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Chapter 1
Introduction

In many biological systems, ligand-receptor interaction is the heart of

biological responses. Its understanding is fundamental to the study of all life

sciences such as biochemistry, biophysics, and neurobiology. This will help us

explain the nature of the biological signal and the biological outcome. Examples

of ligand-receptor interaction are the detection of pheromones, chemotaxis, the

immune system, and synaptic transmission.

This thesis embodies an analytical treatment of the important biological

interactions using methods from physics and mathematics. The complexity of

biological systems makes analytical modelling difficult, especially in situations

of practical interest. However, physical principles can be applied to model bio-

physical systems if we can approximate them intelligently. This can reduce the

complexity of systems with acceptable losses in accuracy. Our tool is the Feyn-

man path integral [1]. Samathiyakanit [2] has used the Feynman path integration

method to model an electron moving in a completely random system containing

dense and weak scatterers, or equivalently in a Gaussian random potential. In

the mean time, many biophysicists observe the motion of ligands in a completely

random systems which contain a number of receptors in fixed position which is

analogous to Samathiyakanit’s model. Because of this, we apply the Feynman

path integration method to solve the problem of the ligand-receptor interaction.

For the organization of this thesis, we review some important basic ideas

about ligands and receptors in Chapter 2. In Chapter 3, we reviewWiegel’s model

[3] which solves the diffusion equation to get the ligand population for ligands
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moving in random traps. In Chapter 4, we present the Feynman path integration

method approach to calculate the propagator of a ligand in a random potential

and we use this propagator to calculate the probability of finding ligands. Finally,

the discussion and conclusions are presented in Chapter 5.



Chapter 2
The biological aspects:

ligand and receptor

This chapter provides the introduction about ligand and receptor by giv-

ing their definitions. We have to know what they are before we study them. Next,

we present mostly the interaction which can occur between ligand and receptor.

Finally, we give examples of chemoreception.

2.1 The definition of ligand and receptor

The ligand-receptor interaction is very important in biological system

since it has a crucial role in the function of living organisms and is one method that

the cell uses to interact with a variety of molecules. The function of all proteins

is dependent upon their binding to other molecules. In the case of enzymes, these

molecules, or ligands, are then transformed chemically. Many other proteins bind

ligands in order to regulate gene expression or enzymic activity. To understand

this in more detail, we would like to explain what we call "ligand" and "receptor".

We shall generally define the smaller molecular weight partner in the binding

interaction as "ligand". A ligand can be a nucleic acid, polysaccharide, lipid or

even another protein. See Fig. (2.1)

Ligands bind to specific site on larger molecules, called receptors which

is a protein, or a complex consisting of proteins and other biopolymers. The

receptors are embedded usually in the outer membrane of the cell and they must

interact only with appropriate ligands. Most of the receptors have just one bind-

ing site per polypeptide chain. In some cases, there may be more than one binding
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Figure 2.1: A typical cell contains a number of molecules exposed to the environ-
ment and in communication with it. These molecules act as the eyes, ears and
noses of a cell and we show various kinds of ligands [4].

site on the receptor. Two different ligands or two similar ligands may be able to

bind to the receptor at each binding site, such as hemoglobin binding to oxygen.

Any binding of a ligand to a receptor is reversible and binding interactions show

a high degree of specificity for size, shape, charge, and chemical properties. Fig.

(2.2) illustrates some of these concepts.

After they have bound together, this complex acts usually in such a way

that the ligand is rapidly transported through the membrane, which clears the

receptor’s binding site for its next catch. This process of a highly selective in-

teraction of the cell with specific ligand is called "chemoreception." A key fitting

into a lock is a good analogy for a ligand fitting into its binding site on a receptor.

In addition to a precise fit, many keys will fit into a lock but only a few keys are

capable of unlocking that lock. That is the ability of a ligand to bind to the re-

ceptor with high specificity is not enough, by itself, to produce the desired action.
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Figure 2.2: When the numbers on the shapes do not match those on the receptor,
there are shape or chemical compatibility mismatches and the two structures will
not fit together [5].

The ligand also must be capable of stimulating the receptor when it binds with

its receptor. In other words, the ligand must have intrinsic activity. The highly

selective interaction of a cell occurs from noncovalent interactions. The general

principles of ligand-receptor interactions are generally similar to those seen within

the protein. We can classify the interaction as strong (covalent) interaction or

weak (noncovalent) interaction. Noncovalent interaction is of the order of kBT

where kB is the Boltzmann’s constant and T is the absolute temperature. At our

body temperature (310K), the thermal energy is 2.5 × 10−2 eV/particle which

is less than the covalent interaction. The free energy associated with a covalent

interaction is about 100−150 kBT . In general, the common interaction occurring

in the ligand receptor interaction is the noncovalent interaction [6,7].
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2.2 Noncovalent interactions

There are many kinds of noncovalent interactions such as electrostatic

interactions, Van der Waals interactions, hydrogen bonds, and hydrophobic in-

teractions. Their names are derived from the condition in which the electrostatic

forces are exerted on the molecules. Noncovalent interactions are important in

the flexibility of macromolecules and they can interact reversibly.

