
¢Ñé¹µÍ¹ÇÔ¸ÕàªÔ§¾Ñ¹¸Ø¡ÃÃÁÊíÒËÃÑº¡ÒÃÍ¹ØÁÒ¹à¤Ã×èÍ§¨Ñ¡ÃÊ¶Ò¹Ð¨íÒ¡Ñ´

¹ÒÂ¹Ñ··Õ ¹ÔÀÒ¹Ñ¹·Œ

ÇÔ·ÂÒ¹Ô¾¹¸Œ¹Õéà»“¹ÊˆÇ¹Ë¹Öè§¢Í§¡ÒÃÈÖ¡ÉÒµÒÁËÅÑ¡ÊÙµÃ»ÃÔ­­ÒÇÔÈÇ¡ÃÃÁÈÒÊµÃÁËÒºÑ³±Ôµ
ÊÒ¢ÒÇÔªÒÇÔÈÇ¡ÃÃÁ¤ÍÁ¾ÔÇàµÍÃŒ ÀÒ¤ÇÔªÒÇÔÈÇ¡ÃÃÁ¤ÍÁ¾ÔÇàµÍÃŒ

¤³ÐÇÔÈÇ¡ÃÃÁÈÒÊµÃŒ ¨ØÌÒÅ§¡Ã³ŒÁËÒÇÔ·ÂÒÅÑÂ
»•¡ÒÃÈÖ¡ÉÒ 2545

ISBN 974-17-1788-1

ÅÔ¢ÊÔ·¸Ôì¢Í§¨ØÌÒÅ§¡Ã³ŒÁËÒÇÔ·ÂÒÅÑÂ

A GENETIC ALGORITHM FOR FINITE STATE MACHINE INFERENCE

Mr. Nattee Niparnan

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering in Computer Engineering

Department of Computer Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2002

ISBN 974-17-1788-1

Thesis Title A Genetic Algorithm for Finite State Machine Inference

By Nattee Niparnan

Field of Study Computer Engineering

Thesis Advisor Associate Professor Prabhas Chongstitvatana, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master’s Degree

. Dean of Faculty of Engineering

(Professor Somsak Panyakaew, D.Eng.)

THESIS COMMITTEE

. Chairman

(Professor Chidchanok Lursinsap, Ph.D.)

. Thesis Advisor

(Associate Professor Prabhas Chongstitvatana, Ph.D.)

. Member

(Assistant Professor Boonserm Kijsirikul, D.Eng.)

. Member

(Assistant Professor Nachol Chaiyaratana, Ph.D.)

iv

¹Ñ··Õ ¹ÔÀÒ¹Ñ¹·Œ : ¢Ñé¹µÍ¹ÇÔ¸ÕàªÔ§¾Ñ¹¸Ø¡ÃÃÁÊíÒËÃÑº¡ÒÃÍ¹ØÁÒ¹à¤Ã×èÍ§¨Ñ¡ÃÊ¶Ò¹Ð
¨íÒ¡Ñ´ (A GENETIC ALGORITHM FOR FINITE STATE MACHINE

INFERENCE). ÍÒ¨ÒÃÂŒ·Õè»ÃÖ¡ÉÒ : ÃÈ. ´Ã. »ÃÐÀÒÊ ¨§Ê¶ÔµÂŒÇÑ²¹Ò, 98

Ë¹‰Ò. ISBN 974-17-1788-1

ÇÔ·ÂÒ¹Ô¾¹¸Œ©ºÑº¹Õéä´‰ÈÖ¡ÉÒ»’­ËÒ¡ÒÃÍ¹ØÁÒ¹à¤Ã×èÍ§¨Ñ¡ÃÊ¶Ò¹Ð¨íÒ¡Ñ´ â´ÂÁÕà»„Ò
ËÁÒÂà¾×èÍ·Õè¨ÐÊÃ‰Ò§à¤Ã×èÍ§¨Ñ¡ÃÊ¶Ò¹Ð¨íÒ¡Ñ´ ·ÕèÊÒÁÒÃ¶ÅÍ¡àÅÕÂ¹áºº¾ÄµÔ¡ÃÃÁ¢Í§
à¤Ã×èÍ§¨Ñ¡Ãà»„ÒËÁÒÂâ´Â¡ÒÃÊÑ§à¡µÍÔ¹¾ØµáÅÐàÍÒµŒ¾Øµ¢Í§à¤Ã×èÍ§¨Ñ¡Ãà»„ÒËÁÒÂ ÇÔ·ÂÒ
¹Ô¾¹¸Œ¹Õéä´‰¹íÒàÊ¹Í¢Ñé¹µÍ¹ÇÔ¸ÕàªÔ§¾Ñ¹¸Ø¡ÃÃÁÊíÒËÃÑº»’­ËÒ´Ñ§¡ÅˆÒÇ áÅÐä´‰·íÒ¡ÒÃ·´
ÅÍ§à»ÃÕÂºà·ÕÂº¢Ñé¹µÍ¹ÇÔ¸Õ´Ñ§¡ÅˆÒÇ¡Ñº¢Ñé¹µÍ¹ÇÔ¸ÕµˆÒ§ æ ·Õèãª‰ã¹¡ÒÃá¡‰ä¢»’­ËÒà´ÕÂÇ
¡Ñ¹ ¼Å¨Ò¡¡ÒÃ·´ÅÍ§áÊ´§ãË‰àËç¹ÇˆÒ ¢Ñé¹µÍ¹ÇÔ¸Õ·Õèä´‰¹íÒàÊ¹Í¹Ñé¹ ÁÕ»ÃÐÊÔ·¸ÔÀÒ¾ã¹
¡ÒÃ·íÒ§Ò¹·Õè´Õ¡ÇˆÒÇÔ¸ÕÍ×è¹ æ ·Õè¹íÒÁÒà»ÃÕÂºà·ÕÂº ¹Í¡¨Ò¡¹ÕéÇÔ·ÂÒ¹Ô¾¹¸Œ©ºÑº¹ÕéÂÑ§ä´‰
·íÒ¡ÒÃÇÔà¤ÃÒÐËŒ¢Ñé¹µÍ¹ÇÔ¸Õ´Ñ§¡ÅˆÒÇ à»ÃÕÂºà·ÕÂº¡Ñº¢Ñé¹µÍ¹ÇÔ¸ÕÍ×è¹ æ «Öè§¼Å¨Ò¡¡ÒÃ
ÇÔà¤ÃÒÐËŒä´‰ªÕéãË‰àËç¹¶Ö§á§ˆÁØÁµˆÒ§ æ ·Õè¹ˆÒÊ¹ã¨ã¹àÃ×èÍ§¢Í§¢Ñé¹µÍ¹ÇÔ¸ÕàªÔ§¾Ñ¹¸Ø¡ÃÃÁµÑÇ
ÍÂˆÒ§àªˆ¹ ÍÔ¹µÃÍ¹ áÅÐ»’­ËÒ¡ÒÃàª×èÍÁâÂ§¢Í§â¤ÃâÁâ«Á

ÀÒ¤ÇÔªÒ ÇÔÈÇ¡ÃÃÁ¤ÍÁ¾ÔÇàµÍÃŒ ÅÒÂÁ×Íª×èÍ¹ÔÊÔµ .

ÊÒ¢ÒÇÔªÒ ÇÔÈÇ¡ÃÃÁ¤ÍÁ¾ÔÇàµÍÃŒ ÅÒÂÁ×Íª×èÍÍÒ¨ÒÃÂŒ·Õè»ÃÖ¡ÉÒ

»•¡ÒÃÈÖ¡ÉÒ 2545 ÅÒÂÁ×Íª×èÍÍÒ¨ÒÃÂŒ·Õè»ÃÖ¡ÉÒÃˆÇÁ

v

##4470370121 : MAJOR COMPUTER ENGINEERING

KEYWORDS : GENETIC ALGORITHM / FINITE STATE MACHINE / INDUC-

TIVE INFERNECE

NATTEE NIPARNAN : A GENETIC ALGORITHM FOR FINITE STATE

MACHINE INFERENCE. THESIS ADVISOR : ASSOC. PROF. PRABHAS

CHONGSTITVATANA, Ph.D., 98 pp. ISBN 974-17-1788-1

This thesis tackles the problem of finite state machine inference. The objective

of the problem is to synthesize a finite state machine that can mimic the target

machine by passively inspecting the input/output of the target machine. This work

proposes a genetic algorithm for the problem. The experiments are carried out to

compare the performance and the efficiency of the proposed algorithm. The result

indicates that the proposed algorithm outperforms other methods. This work also gives

an analysis of the algorithm in comparison with other algorithms. The analysis shows

interesting issues in Genetic Algorithms such as introns and the linkage problem.

Department Computer Engineering Student’s signature .

Field of study Computer Engineering Advisor’s signature .

Academic year 2002 Co-advisor’s signature

vi

Acknowledgements
This work can not become like this present stage without numerous

contributions, effects and side-effects from many people, either unintentionally or on

purpose. I would like to use this invaluable section to express my gracious gratitude

to all of them.

First and foremost, I would like to thank my advisor, Assoc. Prof. Dr.

Prabhas Chongstitvatana, for his valuable advice and continuous support, for his

encouragement in many ways and, above all, for my first impression in Genetic

Algorithms shown by him since my early days of computer science education several

years ago.

I also would like to show my gratefulness to all my colleagues who live, work,

endure and graduate in this same master of computer engineering curriculum. They

are invaluable friends. Moreover, I could not express enough gratitude that could

match with many things done by all members of Intelligent System Laboratory that

always support me in many ways.

Many friends who work and live in another different world, a world without

tons of research papers to read, a world without everyday anxiety about how to

publish even one small paper, also deserve lots of gratitude for providing a ran-off

place for me when life of graduate students are too overwhelming. Although they are

tired of me when I start my conversation with the abstract and end it by giving a

future research. Above all, they always give inestimable advice from another point of

view. I love them all.

Most important, I would like to thank Miss Nipaporn Vitsalapong for not only

be a good friend but also motivate me in the despair days of thesis writing, though

she might not aware of her motivation, directly. Without her, this thesis surely take

much longer time to complete. I would like to bestow all my appreciations to her.

Finally, I would like to thank my parents for having continuous support and

encouragement, though sometimes indirectly. They are very patient for years and

months that I spent as a graduate student, for nights that they are anxious what kept

me up so late at night in the dark cold laboratory. Of course, some of those nights are

spent for no good but they do not seem to mind that much. It might be because that I

never told them.

This research was not sponsored by any grant nor funding from any institution,

except from time to time endorsement from my parent, though sometime unwillingly,

of course.

Nattee Niparnan

December 20, 2002

Contents
Page

Abstract (Thai) . iv

Abstract (English) . v

Acknowledgements . vi

Contents . vii

List of Tables . x

List of Figures . xi

Chapter

1 Introduction . 1

1.1 Claim . 3

1.2 Scope of the Work . 3

1.3 Organization of the thesis . 4

2 Literature Review . 5

2.1 Summary . 11

3 Genetic Algorithms . 12

3.1 Basics of Genetic Algorithms . 12

3.2 Canonical Genetic Algorithm . 14

3.3 Schema Theorem . 16

3.4 Summary . 20

4 Genetic Algorithm Methods for the Problem 22

4.1 Definition . 22

4.2 Problem Statement . 23

4.3 Reference GA Method for the problem . 24

4.3.1 Encoding Scheme . 24

4.3.2 Evaluation Function . 25

4.3.3 Operators . 26

4.3.4 Starting and Stopping Criteria . 28

4.4 New Genetic Algorithm Method for the Problem 28

4.4.1 New Evaluation Function . 28

4.4.2 New Encoding Scheme . 34

4.4.3 New Crossover Operator . 35

4.5 Summary . 38

viii

Contents (cont.)
Page

5 Experiment and Results . 39

5.1 Experiment A: Performance Comparison between GA-Based Methods . . 39

5.1.1 Measurement . 40

5.1.2 Experiment . 41

5.1.3 Results . 43

5.2 Experiment B: Solution Quality Comparison between GA Method and

Heuristic Method . 46

5.2.1 Cross Validation . 47

5.2.2 Measurement . 48

5.2.3 The Experiment . 48

5.2.4 Results . 50

5.3 Summary . 51

6 Analysis of Results . 52

6.1 Discussion of the Experiment A . 52

6.1.1 Search Space Reduction . 52

6.1.2 Schema Preservation . 55

6.1.3 Time Complexity of New Method . 59

6.1.3.1 Evaluation Function . 60

6.1.3.2 Crossover Operator . 60

6.2 Discussion of the Experiment B . 61

6.3 Summary . 65

7 Conclusion . 66

7.1 Summary . 66

7.2 Future Research . 67

7.2.1 Practical Issue . 67

7.2.2 Theoretical Issue . 68

7.3 Conclusion . 68

References . 69

Appendices

A Experimental Results in Details . 74

A.1 Experiment A . 74

ix

Contents (cont.)
Page

A.2 Experiment A1 and A2 . 77

A.3 Experiment B . 80

B Terminologies and Symbols . 85

Biography . 87

x

List of Tables
Page

4.1 Chromosome Length of the Reference Method 26

4.2 Sample Output Count Table . 31

4.3 Chromosome Length of the New Method . 34

5.1 Parameters for Every Method . 44

5.2 Summary Result in Average Number of Generation Used for Experiment A . . 45

5.3 Summary Result in Real World Time Used for Experiment A 46

6.1 Relative Comparison of Experiment A, A1 and A2 54

A.1 Raw Results of Experiment A . 74

A.2 Raw Results of Experiment A, A1 and A2 . 77

A.3 Raw Results of Experiment B . 80

xi

List of Figures
Page

2.1 Method Choosing Guideline . 11

3.1 A 3-dimensional cube . 17

4.1 Reference Encoding Scheme . 25

4.2 Reference Evaluation Function . 26

4.3 Reference Evaluation Function Pseudo-code . 27

4.4 Tournament Selection Pseudo-code . 27

4.5 New Evaluation Function Pseudo-code . 30

4.6 Sample Mealy Machine . 30

4.7 New Encoding Scheme . 34

4.8 Example of crossover operation. 36

4.9 New Crossover: State List Generation Pseudo-code 37

4.10 New Crossover: Offspring Generation Pseudo-code 38

5.1 Random Machine Generation Pseudo-code . 42

5.2 Input/output Sequence Generation . 43

5.3 Test Set Generation . 43

5.4 Problem Instance Generation Pseudo-code for Experiment A 44

5.5 Result of Experiment A: Average Number of Generations 45

5.6 Result of Experiment A: Fraction of Problem Solved 46

5.7 Cross Validation Algorithm . 48

5.8 Problem Instance Generation Pseudo-code for Experiment B 50

5.9 Result of Experiment B . 51

6.1 Number of Generation Used of Experiment A 54

6.2 Fraction of Successful Runs of Experiment A . 55

6.3 Number of Generation Used of Experiment A1 56

6.4 Fraction of Successful Runs of Experiment A1 57

6.5 Number of Generation Used of Experiment A2 58

6.6 Fraction of Successful Runs of Experiment A2 59

6.7 Result of Experiment B using Best Solutions . 63

6.8 Size of Hypothesis Machines . 64

CHAPTER I

Introduction

Someone had said that most theses can be classified according to their propositions.

Under such classification, this particular thesis is considered to be in a group which says

“the process X is a better way to do the task Y than any previously known method.” In this

thesis, the task Y is the inference of finite state machine which is consistent with a given

set of input/output sequences and the process X is the Genetic Algorithm newly proposed

in this thesis.

The problem of finite state machine inference is a kind of induction. When looking

up a famous dictionary, “induction” is “the act or process of reasoning from a part to

a whole, from particulars to generals, or from the individual to the universal; also, the

result or inference so reached.” A part, particulars or individual in this problem are the

given input/output sequences while a whole, generals or universal are finite automata.

The importance of inference, one that makes inference useful, is that the inferred things,

though based on only parts or particulars, do capture the sense of the whole or the general.

The problem in this thesis is to infer a finite state machine from some given examples

such that the inferred machine has high accuracy in identifying other unseen examples

generated from the same source.

The algorithm presented in this thesis infers a machine by a method that is based

on a fundamental concept in inference, an identification by enumeration. It searches sys-

tematically in the space of possible solutions to find one that agrees with given example.

Finding a machine that agrees with given examples without any restriction is arbitrary

easy and usually does not possess abilities to identify unseen data. The algorithm that

restricts the size of the result could better identify unseen data. The problem can be said

more precisely as an “inference of a compact finite state machine from the given exam-

ples”. This inference problem is considered to be a passive inference. Passive inference

means that the learner does not and can not control the data it receives. There are many

proof showing that the problem is NP-Complete.

Why one should try to learn finite automaton? A more general question is, why one

should be interested in inventing something that has capability of learning? The answer

lies within the fact that learning is adaptive in nature. One good example is the case of

2

hand writing recognition. When faced with hand writing recognition, one could write a

program with fully predetermined set of rules which describe hand writing recognition,

assuming that these rules are known in advance. Another choice is to write a learning

method that takes some sample handwriting text and let that method determine rules by

itself. The second approach is more robust. For examples, rules might differ from person

to person. The first approach might suffer from this problem while the second one can

adapt itself to fit any handwriting. Of course, the learning approach has some disadvan-

tages. It must undergoes a learning period which might takes very long time. Moreover,

it usually could not learn rules as complex as ones that can be determined by human.

However, adaptation is very useful and can solve many problems. After all, the existence

of a program that could learn, one that possess some sense of intelligence, is one ultimate

goal in computer science.

Then comes another question, why finite automaton is a good representation. Fi-

nite automaton is a fundamental model of computing. Its applications span in a broad

range such as sequential logic, parser, lexical analyzer, etc. Many control models are rep-

resented by finite automaton such as communication protocol. To be able to infer finite

automaton for such task could be very beneficial.

The problem of inferring a finite state machine, or more general, a problem of in-

ferring any form of language, has been attacked by many researchers. This thesis concen-

trates on the study of the inference of a Mealy mode finite state machine by using Genetic

Algorithms.

Genetic Algorithms are widely used in the field of Machine Learning. This problem

is also one of a case. There are various approaches for the problem, beside Genetic Al-

gorithms, and many of them show very promising results. Of course, one algorithm does

not fit all, especially in the broad problem like this one. There are many cases with dif-

ferent restrictions and criteria that make one method more preferable than other methods.

Genetic Algorithms have their own unique goodness which are argued to be suitable in

many situations. Improvement over previous Genetic Algorithms for the problem can re-

sult in a good alternative algorithms that is beneficial. This thesis proposes a new genetic

algorithm for the problem that is better than former Genetic Algorithms.

Some researchers had used Genetic Algorithms in this specific problem, e.g., a work

in (Aporntewan, 1999). The work of Aporntewan emphasizes the hardware implementa-

3

tion of the problem rather than the performance of the genetic algorithm method. Genetic

algorithms are quite new and have many interesting characteristic. There are various

issues which one could optimize a genetic algorithm to perform better on a specific prob-

lem. These issues present an interesting theoretical aspect of the genetic algorithm.

1.1 Claim

A thesis has to claim something and this very thesis is not an exception. As stated

very early in this chapter, a proposition made in this thesis is in the kind of “the process

X is a better way to do the task Y than any previously known method”. The process X is

the Genetic Algorithm method proposed in this thesis and the previously known method

is limited to Genetic Algorithm-based methods.

Formally, the claim made in this thesis is “A new Genetic Algorithm method pro-

posed in this thesis is a better way to solve the problem of finite state machine inference

than the former Genetic Algorithms.”

1.2 Scope of the Work

This thesis is about the improvement of Genetic Algorithm methods. Though it

tackles the well-known problem, it does not set up to propose a grand new method that

beats every other methods. It is intended to outperform the methods that use the same

approach, Genetic Algorithms. In the subsequence chapter, the goodness of Genetic Al-

gorithm approaches is discussed to show that there are the cases that Genetic Algorithms

are suitable. The thesis limits itself to the improvement of Genetic Algorithms for the

problem. The goal of the thesis is to introduce a new genetic algorithm method, to com-

pare it with a former method and to show that the new method is correct and better than

the prior one.

