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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

Throughout, let N,Q",Q,R" and R, respectively, denote the set of positive
integers, the set of positive rational numbers, the set of rational numbers, the set
of positive real numbers and the set of real numbers. Also, let Qf = Q* U {0}.

Let S be a semigroup where the binary operation is denoted by +. If for any
element x of S and for any positive integer n, there is an element y of S such that
x=ny=y+---+y (n times), then S is said to be divisible. For example, the
additive semigroup of all positive rational numbers and the additive semigroup of
all positive real numbers are divisible semigroups. An element e of S is called an
idempotent if 2e = e. If every element of S is an idempotent, then S is a band.
A semigroup S is called power cancellative if for z,y € S and n € N,nzx = ny
implies that = = y.

If a is an element of S, then < a > = {a,2a,3a,...} is the monogenic
subsemigroup-of .S generated by-a. The order of a-is-defined to be the order of
< a >. If S has the property that S = < a > for some a € S, then we say that S

is monogenic.

Theorem 1.1. ([6],J.M.Howie) Let a be an element of a semigroup S. Then
either: (i) all sums of a are distinct and the monogenic subsemigroup < a > of
S is isomorphic to the semigroup (N, +) or (ii) there exist positive integers r (the
index of a) and m (the period of a) with the following properties :

(1) ra=(m+r)a,

(2) foralls,t € N, (r+s)a = (r+t)a if and only if r+s = r—+t (mod m),



(3) <a>= {a,2a,...,(m+r—1)a} and the order of < a > ism+r—1,
(4) K,={ra,(r+1)a,...,(m+r—1)a} is a cyclic subgroup of < a >

and the order of K, is m.

Let p be an equivalence relation on S. If x € S, the equivalence class of p
containing x is the class of all those elements of S that are equivalent to x. Let
T ={y € S| ypx} denote the equivalence class of p containing x. The set of all
equivalence classes in S is denoted by S/p and called the quotient semigroup of
S by p.

Throughout this thesis except the last chapter any semigroup is assumed to
be commutative.

Let R and T be semigroups. A mapping ¢ : R — 1" is a homomorphism if for
all z,y € R, p(zy) = o(x)o(y). If ¢ maps R onto 7', it is an epimorphism and T
is a homomorphic image of R.-A homomorphism ¢ which is a bijection of R onto
T is an isomorphism and we write R = T,

The following basic theorems are used in this thesis.

Theorem 1.2. ([11},T.Tamura) Any homomorphic image of a divisible semigroup
15 divisible.
For each v € T let' S, is semigroup and S9 denote the semigroup S, with

two-sided identity 0 adjoined.
Let Y S0 ={f: T = [JS2 | fla) € S5 forall o € and f(a) =

acl a€el
0 for all but finitely many components}. The semigroup obtained as the direct

sum ng excluding the identity is called the annered sum of S,, and it is
ael’

denoted by Z Sa-
acl’
Theorem 1.3. ([11],T.Tamura) If S, is a divisible semigroup for all « € T, then

Z S 18 also a divisible semigroup.

acl’



There are exactly 15 types of multiplicative interval semigroups on R. This

was proved by S.Ritkeao in [9)].

Theorem 1.4. ([9],S.Ritkeao) A subset S of R is a multiplicative interval
semigroup on R if and only if S is one of the following types :

(1) R, (2) {0}, (3) {1}, (4) (0,00), (5) [0,00),

(6) (a,00) where a > 1,

(7) [a,00) where a =1,

(8) (0,b) where 0 <b< 1,

(9) (0,0] where 0 <b

N\

1

)

(10) [0,b) where 0 <b

VAN

L
(11) 10,b] where 0 < b < 1,
(12)
(13)

1 a,b) where —1 <a<0<a®><b<l,
(14) |

(a,b) where -1<a<0<a®><b< 1,
(

a,b] where =1 <a<0<a®><b<1,

(15) [a,b] where —1<a<0<a®*<b< 1.

There are exactly 6 types of additive interval semigroups on R and a proof

was given by K.Palasri in [10].

Theorem 1.5. ([10];K.Palasri) A subset S-of R-is-an-additive interval semigroup
on R if and only if S is one of the following types :

@) o, )%

(3) (a,00) where a >0, (4) |a,00) where a > 0,

(5) (—o00,b) where b <0, (6) (—o0,b] where b < 0.

The notions of divisible commutative groups and divisible commutative semi-
groups have long been studied. See in [1],[2],[3] and [5] for examples. In [8], we
see that a commutative group is divisible if and only if it is injective. This state-

ment was given by Baer. The notions of theme are still interesting in the last



two decades. We can see in [4] and [5] that divisible semigroups are linked to
Lie groups. The authors are interested in the structure of groups which contain
a nontrivial divisible subsemigroups and they require that the enclosing group is
‘as small as possible’. Every divisible group is the n* root group for all natural
numbers n, and we may glance the n'* root group in [7].

The study of divisible semigroups which are not related to other subjects is
quite interesting in its own, so we study properties of special divisible commutative
semigroup in this research. If we look at the statement given by Baer, mentioned
above, one can see that the ‘if part’ is still true by changing the word ‘group’
to the word ‘semigroup’. We study some commutative semigroups of which the
‘only if part’ still holds. However, our characterizations may not be related to
injectivity. Moreover, general properties of divisible commutative semigroups are
investigated.

Interval semigroups of real numbers under both multiplication and addition
seem to be interesting. There are exactly 15 types of multiplicative interval
semigroups of real numbers which were introduced by S.Ritkeao in [9] and there are
exactly 6 types of additive interval semigroups of real numbers which were given
by K.Palasri in [10]. We characterize such multiplicative interval semigroups and
additive interval semigroups which are divisible semigroups in Chapter II.

In Chapter III we have to search the conditions that additive subsemigroups
of R and multiplicative subsemigroups of R* are divisible. Moreover, we prove
a theorem on commutative power cancellative divisible semigroups.

We provide some noncommutative divisible subsemigroups of My(R) under

usual multiplication. This is the purpose of Chapter IV.



CHAPTER II

DIVISIBLE INTERVAL SUBSEMIGROUPS OF R

From Theorem 1.4, we know that there are exactly 15 types of multiplicative
interval semigroups on R and, from Theorem 1.5, there are exactly 6 types of
additive interval semigroups on R.

The purpose of this chapter is to show that there are 10 multiplicative divisible

interval semigroups on R and 6 additive divisible interval semigroups on R.

Theorem 2.1. For a multiplicative interval semigroup S on R, S is divisible if

and only if S is {0}, {1}, (0, 00), [0, 20), (1, 0), [1,20), (0, 1), (0, 1],[0,1) or [0, 1].