2.2.1 Electrostatic Interactions

Molecules are collections of electrically charged particles. When two

oppositely charged groups come into close proximity, they are attached to one

another through a coulombic attractive force that is described by

F =
q1q2

r2D
(2.1)

where q1 and q2 are electric charges that are separated be the distance r and D is

the dielectric constant of the medium in which the charges are immersed. Since

D appears in the denominator, the attractive force is greatest in low dielectric

solvents. Hence electrostatic forces are stronger in the hydrophobic interior of a

protein than at the solvent-exposed surface. These attractive interactions referred

to as ionic bonds, salt bridges, and ion pairs. If two atoms, oppositely charged

or not, approach each other too closely, a repulsive force between the outer shell

electrons on each atom will come into play.

2.2.2 Van der Waals Forces

The noncovalent associations between electrically neutral molecules are

collectively known as "Van der Waals forces". They occur between ones where
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Figure 2.3: The Van der Waals energy for carbon-carbon interactions calculated
as a Lennard-Jones 6,12 potential. The interaction energy is plotted as a function
of distance between two atom centers. Note that the folding free energy is only
between 15 to 50 kJ/mol for typical proteins - corresponding to a handful of
optimal interactions, or a single close approach to 3 Å [8].

one or both molecules do not have a permanent dipole such as dipole-induced

dipole interaction, and induced dipole-induced dipole interaction. A permanent

dipole can be established by the symmetry of the distribution of the electron cloud

around the positively charged nuclei. When atoms are close enough together,

this symmetry of one atom can influence the electron distribution of neighboring

atoms. Van der Waals forces may be attractive or repulsive, depending on the

distance between the atoms involved. The attractive force between electron clouds

increases as the two atoms approach each other but is counterbalanced by a

repulsive force at a critical distance known as the Van der Waals contact distance

Fig. (2.3).

A commonly used analytical form that lumps together all dipole-dipole
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Atom Radius(Å)
H 1.2
C 2.0
N 1.5
O 1.4
S 1.9
P 1.9

Table 2.1: Van der Waals radii for atoms in proteins

interactions and includes both the attractive and the repulsive terms is the

Lennard-Jones potential where the repulsive term is approximated as having a

1
r12dependence:

U(r) = U0
r0

r

12

− 2U0
r0

r

6

(2.2)

This form of the potential energy function has a minimum at r = r0 with U(r0) =

−U0.

Van der Waals bonds and surfaces can play an important role in estab-

lishing the specificity of interaction between ligand and receptor because of the

differences in radii and the interplay between repulsive and attractive forces. See

Table 2.1.

2.2.3 Hydrogen bonding

Hydrogen bond (H bond) forms when a hydrogen atom interacts with

two electronegative atoms, called a proton donor group D___H and a proton ac-

ceptor atom A: D___H· · ·A. D___H is strongly polar, which means that electron
density is primarily around the electronegative atom (examples, F___H, O___H,

N___H, S___H in order of decreasing polarity). The acceptor atom A is also

strongly electronegative and sometimes H· · ·A can be as strong as D___H. The
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Bond Type Typical Length(Å)
O___H· · ·O 2.70
O___H· · ·O− 2.63
O___H· · ·N 2.88
N___H· · ·O 3.04
N+___H· · ·O 2.93
N___H· · ·N 3.10

Table 2.2: Hydrogen bond lengths for H bonds found in proteins

hydrogen bond is strongest when the three atoms D, H, and A have a collinear

geometry.

In biological systems, ligand and receptor can both be the highly elec-

tronegative nitrogen (N), oxygen (O), or sometimes sulfur (S) atom. Hydrogen

bonds, which have bond energy between 2.5 and 8 kcal/mol, are weaker than

covalent bonds. A distance is normally in the range 2.7 to 3.1 Å. See Table

2.2. Clearly, hydrogen bonding (Fig.(2.4))has a major influence on the structures

of proteins and also contributes the binding energy of ligand to active sites on

receptor.

2.2.4 Hydrophobic Interactions

When nonpolar molecules enter a polar solvent such as water, they co-

alesce into droplets in order to decrease their contact with water and prefer to

cluster around each other. See Fig.(2.5). Hydrophobic interaction involves a

number of water molecules which is different from other interactions that involve

pairwise interactions between atoms and molecules. This process results from the

solvent properties of water, not from the relatively weak attraction between the

associating nonpolar molecules. Nonpolar molecules, such as hydrocarbons, are

insoluble in water and are not good acceptors of the hydrogen bond. Therefore,
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Figure 2.4: The hydrogen bond is weak attraction between an electronegative
atom in one molecule and a hydrogen atom in other molecule. The hydrogen
bonds between water molecules are represented by short parallel lines[9].

they will disrupt the hydrogen bonding network of water. The water molecules

reorganize around the solute and attempt to form a cagelike structure in order to

gain back the broken hydrogen bonds. This results in a loss in the configurational

entropy of water and an increase in the free energy G. That is why nonpolar mole-

cules try to cluster around each other for larger entropy, leading to a decrease in

the free energy at equilibrium.

Hydrophobic interactions are found in the core of the folded protein mole-

cules, where they are shielded from the polar solvent. Likewise, in the active sites

of receptors, hydrophobic regions of the proteins tend to stabilize the binding of

hydrophobic molecules.
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Figure 2.5: Hydrophobic interactions between water and nonpolar molecules. It
looks like the oil molecules (circle particles), are avoiding the water (arrow) [10].