The claim made in the previous section must be accompanied by some evidence that

supports it. It is hard, according to nature of Genetic Algorithms, to show mathematically

that any method is better than any other methods. This work limits itself to empirically

demonstrate that the proposed method is better than other method on some test data. Of

course, the empirical result itself is not strong enough to support the claim especially

with the presence of a theorem like No Free Lunch theorem (Wolpert and Macready,

1995, 1997). To further strengthen the support of the claim, this work also gives some

discussion and analysis of the result.

4

1.3 Organization of the thesis

The thesis is organized as follows. Chapter 1 provides the overview of the thesis

and the problem. It describes what the problem is and why it is important. After that, it

states the contribution of the thesis, its scope of the work and the hypothesis. This chapter

is an introduction that is intended to be readable by non-specialist.

Chapter 2 is a survey of related works and works which are relevant to this thesis.

Mainly, there are three categories of works in this chapter. The first category is about

the work that studies the characteristic of the problem. The second one is the work that

attacks the problem and the final category is the work that uses genetic algorithm to solve

same class of problems.

Genetic Algorithms, which are the conceptual model of method used in this thesis,

are described in Chapter 3. The introduction, basics of Genetic Algorithms are discussed

along with the implementation of the simplest form of Genetic Algorithms. The funda-

mental theory of Genetic Algorithm, the Schema Theory, is also briefly described.

Chapter 4 defines technical terms and definitions that are used throughout this thesis.

Most definitions follow ones that are given in standard text books. Some new definition

is needed to be defined, nevertheless. It provides a precise, unambiguous definition for

terms before they are used. However, some new terms might be introduced later on in the

following chapter when it is appropriate.

Chapter 5 is the exhaustive detail of two genetic algorithm methods which are com-

pared in this thesis. They are described at the level of implementation detail. Some of

pseudo-codes of the methods are also presented in this chapter.

Chapter 6 describes the framework and the detail of the experiments. The setup of

the experiments is given in this chapter. It discusses how the experiments are designed

and created, what the experiments want to measure, how the measurement is measured.

Finally, the results of the experiments are shown.

Chapter 7 gives the analysis of results and the method presented in this thesis. It

conjectures on the theory of the behaviour of the proposed method. Finally, the conclusion

is given in Chapter 8 along with recommendation for future research.

CHAPTER II

Literature Review

This section gives a survey of works relating to this thesis. The works are divided

into three categories. There are works involving in characterizing the problem, algorithms

for the problem, and Genetic Algorithms for related problems.

This thesis proposes the use of Genetic Algorithms to solve the problem of synthe-

sizing a finite state machine consistent with a given input/output sequence set. Finding a

finite state machine consistent with given input/output sequences is a problem in the field

of grammatical inference. Grammatical inference is an inference of any structure that can

recognize a language. The inferred structure can be anything ranging from something as

simple as a finite state automaton to something as complex as Turing machine. Grammat-

ical inference itself is a sub-field of Inductive Inference. In summary, inductive inference

is a process that takes some examples and conjectures a general rule that describes the

given examples. For instance, a process is given some pairs of a value x and a value of

some particular function at the point x, (x, f(x)) and the process is required to hypoth-

esize what that particular function f is. The problem of finding a finite state machine

which is consistent with given input/output sequence set can be thought of as an inductive

inference problem by considering that the given set is examples and a machine that can

correctly identify it is a conjectured rule. A good survey of inductive inference can be

found in (Angluin and Smith, 1983).

It is well known that finding a minimum size deterministic finite automaton consis-

tent with a set of given samples is NP-complete. This is shown in (Gold, 1978). Further-

more, Pitt and Warmuth (1993) shows that even finding a deterministic finite automaton

whose size is polynomial in the size of the minimum solution is also NP-complete. If

a uniform-complete sample up to some particular length n is given, the problem can be

solved in polynomial time on the size of samples but the size of a uniform-complete sam-

ples itself is exponential on the number of states. It is also shown that even when some

fixed small fraction of uniform-complete samples is missing, the problem still be an NP-

complete (Oliveira and Silva, 2001). The work in (Dupont et al., 1994) is a good short

summary on the complexity of automaton identification. Thought the problem is shown

to be intractable, it seems to be practical on average as there are many algorithms that do

well in the task which are discussed in the following paragraphs.

6

For the solution of the problem, Biermann proposes algorithms in (Biermann and

Feldmann, 1972) and (Biermann et al., 1975). The algorithm uses an extensive search

approach. The algorithm starts by constructing a prefix tree acceptor which describes

all given examples. The algorithm then tries to find a mapping of the states of the pre-

fix tree acceptor to states of a finite state machine of size n. If no possible mapping is

found, n is increased by one and the algorithm restarts the search. By starting from a

small value of n which is guaranteed to be less than minimum, the method is guaran-

teed to find the minimum solution. A notable improvement over the method of Biermann

has been recently done in (Oliveira and Silva, 2001). Their method incorporates many

techniques in searching, such as non-chronological backtracking and conflict diagnosis.

When the search method reaches the point where there is unsatisfactory in search criteria,

non-chronological backtracking tries to find the cause of dissatisfaction and backtrack all

the way back to the beginning of the cause. This avoids unnecessary search in all con-

tradictory branches below the beginning point of the cause. Conflict analysis improves

the method furthermore by analyzing and memorizing a set of parameters that causes dis-

satisfaction. Whenever these parameters are detected again in any other branch of the

search, the algorithm will then omits the entire branch below that point. This method

prunes out a lots of branches and results in much less number of backtracking. Although

the time used per node of Oliveira’s method is higher than Biermann’s, Oliveira’s can

reduces the number of unnecessary backtracking effectively. In fact, the work of Oliveira

and Silva is recognized as the current state-of-the-art on finding a minimum size FSM that

is consistent with a given input/output sequence set.

Since the problem is NP-Complete, i.e., there is no known efficient algorithm for the

problem, Genetic Algorithms are among the choices that are used by many researchers.

A story of finite state machine inference by evolutionary computation are dated far back

in the history. Fogel, et al, (1965) (reprinted in (Fogel et al., 1998)) use an evolutionary

programming to infer a finite state automaton. Dupont (1994) proposed the GIG method

which is based on Genetic Algorithms to infer automata accepting 15 different regular

languages. The GIG method constructs a maximal canonical automaton or MCA for the

given positive examples. The MCA is a non-deterministic form of a prefix tree acceptor.

The MCA itself can correctly recognize the positive examples but not the negative exam-

ples. The GIG method then uses Genetic Algorithms to find a partition of states in the

constructed MCA. A partition is used to group and merge states in MCA. The method

tries to find a partition such that the partition can correctly identify the negative examples.

7

The evaluation function of the method is also designed to have preference on a small

machine.

Aporntewan and Chongstitvatana (2000), use Genetic Algorithms to synthesize a

Mealy mode finite state machine which has multi-bit input/output. Their work proposes

a hardware implementation for the problem. Their genetic algorithm encodes transition

functions and output functions of a Mealy machine in a bit string. The consistency of the

machine and the given input/output sequence is used as an evaluation function. However,

their method is able to solve only small size of finite state machines. The motivation

behind the work is to construct a hardware that can mimic other hardwares.

The work in (Manovit et al., 1998) studies the relation between the length of given

sequence and the accuracy in identifying unseen data of the solution. The method used

in the work is Genetic Algorithms that produces the GAL structure circuit that is consis-

tent with a given sequence. The accuracy is a correctness percentage that a consistency

machine (GAL circuit) is behavioral equivalent to the target machine that generates the

input/output sequence. The work defines the lower bound and upper bound lengths of the

sequence for the selected test set. The work shows that a sequence that is shorter than

the lower bound length can not yield accurate solutions and the correctness percentage

saturates at the upper bound length. The correctness percentage can not be raised to 100

percent. In general, the longer sequence of examples yields higher correctness percent-

age. Chongstitvatana and Aporntewan (1999) extends the previous work by showing that

multiple input/output sequences should be used to improve the correctness percentage and

it is better to have multiple short sequences than one long sequence. One long sequence,

while statistically long enough to exercise all transition, might not really exercise every

transition of the target machine, especially the first state. The sequence might walk pass

one state only once and never go back to that state again. In this case, only one out path of

that state is exercised. This problem can be addressed by using multiple sequences. The

work also shows that multiple sequences can be used to raise the correctness percentage

to 100 percent.

The use of Genetic Algorithms is not limited to an inference of finite state machines,

but it also extends to an inference of many kind of structures. There are various works that

use genetic algorithms to generate a structure capable of recognizing a language. Lucas

(1994) attacked a context-free grammar inference problem by using biased chromosome

representation. He succeeded in inference three alphabets palindromes. Lankhorst (1995)

8

used Genetic Algorithms for the induction of nondeterministic pushdown automata that

can recognize a language from given positive and negative examples. The automata use

the acceptance by empty stack approach. The algorithm encodes a fixed number of transi-

tions of the pushdown automata. The key point in his algorithm is the evaluation function

which is based on the number of correctly identified examples, prefix lengths of consumed

incorrectly identified examples, and the size of stack used. The method is compared with

the GIG method in (Dupont, 1994) and other methods that use neural networks as an

acceptor. The result shows better achievement over the other methods. Pereira, et al,

(1999,2000) attacked the problem of constructing a Turing Machine to perform a spe-

cific task. The task is to write as much “1” as possible on an initially blank tape and

halt after that. These works use Genetic Algorithms with special techniques designed for

the problem such as special chromosome presentation (Machado et al., 1999) and graph-

based-crossover (Pereira et al., 1999b).

Another related problem is the problem of learning a deterministic finite automa-

ton from given positive and negative examples. The goal emphasizes in a generalization,

which means that the learned DFA must be able to correctly identify unseen data. Lang

and Pearlmutter set up the Abbadingo One (Lang, 1997) competition to promote the de-

velopment of better algorithms for this particular problem. There are many interesting

results from the work. Notable one is the Event Driven State Merging (EDSM) algo-

rithm and its variation described in (Lang et al., 1998). The algorithm is based on the

state merging method introduced by Trakhtenbrot and Barzdin (1973). This method

constructs a prefix tree acceptor that describes the given positive and negative examples

and then folds it up by merging compatible pairs of states. However, one could not know

whether the states that are going to be merged are exactly the same state in target au-

tomata or not. A merging of states usually introduces other constrains to a merging of

later states. It is crucial that early merges should be as correct as possible. So, merging

are done according to some measurement on the evidence that the merging states are the

same. It is very important to merge states that is most likely to be the same first. There

are various measurement for the evidence. The original algorithm by Trakhtenbrot and

Barzdin merges states in breadth-first order. Breadth-first order of merge is a coarse esti-

mate of evidence of merging since near-rooted nodes have large subtree beneath them, and

that subtree can be used as an evidence for compatibility as pointed out in (Lang, 1992).

However, a better strategy is to measure the evidence directly instead of using some pre-

determined order that correlates with the evidence. The EDSM algorithm calculates the

9

evidence measurement of every pair of nodes before performing any single merge. How-

ever, extensive calculation of every pair takes too much time. A winner in Abbadingo

One (there are two winners) use a modified version of EDSM that filters some pairs out

of evidence calculation. It is possible that the filtered out candidates of merging might be

good ones but it is usually unlikely. The filtered EDSM algorithm, called “blue-fringe”,

turns out to be much faster and simpler while it suffers only slightly inaccuracy when

compared to the reference EDSM.

The goal of generalization and the goal of finding a minimal consistent rule is quite

different. Although they share some common attribute, the results of both can not be

compared as noted in (Oliveira and Silva, 2001). The blue-fringe algorithm, while results

in more generalized hypothesis, makes no warranty on the size of the conjectured machine

and normally it is not the minimum size. The state merging based algorithm also loses

the ability to correctly identify the finite automaton when the size of the training set gets

smaller as noted in (Oliveira and Silva, 2001). However, blue-fringe algorithm is faster

and much more scalable.

The work on the problem of inferring a finite state machine can be divided into three

major approaches.

1. A Genetic Algorithm Approach: This approach uses Genetic Algorithms to

search among space of possible machines of limited size to find one that is

consistent with given data. An example is the method in (Aporntewan, 1999).

2. An Exact Minimum Search Approach: This approach is based on the algo-

rithm proposed in (Biermann and Feldman, 1972). It tries to map states in

prefix tree acceptor of the given example into a minimum possible finite state

machine.

3. An Inexact Heuristic Approach: This approach constructs a finite state ma-

chine with a heuristic method. The goal in this approach is slightly different

from the goal of previous two approaches. This approach does not limit the

size of the result but it can find the result in very short amount of time. It also

scales well when the size of the problem increases.

It seems that the third approach is the most successful one if main consideration

is on the size of the problem. Methods in this approach are fast and highly scalable.

10

However, this approach does not put constraint on the number of states of the result

machine in its goal. Furthermore, when the training set gets smaller, this approach

becomes ineffective when compared to the method that has size restriction as noted in

(Oliveira and Silva, 2001).

The second approach, in contrast, puts a very strong constraint on the size of the

result. The result is guaranteed to be minimum. The speed of the algorithm and the

problem size that it can cope with is fairly good, though it is far from the third method. The

method is based on a search method that tries to map states in prefix tree acceptor which

is created from given examples into a minimum finite state machine. Thus, when the size

of the problem is fixed, the time complexity of the method is exponentially dependent on

the number of given examples. This is a major problem since more examples will yield

more accurate hypothesis result as noted in (Chongstitvatana and Aporntewan, 1999).

A genetic algorithm approach, though it is not as fast as the third method nor it guar-

antees with the minimum size, plays a good role by filling a gap between two previous

approaches. It gives a fairly small size with a speed that is polynomially (not exponen-

tially) dependent on the number of examples, when the size of the target machine is fixed.

This thesis recognizes the advantage and intends to improve the work in a genetic algo-

rithm approach.

In conclusion, when a user is faced by the automaton inference problem, that user

can choose among these three approaches. One way of determining the appropriate algo-

rithm is to consider the constraint of the problem at hand. First, if the problem does require

that the result automaton must be as small as possible, the exact minimum approach is the

best. If the problem does not have size restriction, the possible choice are the heuristic

approach and the Genetic Algorithms approach. Which one should be used can be con-

sidered from the size of the training set. If the size is quite small, the GAs approach is

more promising. If not, Biermann’s-based algorithms should be used instead. the GAs

approach also has other benefits. It is easily customizable. For examples, if the problem

requires that the size of the machine must be fixed to a particular size which is smaller

than minimum, a GAs based method can be easily modified to find near-consistency so-

lutions but it is not quite clear on how to modify the minimum search approach. Figure

2.1 shows a guideline of the methods choosing for the problem.

11

Size

Contraint ?

Large

Training Set?

Biermann’s

Method

Heuristic

Method

Genetic

Algorithm

Method

Y
 N

Y
 N

Figure 2.1: Method Choosing Guideline

2.1 Summary

This section reviewed some interesting researches that are related to the work. Three

fields of works are presented here. They are the characteristic of the work, the algorithms

for the problem and the Genetic Algorithms for the problem. The problem of automaton

inference captures a lots of interest from many researchers. Many works from theoretical

and practical point of view have been done. In summary, the problem is known to be

very hard in theory but there are many promising algorithm that can solve the problem

on average cases, for a reasonable small size, of course. Genetic Algorithms are a choice

of many researchers, not only for this problem but for many problems alike. For this

specific problem, algorithms for it are reviewed here and a recommendation for choosing

of algorithms is made according to some characteristic of the problem.

This chapter and the previous chapter have laid out some introduction of the work.

After this point, the thesis will concentrate on describing the essence of the work. The

next chapter starts by providing details about a conceptual model of the work, the Genetic

Algorithms.

CHAPTER III

Genetic Algorithms

This chapter describes the conceptual model of the method used in this thesis, the

Genetic Algorithms. This chapter starts by explaining Genetic Algorithms in practical

sense. A basic form of Genetic Algorithms is described in detail along with its implemen-

tation. After that, the fundamental theory of Genetic Algorithms, the Schema Theorem, is

discussed. This chapter is intended to provide basic introduction to Genetic Algorithms.

A reader who is familiar with Genetic Algorithms might skip this chapter entirely.

Genetic Algorithms are classified to be in a group of method called evolutionary

computation which refers to a method that uses some form of evolution as a major part

of the process. Original Genetic Algorithms were introduced since 1975 by John Holland

(1992) but evolution-based computation approaches are dated back much prior than that.

However, the most popular forms of evolutionary computation are Genetic Algorithms

and its variants called Genetic Programming which is introduced by Koza in (Koza, 1992).

Genetic Programming differs from Genetic Algorithms in a way that they manipulate their

data. Genetic Algorithms use fixed-length representation while Genetic Programming use

dynamic representation. This chapter focuses entirely on Genetic Algorithms.

3.1 Basics of Genetic Algorithms

Genetic Algorithms are a class of function optimizer algorithms, though their ac-

tual applications span in a wide range of problems from machine learning to solving of

intractable problems. Genetic algorithms, introduced by John Holland since 1975, are

search procedures inspired by evolution. In general, Genetic Algorithms maintain a col-

lection of potential solutions called population. Each potential solution, usually called

as an individual, is evaluated to check how “goodness” it is. The measurement of each

individual is problem dependent. Some of solutions are selected according to their “good-

ness” values to survive to the next generation. Some of survived solutions, if not all,

then undergo series of operations to create new solutions. The newly created solution is

called as an offspring. A collection of offsprings forms a new population. The process

is repeated until some conditions are met. The selection method and the operators are

designed to drive population better and better by implicitly identifying and assembling of

critical information.

13

Genetic algorithms assume few assumptions about the problem being solved. This

renders Genetic Algorithms to be a very general approach. This has both advantages and

disadvantages. The generality allows Genetic Algorithms to be applicable on a broad

range of problems. On the other hand, generality comes with the cost of performance,

Genetic Algorithms do not exploit much of information of a problem that the problem

might provide. Genetic algorithms usually are not competitive in a field in which there

are known specialized algorithms for the problem. For example, though genetic algo-

rithms are known as function optimizers, they perform very poorly when compared with

typical numerical methods, e.g., Newton-Raphson method, in optimization of the con-

vex function. This is due to the fact that those numerical methods rely on differentiable

property of the function while Genetic algorithms do not assume and do not use such

information.

So, where could genetic algorithms be a good choice? Genetic algorithms are re-

garded as global search methods that can be applied to non-differentiable or multiple

local optima problems. NP-Complete and intractable problems are good candidates as a

problem instance where genetic algorithms may be superior.

The Genetic Algorithm procedure is described briefly as follows. Genetic algo-

rithms begin with a collection of (typically random) potential solutions encoded in a

chromosome-like data structure (a bit string). The word chromosome and bit string refers

to a potential solution which is encoded into a form that Genetic algorithms can perform

their operators on. In contrast, The word solution and individual refer to the potential

solution. Whether that solution is in an encoded form or a decoded form is not specific.

With a collection of individuals, Genetic algorithms enter a loop. The loop is repeated

until the stopping criteria is met. The criteria might be a limit of time or a discovery of

the solution. There are two main steps in the loop. The first step is the evaluation of

population. This step measures the goodness of each individual. The next step is to select

some candidates from the population and then applies some recombination operators on

the selected candidates to create new individuals. These new individuals replace the old

ones in the population. There are various selection scheme and replacement scheme but

all of them share one thing in common, an individual with high “goodness” has more

chance of surviving to the new population than one with low “goodness”.

Genetic algorithms are inspired by evolution. They can be thought of as a simulation

of evolution in nature. A collection of solutions can be regarded as a population of an

14

arbitrary specie. That specie lives for a period of generations. Some individuals die and

some individuals are born. The entire specie evolves through their living and dying. Each

individual in the population has a chance to survive. A highly fit individual has a better

chance to mate, breed and pass its gene which describes its characteristic to the next

generation. In the end of generation, a “good” individual is hoped to emerge.