Proof. Assume that S is a multiplicative interval semigroup on R. Since S is a
multiplicative interval semigroup on R, by Theorem 1.4, S belongs to one of the
following types :

) R, (2) {0}, ) {1}, (4) (0,00), (5) [0,00),
6) (a,00) wherea > 1,

8) “(0;b) where 0 <b <1,

)
)
7) [a,00) where-a >1,
)
) (0,b] where 0 < b < 1,

10) [0,b) where 0 < b

N

L,
11) [0,b0] where 0 < b < 1,

(a,b) where —1 <a<0<a?><b<1,
13) (a,b] where -1 <a<0<a*<b<1,

(
(
(
(
(9
(
(
(
(
(14

)
)
12)
)
)

[a,b) where —1 <a<0<a*<b<1,



(15) [a,b] where -1 <a<0<a®><b< 1.
Case 1: S ={0},{1},(0,00),[0,0), (1,00),[1, ), (0,1),(0,1],[0,1) or [0, 1].
Let s € S and n € N. Then {/s € S and ({/s)" = s. So S is divisible.
Case 2 : S = (a,00), [a,00),(0,b),[0,b),(0,b] or [0,b] for some a > 1 and 0 <
b < 1. For ¢ € {a,b},c* € S (depends on S). Since the only positive real number
x such that 2! = ¢? is @ =y/¢ which\/c < a if ¢ = a ory/c > b if ¢ = b, there is no
x € S such that z* = ¢%. So S is not divisible.
Case 3 : S =R, (a,b), (a,b],[a,b] or [¢,d) where =1 < a<0<a®*<b<1and
—1<e<0<c®<d<1. There exists 2 € S such that x < 0. So that S is not
divisible.

Hence S is {0}, {1}, (0, 00), [0, 00), (1, o0), [1, 00), (0, 1), (0,1],[0,1) or [0, 1]

if and only if S is divisible. ]

Theorem 2.2. For an additive interval semigroup S on R, S is divisible if and

only if S is {0}, R, (0, 00), [0,00), (—00,0) or (—o0,0].

Proof. Suppose that S is an additive interval semigroup on R. Since S is an

additive interval semigroup on R, by Theorem 1.5, the type of S is one of the

followings :
M {o% @R,
(3) (a,o00) where a > 0, (4) [a,00) where a > 0,
(5)  (—o0,b) where b < 0, (6) (—o0, b] where b < 0.

Case 1: S = {0},R,(0,00),[0,00),(—00,0) or (—o0,0]. Let a € S and n € N.
Then & € S and n(%) = a. So S is divisible.

Case 2 : S = (a,),|a,0), (—00,b) or (—oo,b] for some a > 0 and b < 0. For
c € {a,b}, 2c € S (depends on S). Since the only positive real number x such
that 4z = 2cis * = § which § <aifc=aor 5 > bif ¢ = b, thereisno z € §

such that 4x = 2c¢.



Therefore S is {0}, R, (0, 00), [0, 00), (—00,0) or (—o0,0] if and only if S

is divisible. O

The following corollaries are immediate consequences of Theorem 2.1 and

Theorem 2.2, respectively.

Corollary 2.3. For a multiplicative interval semigroup S on R™, S is divisible if

and only if S is {1}, (0,00), (1,00), [1,00),(0,1) or (0, 1].

Corollary 2.4. For an additwe interval semigroup S on Rt S is divisible if and

only if S =RT.



CHAPTER III

DIVISIBLE SUBSEMIGROUPS OF R*

It is known that R* under usual addition and R™ under usual multiplication are
divisible semigroups. The first purpose of this chapter is to find conditions when
an additive subsemigroup of R is divisible and a multiplicative subsemigroup of
R* is divisible.

The second purpose of this chapter is to prove when a commutative power
cancellative semigroup is divisible. Note that this theorem was stated in [11]

without proof.

Theorem 3.1. Let T be a subsemigroup of RT under addition. Then T is a
divisible subsemigroup of R if and only if there exists a basis B of R over Q such
that T is a divsible subsemigroup of the semigroup T¢; for some @ # C C B,

where T = {x € RT | x is a Q-linear combination of elements in C'}.

Proof. Assume that T is a divisible subsemigroup of R™ under addition.

Let A={D | @ # D CT and D is a Q-linearly independent subset of
R}. Since @ # T C RT, there exists a € T such that {a} C T so that {a} is
a Q-linearly independent subset of R." As a result, {a} € Aand A # &. We
know that A is a partially order set under inclusion. Let C be a chain in A. Let

A= U D. Obviously, D C A for every D € A.
DeC
First, we show that A € A. Since D C T forall D € C, A= U DCT.
DecC

Suppose that Z a;v; = 0 where vy, vy, ...,v, € A are all distinct and aq, ao, ...,
i=1

a, € Q. So, for each i € {1,2,...,n}, there exists D; € C such that v; € D;,.



Since Dy, Dy, ..., D, € C and C is a chain in A, there exists j € {1,2,...,n} such
that Dy, Dy, ..., D, C D;. Now we have vy, vy, ...,v, € D; which is a Q-linearly
independent subset of R. Thus a; = as = ... = a,, = 0. This shows that A is a
Q-linearly independent subset of R, so that A € A. By Zorn’s lemma, A has a
maximal element C'. Since C' C RT and C' is a Q-linearly independent subset of
R, there exists a basis B of R over Q such that C' C B.

Next, we have to show that T C T,. Let v € T. If x € C, then
x=1x € To. Assume that ¢ C. So CU{z} is a Q-linearly dependent subset of
R. Thus there are distinct elements ¢, ¢,...,¢, € C'and o, a1, a0,...,a, € Q,
not all of them 0, such that ax +aic; 4+ -+ a,c, = 0. Suppose that &« = 0. Then
ajcy+ -+ ape, = 0. Since ¢, ¢o,...,¢, € C'and C' is linearly independent, a; =
g = ... = o, = 0, which is a contradiction. So a # 0. Thus z = (=2 )¢y +--- +

(=2n)c, € Te. Hence T' C Te.

[0}

The converse follows directly from the assumption. O]

Theorem 3.2. Let T be a subsemigroup of Rt under multiplication. Then T is
a divisible subsemigroup of R* if and only if there exists a basis B of RT over Q
such that T s a divisible subsemigroup of the semigroup T for some @ # C' C B,

where T = {z-€ RT | x is a Q- linear combination of elements in C'}.

Proof. Suppose that T is a divisible subsemigroup of R under multiplication.By
Zorn’s lemma, there exists @ # C C T such that C'is a maximal Q-linearly
independent subset of (R, ) and can be extended to a basis B of (RT,-) over Q
where scalar multiplication ar is r® where r € RT and o € Q.

To show that T C Te, let x € T. If x € C, then x = 2! € T, Assume
that z ¢ C. Thus CU{z} is a Q-linearly dependent subset of R*. Hence there are
distinct elements ¢y, co,...,c, € C and o, aq, a9, - -+, a,, € Q, not all 0, such that

%1 ..., = 1. Suppose that « = 0. Then ¢;**c*?...¢,*" = 1. Since
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c1,Co,...,Cq € C and C' is linearly independent, a; = ay = ... = a,, = 0, which

is a contradiction. So @ # 0. Thus z = ¢;( &)%)

cc,(7a") € T, Hence
T CT..

The converse follows immediately form the assumption. O]

In Lemmas 3.3-3.7, Theorem 3.8 and Corollary 3.9, o and 3 are rational

numbers.

Lemma 3.3. Given § > /2. Then Sy = {a = B2 | a >0 and (B < 0 or

5 = 0)} \ {0} is a semigroup and is divisible.

