 Hz)	21.0	21.2

Table 19. 1 H and 13 C-NMR assignments of compound DG5 (in DMSO- d_6) and the reported 13 C-NMR data of ursolic acid (in pyridine- d_5)

Figure 28. EIMS of compound DG5

176

Figure 29. IR spectrum of compound DG5

Figure 30c. The 500 MHz ¹H-NMR spectrum of compound DG5 (expanded)

Figure 32b. The 125 MHz ¹³C-NMR spectrum of compound DG5 (expanded)

Figure 32c. The 125 MHz ¹³C-NMR spectrum of compound DG5 (expanded)

Figure 33a. The 75 MHz ¹³C-DEPT NMR spectrum of compound DG5 (in DMSO)

Figure 33b. The 75 MHz ¹³C-DEPT NMR spectrum of compound DG5 (expanded)

Figure 34b. The 75 MHz ¹H-¹³C HETCOR NMR spectrum of compound DG5 (expanded)

Figure 34c. The 75 MHz ¹H-¹³C HETCOR NMR spectrum of compound DG5 (expanded)

6. Identification of Compound DG6

Compound DG6 was recrystallized as colorless needles from methanol (50.4 mg, 0.02% yield). This compound gave purple color to Liebermann-Burchard reagent, suggestive of a triterpenoid. Its EIMS (Figure 35) showed a molecular ion peak at m/z 456 which corresponded to the molecular formula of $C_{30}H_{48}O_3$. The base peak at m/z 248 is the characteristic of a C-12 unsaturated triterpenoid with oleanane or ursane skeleton containing a carboxylic group in ring D or E (Ogunkoya, 1981). The production of this peak as well as the peaks at m/z 203 and m/z 189 could be explained by the same deduction as those of DG5 (Sheme11). The IR spectrum (Figure 36) of DG6 revealed absorption band at 3431 cm⁻¹ (broad), suggesting the presence of a hydroxyl substituent and it also displayed a carbonyl band at 1695 cm⁻¹.

The ¹H-NMR and ¹H-¹H COSY spectra (Figures 37, 38) of DG6 showed seven singlets of tertiary methyls (δ 0.73, 0.75, 0.88, 0.89, 0.91, 0.96, and 1.11 ppm), suggesting that DG6 is an oleanane. The most downfield signal at δ 5.26 (br. *s*) ppm, represents H-12 of a C-12 unsaturated triterpenoid. The proton signal at δ 3.20 (*dd*, *J* = 4.7, 10.1 Hz) ppm confirmed the presence of a hydroxyl substituent.

The ¹³C-NMR spectrum of DG6 (Figure 39) showed 30 carbon signals. The DEPT and HETCOR experiments (Figures 40, 41) were employed to classify these signals in to those of seven methyl carbons at δ 15.3, 15.5, 17.1, 23.6, 25.9, 28.1 and 33.0 ppm, ten methylene carbons at δ 18.3, 22.9, 23.4, 27.2, 27.7, 32.4, 32.6, 33.8, 38.4 and 45.8 ppm, five methine carbons at δ 40.9, 47.6, 55.2, 79.0 and 122.6 ppm and eight quaternary carbons at δ 30.6, 37.1, 38.7, 39.2, 41.6, 46.5, 143.6 and 183.6 ppm. The most downfield carbon signal at δ 183.6 ppm confirmed the presence of a carboxylic group in the molecule of this compound.

According to all information mentioned above, DG6 was proposed as a C-12 unsaturated triterpenoid of the oleanane type. Comparison of ¹³C-NMR data of DG6 with the literature value of oleanolic acid (Maillard, Adewunmi and Hostettmann, 1992) indicated that

they are the same compound. The ¹³C-NMR assignments of DG6 and oleanolic acid

Scheme11. Mass fragmentation of compound DG6

Therefore DG6 was identified as oleanolic acid, the structure of which is shown below.

Oleanolic acid

Oleanolic acid was previously isolated from several species of ebenaceous plants, i.e. *Diospyros evena* (Musgrave and Skoyles, 1974), *D. montana* (Musgrave and Skoyles, 1974), *D. peregrina* (Gupta and Tiwari, 1964b). This compound has been reported as possessing antimycobacterial (Cantrell, *et al.*, 2001) and antiulcer (Gupta, *et al.*, 1981) activities.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

		193
b	the	reported

position	Compound DG6		Oleanolic acid
	δ Η (ppm)	δ C (ppm)	δ C (ppm)
1	-	38.4	38.5
2	-	27.2	27.4
3	3.20 (<i>dd</i> , <i>J</i> = 4.7, 10.1 Hz)	79.0	78.7
4	-	38.7	38.7
5	-	55.2	55.2
6	-	18.3	18.3
7	-	32.6	32.6
8	-	39.2	39.3
9	-//849	47.6	47.6
10	- 1 500	37.1	37.0
11	- 6423	23.4	23.1
12	5.2 <mark>6</mark> (br. <i>s</i>)	122.6	122.1
13	-	143.6	143.4
14	CONSIGNATION OF THE PROPERTY O	41.6	41.6
15	- 4528204	27.7	27.7
16	<u> -</u>	22.9	23.4
17	-	46.5	46.6
18	2.80 (<i>d</i> , <i>J</i> =10.2 Hz)	40.9	41.3
19	1.21-2.02 (<i>m</i>)	45.8	45.8
20	สภาบัยวิท	30.6	30.6
21	1.21-2.02 (<i>m</i>)	33.8	33.8
22	1.21-2.02 (<i>m</i>)	32.4	32.3
23	0.96 (<i>s</i>)	28.1	28.1
24	0.75 (<i>s</i>)	15.5	15.6
25	0.89 (<i>s</i>)	15.3	15.3
26	0.73 (<i>s</i>)	17.1	16.8
27	1.11 (<i>s</i>)	25.9	26.0
28	-	183.6	181.0
29	0.88 (s)	33.0	33.1
30	0.91 (<i>s</i>)	23.6	23.6

Table 20. 1 H and 13 C-NMR assignments of compound DG6 (in CDCl₃) and the reported 13 C-NMR data of oleanolic acid (in CDCl₃)