Genetic Algorithms assume very few assumptions. Normally, there are two facts

which are problem dependent that genetic algorithms require. The first is how the solution

of the problem is encoded for processing. The second is how “goodness” value of each

solution is measured. Genetic Algorithms encode potential solutions in bit strings. It

implies that every parameters in a solution must be discretizable. The second assumption

implies that there must be an evaluation function for the problem. This is not difficult

since the evaluation function is usually given as a part of a problem definition itself.

There are some issues on both assumptions. On the first assumption, when some

parameters of a solution must be discretized into exactly some numbers that is not a power

of 2, for example, if the value of the parameter X has an admissible presentation only as

an integer in the range of precisely 0–20. The number of bits required to map these 21

distinct values is 5 bits. However, 5 bits can be decoded into 32 distinct values. What

should be done on remaining 11 values? Most obvious (and worst) solution is just to

ignore an individual that possess an inadmissible value. This method usually results in

low performance. For such problem, the user has to use some techniques to cope with

this issue. The other issue is evaluation. Some problems do not have “exact” evaluation

function. This is usually a case where a solution is some kind of program or code. This

kind of problem needs simulation-based evaluation. In such case, an evaluation function

is just an approximation of partial performance of the solution. To have more accurate

evaluation function, the simulation process must be precise hence takes more time. There

is a trade off between time and accuracy of evaluation.

3.2 Canonical Genetic Algorithm

There are various variations of Genetic Algorithms. This section describes an im-

plementation of one form of Genetic Algorithms originally proposed by Holland (1992)

known as Canonical Genetic Algorithm or sometimes as Simple Genetic Algorithm. The

section concentrates mainly on the implementation of the algorithm.

15

Canonical Genetic Algorithm starts with a collection of potential solutions. Each

individual is randomly created and encoded in a fixed-length binary string. The length of

string depends on the encoding of the problem. With starting population, the algorithm

enters a loop of evaluation and reproduction. The loop runs until the answer is found or

the predefined number of iterations is met.

There are two steps in the loop. First step is an evaluation of every individual.

The algorithm evaluates every individual by the specific evaluation function depending

on the problem. After that, each individual is assigned with a probability of selection

which is calculated from the value of the evaluation function. The probability of selection

influences how much chance that individual has on being selected to reproduce itself. The

function that calculates the probability is called a fitness function and it is equal to fi/f ,

where fi denotes the evaluation value associated with the individual i and f denotes an

average evaluation value over all individuals in the population.

This thesis adopts notions used in (Whitley, 1993). That is, an evaluation function

means the function that is used to measure “goodness” of each individual while a fitness

function converts that measurement into a probability of selection. Evaluation function

takes only one individual as a parameter and its value is independent to the other indi-

viduals. On the other hand, fitness function takes all individuals into account and each

individual’s value is dependent on the others’.

The next step in the loop is a reproduction step. It consists of two sub-processes,

a selection and a recombination. Selection chooses some individuals with probability

according to their fitness function (fi/f). It is possible that some individual is selected

more than once. Various implementation of this style of selection has been proposed. A

widely used one is a simulation of a roulette wheel. Each individual has its own slot in

the wheel. Each slot has different size and is proportion to its fitness value. A selection

is done by spinning the wheel. This resembles a “stochastic sampling with replacement.”

The newly selected population is called intermediate population.

The recombination is applied with some probability. Two individuals from the pre-

viously created intermediate population are selected and then the operator called crossover

is applied to produce new individuals. The individuals which are selected to be recom-

bined are called parents and the generated individuals are called offsprings. The param-

eter pc indicates how often that the operator is applied. When the operator is applied,

16

the offsprings replace their parents. Searching in Genetic Algorithms is mainly done by

recombination because it generates new points in the search space. The parameter pc is

usually set to a high value.

By the fact that each individual is encoded in a fixed-length bit string, crossover

swaps portion of two individuals. First, a cross site is randomly chosen with uniform

distribution. A cross site indicates a boundary of portion which will be swapped. Assume

that a string 110011 is going to be crossed with a string baabba and assume that a cross

site is chosen to be between the second and the third bits, A crossover happens like this:

11|0011

ba|abba

Swapping portion of these two parents string produces following offsprings:

11abba

ba0011

After a crossover is done, the mutation operator is applied to the intermediate popu-

lation (which some of its individuals are replaced by new offsprings). Mutation randomly

flips some bit in the chromosome with probability pm. Mutation is used to ensure that

every bit position is never fixed to some value. Normally pm is set to a very low value,

e.g. 1% or less.

Reproduction step results in a new population. The old population is discarded and

the new one acts as the population in hand. Canonical Genetic Algorithm proceeds to

another iteration of the loop, i.e., it goes on an evaluation of the new population and then

recombines again and again until the iteration is stopped.

3.3 Schema Theorem

Why does genetic algorithm work, after all? Or more precisely, what makes the

Genetic Algorithm an effective search algorithm? Most widely accepted explanation is

the theorem laid down by John Holland as described in (Goldberg, 1989).

The theory suggests that, although Genetic Algorithms seem to search on a pop-

ulation of individuals, in fact, they implicitly search in a larger search space of hyper-

17

planes. Genetic Algorithms benefit from the fact that there are a much larger number of

hyperplanes than the number of individuals in the population itself. The hyperplanes are

implicitly sampled in the population. The implicit searching receives a special name as

implicit parallelism or intrinsic (Whitley, 1993). Genetic Algorithms, generation by gen-

eration, use the information stored in the population to implicitly search in the space of

hyperplanes.

To illustrate a hyperplane, it is best to consider a sample problem of 3 bits en-

coding. There are eight possible individuals in the search space. Imagine a cube in a

3-dimensional space with every corners are labeled as depicted in Figure 3.1. The cube is

labeled 000 at the front lower left corner. The front plane of the cube contains all strings

ended with “0”. A special notion is introduced to describe portion of the cube. A notion

“*” is used to represent a don’t care value. The string “**0”, which means “any string

ended with 0”, describes the front plane. Another example is “*1*” which describes the

top plane and “*00” which describes the front lower line. A hyperplane is a partition of

strings that is represented by a string containing “*”. A string containing “*” has a special

name schema.

Figure 3.1: A 3-dimensional cube

A bit string matches a schema when every bit in the schema that is not “*” is the

same as the corresponding bit in the bit string. Since a schema represents a hyperplane,

any string that matches a particular schema is contained in the hyperplane represented by

that schema. A bit string of length L is contained in 2L−1 different schemata (the schema

with “*” in every bit is not counted as a partition of the search space).

The idea of implicit parallelism comes from the fact that while Genetic Algorithms

work with a population of individuals, Genetic Algorithms also work with much larger

18

number of hyperplanes possessed in those individuals. In fact, a population of individu-

als contains information about how many representatives does each particular hyperplane

have in the population. When a population is evaluated, a lot more number of hyper-

planes are also implicitly evaluated in parallel. A recombination and selection process

affect schemata by changing their numbers of representatives in the population due to the

average fitness of bit strings that are contained in those schemata. It implies that genetic

algorithms use a population of bit strings to estimate fitness of hyperplane partitions. The

key idea of Genetic Algorithms is that the population is driven toward a region of highly

fit schemata. High fitness schemata will have more and more representatives in the next

generation while low fitness schemata will die off.

Selection alone is enough to change the number of representatives of each hyper-

plane but selection itself does not generate new sampling point in the search space. Re-

combination operator and mutation are the ones that are responsible.

Crossover affects the representative of hyperplane as it disrupts some schemata and

sometimes it introduces new ones. Disruption by crossover occurs when crossover point

lies within critical parts of a schema. For example, consider a schema ***11***, when

a cross site falls between the first and the second 1’s, this schema is destroyed, except

that the other parent incidentally has 1 in that position. A chance that crossover affects

any particular schema depends on the value of that schema. For example, consider the

schema ***11*** of length L = 8. The probability that crossover will separate this

schema is 1/(L − 1) since there is only one cross site (between the first and the second

1) in the total of L− 1 possible sites. Let us consider another schema, 1******1. The

probability for this schema is (L − 1)/(L − 1) = 1, any cross site separates the fixed

value of the schema. In general, the longer that the fixed bits span in a schema, the higher

chance that the schema will be destroyed by crossover. This behavior reduces a chance on

surviving into the next generation that each schema has. This effect should be minimized.

It can be done by using a compact representation with respect to schemata. A compact

representation suggests that highly fit schemata should have short distance of the fixed

bits since it will have less chance to be affected by crossover.

Mutation also disrupts schemata since mutation flips bit in a schema. However,

mutation should not be omitted entirely because it prevents some schema from perma-

nently loss from a population. Usually, it is possible that a population converges into

some schemata. This causes some positions in all bit strings to be only 0 or 1. There is

19

a chance that those positions converge into wrong bit value (this situation is called pre-

mature convergence). Mutation is used to prevent such a case. It is also suggested that

mutation should be used with very low probability.

A formal definition of schema theorem is presented as follows. The theorem pre-

dicts a lower bound number of a particular schema’s representations in next generation.

Let M(H, t) be the number of strings in the current generation t that represents schema

H . The change of a particular schema H (assume that the fitness function is fi/f) will

be:

M(H, t + 1) = M(H, t)
f(H, t)

f

Now, the effect of crossover is to be added into the equation. Crossover which is

executed with probability pc sometime destroys a schema H . In fact, crossover sometime

creates schema H by operating on a pair of strings that coincidently contain only portion

of H . To make things simple, a creation of a schema H by crossover is neglected. Let

pd denote the probability that a schema H is destroyed by crossover. The equation above

changes into inequality:

M(H, t + 1) ≥ (1− pc)M(H, t)
f(H, t)

f
+ (pc)

[

M(H, t)
f(H, t)

f
(1− pd)

]

A value pd can be computed from properties of a schema H . Let ∆(H) denotes the

defining length of H . The defining length of a schema is the distance between the leftmost

and the rightmost bit in the schema that is not “*”. For example, schema ****11***

has a defining length of 1 since leftmost position is the 1 in fifth bit and the rightmost

is the 1 in the sixth bit; 6 − 5 = 1. Schema ****11*0* has a defining length of

8−5 = 3. The probability that a cross site will lie in this critical section is ∆(H)/(L−1)

where L is the length of this schema. There is one exception, crossover will not destroy

a schema H even a cross site is on this ∆(H) bit long portion when both of the parent

strings represent H . Let P (H, t) be the proportional representative of H . P (H, t) is equal

to M(H, t) divided by the population size. The probability that the selected parent will

represent H is P (H, t). pd can be described as:

pd =
∆(H)

L− 1
(1− P (H, t))

20

Divide the last inequality by the population size to change M into P and then rear-

ranges it a little.

P (H, t + 1) ≥ P (H, t)
f(H, t)

f
[1− pc · pd]

Substitution pd by its value yield:

P (H, t + 1) ≥ P (H, t)
f(H, t)

f

[

1− pc ·
∆(H)

L− 1
(1− P (H, t))

]

Mutation also affects the proportion of the schema. Let o(H) be the order of a

schema H . An order of a schema H is the number of bits in H that is not “*”. Mutation,

which flips bits in strings, will destroy a schema if the bit that is not “*” (don’t care) is

flipped. Thus, the probability that mutation will destroy a particular schema H is (1 −

pm)o(H). This yields the final inequality:

P (H, t + 1) ≥ P (H, t)
f(H, t)

f

[

1− pc ·
∆(H)

L− 1
(1− P (H, t))

]

(1− pm)o(H)

In conclusion, this inequality says that the proportion of schema H in the next

generation changes from the current generation according to its fitness value. Above

average schema will grow while under average schema will die off. Its growth and dead

rate are perturbed by its order and defining length. The higher the order and the defining

length, the higher that it is perturbed.

3.4 Summary

This chapter described the basics of Genetic Algorithms from both practical and

theoretical points of view. It started by giving the overview of Genetic Algorithms, its

characteristic, its potential and usefulness. The simplest form of Genetic Algorithm, the

Canonical Genetic Algorithms was described next. In general, Genetic Algorithms are

a class of search algorithms inspired by evolution from nature. The Schema Theorem

which is the fundamental theory of Genetic Algorithms was also presented. The theorem

said that a low order, short defining length schema grows according to its fitness value.

For more detail about Genetic Algorithms, the reader is suggested to read the standard

book such as (Goldberg, 1989).

21

The next chapter will formally define definitions and terminologies that are going

to be used in this work.

CHAPTER IV

Genetic Algorithm Methods for the Problem

This chapter describes two genetic algorithm methods which are used to solve the

problem of finite state machine inference. These methods are the reference method which

is used by other researchers and the newly proposed method. Both of them are described

from the implementation perspective. The explanation is in step-wise manner starting

from the encoding, the evaluation, the operators, and finally, the initialization and stopping

criteria.

4.1 Definition

Definition 1 A Mealy machine M is a 6-tuple (Q, Σ, ∆, δ, λ, q0) where Q is the set of

states, Σ is the input alphabet, ∆ is the output alphabet, δ(q, a) : Q × Σ → Q is a

transition function, λ(q, a) : Q×Σ → ∆ is an output function and q0 is the starting state.

This work assumes that the size of Q is m, the size of Σ is n and the size of ∆ is

o. Unless state otherwise, q denotes a particular state, i denotes a particular input and o

denotes a particular output. λ is a function mapping Q × Σ to ∆, that is, λ(q, a) is an

output associated with the transition from state q on input a.

For simplicity, it is assumed without loss of generality that states of the machine is

a set of number {0, 1, . . . , m} where m is the number of states of the machine. The input

and output alphabets are assumed in the same way. For a set of alphabet of size a, the set

is assumed to consist of {0, 1, . . . , a− 1}. For example in the case of binary input/output,

input and output alphabets are {0, 1} both.

Usually, there are many cases that a transition function and an output function apply

to a state and a string. It is convenient to define a new transition function and an output

function that can apply to both a string and a symbol.

Definition 2 A function δ̂ is a function from Q× Σ∗ to Q. The function δ̂ is defined as

1) δ̂(q, ε) = q

2) δ̂(q, wa) = δ(δ̂(q, w), a)

where ε is an empty string, w is a string and a ∈ Σ is an input alphabet.

23

Definition 3 A function λ̂ is a function from Q× Σ∗ to ∆. The function λ̂ is defined as

1) λ̂(q, ε) = q

2) λ̂(q, wa) = λ(λ̂(q, w), a)

where ε is an empty string, w is a string and a ∈ Σ is an input alphabet.

The output of the machine in response to input a1, a2, . . . , an where n ≥ 0 is

λ(q0, a1)λ(q1, a2) . . . λ(qn−1, an) where q0, q1, . . . , qn is the sequence of states such that

δ(qi−1, ai) = qi for 1 ≤ i ≤ n

Definition 4 Let M = (Q, Σ, ∆, δ, λ, q0) be a Mealy machine. An input/output se-

quence S of length n is an ordered pair (I, O) where I = i0i1 . . . in−1 ∈ Σn and

O = o0o1 . . . on−1 ∈ ∆n. An input/output sequence set ζ = {S0, S1, . . . , S|ζ|−1} is a

set of input/output sequences.

Definition 5 Let M = (Q, Σ, ∆, δ, λ, q0) be a Mealy machine. M is said to be consistent

with input/output sequence S = (i0i1 . . . in−1, o1o2 . . . on−1) iff oj = λ(q0, i0i1 . . . ij) for

all 0 ≤ j ≤ n. M is said to be consistent with input/output sequence set ζ iff M is

consistent for all Si ∈ ζ .

Definition 6 A walk W on machine M = (Q, Σ, ∆, δ, λ, q0) by input/output sequence S

of length n is a sequence q0, q1, q2, ..., qn where qi ∈ Q such that, qi = δ̂(q0, i0i1 . . . ij).

In other words, a walk W is a sequence of states that was visited when an input/output

sequence SM is fed to machine M .

4.2 Problem Statement

Given the input/output sequence set ζM , which is composed of a number of in-

put/output sequences where the input is randomly generated and the corresponding output

are collected from a target machine M whose number of states is m, the task is to find a

Mealy machine M ′ that is consistent with all elements in the set ζM . The number of states

of M ′ must be less than 2m. The number of input and output alphabets of a machine is

assumed to be a power of two.

Basically, an input/output sequence is a continuous string of input/output observed

from the target machine. There can be more than one sequence per one problem instance.

24

A problem instance is considered solved when we find a Mealy machine that produces

the same output as the sequence when we feed the input from the sequence to it.

4.3 Reference GA Method for the problem

This section describes the reference Genetic Algorithms for the problem. The

method is used in (Aporntewan, 1999), (Aporntewan and Chongstitvatana, 2000) and

(Chongstitvatana and Aporntewan, 1999). Essentially, the method searches among the

space of all Mealy finite state machines for a consistent machine. A machine is evalu-

ated by taking the given input sequence and then comparing the generated output with

the given output sequence. The method uses standard operators, which are single point

crossover and standard mutation.

The reference method searches for a Mealy machine. A Mealy machine can be

described by specifying Q, Σ, ∆, δ, λ and q0. For this problem, input and output alpha-

bets (Σ and ∆) can be observed directly from the given input/output sequences. Since

a state labelling does not affect the consistency of the machine, Q is assumed to be

{0, 1, . . . , |Q| − 1} and the starting state q0 is assumed to be the state which is labelled as

0. The method searches for a transition function δ and an output function λ.

4.3.1 Encoding Scheme

The problem statement states that the required solution must has at most 2m states

where m, the number of states of the target machine, is known in advanced. One way to

achieve this is to set the size of the evolving machine to be 2dlog2(|Q|+1)e states. This makes

the number of states of an evolving machine to be a power of two which is guaranteed

to be more than m and less than 2m. Being a power of two has a benefit that when a

chromosome is decoded, it will always result in a valid machine. The same benefit also

applies to the input and output values since it is stated in the problem statement in Section

4.2 that the number of output and input alphabets be a power of two.

A transition function and an output function are encoded in a bit string. The encod-

ing is done in a transition-wise manner. A machine is encoded transition by transition,

starting from the first transition of the state 0 and then the next transition of the state 0

and so forth. The order of transitions and states are determined by the value of input al-

phabets. Since the input alphabets and state labels are starting from 0 to the appropriate

value, the order of transitions and states can be easily determined. For each transition,

25

its next state value and output value are encoded into an individual. Figure 4.1 shows the

encoding scheme.

Next

State

Output

Value

Next

State

Output

Value

Transition on 1
Transition on 0

State 0

Next

State

Output

Value

Next

State

Output

Value

Transition on 1
Transition on 0

State N

. . .

Figure 4.1: Reference Encoding Scheme

The number of bits required to encode next state value and output value is deter-

mined by the number of states and the size of output alphabets, respectively. Let |Q| be

the number of states of an evolving machine, then dlog2 |Q|e is the number of bits required

to encode a next state value. As same as next state value, the number of bits required to

encode an output value is dlog2 |∆|e. The length of a chromosome for encoding a machine

can be computed from Q, Σ and ∆. Consider an evolving binary input/output machine

with 8 states for example. The number of bits required to encode a next state value and an

output value is 3+1. There are two transitions for each state so it requires (3+1)×2 bits

for each state. This machine has 8 states which means that the length of a chromosome is

(3 + 1)× 2× 8 bits.

Generally, the length of a chromosome for encoding a machine M = (Q, Σ, ∆, δ,

λ, q0) is

(dlog2(|Q|)e+ dlog2(|∆|)e)× |Σ| × |Q|

Table 4.1 shows the length of chromosome used to encode a binary input/output

Mealy machine at different size.

4.3.2 Evaluation Function

Evaluation is done straightforwardly. The method takes all input sequences of the

problem instance and feeds them to an evolving machine. The machine then produces its

output sequences from the given input sequences. The output sequences generated from

the machine are compared bit-wise with the associated given output sequences from the

problem instance. One point of evaluation value is awarded for each similar bit between

26

Table 4.1: Chromosome Length of the Reference Method

Target Size
(states)

Evolving Machine
Size (states)

Bits for Encoding Q
Plus ∆ (bits)

Chromosome
Length (bits)

2–3 4 2+1 24
4–7 8 3+1 64
8–15 16 4+1 160
16–31 32 5+1 384

the output of the machine and the given output sequence. The maximum score of this eval-

uation is the size of input/output sequence set ‖ ζ ‖. Figure 4.2 and Figure 4.3 illustrate

the evaluation process and the pseudo-code of the evaluation function, respectively.