2.3 Examples of chemoreception

Multicellular organisms, especially the higher animals, are stimulated

by the environment through the sensory system or through chemoreception. In

this section, we will list several examples [1] of chemoreception and follow the

historical development of the various attempts at theoretical modelling

2.3.1 Detecting of pheromones

A pheromone is a substance which is secreted to the environment by an

organism and perceived by a second organism of the same species which changes

its behavior consequently. "Bombykol" is a kind of sex attractive pheromone

which is released into the air by the female silkworm moth Bombyx mori. In this

case, Bombykol molecule is the ligand and a sensory cell in the antennae system of

the male of this species detecting this ligand is receptor. This system was modeled

theoretically by Adam and Delbrück[11]. They calculate the number of ligands

which are absorbed by the detecting cell per unit of time. They recognize that
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chemoreception might occur in steps in which geometrical objects of decreasing

dimensionality play a role. Because of roughly cylindical shape of the sensory cell

in Bombyx mori, Murray [12] use a cylindrical geometry rather than the spherical

geometry.

2.3.2 Chemotaxis

Chemotaxis is the phenomenon which most unicellular microorganisms

will move towards certain chemicals and away from others. Chemotaxis has been

studied mostly in the bacteria Escherichia coli and Salmonella typhimurium [13,

14]. These bacteria perform a three-dimensional random walk[15]. Berg and

Purcell [16] developed the theory to describe the rate of capture of ligands by a

large number of receptors which are distributed uniformly over the cell membrane.

2.3.3 The immune system

All organisms are continually subject to attack by other organisms. In

response to predators, animals have developed the variety of defensive strategies.

The important strategy is the immune system. The immune response is triggered

by the presence of foreign macromolecules, virus, cell, tissue, nucleic acid and

carbohydrates, known as "antigens". The receptors are antibody molecules em-

bedded in the outer membrane of certain cells of the immune system. The total

weight of all the cells which together form the immune system is roughly 5% of

the total weight of body. The immune system is remarkable in many respects.

It can distinguish "itself" from "foreign" with a very high accuracy, memorize

the previous infections, and react more appropriately in the next infections. The

interested reader in the theoretical work is referred to monographs by Delisi [17],

and by Perelson, Delisi and Wiegel [18].
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2.3.4 Synaptic transmission

The nerve cell releases the specific substance known as a neurotransmit-

ter to other cell by passing the junctions, synapses. This process, synaptic trans-

mission, involves four stages. First, the signal travels down to presynaptic axon

and reaches the presynaptic knob. If the threshold action potential is reached,

the neurotransmitter is recreated by the presynaptic cell. Second, the molecules

of neurotransmitter diffuse across the cleft and binds to their corresponding re-

ceptors on the postsynaptic membrane. Third, neurotransmitter binding induces

a change in the biochemical properties of the post synaptic membrane in such a

way that this membrane becomes selectively permeable to certain ions. Last, the

influx of these ions causes a change in the difference of the electrical potential

between the outside and the inside of the postsynaptic neuron. When this differ-

ence exceeds a threshold, a new signal originates in the vicinity of postsynaptic

membrane and travels down to postsynaptic axon. The second step involves the

basis event of chemoreception and ligands are the neurotransmitters. There are

various neurotransmitters such as acetylcholine, glutamic acid and others.

2.3.5 Vision

In the case of vision, the ligand is the photon, a quantum mechanical

particle. Chemoreception for vision can be found in most living organisms such

as vertebrate animals, plants, some algae, some bacteria and also the clusters of

cells found on the surface of worms and molluscs. Some bacteria have a light-

sensitive receptors in their outer membrane which they use to orient themselves

with respect to the sun. It is believed that this sensitivity to light appeared in

the primitive life-forms on Earth about 3.7× 109 years ago.
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Figure 2.6: The transmission of nerve impluses across a synaptic cleft whose width
mostly is more than 200 Å. The neurotransmitter such as Acetylcholine, Ach, is
sequestered in 400 Å-diameter synaptic vescicles, which contain ∼ 104molecules
each [9].

These are only some important examples which show the idea how we

can use physics to explain biological systems.



Chapter 3
Ligand with randomly distributed traps

In this chapter, we review Wiegel’s method [3] which is used to explain a

ligand captured by a system of many receptors. His model is a rough calculation

but it provides useful guidelines for the further work. Generally, ligands can

move from a cell to another cell by means of Brownian motion, hydrodynamic

convection, electromagnetic fields, and other processes. These cells have the

properties as in Table (3.1). These cells monitor certain molecules, ligands, which

are in their vicinity and capture them by means of receptors, or traps

3.1 The coarse-grained description of a system
of absorbing traps

In the tissues of a living organism, the cells involved with chemoreception will

occur in great numbers. Therefore, we can consider chemoreception in the way

that it consists of identical receptors. Next, we call receptors as traps. These

traps are distributed in space with number density m (r, t). Wiegel treats this

problem simply by considering the distance between cells which is larger than the

Property Value
1. Shape sphere
2. Radius 5 µm
3. Volume 5.24× 10−16 m3

4. Density 1.03× 103 kgm−3

5. Mass 5.40× 10−13 kg

Table 3.1: Average values of cell properties.



16

size of cells. Therefore

mR3 1 (3.1)

with spherical cells of radius R. He can set the differential equation by considering

the following equation.
∂C

∂t
= −−→ · J (3.2)

where C is the coarse-grained concentration and J is the total ligand current. If

there are the external force F and the fluid flow field, J will be consists of three

terms.