Figure 35. EIMS of compound DG6

Figure 36. IR spectrum of compound DG6

Figure 37a. The 300 MHz ¹H NMR spectrum of compound DG6 (in CDCl₃)

Figure 37b. The 300 MHz ¹H NMR spectrum of compound DG6 (expanded)

Figure 38b. The 300 MHz ¹H-¹H COSY spectrum of compound DG6 (expanded)

Figure 40a. The 75 MHz 13 C-DEPT NMR spectrum of compound DG6 (in CDCl₃)

Figure 41b. The 75 MHz ¹H-¹³C HETCOR NMR spectrum of compound DG6 (expanded)

CHAPTER V

CONCLUSION

Totally six triterpenoids were isolated from the stems of *Diospyros glandulosa* Lace by chromatographic techniques. Two of them, β -amyrin and oleanolic acid, are oleanane - type triterpenoid. Another two, lupeol and betulin, are lupane -type triterpenoids. The last two compounds are ursolic acid of the ursane type and friedelin of the friedelane type. The identification of these compounds were mainly based on their spectroscopic data.

This is the first report of chemical constituents of this *Diospyros* species and the data obtained would be valuable in the chemotaxonomic and phytochemical studied of this plant genus.

REFERENCES

- กรมป่าไม้, สำนักงานวิชาการป่าไม้, ส่วนพฤกษศาสตร์ป่าไม้, รายชื่อพรรณไม้ในประเทศไทย (ชื่อพฤษ ศาสตร์-ชื่อพื้นเมือง). กรุงเทพมหานคร 2544
- Adeniyi, B. A.; Fong, H. H. S.; Pezzuto, J. M.; Luyengi, L. and Odelola, H. A.
 Antibacterial activity of diospyrin, isodiospyrin and bisisodiospyrin from the root of *Diospyros piscatoria* (Gurke) (Ebenaceae). <u>Phytother. Res</u>. 14 (2000): 112-117.
- Adeniyi, B. A.; Robert, M. F.; Chai, H. and Fong, H. H. *In vitro* cytotoxic activity of diosquinone, a naphthoquinone epoxide. <u>Phytother. Res</u>. 17 (2003): 282-284.
- Akihisa, T.; Yasukawa, K.; Oinuma, H.; Kasahara, Y.; Yamanouchi, S.; Takido, M.; Kumaki,K. and Tamura, T. Triterpene alcohols from the flowers of compositae and their antiinflammatory effects. <u>Phytochemistry</u> 43(1996): 1255-1260.
- Akihisa, T.; Yamamoto, K.; Tamura, T.; Kimura, Y.; Iida, T.; Nambara, T. and Chang, F. C.
 Triterpenoid ketones from Lingnania chungii McClure: arborione, friedelin and
 Glutinone. <u>Chem. Pharm. Bull.</u> 40(1992): 789-791.
- Alake, L. B. Antibaterial activity of diosquinone isolated from *Diospyros tricolor*. <u>Planta Med</u>. 60 (1994): 447-449.
- Alves, E. A. C. and Costa, M. A. C. Batocanone, a new naphthoquinonylnaphthoquinone epoxide. <u>Tetrahedron Lett</u>. 21 (1980): 2459-2460.
- Andiamasy, J. P. Y. and Fouraste, I. Triterpenes from *Diospyros kaki* L. Presence of α-amyrin and betulin in the stem bark. <u>Trav. Soc. Pharm. Montpellier.</u> 38 (1978): 77-80. <u>Chemical Abstracts</u> 89 (1978): 12037t.
- Aoonpak, J. 2001. <u>Phytochemical stusy of *Diospyros undulata* var. *cratericalyx*. Master's Thesis, Department of Pharmaceuticalbotany, Faculty of Pharmacy, Chulalongkorn University.</u>
- Blaza, F.; Abramowsky, Z.; Towers, G. H. N. and Wiriachitra, P. Identification of proanthocyanidin polymers as the piscidal constituents of *Mammea siamensis*, *Polygonum stagninum* and *Diospyros dipenhorstii*. <u>Phytochemistry</u> 28 (1989): 1827-1830.

- Bhakuni, D. S.; Satish, S.; Shukla, Y. N. and Tandon, J. S. Chemical constituents of Diospyros buxiforia, D. tomentosa, D. ferrea D. lotus, Rhus parriflora, Polygonum recumbens, Balanites aegyptiaca and Pyrus pashia. <u>Phytochemistry</u> 10 (1971): 2829-2831.
- Bhaumik, T., Dey, A. K., Das, P. C., Mukhopadhyay, A. K. and Chatterjee, A. Triterpenes of *Diospyros peregrina* Gurke: partial synthesis of olean-9(11),12-diene-one and ursane-9(11),12-diene-3-one (mersformosanone). <u>Indian Journal of Chemistry</u> 20B (1981): 664. <u>Chemical Abstracts</u> 96 (1981): 6896a.
- Bouquet, A. Medicinal plants of Congo-Brazzaville. <u>Trav. Doc. ORSTROM.</u> 13 (1972): 112. <u>Chemical Abstracts</u> 78 (1973): 121363.
- Braneton, J. and Moretti, C. Ebenaceae from Guiana: *Diospyros guianensis* Gurke. <u>Plant.</u> <u>Med. Phytother</u>. 13 (1979): 172. <u>Chemical Abstracts</u> 92 (1979): 90879v.
- Brown, A. G. and Thomson, R. H. Ebenaceae extractives. Part II. Naphthaldehydes from *Diospyros ebenum* Koen. J. Chem. Soc. (1965): 4292-4295.
- Cai, L.; Wei, G. X.; van der Bijl, P. and Wu, C. D. Namibian chewing stick, *Diospyros lyciodes*, contains antibacterial compounds against oral pathogent. <u>J. Agric. Food</u>
 <u>Chem.</u> 48 (2000): 909-914.
- Cantrell, C. L.; Franzblau, S. G. and Fisher, N. H. Antimycobacterial plant triterpenoids. <u>Planta. Med.</u> 67(2000): 685-694.
- Carter, F. L.; Garlo, A. M. and Stanley, J. B. Termiticidal components of wood extract : 7-methyljuglone from *Diospyros virginiana*. <u>J. Agric. Food Chem</u>. 26 (1978): 869-873.
- Chandler. R. F. and Hooper, S. N. Friedelin and associated triterpenoids. <u>Phytochemistry</u> 18 (1979): 711-724.
- Chandra, S. and Shastry, M. S. Chemical examination of *Diospyros cordifolia* Roxb. Indian J. Pharm. Sci. 51 (1989): 258. Chemical Abstracts 113 (1989): 208318u.
- Chang, C. I. and Kuo, Y. H. Three new lupane-type triterpenes from *Diospyros maritima*. <u>Chem. Pharm. Bull</u>. 46 (1998): 1627-1629.
- Chang, C. I. and Kuo, Y. H. Two new lupane-type triterpenes from *Diospyros maritima*. J. Nat. Prod. 62 (1999): 309-310.