IO Seq.

Set

IO Seq.

Set

IO Seq.

Set

Input

Seq.
 IO Seq.

Set

IO Seq.

Set

Output

Seq.

IO Seq.

Set

IO Seq.

Set

Output

Seq.

Evolving

Machine

Comparator

Evaluation

Value

Figure 4.2: Reference Evaluation Function

4.3.3 Operators

This section describes the selection operator which is used to determine which in-

dividual is going to survive to the next generation. This section also describes the genetic

operator which is used to manipulate a bit string.

Originally, the work of Aporntewan (1999) uses a modified version of combined

rank selection (Mitchell, 1997) with the intention to preserve the diversity. The modified

version sorts individuals many times. This makes the selection process a very time con-

suming process. However, the preliminary study indicates that, when using tournament

selection instead of combined rank selection, the method could find the required solu-

tion faster. So, the reference method in this work uses tournament selection instead of

combined rank selection. The tournament selection is associated with a tournament size

27

1 funct Evaluation(M ′, ζ)
2 begin
3 score ← 0
4 for j := 0 to |ζ| − 1 do
5 reset M
6 Let I be the I component of Sj = (I, O)
7 Let O be the O component of Sj = (I, O)
8 for k := 0 to |I| − 1 do
9 Let p and q be the kth character of I and O, respectively

10 feed p to M , let y be the output of M
11 if (y == q) then score ← score + 1 fi
12 od
13 od
14 return score
15 end

Figure 4.3: Reference Evaluation Function Pseudo-code

parameter t. The tournament selection works by picking up t individuals at random from

the population. After that, it selects one individual which has maximum evaluation value

out of the chosen t individuals. That selected individual is going to survive to the next

generation. Figure 4.4 lists the pseudo-code of the tournament selection where P is a set

of individuals and E(x) is an evaluation function. The function returns an intermediate

population P ′ as a result.

1 funct TournamentSelection(P, t, E)
2 begin
3 score ← 0
4 P ′ ← ∅
5 for j := 1 to |P | − 1 do

6 ind1, ind2, . . . , indt
$
←− P

7 ind← indj such that E(indj) ≥ E(ind1) . . . E(indt)
8 P ′ ← P ′ ∪ {ind}
9 od

10 return P ′

11 end

Figure 4.4: Tournament Selection Pseudo-code

The next operator to be discussed is a genetic operator. The reference method uses

the standard one point crossover and standard mutation operator which are used in Canon-

ical Genetic Algorithm described in Section 3.2. The one point crossover cuts chromo-

some of parents at some random point and swaps the portions of those parents to create

two new offsprings. The operator is executed at probability pc. The standard mutation

28

mutates every bit in a chromosome with probability pm.

4.3.4 Starting and Stopping Criteria

The method starts from random individuals. Each individual is randomly created in

a form of a chromosome. Each bit of a chromosome is determined by flipping a fair coin,

i.e., every bit in a chromosome has an equal chance to be 1 or 0.

Two criteria identify the stopping condition of the method. First, a method stops

when a consistent machine is found. A machine is known to be consistent when it does

not produce any mis-value output which means that its evaluation score is equal to the

summation of the length of all sequences in the input/output sequence set. Another stop-

ping criteria is a generation limit. A method is given some fixed amount of generations it

could produce. When a method produces that many generations and it still can not find a

consistent machine, the method is forced to stop.

4.4 New Genetic Algorithm Method for the Problem

The new method is a modified version of the reference method. The modification is

done to improve some aspects of the reference method. The new method differs from the

reference method in the encoding scheme, the evaluation function and the operators. The

initialization and stopping criteria of this method are the same as the reference method.

This section describes these modifications.

4.4.1 New Evaluation Function

This section describes the new evaluation method. It starts by describing the process

of the new evaluation function and then goes on describing the main idea and the meaning

of the new evaluation function.

The new evaluation function works just like the old evaluation function. It feeds

the given input sequences to the machine alphabet by alphabet. For each alphabet, it

remembers the internal state of the machine so that it can exactly know which transition

is being used on the current alphabet. Now, instead of comparing the generated output

alphabet of the machine with the corresponding given output alphabet, it counts that the

transition is being used. By doing this on all given input/output sequences, the count of

each particular transition is associated with each particular output alphabet is calculated.

29

This information will be used to calculate the evaluation value.

To calculate the evaluation value, every transition of the machine is scanned. For

each transition, the number of times that each output value is associated with that tran-

sition is counted. The summation of the frequency of the most often associated output

alphabets on every transition is the final evaluation value.

The idea is implemented by maintaining an Output Count Table, OC. The OC is

a three-dimension array of size |Q| × |Σ| × |∆|. The OC[q, i, b] stores the frequency

that the output b is associated to the transition of the state q on the input value i. OC is

initialized to zero for all elements at start. On feeding of the sequence S to the evolving

machine M ′, for all 0 ≤ j ≤ |S| − 1, OC[δ̂(q0, i0i1 . . . ij−1), ij, oj] is increased by one.

When all S ∈ ζ is fed to M ′, OC[q, i, o] will represent the frequency of the output o that

is mapped to the transition of state q on the input i. To calculate the evaluation value for

M ′, the evaluation function scans OC through all output values on each transition to find

the maximum value of that transition and sums the maximum of all transitions. Formally,

the evaluation function F can be defined as

F (M ′) =

|Q|−1
∑

q=0

|Σ|−1
∑

i=0

max
b∈∆

(OC[q, i, b])

Figure 4.5 shows the pseudo-code of the new evaluation function. The evaluation

function takes the evolving Mealy machine M ′ = (Q, Σ, ∆, δ, λ, q0) and input/output se-

quence set ζ = {S0, S1, . . . , S|ζ|−1} as inputs. It returns an integer value as the evaluation

value.

The following paragraph shows the execution of the evaluation function on a small

example. Figure 4.6 shows the example evolving machine. The output of the machine

is not displayed because it does not involve in the evaluation. Let the given input/output

sequence set consists of only one sequence S = (0010101, 0110000). The evaluation

starts by resetting the machine to an initial state, making the current state as the state A.

The first input in the sequence is 0 and the corresponding output is 0, so OC[A, 0, 0] is

increased by one and the current state of the machine is changed to B according to its

transition function. The next input and output value is 0 and 1 respectively so OC[B, 0, 1]

is increased by one. The current state of the machine still is B since the transition of state

B on input 0 directs to B itself. The rest of the sequence is fed to the machine in the same

30

1 funct Evaluation(δ, ζ)
2 begin
3 for j := 0 to |ζ| − 1 do
4 state ← q0

5 Let I be the I component of Sj = (I, O)
6 Let O be the O component of Sj = (I, O)
7 for k := 0 to |I| − 1 do
8 Let p and q be the kth character of I and O respectively
9 OC [state, p, q]← OC [state, p, q] + 1

10 state ← δ(state, p)
11 od
12 od
13 score ← 0
14 for j := 0 to |Q| − 1 do
15 for k := 0 to |Σ| − 1 do
16 score ← score + max

l∈∆
(OC[j, k, l])

17 od
18 od
19 return score
20 end

Figure 4.5: New Evaluation Function Pseudo-code

way. The OC table after all input/output is consumed is shown in Table 4.2.

A
 B

1
 0

0

1

Figure 4.6: Sample Mealy Machine

The evaluation value of this machine under the given sequence is the summation

of maximum frequency on every transition, which is 3 (from the transition of state A on

input 0) plus 1 (from the transition of state B on input 0) plus 0 (from the transition of

state A on input 1) plus 2 (from the transition of state B on input 1) the total is 6.

At this point, the new evaluation function is described formally. However, two

questions might arise. The first is what exactly is the meaning of the new evaluation

function. The second one is why does the output function of the evaluating machine play

31

Table 4.2: Sample Output Count Table

State A State B
Input Output 0 Output 1 Output 0 Output 1

0 3 0 0 1
1 0 0 2 1

no role in the evaluation. To answer these questions, the main idea of the new evaluation

function is described in the following paragraphs.

First, let us consider the reference evaluation function more closely. The main draw-

back of the reference method described in the previous subsection is that the evaluation

value, which is the number of similar output bits between the generated output of the

evolving machine M ′ and the given output sequence, is not effectively evaluate the FSM

as it should be. For example, consider two binary input/output finite state machines, one

is the target machine M = (Q, Σ, ∆, δ, λ0, q0) and the other one is the evolving machine

M ′ = (Q, Σ, ∆, δ, λ1, q0). Let λ1 = ¬λ0. When M ′ is evaluated by the sequences set ζ

generated from M , the result from the evaluation is always 0 regardless of what ζ is. This

is because the output of M ′ always differs from the output of the sequences. The 0 eval-

uation value indicates that the evolving machine M ′ is very bad. However, the transition

function of M and M ′ are the same, the only difference between M and M ′ is the output

functions which are totally different. Usually a description of an output function is much

shorter than a description of a transition function, therefore the bit string representation

of M and M ′ are not much different. In this case, the evaluation value indicates that M ′

is very bad but in fact, M ′ is very close to the target machine M .

The idea behind the new evaluation function is to make the evaluation value to be

output-value-independent. The evaluation value depends entirely on transition function.

The method can be thought of as an implicit local search for the best output function,

i.e., the new evaluation function implicitly tries to find an output function such that it

maximizes the score under the reference evaluation function.

Let us get back to a calculation of an OC table. An OC table is not affected by an

output function of an evaluating machine. No matter what output alphabet is assigned to

each transition, the way that each transition is associated with the given output alphabet

is still the same. So, what exactly OC table indicates? The OC[q, i, b] indicates that, if

32

the transition of state q on input i of the evaluating machine is b, the score it would get

under the reference evaluation is OC[q, i, b]. For example, let us consider the previous

example and concentrate on the transition of state B on input 1. OC[B, 1, 0] is 2 and

OC[B, 1, 1] is 1. It indicates that the transition of state B on input 1 is used 3 times, two

of them is associated with 0 and one of them is associated with 1. If the output value

of this transition is assigned as 0 and evaluate the machine with reference evaluation,

the evaluation value that this transition will contribute is 2 because this transition will

produce correct input (“0”) two times, and will produce incorrect input (“1”) one time.

Since OC[q, i, b] indicates the score it would get, the max
b∈∆

(OC[q, i, b]) will indicate the

maximum score it would get under the reference evaluation.

The new evaluation function, which sums the term max
b∈∆

(OC[q, i, b]) on all transi-

tions, indicates the maximum score that the evaluating value would get under the reference

evaluation. This is the main idea of the new evaluation scheme, the implicit local search

for the best output function.

Now, it is clear what the idea of the new evaluation function is. Next, the other

question will be addressed. The question is “why the output function of the evolving

machine play no role in evaluation.” One might also notice that although the new evalua-

tion value is the maximum value that the evolving machine would get under the reference

evaluation, the evolving machine is not exactly the machine that can produce maximum

score because its output value might be wrong. This problem is addressed in two steps.

First, the output function of the machine is entirely discarded at the beginning of the al-

gorithm. Next, whenever the evolving machine is really required to produce an output,

its output function will be defined according to the given input output sequence set. Be

noted that the entire process of the new evaluation function does not require any output

to be produced at all. The redefinition of an output function can be postponed until it is

actually required. For this new genetic algorithm, the output function of the machine is

required at the final stage of the algorithm, when the algorithm has to produce the result

as a machine. So, the redefinition is done only once, when the algorithm is stopped and

the machine is evolved.

The redefinition of the output function is done according to the OC table. Simply,

the output of the transition of state q on input i is defined as b such that ∀x[OC[q, i, b] ≥

OC[q, i, x]]. The redefined output value is the most frequently associated output alphabet.

However, it is useful to explain the redefinition more closely. For simplicity, the symbol

33

“δ(q, i)” is use in place of “the transition of state q on input i.”

Three cases of the output redefinition for δ(q, i) are possible. The first case is the

case that no output is associated to δ(q, i) at all. This case happens when state q is unreach-

able from the starting state or when the input/output sequences do not exercise δ(q, i). The

second case is the case that there is only one value of an output alphabet is associated to

δ(q, i), e.g., δ(q, i) is associated with the value 0 four times and no other value of output

is associated to δ(q, i). The last case is the case when more than one distinct values of

output alphabet are associated to δ(q, i). For example, δ(q, i) might be mapped with 0

two times and mapped with 1 one time. This case is called as a “conflict” case. The three

cases mentioned earlier indicate different situations of the output redefinition.

First, the no-mapping case means that the input/output sequences have nothing to

do with δ(q, i). When M ′ is evaluated by the reference method, δ(q, i) will not effect

the evaluation value. In this case, any arbitrary output alphabet can be assigned to δ(q, i)

because it will not affect the consistency of the machine with the given input/output se-

quences. Second, the one value mapping case means that δ(q, i) is associated by only one

output alphabet and the output of δ(q, i) should be defined as that alphabet. Finally, the

“conflict” case which has special meaning. It indicates that M ′ can not be consistent for

the given sequence for any possible output alphabet. Since there are more than one value

of output is mapped to δ(q, i), suppose that the output value of δ(q, i) is b, it always has

some other output value b′ of the given sequences such that it is not equal to b and it is

also associated to δ(q, i). The output value of this transition is redefined to the value that

is most frequently associated to δ(q, i) since redefining in this way yields the maximum

score. Choosing the other value, the score it would get is less than the maximum which

means that it is less consistent.

In conclusion, the new evaluation function redefines the output value for each tran-

sition such that it can maximize the score. The evaluation function counts the number

that each output is mapped to each transition and uses this number as a guide for output

redefinition. The principle of redefinition is to choose the most frequently mapped output

value in a transition as the actual output value of that transition. The maximum frequency

itself also denotes the evaluation value contributed by each transition. It is also possible

that some transition is not mapped by any output. In such case, the output of that transi-

tion can be defined by any arbitrary value because it does not effect the consistency of the

machine.

34

4.4.2 New Encoding Scheme

From the evaluation method in the Section 4.4.1, the output function is no longer

needed to be evolved because the output function is implicitly defined by the transition

function and the given sequences. So, it is not required to encode an output function into

an individual. The output part is removed from the encoding, leaving only a transition

function in the new encoding scheme. The new encoding scheme is organized the same

way as the reference encoding except that the output value is not included in the encoding.

Figure 4.7 illustrates the new encoding scheme.

Next

State

Next

State

Transition on 1
Transition on 0

State 0

Next

State

Next

State

Transition on 1
Transition on 0

State N

. . .

Figure 4.7: New Encoding Scheme

Since an output function is no longer encoded into a chromosome, the length of

chromosome is shorter. The dlog2(|∆|)e bits for encoding ∆ is removed. Thus, the chro-

mosome length is given by

dlog2(|Q|)e × |Σ| × |Q|

Table 4.3 shows the length of chromosome for the new encoding scheme at different

size.

Table 4.3: Chromosome Length of the New Method

Target Size
(states)

Evolving machine
size (states)

Bits for encoding Q
(bits)

Chromosome length
(bits)

2–3 4 2 16
4–7 8 3 48
8–15 16 4 128
16–31 32 5 320

35

4.4.3 New Crossover Operator

Genetic Algorithms work by mixing small highly fit sub-solutions called building

block into larger highly fit sub-solutions and finally into the solution itself. However, the

simple GA can not effectively mix building blocks in a hard problem unless a proper link-

age information is known and put into use (Thierens, 1999). A hard problem, in building

block mixing point of view, is a problem whose building blocks are not compactly repre-

sented in its encoding, i.e., genes that form a building block do not locate close to each

other in a chromosome. When genes, or schema, that constitute a building block are not

tightly located, there is a high chance that they will be destroyed by a crossover operator.

Some mechanism has to be used to cope with this issue.

For the problem in this thesis, it is possible that building blocks are not compactly

encoded. The way that a machine is encoded into a bit string implicitly introduces possi-

bility of non-compact representation. The machine is encoded in a chromosome accord-

ing to the label of each state. Under different labeling, a machine can be encoded into a

different chromosome. Since an evaluation value of a machine is computed according to

the topology of the transition function, the labeling does not effect the evaluation value.

Nonetheless, state labeling affects how a machine is encoded into a chromosome. Since

the crossover operator is performed at chromosome level, the state labeling effects how

individual are recombined. For an example, consider the case when the walk by the given

input sequence set passes exactly three states of the machine. The evaluation value of

this machine is affected only by these three states (or more precisely, these three states

with their transition functions). These three states are the building block of this problem

instance. These three states can be labelled by any value according to the initial popula-

tion. If they are labelled close together, they will be compactly located in the bit string.

However, if they are not closely labelled, they will be separated. Also, by the effect of mu-

tation, these three states might be lost or reappear under different labelling. The fact that

building blocks of this problem are not fixed to pre-defined gene positions, i.e., they could

move to any position according to the state labeling, makes it possible that the encoding

might be non-compact at any time. Non-compactness makes standard recombination op-

erator performs poorly. A new crossover operator is proposed in this section to cure the

problem.

The main idea of the new crossover operator comes from the fact that the new

evaluation function evaluates a machine according to its transition function. Since the

36

new evaluation function is done by feeding input/output sequences into a machine, parts

of the machine that make contribution to an evaluation value are the states that are in

the walk by the input/output sequences. If, somehow, the walk by the given input/output

sequence is detected, that walk can be considered as a building block.

When looking into a machine and concentrate on a transition function and its states,

a machine can be regarded as a directed graph where its states represent nodes in the graph

while its transition function represents edges. Usually, the given input/output sequence is

quite long (more than 30 bits) thus genes that constitute building blocks are ones that lie

in a state correlating with depth first order of vertices in the graph. The new crossover is

designed to capture building blocks that consist of vertices of a graph that are arranged in

depth first fashion. The new crossover is described as follows. The new crossover operator

takes two parents and produces one offspring. It starts by selecting the better parent and

then traverses the graph of that parent in depth first order starting from the state q0. It

creates a list of states according to the order of visit. The list represents the states of the

graph which are arranged in depth first order. After that, the list is randomly cut. The cut

indicates the states of the first parent that should be propagated to the offspring. The other

states of the offspring will be taken from the other parent. Figure 4.8 illustrates a sample

execution of the new crossover operator.

1

0

0

1

1

0

3

0

1

2

0

1

4

1

0

3

0

0

1

1

0

1

0

1

4

1

0

2

1

0

1

0

0

1

1

0

3

0

1

4

1

0

2

1

0

0 1 3 4 2

(a)
 (b)

(c)
 (d)
Crossover point

Figure 4.8: Example of crossover operation. (a): First parent. (b): Second parent, we
assume that (a) is fitter than (b). (c): The list of vertices of (a), sorted in an order of
visiting by depth first traversal. It is assumed that the crossover point lies between the
third and the forth vertex. (d): Offspring of the operation.

The process can be thought of as a single point crossover applied to the lists of

37

1 funct DepthFirstOrder(M)
2 Let S be a stack
3 Let L be an empty array
4 begin
5 Make S empty
6 Push(S, q0)
7 idx ← 0
8 Marks q0

9 while S is not empty do
10 q ← Pop(S)
11 L[idx]← q
12 idx ← idx + 1
13 for i := 0 to |Σ| − 1 do
14 if q is not marked
16 Mark q
17 Push(S, δ(q, i))
18 fi
19 od
20 od
21 return L
22 end

Figure 4.9: New Crossover: State List Generation Pseudo-code

state rather than on the chromosome directly. The process can be divided into two sub

processes, the first one is the state list generating and the second is the crossover on that

list. Figure 4.9 shows the pseudo-code of the state list generation. The new crossover is

shown in Figure 4.10 where δ1 and δ2 are parents and δo is an offspring.