J = −DT−→C + C

fT
F+Cv + JN (3.3)

where DT is diffusion coefficient (DT = kBT
6πηa

where kB is Boltzmann’s constant, T

is the absolute temperature, η is viscosity of fluid, and a is the radius of spherical

ligand), fT is the friction coefficient of a ligand, v is the velocity of the fluid flow

field and JN is the ligand current assimilated by the perfectly absorbing cell . For

the case of no external force and fluid flow field, we obtain

J = −DT−→C + JN (3.4)

Consider the term of JN ;

∂CN
∂t

= −−→ · JN (3.5)

For spherical case, Eq.(3.5) can be rewritten as

∂CN
∂t

= DT
∂2CN
∂r2

+
2

r

∂CN
∂r

(3.6)

In stationary state, ∂CN

∂t
= 0. Now we have

1

r2

d

dr
r2dCN
dr

= 0 (3.7)
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Hence

r2dCN
dr

= A

dCN
dr

=
A

r2
(3.8)

where A is a constant. We use the fact that the ligand current should be the

same through surface around the cell. Then we get

DT
dCN
dr

4πr2 = JN (3.9)

Substitute Eq.(3.8) into Eq.(3.9). This give

A =
JN
4πDT

(3.10)

The general solution of Eq.(3.8) at r = R is

CN(R) = CN(∞)− A
∞

R

1

ρ2
dρ

= CN(∞)− A
R

(3.11)

Use the condition that s << R where s is the binding site. We have

DT
dCN
dR

= αvDTsCN(R)

dCN
dR

= αvsCN(R) (3.12)

where α is a constant and v is the number of binding sites per unit area. Substitute

Eq.(3.11) into Eq.(3.12).

A =
αR2vsCN(∞)
1 + αRvs

(3.13)

Therefore

JN =
4πDTαR

2vsCN (∞)
1 + αRvs

= 4πRDTCN(∞)β (3.14)
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where β = Ns
πR+Ns

. Substitute this equation into Eq.(3.4) and use the boundary

condition c(R) = 0. We have

∂C

∂t
= DT C − 4πRDTβmC (3.15)

where is the Laplacian operator and β depends on the model (β = 1 for a

perfectly absorbing cell). The diffusion coefficient and R is the radius of receptor.

From Eq.(3.15), the distribution of ligands can be solved under the approximate

initial and boundary condition. Here we consider only one dimension and assume

that m is constant m0 through out the tissue.

3.1.1 In the case of stationary state of ligand

Eq.(3.15) becomes
d2C

dx2
= 4πRβm0C (3.16)

and its solution is

C (x) = C (0) exp −x 4πRβm0 (3.17)

where C(0) is the concentration of ligands at the position x = 0. Then C (x)

is independent on the diffusion coefficient. Ligands penetrate the tissue over a

distance of the order of magnitude (4πRβm0)
−1/2.

3.1.2 In the case of uniform ligand

Eq.(3.15) becomes
dC

dt
= −4πRDTβm0C (3.18)

Its solution is

C (t) = C (0) exp (−4πRDTβm0t) (3.19)

where C (0) is the concentration of ligands at time t = 0. Eq.(3.19) interprets

that ligands decay on a time scale of the order magnitude (4πRDTβm0)
−1.



19

3.2 Examples of time-dependent problems

The study of ligand populations is popular in biophysical and biochemical ex-

periments. One observes the decay of ligand population captured by a system of

traps in different dimension as the following:

3.2.1 In one-dimensional system

One observed the time dependence of the number of bound repressor

molecules. A number of repressor diffuses along a single DNA molecule which is

followed by their binding to the corresponding operators.

3.2.2 In two-dimensional system

A population of membrane proteins is captured by a system of traps.

These traps are fixed randomly in the membrane. The membrane protein can

diffuse laterally in this membrane and be captured when it hits the trap.

3.2.3 In three-dimensional system

One observed the population of antigens is reduced by binding to macrophages

a type of white blood cell that ingest and, if possible, destroy a variety of foreign

substances. The examples of antigens are foreign macromolecules, proteins, car-

bohydrates, and nuclei acids. These antigens trigger the immune response which

leads to the destruction of offending cells.

In many experimental aspects, the decay of ligand population is assumed

that the total number N (t) of free ligands will decay as a "pure" exponential

function of the form

N (t) ∼= N0 exp − t
τ 0

(3.20)
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at the long-time behavior of the decay where N0 is a dimensionless constant and

τ0 is a relaxation time. The decay form of Eq.(3.20) is granted by most authors.

But it is argued that it might be another form, stretch exponential form [19,20,21].

Donsker and Varadhan [20] presented the mathematical model of Brownian mo-

tion between random traps. They proved that the exponent is proportional to

td/(d+2) in d dimensions. Grassberger and Procacica [21] also investigate the long

time behavior of particle moving in the randomly distributed traps. They found

that the particle population decays slower than any exponential. This is the effect

of the existence of large trap-free regions. They also can prove that the ligand

population has the form

N(t) ∼ exp(−c td/(d+2)) (3.21)

where c is a constant and d is the dimension of system. We will show how they

can get this form in three dimension system.

3.3 Fractional exponential decay

The system consists of M traps in volume V . The traps are assumed to be

perfectly absorbing spheres of radius a and completely random. At the initial

time t = 0, the number of ligands N (0) distributed uniformly throughout V .