- Chen, H. C.; Lin, Y. M.; Shih, T. S. and Chen, F. C. Constituents of the heartwood of Morris persimmon (II), *D. morisiana*. <u>Tai-wan K'O Hsueh</u> 41 (1987): 46. <u>Chemical</u> <u>Abstracts</u> 110 (1989): 151268j.
- Chen, C. C.; Yu, H. J. and Huang, Y. L. The constituents of the bark of *Diospyros eriantha*. <u>Zhonghua Yaoxue Zazhi</u>. 44 (1992): 229-233. <u>Chemical Abstracts</u> 117 (1992): 188243t.
- Chen, C. C.; Yu, H. J.; Ou, J. C. and Pan, T. M. Constituents of heartwood of *Diospyros* eriantha. <u>J. Chin. Chem. Soc</u>. 41 (1994): 195-198.
- Choudhary, A. R. Chemical investigation on *Diospyros melanoxylon*. <u>Labdev</u>. Part B. 10 (1973): 163-169. <u>Chemical Abstracts</u> 80 (1974): 12516n.
- Cooke, R. G. and Doed, H. Coloring matters of Australian plants (II) naphthoquinones from *Diospyros hebecarpa*, (III) synthesis of 7-methyljuglone and related compounds. <u>Aust.</u>
 <u>J. Sci. Res.</u> 5A (1952): 760. <u>Chemical Abstracts</u> 48 (1952): 2022d.
- Cooke, R. G. and Doed, H. Naphthoquinones from *Diospyros hebecarpa*. <u>Nature</u> 169 (1952): 974. <u>Chemical Abstracts</u> 47 (1952): 3286i.
- Costa, M. A. C.; Alves, A. C.; Seabra, R. M. and Andrade, P. B. Naphthoquinones of *Diospyros chamaethamnus*. <u>Planta Med</u>. 64 (1998): 391.
- Desai, H. K.; Gawad, D. H.; Govindachari, T. R.; Joshi, B. S.; Kamat, V. N.; Modi, J. D.;
 Mohamed, P. A.; Parthasarathy, P. C.; Pantankar, S. J.; Sidhyye, A. R. and
 Viswanathan, N. A chemical investrigation of some Indian plants. <u>Indian J. Chem.</u> 8 (1970) 851.
- Dinda, B.; Hajra, A. K.; Das, S. K.; Chel, G.; Chakraborty, R. and Ranu, B. C. Reactions on naturally-occurring triterpene 1. Indian J. Chem. B 34 (1995): 624-628.
- Dominguez, X. A.; Caro, R.; Franco, G. R.; Gonzalez, A.; Pugliese, O.; Dominguez, M. A. and Sanchez, G. A. Chemical study on the roots and barks of *Diospyros texana*, *Diospyros ebenaster* and *Diospyros palmeri*. <u>Revista Latino americana del Quimica</u> 10 (1979): 50-53. <u>Chemical Abstracts</u> 91 (1979): 120372y.
- Dutta, P. K.; Dutta, N. L. and Chakravarti, R. N. Sterols and triterpenes from *Diospyros montana*. <u>Phytochemistry</u> 11 (1972): 1180.
- Fallas, A. L. and Thomson, R. H. Ebenaceae extractive III. Binaphthoquinone from *Diospyros* species. <u>J. Chem. Soc. C</u> 18 (1968): 2279.

- Ferreira, M. A.; Alves, E. A. C. and Sousa, A. F. D. Naphthoquinones from *Diospyros heterotricha*. <u>Garcia de Orta</u>. Ser. Formacogen. 1 (1972): 29. <u>Chemical Abstracts</u> 81 (1974): 117069t.
- Ferreira, M. A.; Costa, A. C. and Alves, E. A. C. Identification of diospyrin, 7-methyljuglone and 8,8'-dihydroxy-4,4'-dimethoxy-6,6'-dimethyl-2,2'-bisnaphthyl-1,1'quinone in the *Diospyros lycioides* subspecies *sericera* root bark. <u>Planta. Med.</u> <u>Phytother</u>. 6 (1972): 32-40. <u>Chemical Abstracts</u> 77 (1972): 58832d.
- Evans, P. H.; Bowers, W. S.; Litaudon, M.; Sevenet, T. Plumbagin from *Diospyros olen*. <u>Molecules</u> 4 (1999): 93.
- Ferreira, M. A.; Costa, M. A. C. and Alves, E. A. C. Identification of methylnaphthazarin in *Diospyros* species. <u>Phytochemistry</u> 11 (1972): 2352-2353.
- Gafner, F.; Chapuis, J. C.; Msonthi, J. D. and Hostettmann, K. Cytotoxic naphthoquinones, molluscicidal saponins and flavonols from *Diospyros zombensis*. <u>Phytochemistry</u> 26 (1987): 2501-2503.
- Gafner, F.; Rodrignez, E. Biological chemistry of molluscicidal and cytotoxic plants constituents. <u>Revista Latino-americana del Quimica</u> 20 (1988): 30. <u>Chemical Abstracts</u> 111 (1989): 74815b.
- Gupta, P. K. and Mahadevan, V. Triterpenoid from the leaves of *Diospyros ebenum*. Indian J. of Pharmaco. 29 (1967): 289-291. <u>Chemical Abstracts</u> 68 (1967): 29900h.
- Gupta, P. K. and Mahadevan, V. Chemical examination of the heartwood of *Diospyros* ebenum. Indian J. of Pharmaco. 30 (1968): 93. Chemical Abstracts 69 (1968): 59445b.
- Gupta, P. K. and Roa, P. S. Chemical examination of the leaves of *Diospyros melanoxylon*.
 <u>Proc. Idian Acad. Sci. Sect. A</u> 60 (1964): 36-41. <u>Chemical Abstracts</u> 61 (1964): 2183h.
- Gupta, P. K. and Tiwari, R. D. Examination of the bark of *Diospyros peregrina*. <u>Proc.</u>
 <u>Natl. Acad. Sci., India Sect. A</u> 34 (1964a): 180-181. <u>Chemical Abstracts</u> 62 (1964): 9462h.
- Gupta, P. K. and Tiwari, R. D. Examination of the leaves of *Diospyros peregrina*. Idian J. <u>Chem.</u> 2 (1964b): 129-130. <u>Chemical Abstracts</u> 61 (1964): 2183h.