This new crossover operator produces one offspring that is composed of the head

(states which their labels are in the first part of the list) of the first parent and the tail

(states which their labels are not in the first part of the list) of the other parent. The reason

that this crossover produces only one offspring is that the depth first search of two parents

is unlikely to be the same. If another offspring is created from the tail of the first parent

and the head of the other parent, it is unlikely that the head of this new offspring that

comes from the lesser fit parent captures the building block of that parent because the list

is generated from the fitter parent, not the other parent. The head of the machine is very

important since it is usually used by evaluation more often than the tail. If the second

offspring is really necessary, it is preferable to use the list of states generated from the

lesser fit parent than the first parent. The process of generating another list from the lesser

fit parent and crossing again takes times as much as doing another round of crossover

except for the time used to select the fitter parent which is very small. In that case, it

38

1 funct CrossOver(δ1, δ2, Q, Σ)
2 begin
3 score ← 0
4 L← DepthFirstOrder(M ′

1)

5 CrossOverPoint
$
←− {0, 1, . . . , |Q| − 1}

6 δo ← δ2

7 for i := 0 to CrossOverPoint do
8 for j := 0 to |Σ| − 1 do
9 δo(i, j)← δ1(i, j)

10 od
11 od
12 return δo

13 end

Figure 4.10: New Crossover: Offspring Generation Pseudo-code

is more reasonable to produce one offspring and let another offspring be produced by

another round of crossover since new parents can be selected instead of using the lesser

fit parent.

4.5 Summary

This chapter described two Genetic Algorithms that are going to be compared and

analyzed in the next few chapters. Both methods, the reference method and the new

method, are described into their implementation details. The reference method is a

straightforward method. It searches for an appropriate transition function and the out-

put function. The new method is based on the reference method with some modifications

that address some problem faced by the reference method. Essentially, the new method

is different from the reference method in encoding scheme, the evaluation function and

the recombination operator. The key part of the new method is the new way of evaluation

that acts as a local search and the new crossover operator that is aware of the underlying

structure of an individual.

The next chapter will concentrate on the empirical comparison between the methods

presented here. It describes the experimental setup and the results of the experiment.

CHAPTER V

Experiment and Results

This chapter describes the framework of experiments and compares the proposed

method with other methods. The experiments are carried out to provide evidences that

justify the claim made in this thesis. The experiments emphasize on comparing the per-

formance of the new method with the existing methods. Two sets of experiments are

presented. The first one is the experiment that compares the performance of the new

method with the reference method in Section 4.3. The result of the first experiment can

be used as the evidence which supports or disproof the primary claim of this thesis, “A

new Genetic Algorithm method proposed in this thesis is a better way to solve the problem

of finite state machine inference than the former genetic algorithm.” The other experiment

is a supplementary experiment. It compares the correctness of the solution produced by

the proposed method with the solution produced by the heuristic approach. For each ex-

periment, the section starts by describing its design and its measurement. It finished by

providing the detail of the experiment.

5.1 Experiment A: Performance Comparison between GA-Based Methods

This work aims to develop a better genetic algorithm for the problem of finite state

machine inference. However, due to stochastic nature of Genetic Algorithms, it is hard to

proof the superiority of one method over another method formally. Hence, this work uses

empirical results to demonstrate the improvement of the new method over the reference

method. To compare the new method with other methods, this experiment runs them on

the same test set and measures some quality of the result. Two measurements are used to

compare these methods, one is the number of problems which are solved and the other

one is the time required to solve each problem. A new method is said to be better if and

only if it uses less time than the reference method and it solves greater or equal number

of problems.

This experiment is designed to compare the reference method with the new method

presented in Section 4.4. The new method has three techniques that are different from

the reference method. Two of them, which involve in encoding and evaluation, can not

be easily decomposed, so they are combined together and is called reduced encoding

technique. The last technique involves a recombination operator and has been given the

40

name of graph preserved crossover. The detail of these techniques can be found in Section

4.4.

In this experiment, three different methods are compared together. The first one

is the reference method. The second is the reference method with reduced encoding

technique turned on, this method is called as NEW1. The last method, referred as NEW2,

is the NEW1 method with graph preserved crossover feature turned on.

The experiments are designed to justify the hypothesis in Section 1.1, which is “The

new genetic algorithm method proposed in this thesis is a better way to solve the problem

of finite state machine inference than the former genetic algorithm.” As described in

previous paragraph, a better way means that it could find an answer faster and it could

solve more problems. Hence, the experiments are designed to measure the time used to

solve the problems and the number of problems solved by each method.

5.1.1 Measurement

As stated before, this experiment measures two things, the first is the how fast that

a method could find an answer and the second is how often that a method could solve

the problem. There are two sub-measurements that are used to measure the time. Totally,

there are three measurements in this experiment. They are described as follows.

Two measurements are used to compare on how fast each method is. They are the

number of generations used before a method could find an answer and the real world time.

The number of generation used reflects the number of function evaluation that is called

by the method, which indicates how fast an algorithm searches for the answer. However,

different methods mean different implementations, thus the wall clock time used by each

algorithm to perform each sub-task in genetic algorithm process is different. In this work,

the new method uses more complicated encoding, evaluation and recombination which

require more CPU time than the reference method. These differences in CPU time do not

exhibit in the number of generations used but it affects the real world time used.

The number of generations used is a subject of interest by theorist since it repre-

sents, in the theoretical view, the efficiency of an algorithm to reach the desired solution.

However, for the experimentalist, the performance is the real world time used to run the

algorithm. In this case, the property of concern is rather the real world time than the

number of generations used.

41

By the stochastic nature of the method, each run of the method might take different

time. This experiment uses the average value over 10 runs of execution as a measure.

This applies to both the number of generations and the real world time used.

Formally, the number of generations used to solve a particular problem instance is

the average number of generations, over 10 runs, which are produced by a method until

that method stops. If no answer could be found for any single run, the generation limit,

which is used as a criterion for stopping, is then counted as the number of generations

for that run. The real world time measurement is defined in the same way. The third and

the last measurement is the number of runs that yield solution. It measures how often a

method yields an answer. As stated in the previous chapter, the Genetic Algorithms for

the problem can stop according to two criteria. The first one is that it finds an answer and

it stops. The second one is that it reaches generation limitation and still could not find

an answer. So, it is possible that on some run, a method could not find an answer. Each

problem instance is run repeatedly 10 times. The number of runs that yield solution is the

number of run, out of these 10 runs, that has the answer.

5.1.2 Experiment

These experiments were run using all three methods, the reference method, NEW1

method, and NEW2 method, on the same problem set. The problem set consists of 80

problem instances. Each problem instance is an input/output sequence set. Each sequence

set is randomly generated and each set contains 20 strings of 50-bit sequence which totals

as 1,000 input/output pairs per one problem instance.

There are many ways to create an input/output sequence set. A target machine is

created first and then it is used to create a problem instance. Creating a test set in this way

has a benefit that the target machine is known in advance and it can be used to provide

some information such as a target size. A target Mealy machine of size m is created by

constructing a random directed graph of 5
4
m nodes where each node has exactly an out-

degree of 2. Every edges of the graph are labeled by either 0 or 1 by flipping a fair coin.

After that, a node is randomly chosen to act as a root node and then all unreachable nodes

are removed . Following that, the machine is reduced by the implication chart method

as described in (Katz, 1994). This process results in a machine that has the number of

states near m. If the size of the reduced machine is not m, the procedure is restarted again

until the machine of exactly m states is found. Figure 5.1 shows the pseudo-code of the

42

1 funct RandomMachine(m)
2 begin
3 do
4 Q← {0, 1, 2, . . . , m− 1}
5 Σ, ∆ = {0, 1}
6 q0 ← 0
7 for i := 0 to M − 1 do

8 a, b
$
←− {0, 1, 2, . . . , m− 1}

9 δ(i, 0)← a
10 δ(i, 1)← b

11 c, d
$
←− {0, 1}

12 λ(i, 0)← c
13 λ(i, 1)← d
14 od
15 M ← (Q, Σ, ∆, δ, λ, q0)
16 M ′ ← Reduce(M)
18 while SizeOf (M ′) 6= m
20 end

Figure 5.1: Random Machine Generation Pseudo-code

algorithm.

Currently the procedure has a machine of size m in hand. The next step is to use this

machine to create an input/output sequence set. The procedure creates an input sequence

of size n by flipping a fair coin and then feeds this input sequence into the machine.

The output generated is collected. The output generated from the machine together with

the corresponding input sequence made a complete input/output sequence. The process

of creating an input/output sequence is repeated until the desired number of sequences

is generated. This procedure resembles a random draw of input/output sequence with

replacement. Figure 5.2 gives the pseudo-code of generating the input/output sequence

set consisting of p sequence of length q from the target machine M .

This experiment uses 40 target machines of size ranging from 2 to 21 states, with

distribution of exactly 2 machines per one size of state, i.e., there are exactly two machines

that have 2 states and there are exactly two machines that have 3 states and so forth.

Two problem instances are generated from each machine. Thus, there are four generated

problem instances per one size of a target machine. Figure 5.3 illustrates the generation

of problem instances and Figure 5.4 gives the pseudo-code.

For each problem instance, each genetic algorithm method is applied 10 times. The

43

1 funct IOSEQGenerate(M, p, q)
2 begin
3 for j := 1 to p do
4 reset M
5 for k := 1 to q do

6 x
$
←− {0, 1}

7 ik ← x
8 feed x to M , let y be the output of M
9 ok ← y

10 od
11 Sj = (i1i2 . . . iq, o1o2 . . . oq)
12 od
13 ζ =

⋃

Si

14 return ζ
15 end

Figure 5.2: Input/output Sequence Generation

.

.

.

.

.

.

.

.

FSM

Generate

FSM

2 states

FSM

21 states

IOSeq

Generate

IOSeq

Generate

IO Seq.

Set

IO Seq.

Set

80

Testsets

.

.

.

.

Figure 5.3: Test Set Generation

method has a generation limitation, which means that the method will stop when the

number of produced generations exceeds the limit, regardless of the solution. A problem

instance is considered solved when there is at least 1 out of 10 runs that yields a consistent

machine. The parameters for each genetic algorithm is exactly the same for all method.

Table 5.1 summarizes parameters of the experiment. Each algorithm was implemented in

C++ programming language and was run on Pentium-III 1GHz with 128MB memories

running Linux operating system.

5.1.3 Results

This section presents the results of the experiment. Figure 5.5 shows the average

number of generations used by each method. The data are sorted according to the value

of the reference method. It can be though that problems are sorted by their hardness

44

1 proc TestSetGenerate
2 begin
3 cnt ← 0
4 for i := 2 to 21 do
5 for j := 1 to 2 do
6 M ← RandomMachine(i)
7 for k := 1 to 2 do
8 ProblemInstancecnt ← IOSEQGenerate(M, 20, 50)
9 cnt ← cnt + 1

10 od
11 od
12 od
13 end

Figure 5.4: Problem Instance Generation Pseudo-code for Experiment A

Table 5.1: Parameters for Every Method

Parameter Values

Population Size 500
Crossover Rate 0.5
Mutation Rate 0.01
Tournament Size 3
Generation Limit 20000

measured by the reference method. This graph does not provide much of information

since lines in the graph have no mathematical meaning, i.e., the data should be plotted

as dots instead of lines, but lines provide more visual intuition of the result. Later on,

the detailed data are presented. The reference method is labeled as REF in the graph.

The X-axis is a problem index and Y-axis is an average number of generations. A higher

generation used means that it has less performance.

Figure 5.6 displays a fraction of problem solved versus the size of the target ma-

chine. The X-axis is the size of the target machine and Y-axis is fraction of number of

problem solved. A higher fraction of problem solved means that it has better performance.

It can be seen clearly that the NEW1 and NEW2 perform much better than the ref-

erence method. However, the distinction between these two can not be easily noticed.

When looking more closely in Figure 5.5, especially at the problem number 55 and up-

ward, the NEW2, which has new crossover, performs better than NEW1. However, in the

easy problem instances, the problem number 54 and lesser, NEW1 turns out to be faster

45

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000
 12000
 13000
 14000
 15000
 16000
 17000
 18000
 19000
 20000

 0 10 20 30 40 50 60 70 80

A
vg

. N
um

be
r

of
 G

en
er

at
io

ns

Problem Number

REF
NEW1
NEW2

Figure 5.5: Result of Experiment A: Average Number of Generations

than NEW2. Anyway, NEW2 could solve more problems than NEW1 as indicated in Figure

5.6.

Table 5.2 shows the summary result of the experiment. The “Total” value is the total

number of generation that the method produced while “Relative” value is the percentage

of the “Total” value by the value of the reference method. The “Best Among Other” value

indicates number that the method outperforms other method on same problem instance.

Please note that when all methods perform the same, which mostly happens when the

problem is too hard to solve for all methods, no method is counted as the best among

other methods.

Table 5.2: Summary Result in Average Number of Generation Used for Experiment A

REF New1 New2

Total (Generation) 749246 527488 505780
Relative 100.00% 70.40% 67.51%
Best among others 0 31 35
Successful runs 461 561 585

The results indicate that, when considering only the number of generations used,

the method NEW2 outperforms the method NEW1 since its number of generations used to

46

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22

F
ra

ct
io

n
of

 N
um

be
r

of
 P

ro
bl

em
s

S
ol

ve
d

Target MachineSize

REF
NEW1
NEW2

Figure 5.6: Result of Experiment A: Fraction of Problem Solved

Table 5.3: Summary Result in Real World Time Used for Experiment A

REF New1 New2

Total (sec.) 64350 46393 51801
Relative 100.00% 72.10% 80.50%
Best among others 2 52 26

solve all problems is less than other methods. The number of runs that NEW2 could yield

a result is also higher than other methods. However, since the new crossover operator is

quite complicate and takes much CPU time, when looking into the real world time used,

the method NEW2 took more time than NEW1.

5.2 Experiment B: Solution Quality Comparison between GA Method and Heuris-

tic Method

This experiment is a supplementary experiment. It is done to justify the claim that,

when the size of the training set is getting smaller, the algorithm that has size restriction

will have better accuracy in identifying unknown data than the heuristic algorithm that

does not have size restriction. This experiment compares the quality of solutions from

the new genetic algorithm method with the quality of solutions from the heuristic-based

47

algorithm. This comparison pays no attention on how fast or how often it could find

the solution since the nature of these two algorithms are quite different such that the

comparison has no interest, e.g., on a time-used measurement, the heuristic algorithm

mostly run faster than the Genetic Algorithms based method and it is always yields a

consistent solution.

The experiment compares methods by running them on the same training set. It

calculates the quality of the answer in identifying the unseen data. The size of the problem

varies from sufficiently large enough to correctly identify the target machine downward

to a very sparse size. The results of the experiment can be used as a supporting evidence

to emphasize the claim of the accuracy between both algorithms, empirically.

This experiment emphasizes on the error rate of the solution in identifying the un-

known input/output sequence generated from the same machine from which the training

input/output sequence is generated. The experiment measures an error rate by using the

Cross Validation method (Mitchell, 1997). The next section describes the Cross Valida-

tion method.

5.2.1 Cross Validation

Cross Validation (Mitchell, 1997) is a method to compare two learning algorithms

when the sample data at hand is limited. Assume that the data at hand is D0 drawing

from a distribution of all possible data D of size n. Cross Validation divides the available

data D0 into k disjoint subsets, namely T1, T2, . . . , Tk, of equal size each of which is at

least 30. The process then iterates k times, for each time, it uses Ti as an unseen test set

and the remaining subsets {D0 − Ti} as a training set. The error rate for each iteration

is calculated based on how the result of the algorithm that takes {D0 − Ti} as a training

data can correctly identify Ti. The final error rate is calculated from the average of all

iterations.

The average value can be viewed as an estimate of the expected value of the differ-

ence of error between two algorithms, which is

ES⊂D0
[errorD(LA(S))− errorD(LB(S))]

where S is a random training data of size k−1
k
|D0|, Lx(S) is the hypothesis resulted from

the learning algorithm x on training data S, and errorD(h) is an error rate of the hypoth-

48

esis h on test data D.

The pseudo-code of the Cross Validation method is presented in Figure 5.7

1 funct CrossValidation(D0, La, Lb)
2 Let T1, T2, . . . , Tk be k disjoint subset of D0 of equal size.
3 begin
4 for i := 1 to k do
5 Si ← {D0 − Ti}
6 hA ← La(Si)
7 hb ← Lb(Si)
8 δi ← errorTi

(ha)− errorTi
(ha)

9 od
10 return δ ← 1

k

∑k

i=1 δi

11 end

Figure 5.7: Cross Validation Algorithm

5.2.2 Measurement

For this experiment, ha and hb in Figure 5.7 are the finite state machines generated

from different algorithms. The errorTi
(ha) is defined as follows. Let M be a target

machine which generates D0, let T be a test set and let h be a conjectured machine, the

errorT (h) is the number of different bits between the output of h and the output of M

when using T as an input sequence for both machines divided by the total number of bits

of output sequence. At heart, the error rate is the ratio of the number of correct output

bits and the number of total output bits. However, this experiment is set up to measure

accuracy, not inaccuracy. It is more appropriate to use correctness instead of error. Since

the error is a ratio of correct output which means that its value ranges from 0 to 1, the

correctness is defined as 1 − e where e is the error rate. A machine with 0 error means

that it has 1 correctness. On the other hand, a machine with 1 error means that it has 0

correctness.

5.2.3 The Experiment

The environment of the experiment is the same as the Experiment A. The code of

the Blue-Fringe algorithm can be found in a dfa-learning suite available for download

at http://abbadingo.cs.unm.edu/ (Lang, 1997). There are four variations of state merging

algorithm in the suite. The first one is the original state merging algorithm introduced by

Trakhtenbrot and Barzdin (Trakhtenbrot and Barzdin, 1973) which produces the least ac-

curate result but runs fastest. The second one, called as red-blue, is a blue-fringe algo-

49

rithm of Juille and Pollack who won the Abbadingo One competition. Their algorithm are

described in (Juille and Pollack, 1998). The other two programs are EDSM-based meth-

ods with no restriction in selecting candidate which result in much slower algorithms.

This comparison uses red-blue as a representative for state merging algorithms be-

cause red-blue is accurate and runs in a reasonable amount of time. The GA methods

in this experiment is the NEW2 algorithms used in Experiment A. The parameter of NEW2

is the same as ones used in Experiment A which is shown in Table 5.1.

There is one issue about the function errorT (LA(D))) when the learning algorithm

LA is NEW2. Since the method NEW2 is a genetic algorithm, it is possible that NEW2

could not find the required answer in some runs. However, when NEW2 stops according

to the generation limit, it will have an evolving answer in hand even though it is not the

one that is consistent with the given training set. In this experiment, when NEW2 could

not find a consistency answer for any run, the evolving answer at hand is considered as a

result from the algorithm.

The experiment consists of many problem instances of various sizes. Every problem

instance contains an input/output sequence set that is generated from the same machine.

The size of problem instance varies from the upper bound size downward to a very small

size. The upper bound size is the size which the heuristic algorithm could almost perfectly

captures the structure of target machine. The upper bound size is determined by running

the red-blue algorithm on different sample sizes and tests the conjectured machine

with a very large set of data. The test uses the same measurement in 5.2.2. The test data

consists of 200 sequence of length 200 bits. The upper bound size is the size that the error

rate of conjectured machine from red-blue is less than 0.01.

The target machines in this experiment are newly generated with the same method

as in Experiment A. The size of the machine is 15 states which means that the size of

an evolving machine of NEW2 algorithm is 16 states. The upper bound size of training

data for this machine is 36 sequences, each of them has a length of 35 bits. The problem

instances are generated from the size of 42 sequences downward to 6 sequences at the

interval of 6 sequences and the length of 35 bits downward to 5 bits at interval of 2 bits.

The reason behinds these numbers comes from the use of cross validation.