Proof. Let 0 > V2 be fixed. Note that S, C RT. Let a,b € Sy Soa=am —51\/5
for some a; > 0 and (8; < 0 or %f >¢)and b= ay — B2v/2 for some ay > 0 and
(B2 < 0 or % > ). Thus a+ b= (o + as) — (B + B2)v/2. Since a,b > 0 and
oy, ag = 0, it follows that a + 6 > 0 and ay + as > 0, respectively.

Case 1: (31,05 <0. Then 1+ 5> <0. Soa+beSs.

Case 2 : (5; < 0and a2 > 0. If 1+ 0, <0, thena+be Sy If 6y + (> >0, then
0(Br+ B2) > 0. Thus aq + @z = 0+ 0fs = 061 + 082 =0(B1 + f2). So G152 > 6.
Hence a +b € S,.

Case 3 : % > § and a—2 > 0.-Since (1, By >0, 61+ B2 > 0. Thus ay + ay >

5ﬁ1 + (Sﬁg = 5(51 -+ 62) So %1132 > 6. Hence a +be SQ.

Therefore S; is a-semigroup.

To show that S, is divisible, let o — 3v/2 € Sy where a = 0 and (8 < 0 or

%25)andn€N. Since o > 0, = > 0.
Casel:ﬁéO.ThenggO So & \/_GSQ
Case 2 : %2(5. Thus%—gﬂESQ.

Hence ¢ 5\/_ 2 € S;. Thus n(% — g\/§) = n(w) = a— V2.

Therefore Sy is divisible. O
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Lemma 3.4. Given 0 < v < /2. Then S5’ = {—a+ BYV2 | >0 and (« <0 or

0<§ < M} \ {0} is a semigroup and is divisible.

Proof. Let 0 < v < V2 be fixed. Let a,b € S, Soa=—a+ ﬁl\/i for some
f1=20and (g <0or0 < % <) and b = —ay + (V2 for some 3, > 0 and
(ap <0or0< G <7) Thusa+b= —(a +az) + (B + B2)V/2. Since a,b > 0
and (1, B, = 0, it follows that a +b > 0 and 3, + B2 > 0, respectively.
Case 1 : aj,a9 < 0. Then oy + a3 < 0. Soa+b € 5i.
Case 2: o <0and 0 < 0‘2 <. If o + a9 <0, thena+be S;. If ag +az >0,
then 0 < a; + @y < 0 +796; < 961 + 902 = (61 + B2). Since B; > 0 and
Ba > 0,01+ (2 >0. So 0 < %11? <. Thus a+ b € Si.
Case 3: 0 < 3 <yand 0 < F <. If a7 +ay <0, then a+b € S5 If
a; +ag > 0, then 0 < a1 + ag < Y0y + 02 = Y(f1 + F2). Thus %112“2 <. So
a+bess.

Hence 5% is a semigroup.

To show that S is divisible, let —a + $v/2 € S5 where 3 > 0 and (a < 0
or%<’y) and n € N. Sinceﬁ}O,%}O.
Case 1: a<0. Then > <0. So_To‘—i-g\/éES{)).
Case 2: 0< G <. So_—o‘+[—3\/§€S§.

Thus =2 +2/2.€ i Son(=2 +£24/2) = n( O‘w\f)——oz—i-ﬁ\/ﬁ.

Hence S5 is divisible. O

Lemma 3.5. Let Sy and S; be defined as in Lemma 3.3 and Lemma 3.4,

respectively. Then Sy U S3' is a semigroup and is divisible.

Proof. Let 0 < v < v/2 < 6 be fixed. Let a,b € SyUSS. If a,b € Sy or a,b e S,
then a +b € Sy or a+b € S5, so that a +b € S, U S5.
Assume that a € Sy and b € S;. So a = a; — BiV2 for ag > 0 and

(61 <Oor% > 6) and b = —ay + (V2 for some By > 0 and (ap < 0 or
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0<% <7). Thus a+b = (a1 =F1v2)+(—as+52v2) = (a1 —as) = (i —F)V2 =
—(az — 1) + (B2 = B1)V2.
Casel: (1 <0< fyand as <0< ay. Then ag —as > 0 and 5, — B2 < 0. So
a+be Sy Thusa+be S,USS.
Case 2: (1 <0and 3> <. Since ay > 0 and 1 < 0,a € S4. Since b € S} and
S4 is a semigroup, a + b € 5. Thus a +b € S, U S5.
Case 3 : % > 0 and as < 0. Since o = 0 and ay < 0,b € S5. Since a € S5 and
Sy is a semigroup, a+b €.55. Thus a + b € S, U S%.
Case 4 : % > 6 and 22 <~. By assumption, a; — as > 661 — 02 = 5(6y — Pa)
and ap — oy < yB2 — b = (B2 — bi)-

Subcase 4.1 : 1 — o = 0. Then oy —as > 0. Thusa+b € S;. So
a+be S U8

Subcase 4.2 : (; — (3 > 0. So ﬁ > ¢. Thus a+b € Sy. So
a+be SyUSi.

Subcase 4.3 : 3, — (2 < 0. If as —a; < 0, then a +b € 5. So
a+be SSUS, If ag—a; > 0, then ﬁ < 7. Thus a +0 € S5. So
a+be SyUSi.

Hence Sy US4 ista semigroup.

Since Sy and 5% are divisible, it is obvious that Sy U S} is divisible. O

Lemma 3.6. Let S be an additive subsemigroup of Tz containing 1 and V2.

Suppose that S is divisible. Let
Alz{a—ﬁﬁ|a,ﬁ>0and%>\/§} and
Ay ={—a+8vV2]|a,p>0and % <2}

IfALNS # @ and A, NS = &, then there exists § > \/2 such that S = Sy or

S = S where
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Sy={a—-pBV2]a=>0and (6<00r = > 0)}\ {0} and

e e

Sh={a—-pBV2]a=>0and (6<00r = > §)}\ {0}.

Proof. Assume that A;NS # @ and AsNS = &. Then there exists a € A;N.S and
a = a;— a2 for some ay, ag > 0 and g—; =~ /2. Let B = {%] a—pV2 e AiNS}.
Since By # @ and Bj is bounded below, inf By exists. Let 6 = inf B;. So § > V2.
Case 1 : There exist a3 >0, a — 3v/2 € S and % = 0. We need to show that
S =8, Let u—vyv2 e S where u,v€ Q. If u>0and v <0, then u—vv2 € S,.
Assume u > 0 and v > 0. Since © > v/2, u—vv2€e A NS. So 2 € B;. Since 0
is a lower bound of By, = > 4. Hence u — vV/2 € Sy. Therefore S C S,.

Let u — vv/2 € Sy where u > 0 and (v < 0or % >90) Ifv <0, then
u—vy2 € S. Assume 2 2 0.50 u,v > 0. Since o — V2 € S and S is divisible,
for all n € N there exists b € S such that o — 5v/2 = nb. Thus for all n € N,
b= — gﬂ € S. Since S is a semigroup, m(% — g\/i) € S for all m,n € N. So
Doy — %6\/5 € S for all m,n € N. Since v,3 € QT,v = £and 8 = £ for some
p,q,7,s € N.

Subcase 1.1 : % = 4. So u — V2 = v —v/2 = 5@%—%\/5 =
‘?—5‘ — %\/5: g—joz— %5\/5. Since ps and gr€ N,u —v/2 € S.