- Harper, S. K.; Kemp, A. D. and Tannock, J. Methoxynaphthaldehyde as constituents of the heartwood of *Diospyros quiloensis* and their synthesis by the stobbe condensation. <u>J. Chem. Soc. C.</u> 4 (1970): 626-636.
- Hasan, T., Matyikhina, L. G. and Saltykova, I. A. triterpanoid from *Diospyros lotus*. <u>Kimaya Priodnykh Soedineii</u> 11 (1975): 103. <u>Chemical Abstracts</u> 83 (1975): 75369.
- Hasbun, C., Carballo, J., Castro, O. and Poveda, L. Major constituents of the wood of *Diospyros nicaraguensis*. <u>Fitoterapia</u> 59 (1988): 157. <u>Chemical Abstracts</u> 109 (1988): 187368h.
- Hayek, E. W. H.; Jordis, U.; Moche, W. and Sauter, F. A. Bicentennial of betulin. <u>Phytochemistry</u> 28 (1989): 2229-2242.
- Hazra, B., Banerjee, A. and Roy, D. K. Systhesis of an antitumer derivative of diospyrin. IRCS Medical Sciences 14 (1986): 593. <u>Chemical Abstracts</u> 105 (1986): 75768b.
- Herath, W. H. M. W.; Rajasekar, N. D. S.; Sultanbawa, M. V. S.; Wannigama, G. P. and Balasubramaniam, S. Triterpenoid, coumarin and quinone constituents of eleven *Diospyros* species (Ebenaceae). <u>Phytochemistry</u> 17 (1978): 1007-1009.
- Higa, M. A new binaphthoquinone from *Diospyros maritima* Blume. <u>Chem. Pharm. Bull.</u> 36 (1988): 3234-3236.
- Higa, M.; Himeno, K.; Yogi, S. and Hokama, K. A new brominated naphthoquinone from *Diospyros maritima* Blume. <u>Chem. Pharm. Bull.</u> 35 (1987): 4366-4367.
- Higa, M.; Ogihara, K. and Yogi, S. Bioactive naphthoquinone derivatives from *Diospyros maritima* Blume. <u>Chem. Pharm. Bull</u>. 46 (1998): 1189-1193.
- Iseda, S. and Yagishita, K. Triterpenoid from *Poria cocos.* <u>J. Pharm. Soc</u>. (Japan) 75 (1955): 230. <u>Chemical Abstracts</u> 51 (1955): 2662a.
- Jain, N. and Yadav. R. Peregrinol, a lupane type triterpene from the fruits of *Diospyros peregrina*. <u>Phytochemistry</u> 35 (1994): 1070-1072.
- Jeffreys, J. A. D. and Zakaria, M. B. A new class of natural product: homologues of juglone bearing 4-hydroxy-5-methyl-coumarin-3-yl units from *Diospyros* species. <u>Tetrahedron Lett</u>. 24 (1983): 1085-1088.
- Jeffreys, J. A. D.; Zakaria, M. B. and Waterman, P. G. 3'-Methoxydiospyrin, a 7-methyljuglone dimer from *Diospyros mannii*. <u>Phytochemistry</u> 22 (1983): 1832-1833.

- Kapil, R. S. and Dhar, M. M. Chemical constituents of *Diospyros montana* I. Isolation of diospyrin, a new binaphthyl derivative. <u>J. Sci. Ind. Res</u>. 20B (1961): 498-500.
- Khan, M. R.; Kishimba, M. A. and Lockslay, H. Extractive from Ebenaceae: constituents of the root and stem barks of *Diospyros verrucosa*. <u>Planta Med</u>. 53 (1987a): 498-499.
- Khan, M. R.; Kishimba, M. A. and Lockslay, H. Extractives from Enenaceae : constituents of the root and stem barks of *Diospyros verrucosa*. <u>Fitoterapia</u> 58 (1987b): 424.
 <u>Chemical Abstracts</u> 108 (1987): 72130p.
- Khan, M. R.; Kishimba, M. A. and Locksley, H. Naphthoquinones from the root and stem barks of *Diospyros usambarensis*. <u>Planta Med</u>. 55 (1989): 581.
- Khan, M. R.; Nkunya, M. H. H. and Wevers, H. Triterpenoids from leaves of *Diospyros* species. <u>Phytochemistry</u> 60 (1973): 380-381.
- Khan, M. R.; Nkunya, M. H. H. and Wevers, H. Triterpenoids from leaves of *Diospyros* species. <u>Planta Med</u>. 38 (1980): 380-381.
- Khan, M. R. and Rwekika, E. A Binaphthoquinone from *Diospyros greeniwayi*. <u>Phytochemistry</u> 49 (1992): 2501-2503.
- Khan, M. R. and Rwekika, E. Triterpenoids from the leaves of four species of family Ebenaceae. <u>Fitoterapia</u> 63 (1992): 375. <u>Chemical Abstracts</u> 105 (1993): 143429n.
- Khan, M. R. and Rwekika, E. 6"-8'-Bisdiosquinone from *Diospyros mafiensis*. <u>Phytochemistry</u> 50 (1999): 143-146.
- Khan, M. R. and Timi, D. Constituent of root and stem barks, leaves and fruits of *Diospyros hallierii*. <u>Fitoterapia</u> 70 (1999a): 320-321. <u>Chemical Abstracts</u> 132 (1999): 76034.
- Khan, M. R. and Timi, D. Constituents of *Diospyros Iolin, D. maritima* and *D. novoguinensis*. <u>Fitoterapia</u> 70(1999b): 194-196. <u>Chemical Abstracts</u> 132 (1999): 291097.
- Khan, M. R. and Timi, D. Constituent of root and stem barks of *Diospyros villosiuscula*. <u>Fitoterapia</u> 70 (1999c): 2509-211. <u>Chemical Abstracts</u> 132 (1999): 47499d.
- Kuke, C.; Williamson, E. M.; Robert, M. F.; Watt, R.; Hazra, B.; Lajubutu, B. A. and Yang,
 S. L. Antiinflammatory activity of binaphthoquinones from *Diospyros* Species.
 <u>Phytother. Res.</u> 12 (1998): 155-158.
- Kuo, Y. H. and Chang, C. I. Six new compounds from the heartwood of *Diospyros maritima*. <u>Chem. Pharm. Bull</u>. 48 (2000): 1211-1214.