The cross validation used in the experiment divides sample data into 6 distinct sub-

sets of equal size. It divides the given examples along their sequences. For examples, a

50

problem instance with m sequence of length n are divided into 6 sub-problem instance,

each of which has m − m/6 sequence of length n. The interval of 6 sequence in the

problem instance suite makes the number of sequences in every problem instances be di-

visible by 6. It makes the sub-problem instance which is created by dividing the set of

sequences be in the equal size. Since the number of subsets in cross validation is 6, each

of sub-instance has m/6 sequences less than the original problem instance. The largest

problem instance with 42 sequences results in sub-instance of 35 sequences which is very

close to the upper bound size.

In conclusion, there are 112 original problem instances of which the size ranges

from 6 to 42 sequences at 6 sequences interval and their length vary from 5 to 35 bits at 2

bits interval. Each original problem instance is redistributed into 6 sub-problem instance

for cross validating. Totally, each algorithm is run for 672 times and produces 112 data

points. Figure 5.8 shows the pseudo-code of problem instance generation.

1 proc TestSetGenerate(M)
2 begin
3 cnt ← 0
4 for i := 5 to 35 step 2 do
5 for j := 6 to 42 step 6 do
6 for k := 1 to 2 do
7 ProblemInstancecnt ← IOSEQGenerate(M, j, i)
8 cnt ← cnt + 1
9 od

10 od
11 od
12 end

Figure 5.8: Problem Instance Generation Pseudo-code for Experiment B

5.2.4 Results

The results are plotted as a graph of the number of examples versus correctness as

shown in Figure 5.9.

The results indicate that the answers produced from the both methods do not show

any significant difference in accuracy, under Cross Validation method. However, this is

coarse conclusion from the results. The analysis of this experiment is presented in the

next chapter.

51

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400

C
or

re
ct

ne
ss

Sample Size

NEW2
red-blue

Figure 5.9: Result of Experiment B

5.3 Summary

This chapter described two experiments along with their setup and measurement.

The first one is the comparison between the reference method and the new method pre-

sented in previous chapter. The result from the experiment indicates that the new method

outperforms the former method.

The second experiment is the comparison between the Genetic Algorithms approach

and the heuristic approach. It is set up to demonstrate the difference in a correctness of

identification of unseen data when the restriction of the size of the result is used and is

not used at various sample size. The results from the experiment indicates that GA-based

method which has a size restriction does not show any significant difference in accuracy

over the heuristic method which has no size restriction.

The next chapter will analyze the result of this chapter and make some conjectures

on how these effects are happened.

CHAPTER VI

Analysis of Results

This chapter gives the discussion of the experiment made in the previous chapter. It

analyzes the result of the experiment and makes some conjecture regarding what happens

in the experiment.

6.1 Discussion of the Experiment A

The result of the experiment in the previous chapter indicates that the method NEW1

performs better than the reference method. The method NEW2 also performs better than

NEW1. The method NEW2 can produce more results with less function evaluation count.

However, NEW2 takes longer wall clock time in many cases. The results that show the

improvement of NEW1 and NEW2 is important but more importantly is how could these

improvements happen. This section discusses the mechanism that causes the effects. The

better performance of NEW1 and NEW2 over REF is a result of reduction of search space,

schema preservation. The difference in time used of NEW2 and NEW1 comes from the

difference in time complexity of the process.

6.1.1 Search Space Reduction

Essentially, the effect of the local search, which is implicitly performed by the new

evaluation and the new encoding, is the reduction of the search space. Since an output

function is not encoded in a chromosome and the evaluation function evaluates a machine

in the way such that the output function is always optimized, it can be though that an

output function is removed from the search. Naturally, the new search space has different

fitness landscape. Whether this new fitness landscape is beneficial to the search is uncer-

tain. However, a reduction of search space usually results in a faster search process for

most problem.

Supplementary experiments are set up to check whether the reduction of search

space does have an effect to the performance or not. The area of the search space that

was reduced is the output function. To illustrate the effect, two experiments are set up.

The new experiments are the same as the Experiment A, except that the target machines

are generated with two-bit output (four possible output values) for one experiment and

three-bit output (eight possible output values) for the other experiment. The machines

53

have the same size as the Experiment A, two machines per size. The size is ranging from

2 to 21 states. The problem instances are generated in the same way by using these new

machines. The two-bit and three-bit output experiments are named Experiment A1 and

Experiment A2 respectively. The method that are compared are the REF method and the

NEW1 method. The NEW1 method uses only the new evaluation and encoding but not the

new crossover operator. The new crossover operator does not effect the reduction of the

search space so it is inappropriate to use it in this experiment.

The result of the experiment is shown in a graph format for better understanding.

Two graphs are shown for each experiment, one is graph of the number of generations

used for each problem instance. The problem instances are sorted by the value of ref-

erence method. This graph is similar to the results graph in the previous chapter that is

shown in Figure 5.5. The other graph is the fraction of runs achieving the required solu-

tion to the total runs for different sizes of the target machine. For each size, the data are

taken from four problem instances. The interesting point in this graph is the area under

the line of reference method and over the line of the new method. It roughly indicates the

difference between two method, though it does not have real mathematical meaning since

the X-Axis is discrete. For this graph, the X-axis is the size of the target machine and

the Y-axis is the fraction of problems that are solved. Figure 6.1 and Figure 6.2 show the

result of experiment A, Figure 6.3 and Figure 6.4 show the result of experiment A1 and

Figure 6.5 and Figure 6.6 show the result of experiment A2, respectively.

When the number of output alphabets is increased, the difference between the size

of the search space of the reference method and the new method is getting bigger and

bigger. The results indicate that the advantages in term of number of generations of the

new method over the reference method is getting more and more noticeable when the

output size is increased.

Table 6.1 shows relative values of NEW1 based on REF. A value in each entry is a

percentage of the raw value of NEW1 based on the raw value of REF. The raw value are

measured in the same way as in Section 5.1.

Under coarse estimation, the size of the reduced space is the number of possible out-

put values encoded in a chromosome which is 2dlog2(|∆|)e×|Σ|×|Q|. However, when looking

into the detail, the previous value is just the upper bound. There is a case where a machine

that is encoded in a chromosome having capability of encoding |Q| states does not really

54

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000
 12000
 13000
 14000
 15000
 16000
 17000
 18000
 19000
 20000

 0 10 20 30 40 50 60 70 80

A
vg

. N
um

be
r

of
 G

en
er

at
io

ns

Problem Number

REF
NEW1

Figure 6.1: Number of Generation Used of Experiment A

Table 6.1: Relative Comparison of Experiment A, A1 and A2

Experiment A Experiment A1 Experiment A2

Avg. Generation Used 70.40% 61.60% 54.12%
Avg. Time Used 72.09% 55.16% 49.43%
of Problem Solved 121.69% 135.62% 150.65 %

have |Q| reachable states. It is possible that some of its states is inaccessible. More-

over, the given sequences might not exercise some transitions even if those transitions is

accessible from the starting state. In that case, the output value and the next state value

of those transitions do not effect the evaluation value for both the new encoding and the

reference encoding. Those inaccessible states have effect on the process of Genetic Al-

gorithm, though. They act as introns. Intron or non-coding segment is a term borrowed

from biological system. It refers to parts of an individual that have no effect on its behav-

ior which implies that they do not effect evaluation value. Introns are very common in

the field of Genetic Programming since recombination in Genetic Programmings usually

introduces non-coding segment. Their functionality and effect are not completely eluci-

dated. There are many theories which describe introns (Luke, 2000). However, there are

many evidence indicating that when introns are in the appropriate position, it can improve

55

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22

F
ra

ct
io

n
of

 N
um

be
r

of
 P

ro
bl

em
s

S
ol

ve
d

Target MachineSize

REF
NEW1

Figure 6.2: Fraction of Successful Runs of Experiment A

the performance of Genetic Algorithm.

Introns are also emerged in the methods in this work. All of NEW1, NEW2 and REF

have possibilities that introns might emerge to the chromosome. For the reference encod-

ing, the output value might be an intron if its corresponding transition is not exercised

or it belongs to an unreachable state. Under new encoding where the output function is

omitted, introns of output values are no longer exist. The next state values can be introns

for the same case. All three methods have introns of the next state value. The effect of

introns is discussed again in Section 6.1.2.

In summary, new encoding reduces size of the search space. At the same time, it

takes out introns caused by the output value of inaccessible and unexercised states.

6.1.2 Schema Preservation

The Schema Theorem states that Genetic Algorithms search for the required solu-

tion by combining building blocks or highly fit low-order schemata together (Lobo, 2000).

Selection and recombination of individual are the mechanism that do the combining. It

is crucial that Genetic Algorithms know which schema is good and which one is bad so

56

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000
 12000
 13000
 14000
 15000
 16000
 17000
 18000
 19000
 20000

 0 10 20 30 40 50 60 70 80

A
vg

. N
um

be
r

of
 G

en
er

at
io

ns

Problem Number

REF
NEW1

Figure 6.3: Number of Generation Used of Experiment A1

that it can propagate. The propagation of good schemata is a duty of selection. How-

ever, when recombination operator comes into play, it will introduces what is known as

“destructive effect of crossover”. While recombination operator recombines solution, it

implicitly destroys some schemata at the same time. The possibility that a particular

schema is destroyed by recombination operator is determined by the encoding of that

schema and the particular recombination operator that is used. Under standard crossover

operator, the chance that a schema H is disrupted is proportion of its defining length. The

longer defining length that schema is, the higher chance that it would be disrupted. This

disruption effect should be minimized.

There is also the issue of building block mixing (Goldberg et al., 1992). Building

Block mixing tells how building blocks are combined together into an individual. The

work confirms that Simple Genetic Algorithm without proper linkages takes unreasonable

long time to solve problems that do not have compact encoding. The abilities that Genetic

Algorithms can detect which genes constitute building blocks and propagate those genes

as an unbreakable unit are very crucial for solving difficult problems (Lobo, 2000).

The new method presented in this work has a special characteristic. The interpre-

tation of each particular gene highly depends on other genes. The way that each gene

57

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22

F
ra

ct
io

n
of

 N
um

be
r

of
 P

ro
bl

em
s

S
ol

ve
d

Target MachineSize

REF
NEW1

Figure 6.4: Fraction of Successful Runs of Experiment A1

interacts to each others is also positioning non-static, i.e., sometime a particular gene at

position x interacts with genes located at position y, at other time, it interacts with one that

located at position z. Linkages, a group of genes that forms building block which should

be propagated together, is position-independent. The new crossover operator presented in

Section 4.4.3 is designed to cope with the issue of encoding.

The new crossover can be thought of as a bounded crossover on re-arranged genes.

The new crossover exploits the fact that the underlying structure of an individual is a

graph. The new crossover creates a list of states in a predefined deterministic way (using

depth first order) and then applies single point crossover on that list. The list is a chromo-

some which is rearranged in a way that (hopefully) has a better encoding compactness.

Moreover, the new crossover restricts that the crossover point never to cut in the middle of

gene that represents single next state value or output value. Unlike the standard crossover

which regards every bits equally, the new crossover which knows that some bits are parts

of the same gene does not permit cutting in the middle of those bits. Usually, Genetic Al-

gorithms that handle individuals in a way that is consistent with their underlying structure

are more accurate and more efficient (Angeline, 1994). Cutting in the middle of genes

might results in randomly different next state values and destroys the characteristic of

58

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000
 12000
 13000
 14000
 15000
 16000
 17000
 18000
 19000
 20000

 0 10 20 30 40 50 60 70 80

A
vg

. N
um

be
r

of
 G

en
er

at
io

ns

Problem Number

REF
NEW1

Figure 6.5: Number of Generation Used of Experiment A2

that transition completely. This effect is not entirely negative because it can generate a

new value of the gene but when it is incorporated into a crossover which executed at very

high probability, one-half in the cases of the methods used in this work, it mostly destroys

information which should be propagated.

The new crossover also effects introns. Usually, the effect of introns are positive.

Many studies shows that introns can improve success rate of Genetic Algorithms such

as the work in (Levenick, 1991). Many studies also suggest that introns or non-coding

segment increase chances of building block mixing and reduce the destruction of existing

building block (Wu and Lindsay, 1996). When a crossover point falls in introns segments,

the building block is usually preserved. A larger segment of intron yields higher chance

of this “defense against crossover.” This theory of defense against crossover is accepted

by many researchers as stated in (Luke, 2000).

Under the new crossover operator, the effect of introns, that reduces the chance that

the crossover will destroy schemata, is nullified because parts of a machine that is inac-

cessible and acts as introns is filtered out. When the new crossover is used in combination

with the new encoding, introns caused by the output value are taken out. However, they

are not entirely eliminated because parts of a machine that is not exercised by the given

59

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22

F
ra

ct
io

n
of

 N
um

be
r

of
 P

ro
bl

em
s

S
ol

ve
d

Target MachineSize

REF
NEW1

Figure 6.6: Fraction of Successful Runs of Experiment A2

sequence but is reachable from the starting state are still included. Though it is possible

that introns are still present (from unexercised transition), it is unlikely to happen because

the given sequence used in the experiments are usually large and they should exercise

most transitions, if not all.

In conclusion, the new crossover, along with the new encoding, almost entirely

eliminate introns. The benefits of introns that happen in reference encoding and crossover

might be lost but the benefits of the new crossover are occurring. The empirical results

from the experiments exhibit evidences showing that the gain of benefit caused by the

new crossover can overcome the loss of benefits caused by introns.

6.1.3 Time Complexity of New Method

The result shown in the previous chapter indicates that when the measurement of

interest is the number of generations, the new method outperforms the former method.

However, each operator of the new method requires more time to process than the refer-

ence method. Mainly, two processes cause the different in processing time. They are the

evaluation function and the crossover operator. The other process is either the same for

both methods or has very little impact on processing time. For example, both methods

60

use the same selection operator (tournament selector.) Other examples are encoding and

decoding functions of both methods. They are different only in that the output function

is either present or not present. This difference has very little effect in running time. The

main difference in process time is largely depended on evaluation functions and crossover

operators. This section analyzes the time complexity of this process.

6.1.3.1 Evaluation Function

The code of the reference evaluation function shown in Figure 4.2. It has a nested

loop. The outer loop iterates through all elements of the input/output sequence set while

the inner loop runs for all alphabets in the input string of the sequence. Totally, the loop

iterates over all input/output pairs of the given sequence. Hence, the time complexity of

the reference evaluation function F is

F ∈ Θ
(

‖ ζ ‖
)

The new evaluation function has two parts. The first part is the output frequency

counting which is very similar to the reference evaluation function. The first part con-

tributes Θ(‖ ζ ‖) to the time complexity of the function. The second part iterates through

all transitions and scans for the maximum value of mapping. Since no special data struc-

ture is used to help retrieving the maximum value, the process always checks all elements

in the output count table. The second part contributes Θ(|Q| × |Σ| × |∆|) and it is the

part that makes the new evaluation function takes more time than the reference evaluation

function. The time complexity of the new evaluation function F ′ is

F ′ ∈ Θ
(

‖ ζ ‖ +(|Q| × |Σ| × |∆|)
)

6.1.3.2 Crossover Operator

The reference method uses standard single point crossover. The running time of the

operator is the time used to copy every value of one chromosome to other two chromo-

somes. The running time for this process is Θ(n) where n is the size of a chromosome.

The length of a chromosome can be calculated from M ′ as stated in Section 4.3.1, so the

running time of reference crossover is

61

Θ
(

(

dlog2(|Q|)e+ dlog2(|∆|)e
)

× |Σ| × |Q|
)

The new crossover operator is more complicated than the single point crossover.

It can be divided into three steps which are: the decoding of a bit string to a graph,

the generation of depth first order list and the copying of selected transitions. Decoding

and copying are both linear on the size of the chromosome which is given in Section

4.4.2. Making a depth first order list has a running time of Θ(|Q| × |Σ|). This value is

dominated by the running time of decoding and copying. In total, the running time of the

new crossover operator is

Θ
(

dlog2(|Q|)e × |Σ| × |Q|
)

Thought analysis in the view point of asymptotic notation tells that the new

crossover operator is better than the reference method, the real processing time of the

new operator is much higher. This is because the extra time of the new operator which

comes from the decoding and graph traversal does not effect the asymptotic notation and

|∆| is very small, e.g., it is 1 in Experiment A. This makes the actual running time of the

new crossover operator higher than the standard operator.

6.2 Discussion of the Experiment B

The result from the Experiment B does not show any significant difference between

the genetic algorithm approach (NEW2) and the inexact heuristic approach (red-blue.)

Does this mean that the conjecture of accuracy related to size limitation is wrong? The an-

swer is no, it is not entirely wrong. First, let us make clear that the goal of this experiment

is to compare the difference of correctness of result of two approaches. One is inexact

heuristic approach that infers a machine by using the stage merging algorithm. The result

of this approach is always consistent. The other one is Genetic Algorithm approach that

infers a machine by finding a consistent machine with the result of minimal consistency

approach.

Each data point in the result is calculated from Cross Validation method. In this

experiment, Cross Validation divides each problem into 6 sub-problems and averages the

correctness of the result of all sub-problems. The averaged value is the result of Cross

62

Validation. However, for each sub-problem, NEW2 is run repeatedly 10 times since NEW2

is non-deterministic while red-blue is run only once. It is possible that NEW2 might

not be able to find a consistent result for all 10 runs. Some run might yield inconsistent

result which is also included into the average value. However, this inconsistent result

performs bad in identifying unseen data. So, for a problem instance that NEW2 yields

inconsistent result for some runs, the average score is dragged down. Since the main goal

of this experiment is to compare the inexact heuristic approach with the small consistency

approach, it is unfair to include inconsistent results into the calculation. The experiment

is modified and run again to rectify this problem.

The experiment is re-run again with the modified version of NEW2. The modified

version of NEW2 is exactly the same as the normal NEW2, except that instead of returning

10 hypothesis machines for 10 runs, the modified version selects the best machine out of

these 10 runs and returns it as a single result instead. The best machine is the machine that

has the highest correctness according to the training set. In other words, it can be thought

as that the Cross Validation takes the best answer out of 10 runs of Genetic Algorithms,

instead of taking the average of all runs. This eliminates the inconsistent machine from

the calculation of correctness. Still, there is a case that NEW2 can not find any consistent

answer in all 10 runs. In such a case, the best consistent machine is selected as the best

one. This procedure seems fair if it is to compare the inexact heuristic approach with the

minimal consistency approach. This is because the consistency is the essential property

that must be compared, not the inconsistency. Also it is made clear in the beginning

of the experiment that the running time is not the subject of interest. The result of this

experiment is shown in Figure 6.7.

The result indicates that the hypothesis machine of NEW2, using only the best an-

swer of 10 runs (according to training data), has better accuracy in identifying unseen

data than the hypothesis machine of the red-blue when the size of training set is get-

ting smaller and smaller. The difference is decreasing when the training size is near zero.

It is very essential to put a strong emphasize that, although the result indicates that

NEW2 can produce a better accurate hypothesis than red-blue’s, it is true for only target

machine of small size. Inexact heuristic approach, such as red-blue, can solve much

larger problem than NEW2 and it can solve it in very short amount of time. For a large

problem, such as one whose target machine’s size is larger than 100 states, NEW2 can not

find the consistent answer in a reasonable time. In such a case, red-blue is much more

63

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

C
or

re
ct

ne
ss

Sample Size

NEW2
red-blue

Figure 6.7: Result of Experiment B using Best Solutions

practical.

It is clear that modified NEW2 which represents the minimal consistency approach

really performs better than red-bluewhich represents the inexact heuristic approach. It

is interesting to analyze this effect. The main difference between the result of both meth-

ods is the size of hypothesis. Size of NEW2 is restricted while red-blue’s is not. There

is a principle in logic that says about the complexity of entities to explain a hypothesis.

That principle is called Occam’s Razor.

Occam’s Razor is a logical principle that was used extensively and made famous by

medieval philosopher named William of Ockham. The principle states that one should not

increase, beyond what is necessary, the number of entities required to explain anything.

For example, let us consider a curve fitting problem. Suppose that there is two data points

in a plane. A straight line could fit this two data points. Lots of other complicated higher

degree curves could also fit this points. However, by the Occam’s Razor principle, the

straight line is preferable. It is possible that the straight line is wrong if more sampling

points is observed but that is another matter. Occam’s Razor states that to choose among

theories or models that can explain the same thing, the simplest one is preferable. This

makes developing a model easier and there is less chance that inconsistency might occur.

64

Under this problem, when NEW2 and red-blue are applied to a particular prob-

lem instance, they will yield a result with different size. Both hypothesis machines could

explain the training data. However, Occam’s Razor suggests that the smaller one is prefer-

able and should have higher chance of being consistent. If Occam’s Razor is applied to

this problem, the smaller hypothesis machine should perform better in identifying unseen

data. To see this, the number of states of the hypothesis machines of Experiment B is

measured. Figure 6.8 shows the size of hypothesis machines of both methods for each

problem instance size. Please note that the machine is reduced before the measurement is

taken.

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200 1400

A
ve

ra
ge

 H
yp

ot
he

si
s

S
iz

e

Sample Size

NEW2
red-blue

Figure 6.8: Size of Hypothesis Machines

The graph indicates that results from NEW2 are smaller than the results from red-

blue except for small area that the problem instance has very sparse training data. The

area that data are very sparse is the same area that the difference in accuracy of both

method is unnoticeable. This evidence supports the principle of Occam’s Razor. In fact,

there is an finite automata inference algorithm that uses Occam’s Razor approach such as

Occam algorithms (Blumer et al., 1989). There are also a lot of works that show strong

correlation between the complexity of the hypothesis and the desired behavior as noted in

(Oliveira and Silva, 2001).

65

6.3 Summary

This chapter provided an analysis of the experiments. In Experiment A, the results

indicate that the method NEW2 is better than NEW1 where NEW1, itself, is better than the

reference method, REF. However, NEW2 takes slightly more running time than NEW1. The

improvement over the reference method comes from the reduction of the search space.

Two supplementary experiments are carried out and their results show the evidence that,

when the size of reduced search space is increased, the improvement is more noticeable.

The other cause is the preservation of schema which is the effect of the new crossover

operator. However, the new operator has a side effect that it nullifies the effect of introns

which is implicitly happen in the reference method. The effect of intron is still unclear.

The result of Experiment B indicates that the GA-based method with size restriction

has a better generalization than the heuristic method, though the latter method could find

an answer in a very short amount of time. The effect can be argued to be a result from

Occam’s Razor which states that a simpler hypothesis that could explain the same thing

is better than more complicated hypothesis.

CHAPTER VII

Conclusion

This chapter summarizes the work in this thesis. It starts by summing up the entire

work. It gives recommendations on the future research for this work. Finally, it gives one

paragraph conclusion of the work.

7.1 Summary

This work attacks the problem of finite state machine inference. It starts by describ-

ing the problem and the importance of the problem. It discusses that the problem is useful

in many context. Further, the problem is considered to be hard in theoretical point of view

but practical in an average case. There are many approaches that solve the problem. Each

approach has its own advantage. A recommendation about how to choose a method to

solve the problem is given. This work emphasizes on a genetic algorithm approach which

is suitable when the training size is relatively small and the size of hypothesis machine is

restricted.

This work proposes a new genetic algorithm for the problem. It claims that the

new method is better than the former genetic algorithms for the problem. It shows the

evidence to support the claim by empirically comparing the proposed method with the

former method. The results of comparison show that the proposed method performs better

than the former method. In addition, it also compares the proposed method with the

method from another approach to show the advantage of the genetic algorithm approach.

The result shows that, under a particular constraint, the genetic algorithm approach can

beat the other approach.

Moreover, it gives some analysis of the difference of the compared methods. It

analyzes why the proposed method is better than the former method. The analysis deals

with many theoretical aspect of genetic algorithms. In essense, the new algorithm consists

of the new evaluation, the new encoding and the new operator. The new evaluation and

encoding reduce the size of the search space and eliminate introns caused by the output

value of the former method. The new crossover operator, which is designed to preserve

schemata, further eliminate introns caused by inaccessible states. The effect of introns,

which is expected to be positive, is eliminated in the new algorithm. However, the ex-

67

periments show that the gain of the new algorithm can overcome the loss of benefits of

introns.

It also informally discusses the difference between the genetic algorithm approach

and other approach. The superiority in accuracy of the genetic algorithm, under sparse

training set, is reckoned to be the result of the difference in the size of the hypothesis.

Occam’s razor has been used to explain the result, though very informally.

7.2 Future Research

Many topics in this work deserve future research. Mostly, they are about Genetic

Algorithms for the problem of finite state machine inference. The topics can be divided

into two classes. The first is the practical issue of the proposed method and the second is

the theoretical issue.

7.2.1 Practical Issue

First, the performance of the proposed genetic algorithm can be further improved.

For example, the proposed method uses specialized crossover that is designed for graph

based representation, in hoping that it could preserve building block better than a standard

crossover. However, there are a lot of work that deal with this problem. Specifically, there

are many algorithms proposed for linkage learning that can learn where the linkage is.

The application of such method to this problem might improve the performance of the

method.

Second, there is an issue on chromosome representation. The encoding of the pro-

posed method and the reference method have redundancy, finite state machines that are

behavioral equivalent can be encoded into different chromosomes. Usually, redundant

encoding should be avoided. New encoding that addresses this problem should be devel-

oped. The method is also limits that the number of genes must be a power of two. The

main reason for this encoding is to remove the inadmissible representation. This partly

limits the application of the method. Encoding that can represent machines at any size

should be developed.

68

7.2.2 Theoretical Issue

It is noted in the analysis that the proposed method introduces introns in the encod-

ing. The effect of intron for this particular problem is not extensively studied. This work

notes that there are introns in the reference method and introns are mostly reduced in the

proposed method. Future research in this topic should provide more understanding about

introns on this particular problem.

The analysis also notes the application of Occam’s Razor. Though it is discussed,

the formal analysis has not been studied. Future formal comparison between the minimal

consistency approach and the inexact heuristic approach should be carried out by focusing

on the correlation between the size of the hypothesis and the accuracy in identifying

unseen data.

7.3 Conclusion

In conclusion, the contribution of this work is the new genetic algorithm for the

problem of finite state machine inference. The method is shown to be better than the

former genetic algorithm for the problem. This method is suitable for the case that the

size of given sequence is relatively small and the size of hypothesis machine is restricted.

References

Angeline, P. J. 1994. Genetic programming: A current snapshot. In Fogel, D. B. and

Atmar, W. (eds.), Proceedings of the Third Annual Conference on Evolutionary

Programming. Evolutionary Programming Society.

Angluin, D. and Smith, C. H. 1983. Inductive inference: Theory and methods. Computing

Surveys, 15(3):237–269.

Aporntewan, C. 1999. An mimetic evolvable hardware for sequencial circuits. Master’s the-

sis, Department of Computer Engineering, Faculty of Engineering, Chulalongkorn

University.

Aporntewan, C. and Chongstitvatana, P. 2000. An on-line evolvable hardware for learn-

ing finite-state machine. In Proceedings of International Conference on Intelligent

Technologies, pp. 125–134.

Biermann, A. W., Baum, R. I., and Petry, F. E. 1975. Speeding up the synthesis of programs

from traces. IEEE Transactions on Computers, 24(C):122–136.

Biermann, A. W. and Feldman, J. A. 1972. On the synthesis of finite-state machines from

samples of their behavior. IEEE Transactions on Computers, 21:592–597.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K. 1989. Learnability and the

vapnik-chervonenkis dimension. Journal of the ACM (JACM), 36(4):929–965.

Chongstitvatana, P. and Aporntewan, C. 1999. Improving correctness of finite-state ma-

chine synthesis from multiple partial input/output sequences. In Proceedings of

First NASA/DoD Workshop of Evolvable Hardware.

Dupont, P. 1994. Regular grammatical inference from positive and negative samples by

genetic search: the GIG method. In Proceedings of the International Colloquium

on Grammatical Inference, pp. 236–245.

Dupont, P., Miclet, L., and Vidal, E. 1994. What is the search space of the regular inference?

In Carrasco, R. C. and Oncina, J. (eds.), Proceedings of the Second International

Colloquium on Grammatical Inference (ICGI-94): Grammatical Inference and

Applications, volume 862, pp. 25–37, Berlin: Springer.

Fogel, L. J., Owens, A. J., and Walsh, M. J. 1965. Artificial intelligence through a simulation

of evolution. In Maxfield, M., Callahan, A., and Fogel, L. (eds.), Biophycisc and

Cybernetic System: Proceedings of the 2nd Cybernetic Sciences Symposium, pp.

131–155, Washington, DC: Spartan Books.

70

Fogel, L. J., Owens, A. J., and Walsh, M. J. 1998. Artificial intelligence through a simulation

of evolution. In Fogel, D. B. (ed.), Evolutionary Computation : the Fossil Record,

pp. 230–254. Piscataway, NJ: IEEE Press.

Gold, E. M. 1978. Complexity of automaton identification from given data. Information

Control, 37:302–320.

Goldberg, D. E. 1989. Genetic algorithm in search, optimization and machine learning.

Reading, MA: Addison–Wesley.

Goldberg, D. E., Deb, K., and Thierens, D. 1992. Toward a better understanding of mixing

in genetic algorithms. Technical Report 92009, Illinois Genetic Algorithms Labo-

ratory, University of Illinoise at Urbana-Champaign.

Holland, J. H. 1992. Adaptation in Natural and Artificial Systems. Cambridge, MA: MIT

Press.

Hopcroft, J. E. and Ullman, J. D. 1979. Introduction to Automata Theory, Languages, and

Computation. Reading, MA: Addison–Wesley.

Juille, H. and Pollack, J. B. 1998. A sampling-based heuristic for tree search applied to gram-

mar induction. In Proceedings of the Fifteenth National Conference on Artificial

Intelligence (AAAI-98) Tenth Conference on Innovative Applications of Artificial

Intelligence (IAAI-98), Madison, Wisconsin, USA: AAAI Press Books.

Katz, R. H. 1994. Contemporary Logic Design. Reading, MA: Addison–Wesley.

Koza, J. R. 1992. Genetic Programming: On the Programming of Computers by Means of

Natural Selection. Cambridge, MA: MIT Press.

Lang, K. J. 1992. Random DFA’s can be approximately learned from sparse uniform ex-

amples. In Proceedings of the Fifth ACM Workshop on Computational Learning

Theory, pp. 45–52, New York, NY: ACM.

Lang, K. J. 1997. Abbadingo One: DFA Learning Competition[Online]. Available from:

http://abbadingo.cs.unm.edu/abbadingo/[2002, Mar 26]

Lang, K. J., Pearlmutter, B. A., and Price, R. A. 1998. Results of the abbadingo one DFA

learning competition and a new evidence-driven state merging algorithm. Fourth

International Colloquium on Grammatical Inference, Lecture Notes in Computer

Science 1433.

Lankhorst, M. M. 1995. A genetic algorithm for the induction of pushdown automata. In

Proceedings of the Second IEEE Conference on Evolutionary Computation, pp.

741–746.

71

Levenick, J. R. 1991. Inserting introns improves genetic algorithm success rate: Taking a

cue from biology. In Belew, R. and Booker, L. (eds.), Proceedings of the Fourth

International Conference on Genetic Algorithms, pp. 123–127, San Mateo, CA:

Morgan Kaufman.

Lobo, F. G. 2000. The parameter-less genetic algorithm: Rational and automated

parameter selection for simplified genetic algorithm operation. Technical Report

2000030, Illinois Genetic Algorithms Laboratory, University of Illinoise at Urbana-

Champaign.

Lucas, S. 1994. Structuring chromosomes for context-free grammar evolution. In IEEECEP:

Proceedings of The IEEE Conference on Evolutionary Computation, IEEE World

Congress on Computational Intelligence.

Luke, S. 2000. Code growth is not caused by introns. In Whitley, D. (ed.), Late Breaking

Papers at the 2000 Genetic and Evolutionary Computation Conference, pp. 228–

235, Las Vegas, Nevada, USA.

Machado, P., Pereira, F. B., Cardoso, A., and Costa, E. 1999. Busy beaver – the influence

of representation. In Poli, R., Nordin, P., Langdon, W. B., and Fogarty, T. C. (eds.),

Genetic Programming, Proceedings of EuroGP’99, volume 1598, pp. 29–38, Gote-

borg, Sweden: Springer–Verlag.

Manovit, C., Aporntewan, C., and Chongstitvatana, P. 1998. Synthesis of synchronous se-

quential logic circuits from partial input/output sequences. In Proceedings of 2nd

International Conference on Evolvable Systems, pp. 98–105.

Mitchell, T. M. 1997. Machine Learning. Singapore: McGraw–Hill.

Oliveira, A. L. and Silva, J. P. M. 2001. Efficient algorithms for the inference of minimum

size DFAs. Machine Learning, 44(1/2):93–119.

Pereira, F. B., Machado, P., Costa, E., and Cardoso, A. 1999. Busy beaver: An Evolutionary

approach. In Proceedings of the second Symposium on Artificial Intelligence.

Pereira, F. B., Machado, P., Costa, E., and Cardoso, A. 1999. Graph based crossover-A

case study with the busy beaver problem. In Banzhaf, W., Daida, J., Eiben, A. E.,

Garzon, M. H., Honavar, V., Jakiela, M., and Smith, R. E. (eds.), Proceedings of

the Genetic and Evolutionary Computation Conference, volume 2, pp. 1149–1155,

Orlando, Florida, USA: Morgan Kaufmann.

Pereira, F. B., Machado, P., Costa, E., Cardoso, A., Ochoa-Rodriguez, A., Santana, R.,

and Soto, M. 2000. Too busy to learn. In Proceedings of the 2000 Congress on

72

Evolutionary Computation CEC00, pp. 720–727. IEEE Press.

Pitt, L. and Warmuth, M. K. 1993. The minimum consistent dfa cannon be approximated

within any polynomial. Journal of ACM, 40(1):95–142.

Trakhtenbrot, B. A. and Barzdin, Y. M. 1973. Finite Automata. Amsterdam: North-Holland.

Thierens, D. 1999. Scalability problems of simple genetic algorithms. Evolutionary

Computation, 7(4):331–352.

Whitley, D. 1993. A genetic algorithm tutorial. Technical Report CS-93-103, Department

of Computer Science, Colorado State University.

Wolpert, D. H. and Macready, W. G. 1995. No free lunch theorems for search. Technical

Report SFI-TR-95-02-010, Santa Fe Institute, Santa Fe, NM.

Wolpert, D. H. and Macready, W. G. 1997. No free lunch theorems for optimization. IEEE

Transactions on Evolutionary Computation, 1(1):67–82.

Wu, A. S. and Lindsay, R. K. 1996. A survey of intron research in genetics. In Voigt, H.-M.,

Ebeling, W., Rechenberg, I., and Schwefel, H.-P., editors, Parallel Problem Solving

From Nature IV. Proceedings of the International Conference on Evolutionary

Computation, volume 1141, pp. 101–110, Berlin, Germany: Springer–Verlag.

Appendices

APPENDIX A

Experimental Results in Details

This appendix provides results of each experiment in detailed version. The data

presented here are raw data before being summarized.

A.1 Experiment A

This section provides results of Experiment A which compares method REF, NEW1

and NEW2. Bold value represents the best value among all methods.

Table A.1: Raw Results of Experiment A

Measurement

Number of Generations Time (s)

REF NEW1 NEW2 REF NEW1 NEW2

Problem 0 1.4 0.0 0.0 0.1 0.1 0.1

Problem 1 1.5 0.0 0.0 0.1 0.0 0.0

Problem 2 1.5 0.0 0.0 0.1 0.1 0.1

Problem 3 2.5 0.0 0.0 0.2 0.0 0.0

Problem 4 7.3 0.6 1.0 0.4 0.1 0.1

Problem 5 25.3 3.6 3.4 1.3 0.2 0.3

Problem 6 31.4 4.5 3.3 1.6 0.3 0.3

Problem 7 40.5 11.4 12.0 2.1 0.7 0.7

Problem 8 47.2 18.4 24.8 2.3 1.1 1.5

Problem 9 75.0 0.6 0.8 3.3 0.1 0.1

Problem 10 108.8 1.2 1.5 5.1 0.1 0.1

Problem 11 251.6 60.5 26.8 12.4 3.3 1.7

Problem 12 265.2 114.5 54.1 13.1 6.3 3.3

Problem 13 291.1 21.7 15.3 14.4 1.2 1.0

Problem 14 412.0 0.2 0.9 18.6 0.0 0.1

Problem 15 440.3 133.0 85.2 27.6 9.0 6.2

Problem 16 536.0 207.3 146.1 33.3 13.9 10.5

Problem 17 551.1 15.3 25.2 27.2 0.8 1.5

Problem 18 613.9 102.3 132.2 38.3 6.9 9.5

75

Table A.1: Raw Results of Experiment A

Measurement

Number of Generations Time (s)

REF NEW1 NEW2 REF NEW1 NEW2

Problem 19 692.5 95.2 85.3 43.2 6.4 6.1

Problem 20 1008.0 342.8 254.2 62.7 22.2 18.2

Problem 21 2025.3 9.6 9.0 99.3 0.6 0.6

Problem 22 2040.2 323.7 584.7 127.1 21.7 41.8

Problem 23 2167.5 68.6 69.8 134.3 4.6 5.0

Problem 24 2197.5 61.0 33.6 107.7 3.4 2.0

Problem 25 2257.3 34.2 16.9 112.1 2.0 1.0

Problem 26 2732.8 299.5 64.2 137.0 16.4 3.8

Problem 27 3127.1 13.0 24.2 153.7 0.8 1.5

Problem 28 3833.8 462.3 351.8 238.6 29.7 25.2

Problem 29 4181.1 567.1 425.2 259.2 37.9 30.3

Problem 30 4216.3 276.0 131.1 266.4 18.5 9.5

Problem 31 4306.0 79.3 1803.6 267.5 5.3 129.0

Problem 32 4825.7 358.5 52.5 300.5 24.0 3.8

Problem 33 4934.4 952.7 129.6 305.9 63.8 9.2

Problem 34 4955.2 192.1 394.1 307.5 12.9 28.1

Problem 35 5450.6 167.7 2711.1 268.9 9.3 158.4

Problem 36 5664.9 465.3 899.9 355.5 30.0 64.4

Problem 37 5752.6 3572.0 1146.9 357.2 238.8 82.3

Problem 38 6460.3 382.7 793.6 405.8 24.7 56.7

Problem 39 6599.7 3817.0 561.5 412.6 245.9 40.0

Problem 40 7001.5 2351.6 2185.2 438.6 151.7 157.0

Problem 41 7055.6 782.7 2449.0 442.1 49.4 196.3

Problem 42 8124.6 4245.8 6339.1 401.9 232.2 370.2

Problem 43 8410.2 676.0 326.7 537.8 43.7 23.3

Problem 44 8445.0 4221.9 6570.5 419.9 230.7 384.6

Problem 45 8572.7 196.8 1442.3 532.7 13.2 102.7

Problem 46 8906.8 730.4 3290.4 561.6 47.1 234.7

Problem 47 9466.2 2625.1 2526.5 586.4 165.0 180.2

76

Table A.1: Raw Results of Experiment A

Measurement

Number of Generations Time (s)

REF NEW1 NEW2 REF NEW1 NEW2

Problem 48 9645.7 4757.9 698.3 598.5 301.8 49.9

Problem 49 11406.8 1070.9 817.3 710.1 67.4 59.3

Problem 50 12938.5 2924.5 4179.0 808.7 183.6 306.3

Problem 51 13645.2 1288.3 1933.3 864.0 80.9 137.7

Problem 52 17096.1 5728.4 6654.1 1073.0 361.3 475.0

Problem 53 17373.1 11504.4 5395.9 1086.9 722.7 416.7

Problem 54 18516.4 3367.9 5082.4 1159.7 211.4 362.0

Problem 55 19509.5 14995.5 12653.7 1945.3 1385.3 1472.1

Problem 56 20000.0 9428.1 10308.9 1254.7 594.7 736.6

Problem 57 20000.0 16490.0 17927.6 2002.5 1514.5 1902.7

Problem 58 20000.0 16130.8 11578.1 2038.5 1479.8 1219.6

Problem 59 20000.0 13831.4 10564.2 1997.2 1272.1 1130.8

Problem 60 20000.0 20000.0 15742.7 1999.1 1834.3 1684.2

Problem 61 20000.0 20000.0 20000.0 2000.7 1836.5 2135.9

Problem 62 20000.0 20000.0 20000.0 1998.6 1835.4 2130.3

Problem 63 20000.0 20000.0 20000.0 1996.2 1834.3 2113.1

Problem 64 20000.0 20000.0 16804.6 1995.4 1846.6 1782.1

Problem 65 20000.0 20000.0 19589.9 1999.9 1836.5 2168.0

Problem 66 20000.0 20000.0 18379.9 1967.6 1827.9 1955.9

Problem 67 20000.0 16903.9 11689.3 1965.6 1543.7 1232.4

Problem 68 20000.0 20000.0 20000.0 2000.0 1831.5 2100.9

Problem 69 20000.0 20000.0 20000.0 1999.3 1825.8 2117.5

Problem 70 20000.0 20000.0 20000.0 2002.4 1830.5 2175.6

Problem 71 20000.0 20000.0 20000.0 2007.4 1840.3 2121.0

Problem 72 20000.0 20000.0 20000.0 2008.5 1835.5 2339.6

Problem 73 20000.0 20000.0 20000.0 2004.7 1837.1 2116.7

Problem 74 20000.0 20000.0 19576.1 2004.2 1834.0 2151.5

Problem 75 20000.0 20000.0 20000.0 2004.0 1840.5 2145.9

Problem 76 20000.0 20000.0 20000.0 2001.1 1834.1 2276.1

77

Table A.1: Raw Results of Experiment A

Measurement

Number of Generations Time (s)

REF NEW1 NEW2 REF NEW1 NEW2

Problem 77 20000.0 20000.0 20000.0 2000.8 1838.8 2133.1

Problem 78 20000.0 20000.0 20000.0 2004.0 1837.9 2105.0

Problem 79 20000.0 20000.0 20000.0 2006.1 1840.6 2144.2

Total 749246 527488 505780 64350 46393 51801

Relative 100.00% 70.40% 67.51% 100.00% 72.10% 80.50%

Best among others 0 31 35 2 52 26

A.2 Experiment A1 and A2

This section provides results of Experiment A, A1 and A2. These set of experi-

ments are carried out to compare the method REF and NEW1, so the data of NEW2 of the

Experiment A are omitted. Bold value indicates the best value among all methods.

Table A.2: Raw Results of Experiment A, A1 and A2

Number of Generations

Experiment A Experiment A1 Experiment A2

REF NEW1 REF NEW1 REF NEW1

Problem 0 1.4 0.0 5.8 0.0 9.7 0.0

Problem 1 1.5 0.0 6.3 0.0 10.3 0.0

Problem 2 1.5 0.0 6.5 0.0 166 0.0

Problem 3 2.5 0.0 6.9 0.0 184.2 0.0

Problem 4 7.3 0.6 296.6 111.3 196.3 8.2

Problem 5 25.3 3.6 1011.7 7.9 200.4 7.4

Problem 6 31.4 4.5 1191.5 86.4 439.4 71.1

Problem 7 40.5 11.4 1237.7 0.8 735.3 29.2

Problem 8 47.2 18.4 1577.7 175.9 1068.6 0.5

Problem 9 75.0 0.6 2011.8 0.7 1635.6 62.5

Problem 10 108.8 1.2 2028.3 16.0 2110.7 18.9

Problem 11 251.6 60.5 2138.9 84.1 2142.9 24.3

78

Table A.2: Raw Results of Experiment A, A1 and A2

Number of Generations

Experiment A Experiment A1 Experiment A2

REF NEW1 REF NEW1 REF NEW1

Problem 12 265.2 114.5 2278.1 13.5 2333.9 56.1

Problem 13 291.1 21.7 2304 7.6 2379.8 80.2

Problem 14 412.0 0.2 2381.6 106.1 2586.4 99.5

Problem 15 440.3 133.0 2512.4 34.9 2868.6 1407.0

Problem 16 536.0 207.3 2900.4 178.4 4056.2 20.8

Problem 17 551.1 15.3 2984.1 2078.6 4247.3 1130.4

Problem 18 613.9 102.3 3170.5 224.1 4332.9 11.0

Problem 19 692.5 95.2 3377.4 27.7 4420.3 0.5

Problem 20 1008.0 342.8 3633.4 92.8 5282.9 73.7

Problem 21 2025.3 9.6 3698.2 50.7 5980 89.6

Problem 22 2040.2 323.7 4003 53.3 6027.6 296.3

Problem 23 2167.5 68.6 4012.4 0.9 6264.2 27.9

Problem 24 2197.5 61.0 4058.4 93.1 6307.5 86.1

Problem 25 2257.3 34.2 4087.5 9.4 6405 75.1

Problem 26 2732.8 299.5 4124 109.3 6689.5 98.1

Problem 27 3127.1 13.0 4127.1 0.9 6997.4 168.6

Problem 28 3833.8 462.3 4481.1 26.9 7179.1 750.8

Problem 29 4181.1 567.1 4705.4 250.8 7962.3 4018.6

Problem 30 4216.3 276.0 4976.8 239.7 8228.9 28.2

Problem 31 4306.0 79.3 5000.6 180.2 8352.1 192.9

Problem 32 4825.7 358.5 6031.5 12.5 8691.1 147.5

Problem 33 4934.4 952.7 6045.3 25.4 9166.9 0.5

Problem 34 4955.2 192.1 7148.6 52.6 9586.3 1.8

Problem 35 5450.6 167.7 7200.3 188.2 10561.6 157.5

Problem 36 5664.9 465.3 7237.2 264.8 10570.7 264.1

Problem 37 5752.6 3572.0 8207.4 127.8 10723.4 7.1

Problem 38 6460.3 382.7 8408.5 322.8 10919.9 1139.8

Problem 39 6599.7 3817.0 8648 388.5 11806.4 116.3

Problem 40 7001.5 2351.6 8777.8 147.7 11953.2 307.7

79

Table A.2: Raw Results of Experiment A, A1 and A2

Number of Generations

Experiment A Experiment A1 Experiment A2

REF NEW1 REF NEW1 REF NEW1

Problem 41 7055.6 782.7 8972.2 2182.8 12385.8 1982.1

Problem 42 8124.6 4245.8 11301.7 2459.9 12474.6 1699.0

Problem 43 8410.2 676.0 12014.1 1767.4 13155.5 1753.0

Problem 44 8445.0 4221.9 12126.4 3064.4 13536.5 266.0

Problem 45 8572.7 196.8 12354.4 2823.7 13916.6 8.2

Problem 46 8906.8 730.4 14459.9 3220.8 14890.7 365.4

Problem 47 9466.2 2625.1 15616.5 2043.0 15356.8 4854.7

Problem 48 9645.7 4757.9 15943.8 4180.8 16898.1 278.0

Problem 49 11406.8 1070.9 17269.2 1356.0 17766.1 1152.4

Problem 50 12938.5 2924.5 18491.5 3344.6 18220.2 665.4

Problem 51 13645.2 1288.3 18785.8 2126.9 18334.3 1056.5

Problem 52 17096.1 5728.4 19559.5 3043.7 20000 16615.0

Problem 53 17373.1 11504.4 20000 3374.5 20000 9065.2

Problem 54 18516.4 3367.9 20000 8910.9 20000 5016.2

Problem 55 19509.5 14995.5 20000 11957.4 20000 3757.5

Problem 56 20000.0 9428.1 20000 20000 20000 17122.0

Problem 57 20000.0 16490.0 20000 20000 20000 13940.7

Problem 58 20000.0 16130.8 20000 14649.1 20000 16371.7

Problem 59 20000.0 13831.4 20000 20000 20000 16964.8

Problem 60 20000.0 20000 20000 18949.6 20000 18449.5

Problem 61 20000.0 20000 20000 20000 20000 16805.8

Problem 62 20000.0 20000 20000 20000 20000 15212.9

Problem 63 20000.0 20000 20000 20000 20000 17607.9

Problem 64 20000.0 20000 20000 20000 20000 19334.0

Problem 65 20000.0 20000 20000 20000 20000 20000

Problem 66 20000.0 20000 20000 20000 20000 18110.6

Problem 67 20000.0 16903.9 20000 20000 20000 20000

Problem 68 20000.0 20000 20000 20000 20000 20000

Problem 69 20000.0 20000 20000 20000 20000 19907.3

80

Table A.2: Raw Results of Experiment A, A1 and A2

Number of Generations

Experiment A Experiment A1 Experiment A2

REF NEW1 REF NEW1 REF NEW1

Problem 70 20000.0 20000 20000 20000 20000 20000

Problem 71 20000.0 20000 20000 20000 20000 20000

Problem 72 20000.0 20000 20000 20000 20000 20000

Problem 73 20000.0 20000 20000 20000 20000 20000

Problem 74 20000.0 20000 20000 20000 20000 19705.4

Problem 75 20000.0 20000 20000 20000 20000 20000

Problem 76 20000.0 20000 20000 20000 20000 18858.1

Problem 77 20000.0 20000 20000 20000 20000 20000

Problem 78 20000.0 20000 20000 20000 20000 20000

Problem 79 20000.0 20000 20000 20000 20000 20000

Total 749246 527488 868936 535248 938716 508001

Relative 100.00% 70.40% 100.00% 61.60% 100.00% 54.12%

Successful Runs 461 561 408 552 383 577

A.3 Experiment B

This section provides results of the modified version of Experiment B where the

values of NEW2 method are the best value of 10 runs rather than the average value. In

other words, this is the raw data of Figure 6.7. Each data point is the result of Cross

Validation algorithm. The first column is the length (in bit) of the input/output sequences

and the number of the sequences. The other columns comprise of the correctness and the

size of the hypothesis. The calculation of correctness is presented in Section 5.2.2. The

size is the average of the size of hypothesis machines of all sub-problems.

Table A.3: Raw Results of Experiment B

NEW2 red-blue

Length x Num of Seq. Correctness Size Correctness Size

5 x 5 0.800 14.500 0.500 6.833

5 x 10 0.867 14.167 0.817 9.667

81

Table A.3: Raw Results of Experiment B

NEW2 red-blue

Length x Num of Seq. Correctness Size Correctness Size

5 x 15 0.933 15.000 0.889 10.000

5 x 20 0.867 15.500 0.892 11.333

5 x 25 0.953 15.167 0.953 11.500

5 x 30 0.967 15.500 0.950 13.167

5 x 35 0.957 15.667 0.952 13.333

7 x 5 0.571 14.167 0.714 9.500

7 x 10 0.821 15.167 0.821 11.000

7 x 15 0.873 15.333 0.873 14.333

7 x 20 0.875 15.667 0.863 15.000

7 x 25 0.914 15.500 0.914 17.500

7 x 30 0.913 15.167 0.905 16.500

7 x 35 0.932 15.000 0.973 17.333

9 x 5 0.630 15.000 0.611 10.333

9 x 10 0.750 15.500 0.824 14.000

9 x 15 0.809 16.000 0.833 18.167

9 x 20 0.940 15.333 0.870 19.833

9 x 25 0.941 15.667 0.893 18.833

9 x 30 0.963 14.667 0.932 16.167

9 x 35 0.992 15.667 0.971 16.000

11 x 5 0.576 15.667 0.606 11.667

11 x 10 0.742 15.833 0.826 17.000

11 x 15 0.823 15.333 0.753 22.667

11 x 20 0.947 15.333 0.902 20.667

11 x 25 0.991 15.167 0.915 19.333

11 x 30 0.977 15.500 0.902 19.500

11 x 35 0.991 15.333 0.963 16.833

13 x 5 0.782 14.167 0.679 14.000

13 x 10 0.737 15.833 0.686 19.833

13 x 15 0.868 15.333 0.910 19.667

13 x 20 0.971 15.500 0.859 19.167

82

Table A.3: Raw Results of Experiment B

NEW2 red-blue

Length x Num of Seq. Correctness Size Correctness Size

13 x 25 0.974 15.333 0.933 18.167

13 x 30 0.981 15.500 0.981 15.333

13 x 35 1.000 15.167 0.982 16.167

15 x 5 0.633 15.667 0.633 17.000

15 x 10 0.844 15.167 0.706 24.000

15 x 15 0.948 15.667 0.874 22.333

15 x 20 0.969 15.333 0.822 28.500

15 x 25 0.982 15.333 0.951 15.167

15 x 30 0.993 15.167 0.989 15.833

15 x 35 0.992 15.167 0.986 15.500

17 x 5 0.706 15.000 0.637 18.167

17 x 10 0.833 16.000 0.711 26.000

17 x 15 0.984 15.333 0.807 30.167

17 x 20 0.975 15.167 0.914 22.000

17 x 25 0.986 15.000 0.959 16.833

17 x 30 1.000 15.000 0.962 16.833

17 x 35 1.000 15.167 1.000 15.000

19 x 5 0.640 15.500 0.623 19.500

19 x 10 0.842 15.333 0.588 32.833

19 x 15 0.982 15.333 0.728 29.833

19 x 20 0.945 15.500 0.853 25.333

19 x 25 0.989 15.167 0.963 18.000

19 x 30 0.981 15.167 0.968 18.167

19 x 35 1.000 15.000 1.000 15.000

21 x 5 0.540 15.833 0.548 23.333

21 x 10 0.810 15.500 0.714 30.333

21 x 15 0.915 15.333 0.823 32.833

21 x 20 0.992 15.167 0.877 25.500

21 x 25 0.992 15.167 0.973 17.000

21 x 30 1.000 15.000 0.993 17.333

83

Table A.3: Raw Results of Experiment B

NEW2 red-blue

Length x Num of Seq. Correctness Size Correctness Size

21 x 35 1.000 15.000 0.974 19.667

23 x 5 0.580 15.667 0.659 25.167

23 x 10 0.928 15.000 0.678 32.000

23 x 15 0.959 15.167 0.800 29.667

23 x 20 0.991 15.500 0.960 17.667

23 x 25 1.000 15.333 0.946 21.333

23 x 30 0.986 15.000 0.994 15.333

23 x 35 1.000 15.000 1.000 15.000

25 x 5 0.660 15.667 0.653 24.500

25 x 10 0.903 15.500 0.760 33.667

25 x 15 0.956 15.167 0.644 43.333

25 x 20 0.990 15.000 0.945 22.833

25 x 25 0.975 15.167 0.967 18.833

25 x 30 1.000 15.000 0.996 17.167

25 x 35 1.000 15.000 1.000 15.000

27 x 5 0.747 15.667 0.630 27.000

27 x 10 0.951 15.333 0.639 43.333

27 x 15 1.000 15.000 0.837 39.000

27 x 20 1.000 15.167 0.852 26.833

27 x 25 1.000 15.000 0.985 19.333

27 x 30 0.998 15.167 1.000 15.000

27 x 35 1.000 15.000 1.000 15.000

29 x 5 0.701 15.833 0.529 31.000

29 x 10 0.905 15.500 0.678 43.333

29 x 15 1.000 15.000 0.785 37.167

29 x 20 1.000 15.167 0.795 38.333

29 x 25 1.000 15.000 0.990 16.167

29 x 30 1.000 15.000 1.000 16.000

29 x 35 1.000 15.000 0.992 16.833

31 x 5 0.726 15.833 0.591 32.833

84

Table A.3: Raw Results of Experiment B

NEW2 red-blue

Length x Num of Seq. Correctness Size Correctness Size

31 x 10 0.968 15.333 0.621 46.667

31 x 15 0.975 15.167 0.923 23.667

31 x 20 1.000 15.000 0.835 33.333

31 x 25 0.994 15.000 0.972 21.500

31 x 30 1.000 15.000 0.996 15.333

31 x 35 1.000 15.000 0.978 31.500

33 x 5 0.727 16.000 0.566 33.833

33 x 10 0.879 15.333 0.601 47.500

33 x 15 1.000 15.000 0.702 58.167

33 x 20 1.000 15.000 0.831 41.833

33 x 25 1.000 15.000 0.991 16.167

33 x 30 0.988 15.333 0.929 30.333

33 x 35 1.000 15.000 0.960 23.000

35 x 5 0.838 15.833 0.557 35.167

35 x 10 0.971 15.167 0.748 39.000

35 x 15 1.000 15.000 0.800 38.000

35 x 20 1.000 15.000 0.923 35.667

35 x 25 1.000 15.167 0.910 37.000

35 x 30 1.000 15.000 1.000 15.000

35 x 35 1.000 15.000 0.975 32.000

APPENDIX B

Terminologies and Symbols

This chapter defines some terminologies that are used in this thesis. Unless it is

stated otherwise in the context, the words listed in this chapter assume the meaning as

described here.

Target machine refers to a machine M where the input/output sequence set is gen-

erated from.

Evolving machine denotes an intermediate machine that is in the process of search-

ing for a consistent machine. The evolving machine is usually inconsistency except at the

end of the search that yields the correct result. In that case, it is preferred to call that

machine as an evolved machine.

Hypothesis machine denotes a machine that is a result of an inference method. It is

not necessary that the machine is consistent since it is possible that an inference method

might wish to yield an inconsistent machine.

Example Data refers to the data that are given as a training set for learning, some-

time it is called given example or training data.

Individual, sometimes referred to as a solution, is a point in the search space.

Usually, it refers to a member of population in general with no specification in its state.

That member can be in encoded form which is ready to be manipulated by operators of

Genetic Algorithms or can be in decoded form ready to be evaluated.

Chromosome refers to a string used to represent an individual in Genetic Algo-

rithms, usually a binary string. It is an individual in an encoded form. It can be used

interchangeably with the term bit string.

Gene refers to a group of bits in chromosome that contributes one parameter value

when decoded. For example, A bit position 0, 1 and 2 in a chromosome of some particular

encoding might be decoded into one parameter with 8 possible values that determine some

particular characteristic of that individual. That group of bits at position 0 to 2 is called a

gene.

86

In the upcoming chapters, some pseudo-code is presented. There are new symbols

that are used often. These symbols are not widely used in general. They are defined as

follows.

The first one is the random assignation symbol
$
←−. The $ indicates randomness.

Formally, a statement

x
$
←− P

where P is a set means that one element of P is randomly selected with equal probabilities

and assigned that element to the variable x.

Another symbol is the size of input/output example in the sequence set ‖ ζ ‖. The

symbol ‖ ζ ‖ represents the summation of the lengths of all sequence in the set ζ . This

symbol is formally defined as follows.

‖ ζ ‖=
∑

S∈ζ

(|S|)

87

Biography

Nattee Niparnan was born in Bangkok, Thailand, on May 11, 1979. He received

Bachelor Degree of Engineering from Chulalongkorn University in April, 2001. His field

of study is Computer Engineering. His main interest is in the area of data structure and

algorithm analysis. His current research is the novel applications of evolutionary compu-

tation and the theory of Genetic Algorithms.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	CHAPTER I Introduction
	1.1 Claim
	1.2 Scope of the Work
	1.3 Organization of the thesis

	CHAPTER II Literature Review
	2.1 Summary

	CHAPTER III Genetic Algorithms
	3.1 Basics of Genetic Algorithms
	3.2 Canonical Genetic Algorithm
	3.3 Schema Theore
	3.4 Summary

	CHAPTER IV Genetic Algorithm Methods for the Problem
	4.1 Definition
	4.2 Problem Statement
	4.3 Reference GA Method for the problem
	4.4 New Genetic Algorithm Method for the Problem
	4.5 Summary

	CHAPTER V Experiment and Results
	CHAPTER VI Analysis of Results
	CHAPTER VII Conclusion
	References
	Appendices
	Biography