Subcase 1.2: % >¢. Let - —v'\/2-€ S-where /s v >0 and 4> 7;—: > ).
Let ¢ = ;. Then qu'—vV2 = qu'—qu'\/2 = q(u'—v'V/2) € S. Since 7 > Z—: = Z_Z: =
un’ andv > 0,u > qu’. Sou—qu' > 0. Thus u—vv2 = (u—qu')+(qu' —vv/2) € S.

Hence Sy € S. Therefore S = 9,.

Case 2 : Forall o,8 >0, o — V2 € S implies % > 0. We want to show that
S = S,. By assumption, S C S5. Let u — w2 e Sy where u > 0 and (v < 0

or ¥ > 9). If v <0, then u — vV2 € S. Assume that 2 > . It can be proved
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similarly to Subcase 1.2 that S, C S.

Hence S = 5. O

Lemma 3.7. Let S be an additive subsemigroup of Ty 3y containing 1 and V2.
Suppose that S is divisible. Let Ay and Ay be defined as in Lemma 3.6. If A;NS =
@ and Ay NS # O, then there exists 0 < v < /2 such that S = Ss or S = S}
where

53:{—a+ﬁ\/§|620and(a<00T0<% < )} \ {0} and

Sg’:{—a+ﬂ\/§|ﬁ20and(a<00r0<% < v} \ {0}.

Proof. Suppose that A; 1S = @ and A;NS # &. Thus there exists a € A,NS and
a = —a; + ayV/?2 for some a1, 0o >0 and Z—; < /2. Let By = {% | —Oé+ﬁ\/§€
Ay N S}. Then we can see that By # @ and B, is bounded above, so that sup By
exists. Let v = sup By. So 0 < v < V2.

Case 1 : There exists a, 8 > 0, —a + 82 € S and % = v. We need to
show that S = S5. Let —u+ vv/2 € S where w,v € Q. If v > 0 and u < 0, then
—u+vv2 € S;. Assume that v > 0 and w > 0. Since < V2, —u+vv2 € ANS.
So * € By. Since 7 is an upper bound of By, ¥ < 7. Hence —u + vV/2 € S;.
Therefor S C Ss.

Let =u+0vy/2 & S;‘whete ¢ 3 0'and (w<0or0<®<y). Ifu<0,then
—u+vv2 € S. Assume that 0 < 2 <. So u,v > 0. Since —a—{—ﬁ\/ﬁ € S and
S is divisible, for all n € N there exists b € S such that —a + 3v/2 = nb. Thus
forallm € N, b = = + gﬁ € S. Since S is a semigroup, m(==* + g\/?) for all
m,n € N. So ="a + %ﬁ\/ﬁ € S for all m,n € N. Since v,3 € Q*,v = IEJ and

T

[ =L for some p,q,r,s € N.

s

Subcase 1.1 : % =1+. So —u+vv2 = —yv +vV2 = -y + %\/ﬁ =

_JEQ + %\/5 = _q—zfa + {ﬁﬁ\/ﬁ. Since ps and gr € N, —u +vv/2 € S.

Subcase 1.2 : % < 7. Let —u/ + v'v/2 € S where «/,v" > 0 and
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1< Z‘—: <. Let ¢ = 5. Then —qu' + V2 = —qu' + qu'V/2 = q(—u/ +v'V2) € S.
Since = < Z—: = % = un/ and v > 0,u < qu’. So qu’ —u > 0. Thus —u + vv/2 =
(qu' —u) + (—qu’ +vv/2) € S.

Hence S3 C S. Therefore S = Ss.
Case 2 : Forall a,8 >0, —a + 3v/2 € S implies % < . We want to show that
S = S4. By assumption, S C S5. Let —u 4 vv/2 € S§ where v > 0 and (u < 0 or
0<t< 7). If u <0, then —u + vV/2 € S. Assume that 0 < % <. The proof is

similar to Subcase 1.2. Thus 55 C S.

Hence S = 5. O

Theorem 3.8. Let S be an additive subsemigroup of Ty sy containing 1 and V2.

Then S s divisible if and only if S is one of the following types :

(1) Si={a+pv2]a B =0}\ {0},

(2) Sa={a—pV2|az20and(F<00rs > 6)}\ {0} where § > /2 is fived,
Sy ={a—FvV2|a>0and (3 <0 or g > 0)} \ {0} where § > V2 is fized,

(8) S3 ={—a+pvV2 |8 >0and (a <0 or0 < 5 < M\ {0} where

0 <~ < V2 is fired,

Sy ={-a+Bv2 |8 =>0and (a« <0 or0< < )} \ {0} where

I

0<”y<\/§isﬁxed0’r

(4) SQUS3 or SQUS3/ or SQIUS?, or SQIUS;),/.

Proof. By Lemma 3.3, Lemma 3.4 and Lemma 3.5, S5, 55 and Ss U S5 are divisible
semigroups, respectively. It can be proved similarly to Lemma 3.3, Lemma 3.4
and Lemma 3.5, that the others are also divisible semigroups.

For the converse, assume that S is divisible. Let S; be as the above sets
for all i € {1,2,3} and .S’ be as the above sets for all j € {2,3}. Since «, BV2e S
for all a, 3 € QF and S is a semigroup, a4+ $v/2 € S for all o, 8 € Q. If either

a=0o0r f=0,then a+v2€ S. Thus S; C S. Let A; and Ay be defined as
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in Lemma 3.6. Then there are 4 cases to be considered as follows :

Case1l: A, NS =@ and A,NS =@. To show that S C Sy, let a« + 52 € S.
If (@ >0and § < 0)or (@ < 0and # > 0), then a + V2 € A, NS or
a+ 3v2 € Ay N S, which is a contradiction. So a, 5 > 0. Thus a + 5v2 € 5.
Hence S C S;. Since 51 C S, S = 5;.

Case 2: A1NS # @ and 4,NS = @. By Lemma 3.6, there exists 6 > /2 such
that S =S, or S = S..

Case 3: A,NS =@ and A,NS # @. By Lemma 3.7, there exists 0 <y < /2
such that S = S5 or § = 5.

Case4: A\NS # @ and A;NS # @. Thus there exist a € A;NSand b € A;NS.
Soa= o —61\/§ for some oy, 3; > 0 and Oﬁ‘—i > /2 and b= —ag—i—ﬁgﬂ for some

Qa, B > 0 and % < V2. Let

Blz{%la—ﬂﬂeAlﬂS} and
Bgz{%i »a+ﬁ\/§eA2mS}.

Since By, By # &, B; is bounded below and Bs is bounded above, let 6 = inf B,
and v = sup Bs. ThusO<*y<\/§<5.

Subcase 4.1 : There exist a, 5 > 0, @ = $v/2 € S and % = ¢ and there
exist o, 3 >0, =/ + f4/2 €S and & = ~v..S0.S = S5 U'S;.

Subecase 4.2 : ‘There exist a, > 0;a= 32 € S-and % = ¢ and for all
a,3 >0, —a+ V2 € S implies § <. Thus § = S, U S},

Subcase 4.3 : For all a,3 > 0, a — 3v/2 € S implies % > 0 and there
exist a, f > 0, —a + /2 and % = . Hence S = S, U S;.