There are some regions where have no traps at all, called "holes". These holes

have various shapes and sizes, see Fig.(3.1)

In order to calculate the probability H (s) ds to find a hole in volume V ,

the Boltzmann factor exp (−E/kBT ) is used with E the amount of work needed
to create a hole. From thermodynamics,

E = Pv (3.22)
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Figure 3.1: A system in volume V consisting of a number of randomly distributed
traps, radius a, and holes which have an average radius s.

where P = M
V
kBT and v is the volume of spherical hole, 4πs3

3
. Thus the total

number H (s) ds of holes with radius between s and s+ ds is

H (s) = H0
4πM

V
s3 exp −4πM

3V
s3 (3.23)

where the specific value of H0 depends on the precise definition of a hole.

3.3.1 Decay of ligand concentration

For t = 0, the ligand concentration is constant c0 inside a hole of radius s, and

vanishes outside the hole since ligands are surrounding by traps at density m.

For t > 0, the ligand concentration is denoted by c (r, t) and we use the

spherical coordinates to solve the diffusion equation

∂c

∂t
= DT∆c for 0 < r < s (3.24)

∂c

∂t
= DT∆c− 4πaDTmc for r > s (3.25)

where a is βR as defined in the Eq.(3.15)
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The general solution of diffusion equation has the form of an eigenfunction

expansion. If the hole is large enough to be the ground state, the long-time

behavior of solution is

c (r, t) ∼= d0ψ0 (r) exp (−λ0t) for t
1

λ0
(3.26)

with d0 is a constant, ψ0 denotes the ground state and λ0 is the eigenvalue. Thus,

the ligand population N (s, t) becomes

N (s, t) ∼= N0 (s) exp [−λ0 (s) t] for t
1

λ0
(3.27)

where

N0 (s) ∼= 4πd0

∞

0

ψ0 (r) r
2dr (3.28)

Calculating the ground state eigenvalue by substituting Eq.(3.26) into (3.24) and

(3.25), the result is

DT
d2

dr2
+
2

r

d

dr
ψ0 + λ0ψ0 = 0 for 0 < r < s (3.29)

DT
d2

dr2
+
2

r

d

dr
ψ0 − (4πamDT − λ0)ψ0 = 0 for r > s (3.30)

Note: this problem is similar to the mathematical problem of finite spherical

quantum well.

Now we replace

ψ0 =
ψ

r
(3.31)

to Eq.(3.29) and Eq.(3.30), gives

d2ψ

dr2
+

λ0

DT
ψ = 0 for 0 < r < s (3.32)

d2ψ

dr2
− 4πam− λ0

DT
ψ = 0 for r > s (3.33)

with the boundary condition as
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r = 0 ⇒ ψ/r is required to be finite,

Hence

ψ (r) = A sin
λ0

DT
r for0 < r < s (3.34)

r→∞ ⇒ ψ/r is close to zero

Hence

ψ (r) = B exp − 4πam− λ0

DT
· r for r > s (3.35)

r = s ⇒ ψ and d
dr
ψ must be continuous

These give

A sin
λ0

DT
s = B exp − 4πam− λ0

DT
· s (3.36)

and

A
λ0

DT
cos

λ0

DT
s = −B 4πam− λ0

DT
exp − 4πam− λ0

DT
· s (3.37)

dividing Eq.(3.37) by Eq.(3.36) and changing variable λ0

DT
s to k, we obtain

k cot k = −
√
4πams2 − k2 (3.38)

Plotting both sides of this equation as the function of k. See Fig. (3.2). We get

the lowest bound state which is

k ∼= π for ams2 π

16
(3.39)

inserting k into

λ0 =
k2

s2
DT ∼= π2

s2
DT (3.40)
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Figure 3.2: Plot f(k) versus k where the solid line is k cot k and the dashed line
is −√4πams2 − k2.

Now we consider all ligands being in holes at time t = 0 with radii

s > s0 ≡ π

16am
(3.41)

therefore, the ligand population is

N (s, t) ∼= 4

3
πs3c0 exp −π

2DT t

s2
(3.42)

and in the holes large enough to have a bound state. This population consists of

ligands

Nh (t) =

∞

s0

N (s, t)H (s) ds (3.43)

Replacing Eq.(3.23) into Eq.(3.43), we have

Nh (t) ∼= 1

3
(4π)2 c0mH0

∞

s0

s5 exp −4π
3
ms3 − π2t

DT
s2

ds (3.44)

We change the integration variable to

x = t−1/5s0 (3.45)
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then, we get

Nh (t) ∼= 16

3
π2c0mH0t

6/5

∞

s0t−1/5

x5 exp −t3/5f (x) dx (3.46)

where

f (x) =
4π

3
mx3 + π2DTx

−2 (3.47)

For t→∞, we can approximate Eq.(3.46) by using the steepest descent method.
Find the minimum point

df (x)

dt x0

= 4πmx2
0 − 2π2DTx

−3
0 = 0 (3.48)

x5
0 =

πDT
2m

(3.49)

x0 =
πDT
2m

1/5

(3.50)

We expand f (x) in Taylor’s series by keeping only up to second term and f (x) =

0

f (x) = f (x0) +
f (x0) (x− x0)

2

2!
(3.51)

where f (x0) =
10
3
πm πDT

2m

3/5

d2f (x)

dx2
= 8πmx+ 6π2DTx

−4

d2f (x)

dx2
x0

= 20πm
πDT
2m

1/5

(3.52)
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Substituting Eq.(3.51) into Eq.(3.46)

