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Chapter I

Introduction

The problem which appears some variables tending to infinity in a finite time

T > 0 is called a blow-up phenomenon. In the theory of ordinary differential

equations, the simplest example is the initial-value problem

ut = u2, t > 0,

u(0) = b.

For b > 0 it is immediate that the unique solution exists in the time interval

0 < t < T = 1/b. Solving the problem, we find that u(t) = 1/(T − t), one sees

that u(t) →∞ as t → T−. We say that the solution blows up at t = T and also

that u(t) has a blow-up at a finite time. Starting from this example, the concept

of blow-up can be widely generalized. Thus we consider the more general form

ut = f(u),

where f is a positive and continuous function satisfying the condition

∞∫

1

1

f(s)
ds < ∞.

This Osgood’s condition in the theory of ordinary differential equations estab-

lished in 1898 is necessary and sufficient for the occurrence of a blow-up in a finite

time for any solutions with positive initial data. Further details about blow-up

phenomena can be found in [10]. In this work, we are interested in a blow-up

phenomenon in a semilinear parabolic equation.

Previously, there were many mathematicians studied blow-up phenomenon.

For instance:
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In 1989, M.S. Floater [6] studied degenerate semilinear parabolic equation:

ut(x, t) = uxx(x, t) + up(x, t) in (0, 1)× (0,∞),

u(0, t) = u(1, t) = 0 for t > 0,

u(x, 0) = u0(x) ≥ 0 on [0, 1].

Under certain conditions, it is shown that the solution may blow up at the bound-

ary in a finite time.

In 1991, Z. Lin and M. Wang [10] studied the semilinear parabolic equation:

ut(x, t) = uxx(x, t) + up(x, t) in (0, 1)× (0,∞),

ux(0, t) = 0, ux(1, t) = uq(x, t) for t > 0,

u(x, 0) = u0(x) ≥ 0 on [0, 1].

Again, under certain conditions, they proved that the blow-up would occur only

at the boundary x = 1.

In 2000, C.Y. Chan and H.Y. Tian [2] showed that, under certain conditions,

a degenerate semilinear parabolic equation with initial-boundary value became

a single point blow-up problem. In addition, C.Y. Chan and J. Yang [4] proved

that the degenerate semilinear parabolic problem under the certain conditions is

a complete.

Based on the above results, we will show that, under certain conditions, the

following semilinear parabolic equation blows up in a finite time.

Let T ≤ ∞, and a and x0 be constants with a > 0 and 0 < x0 < a. We would

like to study the following semilinear parabolic initial-boundary value problem,

ut(x, t)− uxx(x, t) = f(u(x0, t)) for 0 < x < a, 0 < t < T,

u(x, 0) = φ(x) on 0 ≤ x ≤ a,

u(0, t) = ux(a, t) = 0 for 0 < t < T,





(1)

where T ≤ ∞, a and x0 be constants with a > 0, 0 < x0 < a, and f , φ are given

functions. We will also show that under certain conditions, u blows up in a finite

time, and the set of the blow-up points is the enire interval [0, a].
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Similarly, a solution u (x, t) is said to blow up at the point (x, T ) if there

exists a sequence {(xn, tn)} such that lim
n→∞

u(xn, tn) → ∞ as (xn, tn) → (x, T ).

Furthermore, if u (x, t) blows up at every point x ∈ [0, a] , then the complete

blow-up occurs.

The complete blow-up of the solution of a degenerate semilinear problem with

ux(a, t) = 0 replaced by u(a, t) = 0 was studied by Chan and Yang [4]. Baras and

Cohen [1] and Lacey and Tzanetis [9] studied the problem of a complete blow-up

with f(u(x0, t)) being replaced by f (u(x, t)).

In chapter 2, we transform the problem from [0, a] to [0, 1]. In chapter 3,

we show that the transformed solution satisfies a nonlinear integral equation,

and establish the existence of a unique continuous solution u to this integral

equation. In chapter 4, we show that u blows up in a finite time if the initial data

are sufficiently large in some neighborhood of x0. In chapter 5, we prove that the

set of blow-up points is the entire interval [0, 1].



Chapter II

Transformation

Let T̃ ≤ ∞, and a and x̃0 be constants with a > 0 and 0 < x̃0 < a. We

consider the following semilinear parabolic initial-boundary value problem,

uet(x̃, t̃)− uexex(x̃, t̃) = F (u(x̃0, t̃)) in (0, a)× (0, T̃ ),

u(x̃, 0) = φ(x̃) on [0, a],

u(0, t̃) = uex(a, t̃) = 0 for 0 < t̃ < T̃ ,





(2)

where F and φ are given functions. Let x̃ = ax, t̃ = a2t, T̃ = a2T, Lu = ut−uxx,

f(u(x0, t)) = F (u(x̃0, t̃)), D = (0, 1), D = [0, 1] and Ω = D × (0, T ). We have,

uet = ut
dt

dt̃
=

1

a2
ut,

uex = ux
dx

dx̃
=

1

a
ux,

uexex = (
1

a
ux)ex =

1

a2
uxx.

Then the above system (2) is transformed into the following problem,

Lu(x, t) = a2f(u(x0, t)) in Ω,

u(x, 0) = φ(x) on D,

u(0, t) = ux(1, t) = 0 for 0 < t < T





(3)

with T = T̃ /a2. We assume that f ∈ C2([0,∞)), f(0) ≥ 0, f ′(s) > 0 and

f ′′(s) > 0 for s > 0,
∞∫
z0

1
f(s)

ds < ∞ for some z0 > 0, and φ(x) is nontrivial,

nonnegative and continuous such that φ(0) = φ′(1) = 0, and

φ′′ (x) + a2f(φ(x0)) ≥ 0 in D. (4)
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We note that the last condition is used to show that before u blows up, u is a

nondecreasing function of t.



Chapter III

Existence of a unique solution

Let us construct Green′s function G(x, t; ξ, τ) corresponding to the problem

(3). It is determined by the following system: for x and ξ in D and t and τ in

(0, T ),

LG(x, t; ξ, τ) = δ(x− ξ)δ(t− τ),

G(x, t; ξ, τ) = 0 for t < τ,

G(0, t; ξ, τ) = Gx(1, t; ξ, τ) = 0,





(5)

where δ (x) is the Dirac delta function. By the method of eigenfunction expansion,

G(x, t; ξ, τ) =
∞∑

n=1

an (t) gn (x) , (6)

where

gn (x) =
√

2 sin
√

λnx, λn =

[(
2n− 1

2

)
π

]2

, n = 1, 2, 3, ...

are the nth orthonormal eigenfunction and eigenvalue of the Sturm-Liouville prob-

lem,

g′′ (x) + λg (x) = 0, g (0) = g′ (1) = 0.

Substituting (6) into (5), we find that

∞∑
n=1

a′n (t) gn (x)−
∞∑

n=1

an (t) g′′n (x) = δ(x− ξ)δ(t− τ).

Since g′′n (x) + λngn (x) = 0, we have

∞∑
n=1

a′n (t) gn (x) +
∞∑

n=1

an (t) λngn (x) = δ(x− ξ)δ(t− τ).

Therefore,
∞∑

n=1

[a′n (t) + λnan (t)] gn (x) = δ(x− ξ)δ(t− τ).
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Multiplying both sides by gm (x) and integrating from 0 to 1 with respect to x,

we formally obtain that

1∫

0

gm (x)
∞∑

n=1

[a′n (t) + λnan (t)] gn (x) dx =

1∫

0

gm (x) δ(x− ξ)δ(t− τ)dx.

Thus

a′n (t) + λnan (t) = gn (ξ) δ(t− τ).

Multiplying both sides by exp (λnt), we get

d

dt
[an (t) exp (λnt)] = gn (ξ) δ(t− τ) exp (λnt) .

By integrating from τ− to u with respect to t and then replacing u by t, we have

an (t) exp (λnt)− an

(
τ−

)
exp

(
λnτ

−)
= gn (ξ) .

Since G(x, t; ξ, τ) =
∞∑

n=1

an (t) gn (x) = 0, for t < τ and gn (x) 6= 0, we have

an (t) = 0 for t < τ . This implies that,

an (t) exp (λnt) = gn (ξ) exp (λnτ) .

Thus,

an (t) = gn (ξ) exp[−λn(t− τ)].

Therefore,

G(x, t; ξ, τ) =
∞∑

n=1

gn (x) gn (ξ) exp[−λn(t− τ)] for t > τ. (7)

Let us show that G(x, t; ξ, τ) exists. We have
∣∣∣∣∣
∞∑

n=1

gn (x) gn (ξ) exp[−λn(t− τ)]

∣∣∣∣∣ ≤
∞∑

n=1

|gn (x)| |gn (ξ)| exp[−λn(t− τ)]

≤ 2
∞∑

n=1

exp[−λn(t− τ)].

Using the Ratio test, we see that
∞∑

n=1

exp [−λn (t− τ)] converges. By the Weier-

strass M-test, the series
∞∑

n=1

gn (x) gn (ξ) exp[−λn(t − τ)] converges uniformly.

Hence G(x, t; ξ, τ) exists.
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Let us now verify that (7) is indeed the solution to (5). We begin by computing

∂G

∂t
= −

[ ∞∑
n=1

λngn (x) gn (ξ) exp[−λn(t− τ)]

]
H(t− τ)

+

[ ∞∑
n=1

gn (x) gn (ξ) exp[−λn(t− τ)]

]
δ(t− τ),

where H is the Heaviside unit-step function. Using f (t) δ(t− τ) = f (τ) δ(t− τ),

we have

∂G

∂t
= −

[ ∞∑
n=1

λngn (x) gn (ξ) exp[−λn(t− τ)]

]
H(t−τ)+

[ ∞∑
n=1

gn (x) gn (ξ)

]
δ(t−τ).

From appendix B,
∞∑

n=1

gn (x) gn (ξ) = δ(x− ξ). Therefore,

∂G

∂t
= −

[ ∞∑
n=1

λngn (x) gn (ξ) exp[−λn(t− τ)]

]
H(t− τ) + δ(x− ξ)δ(t− τ).

Hence,

LG = −
{ ∞∑

n=1

gn (ξ) {g′′n (x) + λngn (x)} exp[−λn(t− τ)]

}
H(t−τ)+δ(x−ξ)δ(t−τ).

Since g′′n (x) + λngn (x) = 0, we have

LG = δ(x− ξ)δ(t− τ).

By direct computation, G(0, t; ξ, τ) = Gx(1, t; ξ, τ) = 0.

To obtain the integral equation,

u(x, t) = a2

t∫

0

1∫

0

G(x, t; ξ, τ)f (u (x0, τ)) dξdτ +

1∫

0

G(x, t; ξ, 0)φ (ξ) dξ, (8)

corresponding to the problem (3), let us show that L∗u = −ut − uxx, where L∗

denote the adjoint operator of L:

v
∂2u

∂x2
= (vux)x − vxux

= (vux)x − (vxu)x + vxxu,

v
∂u

∂t
= (vu)t − vtu,
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vLu = v
∂u

∂t
− v

∂2u

∂x2

= [(vu)t − vtu]− [(vux)x − (vxu)x + vxxu]

= (vu)t − vtu− (vux)x + (vxu)x − vxxu,

which gives

vLu− uL∗v = (vxu− vux)x + (vu)t ,

where L∗u ≡ −ut − uxx.

Next, we show that a solution of the problem (3) is also a solution of the

integral equation (8). Using G∗ (ξ, τ ; x, t) = G (x, t; ξ, τ), and Green′s theorem,

which states that
∫∫
D

(Px + Qy) dxdy =
∫

∂D

Pdy −Qdx, we obtain

∫∫

Ω

(GLu− uL∗G∗) dξdτ =

∫∫

Ω

[
(G

ξ
u−Gu

ξ
)

ξ
+ (Gu)τ

]
dξdτ

=

∫

∂Ω

(G
ξ
u−Gu

ξ
)dτ −Gudξ. (9)

On {0} × (0, T ),

∫

∂Ω

(G
ξ
u−Gu

ξ
)dτ −Gudξ =

T∫

0

[
G

ξ
(x, t; 0, τ) u (0, τ)−G (x, t; 0, τ) u

ξ
(0, τ)

]
dτ

= 0

since u(0, τ) = 0 and G(x, t; 0, τ) = 0. On {1} × (0, T ),

∫

∂Ω

(G
ξ
u−Gu

ξ
)dτ −Gudξ =

T∫

0

[
G

ξ
(x, t; 1, τ) u (1, τ)−G (x, t; 1, τ) u

ξ
(1, τ)

]
dτ

= 0

since uξ(1, τ) = 0 and Gξ(x, t; 1, τ) = 0. On D × {0},
∫

∂Ω

(G
ξ
u−Gu

ξ
)dτ −Gudξ = −

1∫

0

G(x, t; ξ, 0)u (ξ, 0) dξ

= −
1∫

0

G(x, t; ξ, 0)φ (ξ) dξ
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since u (ξ, 0) = φ (ξ) . On the other hand, let us consider the left-hand side of

(9).

∫∫

Ω

(GLu− uL∗G) dξdτ

= a2

T∫

0

1∫

0

G (x, t; ξ, τ) f(u(x0, τ))dξdτ −
T∫

0

1∫

0

u (ξ, τ) δ (x− ξ) δ (t− τ) dξdτ

= a2

T∫

0

1∫

0

G (x, t; ξ, τ) f(u(x0, τ))dξdτ − u (x, t) .

From (9),

a2

T∫

0

1∫

0

G (x, t; ξ, τ) f(u(x0, τ))dξdτ − u (x, t) = −
1∫

0

G(x, t; ξ, 0)φ (ξ) dξ.

Therefore, we have (8).

Next, we will prove some properties of Green’s function.

Lemma 1. In the set {(x, t; ξ, τ) : x and ξ are in D, 0 ≤ τ < t ≤ T},
G(x, t; ξ, τ) > 0.

Proof. Let D1 = {(x, t; ξ, τ) : x and ξ are in D, 0 ≤ τ < t ≤ T}. Suppose

that there exists a point (x1, t1; ξ1, τ1) in D1 such that G(x, t; ξ, τ) < 0. Since

G(x, t; ξ, τ) is continuous in D1, there exists a positive number ε such that

G(x, t; ξ, τ) < 0 in the set,

W0 = (x1 − ε, x1 + ε)× (t1 − ε, t1 + ε)× (ξ1 − ε, ξ1 + ε)× (τ1 − ε, τ1 + ε)

which is contained in D1. Let

W1 = (ξ1 − ε, ξ1 + ε)× (τ1 − ε, τ1 + ε),

W2 = (ξ1 − ε

2
, ξ1 +

ε

2
)× (τ1 − ε

2
, τ1 +

ε

2
).

We would like to show that there exists a function h (x, t) in C2 (R2) such that

h ≡ 1 on W2, h ≡ 0 outside W1, and 0 ≤ h ≤ 1 in W1\W2. We construct the

desired function explicitly in a sequence of steps:
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Step one: the function f1 defined by

f1 (s) =





0, s ≤ 0,

exp (−s−1) , s > 0,

belongs to C2 (R) , vanishes for s ≤ 0, is positive for s > 0, and is monotone

increasing.

Step two: the function f2 defined by

f2 (s) = f1 (s) f1 (1− s)

belongs to C2 (R) , vanishes for s ≤ 0 and s ≥ 1, and is positive for 0 < s < 1.

Step three: the function f3 in C∞ (R) defined by

f3 (s) =

s∫
0

f2 (t) dt

1∫
0

f2 (t) dt

vanishes for s ≤ 0, is monotone increasing, equals one for s ≥ 1, and satisfies

0 < f3 (s) < 1 for all s ∈ D.

Step four: the function h (x, t) defined by

h (x, t) = f3

(
ε− |x− x1|

ε/2

)
f3

(
ε− |t− t1|

ε/2

)

is in C2 (R2) and has h (x, t) = 1 on W2, h (x, t) = 0 outside W1, and 0 ≤ h (x, t) ≤
1 in W1\W2. Hence, the solution of the problem, Lu(x, t) = h(x, t) in D× (0, α],

t1 < α with u satisfying zero initial and u(0, t) = 0 = ux(1, t), is given by

u(x, t) =

τ1+ε∫

τ1−ε

ξ1+ε∫

ξ1−ε

G(x, t; ξ, τ)h(ξ, τ)dξdτ.

Since G(x, t; ξ, τ) < 0 in W0, h (ξ, τ) ≥ 0 in W1, and h ≡ 1 on W 2, it follows

that u (x, t) < 0 for (x, t) in (x1− ε, x1 + ε)× (t1− ε, t1 + ε). On the other hand,

h (x, t) ≥ 0 in D × (0, α] implies that u (x, t) ≥ 0 by weak maximum principle

and Holf’s Lemma. We have a contradiction, and therefore, G(x, t; ξ, τ) ≥ 0 in

D1.
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Next, we show that G(x, t; ξ, τ) 6= 0 in D1. Suppose that there exists a

point (x2, t2; ξ2, τ2) in D1 such that G(x, t; ξ, τ) = 0. Using the strong maximum

principle, we have G(x, t; ξ2, τ2) = 0 in D1 ∩ {(x, t; ξ2, τ2) : 0 < x < 1, t ≤ t2}.
On the other hand, G(ξ2, t2, ξ2, τ2) = 2

∞∑
n=1

sin2
√

λnξ2 exp[−λn(t2 − τ2)], which is

positive. We again have a contradiction. This shows that G(x, t; ξ, τ) is positive

in D1. ¤

Lemma 2. For any function γ ∈ C ([0, T ]),
t∫

0

1∫
0

G(x, t; ξ, τ)γ(τ)dξdτ is con-

tinuous on Ω.

Proof. Let ε be any positive number such that t − ε > 0. For x ∈ D and

τ ∈ [0, t− ε], we multiply

G(x, t; ξ, τ) =
∞∑

n=1

gn(x)gn(ξ) exp [−λn(t− τ)]

by γ(τ), to get

G(x, t; ξ, τ)γ(τ) =
∞∑

n=1

gn(x)gn(ξ) exp [−λn(t− τ)] γ(τ).

Since gn (x) =
√

2 sin
√

λnx, we have

∞∑
n=1

gn(x)gn(ξ) exp [−λn(t− τ)] γ(τ) ≤ 2

[
max

0≤τ≤T
γ(τ)

] ∞∑
n=1

exp [−λn(t− τ)] ,

which converges. By the Weierstrass M-test,
∞∑

n=1

gn(x)gn(ξ) exp [−λn(t− τ)] γ(τ)

converges uniformly, and we have

t−ε∫

0

1∫

0

G(x, t; ξ, τ)γ(τ)dξdτ =
∞∑

n=1

t−ε∫

0

1∫

0

gn(x)gn(ξ) exp [−λn(t− τ)] γ(τ)dξdτ.
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Since

∞∑
n=1

t−ε∫

0

1∫

0

gn(x)gn(ξ) exp [−λn(t− τ)] γ(τ)dξdτ

≤ 2

[
max

0≤τ≤T
γ(τ)

] ∞∑
n=1

t−ε∫

0

1∫

0

exp [−λn(t− τ)] dξdτ

= 2

[
max

0≤τ≤T
γ(τ)

] ∞∑
n=1

t−ε∫

0

exp [−λn(t− τ)] dτ

= 2

[
max

0≤τ≤T
γ(τ)

] ∞∑
n=1

λ−1
n [exp(−λnε)− exp(−λnt)]

≤ 2

[
max

0≤τ≤T
γ(τ)

] ∞∑
n=1

λ−1
n ,

which converges. Furthermore, it follows from the Weierstrass M-test that

∞∑
n=1

t−ε∫

0

1∫

0

gn(x)gn(ξ) exp [−λn(t− τ)] γ(τ)dξdτ

converges uniformly with respect to x, t and ε. Since the uniform convergence

also holds for ε = 0, it follows that

∞∑
n=1

t−ε∫

0

1∫

0

gn(x)gn(ξ) exp [−λn(t− τ)] γ(τ)dξdτ

is a continuous function of x, t and ε ≥ 0. Therefore,

t∫

0

1∫

0

G(x, t; ξ, τ)γ(τ)dξdτ = lim
ε→0

∞∑
n=1

t−ε∫

0

1∫

0

gn(x)gn(ξ) exp [−λn(t− τ)] γ(τ)dξdτ

is a continuous function of x and t. ¤

Based on Theorem 2 of Chan and Tian [2], we will prove the following theorem.

Theorem 3. There exists some t0 such that for 0 ≤ t ≤ t0 , the integral

equation (8) has the unique continuous solution u ≥ φ (x) and u is a nondecreas-

ing function of t. Let tb be the supremum of the interval for which the integral

equation (8) has the unique continuous solution u. If tb is finite, then u (x0, t) is

unbounded in [0, tb).
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Proof. We construct a sequence {un} by u0 (x, t) = φ (x) , and for n =

0, 1, 2, ...,

Lun+1(x, t) = a2f(un(x0, t)) in Ω = D × (0, T ),

un+1(x, 0) = φ (x) on [0, 1] ,

un+1(0, t) = (un+1)x(1, t) = 0 for 0 < t < T.

To show that the sequence un(x, t) ≥ φ (x) for all n = 0, 1, 2, ..., we use the

condition (4) to obtain that

L (u1 − u0) (x, t) = a2f(u0(x0, t)) + φ′′(x)

≥ a2[f(u0(x0, t))− f(φ (x0))]

= a2[f(φ (x0))− f(φ (x0))] = 0 in Ω.

Since

(u1 − u0) (x, 0) = 0 on [0, 1] ,

(u1 − u0) (0, t) = 0 = (u1 − u0)x (1, t) = 0 for 0 < t < T,

it follows from (8) and G(x, t; ξ, τ) being positive that u1(x, t) ≥ u0(x, t) in Ω.

Let us assume that for some positive integer j,

φ ≤ u1 ≤ u2 ≤ .... ≤ uj−1 ≤ uj in Ω.

Since f is an increasing function, and uj ≥ uj−1, we have

L(uj+1 − uj) = a2[f(uj)− f(uj−1)] ≥ 0 in Ω,

(uj+1 − uj)(x, 0) = 0 on [0, 1] ,

(uj+1 − uj)(0, t) = 0 = (uj+1 − uj)x(1, t) for 0 < t < T .

From (8),

(uj+1 − uj)(x, t) = a2

t∫

0

1∫

0

G(x, t; ξ, τ)[f(uj)− f(uj−1)]dξdτ ≥ 0.

Thus, uj+1 ≥ uj. By the principle of mathematical induction,

φ ≤ u1 ≤ u2 ≤ .... ≤ un−1 ≤ un in Ω for all positive integer n. (10)
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Next, let us show that the sequence {un} is a nondecreasing function of t.

Let wn(x, t) = un(x, t + h) − un(x, t) for n = 0, 1, 2, ..., where h is any positive

number less than T − t. It follows that

w0(x, t) = u0(x, t + h)− u0(x, t)

= φ(x)− φ(x)

= 0

In D × (0, T − h),

Lw1(x, t) = a2f(u0(x0, t + h))− a2f(u0(x0, t))

= a2 [f(φ(x0))− f(φ(x0))]

= 0.

By (10) and the construction of u1, we get that

w1(x, 0) = u1(x, h)− u1(x, 0)

= u1 (x, h)− φ (x) ≥ 0 on D,

w1(0, t) = u1(0, t + h)− u1(0, t) = 0, (w1(1, t))x = 0, 0 < t < T − h.

By (8), w1 ≥ 0 for 0 < t < T − h. Let us assume that for some positive integer

j, wj ≥ 0 for 0 < t < T − h. Using the Mean Value Theorem, we get

Lwj+1(x, t) = a2 [f(uj(x0, t + h))− f(uj(x0, t))]

= a2 [f ′(uj(x0, t1))wj(x, t)]

in D × (0, T − h) for some t1 in (t, t + h). Also,

wj+1(x, 0) = 0 on [0, 1] ,

wj+1(0, t) = (wj+1(1, t))x = 0 for 0 < t ≤ T − h.

From (8) and G(x, t; ξ, τ) being positive, we get that for 0 < t < T − h,

wj+1(x, t) = a2

t∫

0

1∫

0

G(x, t; ξ, τ)f ′(uj(x0, t1))wj(x, t)dξdτ ≥ 0.
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By the principle of mathematical induction, wn ≥ 0 for all positive integer n.

This shows that un is a nondecreasing function of t.

Next, we would like to show that there exists some t̂ such that the integral

equation (8) has a unique continuous solution u for 0 ≤ t ≤ t̂. We consider the

problem

Lv(x, t) = 0 in Ω,

v(x, 0) = φ(x) on D,

v(0, t) = vx(1, t) = 0 for 0 < t < T.

From (8), the solution of the problem is

v(x, t) =

1∫

0

G(x, t; ξ, 0)φ(ξ)dξ.

We know that G(x, t; ξ, τ) is positive and φ(x) is nontrivial, nonnegative and

continuous. Thus, v > 0 in Ω. By the weak maximum principle and the parabolic

version of Hopf’s lemma, v attains its maximum k0 = max
x∈[0,1]

φ(x) in D × {0}.
Next, we show that for some given positive constant M > k0, there exists

some t2 such that ui ≤ M for 0 ≤ t ≤ t2. By Lemma 2, G(x, t; ξ, τ) is integrable.

Let us consider

ui(x, t) = a2

t∫

0

1∫

0

G(x, t; ξ, τ)f(ui−1(x0, τ))dξdτ +

1∫

0

G(x, t; ξ, 0)φ(ξ)dξ. (11)

As t → 0, we see that

lim
t→0

ui(x, t) = lim
t→0

1∫

0

G(x, t; ξ, 0)φ(ξ)dξ

=

1∫

0

lim
t→0

G(x, t; ξ, 0)φ(ξ)dξ

=

1∫

0

∞∑
n=1

gn (x) gn (ξ) φ(ξ)dξ

=

1∫

0

δ(x− ξ)φ(ξ)dξ

= φ(x).
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This shows that there exists t2 such that ui(x, t) ≤ M for 0 ≤ t ≤ t2. Let u

denote lim
i→∞

ui. From (11), we have (8) for 0 ≤ t ≤ t2.

Next, we show that {ui} converges uniformly to u for 0 ≤ t ≤ t2. From (11),

ui+1(x, t)−ui(x, t) = a2

t∫

0

1∫

0

G(x, t; ξ, τ)[f(ui(x0, τ))−f(ui−1(x0, τ))]dξdτ. (12)

Let Si = max
[0,1]×[0,t2]

(ui − ui−1) . Using the Mean Value Theorem, we have

f(ui(x0, τ))− f(ui−1(x0, τ)) = f ′ (µ) (ui(x0, τ)− ui−1(x0, τ))

for some µ between ui−1(x0, τ) and ui(x0, τ). Since ui ≤ M for all i and f ′′ (s) > 0

for s > 0, we get

f(ui(x0, τ))− f(ui−1(x0, τ)) ≤ f ′ (M) (ui(x0, τ)− ui−1(x0, τ))

≤ f ′ (M) Si.

From (12), we have

Si+1 ≤ 2a2f ′(M)Si

∞∑
n=1

t∫

0

1∫

0

exp [−λn(t− τ)] dξdτ

= 2a2f ′(M)Si

∞∑
n=1

t∫

0

exp [−λn(t− τ)] dτ

= 2a2f ′(M)

[ ∞∑
n=1

λ−1
n (1− exp(−λnt))

]
Si. (13)

We also know that
∞∑

n=1

λ−1
n (1−exp(−λnt)) ≤

∞∑
n=1

λ−1
n , which converges. Therefore,

by the Weierstrass M-test,
∞∑

n=1

λ−1
n (1− exp(−λnt)) converges uniformly.

We would like to show that there exists some σ1 (> 0) such that

2a2f ′(M)
∞∑

n=1

λ−1
n (1− exp(−λnt)) < 1 for t ∈ [0, σ1].

Since lim
t→0

∞∑
n=1

λ−1
n (1− exp(−λnt)) =

∞∑
n=1

lim
t→0

λ−1
n (1− exp(−λnt)) = 0, there exists

some σ1 (> 0) such that
∣∣∣∣∣
∞∑

n=1

λ−1
n (1− exp(−λnt))

∣∣∣∣∣ <
1

2a2f ′ (M)
for t ∈ [0, σ1],
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that is,

2a2f ′(M)
∞∑

n=1

λ−1
n (1− exp(−λnt)) < 1 for t ∈ [0, σ1]. (14)

From (13) and (14), it implies that {ui} converges uniformly to u(x, t) for 0 ≤
t ≤ σ1.

Similarly for σ1 ≤ t ≤ t2, we use u (ξ, σ1) in place of φ (ξ) in (11), and obtain

that

ui(x, t) = a2

t∫

σ1

1∫

0

G(x, t; ξ, τ)f(ui−1(x0, τ))dξdτ +

1∫

0

G(x, t; ξ, 0)u (ξ, σ1) dξ.

Furthermore,

ui+1(x, t)− ui(x, t) = a2

t∫

σ1

1∫

0

G(x, t; ξ, τ) [f(ui(x0, τ))− f(ui−1(x0, τ))] dξdτ.

Since Si = max
[0,1]×[0,t2]

(ui − ui−1), it follows from the Mean Value Theorem that

f(ui(x0, τ))− f(ui−1(x0, τ)) ≤ f ′ (M) Si

From (12), we have

Si+1 ≤ 2a2f ′(M)Si

∞∑
n=1

t∫

σ1

1∫

0

exp [−λn(t− τ)] dξdτ

= 2a2f ′(M)Si

∞∑
n=1

t∫

σ1

exp [−λn(t− τ)] dτ

= 2a2f ′(M)

[ ∞∑
n=1

λ−1
n (1− exp(−λn(t− σ1)))

]
Si. (15)

Thus, there exists σ2 = min {σ1, t2 − σ1} > 0 such that

2a2f ′(M)
∞∑

n=1

λ−1
n (1− exp(−λn(t− σ1))) < 1, for t ∈ [σ1, min{2σ1, t2}] . (16)

Hence, {ui} converges uniformly to u for t ∈ [σ1, min{2σ1, t2}].
By proceeding in this way the sequence {ui} converges uniformly for 0 ≤ t ≤

t2. Therefore, the integral equation (8) has a continuous solution u for 0 ≤ t ≤ t2.
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To show that the solution u is unique, let us suppose that the integral equation

(8) has two distinct solutions u and ũ on the interval [0, t2]. Also, let Φ =

max
D×[0,t2]

|u− ũ| > 0. From (8),

u(x, t)− ũ(x, t) = a2

t∫

0

1∫

0

G(x, t; ξ, τ) [f(u(x0, τ))− f(ũ(x0, τ))] dξdτ

As in the derivation of (13), we obtain that

Φ ≤ 2a2f ′(M)

[ ∞∑
n=1

λ−1
n (1− exp(−λnt))

]
Φ for t ∈ [0, σ1] .

This implies that

2a2f ′(M)

[ ∞∑
n=1

λ−1
n (1− exp(−λnt))

]
≥ 1 for t ∈ [0, σ1] .

For t ∈ [0, σ1] , it follows from (14) that we have a contradiction. Hence, the

solution is unique for 0 ≤ t ≤ σ1.

As in the derivation of (15), we obtain that

Φ ≤ 2a2f ′(M)

[ ∞∑
n=1

λ−1
n (1− exp(−λn(t− σ1)))

]
Φ for t ∈ [σ1, min{2σ1,t2}] .

This shows that

2a2f ′(M)

[ ∞∑
n=1

λ−1
n (1− exp(−λn(t− σ1)))

]
≥ 1 for t ∈ [σ1, min{2σ1,t2}] .

For t ∈ [σ1, min{2σ1,t2}] , it follows from (16) that we have a contradiction.

Hence, the solution is unique for σ1 ≤ t ≤ min{2σ1,t2}. By proceeding in this

way, the integral (8) has the unique continuous solution u for 0 ≤ t ≤ t2.

Let tb be the supremum of the interval for which the integral equation (8) has

the unique continuous solution u. We would like to show that if tb is finite, then

u (x0, t) is unbounded in [0, tb). Suppose that u (x0, t) is bounded in [0, tb). We

consider (8) for t ∈ [tb, T ) with the initial condition u (x, 0) replaced by u (x, tb) .

u(x0, t) = a2

t∫

tb

1∫

0

G(x0, t; ξ, τ)f (u (x0, τ)) dξdτ +

1∫

0

G(x0, t; ξ, tb)u(ξ, tb)dξ
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For any positive constant N > u(x0, tb), an argument as before shows that there

exists t3 such that the integral equation (8) has the unique continuous solution u

on [tb, t3]. This contradicts the definition of tb. Hence, if tb is finite, then u (x0, t)

is unbounded in [0, tb).

Since ui is also a nondecreasing function of t, u is a nondecreasing function of

t. ¤



Chapter IV

A sufficient condition for blow-up in a finite time

In this chapter, we will give a sufficient condition for the solution u to blow-up

in a finite time.

Lemma 4. Let u (x, t) be a solution of the following problem:

Lu = b (x, t) u (x0, t) in Ω,

u (x, 0) ≥ 0 on D,

u (0, t) = 0 = ux (1, t) for 0 < t < T,

where b (x, t) is nonnegative and bounded, then u (x, t) ≥ 0 in Ω.

Proof. Case 1: b (x, t) ≡ 0.

If u < 0 in Ω, then by the weak maximum principle, u attains its negative

minimum somewhere at x = 1. By the parabolic version of Hopf’s lemma, ux < 0

at this point. This contradiction shows that u (x, t) ≥ 0 in Ω.

Case 2: b (x, t) being nonnegative and nontrivial.

Let η be a positive constant, and

V (x, t) = u (x, t) + η
(
1 + x1/2

)
ect,

where c is a positive constant to be determined. Also, we obtain that V (x, 0) > 0

on D and V (0, t) > 0 for 0 < t < T . Then we have

LV (x, t)− b (x, t) V (x0, t)

= L
[
u (x, t) + η

(
1 + x1/2

)
ect

]− b(x, t)
[
u (x0, t) + η

(
1 + x

1/2
0

)
ect

]

= b(x, t)u (x0, t) + L
[
η

(
1 + x1/2

)
ect

]− b(x, t)u (x0, t)− b (x, t) η
(
1 + x

1/2
0

)
ect

= L
[
η

(
1 + x1/2

)
ect

]− b (x, t) η
(
1 + x

1/2
0

)
ect

= ηect

[
c
(
1 + x1/2

)
+

1

4x3/2
− b (x, t)

(
1 + x

1/2
0

)]

≥ ηect

[
c
(
1 + x1/2

)
+

1

4x3/2
−

(
1 + x

1/2
0

)
max

(x,t)∈ΩT

b (x, t)

]
.
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Let M = max
(x,t)∈Ω

b (x, t), and we choose c ≥
(
1 + x

1/2
0

)
M . Then,

LV (x, t)− b (x, t) V (x0, t)

≥ ηe
t
�
1+x

1/2
0

�
M

[(
1 + x1/2

) (
1 + x

1/2
0

)
M +

1

4x3/2
−

(
1 + x

1/2
0

)
M

]

≥ ηe
t
�
1+x

1/2
0

�
M

[(
1 + x

1/2
0

)
M

[(
1 + x1/2

)− 1
]
+

1

4x3/2

]

Therefore,

LV (x, t)− b (x, t) V (x0, t) > 0 in Ω.

To show that V (x, t) > 0 in Ω, let us suppose that there exists some point in

Ω such that V (x, t) ≤ 0. Since V (x, 0) > 0 and V (x, t) is continuous, the set

{t : V (x, t) ≤ 0 for some x ∈ D}

is nonempty. Let t denote its infimum. Then, there exists some x1 ∈ D such

that V
(
x1, t

)
= 0 and Vt

(
x1, t

) ≤ 0. For t < t, we have V (x, t) > 0 for all x.

Since V (x, t) is continuous, we have V
(
x, t

) ≥ 0 for all x. Because V
(
x1, t

)
= 0,

V
(
x1, t

)
is a local minimum. Thus, V

(
x0, t

) ≥ 0 and Vxx

(
x1, t

) ≥ 0. We have

0 ≥ Vt

(
x1, t

) ≥ LV
(
x1, t

)− b
(
x1, t

)
V

(
x0, t

)
> 0.

We have a contradiction. This show that V (x, t) > 0 in Ω. Since V is continuous,

it follows that V (1, t) ≥ 0 for 0 < t < T As η → 0+, we also have that u (x, t) ≥ 0

in Ω. ¤

The following theorem gives a sufficient condition for the solution u to blow-up

in a finite time.

Theorem 5. If φ(x) is sufficiently large in a neighborhood of x0, then u

blows up in a finite time.

Proof. Let us consider following problem,

Lv(x, t) = a2f(v(x0, t)) in (x0 − δ, x0)× (0, T ),

v(x, 0) = v0(x) ≥ 0 on [x0 − δ, x0],

v(x0 − δ, t) = vx(x0, t) = 0 for 0 < t < T,





(17)
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where v0(x) is nondecreasing on [x0 − δ, x0] and v0(x0 − δ) = 0 = v′0(x0). We

would like to show that lim
x→∞

(f(x)/x) = ∞. Suppose that lim
x→∞

(f(x)/x) = N for

some positive number N . Then, there exists some positive number z0 > 0 such

that ∣∣∣∣
f (x)

x
−N

∣∣∣∣ < 1 for x > z0.

Thus f(x)/x < 1 + N . We have

1

f (x)
>

1

(1 + N) x
for x > z0.

This implies that
∞∫

z0

1

f (x)
dx >

1

1 + N

∞∫

z0

1

x
dx = ∞,

which contradicts the assumption

∞∫

z0

1

f (s)
ds < ∞ for some z0. Thus, lim

x→∞
(f(x)/x)

= ∞.

Let λ1 be the principal eigenvalue of the problem,

g′′(x) = −λ1g(x)

g(x0 − δ) = 0 = g′(x0).

Since λ1 > 0, there exists a positive constant k1 > z0 such that

f(x)

x
≥ max{2λ1,

2

δ2a2
} for x ≥ k1. (18)

From f (x) /x ≥ 2λ1, we have f (x) /2 ≥ λ1x. Therefore,

f(x) > f(x)− λ1x ≥ f(x)− f(x)

2
=

f(x)

2
,

which gives
1

f (x)
<

1

f(x)− λ1x
≤ 2

f (x)
.

From

∞∫

z0

1

f (s)
ds < ∞, we have

∞∫

k1

1

f(x)− λ1x
dx < ∞.
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From appendix C, the solution of the problem (17) blows up in a finite time at

x = x0, provided that v0(x) is large enough.

Next, we choose a positive constant k2 ≥ k1/ (δ2a2) big enough such that

w0(x) = a2k2[x− (x0 − δ)][(x0 + δ)− x] ≥ v0(x) in [x0 − δ, x0].

We see that

w0(x0 − δ) = 0 and w′
0(x0) = 0.

By (18), we see that f(x) ≥ 2x/ (δ2a2). Then,

w′′
0(x) + a2f(w0(x0)) = −2a2k2 + a2f(a2δ2k2)

≥ −2a2k2 + a2a2δ2k2

(
2

a2δ2

)

= 0.

Let us consider the following problem,

Lw(x, t) = a2f(w(x0, t)) in (x0 − δ, x0)× (0, T ),

w(x, 0) = w0(x) on [x0 − δ, x0],

w(x0 − δ, t) = wx(x0, t) = 0 for 0 < t < T.

In (x0 − δ, x0)× (0, T ),

L(w − v)(x, t) = a2f ′ (β) [w(x0, t)− v(x0, t)]

for some β between w(x0, t) and v(x0, t). Also,

w(x, 0)− v (x, 0) ≥ 0 on [x0 − δ, x0],

w(x0 − δ, t)− v(x0 − δ, t) = 0, wx(x0, t)− vx(x0, t) = 0 for 0 < t < T.

From Lemma 4, w(x, t) ≥ v(x, t) in [x0 − δ, x0] × [0, T ), and w(x, t) blows up in

a finite time.

By choosing φ (x) ≥ w0(x) in [x0−δ, x0]× [0, T ) and using Lemma 4, u(x, t) ≥
w(x, t). Therefore, u(x, t) blows up in a finite time, provided that φ(x) is suffi-

ciently large in some neighborhood of x0. ¤



Chapter V

Complete blow-up

In this chapter, we will show the complete blow-up of the solution u.

Lemma 6. Given any x ∈ D and any finite T , there exists positive constants

C1 (depending on x and T ) and C2 (depending on T ) such that

1∫

0

G(x, t; ξ, 0)dξ > C1 for 0 ≤ t ≤ T,

1∫

0

G(x0, t; ξ, 0)dξ < C2 for 0 ≤ t ≤ T.

Proof. Let us consider the following auxiliary problem,

Lv(x, t) = a2 in D × (0, T ) ,

v(x, 0) = 0 on D,

v(0, t) = vx(1, t) = 0 for 0 < t < T





(19)

The problem (19) has a unique solution v given by

v(x, t) = a2

t∫

0

1∫

0

G(x, t− τ ; ξ, 0)dξdτ

= a2

t∫

0

1∫

0

G(x, τ ; ξ, 0)dξdτ,

which gives

vt(x, t) = a2

1∫

0

G(x, t; ξ, 0)dξ.

It follows from Lemma 1 that vt(x, t) > 0 for any x ∈ D and any t > 0. Since for
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any x ∈ D,

vt(x, 0) = a2

1∫

0

G(x, 0; ξ, 0)dξ

= a2

1∫

0

∞∑
n=1

gn (x) gn (ξ) dξ

= a2

1∫

0

δ(x− ξ)dξ

= a2,

it follows that for any x ∈ D and for any finite T , there exists a positive C1

(depending on x and T ) such that

1∫

0

G(x, t; ξ, 0)dξ > C1 for 0 ≤ t ≤ T.

Since
1∫
0

G(x, t; ξ, 0)dξ exists, there exists a positive C2 (depending on T ) such

that
1∫

0

G(x0, t; ξ, 0)dξ < C2 for 0 ≤ t ≤ T.

which completes the proof. ¤

Theorem 7. If the solution of the problem (8) blows up in a finite time T ,

then the blow-up set is D.

Proof. For any t < T ,

u(x, t) = a2

t∫

0

1∫

0

G(x, t; ξ, τ)f(u(x0, τ))dξdτ +

1∫

0

G(x, t; ξ, 0)φ(ξ)dξ

= a2

t∫

0

1∫

0

G(x, t− τ ; ξ, 0)f(u(x0, τ))dξdτ +

1∫

0

G(x, t; ξ, 0)φ(ξ)dξ (20)

If u(x, t) blows up in a finite time T, we know that u blows up at least at x = x0

by Theorem 3.
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From (20) and Lemma 6,

u(x0, t) = a2

t∫

0

1∫

0

G(x0, t; ξ, 0)f(u(x0, t− τ))dξdτ +

1∫

0

G(x0, t; ξ, 0)φ(ξ)dξ

= a2

t∫

0

f(u(x0, t− τ))dτ

1∫

0

G(x0, t; ξ, 0)dξ +

1∫

0

G(x0, t; ξ, 0)φ(ξ)dξ

≤ C2a
2

t∫

0

f(u(x0, t− τ))dτ + C2 max
x∈D

φ(x)

Since u(x0, t) →∞ as t → T, we also have
T∫
0

f(u(x0, T − τ))dτ = ∞.

For any (x, t) ∈ Ω

u(x, t) ≥ C1a
2

t∫

0

f(u(x0, t− τ))dτ +

1∫

0

G(x, t; ξ, 0)φ(ξ)dξ

≥ C1a
2

t∫

0

f(u(x0, t− τ))dτ.

As t approaches T , it follows from
T∫
0

f(u(x0, T − τ))dτ →∞ that u(x, t) tends to

infinity. Thus, the blow-up set is D. For x̃ ∈ {0, 1}, we can always find a sequence

{(xn, tn)} such that (xn, tn) → (x̃, T ) and lim
n→∞

u(xn, tn) → ∞. Therefore the

blow-up set is D. ¤
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The parabolic boundary of S(P ) is

([0, 1]× {0}) ∪ ({0} × (0, 1]) ∪ ({1} × (0, 1])

Then the positive maximum or negative minimum is attained on the parabolic

boundary.

Hopf’s Lemma (Parabolic version).

Let c(x, t) be a continuous function in T with c ≤ 0. If (L + c)u ≥ 0 in T ,

the maximum M (minimum m) of u is attained at a point P ∈ ∂T , and a sphere

through P , having its interior lying in T such that u < M (u > m) there, can

be constructed, then
∂u

∂η
> 0 (< 0) at P , provided that the radial direction from

the centre of the sphere to P is not parallel to the t-axis.
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Appendix A

Maximum principle and Hopf’s lemma

We outline briefly on strong and weak maximum. Hopf’s lemma is also in-

cluded. Interested readers may consult [11].

Let T be a (n + 1)-dimensional domain in En+1 and

Lu =
n∑

i,j=1

aij(x, t)uxixj
+

n∑
i=1

bi(x, t)uxi
− ut,

where aij = aji. The operator L is parabolic at (x, t) if there is a number µ > 0

such that
n∑

i,j=1

aij(x, t)ξiξj ≥ µ

n∑
i=1

ξ2
i

for all n-tuple (ξ1, ξ2, ..., ξn). The operator L is uniformly parabolic in T if the

above inequality holds with the same number µ for all (x, t) ∈ T .

Let us assume that L is uniformly parabolic, and aij and bi are continuous in

T . For each P ∈ T , denote by S(P ) the set of points Q which may be connected

to P by a simple curve in T along which the coordinate t is nondecreasing from

Q to P .

Strong Maximum Principle

Let c(x, t) be a continuous function in T such that c(x, t) ≤ 0.

If (L + c)u ≥ 0 and u achieves its positive maximum at a point P0 ∈ T , then

u ≡ u(P0) in S(P0).

If (L + c)u ≥ 0 and u achieves its negative minimum at a point P0 ∈ T , then

u ≡ u(P0) in S(P0).

Weak Maximum Principle

If (L + c)u ≥ 0 and u is continuous on T , then for any point P ∈ T , the

positive maximum of u in S(P ) is attained at a point on the complement of

S(P ).

If (L + c)u ≥ 0 and u is continuous on T , then for any point P ∈ T , the

negative of u in S(P ) is attained at a point on the complement of S(P ).
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the solution of the problem is unbounded and exists till time

T0 ≤ T∗ =

∞∫

E0

dη

Q(η)− λ1η
< ∞.

Proof. Let

E(t) =

1∫

0

u(x, t)ψ1(x)dx.

Then E(0) = E0 and furthermore, as follows from (C1), E(t) satisfies the equality

dE

dt
=

1∫

0

uxx(x, t)ψ1(x)dx +

1∫

0

Q(u(x, t))ψ1(x)dx. (C4)

Integrating by parts and taking into account (C1) and (C2), we obtain

1∫

0

uxx(x, t)ψ1(x)dx =

1∫

0

u(x, t)ψ′′1(x)dx

= −λ1

1∫

0

u(x, t)ψ1(x)dx

= −λ1E(t).

Furthermore, from Jensen’s inequality for convex functions, we obtain

1∫

0

Q(u)ψ1(x)dx ≥ Q(

1∫

0

u(x, t)ψ1(x)dx) = Q(E),

from (C4), we have the inequality

dE

dt
≥ Q(E)− λ1E > 0, t > 0,

E(0) = E0 ≥ δ0.

Hence under assumptions we have that E(t) > E0 for all t > 0, and consequently

E(t)∫

E0

dη

Q(η)− λ1(η)
≥ t, t > 0.

Therefore, by (C3), E(t) →∞ as t → T−
1 ≤ T∗, and since E(t) ≤ sup u(x, t), the

solution u(x, t) is unbounded. ¤



Appendix B

Orthogonality of eigenfunctions

The following lemma gives the relation between eigenfunctions and δ-function,

for further reading, see [5].

Lemma. ∞∑
n=1

gn(ξ)gn(x) = δ(x− ξ),

where gn(x) is an orthonormal eigenfunction of the Sturm-Liouville problem

g′′(x) + λg(x) = 0,

and the boundary conditions

g(0) = g′(1) = 0.

Proof. Let us expand δ(x − ξ) in term of gn(x). From the Sturm-Liouville

theorem

δ(x− ξ) =
∞∑

n=1

cngn(x),

where

cn =

1∫
0

δ(x− ξ)gn(x)dx

1∫
0

g2
n(x)dx

= gn(ξ).

Hence ∞∑
n=1

gn(ξ)gn(x) = δ(x− ξ),

which completes the proof. ¤



Appendix C

Blowing up problem

We will show that the following problem blows up in a finite time under

certain conditions. The generalized problem is contained in [12]

Theorem. Let us consider a boundary value problem for a semilinear

ut(x, t) = uxx(x, t) + Q(u(x, t)) for t > 0, x ∈ (0, 1),

u(x, 0) = u0(x) ≥ 0 on x ∈ [0, 1],

u(0, t) = ux(1, t) = 0 for t > 0,





(C1)

where Q ∈ C2 is a convex function: Q′′(u) ≥ 0, u > 0.

Let λ1 > 0 be the first eigenvalue of the problem

ψ′′(x) + λψ(x) = 0,

ψ(0) = ψ′(1) = 0,





(C2)

and by ψ1(x) the first eigenfunction. Let ψ1(x) > 0 and

1∫

0

ψ1(x)dx = 1.

If Q(u)− λ1u > 0 for all u ≥ δ0, where δ0 is a positive constant, and

∞∫

δ0

dη

Q(η)− λ1η
< ∞, (C3)

then for any initial function u0(x) ≥ 0 such that

E0 =

1∫

0

u0(x)ψ1(x)dx ≥ δ0,
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Appendix D

An example of initial value data

In this appendix, we will give an example of initial value data of the problem

(3) that satisfies all the needed conditions and is guarunteed to blow up in a finite

time.

Let f ∈ C2([0,∞)), f(0) ≥ 0, f ′(s) > 0 and f ′′(s) > 0 for s > 0,

∞∫

z0

1

f (s)
ds < ∞

for some z0 > 0. It is easy to see that lim
x→∞

(f(x)/x) = ∞. Then there exists

β > 0 such that

f(x) ≥ 2x

x0a2(2− x0)
for x ≥ β (D1)

(see the proof of Theorem 5 for details). Let

φ(x) = −a2k(x− 1)2 + a2k for 0 ≤ x ≤ 1

where k ≥ β

x0a2(2− x0)
.

We can see that φ is nontrivial, nonnegative and continuous such that φ(0) =

φ′(1) = 0. Moreover, its second derivative with respect to x is given by

φ′′(x) = −2a2k for 0 < x < 1.

Using (D1), we obtain that

φ′′(x) + a2f(φ(x0)) = −2a2k + a2f(−a2k(x0 − 1)2 + a2k)

= −2a2k + a2f(kx0a
2(2− x0))

≥ −2a2k + a2 2kx0a
2(2− x0)

x0a2(2− x0)

= 0.

Hence φ′′(x) + a2f(φ(x0)) ≥ 0 for 0 < x < 1.

Remark: Since φ(x0 = kx0a
2(2− x0), φ(x0) depends on the positive constant

k. We can always choose a positive constant k big enough to meet the required

condition in Theorem 5. Consequently, the blow-up phenomenon occurs in a

finite time.
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