- Kuo, Y. H.; Chang, C. I.; Kuo, Y. H. and Huang, S. L. Three new naphthoquinones from the stem of *Diospyros maritima* Blume. <u>J. Chin. Chem. Soc</u>. 45 (1998): 111-114.
- Kuo, Y. H.; Chang, C. I. and Kuo, Y. H. A novel trinorlupane, diospyrolide, from *Diospyros maritima*. <u>Chem. Pharm. Bull</u>. 45 (1997a): 1221-1222.
- Kuo, Y. H.; Chang, C. I. and Kuo, Y. H. Triterpenes from *Diospyros maritima*. <u>Phytochemistry</u> 46 (1997b): 1135-1137.
- Kuo, Y. H.; Chang, C. I.; Li, S. Y.; Chou, C. J.; Chen, C. F.; Kuo, Y. Hand Lee, K. H.
 Cytotoxic constituents from the stems of *Diospyros maritima*. <u>Planta Med.</u> 63 (1997c): 363-365.
- Kuo, Y. H.; Huang, S. L. and Chang, C. I. A phenolic and an aliphatic lactone from *Diospyros maritima*. <u>Phytochemistry</u> 49 (1998): 2505-2507.
- Kuroyanagi, M.; Yoshihira, K. and Natori, S. Naphthoquinone derivatives from the Ebenaceae III. Shinanolone from *Diospyros japonica* Sieb. <u>Chem. Pharm. Bull</u>. 19 (1971): 2314-2317.
- Lajubutu, B. A.; Pinney, R. J.; Roberts, M. F.; Odelola, H. A. and Oso, B. A. Antibacterial activity of diosquinone and plumbagin from the root of *Diospyros mesfiliformis* (Hostch) (Ebenaceae). <u>Phytother. Res.</u> 9 (1995): 346-350.
- Li, H. L.; Lu, R. and Zhong, Y. Chemical constituents of *Diospyros siderophylla*. <u>Huaxue</u> <u>Xuebao</u>. 39 (1981): 815-817. <u>Chemical Abstracts</u> 97 (1982): 88748m.
- Li, X. C.; van der Bijl, P. and Wu, C. D. Binaphthalenone glycosides from African chewing sticks, *Diospyros lyciodes*. J. Nat. Prod. 61 (1998): 817-820.
- Likhitwitayawuid, K.; Dej-adisai, S. and Jongbunprasert, V. Antimalarials from *Stephania venosa, Prismatomeris sessiliflora, Diospyros montana* and *Murraya siamensis*. <u>Planta</u> <u>Med</u>. 65 (1999): 754-756.
- Lillie, T. J. and Musgrave, O. C. Ebenaceae Extractives. Part VIII. The structure of diosquinone and reactions of related quinone epoxide. <u>J. Chem. Soc. Perkin Trans. I</u> 25 (1980): 1161.
- Lillie, T. J.; Musgrave, O. C. and Skoyles, D. Ebenaceae Extractives. Part V. New diospyrin derivatives from *Diospyros montana* Roxb. <u>J. Chem. Soc. Perkin Trans. I</u> 20 (1976a): 2155-2161.

- Lillie, T. J.; Musgrave, O. C. and Skoyles, D. Ebenaceae Extractives. Part VI. Ehretione, a bisnaphthoquinone derived from plumbagin and 7-methyljuglone. <u>J. Chem. Soc.</u> <u>Perkin Trans. I</u> 20 (1976b): 2546.
- Lin, L. C.; Chou, C. J. and Chen, C. F. Triterpenes of *Diospyros kaki*. <u>Chung-hua Yoa</u> <u>Husea Tsa Chih.</u> 40 (1988): 195. <u>Chemical Abstracts</u> 111(1989): 20839.
- Lin, C. N.; Chung, M. I.; Gan, K. H. and Chiang, J. R. Xanthones from Formosan Gentianaceous Plants. <u>Phytochemistry</u> 26 (1987): 2381-2384.
- Lin, S. R. Studies on the constituents of fruits of *Diospyros discolor* Willd. <u>T'ai-wan Yao</u> <u>Husea Tsa Chih</u>. 30 (1978): 132-135. <u>Chemical Abstracts</u> 92 (1980): 107356x.
- Liu, J. Pharmacology of oleanolic acid and ursolic acid. <u>J. Ethnopharmaco.</u> 49 (1995): 57-68.
- Mahato, S. B. and Kundu, A. P. ¹³C NMR spectra of pentacyclic triterpenoidsa compilation and some salient features. <u>Phytochemistry</u> 37 (1994): 1517-1575.
- Maillard, M.; Adewunmi, C. O. and Hostettmann, K. A triterpene glycoside from the fruit of *Tetrapleura tetraptera*. <u>Phytochemistry</u> 31 (1992): 1321-1323.
- Maiti, B. C. and Musgrave, O. C. Ebenaceae Extractives. Part IX. New naphthoquinones and binaphthoquinones from Macassar Ebony. <u>J. Chem. Soc. Perkin Trans. 1</u> 30 (1986): 675-681.
- Maiti, B. C.; Musgrave, O. C. and Skoyles, D. Total synthesis of diosindigo B, mamegakinone, biramentacenone and rotundiquinone. J. Chem. Soc. Perkin Trans. I 20 (1976): 244-245.
- Mallavadhani, U. V.; Panda, A. K. and Rao, Y. R. Pharmacology and chemotaxonomy of *Diospyros*. <u>Phytochemistry</u> 49 (1998): 901-951.
- Mallavadhani, U. V.; Panda, A. K. and Rao, Y. R. *Diospyros melanoxylon* leaves: a rich source of pentacyclic triterpenoids. <u>Pharma. Bio.</u> 39 (2001): 20-24.
- Maria, S. K.; Olivera, D.; Dueinos, C. and Alves, E. A. C. Polycyclic compounds of *Diospyros kirrii*. <u>Rev. Port. Farm</u>. 29 (1979): 84-89. <u>Chemical Abstracts</u> 92(1980): 3199g.
- Marston, A.; Msonthi, J. D. and Hostettmann, K. Naphthoquinones of *Diospyros usambarensis*, their molluscicidal and fungicidal activities. <u>Planta Med</u>. 50 (1984): 279-280.

