การโบลว์อัพอย่างบริบูรณ์ของสมการเชิงพาราโบลากึ่งเชิงเส้น

2) A Thesis Submitted in Partial Fulfillment of the Requirements

Department of Mathematics
Faculty of Science
Chulalongkorn University
Academic Year 2003
ISBN 974-17-3433-6

Thesis Title Complete blow-up for a semilinear parabolic equation

By
Field of study
Thesis Advisor

Mr. Panumart Sawangtong
Mathematics
Paisan Nakmahachalasint, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Dean of Faculty of Science
(Associate Professor Wanchai Phothiphichitr, Ph.D.)
Thesis Committee

(Associate Professor Jack Asavanant, Ph.D.)
\qquad
(Paisan Nakmahachalasint, Ph.D.)
\qquad
(Nataphan Kitisin, Ph.D.)

ภาณุมาศ แสวงทอง : การโบลว์อัพอย่างบริบูรณ์ของสมการเชิงพาราโบลากึ่งเชิงเส้น (COMPLETE BLOW-UP FOR A SEMILINEAR PARABOLIC EQUATION) อ. ที่ปรึกษา : ดร. ไพศาล นาคมหาชลาสินธุ์, 37 หน้า. ISBN 974-17-3433-6

$$
\begin{aligned}
& \text { กำหนด } T \leq \infty, a \text { และ } x_{0} \text { เป็นค่าคงตัว โดยที่ } a>0 \text { และ } 0<x_{0}<a \\
& u_{t}(x, t)-u_{x x}(x, t)=f\left(u \left(\overline{\left.\left.x_{0}, t\right)\right)} \text { สำหรับ } 0<x<a, 0<t<T,\right.\right. \\
& u(x, 0)=\phi(x) \geq 0 \text { สำหรับ } 0 \leq x \leq a, \\
& u(0, t)=u_{x}(a, t)=0 \text { สำหรับ } 0<t<T,
\end{aligned}
$$

โดยที่ f และ ϕ เป็นฟังก์ชันที่กำหนดให้ เราต้องการแสดงว่าภายใต้เงื่อนไขบางประการ u โบลว์อัพ ในเวลาจำกัด T และเซตของจุดโบลว์อัพคือช่วง $[0, a]$

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

ภาควิชา คณิตศาสตร์
สาขาวิชา คณิตศาสตร์
ปีการศึกษา 2546

ลายมือชื่อนิสิต
ลายมือชื่ออาจารย์ที่ปรึกษา.
\qquad
\qquad
\# \# 4472364823 : MAJOR MATHEMATICS
KEY WORDS: COMPLETE BLOW-UP, SEMILINEAR PARABOLIC EQUATION AND HEAT EQUATION

PANUMART SAWANGTONG: COMPLETE BLOW-UP FOR SEMILINEAR PARABOLIC EQUATION. THESIS ADVISOR : PAISAN NAKMAHACHALASINT, Ph.D. 37 pp. ISBN 974-17-3433-6.

Let $T \leq \infty, a$ and x_{0} be constants with $a>0$ and $0<x_{0}<a$. We establish the unique solution u for the following semilinear parabolic initial-boundary value problem:

$$
\begin{gathered}
u_{t}(x, t)-u_{x x}(x, t)=f\left(u\left(x_{0}, t\right)\right) \text { for } 0<x<a, 0<t<T \\
u(x, 0)=\phi(x) \geq 0 \text { for } 0 \leq x \leq a \\
u(0, t)=u_{x}(a, t)=0 \text { for } 0<t<T
\end{gathered}
$$

where f and ϕ are given functions. We also show that under certain conditions, u blows up in a finite time, and the set of the blow-up points is the entire interval $[0, a]$.

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Department Mathematics

Field of study Mathematics
Academic year 2003

Student's signature \qquad
Advisor's signature \qquad
\qquad

ACKNOWLEDGEMENTS

I wish to express my sincere thanks to my advisor Paisan Nakmahachalasint, Ph.D., who introduced me to the subject and guided me during the work on this thesis. I also thank Associate Professor Jack Asavanant, Ph.D. and Nataphan Kitisin, Ph.D., my thesis committee, for their valuable comments.

I am deeply indebted to Professor Chiu Yeung Chan for his encouragement and advices.

And last but not least, I thank my family and all my friends for their constant support and encouragement. Your contribution cannot be overestimated.

CONTENTS

page
ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH v
ACKNOWLEDGEMENTS vi
CONTENTS vii
CHAPTER
I Introduction 1
II Transformation 4
III Existence of the unique solution 6
IV A sufficient condition for blow-up in a finite time 21
V Complete blow-up 25
APPENDIX A Maximum principle and Hopf's lemma 28
APPENDIX B Orthogonality of eigenfunctions 30
APPENDIX C Blowing up problem 31
APPENDIX D An example of initial value data 33
REFERENCES 34
VITA © 36
จุฬาลงกรณ์มหาวิทยาลัย

Chapter I

Introduction

The problem which appears some variables tending to infinity in a finite time $T>0$ is called a blow-up phenomenon. In the theory of ordinary differential equations, the simplest example is the initial-value problem

$$
\begin{gathered}
u_{t}=u^{2}, t>0, \\
\overline{u(0)}=b .
\end{gathered}
$$

For $b>0$ it is immediate that the unique solution exists in the time interval $0<t<T=1 / b$. Solving the problem, we find that $u(t)=1 /(T-t)$, one sees that $u(t) \rightarrow \infty$ as $t \rightarrow T^{-}$. We say that the solution blows up at $t=T$ and also that $u(t)$ has a blow-up at a finite time. Starting from this example, the concept of blow-up can be widely generalized. Thus we consider the more general form

where f is a positive and continuous function satisfying the condition
สถาบนคิทยูบมรกการ

This Osgood's condition in the theory of ordinary differential equations established in 1898 is necessary and sufficient for the occurrence of a blow-up in a finite time for any solutions with positive initial data. Further details about blow-up phenomena can be found in [10]. In this work, we are interested in a blow-up phenomenon in a semilinear parabolic equation.

Previously, there were many mathematicians studied blow-up phenomenon. For instance:

In 1989, M.S. Floater [6] studied degenerate semilinear parabolic equation:

$$
\begin{gathered}
u_{t}(x, t)=u_{x x}(x, t)+u^{p}(x, t) \quad \text { in }(0,1) \times(0, \infty), \\
u(0, t)=u(1, t)=0 \text { for } t>0 \\
u(x, 0)=u_{0}(x) \geq 0 \quad \text { on }[0,1] .
\end{gathered}
$$

Under certain conditions, it is shown that the solution may blow up at the boundary in a finite time.

In 1991, Z. Lin and M. Wang [10] studied the semilinear parabolic equation:

$$
\begin{gathered}
u_{t}(x, t)=u_{x x}(x, t)+u^{p}(x, t) \text { in }(0,1) \times(0, \infty), \\
u_{x}(0, t)=0, u_{x}(1, t)=u^{q}(x, t) \text { for } t>0, \\
u(x, 0)=u_{0}(x) \geq 0 \text { on }[0,1] .
\end{gathered}
$$

Again, under certain conditions, they proved that the blow-up would occur only at the boundary $x=1$.

In 2000, C.Y. Chan and H.Y. Tian [2] showed that, under certain conditions, a degenerate semilinear parabolic equation with initial-boundary value became a single point blow-up problem. In addition, C.Y. Chan and J. Yang [4] proved that the degenerate semilinear parabolic problem under the certain conditions is a complete.

Based on the above results, we will show that, under certain conditions, the following semilinear parabolic equation blows up in a finite time.

Let $T \leq \infty$, and a and x_{0} be constants with $a>0$ and $0<x_{0}<a$, We would like to study the following semilinear parabolic initial-boundary value problem,

$$
\begin{gather*}
u_{t}(x, t)-u_{x x}(x, t)=f\left(u\left(x_{0}, t\right)\right) \text { for } 0<x<a, 0<t<T \\
u(x, 0)=\phi(x) \text { on } 0 \leq x \leq a \tag{1}\\
u(0, t)=u_{x}(a, t)=0 \text { for } 0<t<T
\end{gather*}
$$

where $T \leq \infty, a$ and x_{0} be constants with $a>0,0<x_{0}<a$, and f, ϕ are given functions. We will also show that under certain conditions, u blows up in a finite time, and the set of the blow-up points is the enire interval $[0, a]$.

Similarly, a solution $u(x, t)$ is said to blow up at the point (\bar{x}, T) if there exists a sequence $\left\{\left(x_{n}, t_{n}\right)\right\}$ such that $\lim _{n \rightarrow \infty} u\left(x_{n}, t_{n}\right) \rightarrow \infty$ as $\left(x_{n}, t_{n}\right) \rightarrow(\bar{x}, T)$. Furthermore, if $u(x, t)$ blows up at every point $x \in[0, a]$, then the complete blow-up occurs.

The complete blow-up of the solution of a degenerate semilinear problem with $u_{x}(a, t)=0$ replaced by $u(a, t)=0$ was studied by Chan and Yang [4]. Baras and Cohen [1] and Lacey and Tzanetis [9] studied the problem of a complete blow-up with $f\left(u\left(x_{0}, t\right)\right)$ being replaced by $f(u(x, t))$.

In chapter 2 , we transform the problem from $[0, a]$ to $[0,1]$. In chapter 3, we show that the transformed solution satisfies a nonlinear integral equation, and establish the existence of a unique continuous solution u to this integral equation. In chapter 4 , we show that u blows up in a finite time if the initial data are sufficiently large in some neighborhood of x_{0}. In chapter 5 , we prove that the set of blow-up points is the entire interval $[0,1]$.

สถาบันวิทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย

Chapter II

Transformation

Let $\widetilde{T} \leq \infty$, and a and \tilde{x}_{0} be constants with $a>0$ and $0<\tilde{x}_{0}<a$. We consider the following semilinear parabolic initial-boundary value problem,

$$
\left.\begin{array}{c}
u_{\tilde{t}}(\tilde{x}, \tilde{t})-u_{\widetilde{x} \widetilde{x}}(\tilde{x}, \tilde{t})=F\left(u\left(\tilde{x}_{0}, \tilde{t}\right)\right) \text { in }(0, a) \times(0, \widetilde{T}), \tag{2}\\
u(\widetilde{x}, 0)=\phi(\widetilde{x}) \text { on }[0, a], \\
u(0, \widetilde{t})=u_{\widetilde{x}}(a, \widetilde{t})=0 \text { for } 0<\widetilde{t}<\widetilde{T}
\end{array}\right\}
$$

where F and ϕ are given functions. Let $\widetilde{x}=a x, \widetilde{t}=a^{2} t, \widetilde{T}=a^{2} T, L u=u_{t}-u_{x x}$,

$$
\begin{aligned}
& u_{\tilde{t}}=u_{t} \frac{d t}{d \widetilde{t}}=\frac{1}{a^{2}} u_{t}, \\
& u_{\tilde{x}}=u_{x} \frac{d x}{d \widetilde{x}}=\frac{1}{a} u_{x}, \\
& u_{\tilde{x} \widetilde{x}}=\left(\frac{1}{a} u_{x}\right)_{\tilde{x}}=\frac{1}{a^{2}} u_{x x} .
\end{aligned}
$$

Then the above system (2) is transformed into the following problem,

$$
\left.\begin{array}{c}
\sigma \text { of } 2(x, t)=a_{0}^{2} f\left(u\left(x_{0}, t\right)\right) \text { in } \Omega, \tag{3}\\
u(x, 0)=\phi(x) \text { on } \bar{D} \\
u(0, t)=u_{x}(1, t)=0 \text { for } 0<t<T
\end{array}\right\}
$$

with $T=\widetilde{T} / a^{2}$. We assume that $f \in C^{2}([0, \infty)), f(0) \geq 0, f^{\prime}(s)>0$ and $f^{\prime \prime}(s)>0$ for $s>0, \int_{z_{0}}^{\infty} \frac{1}{f(s)} d s<\infty$ for some $z_{0}>0$, and $\phi(x)$ is nontrivial, nonnegative and continuous such that $\phi(0)=\phi^{\prime}(1)=0$, and

$$
\begin{equation*}
\phi^{\prime \prime}(x)+a^{2} f\left(\phi\left(x_{0}\right)\right) \geq 0 \text { in } D . \tag{4}
\end{equation*}
$$

We note that the last condition is used to show that before u blows up, u is a nondecreasing function of t.

Chapter III

Existence of a unique solution

Let us construct Green's function $G(x, t ; \xi, \tau)$ corresponding to the problem (3). It is determined by the following system: for x and ξ in D and t and τ in $(0, T)$,

$$
\left.\begin{array}{c}
L G(x, t ; \xi, \tau)=\delta(x-\xi) \delta(t-\tau) \\
G(x, t ; \xi, \tau)=0 \text { for } t<\tau \tag{5}\\
G(0, t ; \xi, \tau)=G_{x}(1, t ; \xi, \tau)=0
\end{array}\right\}
$$

where $\delta(x)$ is the Dirac delta function. By the method of eigenfunction expansion,
where

$$
\begin{equation*}
G(x, t ; \xi, \tau)=\sum_{n=1}^{\infty} a_{n}(t) g_{n}(x) \tag{6}
\end{equation*}
$$

$$
g_{n}(x)=\sqrt{2} \sin \sqrt{\lambda_{n}} x, \lambda_{n}=\left[\left(\frac{2 n-1}{2}\right) \pi\right]^{2}, n=1,2,3, \ldots
$$

are the $n^{\text {th }}$ orthonormal eigenfunction and eigenvalue of the Sturm-Liouville problem,

$$
g^{\prime \prime}(x)+\lambda g(x) \sqsubseteq 0, g(0)=g^{\prime}(1)=0 .
$$

Substituting (6) into (5), we find that

$$
\sum_{n=1}^{\infty} a_{n}^{\prime}(t) g_{n}(x)-\sum_{n=1}^{\infty} a_{n}(t) g_{n}^{\prime \prime}(x)=\delta(x-\xi) \delta(t-\tau)
$$

Since $g_{n}^{\prime \prime}(x)+\lambda_{n} g_{n}(x)=0$, we have

$$
\sum_{n=1}^{\infty} a_{n}^{\prime}(t) g_{n}(x)+\sum_{n=1}^{\infty} a_{n}(t) \lambda_{n} g_{n}(x)=\delta(x-\xi) \delta(t-\tau)
$$

Therefore,

$$
\sum_{n=1}^{\infty}\left[a_{n}^{\prime}(t)+\lambda_{n} a_{n}(t)\right] g_{n}(x)=\delta(x-\xi) \delta(t-\tau)
$$

Multiplying both sides by $g_{m}(x)$ and integrating from 0 to 1 with respect to x, we formally obtain that

$$
\int_{0}^{1} g_{m}(x) \sum_{n=1}^{\infty}\left[a_{n}^{\prime}(t)+\lambda_{n} a_{n}(t)\right] g_{n}(x) d x=\int_{0}^{1} g_{m}(x) \delta(x-\xi) \delta(t-\tau) d x
$$

Thus

$$
a_{n}^{\prime}(t)+\lambda_{n} a_{n}(t)=g_{n}(\xi) \delta(t-\tau)
$$

Multiplying both sides by $\exp \left(\lambda_{n} t\right)$, we get

$$
\frac{d}{d t}\left[a_{n}(t) \exp \left(\lambda_{n} t\right)\right]=g_{n}(\xi) \delta(t-\tau) \exp \left(\lambda_{n} t\right)
$$

By integrating from τ^{-}to u with respect to t and then replacing u by t, we have

$$
a_{n}(t) \exp \left(\lambda_{n} t\right)-a_{n}\left(\tau^{-}\right) \exp \left(\lambda_{n} \tau^{-}\right)=g_{n}(\xi) .
$$

Since $G(x, t ; \xi, \tau)=\sum_{n=1}^{\infty} a_{n}(t) g_{n}(x)=0$, for $t<\tau$ and $g_{n}(x) \neq 0$, we have $a_{n}(t)=0$ for $t<\tau$. This implies that,

Thus,

$$
a_{n}(t)=g_{n}(\xi) \exp \left[-\lambda_{n}(t-\tau)\right]
$$

Therefore,

$$
\begin{equation*}
\mathfrak{Q q} G(x, t ; \xi, \tau)=\sum_{n=1}^{\infty} g_{n}(x) \stackrel{\rightharpoonup}{g}_{n}(\xi) \exp \left[-\lambda_{n}(t-\tau)\right] \text { for } t \geqslant \tau \tag{7}
\end{equation*}
$$

Let us show that $G(x, t ; \xi, \tau)$ exists. We have

$$
\begin{aligned}
\left|\sum_{n=1}^{\infty} g_{n}(x) g_{n}(\xi) \exp \left[-\lambda_{n}(t-\tau)\right]\right| & \leq \sum_{n=1}^{\infty}\left|g_{n}(x)\right|\left|g_{n}(\xi)\right| \exp \left[-\lambda_{n}(t-\tau)\right] \\
& \leq 2 \sum_{n=1}^{\infty} \exp \left[-\lambda_{n}(t-\tau)\right]
\end{aligned}
$$

Using the Ratio test, we see that $\sum_{n=1}^{\infty} \exp \left[-\lambda_{n}(t-\tau)\right]$ converges. By the Weierstrass M-test, the series $\sum_{n=1}^{\infty} g_{n}(x) g_{n}(\xi) \exp \left[-\lambda_{n}(t-\tau)\right]$ converges uniformly.
Hence $G(x, t ; \xi, \tau)$ exists.

Let us now verify that (7) is indeed the solution to (5). We begin by computing

$$
\begin{aligned}
\frac{\partial G}{\partial t} & =-\left[\sum_{n=1}^{\infty} \lambda_{n} g_{n}(x) g_{n}(\xi) \exp \left[-\lambda_{n}(t-\tau)\right] H(t-\tau)\right. \\
& +\left[\sum_{n=1}^{\infty} g_{n}(x) g_{n}(\xi) \exp \left[-\lambda_{n}(t-\tau)\right]\right] \delta(t-\tau),
\end{aligned}
$$

where H is the Heaviside unit-step function. Using $f(t) \delta(t-\tau)=f(\tau) \delta(t-\tau)$, we have

$$
\frac{\partial G}{\partial t}=-\left[\sum_{n=1}^{\infty} \lambda_{n} g_{n}(x) g_{n}(\xi) \exp \left[-\lambda_{n}(t-\tau)\right]\right] H(t-\tau)+\left[\sum_{n=1}^{\infty} g_{n}(x) g_{n}(\xi)\right] \delta(t-\tau)
$$

From appendix B, $\left.\sum_{n=1}^{\infty} g_{n}(x) g_{n}(\xi)=\overline{(\delta(x}-\xi\right)$. Therefore,

$$
\frac{\partial G}{\partial t}=-\left[\sum_{n=1}^{\infty} \lambda_{n} g_{n}(x) g_{n}(\xi) \exp \left[-\lambda_{n}(t-\tau)\right]\right] H(t-\tau)+\delta(x-\xi) \delta(t-\tau)
$$

Hence,
$L G=-\left\{\sum_{n=1}^{\infty} g_{n}(\xi)\left\{g_{n}^{\prime \prime}(x)+\lambda_{n} g_{n}(x)\right\} \exp \left[-\lambda_{n}(t-\tau)\right]\right\} H(t-\tau)+\delta(x-\xi) \delta(t-\tau)$.
Since $g_{n}^{\prime \prime}(x)+\lambda_{n} g_{n}(x)=0$, we have \qquad

By direct computation, $G(0, t ; \xi, \tau) \underset{\sigma}{=} G_{x}(1, t ; \xi, \tau)=0$.
To obtain the integral equation, 9/90? 9 ?

$$
\begin{equation*}
u(x, t)=a^{2} \int_{0}^{t} \int_{0}^{1} G(x, t ; \xi, \tau) f\left(u\left(x_{0}, \tau\right)\right) d \xi d \tau+\int_{0}^{1} G(x, t ; \xi, 0) \phi(\xi) d \xi \tag{8}
\end{equation*}
$$

corresponding to the problem (3), let us show that $L^{*} u=-u_{t}-u_{x x}$, where L^{*} denote the adjoint operator of L :

$$
\begin{aligned}
v \frac{\partial^{2} u}{\partial x^{2}} & =\left(v u_{x}\right)_{x}-v_{x} u_{x} \\
& =\left(v u_{x}\right)_{x}-\left(v_{x} u\right)_{x}+v_{x x} u \\
v \frac{\partial u}{\partial t} & =(v u)_{t}-v_{t} u
\end{aligned}
$$

$$
\begin{aligned}
v L u & =v \frac{\partial u}{\partial t}-v \frac{\partial^{2} u}{\partial x^{2}} \\
& =\left[(v u)_{t}-v_{t} u\right]-\left[\left(v u_{x}\right)_{x}-\left(v_{x} u\right)_{x}+v_{x x} u\right] \\
& =(v u)_{t}-v_{t} u-\left(v u_{x}\right)_{x}+\left(v_{x} u\right)_{x}-v_{x x} u
\end{aligned}
$$

which gives

$$
v L u-u L^{*} v=\left(v_{x} u-v u_{x}\right)_{x}+(v u)_{t}
$$

where $L^{*} u \equiv-u_{t}-u_{x x}$.
Next, we show that a solution of the problem (3) is also a solution of the integral equation (8). Using $G^{*}(\xi, \tau ; \bar{x}, t)=G(x, t ; \xi, \tau)$, and Green's theorem, which states that $\iint_{D}\left(P_{x}+Q_{y}\right) d x d y=\int_{\partial D} P d y-Q d x$, we obtain

$$
\begin{align*}
\iint_{\Omega}\left(G L u-u L^{*} G^{*}\right) d \xi d \tau & =\iint_{\Omega}\left[\left(G_{\xi} u-G u_{\xi}\right)_{\xi}+(G u)_{\tau}\right] d \xi d \tau \\
& =\int_{\partial \Omega}\left(G_{\xi} u-G u_{\xi}\right) d \tau-G u d \xi . \tag{9}
\end{align*}
$$

On $\{0\} \times(0, T)$,

$$
\int_{\partial \Omega}\left(G_{\xi} u-G u_{\xi}\right) d \tau-G u d \xi=\int_{0}^{T}\left[G_{\xi}(x, t ; 0, \tau) u(0, \tau)-G(x, t ; 0, \tau) u_{\xi}(0, \tau)\right] d \tau
$$

$$
=0 \text { and } G(x, t ; 0, \tau)=0 \text {. On }\{1\} \times(0, T), \quad \circ
$$

since $u(0, \tau)=0$ and $G(x, t ; 0, \tau)=0$. On $\{1\} \times(0, T)$,

$$
\begin{aligned}
\int_{\partial \Omega}\left(G_{\xi} u-G u_{\xi}\right) d \tau-G u d \xi & =\int_{0}^{T}\left[G_{\xi}(x, t ; 1, \tau) u(1, \tau)-G(x, t ; 1, \tau) u_{\xi}(1, \tau)\right] d \tau \\
& =0
\end{aligned}
$$

since $u_{\xi}(1, \tau)=0$ and $G_{\xi}(x, t ; 1, \tau)=0$. On $\bar{D} \times\{0\}$,

$$
\begin{aligned}
\int_{\partial \Omega}\left(G_{\xi} u-G u_{\xi}\right) d \tau-G u d \xi & =-\int_{0}^{1} G(x, t ; \xi, 0) u(\xi, 0) d \xi \\
& =-\int_{0}^{1} G(x, t ; \xi, 0) \phi(\xi) d \xi
\end{aligned}
$$

since $u(\xi, 0)=\phi(\xi)$. On the other hand, let us consider the left-hand side of (9).

$$
\begin{aligned}
& \iint_{\Omega}\left(G L u-u L^{*} G\right) d \xi d \tau \\
& =a^{2} \int_{0}^{T} \int_{0}^{1} G(x, t ; \xi, \tau) f\left(u\left(x_{0}, \tau\right)\right) d \xi d \tau-\int_{0}^{T} \int_{0}^{1} u(\xi, \tau) \delta(x-\xi) \delta(t-\tau) d \xi d \tau \\
& =a^{2} \int_{0}^{T} \int_{0}^{1} G(x, t ; \xi, \tau) f\left(u\left(x_{0}, \tau\right)\right) d \xi d \tau-u(x, t)
\end{aligned}
$$

From (9),

$$
a^{2} \int_{0}^{T} \int_{0}^{1} G(x, t ; \xi, \tau) f\left(u\left(x_{0}, \tau\right)\right) d \xi d \tau-u(x, t)=-\int_{0}^{1} G(x, t ; \xi, 0) \phi(\xi) d \xi
$$

Therefore, we have (8).

Next, we will prove some properties of Green's function.
Lemma 1. In the set $\{(x, t ; \xi, \tau): x$ and ξ are in $D, 0 \leq \tau<t \leq T\}$, $G(x, t ; \xi, \tau)>0$.

Proof. Let $D_{1}=\{(x, t ; \xi, \tau): x$ and ξ are in $D, 0 \leq \tau<t \leq T\}$. Suppose that there exists a point $\left(x_{1}, t_{1} ; \xi_{1}, \tau_{1}\right)$ in D_{1} such that $G(x, t ; \xi, \tau)<0$. Since $G(x, t ; \xi, \tau)$ is continuous in D_{1}, there exists a positive number ε such that $G(x, t ; \xi, \tau)<0$ in the set,

$$
W_{0}=\left(x_{1}-\varepsilon, x_{1}+\varepsilon\right) \times\left(t_{1}-\varepsilon, t_{1}+\varepsilon\right) \times\left(\xi_{1}-\varepsilon, \xi_{1}+\varepsilon\right) \times\left(\tau_{1}-\varepsilon, \tau_{1}+\varepsilon\right)
$$

which is contained in D_{1}. Let

$$
\begin{aligned}
& W_{1}=\left(\xi_{1}-\varepsilon, \xi_{1}+\varepsilon\right) \times\left(\tau_{1}-\varepsilon, \tau_{1}+\varepsilon\right), \\
& W_{2}=\left(\xi_{1}-\frac{\varepsilon}{2}, \xi_{1}+\frac{\varepsilon}{2}\right) \times\left(\tau_{1}-\frac{\varepsilon}{2}, \tau_{1}+\frac{\varepsilon}{2}\right) .
\end{aligned}
$$

We would like to show that there exists a function $h(x, t)$ in $C^{2}\left(\mathbb{R}^{2}\right)$ such that $h \equiv 1$ on $\overline{W_{2}}, h \equiv 0$ outside W_{1}, and $0 \leq h \leq 1$ in $W_{1} \backslash W_{2}$. We construct the desired function explicitly in a sequence of steps:

Step one: the function f_{1} defined by

$$
f_{1}(s)= \begin{cases}0, & s \leq 0 \\ \exp \left(-s^{-1}\right), & s>0\end{cases}
$$

belongs to $C^{2}(\mathbb{R})$, vanishes for $s \leq 0$, is positive for $s>0$, and is monotone increasing.
Step two: the function f_{2} defined by

$$
f_{2}(s)=f_{1}(s) f_{1}(1-s)
$$

belongs to $C^{2}(\mathbb{R})$, vanishes for $s \leq 0$ and $s \geq 1$, and is positive for $0<s<1$.
Step three: the function f_{3} in $C^{\infty}(\mathbb{R})$ defined by

$$
f_{3}(s)=\frac{\int_{0}^{s} f_{2}(t) d t}{\int_{0}^{1} f_{2}(t) d t}
$$

vanishes for $s \leq 0$, is monotone increasing, equals one for $s \geq 1$, and satisfies $0<f_{3}(s)<1$ for all $s \in D$.
Step four: the function $h(x, t)$ defined by

$$
\text { 6. } h(x, t)=f_{3}\left(\begin{array}{c}
\varepsilon-\left|x-x_{1}\right| \\
\varepsilon \varepsilon / 2 \\
\hline
\end{array}\right) f_{3}\left(\frac{\varepsilon-\left|t-t_{1}\right|}{(\varepsilon / 2 \mid}\right)
$$

is in $C^{2}\left(\mathbb{R}^{2}\right)$ and has $h(x, t)=1$ on $\overline{W_{2}}, h(x, t)=0$ outside W_{1}, and $\overline{0} \leq h(x, t) \leq$ 1 in $W_{9} \backslash W_{2}$. Hence, the solution of the problem, $L u(x, t)=h(x, t)$ in $D \times(0, \alpha]$, $t_{1}<\alpha$ with u satisfying zero initial and $u(0, t)=0=u_{x}(1, t)$, is given by

$$
u(x, t)=\int_{\tau_{1}-\varepsilon}^{\tau_{1}+\varepsilon} \int_{\xi_{1}-\varepsilon}^{\xi_{1}+\varepsilon} G(x, t ; \xi, \tau) h(\xi, \tau) d \xi d \tau
$$

Since $G(x, t ; \xi, \tau)<0$ in $W_{0}, h(\xi, \tau) \geq 0$ in W_{1}, and $h \equiv 1$ on \bar{W}_{2}, it follows that $u(x, t)<0$ for (x, t) in $\left(x_{1}-\varepsilon, x_{1}+\varepsilon\right) \times\left(t_{1}-\varepsilon, t_{1}+\varepsilon\right)$. On the other hand, $h(x, t) \geq 0$ in $D \times(0, \alpha]$ implies that $u(x, t) \geq 0$ by weak maximum principle and Holf's Lemma. We have a contradiction, and therefore, $G(x, t ; \xi, \tau) \geq 0$ in D_{1}.

Next, we show that $G(x, t ; \xi, \tau) \neq 0$ in D_{1}. Suppose that there exists a point $\left(x_{2}, t_{2} ; \xi_{2}, \tau_{2}\right)$ in D_{1} such that $G(x, t ; \xi, \tau)=0$. Using the strong maximum principle, we have $G\left(x, t ; \xi_{2}, \tau_{2}\right)=0$ in $D_{1} \cap\left\{\left(x, t ; \xi_{2}, \tau_{2}\right): 0<x<1, t \leq t_{2}\right\}$. On the other hand, $G\left(\xi_{2}, t_{2}, \xi_{2}, \tau_{2}\right)=2 \sum_{n=1}^{\infty} \sin ^{2} \sqrt{\lambda_{n}} \xi_{2} \exp \left[-\lambda_{n}\left(t_{2}-\tau_{2}\right)\right]$, which is positive. We again have a contradiction. This shows that $G(x, t ; \xi, \tau)$ is positive in D_{1}.

Lemma 2. For any function $\gamma \in C([0, T]), \int_{0}^{t} \int_{0}^{1} G(x, t ; \xi, \tau) \gamma(\tau) d \xi d \tau$ is continuous on $\bar{\Omega}$.

Proof. Let ε be any positive number such that $t-\varepsilon>0$. For $x \in \bar{D}$ and $\tau \in[0, t-\varepsilon]$, we multiply

$$
G(x, t ; \xi, \tau)=\sum_{n=1}^{\infty} g_{n}(x) g_{n}(\xi) \exp \left[-\lambda_{n}(t-\tau)\right]
$$

by $\gamma(\tau)$, to get

$$
G(x, t ; \xi, \tau) \gamma(\tau)=\sum_{n=1}^{\infty} g_{n}(x) g_{n}(\xi) \exp \left[-\lambda_{n}(t-\tau)\right] \gamma(\tau)
$$

Since $g_{n}(x)=\sqrt{2} \sin \sqrt{\lambda_{n}} x$, we have

$$
\sum_{n=1}^{\infty} g_{n}(x) g_{n}(\xi) \exp \left[-\lambda_{n}(t-\tau)\right] \gamma(\tau) \leq 2\left[\max _{0 \leq \tau \leq T} \gamma(\tau)\right] \sum_{n=1}^{\infty} \exp \left[-\lambda_{n}(t-\tau)\right] \text {, }
$$

which converges. By the Weierstrass M-test, $\sum_{n=1} g_{n}(x) g_{n}(\xi) \exp \left[-\lambda_{n}(t-\tau)\right] \gamma(\tau)$
converges uniformly, and we have $919 \cap \cap 9 / 2$

$$
\int_{0}^{t-\varepsilon} \int_{0}^{1} G(x, t ; \xi, \tau) \gamma(\tau) d \xi d \tau=\sum_{n=1}^{\infty} \int_{0}^{t-\varepsilon} \int_{0}^{1} g_{n}(x) g_{n}(\xi) \exp \left[-\lambda_{n}(t-\tau)\right] \gamma(\tau) d \xi d \tau
$$

Since

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \int_{0}^{t-\varepsilon} \int_{0}^{1} g_{n}(x) g_{n}(\xi) \exp \left[-\lambda_{n}(t-\tau)\right] \gamma(\tau) d \xi d \tau \\
& \leq 2\left[\max _{0 \leq \tau \leq T} \gamma(\tau)\right] \sum_{n=1}^{\infty} \int_{0}^{t-\varepsilon} \int_{0}^{1} \exp \left[-\lambda_{n}(t-\tau)\right] d \xi d \tau \\
& =2\left[\max _{0 \leq \tau \leq T} \gamma(\tau)\right] \sum_{n=1}^{\infty} \int_{0}^{t-\varepsilon} \exp \left[-\lambda_{n}(t-\tau)\right] d \tau \\
& =2\left[\max _{0 \leq \tau \leq T} \gamma(\tau)\right] \sum_{n=1}^{\infty} \frac{\lambda_{n}^{-1}}{\lambda_{n}}\left[\exp \left(-\lambda_{n} \varepsilon\right)-\exp \left(-\lambda_{n} t\right)\right] \\
& \leq 2\left[\max _{0 \leq \tau \leq T} \gamma(\tau)\right] \sum_{n=1}^{\infty} \lambda_{n}^{-1},
\end{aligned}
$$

which converges. Furthermore, it follows from the Weierstrass M-test that

$$
\sum_{n=1}^{\infty} \int_{0}^{t-\varepsilon} \int_{0}^{1} g_{n}(x) g_{n}(\xi) \exp \left[-\lambda_{n}(t-\tau)\right] \gamma(\tau) d \xi d \tau
$$

converges uniformly with respect to x, t and ε. Since the uniform convergence also holds for $\varepsilon=0$, it follows that

$$
\sum_{n=1}^{\infty} \int_{0}^{t-\varepsilon} \int_{0}^{1} g_{n}(x) g_{n}(\xi) \exp \left[-\lambda_{n}\left(t_{-} \tau\right)\right] \gamma(\tau) d \xi d \tau
$$

is a continuous function of x, t and $\varepsilon \geq 0$. Therefore,

$$
\int_{0}^{t} \int_{0}^{1} G(x, t ; \xi, \tau) \gamma(\tau) d \xi d \tau=\lim _{\varepsilon \rightarrow 0} \sum_{n=1}^{\infty} \int_{0}^{t-\varepsilon} \int_{0}^{1} g_{n}(x) g_{n}(\xi) \exp \left[-\lambda_{n}(t-\tau)\right] \gamma(\tau) d \xi d \tau
$$

is a continuous function of x and t.

Based on Theorem 2 of Chan and Tian [2], we will prove the following theorem.
Theorem 3. There exists some t_{0} such that for $0 \leq t \leq t_{0}$, the integral equation (8) has the unique continuous solution $u \geq \phi(x)$ and u is a nondecreasing function of t. Let t_{b} be the supremum of the interval for which the integral equation (8) has the unique continuous solution u. If t_{b} is finite, then $u\left(x_{0}, t\right)$ is unbounded in $\left[0, t_{b}\right)$.

Proof. We construct a sequence $\left\{u_{n}\right\}$ by $u_{0}(x, t)=\phi(x)$, and for $n=$ $0,1,2, \ldots$,

$$
\begin{gathered}
L u_{n+1}(x, t)=a^{2} f\left(u_{n}\left(x_{0}, t\right)\right) \text { in } \Omega=D \times(0, T) \\
u_{n+1}(x, 0)=\phi(x) \text { on }[0,1] \\
u_{n+1}(0, t)=\left(u_{n+1}\right)_{x}(1, t)=0 \text { for } 0<t<T
\end{gathered}
$$

To show that the sequence $u_{n}(x, t) \geq \phi(x)$ for all $n=0,1,2, \ldots$, we use the condition (4) to obtain that

$$
\begin{aligned}
L\left(u_{1}-u_{0}\right)(x, t) & =a^{2} f\left(\overline{u_{0}}\left(x_{0}, t\right)\right)+\phi^{\prime \prime}(x) \\
& \geq a^{2}\left[f\left(\overline{u_{0}}\left(x_{0}, t\right)\right)-f\left(\phi\left(x_{0}\right)\right)\right] \\
& =a^{2}\left[f\left(\phi\left(x_{0}\right)\right)-f\left(\phi\left(x_{0}\right)\right)\right]=0 \text { in } \Omega
\end{aligned}
$$

Since

$$
\begin{gathered}
\left(u_{1}-u_{0}\right)(x, 0)=0 \text { on }[0,1], \\
\left(u_{1}-u_{0}\right)(0, t)=0=\left(u_{1}-u_{0}\right)_{x}(1, t)=0 \text { for } 0<t<T,
\end{gathered}
$$

it follows from (8) and $G(x, t ; \xi, \tau)$ being positive that $u_{1}(x, t) \geq u_{0}(x, t)$ in Ω. Let us assume that for some positive integer j,

$$
\phi \leq u_{1} \leq u_{2} \leq \ldots \leq u_{j-1} \leq u_{j} \text { in } \Omega .
$$

Since f is an increasing function, and $u_{j} \geq u_{j-1}$, we have $\widetilde{\delta}$

$$
\begin{gathered}
\text { จ9Nค } \frac{L\left(u_{j+1}-u_{j}\right)=a^{2}\left[\widetilde{f}\left(u_{j}\right)-f\left(u_{j-1}\right)\right] \geq 0 \text { in } \Omega}{\left(u_{j+1}-u_{j}\right)(x, 0)=0 \quad \text { on }[0,1]} . \\
\left(u_{j+1}-u_{j}\right)(0, t)=0=\left(u_{j+1}-u_{j}\right)_{x}(1, t) \text { for } 0<t<T
\end{gathered}
$$

From (8),

$$
\left(u_{j+1}-u_{j}\right)(x, t)=a^{2} \int_{0}^{t} \int_{0}^{1} G(x, t ; \xi, \tau)\left[f\left(u_{j}\right)-f\left(u_{j-1}\right)\right] d \xi d \tau \geq 0
$$

Thus, $u_{j+1} \geq u_{j}$. By the principle of mathematical induction,

$$
\begin{equation*}
\phi \leq u_{1} \leq u_{2} \leq \ldots \leq u_{n-1} \leq u_{n} \text { in } \Omega \text { for all positive integer } n \tag{10}
\end{equation*}
$$

Next, let us show that the sequence $\left\{u_{n}\right\}$ is a nondecreasing function of t. Let $w_{n}(x, t)=u_{n}(x, t+h)-u_{n}(x, t)$ for $n=0,1,2, \ldots$, where h is any positive number less than $T-t$. It follows that

$$
\begin{aligned}
w_{0}(x, t) & =u_{0}(x, t+h)-u_{0}(x, t) \\
& =\phi(x)-\phi(x)
\end{aligned}
$$

$$
=0
$$

In $D \times(0, T-h)$,

$$
\begin{aligned}
L w_{1}(x, t) & =a^{2} f\left(u_{0}\left(x_{0}, t+h\right)\right)-a^{2} f\left(u_{0}\left(x_{0}, t\right)\right) \\
& =a^{2}\left[f\left(\overline{\left.\phi\left(x_{0}\right)\right)}-f\left(\phi\left(x_{0}\right)\right)\right]\right. \\
& =0
\end{aligned}
$$

By (10) and the construction of $-u_{1}$, we get that

$$
\begin{aligned}
w_{1}(x, 0) & =u_{1}(x, h)-u_{1}(x, 0) \\
& =u_{1}(x, h)-\phi(x) \geq 0 \text { on } \bar{D}, \\
w_{1}(0, t) & =u_{1}(0, t+h)-u_{1}(0, t)=0,\left(w_{1}(1, t)\right)_{x}=0,0<t<T-h .
\end{aligned}
$$

By (8), $w_{1} \geq 0$ for $0<t<T-h$. Let us assume that for some positive integer $j, w_{j} \geq 0$ for $0<t<T-h$. Using the Mean Value Theorem, we get
in $D \times(0, T-h)$ for some t_{1} in $(t, t+h)$. Also,

$$
\begin{gathered}
w_{j+1}(x, 0)=0 \text { on }[0,1] \\
w_{j+1}(0, t)=\left(w_{j+1}(1, t)\right)_{x}=0 \text { for } 0<t \leq T-h .
\end{gathered}
$$

From (8) and $G(x, t ; \xi, \tau)$ being positive, we get that for $0<t<T-h$,

$$
w_{j+1}(x, t)=a^{2} \int_{0}^{t} \int_{0}^{1} G(x, t ; \xi, \tau) f^{\prime}\left(u_{j}\left(x_{0}, t_{1}\right)\right) w_{j}(x, t) d \xi d \tau \geq 0
$$

$$
\begin{aligned}
& L w_{j+1}(x, t)=a^{2}\left[f\left(u_{j}\left(x_{0}, t+h\right)\right)-f\left(u_{j}\left(x_{0}, t\right)\right)\right]
\end{aligned}
$$

By the principle of mathematical induction, $w_{n} \geq 0$ for all positive integer n. This shows that u_{n} is a nondecreasing function of t.

Next, we would like to show that there exists some \widehat{t} such that the integral equation (8) has a unique continuous solution u for $0 \leq t \leq \widehat{t}$. We consider the problem

$$
\begin{gathered}
L v(x, t)=0 \text { in } \Omega \\
v(x, 0)=\phi(x) \text { on } \bar{D} \\
v(0, t)=v_{x}(1, t)=0 \text { for } 0<t<T
\end{gathered}
$$

From (8), the solution of the problem is

$$
v(x, t)=\int_{0}^{1} G(x, t ; \xi, 0) \phi(\xi) d \xi
$$

We know that $G(x, t ; \xi, \tau)$ is positive and $\phi(x)$ is nontrivial, nonnegative and continuous. Thus, $v>0$ in Ω. By the weak maximum principle and the parabolic version of Hopf's lemma, v attains its maximum $k_{0}=\max _{x \in[0,1]} \phi(x)$ in $D \times\{0\}$.

Next, we show that for some given positive constant $M>k_{0}$, there exists some t_{2} such that $u_{i} \leq M$ for $0 \leq t \leq t_{2}$. By Lemma 2, $G(x, t ; \xi, \tau)$ is integrable. Let us consider

$$
\begin{equation*}
u_{i}(x, t)=a^{2} \int_{0}^{t} \int_{0}^{1} G\left(x, t_{0} \xi, \tau\right) f\left(u_{i-1}\left(x_{0}, \tau\right)\right) d \xi d \tau+\int_{0}^{1} G(x, t ; \xi, 0) \phi(\xi) d \xi \tag{11}
\end{equation*}
$$

As $t \rightarrow 0$, we see that

$$
\begin{aligned}
\lim _{t \rightarrow 0} u_{i}(x, t) & =\lim _{t \rightarrow 0} \int_{0}^{1} G(x, t ; \xi, 0) \phi(\xi) d \xi \\
& =\int_{0}^{1} \lim _{t \rightarrow 0} G(x, t ; \xi, 0) \phi(\xi) d \xi \\
& =\int_{0}^{1} \sum_{n=1}^{\infty} g_{n}(x) g_{n}(\xi) \phi(\xi) d \xi \\
& =\int_{0}^{1} \delta(x-\xi) \phi(\xi) d \xi \\
& =\phi(x)
\end{aligned}
$$

This shows that there exists t_{2} such that $u_{i}(x, t) \leq M$ for $0 \leq t \leq t_{2}$. Let u denote $\lim _{i \rightarrow \infty} u_{i}$. From (11), we have (8) for $0 \leq t \leq t_{2}$.

Next, we show that $\left\{u_{i}\right\}$ converges uniformly to u for $0 \leq t \leq t_{2}$. From (11),

$$
\begin{equation*}
u_{i+1}(x, t)-u_{i}(x, t)=a^{2} \int_{0}^{t} \int_{0}^{1} G(x, t ; \xi, \tau)\left[f\left(u_{i}\left(x_{0}, \tau\right)\right)-f\left(u_{i-1}\left(x_{0}, \tau\right)\right)\right] d \xi d \tau \tag{12}
\end{equation*}
$$

Let $S_{i}=\max _{[0,1] \times\left[0, t_{2}\right]}\left(u_{i}-u_{i-1}\right)$. Using the Mean Value Theorem, we have

$$
f\left(u_{i}\left(x_{0}, \tau\right)\right)-f\left(u_{i-1}\left(x_{0}, \tau\right)\right)=f^{\prime}(\mu)\left(u_{i}\left(x_{0}, \tau\right)-u_{i-1}\left(x_{0}, \tau\right)\right)
$$

for some μ between $u_{i-1}\left(x_{0}, \tau\right)$ and $u_{i}\left(x_{0}, \tau\right)$. Since $u_{i} \leq M$ for all i and $f^{\prime \prime}(s)>0$ for $s>0$, we get

$$
\begin{gathered}
f\left(u_{i}\left(x_{0}, \tau\right)\right)-f\left(u_{i-1}\left(x_{0}, \tau\right)\right) \leq f^{\prime}(M)\left(u_{i}\left(x_{0}, \tau\right)-u_{i-1}\left(x_{0}, \tau\right)\right) \\
\leq f^{\prime}(M) S_{i} .
\end{gathered}
$$

From (12), we have

$$
\begin{align*}
S_{i+1} & \leq 2 a^{2} f^{\prime}(M) S_{i} \sum_{n=1}^{\infty} \int_{0}^{t} \int_{0}^{1} \exp \left[-\lambda_{n}(t-\tau)\right] d \xi d \tau \\
& =2 a^{2} f^{\prime}(M) S_{i} \sum_{n=1}^{\infty} \int_{0}^{t} \exp \left[-\lambda_{n}(t-\tau)\right] d \tau \\
\text { 6. } & =2 a^{2} f^{\prime}(M)\left[\sum_{n=1}^{\infty} \lambda_{n}^{1}\left(1-\exp \left(-\lambda_{n} t\right)\right)\right] \widetilde{S_{j} .} \tag{13}
\end{align*}
$$

We also know that $\sum_{n=1}^{\infty} \lambda_{n}^{-4}\left(1-\exp \left(-\lambda_{n} t\right)\right) \leq \sum_{n=1}^{\infty} \lambda_{n}^{-1}$, which converges. Therefore, by the Weierstrass M-test, $\sum_{n=1}^{\infty} \lambda_{n}^{-1}\left(1-\exp \left(-\lambda_{n} t\right)\right)$ converges uniformly.

We would like to show that there exists some $\sigma_{1}(>0)$ such that

$$
2 a^{2} f^{\prime}(M) \sum_{n=1}^{\infty} \lambda_{n}^{-1}\left(1-\exp \left(-\lambda_{n} t\right)\right)<1 \text { for } t \in\left[0, \sigma_{1}\right]
$$

Since $\lim _{t \rightarrow 0} \sum_{n=1}^{\infty} \lambda_{n}^{-1}\left(1-\exp \left(-\lambda_{n} t\right)\right)=\sum_{n=1}^{\infty} \lim _{t \rightarrow 0} \lambda_{n}^{-1}\left(1-\exp \left(-\lambda_{n} t\right)\right)=0$, there exists some $\sigma_{1}(>0)$ such that

$$
\left|\sum_{n=1}^{\infty} \lambda_{n}^{-1}\left(1-\exp \left(-\lambda_{n} t\right)\right)\right|<\frac{1}{2 a^{2} f^{\prime}(M)} \text { for } t \in\left[0, \sigma_{1}\right]
$$

that is,

$$
\begin{equation*}
2 a^{2} f^{\prime}(M) \sum_{n=1}^{\infty} \lambda_{n}^{-1}\left(1-\exp \left(-\lambda_{n} t\right)\right)<1 \text { for } t \in\left[0, \sigma_{1}\right] \tag{14}
\end{equation*}
$$

From (13) and (14), it implies that $\left\{u_{i}\right\}$ converges uniformly to $u(x, t)$ for $0 \leq$ $t \leq \sigma_{1}$.

Similarly for $\sigma_{1} \leq t \leq t_{2}$, we use $u\left(\xi, \sigma_{1}\right)$ in place of $\phi(\xi)$ in (11), and obtain that

$$
u_{i}(x, t)=a^{2} \int_{\sigma_{1}}^{t} \int_{0}^{1} G(x, t ; \xi, \tau) f\left(u_{i-1}\left(x_{0}, \tau\right)\right) d \xi d \tau+\int_{0}^{1} G(x, t ; \xi, 0) u\left(\xi, \sigma_{1}\right) d \xi
$$

Furthermore,

$$
u_{i+1}(x, t)-u_{i}(x, t)=a^{2} \int_{\sigma_{1}}^{t} \int_{0}^{1} G(x, t ; \xi, \tau)\left[f\left(u_{i}\left(x_{0}, \tau\right)\right)-f\left(u_{i-1}\left(x_{0}, \tau\right)\right)\right] d \xi d \tau
$$

Since $S_{i}=\max _{[0,1] \times\left[0, t_{2}\right]}\left(u_{i}-u_{i-1}\right)$, it follows from the Mean Value Theorem that

$$
f\left(u_{i}\left(x_{0}, \tau\right)\right)-f\left(u_{i-1}\left(x_{0}, \tau\right)\right) \leq f^{\prime}(M) S_{i}
$$

From (12), we have

$$
\begin{align*}
& S_{i+1} \leq 2 a^{2} f^{\prime}(M) S_{i} \sum_{n=1}^{\infty} \int_{\sigma_{1}}^{t} \int_{0}^{1} \exp \left[-\lambda_{n}(t-\tau)\right] d \xi d \tau \tag{15}\\
& \\
&
\end{align*}
$$

Thus, there exists $\sigma_{2}=\min \left\{\sigma_{1}, t_{2}-\sigma_{1}\right\}>0$ such that

$$
\begin{equation*}
2 a^{2} f^{\prime}(M) \sum_{n=1}^{\infty} \lambda_{n}^{-1}\left(1-\exp \left(-\lambda_{n}\left(t-\sigma_{1}\right)\right)\right)<1, \text { for } t \in\left[\sigma_{1}, \min \left\{2 \sigma_{1}, t_{2}\right\}\right] \tag{16}
\end{equation*}
$$

Hence, $\left\{u_{i}\right\}$ converges uniformly to u for $t \in\left[\sigma_{1}, \min \left\{2 \sigma_{1}, t_{2}\right\}\right]$.
By proceeding in this way the sequence $\left\{u_{i}\right\}$ converges uniformly for $0 \leq t \leq$ t_{2}. Therefore, the integral equation (8) has a continuous solution u for $0 \leq t \leq t_{2}$.

To show that the solution u is unique, let us suppose that the integral equation (8) has two distinct solutions u and \widetilde{u} on the interval $\left[0, t_{2}\right]$. Also, let $\Phi=$ $\max _{\bar{D} \times\left[0, t_{2}\right]}|u-\widetilde{u}|>0$. From (8),

$$
u(x, t)-\widetilde{u}(x, t)=a^{2} \int_{0}^{t} \int_{0}^{1} G(x, t ; \xi, \tau)\left[f\left(u\left(x_{0}, \tau\right)\right)-f\left(\widetilde{u}\left(x_{0}, \tau\right)\right)\right] d \xi d \tau
$$

As in the derivation of (13), we obtain that

$$
\Phi \leq 2 a^{2} f^{\prime}(M)\left[\sum_{n=1}^{\infty} \lambda_{n}^{-1}\left(1-\exp \left(-\lambda_{n} t\right)\right)\right] \Phi \text { for } t \in\left[0, \sigma_{1}\right]
$$

This implies that

$$
2 a^{2} f^{\prime}(M)\left[\sum_{n=1}^{\infty} \lambda_{n}^{-1}\left(1-\exp \left(-\lambda_{n} t\right)\right)\right] \geq 1 \text { for } t \in\left[0, \sigma_{1}\right]
$$

For $t \in\left[0, \sigma_{1}\right]$, it follows from (14) that we have a contradiction. Hence, the solution is unique for $0 \leq t \leq \sigma_{1}$,

As in the derivation of (15), we obtain that

$$
\Phi \leq 2 a^{2} f^{\prime}(M)\left[\sum_{n=1}^{\infty} \lambda_{n}^{-1}\left(1-\exp \left(-\lambda_{n}\left(t-\sigma_{1}\right)\right)\right)\right] \Phi \text { for } t \in\left[\sigma_{1}, \min \left\{2 \sigma_{1}, t_{2}\right\}\right]
$$

$$
\begin{aligned}
& \text { This shows that } \\
& 2 a^{2} f^{\prime}(M)\left[\sum_{n=1}^{\infty} \lambda_{n}^{-1}\left(1-\exp \left(-\lambda_{n}\left(t-\sigma_{1}\right)\right)\right)\right] \geq 1 \text { for } t \in\left[\sigma_{1}, \min \left\{2 \sigma_{1}, t_{2}\right\}\right] .
\end{aligned}
$$

For $t \in\left[\sigma_{1}, \min \left\{2 \sigma_{1}, t_{2}\right\}\right]$, it follows from (16) that we have a contradiction. Hence, the solution is unique for $\sigma_{1} \leq t \leq \min \left\{2 \sigma_{1}, t_{2}\right\}$. By proceeding in this way, the integral (8) has the unique continuous solution u for $0 \leq t \leq t_{2}$.

Let t_{b} be the supremum of the interval for which the integral equation (8) has the unique continuous solution u. We would like to show that if t_{b} is finite, then $u\left(x_{0}, t\right)$ is unbounded in $\left[0, t_{b}\right)$. Suppose that $u\left(x_{0}, t\right)$ is bounded in $\left[0, t_{b}\right)$. We consider (8) for $t \in\left[t_{b}, T\right)$ with the initial condition $u(x, 0)$ replaced by $u\left(x, t_{b}\right)$.

$$
u\left(x_{0}, t\right)=a^{2} \int_{t_{b}}^{t} \int_{0}^{1} G\left(x_{0}, t ; \xi, \tau\right) f\left(u\left(x_{0}, \tau\right)\right) d \xi d \tau+\int_{0}^{1} G\left(x_{0}, t ; \xi, t_{b}\right) u\left(\xi, t_{b}\right) d \xi
$$

For any positive constant $N>u\left(x_{0}, t_{b}\right)$, an argument as before shows that there exists t_{3} such that the integral equation (8) has the unique continuous solution u on $\left[t_{b}, t_{3}\right]$. This contradicts the definition of t_{b}. Hence, if t_{b} is finite, then $u\left(x_{0}, t\right)$ is unbounded in $\left[0, t_{b}\right)$.

Since u_{i} is also a nondecreasing function of t, u is a nondecreasing function of t.

$$
\begin{gathered}
\text { สถาบันวิทยบริการ } \\
\text { จุฬาลงกรณ์มหาวัทยาล่ย }
\end{gathered}
$$

Chapter IV

A sufficient condition for blow-up in a finite time

In this chapter, we will give a sufficient condition for the solution u to blow-up in a finite time.

Lemma 4. Let $u(x, t)$ be a solution of the following problem:

$$
\begin{gathered}
L u=b(x, t) u\left(x_{0}, t\right) \text { in } \Omega \\
u(x, 0) \geq 0 \text { on } \bar{D} \\
u(0, t)=0=u_{x}(1, t) \text { for } 0<t<T
\end{gathered}
$$

where $b(x, t)$ is nonnegative and bounded, then $u(x, t) \geq 0$ in Ω.
Proof. Case 1: $b(x, t) \equiv 0$.
If $u<0$ in Ω, then by the weak maximum principle, u attains its negative minimum somewhere at $x=1$. By the parabolic version of Hopf's lemma, $u_{x}<0$ at this point. This contradiction shows that $u(x, t) \geq 0$ in Ω.

Case 2: $b(x, t)$ being nonnegative and nontrivial.
Let η be a positive constant, and

$$
\text { ลิ V } \left.(x, t)=u(x, t)+\eta\left(1+\widetilde{x}_{1}^{1 / 2}\right) e^{c t},\right) \text { 万 }
$$

where c is a positive constant to be determined. Also, we obtain that $V(x, 0)>0$ on \bar{D} and $V(0, t) \gg$ for $0<t<0 T$. Then we haved $\|$

$$
\begin{aligned}
& L V(x, t)-b(x, t) V\left(x_{0}, t\right) \\
& =L\left[u(x, t)+\eta\left(1+x^{1 / 2}\right) e^{c t}\right]-b(x, t)\left[u\left(x_{0}, t\right)+\eta\left(1+x_{0}^{1 / 2}\right) e^{c t}\right] \\
& =b(x, t) u\left(x_{0}, t\right)+L\left[\eta\left(1+x^{1 / 2}\right) e^{c t}\right]-b(x, t) u\left(x_{0}, t\right)-b(x, t) \eta\left(1+x_{0}^{1 / 2}\right) e^{c t} \\
& =L\left[\eta\left(1+x^{1 / 2}\right) e^{c t}\right]-b(x, t) \eta\left(1+x_{0}^{1 / 2}\right) e^{c t} \\
& =\eta e^{c t}\left[c\left(1+x^{1 / 2}\right)+\frac{1}{4 x^{3 / 2}}-b(x, t)\left(1+x_{0}^{1 / 2}\right)\right] \\
& \geq \eta e^{c t}\left[c\left(1+x^{1 / 2}\right)+\frac{1}{4 x^{3 / 2}}-\left(1+x_{0}^{1 / 2}\right) \max _{(x, t) \in \Omega_{T}} b(x, t)\right] .
\end{aligned}
$$

Let $M=\max _{(x, t) \in \Omega} b(x, t)$, and we choose $c \geq\left(1+x_{0}^{1 / 2}\right) M$. Then,

$$
\begin{aligned}
& L V(x, t)-b(x, t) V\left(x_{0}, t\right) \\
& \geq \eta e^{t\left(1+x_{0}^{1 / 2}\right) M}\left[\left(1+x^{1 / 2}\right)\left(1+x_{0}^{1 / 2}\right) M+\frac{1}{4 x^{3 / 2}}-\left(1+x_{0}^{1 / 2}\right) M\right] \\
& \geq \eta e^{t\left(1+x_{0}^{1 / 2}\right) M}\left[\left(1+x_{0}^{1 / 2}\right) M\left[\left(1+x^{1 / 2}\right)-1\right]+\frac{1}{4 x^{3 / 2}}\right]
\end{aligned}
$$

Therefore,

$$
L V(x, t)-b(x, t) V\left(x_{0}, t\right)>0 \text { in } \Omega
$$

To show that $V(x, t)>0$ in Ω, let us suppose that there exists some point in Ω such that $V(x, t) \leq 0$. Since $V(x, 0)>0$ and $V(x, t)$ is continuous, the set

$$
\{t: V(x, t) \leq 0 \text { for some } x \in D\}
$$

is nonempty. Let \bar{t} denote its infimum. Then, there exists some $x_{1} \in D$ such that $V\left(x_{1}, \bar{t}\right)=0$ and $V_{t}\left(x_{1}, \bar{t}\right) \leq 0$. For $t<\bar{t}$, we have $V(x, t)>0$ for all x. Since $V(x, t)$ is continuous, we have $V(x, \bar{t}) \geq 0$ for all x. Because $V\left(x_{1}, \bar{t}\right)=0$, $V\left(x_{1}, \bar{t}\right)$ is a local minimum. Thus, $V\left(x_{0}, \bar{t}\right) \geq 0$ and $V_{x x}\left(x_{1}, \bar{t}\right) \geq 0$. We have

$$
0 \geq V_{t}\left(x_{1}, \bar{t}\right) \geq L V\left(x_{1}, \bar{t}\right)-b\left(x_{1}, \bar{t}\right) V\left(x_{0}, \bar{t}\right)>0
$$

We have a contradiction. This show that $V(x, t)>0$ in Ω. Since V is continuous, it follows that $V(1, t) \geq 0$ for $0<t<T$ As $\eta \rightarrow 0^{+}$, we also have that $u(x, t) \geq 0$ in Ω.

The following theorem gives a sufficientcondition for the solution u to blow-up in a finite time.

Theorem 5. If $\phi(x)$ is sufficiently large in a neighborhood of x_{0}, then u blows up in a finite time.

Proof. Let us consider following problem,

$$
\left.\begin{array}{c}
L v(x, t)=a^{2} f\left(v\left(x_{0}, t\right)\right) \text { in }\left(x_{0}-\delta, x_{0}\right) \times(0, T), \tag{17}\\
v(x, 0)=v_{0}(x) \geq 0 \text { on }\left[x_{0}-\delta, x_{0}\right] \\
v\left(x_{0}-\delta, t\right)=v_{x}\left(x_{0}, t\right)=0 \text { for } 0<t<T,
\end{array}\right\}
$$

where $v_{0}(x)$ is nondecreasing on $\left[x_{0}-\delta, x_{0}\right]$ and $v_{0}\left(x_{0}-\delta\right)=0=v_{0}^{\prime}\left(x_{0}\right)$. We would like to show that $\lim _{x \rightarrow \infty}(f(x) / x)=\infty$. Suppose that $\lim _{x \rightarrow \infty}(f(x) / x)=N$ for some positive number N. Then, there exists some positive number $z_{0}>0$ such that

$$
\left|\frac{f(x)}{x}-N\right|<1 \text { for } x>z_{0}
$$

Thus $f(x) / x<1+N$. We have

$$
\frac{1}{f(x)}>\frac{1}{(1+N) x} \text { for } x>z_{0}
$$

This implies that

$$
\int_{z_{0}}^{\infty} \frac{1}{f(x)} d x>\frac{1}{1+N} \int_{z_{0}}^{\infty} \frac{1}{x} d x=\infty
$$

which contradicts the assumption $\int^{\infty} \frac{1}{f(s)} d s<\infty$ for some z_{0}. Thus, $\lim _{x \rightarrow \infty}(f(x) / x)$ $=\infty$.

Let λ_{1} be the principal eigenvalue of the problem,

Since $\lambda_{1}>0$, there exists a positive constant $k_{1}>z_{0}$ such that

$$
\begin{equation*}
66 \frac{f(x)}{x} \geq \max \left\{2 \lambda_{1}, \frac{e_{2}}{\delta^{2} a^{2}}\right\} \text { for } x \geq k_{1} \text {. } \tag{18}
\end{equation*}
$$

which gives

$$
\frac{1}{f(x)}<\frac{1}{f(x)-\lambda_{1} x} \leq \frac{2}{f(x)}
$$

From $\int_{z_{0}}^{\infty} \frac{1}{f(s)} d s<\infty$, we have

$$
\int_{k_{1}}^{\infty} \frac{1}{f(x)-\lambda_{1} x} d x<\infty
$$

From appendix C, the solution of the problem (17) blows up in a finite time at $x=x_{0}$, provided that $v_{0}(x)$ is large enough.

Next, we choose a positive constant $k_{2} \geq k_{1} /\left(\delta^{2} a^{2}\right)$ big enough such that

$$
w_{0}(x)=a^{2} k_{2}\left[x-\left(x_{0}-\delta\right)\right]\left[\left(x_{0}+\delta\right)-x\right] \geq v_{0}(x) \text { in }\left[x_{0}-\delta, x_{0}\right] .
$$

We see that

$$
w_{0}\left(x_{0}-\delta\right)=0 \text { and } w_{0}^{\prime}\left(x_{0}\right)=0
$$

By (18), we see that $f(x) \geq 2 x /\left(\delta^{2} a^{2}\right)$. Then,

$$
\begin{aligned}
w_{0}^{\prime \prime}(x)+a^{2} f\left(w_{0}\left(x_{0}\right)\right) & =-2 a^{2} k_{2}+a^{2} f\left(a^{2} \delta^{2} k_{2}\right) \\
& \geq-2 a^{2} k_{2}+a^{2} a^{2} \delta^{2} k_{2}\left(\frac{2}{a^{2} \delta^{2}}\right)
\end{aligned}
$$

$$
=0
$$

Let us consider the following problem,

$$
\begin{gathered}
L w(x, t)=a^{2} f\left(w\left(x_{0}, t\right)\right) \text { in }\left(x_{0}-\delta, x_{0}\right) \times(0, T), \\
w(x, 0)=w_{0}(x) \text { on }\left[x_{0}-\delta, x_{0}\right], \\
w\left(x_{0}-\delta, t\right)=w_{x}\left(x_{0}, t\right)=0 \text { for } 0<t<T .
\end{gathered}
$$

In $\left(x_{0}-\delta, x_{0}\right) \times(0, T)$,

$$
\text { 6. } E(w-v)(x, t)=a^{2} f^{\prime \prime}(\beta)\left[w\left(x_{0}, t\right)-v\left(x_{0}, t\right)\right]
$$

$$
\begin{gathered}
w(x, 0)-v(x, 0) \geq 0 \text { on }\left[x_{0}-\delta, x_{0}\right] \\
w\left(x_{0}-\delta, t\right)-v\left(x_{0}-\delta, t\right)=0, w_{x}\left(x_{0}, t\right)-v_{x}\left(x_{0}, t\right)=0 \text { for } 0<t<T .
\end{gathered}
$$

From Lemma $4, w(x, t) \geq v(x, t)$ in $\left[x_{0}-\delta, x_{0}\right] \times[0, T)$, and $w(x, t)$ blows up in a finite time.

By choosing $\phi(x) \geq w_{0}(x)$ in $\left[x_{0}-\delta, x_{0}\right] \times[0, T)$ and using Lemma $4, u(x, t) \geq$ $w(x, t)$. Therefore, $u(x, t)$ blows up in a finite time, provided that $\phi(x)$ is sufficiently large in some neighborhood of x_{0}.

Chapter V

Complete blow-up

In this chapter, we will show the complete blow-up of the solution u.
Lemma 6. Given any $x \in D$ and any finite T, there exists positive constants C_{1} (depending on x and T) and C_{2} (depending on T) such that

Proof. Let us consider the following auxiliary problem,

The problem (19) has a unique solution v given by

$$
\begin{aligned}
\text { 99N) } v_{v(x, t)} & =a^{2} \int_{0}^{t} \int_{0}^{\sigma} G(x, t-\tau ; \xi, 0) d \xi d \tau \\
& =a^{2} \int_{0}^{t} \int_{0}^{1} G(x, \tau ; \xi, 0) d \xi d \tau
\end{aligned}
$$

which gives

$$
v_{t}(x, t)=a^{2} \int_{0}^{1} G(x, t ; \xi, 0) d \xi
$$

It follows from Lemma 1 that $v_{t}(x, t)>0$ for any $x \in D$ and any $t>0$. Since for
any $x \in D$,

it follows that for any $x \in D$ and for any finite T, there exists a positive C_{1} (depending on x and T) such that

$$
\int_{0}^{1} G(x, t ; \xi, 0) d \xi>C_{1} \text { for } 0 \leq t \leq T
$$

Since $\int_{0}^{1} G(x, t ; \xi, 0) d \xi$ exists, there exists a positive $C_{2}($ depending on $T)$ such that

$$
\int_{0}^{1} G\left(x_{0}, t ; \xi, 0\right) d \xi<C_{2} \text { for } 0 \leq t \leq T
$$

Theorem 7. If the solution of the problem (8) blows up in a finite time T, then the blow-up set is \bar{D}. 6 bow 9 ? 9 ?

Proof. For any $t<T$,

$$
\begin{align*}
u(x, t) & =a^{2} \int_{0}^{t} \int_{0}^{1} G(x, t ; \xi, \tau) f\left(u\left(x_{0}, \tau\right)\right) d \xi d \tau+\int_{0}^{1} G(x, t ; \xi, 0) \phi(\xi) d \xi \\
& =a^{2} \int_{0}^{t} \int_{0}^{1} G(x, t-\tau ; \xi, 0) f\left(u\left(x_{0}, \tau\right)\right) d \xi d \tau+\int_{0}^{1} G(x, t ; \xi, 0) \phi(\xi) d \xi \tag{20}
\end{align*}
$$

If $u(x, t)$ blows up in a finite time T, we know that u blows up at least at $x=x_{0}$ by Theorem 3 .

From (20) and Lemma 6,

$$
\begin{aligned}
u\left(x_{0}, t\right) & =a^{2} \int_{0}^{t} \int_{0}^{1} G\left(x_{0}, t ; \xi, 0\right) f\left(u\left(x_{0}, t-\tau\right)\right) d \xi d \tau+\int_{0}^{1} G\left(x_{0}, t ; \xi, 0\right) \phi(\xi) d \xi \\
& =a^{2} \int_{0}^{t} f\left(u\left(x_{0}, t-\tau\right)\right) d \tau \int_{0}^{1} G\left(x_{0}, t ; \xi, 0\right) d \xi+\int_{0}^{1} G\left(x_{0}, t ; \xi, 0\right) \phi(\xi) d \xi \\
& \leq C_{2} a^{2} \int_{0}^{t} f\left(u\left(x_{0}, t-\tau\right)\right) d \tau+C_{2} \max _{x \in \bar{D}} \phi(x)
\end{aligned}
$$

Since $u\left(x_{0}, t\right) \rightarrow \infty$ as $t \rightarrow T$, we also have $\int_{0}^{T} f\left(u\left(x_{0}, T-\tau\right)\right) d \tau=\infty$.
For any $(x, t) \in \Omega$

$$
\begin{aligned}
u(x, t) & \geq C_{1} a^{2} \int_{0}^{t} f\left(u\left(x_{0}, t-\tau\right)\right) d \tau+\int_{0}^{1} G(x, t ; \xi, 0) \phi(\xi) d \xi \\
& \geq C_{1} a^{2} \int_{0}^{t} f\left(u\left(x_{0}, t-\tau\right)\right) d \tau .
\end{aligned}
$$

As t approaches T, it follows from $\int_{0}^{T} f\left(u\left(x_{0}, T-\tau\right)\right) d \tau \rightarrow \infty$ that $u(x, t)$ tends to infinity. Thus, the blow-up set is D. For $\widetilde{x} \in\{0,1\}$, we can always find a sequence $\left\{\left(x_{n}, t_{n}\right)\right\}$ such that $\left(x_{n}, t_{n}\right) \rightarrow(\widetilde{x}, T)$ and $\lim _{n \rightarrow \infty} u\left(x_{n}, t_{n}\right) \rightarrow \infty$. Therefore the blow-up set is $\bar{D} \cdot 6 \prod 9$?
จุฬาลงกรณ์มหาวิทยาลัย

REFERENCES

[1] P. Baras and L. Cohen. Complete blow-up after $T_{\max }$ for the solution of a semilinear heat equation. J. Funct. Anal. 71 (1987): 142-174.
[2] C. Y. Chan and H. Y. Tian. Single-point blow-up for a degenerate semilinear parabolic problem with a nonlinear source of local and nonlocal features. Appl. Math. Comput., in press.
[3] C. Y. Chan and B. M. Wong. Existence of classical solutions for singular parabolic problems. Quart. Appl. Math. 53 (1995): 201-213.
[4] C. Y. Chan and J. Yang. Complete blow-up for degenerate semilinear parabolic equations. Appl. Math. Comput. 113 (2000): 353-364.
[5] D. G. Duffy. Green's Function with Applications. Boca Raton, FL, Chapman \& Hall/CRC Press, 2001.
[6] M.S. Floater. Blow-up at the boundary for degenerate semilinear parabolic equations. Arch. Rat. Mech. Anal. 114 (1991): 57-77.
[7] A. Friedman. Partial Differential Equation of Parabolic Type. Englewood Cliffs, NJ: Prentice-Hall, 1964.
[8] Victor A. Galaktionov and Juan L. Vazquez. The problem of blow-up in nonlinear parabolic equations. Discrete and continuous dynamic systems. Vol 8. No 2. April 2002. $\square d\|\| d$
[9] A. A. Lacey and D. Tzanetis. Complete blow-up for a semilinear diffusion equationwith a sufficientlylarge initial condition. IMAJ. Appl. Math. 941 (1988): 207-215.
[10] Zhigui Lin and Mingxin Wang. The blow-up properties of solutions to semilinear heat equations with nonlinear boundary conditions. Math. Phys. 50 (1999): 361-374.
[11] L. Nirenberg. A strong maximum principle for parabolic equations. Comm. Pure Appl. Math. 6 (1953), 167-177.

The parabolic boundary of $S(P)$ is

$$
([0,1] \times\{0\}) \cup(\{0\} \times(0,1]) \cup(\{1\} \times(0,1])
$$

Then the positive maximum or negative minimum is attained on the parabolic boundary.

Hopf's Lemma (Parabolic version).

Let $c(x, t)$ be a continuous function in T with $c \leq 0$. If $(L+c) u \geq 0$ in T, the maximum M (minimum m) of u is attained at a point $P \in \partial T$, and a sphere through P, having its interior lying in T such that $u<M(u>m)$ there, can be constructed, then $\frac{\partial u}{\partial \eta}>0(<0)$ at P, provided that the radial direction from the centre of the sphere to P is not parallel to the t-axis.

Appendix A

Maximum principle and Hopf's lemma

We outline briefly on strong and weak maximum. Hopf's lemma is also included. Interested readers may consult [11].

Let T be a $(n+1)$-dimensional domain in E^{n+1} and

$$
L u=\sum_{i, j=1}^{n} a_{i j}(x, t) u_{x_{i} x_{j}}+\sum_{i=1}^{n} b_{i}(x, t) u_{x_{i}}-u_{t}
$$

where $a_{i j}=a_{j i}$. The operator L is parabolic at (x, t) if there is a number $\mu>0$ such that

$$
\sum_{i, j=1}^{n} a_{i j}(x, t) \xi_{i} \xi_{j} \geq \mu \sum_{i=1}^{n} \xi_{i}^{2}
$$

for all n-tuple $\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$. The operator L is uniformly parabolic in T if the above inequality holds with the same number μ for all $(x, t) \in T$.

Let us assume that L is uniformly parabolic, and $a_{i j}$ and b_{i} are continuous in T. For each $P \in T$, denote by $S(P)$ the set of points Q which may be connected to P by a simple curve in T along which the coordinate t is nondecreasing from

Q to P.

Let $c(x, t)$ be a continuous function in T such that $c(x, t) \leq 0$.
If $(L+c) u \geq 0$ and u achieves its positive maximum at point $P_{0} \in T$, then $u \equiv u\left(P_{0}\right)$ in $S\left(P_{0}\right)$.

If $(L+c) u \geq 0$ and u achieves its negative minimum at a point $P_{0} \in T$, then $u \equiv u\left(P_{0}\right)$ in $S\left(P_{0}\right)$.

Weak Maximum Principle

If $(L+c) u \geq 0$ and u is continuous on \bar{T}, then for any point $P \in T$, the positive maximum of u in $\bar{S}(P)$ is attained at a point on the complement of $S(P)$.

If $(L+c) u \geq 0$ and u is continuous on \bar{T}, then for any point $P \in T$, the negative of u in $\bar{S}(P)$ is attained at a point on the complement of $S(P)$.
the solution of the problem is unbounded and exists till time

$$
T_{0} \leq T_{*}=\int_{E_{0}}^{\infty} \frac{d \eta}{Q(\eta)-\lambda_{1} \eta}<\infty
$$

Proof. Let

$$
E(t)=\int_{0}^{1} u(x, t) \psi_{1}(x) d x
$$

Then $E(0)=E_{0}$ and furthermore, as follows from (C1), $E(t)$ satisfies the equality

$$
\begin{equation*}
\frac{d E}{d t}=\int_{0}^{1} u_{x x}(x, t) \psi_{1}(x) d x+\int_{0}^{1} Q(u(x, t)) \psi_{1}(x) d x \tag{C4}
\end{equation*}
$$

Integrating by parts and taking into account (C1) and (C2), we obtain

$$
\begin{aligned}
\int_{0}^{1} u_{x x}(x, t) \psi_{1}(x) d x & =\int_{0}^{1} u(x, t) \psi_{1}^{\prime \prime}(x) d x \\
& =-\lambda_{1} \int_{0}^{1} u(x, t) \psi_{1}(x) d x \\
& =-\lambda_{1} E(t)
\end{aligned}
$$

Furthermore, from Jensen's inequality for convex functions, we obtain

$$
6 \int_{0}^{1} Q(u) \psi_{1}(x) d x \geq Q\left(\int_{0}^{1} u(x, t) \psi_{1}(\underset{0}{(x)} d x)=\widetilde{Q(E)}\right.
$$

from (C4), we have the inequality
$\frac{d E}{d t} \geq Q(E)-\lambda_{1} E>0, t>0$,
$E(0)=E_{0} \geq \delta_{0}$.
Hence under assumptions we have that $E(t)>E_{0}$ for all $t>0$, and consequently

$$
\int_{E_{0}}^{E(t)} \frac{d \eta}{Q(\eta)-\lambda_{1}(\eta)} \geq t, t>0
$$

Therefore, by (C3), $E(t) \rightarrow \infty$ as $t \rightarrow T_{1}^{-} \leq T_{*}$, and since $E(t) \leq \sup u(x, t)$, the solution $u(x, t)$ is unbounded.

Appendix B

Orthogonality of eigenfunctions

The following lemma gives the relation between eigenfunctions and δ-function, for further reading, see [5].

Lemma.

$$
\sum_{n=1}^{\infty} g_{n}(\xi) g_{n}(x)=\delta(x-\xi)
$$

where $g_{n}(x)$ is an orthonormal eigenfunction of the Sturm-Liouville problem

$$
g^{\prime \prime}(x)+\lambda g(x)=0,
$$

and the boundary conditions

$$
g(0)=g^{\prime}(1)=0 .
$$

Proof. Let us expand $\delta(x-\xi)$ in term of $g_{n}(x)$. From the Sturm-Liouville theorem

$$
\delta(x-\xi)=\sum_{n=1}^{\infty} c_{n} g_{n}(x)
$$

where

Hence

$$
\sum_{n=1}^{\infty} g_{n}(\xi) g_{n}(x)=\delta(x-\xi)
$$

which completes the proof.

Appendix C

Blowing up problem

We will show that the following problem blows up in a finite time under certain conditions. The generalized problem is contained in [12]

Theorem. Let us consider a boundary value problem for a semilinear

$$
\left.\begin{array}{c}
u_{t}(x, t)=u_{x x}(x, t)+\left(\frac{Q(u(x, t))}{(\rho)} \text { for } t>0, x \in(0,1)\right. \\
u(x, 0)=u_{0}(x) \geq 0 \text { on } x \in[0,1] \tag{C1}\\
u(0, t)=u_{x}(1, t)=0 \text { for } t>0,
\end{array}\right\}
$$

where $Q \in C^{2}$ is a convex function: $Q^{\prime \prime}(u) \geq 0, u>0$.
Let $\lambda_{1}>0$ be the first eigenvalue of the problem
and by $\psi_{1}(x)$ the first eigenfunction. Let $\psi_{1}(x)>0$ and

$$
\begin{aligned}
& \psi_{1}(x) \text { the irst elgentunction. Let } \psi_{1}(x)>0 \text { and } \\
& \int_{0}^{1} \psi_{1}(x) d x=1 .
\end{aligned}
$$

If $Q(u)-\lambda_{1} u>0$ for all $u \geq \delta_{0}$, where δ_{0} is a positive constant, and

$$
\begin{equation*}
\int_{\delta_{0}}^{\infty} \frac{d \eta}{Q(\eta)-\lambda_{1} \eta}<\infty \tag{C3}
\end{equation*}
$$

then for any initial function $u_{0}(x) \geq 0$ such that

$$
E_{0}=\int_{0}^{1} u_{0}(x) \psi_{1}(x) d x \geq \delta_{0}
$$

[12] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov. Blow-up in Quasilinear Parabolic Equations (translated from Russian by M. Grinfeld). New York, NY: Walter de Gruyter, 1995.

Appendix D

An example of initial value data

In this appendix, we will give an example of initial value data of the problem (3) that satisfies all the needed conditions and is guarunteed to blow up in a finite time.
Let $f \in C^{2}([0, \infty)), f(0) \geq 0, f^{\prime}(s)>0$ and $f^{\prime \prime}(s)>0$ for $s>0, \int_{z_{0}}^{\infty} \frac{1}{f(s)} d s<\infty$ for some $z_{0}>0$. It is easy to see that $\lim _{x \rightarrow \infty}(f(x) / x)=\infty$. Then there exists $\beta>0$ such that

$$
\begin{equation*}
f(x) \geq \frac{2 x}{x_{0} a^{2}\left(2-x_{0}\right)} \text { for } x \geq \beta \tag{D1}
\end{equation*}
$$

(see the proof of Theorem 5 for details). Let

$$
\phi(x)=-a^{2} k(x-1)^{2}+a^{2} k \text { for } 0 \leq x \leq 1
$$

where $k \geq \frac{\beta}{x_{0} a^{2}\left(2-x_{0}\right)}$.
We can see that ϕ is nontrivial, nonnegative and continuous such that $\phi(0)=$ $\phi^{\prime}(1)=0$. Moreover, its second derivative with respect to x is given by

Using (D1), we obtain that

$$
\begin{aligned}
99 \phi^{\prime \prime}(x)+a^{2} f\left(\phi\left(x_{0}\right)\right) & =-2 a^{2} k+a^{2} f\left(-a^{2} k\left(x_{0}-1\right)^{2}+a^{2} k\right) \\
& =-2 a^{2} k+a^{2} f\left(k x_{0} a^{2}\left(2-x_{0}\right)\right) \\
& \geq-2 a^{2} k+a^{2} \frac{2 k x_{0} a^{2}\left(2-x_{0}\right)}{x_{0} a^{2}\left(2-x_{0}\right)} \\
& =0
\end{aligned}
$$

Hence $\phi^{\prime \prime}(x)+a^{2} f\left(\phi\left(x_{0}\right)\right) \geq 0 \quad$ for $\quad 0<x<1$.
Remark: Since $\phi\left(x_{0}=k x_{0} a^{2}\left(2-x_{0}\right), \phi\left(x_{0}\right)\right.$ depends on the positive constant k. We can always choose a positive constant k big enough to meet the required condition in Theorem 5. Consequently, the blow-up phenomenon occurs in a finite time.

VITA

Mr. Panumart Sawangtong was born on November 14, 1978 in Bangkok, Thailand. He graduated with a Bachelor Degree of Science in Mathematics from Chulalongkorn University in 2001. For his Master degree, he has studied Mathematics at the Faculty of Science, Chulalongkorn University.

จุฬาลงกรณ์มหาวิทยาลัย