Subcase 4.4 : For all o, > 0, o — 82 € S implies % > ¢§ and for all
o, 0 >0, —a' + V2 € S implies g—: < . Therefore S = S, U Sj.

Therefore the theorem is completely proved. O
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Corollary 3.9. Let S,, 5%, S3 and S} be defined as in Theorem 3.8. Assume that
{1,v/2} is a Q-linearly independent subset of S; and S/, for all i € {2,3}. If

5,7€Q+and0<7<ﬁgé,thenSQ’ESgandSé%Sg.

Proof. Let 6,7y € Qt and 0 < v < V2 < § be fixed. Define f : S, — Ss
by fla — ﬁ\@) = -0+ %\/5 where @ > 0 and (§ < 0 or % > 0). Consider
a—ﬁ\/ﬁeSgwherea>0and(ﬁgOOr%25). Sincea}O,(%)O. If <0,
then 5 — £+/2 € S5. 14 >4, then 6% =20y <467 = 7. Thus —f+ £V2 € Ss.
This shows that f maps S5 into S3.

First, we prove that f is well-defined. Let a; — 51v2, a0 — 32v/2 € S,
where a1, a3 > 0 and (3; < 0 or % > 0) and (2 < 0 or % > §). Assume that
o — B1V2 = ag — Bov/2. Then (ay — az) + (Bs — B1)v2=0. Thus oy —ap =0
and (B, — 31 = 0 so that oy = @ and By = B». Hence —f3; + % 2=—[0+ g‘—i\/ﬁ

Next, we show that f is a homomorphism. Let ay — 3, V2, 00 — BaV/2 € Sy

where ag, a0 > 0 and (5, < 0 or %—i > 6) and (B2 <0 or % > ¢). Then

F(o1 — Bry/2) 4 (= 35v/2)) = f((as+az) = (B1 + 52)V2)

pe (Oél + 062)
=—(B1+ 52) + oy V2

=—/ +%\/§+—ﬁz+ %\/5
Y 0y
= f(ler = BiV2) +f(az — B2V2)).

In order to show that f is one to one, let a; — ﬁlx/ﬁ, Qg — ﬁzﬁ € S

where ay, 2 > 0 and () < 0 or % > 0) and (B2 < 0 or % > 0). Suppose that

—bit+5v2= —52-1-%\/5- Then (—51+52)+%\/§ =0. Thus =1+ 52 =0
and 0‘16;7"‘2 = 0 so that 3; = 2 and a; = as. Hence a; — 1vV2 = as — B2v/2.
Finally, we need to show that f is onto. Let —a+ 3v/2 € S5 where 3 > 0

and (o < 0or € < 7). Since 3 > 0,673 > 0. If% < 7, then 22 > %57 = §. Then

8 X o
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576 — /2 € Sy. Thus f(ovG — a\/§) =—a+ 6—%6\/5 = —a+ V2.

Hence S, = S5.

Define g : S) — S by gla — 3v2) = —ﬁ+%\/§wherea20and (6<0
or § > 6). Consider a — V2 € S, where a > 0 and (3 < 0 or 5 > 0). Since
a>0,£ >0 If §<0, then §— £v2 € 55 If & >4, then% =85y < 5y =+.
Thus —( + %\/5 € S%. This shows that g maps S; into S3.

First, we prove that g is well-defined. Let oy — 81v/2, a0 — (22 € S
where a1,y > 0 and (. < 0 or e d) and (B, < 0 or 5> ). Assume that
a1 — BivV2 = ay — (2v/2. Then (a; — ag) + (B2 — £1)vV2 =0. Thus g —ay = 0
and By — 31 = 0 so that oy = ap and By = (5. Hence —f3; + % 2= —ﬁg—i-g‘—i 2.

Next, we show that ¢ is a homomorphism. Let oy — 51v/2, as — foV/2 € S

where ag, a0 > 0 and (31 < 0 or Cﬁ“—i > 0) and (fy < 0 or % > ¢). Then

g((01 = BiV2) +(aa = $2v/2)) = g((e1 + a2) — (B1 + B2)V2)

% (Oél +062)
= (i + () + T\/E

= —ﬁ1+%\/§+—62+%\/§
Y oy
= g((oq - 51\/5) + 9(062 — ﬁ2\/§))

To prove that (g is one to one, let ay = Biv2, a5 — 32v/2 € S} where
aj, a0 = 0 and (B < 0 or % > §) and (B < 0 or % > §).. Suppose that
—B1# 2 V2 = By +52V/2. Then (—py+62) + 52 /2 = 0. Thus — 1+ 6, = 0
and 0“6;70‘2 = 0 so that 3; = 5 and a; = as. Hence a; — 51vV2 = as — B2v/2.

Finally, we need to show that ¢ is onto. Let —a + 3v/2 € S5 where >0
and (o < 0 or 3 < 7). Since 3 > 0,575 > 0. If § <, then % > %(57 = 9. Then
5B — a2 e Sy, Thus g(6vy3 — oz\/§) = —a+ %\/5 = —a+ V2.

Hence S} = 5. O
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Theorem 3.10. T is a divisible subsemigroup of QT under addition if and only
if T=Q.

Proof. Let T be a divisible subsemigroup of (Q*,+) and let © € T be fixed.
Since T is divisible, for each n € N there exists y € T such that x = ny. Thus
y = 2z € T for all n € N. Since 7" is a semigroup under addition, m(:z) € T
for all m,n € N. Thus 2z € T for all m,n € N. This implies Q"2 C T". Since

Qtz=Q", Qt CT. Hence T'= Q™. ]
In Lemma 3.11 and Lemma 3.12, any semigroup may not be commutative.

Lemma 3.11. Assume that S is a diwisible semigroup. Define a relation ~ on S

as follows: for any x,y € 9,
x ~y if and only if mx = ny for some m,n € N.
Then ~ is an equivalence relation.

Proof. Clearly, the relation ~ is reflexive and symmetric.

Let a ~ b and b ~ ¢ where a,b,¢c € S. Then m;a = n1b and myb = nsc
for some my, ny, my,ny € N. Thus (mam;)a = ma(mia) = ma(nib) = (many)b =
(nimg)b = ny(mab) = my(ngc) = (ning)e. So a ~ c¢. Hence ~ is transitive.

Therefore ~ is an equivalence relation. O

From Lemma 3.11;if max = ny where z,y € S and m,n € N, then we
write y = *x. For each x € S, let T be the equivalence class of ~ containing x
where ~ is defined in Lemma 3.11. Then for x € S, T = {"x|m,n € N} which is

clearly a subsemigroup of S and Z U {0} is a semigroup.

Lemma 3.12. Suppose that S is a divisible power cancellative semigroup. Let
z € S and define ¢z : Qy — TU{0} by oz(2) = Za where m,n € N and

0z(0) = 0. Then @z is an epimorphism.
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Proof. Since S is divisible and power cancellative, for each x € S and for each
positive integer n, there exists a unique element y in S such that x = ny.

First, we need to show that 2z = m(2x) for all m,n € N for all z € S.
Let m,n € Nand x € S. Since S is divisible, there exists y € S such that x = ny.