- Matsura, S.; Asano, K.; Ohba, K. and Misano, M. Components of the leaves of *Diospyros kaki*. <u>Yakugaku Zasshi</u>. 91 (1971): 905-906. <u>Chemical Abstracts</u> 75 (1971): 126550w.
- Matsura, S. and linuma, M. Studies on the constituents of useful plants IV. The constituents of calyx of *Diospyros kaki*. <u>Yakugaku Zasshi</u>. 97 (1977): 452-455. <u>Chemical Abstracts</u> 87 (1977): 2409k.
- Misra, P. S.; Misra, G.; Nigam, S. K. and Mitra, C. R. Constituents of *Diospyros peregrina* fruit and seed. <u>Phytochemistry</u> 10 (1971): 904-905.
- Misra, G.; Nigam, S. K. and Mitra, C. R. Steroids and triterpenoids of *Diospyros montana*. <u>Phytochemistry</u> 11 (1972): 1508-1509.
- Musgrave, O. C. and Skoyles, D. Ebenaceae extractives. Part IV. Diosindigo A, a blue pigment from several *Diospyros* species. <u>J. Chem. Soc. Perkin Trans. I</u> (1974): 1128-1131.
- Narayan, G. K. A. S. S.; Row, L. R. and Satyanarayana, P. Chemical examination of *Diospyros* species. <u>Curr. Sci.</u> 47 (1978): 345.
- Ogunkoya, L. Application of mass spectrometry in structural ploblems in triterpenes. <u>Phytochemistry</u> 20 (1981): 121-126.
- Okuyama, E.; Homma. M.; Satoh, Y.; Fujimoto, H.; Ishibashi, M.; Yamazaki, M.; Satake, M. and Ghazali, A. B. A. Monoamine oxidase inhibitory naphthoquinone and/ or naphthalene dimers from Lemuni Hitam (*Diospyros* sp.), a Malaysian herbal medicine. <u>Chem. Pharm. Bull.</u> 47(1999): 1473-1476.
- Pant, P. and Rastogi, R. P. The Triterpenoids. <u>Phytochemistry</u> 18 (1979): 1095-1108.
- Pardhasaradhi, M. and Krishna Kumari, M. Tetrahydrodiospyrin: a reduced binaphthoquinone from the bark of *Diospyros montana*. <u>Phytochemistry</u> 18 (1979): 684-685.
- Pardhasaradhi, M. and Rao, B. N. A naphthoquinone carboxylate from fungal infested *Diospyros montana*. <u>Phytochemistry</u> 29 (1990): 2355-2356.
- Pardhasaradhi, M. and Sidhu, G. S. β'-Dihydrodiospyrin, the first reduced binaphthoquinone. <u>Tetrahedron Lett</u>. 41 (1972): 4201-4204.
- Pereira, A. S.; Nascimento, E. A. and Francisco R. de Aquin Neto Lupeol alkanoates in Brazilian propolis. <u>Z. Naturfoesch</u> 57c (2002): 721-726.

- Paris, R. A. and Pista, L. Quinone of *Diospyros tricolor* an African ebony of antileprosy action. <u>Annales Pharmaceutiques Francaises</u> 12 (1954): 375. <u>Chemical Abstracts</u> 48 (1954): 12923e.
- Phengklai. C. Ebenaceae. In T. Smitinand and K. Larsen (eds.), <u>Flora of Thailand Vol. 2</u> <u>Part 4</u>. Bangkok : TISTR Press, 1981, pp. 282-392.
- Pista, L. N. Cu derivative of naphthoquinone. <u>Anais. Fac. Farm, Porto.</u> 14 (1955): 73. <u>Chemical Abstracts</u> 50 (1954): 12003h.
- Pista, L. N. Isolation of an o-quinone from *Diospyros tricolor*. <u>Anais. Fac. Farm, Porto.</u> 14 (1954): 67. <u>Chemical Abstracts</u> 49 (1954): 5602b.
- Pista, L. N. and Pista, H. R. Absorption spectrum of diosquinone. <u>Anais. Fac. Farm,</u> <u>Porto.</u> 14 (1954): 91. <u>Chemical Abstracts</u> 49 (1954): 10058f.
- Raj, K. P. S. and Agrawal, Y. K. Studies on fruits of *Diospyros montana* Roxb. <u>Pol. J.</u> <u>Chem</u>. 53 (1979): 735-736.
- Recio, M. del C.; Giner, R. M.; Manez, S.; Gueho, J.; Julien, H. R.; Hostettmann, K. and Rios, J. L. Investigations on the steroidal anti-inflamatory activity of triterpenoid from *Diospyros leucomelas*. <u>Planta Med</u>. 61 (1995): 9-12.
- Reynolds, W. F. ; McLean, S. and Poplawski, J. Total assignment of ¹³C and ¹H spectra of three isomeric triterpenol derivatives by 2D MNR : an investrigation of the potential utility of ¹H chemical shifts in structural investrigations of complexnatural products. <u>Tetrahedron</u> 42(1986): 3419-3428.
- Reynolds, W. F. ; McLean, S.; Scobar, L. I. And Leon, I. Total assignment of ¹³C and ¹H spectra of three isomeric triterpenol derivatives by 2D NMR: An investigation of the potential utility of ¹H chemical shifts in structural investigations of complex natural products. <u>Tetrahedron</u> 42 (1986): 3349-3729.
- Richomme, P.; Papillon, B.; Cabalion, P. and Braneton, J. Naphthoquinonen de *Diospyros samoensis*. <u>J. Pharm. Acta. Helv</u>. 66 (1991): 88-89. <u>Chemical Abstracts</u> 115 (1991): 46037p.
- Row, L. R.; Sundar Ramaiah, T. and Rao, C. S. A chemical examination of *Diospyros* species III. The triterpenes of the leaves of *Diospyros melanoxylon*. <u>Current Sci</u>. 35 (1966a): 457-458. <u>Chemical Abstracts</u> 66 (1966a): 26570y.