Nh (t) ∼= 16

3
π2c0mH0t

6/5 πDT
2m

∞

0

exp −t3/5 10

3
πm

DTπ

2m

3/5

+10πm
DTπ

2m

1/5

(x− x0)
2 dx

=
16

3
π2c0mH0t

6/5πDT exp −t3/5 10

3
πm

DTπ

2m

3/5

×
∞

0

exp −t3/510πm DTπ

2m

1/5

(x− x0)
2 dx

= α c0H0m
−2/5D

9/10
T t9/10 exp −β m2/5D

3/5
T t3/5 (3.53)

where

α =
8

3
· 2−5/2 · 5−1/2π29/30 (3.54)

β =
10

3
· 2−3/5π8/5 (3.55)

Since

Nh (t) ≈ N0t
9/10 exp −t3/5 (3.56)

for a three dimensional system. The ligand population decays slower than the

pure exponential function. See Fig. (3.3)
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Figure 3.3: Plot of the ligand population as function exp(−tn) versus the time t
for ligands moving in the randomly distribution traps.

















































Chapter 5
Disscussion and Conclusion

The problem of a particle moving in randomly distributed traps has been

studied in both its theoretical and experimental aspects. Most experimental re-

searchers find the population of substances such as protein and antigen and they

know the behavior of the molecules in the biological system. In the mean time,

the theoretical researchers try to explain these problems by using different mod-

els. Most models come from the diffusion equations which describe the problem

classically. Here we tried to find the probability of finding ligand in the sys-

tem containing randomly distributed traps by using the Feynman path integral

method.

Firstly, we gave an introduction about ligand and receptor. This showed

how to apply our model with a simple system. Secondly, we reviewed one of the

diffusion equation methods (Wiegel’s model) to find the population of ligand at

large times. This model assumes that ligands must be in the hold (the region

without traps) at time t = 0 and then they will diffuse to neighboring regions at

later times. When they collide with the traps, they will be trapped immediately.

From this model, we know that ligands decay according to a fractional exponential

function and this is the result for the existence of a large hole, unlike the system

having regularly distributed traps. The population in the latter system will decay

exponentially. However, many experimental researchers assume that all systems

will behave as the latter system.

Next, we used the analogous relation between Schrödinger equation and

diffusion equation and applied the Feynman Path Integral method to find the
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population of ligands at large times. We assume that the ligands are identical.

Therefore, we can study only one ligand in this simple model. In addition, we use

the Gaussian random potential to model the real interactions of the system. In

addition to Samathiyakanit’s trial action, we obtain the average propagator for

our system. This propagator, G(x1,x2; t),means the probability amplitude of the

electron moving in randomly distributed traps. In this problem, we have to change

some parameters in the propagator in order to get the probability of finding

ligands at position x, P (x,x; s),for the diffusion equation. These parameters

came from the analogous equations. At limit ν << 1, the probability depends

on the function, s−2 and at the limit ν >> 1, the probability depends on the

exponential function, exp(−sm) which has the exponent m = 2. The last limit

has the same form of decay as Wiegel [3] but it decays faster than his model. At

limit ν << 1, the correlation length, L, is short. This shows that it has the short

range potential. It decreases slower than the case which ν >> 1. Therefore we

can describe that ligands moving in the short range random potential have the

probability to avoid capture by the traps more than the case of long correlation

length,ν >> 1. It has a longer time to stay in the system without trapping.
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The graph shows the relation between the probability of finding ligand,

P (x,x, s), versus time, s where the solid line is exp(−s2) and the dotted line is

s−2.

I have suggestion for the future work. This model can be improved later by

changing the interaction to the real one. It depends on the kind of interaction

force. Besides, it might be better if we try to use other trial actions. Then

we may get the full propagator. In fact, this problem involves both quantum

mechanics and statistical mechanics so that it may be explained by using the

quantum-statistical method.
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Appendices 



Appendix A:
Find correlation function

We define the correlation function W (x (τ )− x (σ)) as

W (x (τ)− x (σ)) = dR v (x (τ)−R) v (x (σ)−R) (A.1)

where the interaction, v (x (σ)−R), is the Gaussian potential of the following

form :

v (x (τ)−R) = u πl2
−3/2

dR exp − |x (τ )−R|2
l2

(A.2)

Thus we can write

W (x (τ )− x (σ)) = u2 πl2
−3

dR exp
− |x (τ)−R|2 − |x (σ)−R|2

l2

= u2 πl2
−3

exp
− |x (τ)|2 − |x (σ)|2

l2

× dR exp
2R · x (τ ) + 2R · x (σ)− 2R ·R

l2
(A.3)

considering the integral term

2π

0

dφ

π

0

dθ sin θ

∞

0

dR R2 exp
2R (x (τ) + x (σ)−R)

l2

=

2π

0

dφ

∞

0

dR R2 exp
−2R2

l2

π

0

dθ sin θ exp
2 |R| |x (τ) + x (σ)| cos θ

l2

=
πl2

|x (τ ) + x (σ)|

∞

0

dR R exp
−2R2

l2

⎧⎨⎩ exp 2|R||x(τ)+x(σ)|
l2

− exp −2|R||x(τ)+x(σ)|
l2

⎫⎬⎭
=

πl2

|x (τ ) + x (σ)|

∞

−∞
dR R exp

−2R2

l2
+

2R

l2
|x (τ) + x (σ)| (A.4)
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Let

y =
2R2

l2
− 2R

l2
|x (τ ) + x (σ)|

dy =
4R

l2
dR− 2

l2
|x (τ) + x (σ)| dR

RdR =
l2

4
dy +

1

2
|x (τ ) + x (σ)| dR (A.5)

Therefore, we obtain

∞

−∞

dR R exp
−2R2

l2
+

2R

l2
|x (τ ) + x (σ)|

=

∞

−∞

exp [−u]
l2

4
dy +

∞

−∞

dR
1

2
|x (τ) + x (σ)| exp

−2R2

l2
+

2R

l2
|x (τ ) + x (σ)|

=
|x (τ ) + x (σ)|

2
exp

|x (τ) + x (σ)|2
2l2

πl2

2
(A.6)

substituting Eq.(A.6) into Eq. (A.3), then we get

W (x (τ )− x (σ)) =
u2

(πL2)3/2
exp − |x (τ ) + x (σ)|2

L2
(A.7)

where L2 = 2l2



Appendix B:

Fourier Transform of W(x(τ)-x(σ))

We consider the fourier transform of

W (x (τ )− x (σ)) = u2 πL2 − 3
2 exp

|x (τ)− x (σ)|2
L2

(B.1)

and we rewrite it as

W (r) = u2 πL2 − 3
2 exp

r2

L2
(B.2)

where r is (x (τ )− x (σ)). Hence

W (k) =
1

(2π)
3
2

u2

(πL2)
3
2

∞

−∞
W (r) exp (−ik.r) dr

=
2πu2

(2π2L2)
3
2

∞

0

dr r2W (r) exp − r
2

L2

π

0

dθ sin θ exp (−ikr cos θ)

=
2πu2

(2π2L2)
3
2

∞

0

dr r exp − r
2

L2

exp (−ikr)− exp (ikr)

−ik (B.3)

Considering the integral term

∞

0

drr exp − r
2

L2
− ikr =

∞

0

dr r exp − 1

L
r +

ikL2

2

2

− k
2L2

4
dr

(B.4)

giving

y = r +
ikL2

2

1

L
(B.5)

and dr = Ldy. Thus we obtain

∞

0

dyL Ly − ikL
2

2
exp −y2 − k

2L2

4

= L exp −k
2L2

4

∞

0

Lye−y
2 − ikL

2

2
e−y

2

dy

= exp −k
2L2

4

L2

2
− ikL

3
√
π

4
(B.6)
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and

∞

0

dr r exp − r
2

L2
+ ikr = exp −k

2L2

4

L2

2
+
ikL3
√
π

4
(B.7)

If we change variable r to −r, we will get

−∞

0

dr (−r) exp − r
2

L2
− ikr =

0

−∞
dr r exp − r

2

L2
− ikr

= exp −k
2L2

4

L2

2
+
ikL3
√
π

4
(B.8)

We combine Eq.(B.6) and Eq. (B.8). Then we have

W (k) =
u2

(2π)
3
2

exp −k
2L2

4
(B.9)



Appendix C:
Cumulant Expansion

We approximate exp [ik· (x (τ)− x (σ))] S0(ω) by using cumulant expan-

sion,

exp [a] = exp a +
1

2!
a2 − a 2 +

1

3!
[...] + ... (C.1)

Considering only up to the second order, we therefore have

exp [ik· (x (τ)− x (σ))] = exp ik· (x (τ)− x (σ)) +
1

2!
(ik· (x (τ )− x (σ)))2

− (ik· (x (τ )− x (σ))) 2 (C.2)

We seperate (C.2) into 3 terms and consider firstly in the first term

a1 = ik· (x (τ )− x (σ)) = ik· (x (τ )− x (σ)) (C.3)

and

(ik· (x (τ)− x (σ)))2 = −k2

3
(x (τ )− x (σ))2

−2kxky (xx (τ )− xx (σ)) (xy (τ)− xy (σ))

−2kxkz (xx (τ )− xx (σ)) (xz (τ)− xz (σ))

−2kykz (xy (τ )− xy (σ)) (xz (τ )− xz (σ)) (C.4)

and the last term is

(ik· (x (τ)− x (σ))) 2 = −k2 x (τ)− x (σ) 2

+2kxky xx (τ )− xx (σ) xy (τ)− xy (σ)

+2kxkz xx (τ )− xx (σ) xz (τ )− xz (σ)

+2kykz xy (τ)− xy (σ) xz (τ)− xz (σ) (C.5)
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From (C.3) and (C.4), we give

Cx = xx (τ)− xx (σ) (C.6)

Cy = xy (τ)− xy (σ) (C.7)

CZ = xz (τ )− xz (σ) (C.8)

Therefore, we have

(ik· (x (τ )− x (σ)))2 − (ik· (x (τ )− x (σ))) 2

= −k2

3
(x (τ )− x (σ))2 + k2 x (τ)− x (σ) 2 − 2kxky [ CxCy − Cx Cy ]

−2kxkz [ CxCz − Cx Cz ]− 2kykz [ CyCz − Cy Cz ]

= −k2

3
(x (τ )− x (σ))2 + k2 x (τ)− x (σ) 2 (C.9a)

where

CxCy = CxCz = CyCz = 0 (C.10)

See Feynman and Hibbs (p.178)[1]. Hence we have

a2 = −1

2
k2 1

3
(x (τ)− x (σ))2 − x (τ )− x (σ) 2 (C.11)



Appendix D:
Find trial action

In this appendix, we find Sf0,cl and S0,cl which are used to evaluate x(τ) S(0)

and x(τ )x(σ) S0(ω) . In order to obtain Sf0,cl and S0,cl, we have to find the classical

path by working a variation on Sf0 (ω)

Sf0 (ω) =

t

0

dτ L (ẋ (τ ) ,x (τ) , t) +

t

0

f (τ ) · x (τ) dτ

=

t

0

dτ

⎡⎣m
2

ẋ2 (τ)− m
2

ω2

2t

t

0

dσ |x (τ)− x (σ)|2 + f (τ ) · x (τ )
⎤⎦

(D.1)

At the extremum point,

δSf0 (ω) =

t

0

dτ [mẋ (τ) δẋ (τ) + f (τ ) · δx (τ )

−mω2

2t

t

0

dσ (x (τ )− x (σ)) · δ (x (τ )− x (σ))

⎤⎦ (D.2)

where δẋ (τ ) = δ dx(τ)
dt

= dδx(τ)
dt

and δx (t) = δx (0) = 0. Thus

δSf0 (ω) = −
t

0

dτ

⎡⎣mẍ (τ ) +
mω2

t

t

0

dσ (x (τ )− x (σ))− f (τ)

⎤⎦ · δx (τ ) = 0
(D.3)

Therefore, we can obtain a classical equation

ẍc (τ ) + ω2xc (τ) =
ω2

t

t

0

dσxc (σ) +
f (τ )

m
(D.4)
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and we can solve Eq.(D.4) by using the Green function

g (τ , σ) = − 1

ω sinωt
[sinω (t− z) sinωσ Θ (τ − σ) + sinω (t− σ) sinωτ Θ (σ − τ )]

(D.5)

where Θ is the Heaviside step function and we use the boundary condition x (0) =

x1and x (t) = x2. From Eq.(D.4), we use Eq.(D.5) and get

xc (τ) = xh (τ) +

t

0

⎡⎣ω2

t

t

0

dσ xc (σ ) +
f (σ )

m

⎤⎦ g (τ , σ) dσ (D.6)

where xh (τ) is the homogenous solution of Eq.(D.4). Integrating both sides of

Eq.(D.6) and adding the same term together, we obtain

t

0

dσxc (τ) =
1

1− ω2

t

t

0

dτ
t

0

dσg (τ , σ)

⎡⎣ t

0

xh (τ ) dτ +

t

0

dσ

t

0

dτ
f (σ)

m
g (τ , σ)

⎤⎦ (D.7)

=
t

2 sinωt/2

⎡⎣(x1 + x2) sin
ωt

2
+

2

mω

t

0

f (σ) sin
ωσ

2
sin

ω (σ − τ)

2
dσ

⎤⎦
(D.8)

and

t

0

dσ

t

0

dτ
f (σ)

m
g (τ , σ) =

2

mω2 cosωt/2

t

0

dσf (σ) sin
ωσ

2
sin

ω (σ − τ )

2
(D.9)

Substituting Eq.(D.8) and Eq.(D.9) into Eq.(D.6), we have

xc (τ) =
1

sinωt
(x2 sinωτ + x1 sinω (t− τ))− 2

sinωt
sin

ωτ

2
sin

ω (t− τ )

2

×
⎡⎣(x2 + x1) sin

ωt

2
− 2

mω

t

0

dσf (σ) sin
ωσ

2
sin

ω (τ − σ)

2

⎤⎦
+

t

0

f (σ)

m
g (σ, τ ) dσ (D.10)
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The forced classical trial action Sfs,cl (x2,x1; t,ω) is obtained by substituting Eq.(D.10)

into the expression

Sf0,cl (x2,x1; t,ω) = S0,cl (x2,x1; t,ω) +

t

0

dτ f (τ)xc (τ ) (D.11)

which we have

Sf0,cl (x2,x1; t,ω) =
m

2

⎡⎣ t

0

dτ ẋ2
c (τ )−

ω2

2t

t

0

dτ

t

0

dσ |x (τ )− x (σ)|2

+

t

0

dτ f (τ)xc (τ )

⎤⎦
=

m

2
[ẋc (τ )xc (τ)− ẋc (0)xc (0)] + +

1

2

t

0

dτ f (τ)xc (τ )

(D.12)

Thus, we get

Sf0,cl (x2,x1; t,ω) =
mω

4
cot

ωt

2
|x2 − x1|2

+
mω

2 sinωt

⎡⎣2x2

mω

t

0

dτ f (τ) sinωτ − 2 sin ωt
2
sin

ω

2
(t− τ) sin

ωτ

2

+
2x1

mω

t

0

dτ f (τ ) sinω (t− τ )− 2 sin ωt
2
sin

ω

2
(t− τ ) sin

ωτ

2

− 2

m2ω2

t

0

dτ

t

0

dσf (τ) f (σ) {sinω (t− τ ) sinωσ

−4 sin ω
2
(t− τ) sin

ωτ

2
sin

ω

2
(t− σ) sin

ωσ

2
(D.13)

By means of Eq.(D.11), the classical trial action S0,cl can be obtained if we set

f (τ) equals zero. Hence, we find

S0,cl (x2,x1; t,ω) =
1

2
mω cot

ωt

2
|x2 − x1|2 (D.14)
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