So y = Lz. Thus my = m(2z). Since z = ny, mz = m(ny) = (mn)y = (nm)y =

n(my). Hence my = 2x. So Za = m(=x).

Next, we prove that ¢z is well-defined. Assume that " = "2 where
1 n2

mi,ma,n1,me € N."So %2 = my, € N. Thus myz = mﬁ—:""x = mlng(nilx) =

mi

We want to show that (’%)x = Ba+ Ta for all p,g,r,s € N and for all
x €S. Let p,q,r,s € Nand x € S. Since S is divisible, there exist yi,y2,y3 € S

such that © = qyi, ¢ = sy, and = = (¢s)ys. So y; = %x,yg = %x and y3 = qiszv.

Hence

ps + qr "
( " ) r = (ps+qn) (*q;fff) = (ps + qr)ys = psys + qrys and

P r 1 1
—r+-zrz=p|-x|+T1| -] =DpYy1+ 1Y
q S q S

Thus
(e )= ()
psys =ps|—ax | =—x==-x=p| -z | =py; and
qs qs q q
ol e r{a
qryz =qr =z =c—x ==z =rd ~v)| =TrYs"
qs qs s S
So
ps +qr p r
< )x—psy3+q7‘y3—py1+ry2_—x—i——x.
qs q S

In order to show that ¢z is a homomorphism, let o, 3 € Qg .

Casel: a=0.

pz(a+ ) = 0z(0 4 B) = 0z(8) = 0+ ¢z(8) = vz(0) + vz(8) = pz(a) + ¢z(3).
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Case2: a#0and 6 #0. Soa=2 andﬁzi—j for some p1, q1, p2,q2 € N.

q1

Thus

vz(a+ B) = ¢z (ﬂ + @)
q1 q2

. (ZHQQ +p2Q1)
1 4192

Al (P1Q2 g p26h> .
q142

:&x—kzﬁx

q1 q2

P1 D2
)
q1 q2

= x(a) + ¢z(0).

Finally, we want to show that ¢z is onto. Let a € Z. So a ~ z. Thus
there exist n,m € N such that na = ma. Hence @ = ™. Choose ™ € QF. So

Ty = q.
n

305(%) =

Therefore 7 is an epimorphism. O

Recall that the annexed sum Z Sq 1s obtained as the direct sum Z S0
ael acl
excluding the identity, where for each a € T'; SO is the semigroup S, with
two-sided identity 0 adjoined.

Next, we prove a theroem on commutative power cancellative divisible

semigroups.

Theorem 3.13. Let S be a power cancellative semigroup. Then S is divisible if

and only if there is a set I' such that S is a homomorphic image of the annexed

~

sum Z R, where each R, is isomorphic to the additive semigroup of all positive

acl
rational numbers.

Proof. Assume that S is divisible. Define a relation ~ as in Lemma 3.11. Then

~ is an equivalence relation.
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Let I' = S/ ~ and for each o € ', let R = Q. Deﬁne¢:ZR2 — S0
ael’

by Y(< 14 >) = Z Palre) for all < r, >€ Z R? (note that for each o € T, o is

ael ael
an equivalence class of ~ in S and ¢,, is an epimorphism defined in Lemma 3.12).
Now, we want to show that v is an epimorphism. We can see that v
maps the identity of Z R? to 0 in S%. Since for all a € T', ¢, is a function, ¥ is
acl

well-defined.

Next, we prove that ¢ is a homomorphism. Let < r, >, < s, >€ Z RY.

aecl’
Thus
VLT > + < 80 >) =< 10+ Sq>)
i Z @a(ra + Sa)
acll
= > (Pa(ra) + Palsa))
acl
= Z Pa(ra) + Z Pa(Sa)
el acl’
=YP(<1e =)+ (< 54 >).
To prove that v is onto, let a € S°.
Case 1 : a =0. Let b be the identity of Z R?. Then ¢(b) = 0 = a.
ael
1, if =g,
Case 2 : a # 0. Since a € @, choose < rg >¢€ Z R% where 75 =
=y 0, if 3+#a.
Thus (< rg >) = Z@g(rﬁ) =pz(l)=1-a=a.
ger
Hence 1) is an epimorphism from Z R? onto S°. Next, we need to show
acl’

that (< 73 >) # 0 for all < 73 > such that < r3 > is not the identity of Z RY.
ael
Let <rg >€ Z R? be such that < rg > is not the identity. So there exists

acl’

a € I' such that r; # 0, we may assume that r; = § € R, for some p,q € N. Then
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. p
P(<rg>) = ngg(rﬁ). Since £ # 0, 2a # 0. Thus Z ws(rg) + 5@ # 0.
per Ber and B#a

Hence Z@g(?”g) #0. So (< rg>) #0.

Bel’

This proves that v is an epimorphism from Z R, onto S, as required.

acl’
Conversely, we assume that there is a set I' such that S is a homomorphic

~

image of the annexed sum ZRa where each R, is isomorphic to the additive

acl
semigroup of all positive rational numbers. Since S is a homomorphic image of
Z R, which is divisible, S is divisible. O
ael

We note that Theorem 3.13 without assuming power cancellative of S was
introduced by T.Tamura in [11], without proof.
The following example shows that there are a divisible semigroup S and

~

a set ' such that S is a homomorphic image of the annexed sum Z R, where

acl
each R, is isomorphic to the additive semigroup of all positive rational numbers.

Example 3.14. Let T = Qj xQy \ {(0,0)}. Define f : T'— (Q, +) by f(x,y) =

x —yfor all z,y € QF. Clearly, f is well-defined.

We want to show that f is a homomorphism. Let (z1,v1), (22,42) € T.

Then

fl(z1,y1) + (72,92)) = f(@1+ To,y1 + Y2)
= (w1 + 22) — (11 + 12)
= (1 — 1) + (2 — 12)

= f(o1 —y1) + f(z2 — 32).

So f is a homomorphism.

In order to show that f is onto, let y € (Q, +). Choose
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(

(Oa _y)a lf Yy < 07

T=19(1,1), if y =0,

| (,0), ify>0.

Then z € T. So

;

f0,—y) =0~ (~y) =y, ify<0,

f@=9fra,1)=1-1=0=y, ify=0,

f(y,0) =y —0=y, if y > 0.

.
Thus f is onto.

Hence there is a set {1, 2} such that (Q, +) is a homomorphic image of T

where (Q, +) is a divisible semigroup.

Example 3.15. Let R = Q x Qf x Qg \ {(0,0,0)}. Define g : R — (Q,+) by

g(z,y,2) = x +y — z where z,y, 2z € QF. Clearly, g is well-defined.

We prove that g is a homomorphism. Let (21, 41,21), (2, Y2, 22) € R. Then

9((z1,y1,21) + (v2, Y2, 22)) = g(@1 + 72,41 + Y2, 21 + 22)
= (Qil + LUQ) + (y1 + yg) — (21 + ZQ)
= (21 +y1 = 21) + (T2t Y2 — 22)
= g(w1, Y1, 21) & 9(22; Y25 22):
So ¢ is a homomorphism.
We need to show that g is onto, let y € (Q,+). Choose
(0,0,—y), ify <0,

T=19(0,1,1), ity =0,

(0,4,0), ify>0.
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Then z € R. So
’9(0,0,—y)=0+0—(—y)=y, if y <0,
9(®) =4¢0,1,1)=0+1-1=0=y, ify=0,
19(0,5,0)=0+y—0=1y, if y > 0.

Thus g is onto.
Hence there is a set {1, 2,3} such that (@, +) is a homomorphic image of

R where (Q, +) is a divisible semigroup.

Example 3.16. If ¢ is a homomorphism from the semigroup (Q*,+) into the

semigroup (Q, +) such that 0 € I'm ¢, then ¢ is the zero map.

Proof. Assume that ¢ : (QF,+) — (Q,+) is a homomorphism. Suppose that

there exists z € (QT, +) such that p(x) # 0. Thus

o4+ x) (n times)

p(n)

=p(x)+- -+ @(x) (n times)

np(z) # 0 for all n € N,

For n € N,

)

3
S|

X

Il
©

19;) S bt

n

4
x) Feto <%x) (n times)

)
—Z ).
n

1
n
1

(

Il
AS)

(
(
-

So

@ — @(%x) for all n € N.
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=@
q
5 p(z) WU/ () (p times)
q 4q
p(r)
q
= gso(w)

Since p(z) # 0 and p,q € N, §<p(x) # 0. Hence <p(§x) # 0 for all p,q € N.
Thus 0 ¢ p(Q*z). So 0 ¢ ¢(QF). Hence 0 ¢ Im ¢.

Therefore (@, +) is not a homomorphic image of (Q*,+). O
Theorem 3.17. If S is a finite divisible semigroup, then S is a band.

Proof. Assume that S is a finite divisible semigroup. Let S = {aj,as,...,a,}
when n € N. Suppose there exists i € {1,2,...,n} such that 2a; # a;. Thus
| < a; > | > 1.Choose a € S such that | < a > | > | < a; > | for all j.
Then | < a > | > 1 and so 2a # a. Since a € S; < a > is finite. So there
exist m € N and the least element r € N such that (m + r)a = ra and < a >=
{a,2a,...,ra,(r+1)a, ..., (m+7r —1)a}. Since S is divisible, a = 2b for some
b €S and b # a. Soa = 2b €< b >. Sinee < b > is a semigroup, for all
k€N, ka €< b >. Thus < a > C < b >. By the property of < a >, we
have < a > = < b >. So b = ia for some i € {2,3,...,m +r — 1}. Thus
a = 2b = 2(ia) = (2i)a. Thus r = 1. Consequently, < a > is a subgroup of S of
order m. Since a € S and S is divisible, a = mc for somec € S. So < a > C < ¢ >.
By the property of a, < a > = < ¢ > which is a subgroup of S of order m. Let e be

the identity of < a >. So a = mc = e. Thus 2a = 2e = e = a, a contradiction. [J



CHAPTER IV
SOME NONCOMMUTATIVE DIVISIBLE

SEMIGROUPS

Recall that My (R) under usual multiplication is a noncommutative semigroup.

The purpose of this chapter is finding some subsemigroups of M;(R) which are

divisible.
0 1
To show that M5(R) is not divisible, consider € My(R).
0 0
2
a b a b 01
Suppose that there exists € Ms(R) such that = .
G2 c d 0 0
a’+bc bla+d) 0 1
So = . Thus
cla+d) be+d? 0 0
a>+bc=0 i, (1)
bla+dy=1 ... (2)
cla+d)=0" (3)
VS PH Q 19R7)7) 9, (4)

By (3),c=0o0r a+d=0. From (2), a+d # 0. Thus ¢ = 0. From (1),a = 0. By

(3),d = 0. Then a + d = 0, it is impossible. Thus there is no a € R satisfying the
2

a b a b 01
equation (1). Hence there is no € M,(R) such that

c d c d 00

Therefore M(R) is a noncommutative semigroup which is not divisible.



Let
¢ . )
a b
A= a,be0,00)
0 1
a 0
B = a,b €0,00) o,
b 1
\ L w /
( [ 7 )
1 b
C =4 a,b e f0,00) 7,
0 a
o 4 < Vs
o \
1.0
D:< a,bE[0,00) 5
C [ )
‘r \
a b(l—a)
R = a,be [0,1] p,
0 1
\ L J
s 3\
a 0
S = a,b€0,1] p,
b(l=a) 1
\ J
( [ 3 A
1 b(1—a)
U= a,b€10,1] » and
0 a
\ L n J
( T T )
1 0
V= a,be|0,1]
\ b(l=a) a
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Proof of A being a noncommutative divisible subsemigroup of M5 (R)

under usual multiplication. Since

a bl |lc d ac ad—+b

Thus =
0 1] |0 1 0 1

ac ad+b

a,b,d € [0,00),ad + b € [0,00). So
0

0

€ A A & Let
0

0

b

1

)

c d

0

1

e A

Since a,c € [0,00),ac € [0,00). Since

€ A. Thus

1 01

a

C

d

01

€ A

Hence A is a semigroup. Since A C M(R), A is a subsemigroup of My(R) under



0
usual multiplication. Since

0

1
1

0 0] 10 1 0 0

0 1[0 1 01

To prove that A is divisible, let

n b

00
) EA?

0 1

0

0

. So A is not commutative.

a

1

1

0

0

1

1
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0 0

0 1

€ A where a,b € [0,00) and n € N.

0 1

Consider

0 1

n
b

n
a
Ya Va1 Var—24.+ Watl

0

1

Va :
Var—T4 Van =2+ Va+l

Var—14 Van=2+..4 Ya+1

e A

b

Van=1+ Vanr—2+.+ Ya+1

a

b

Van=T4 Van=24.+ ¥a+1

Thus A is divisible. Hence A is a noncommutative divisible subsemigroup of

M>5(R) under usual multiplication.

0 1 0 1 0 1
(n—lterms)
n/ 9 b( Va+1) n b n b
C e Va1t Yat Va Var—14+Var—2+-+ Ya+1 Va Var—T4 Van =24+ Ya+1
0 1 0 1 0 1
(n72\trerms)
n/ 3 b( Va2+ Va+1) " b n b
O Ty Yan—rt Va+1 Va Van=14 Van—24..+¥a+1 Va Van—1+ Van—24..+ Ya+1
0 1 0 1 0 1
(n—3‘1;rms)
ofgn WVt Van R e Yatl)
Van=14 Van=24...+ Ya+1
0 1
a b
01
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Proof of B being a noncommutative divisible subsemigroup of M;(R)

under usual multiplication. Obviously, B is a subsemigroup of M;(R) under

00 00 00 0 0] |0 0
usual multiplication. Since , € B, =

11 0 1 01 1 1] 10 1

0 0f |0 O 0 0
= . Thus B is not commutative.

01 11 11
To show that B is divisible, let x € B and n € N. So 2t € A. Since A is

divisible, there exists y € A such that y® = 2'. Then y* € B. Thus (y")" =

(yt) .. (yt) = (y-- .y)t 4 (y”)t = (xt)t = 2. Hence B is divisible.
—_———

(n terms) (n terms)

Therefore B is a noncommutative divisible subsemigroup of Ms(R) under usual

multiplication.

Proof of C' being a noncommutative divisible subsemigroup of M,(R)

under usual multiplication. Clearly, C' is a subsemigroup of M;(R) under

11 10 10 1 11 ({1 0
usual multiplication. Since : =0, =

0 0 0 0 0 0 0 0] 10 0

= 2 So C“is not commutative.

1.0
In-order to show that C-is divisible; let € -C-where.a; b€ [0, 00) and

0 a

1 n — " b— n
n € N. Consider Var-t4 Var 24+ Vatl | ¢ o

0 Va




1

0

b

Var=14Var =24+ Ya+1

a

b

Var=T4 Van=2+4..+ Ya+1

Va

b(Y/a+1)

Var=14 Van=2 44 Ya+1

n

a?

b( Va2+ Ya+1)

Var—T4 Van =24+ Ya+l

n

a3

b(Var—14+ Van—2+4-+ Ya+1)

b

Var=T4+ Van=24..+ Va+1
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b

7\L/an71+ Van72+...+ %+1

Wa

b

Van—14 Van—2+.+ Ya+1

a

Var—14 Var—2+.+ Va+l

na

b

Var—T4 Van =24+ Ya+1

va

Var—1I+ Van—24..4 Ya+1

n

an

(n—3 terms)

Thus C' is divisible. Hence C' is a noncommutative divisible subsemigroup of

M, (R) under usual multiplication.

Proof of D being a noncommutative divisible subsemigroup of M5(R)

usual multiplication. Since

1 0] 1]1 O 10

0 0] 11 0 0 0

10 10

Y GD?
1 0l |00

10

10

under usual multiplication. Obviously, D is a subsemigroup of M;(R) under

1 0111 0

1 0f |0 O

. Thus D is not commutative. The divisibility of D
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can be proved similarly to that of B. Therefore D is a noncommutative divisible

subsemigroup of Ms(R) under usual multiplication.

Proof of R being a noncommutative divisible subsemigroup of M5(R)

0 1(1-0) 01
under usual multiplication. Since = €ER RF#*Q.
0 1 01
a b(l—a) ¢ d(l—c)
Let ' € R where a,b,c,d € [0, 1].

0 1 0 1
a b(1—a)| |c d(l—c) ac ad(l—c)+b(1—a)
Thus - .
0 1 0 1 0 1

Since a,c € [0,1],ac € [0,1]. To show that ad(l — c¢) + b(1 — a) = t(1 — ac) for

some t € [0,1], let « = ad(1 —¢) +b(1 —a). So

0<ad(l—¢)+b(1l—a)
<a(l—-c)+(1—a)
=a—ac+1l—a

=1—ac.

Thus 0 < o € 1= ac. Hence there exists t € [0,1] such that o = t(1 — ac). So R

is a semigroup. Since R C M5(R), is a subsemigroup of Ms(R) under usual

0 1(1=0) 0 1| o 0(1=0) 0 0

multiplication. Since = ) O € R,
0 1 01 0 1 01
01 0 1] (0 O 0 0[]0 1 00
= # = . S0 R is not commutative.
01 0 1] (0 1 0 1{ (0 1 01
a b(l—a)
We want to show that R is divisible. Let € R where a,b € [0, 1]

0 1
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n b(l_a)
and n € N. Consider Var T4 Var 24t atl | ¢ p
0 1
n b(l_a)
Va Var=14 Var =24+ Va+1
0 1
P b(1-a) . b(1-a) . b(1-a)
Va Van=14 Van=24...+ a+1 Va Van =1+ Van—24.+ Ya+1 Va Van—1+ Van—24- .+ Ya+1
0 1 0 1 0 1
(n—lzrms)
/2 b(1—a)(Va+1) n b(1—a) n b(1—a)
© ey Van—rtt yat Va Var—14 Var =24+ Va+1 Va Var=T4 Van=2+4..+ Y/a+1
0 1 0 1 0 1
(n—Q‘;zrms)
n/ 3 b(1—a)( Va2+ Ya+1) n b(1—a) n b(1—a)
¥ Wt Var—2tt Watd {/a Var=T4 Van=24.+ Va+1 Va Van=T4+ Van—24..+ Ya+1
0 1 0 1 0 1
(n—S‘trerms)
B qn b= Var=14 ¥an=24...4 Yatl)
Var—14 Van—24...4 Ya+1
0 1
a b(l—a)
0 1

Thus R is divisible. Hence R is a noncommutative divisible subsemigroup of

M, (R) under usual multiplication.

Proof of S being a noncommutative divisible subsemigroup of M;(R)

under usual multiplication. Clearly, S is a subsemigroup of Ms(R) under usual

0

multiplication. Since

1(1-0)

0 0 0

I

0(1 — 0)

0

1 11

0

1

0 0
€5,

1
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. Thus S is not

commutative. The divisibility of S can be proved similarly to that of B. Therefore

S is a noncommutative divisible subsemigroup of Ms(R) under usual multiplica-

tion.

Proof of U being a noncommutative divisible subsemigroup of M;(R)

under usual multiplication. Obviously, U is a subsemigroup of M(R) under

1 0(1-0)

usual multiplication. Since

10 10

Thus U is not commutative.

To prove that U is divisible, let

n € N. Consider

b(1—a)
’{L/anfl_’_ Wan72+...+ %+1

Va

1 b(1—a)

Van—1+ Van—24. 4 Ya+1

0 Va

1 b(1—a)(Va+1)

Var=T4 Van=2+4...+ Ya+1

0 VvV a?

L 1(1-0)

i T

Y

0 0 Of |0 0
A0 1 0 |11 1 11
# - |
0 0 0 O |0 O 0 0

1 b(1—a)

0 a

b(l—a)

Var—14 Van=2+4.. Va+1

eU.
va

b(1—a)

Va4 Va2t Yard

va

€ U where a,b € [0,1] and

b(l—a)

7\7‘/an71+ van72+...+ 7\7/64_1

'\n/a

b(1—a)

Var=T4+ Van—24.. .+ Ya+1

va

b(1—a)

7\L/an71+ Van72+...+ %+1

{z/a

(n—2 terms)



1 b(1—a)( Va4 Ya+1) 1 b(1—a)
Van=T4+ Van—24..+ Ya+1 Var—T4+ Van—24..+ Va+1
0 Va3 0 Va

N

o
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b(1—a)
Var=T4 Van=2+4..+ Ya+1

Va

1 b(1—a)( Van—14+ Van—24...4 Ya+1)
7\7/[17171_‘_ 7\1/(1"72—‘1-""'1‘ %+1

0 vamn

(n—3 terms)

Thus U is divisible. Hence U is a noncommutative divisible subsemigroup of

M>(R) under usual multiplication.

Proof of V being a noncommutative divisible subsemigroup of M,(R)

under usual multiplication. Clearly, V' is a subsemigroup of M, (R)

1 0
under usual multiplication. Since —
1(1=0)-0
10 10 y om0 () 1 10
eV, = £
00 10 1 0] 10 O 0 10

10

1 0
0(1-0) 0O
1 0
. Thus V is
00

not commutative. The divisibility of 'V can be proved similarly to that of B.

Therefore V' is a.noncommutative divisible subsemigroup of Ms(R) under usual

multiplication.
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