- Row, L. R.; Sundar Ramaiah, T. and Rao, C. S. A chemical examination of *Diospyros* species IV. The triterpenes of the leaves of *Diospyros sylvatica and Diospyros melanoxylon*. <u>Current Sci</u>. 35 (1966b): 458. <u>Chemical Abstracts</u> 66 (1966): 26571z.
- Row, L. R.; Sundar Ramaiah, T. and Rao, C. S. Quinone of *Diospyros* species. <u>Bullentin</u> of the National Institute of Sciences of India. 28 (1965): 69. <u>Chemical Abstracts</u> 66 (1967): 2664z.
- Sankaram, A. V. B. and Reddy, V. V. N. Structure of ebenone, a possible biogenetic precursor of elliptinone, from *Diospyros ebenum*. <u>Phytochemistry</u> 23 (1984): 2039-2040.
- Sankaram, A. V. B.; Reddy, V. V. N. and Marthandamurthi, M. ¹³C-NMR spectra of some naturally occurring binaphthoquinones and related compounds. <u>Phytochemistry</u> 25 (1986): 2867-2871.
- Sankaram, A. V. B.; Reddy, V. V. N. and Sidhu, G. S. A pentacyclic quinone and diosindigo B from the heartwood of *Diospyros melanoxylon*. <u>Phytochemistry</u> 20 (1981): 1093-1096.
- Sankaram, A. V. B. and Sidhu, G. S. Extractives from the bark and wood of *Diospyros melanoxylon*. Indian J. Chem. 2 (1964): 467. Chemical Abstracts 62 (1964): 5496f.
- Sankaram, A. V. B. and Sidhu, G. S. A new naphthaldehyde from the heartwood of *Diospyros melanoxylon*. <u>Phytochemistry</u> 10 (1971): 458-459.
- Seo, S.; Tomita, Y. and Tori, K. Carbon-13 NMR spectra of urs-12-enes and application to structural assignments of components of *Isodon japonicus* Hara tissue culture. <u>Tetrahedron Lett</u>. 1 (1975): 7-10.
- Sharma, K. and Gupta, R. K. Triterpenoids from *Diospyros ebenum*. <u>Fitoterapia</u>. 56 (1985): 366.
- Shimizu, M.: Fukumura, H.; Tsuji, H.;Tanaami, S.; Hayashi, T. and Morita, N. Antiinflammatory constituents of tropically applied crude drugs I. Constituents and antiinflammatoryeffect of *Eriobotrya japonica* Lindl. <u>Chen. Pharm. Bull</u>. 34(1986): 2614-2617.
- Sholichin, M.; Yamasaki, K. and Tanaka, O. ¹³C Nuclear Magnetic Resonance of Iupanetype triterpenoids, Iupeol, betulin and betulinic acid. <u>Chem. Pharm. Bull</u>. 28 (1980): 1006-1008.

- Shukla, Y. N. and Kapadia, G. J. Chemical constituents of *Diospyros virginiana*. Indian J. Pharm. Sci. 51(1989): 73. Chemical Abstracts 111 (1989): 229035y.
- Sidhu, G. S. and Prasad, K. K. Structure of two oxygenated naphthalenes from *Diospyros chloroxylon*. <u>Tetrahedron Lett</u>. 9 (1971): 767-769.
- Sidhu, G. S. and Prasad, K. K. Xylospyrin-a novel trinaphthylenequinone from *Diospyros chloroxylon* and comments on PMR spectrum of (-) isodiospyrin leucoheaacetate. <u>Tetrahedron Lett</u>. 11 (1970): 1739-1742.
- Sidhu, G. S.; Sankaram, A. V. B. and Ali, S. M. Extractive from *Diospyros* species III.
 Naphthoquinones and naphthols from the heartwood of *Diospyros melanoxylon*. Indian
 <u>J. Chem</u>. 6 (1968): 681. <u>Chemical Abstracts</u> 70 (1968): 106241q.
- Singh, M. and Prakash, L. Chemical investigation of Persimmon (*Diospyros melanonilau*) heartwood. <u>Herba Polonica</u> 34 (1988): 159. <u>Chemical Abstracts</u> 111 (1988): 1711672.
- Sutthivaiyakit, S.; Pakakatsama, P.; Kraus, W. and Vogler, B. Constituents of *Diospyros rhodocalyx*. <u>Planta Med</u>. 61 (1995): 295.
- Tandon, S. R.; Tiwari, K. P. and Varshney, R. K. Triterpenoids from the flowers of *Callistemon lenceolatus*. <u>Proc. Nastional Acad. Sci. India Sect A</u> 44 (1974): 319. <u>Chemical Abstracts</u> 80 (1974): 45657n.
- Tannock, J. Naphthoquinones from *Diospyros* and *Euclea* species. <u>Phytochemistry</u> 12 (1973): 2066-2067.
- Tezuka, M.; Kuroyanagi, M.; Yoshihira, K. and Natori, S. Naphthoquinone derivatives from the Ebenaceae. IV. Naphthoquinone derivatives from *Diospyros kaki* Thunb. and *D. kaki* Thunb. var. *sylvestris* Makino. <u>Chem. Pharm. Bull</u>. 20 (1972): 2029-2035.
- Tezuka, M.; Takahasi, C.; Kuroyanagi, M.; Satake, M.; Yoshihira, K. and Natori, S. New Naphthoquinones from *Diospyros*. <u>Phytochemistry</u> 12 (1973): 175-183.

Thomson, R. H. <u>Naturally Occurring Quinones</u>, 2nd ed. New York : Academic Press, 1971.

- Tinto, W. F.; Blair, L. C. and Alli, A. Lupane triterpenoids of *Salacia cordata*. <u>J. Nat. Prod</u>. 55(1992): 395-398.
- Tiwari, K. P.; Masood, M. and Minocha, P. K. Chemical constituents of *Gmelina* phillipinensis, Adenocalymna nitida, Allamanda cathartica, Averrhoa carambola and Maba buxifolia. <u>J. India. Chem. Soc.</u> 56 (1979): 944. <u>Chemical Abstracts</u> 93 (1979): 12983f.

- Trongsakul, S.; Panthong, A.; Kanjanapothi, D. and Taesotikul, T. The anagesic, antipyretic and anti-inflamatory activity of *Diospyros variegata* Kurz. <u>J. Pharmacol</u>. 85 (2003): 221-225.
- Uphof, J. C. Th. <u>Dictionary of Economic Plants</u>. 2nd edn. Verlag von J. Cramer, 1968. pp.182.
- Utsunomiya, N.; Subhadrabandhu, S.; Yonemori, K.; Oshida, Y.; Kanzaki, S.; Nakatsubo, F. and Sugiura, A. *Diospyros* Species in Thailand : their distribution, fruit morphology and uses. <u>Eco. Bot</u>. 54 (1998): 343-351.
- Van Der Vijver L. M. and Gerritsma, K. W. Naphthoquinones of *Euclea* and *Diospyros* species. <u>Phytochemistry</u> 13 (1974): 2322-2323.
- Wachter, G. A.; Valcic, S.; Flagg, M. L.; Franzblau, S. G.; Montenegro, G.; Suarez, E. and Timmermann, B. N. Antitubercular activity of pentacyclick triterpenoids from plants of Argentina and Chilie. Phytomedicine 6(1999): 341-345.
- Waterman, P. G. and Mbi, C. N. The sterols and dimeric naphthoquinones of the barks of three west Africa *Diospyros* species. <u>Planta Med.</u> 37 (1979): 241-246.
- Waterman, P. G., Zhong, S. M., Jeffreys, J. A. D. and Zakaria, M. B. Homologs of juglone with 4-hydroxy-5-methyl-2-oxo-2H-chromen-3-yl substituents from *Diospyros* species. A new class of natural product. <u>J. Chem. Res.</u> (1985): 2.
- Yan, Z.; Kuo, Y. H.; Lee, T. J.; Shih, T. S.; Chen, C. H.; McPhail, D. R.; McPhail, A. T. and Lee, K. H. Cytotoxic component of *Diospyros morrisiana*. <u>Phytochemistry</u> 28 (1989): 1541-1543.
- Yoshihira, K.; Tezuka, M. and Natori, S. Naphthoquinone derivatives from *Diospyros* species : bisisodiospyrin, a tetramerric naphthoqyinone. <u>Tetrahedron Lett</u>. 1 (1970): 7.
- Yoshihira, K.; Tezuka, M.; Kanchanapee, P. and Natori, S. Naphthoquinone derivatives from Ebenaceae. I. Diospyrol and the related naphthoquinones from *Diospyros mollis* Griff.
 <u>Chem. Pharm. Bull</u>. 19 (1971a): 2271-2277.
- Yoshihira, K.; Tezuka, M. and Natori, S. Naphthoquinone derivatives from Ebenaceae. II.
 Isodiospyrin, bisdiospyrin and mamegakinone from *Diospyros lotus* L. and
 D. morrisiana Hance. <u>Chem. Pharm. Bull</u>. 19 (1971b): 2308-2313.
- Yoshihira, K.; Tezuka, M.; Takahasi, C. and Natori, S. Four new naphthoquinone derivatives from *Diospyros* species. <u>Chem. Pharm. Bull</u>. 19 (1971c): 851-854.

- Zafar, R.; Singh, V. and Khan, M. S. Y. Chemical examination of the leaves of *Diospyros montana* Roxb. <u>Indian Drugs</u>. 28 (1991): 432-433.
- Zakaria, M. B.; Jeffreys, J. A. D.; Waterman, P. G. and Zhong, S. M. Naphthoquinones and triterpenes from some asian *Diospyros* species. <u>Phytochemistry</u> 23 (1984): 1481-1484.
- Zheng, G. Cytotoxic terpenoids and flavonoids from *Artemisia annua*. <u>Planta. Med</u>. 60 (1994): 54-57.
- Zhong, S. and Feng, S. Naphthoquinones and a triterpene from the stem of *Diospyros kaki* var. *sylvestris*. <u>Zhongguo Yaoke Daxue Xuebao</u>. 18 (1987): 279-280. <u>Chemical Abstracts</u>. 108 (1988): 109555j.
- Zhong, S. M.; Waterman, P. G. and Jeffreys, J. A. D. Naphthoquinones and triterpenes from some African *Diospyros* Species. <u>Phytochemistry</u> 23 (1984): 1067-1072.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

VITA

Miss Orawan Theanphong was born on July 31, 1975 in Chainat, Thailand. She received her Bachelor of Science in Pharmacy from the Faculty of Pharmacy, Rangsit University, Phathum Thani, Thailand in 1998.

She has been working as an instructor at the Pharmacognosy Group, Faculty of Pharmacy, Rangsit University since 1998.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย