L d ’ L4] L4

nalnzavnisd latandasunsunaulnalass
L4

uszuu 1ndeunaufin Lnestuen bises/ee

Teaalawesunsunanlnaiaas-f

’ UILLSIUN LRvaluly

002426

4
i
~

ﬁmuqﬂwuﬁﬁL@uéauuﬁnwavn11ﬁnwﬂﬂﬁunﬁhgw1ﬂ%mmjﬁwuﬂﬁ1aﬁsunqﬂhﬁm
WHUASTARINSTuABLAD LRa T
Tndafinefe uaunsaun e ly

Nefl.lndls

RELOCATION MECHANISM IN FORTRAN COMPILER .
BASED ON FORTRAN COMPILER~-D

* OF NEAC 2200/200 SYSTEM

Mr. Yunyong Teng-amnuay

A Thesis Submitted in Partial Fulfillment of the Réqgirements
for the Dégree of Master of Science v
vDepartment of Computer Engineering
Graduate School -
Chulalongkorn University
- 1979 |

Thesis Title . Relocation Mechanism in Fortran Compiler

Based on Fortran Compiler-D of Neac 2200/200 System.

-«

By *Mr. Yunyong Teng-amnuay
Department Computér\Enginéering
Thesis Advisor Assistant Professor Somchai Thayarnyong : -

.Accepted by the Graduate School, Chulalongkorn University in

partial fulfillment of the requirements for the Master's degree. .

Q. Buwres

csestcescassecsanssascssesssss Dean of Graduate School

(Associate Professor Supradit Bunnag, Ph.D.l);

= L

Thesis Committee

® v e v 0000 0T R E B

(_Assistant Professor Sawat Seangbangpla, Ph.D.)

- 2
< Wﬂ,;m\

hY pre P AT
e, e
casses e Tt s s s eses s saee s Member

(Assistant Professor Somchai Thayarnyong, M.Sc.)

”{@j /f/ oy 4 ¢ el

g s Ay M

....-v\}e;i“i’:-.!f‘..*.@f‘f:‘.-.ﬁz..<..... Member t
¥

(Assistant Professor Suyut Satayaprakorb, M.S. in E.E.)

S i O RS
BN L SNAY ISENL L. ... Member

(Vinai Varanyanond, M.S.E.E.)

Copyright of the Graduate School, Chulalongkorn University

iv

Thesis Title Relocation Mechanism in Fortran Compiler Based on

Fortran Compiler-D of NEAC 2200/200 System

By Mr. Yunyong Teng-amnuay
Thesis Advisor Assistant.Proféssor Somchai Thayarnyong
Department | Computer Engineering
 Academic Year 1978
ABSTRACT

The' format and algorithm of the relocation mechanism of
object program based on the computer NEAC 2?60/200 at the Computer R
Service Center, Chulalqngkdrn University, isf;tudied. The impoftant -
aspéct is discussed in terms of the theoretical classification of:

several schemes of relocation. Some linkage problems are also

studied and discussed. Guidelines are made to aid further studies

. in this field.

. L4 L4 o] L7
Hwptnualwus - nalnuavnisdlalannesunsureu lvataeslussuuiatas

- 8 L4 & 1] L 4
AauRa 1ne3fluen koo /woe. Inalavasunsuneuinaisas-9

dandn UNLSSEN MRveaE R R
4 \ v
a8 5tAUEne FEIANEASI915Y TUTNY NEAUL
wwundun 5ﬁ1h11naauﬂ1uwa§ /}Qi“ﬂw”
Unqsfinen e :
.
. : uninea

Angfwust 1 Bunasfawumuiuy wezdunou lunis¥laian ssdianlusunsy
- ° -
22y 1A% avnauRl LADTHUEA wios/wee Fufinfivayfmatuusnisnaufiaines -
avnsaundven¥s yaflaafuresnainsila gautun LuSsu floutu Snvaiznas
$Taian Aauuvdss ianlannged] ssufstmautvidszans deafunseuTe
[4 4 . E 4 -~ .
Tusunsuignaaofy wenanfufivlanuzutuuanie ifentsftnunauadnalalu -

wauesgn1 sl

© ACKNOWLEDGEMENTS

" T would like to pay gratitude to my advisor Mr. Somchai
Thayanyong for his insight and understanding both technicélly_and'
personnally, Mr, Chaisiri Pandhitanond,‘my senior:cdlleague,\Who,
due to his ixxdepthxnmderstanding'of the hardware and software coﬁcepts
of the machine and gqod theoretical background, highlightisy many
difficult obstacles, and lastly Mr. Lersak Varadul \whose thesis is

‘closely related to mine and be of great help at desperate moments.

. Abstract (English);:...,i

Abstract (Thai) -n.-i.oo'cto-o-'l-'.:"; ‘.

.~ CONTENTS

IR P EEEEE R

t s oo s erestoeotaEa D0

page

iv

v

AcknOWledgements '.Il".i..."ﬁ.'.'ll....l..“..'..‘lti...lﬂ....i’ vi

List of Tables

&

List ofFigures C.l.l"'lt.“.!O.....‘...ﬁll.,'l..l.i“...ﬂ.nl.l...l

Chapter

- ‘ 1..

2"

3.
4,

5.

References

"Appendix
4
B
C

Biography

Concepts of Relocaﬁien;....}......;.....
System Formatsa....;........;.o.
The’Relocation Mechanism;;......;...;....
Discussion of the Mechanism .;;.;;.f.,....,..........

Conclusion and Suggestion ..eeeseccscscrscacrrsosacss

9608988 T 5 GF0 000860 0d000000FC0000UBIOOBIEOCEEIDB LB

Format of the Binary Run TApPe scssseesscsccssscccsoos

Relocatable Object Module Format O S S

Relocatiﬁg Rﬂutine lilll..m-.‘...00000!..!-’..‘.0000.

o
T AG T 0 0ECLLEODOUVEREOEEEEEIOBOLID BT IETOEW BB OGSOV ETOO

e

."Q':...l..“.l'......."..ll.l'l..‘..‘.!..QI.CGIlviii

ix

11
17
27
31

35

36
43

48

69

2-2

A=1

_B-1

B-2

The interpretation'of addresses based on item mark and’

~ LIST OF TABLES .

%

addrESS Values ‘l.l""l...llII-.l..l".'l.l.."l;.l'l.'.l~

Rule for relocation according to range of address

Identification and control fields of BRT program unit

Data fleld control CharaCters ..csseseessecssccsecscsossoss

Region boundaries using DSA entries,'.....................,

Algorithm used in determining types of instruction ..ieees

C

viii

page

.13

.16

41

42

- 46

47

1.1

1.2

1.3

1.5

. 1.6

2.1

2.2

3.1

3,2

3.3

501‘

B-1

LIST OF FIGURES = .

¥

Combining relocatable object modulésx'.........,.f.;........

Static reloCation cuseescecscscsonsssasaressscsscsasnsssons
Dynémic relocation ;..;.........,...;.....,.......{..f....g
Fragmentation aﬁd compactionQ'..;...;..,.....;...;....';
Virtﬁal storage concept,.......}..;......L..‘.;......ff

Address reference in segmentation ..osceccscovecessscansons

Components of relocatable ebject PTOZLEM cooecesscsssvonnss

Different types of instruction format .c.eeovesesesvecsvoccs

Movements of modules during relocatlon ..ccescsssccsssssoss

Logical mapping of relocatable modules inte BRT ..cceccaese

The steps in resolving external references ..:.cccsccesoces

Translation te effect the use.of base_ﬁegistef sovseses o se

>~

Header record oo--a-cc.oou--ucaooa-o--"--’o‘-c-u‘oé--oo--na.oo.

Regionalization of relocatable module '.,..a,;.f..,g;...i...

12
14

19

21

25

e

19

47

CHAPTER I

CONCEPTS OF RELOCATION

. Relocation is the meaﬁ by which p:ograﬁsvcan be moved or assigned
to any area in main storage% There are two main considerations governing
the use of this mechanism. One primitive use is the mapping into avai-
lable storages of object modules érepared in a generalized main memoxy
image or in other’words relocating of object modules. The other govern-
ing idea bases primarily on the utilization of the expensive main storage
‘,in multiprogramming environments. Shifting, segmenting and packing of
programs in main storage are some of the many'attemptslin ensuring
fully active and utilized maip storage elements. |

' Uéually, programs submitted for compilation consist of often
used standard subroutines such as séientific packages. If these routines
are kept in spurce statements or high level languages, they would have
to be recompiled each time the need afises.’This'redundancy of resource
usage in a compqter installation can not be tolerated. Object code‘is
a convénientgmeanfto catalogue these subroutines in’order to avoid
récompilation. Still, the whens and wheres to put thése routines are
unforseeaBie.'The only way is to compile them into relocatable.modules,
that is, the startihg location is arbitrarily usually at zero and
information concerning the modules would be incorporated to ensure
- correct relbcation into a contiguous load module and the iinking of

parameters, constants and working areas of these modules together fq

form one iogically working program.

In contrastbto static reloéation deécribed above which would be
invoked once for every user's program compiled, ﬁulﬁiprogramming envi-
ronments need constant adjustments of the many programs competing for
their shares on main storage. Sometimes swapping is forced to dislodge
some unused areas éf inactiv; programs and even more dramatic policies
are continuouslyAin use in memory management. This leads to the unavoi-
dable certainty that‘programs must always be prepared for unexpectedly
shifting around in main memory or even swapping out to auxillary
Storage. These involved dynamically relocatiﬁg of programs kept in
relocatable form and the understanding and creating of Well-béhaved ’
“-relocating routines would somehow ensure efficient and practicai
lcqnt:ol progr&ms of computer system in one way or the other.

~In genefal, modules or program units used in execution of each
user's job, especially the standard scienfific fupctions such as sine,
cosine, absolute, etc,<are separately compiled. The resulting obj;ct
modules are always in relocatable format, thét is, they anticipate
shifting and combiniﬁg with other modules to form a single program unit.-
Usuaily each relocatable module starts at locatibn Zero. When'ngéded
the modules are shift In meﬁory space to form one contiguous progfgm
unit, still in relocatable format starting at address zero. Then this
program'unit would be mépped or relocated into the available‘memory

area at the time prior to execution, after that it is ready for

execution by the central processor.

There are two main approach in relocating the combined modules
3into real storage? One 1s static relocation or relocation—at-load-time

where the address references in each instruction are changed according

"f_to where the program unit is situated. Fig. 1.1 shows two relocatable

modules after compilation which combined to form a single relocatable
module. Next, this module is relocated into available storage, say,
2000, as in Fig.‘l,Z where address references are adjusted accordingly.

) Aszcan be seen, there is inherent relocation in combining
modiles in Fig. 1.1 and usually this is bypassed via incorporatipg
combine and relocate steps into one step which is the feature of the

~ system under study. |
The second approach, dynamic relocation or relocation~at—
execution-time, called for base register’as hardware support. In this
scheme, each address reference is formed by adding address offset
value in the instructioﬁ to the value in base register at execution
" time. That is, there 1s no adjusting of address references in ins;ruction
during load time, only the base register is set to the’starting‘location
that the module is to be loaded. The module still essentiélly starts
at location zero as illustrated in Fig. 1.3. The combiné step'ig Fig.
1.1 is still needed to create one contiguous relocatable modﬁle. ‘
If the mechanism is as simple as described, dynamic relocation
‘would seem a waste of hardware and ingenuity. But that is not the case.
In their machine code representation, instructions cannot be separated
from data. Creating relocatable object module,rtherefore,‘involved
tagging information along with the module to specify which is instruc=

tion and which is data, because data is data and not~to be relocated.

0 0
100 [N g e
Module B [?125
O N
_ : ¥ 7% 150 | JMP 125
[:iZS Y i
—50 | aMP 25 200

2000

2125
2150

2200

100

‘Module A ' Combined Module

Fig. 1.1 Combining relocatable object modules.

Load module - ' Load module
: E 2000 :)
2125
MP 2125 | . 2150| JMP 125

? 2200

2000

Base

register

Fig. 1.2 Static relocation. . = Fig. 1.3 Dynami¢vrelocatipn.

Once mapped info.real storage these infofmation are lost for good and
any attempt in relqcating the module.again is hazardous, only if it ig'
relocated statically? But in dynamic relocation thehyhole module is
Just placed where it.belongs and base register set accordingly. Soxwhen
" relocation is needed again, moving and setting are all that is needed
to achieve the requirement.yihis kind of mechanism is extremely useful
in mnltiprograﬁming enviromment where modules are continuously shifted
around to make the best of available main storage.
| Relocation plays a major role in multiprogramming computer

(system. The basic idea may be simplified using Fig. 1.4. When program
B and » finish execution and 1e§ve main storage, The arcas left are
together large enough to accommodate prograﬁ E. The point is that they
are not contiguous areas of main memory and if p:ogram.E attemp;s to
geize storage it woﬁld have to be splitted into two segments and sepa-
rately relocated. Table would be required to keep track of where each
address referepqe is expected to refer to. This type of splitting is
called program fragmentation and as time goes on, this tends to get
.worse% ﬂence, the taﬁk of kgeping,track of ptogram fr;gments wili
become intorerable. | ’

=

> . 7 | E

~ Fig. d.4. Fragmentation and compaction. L R

Compacting operation is one of the solutions to this problem,
 In this case program C is-moved untii the free areas left are conti-
guous and can allow program E to take hold of the available spaces as
~in Fig. 1l.4c.
| But as can be seen, this compaction requires relocation of
program module that has been relocated before and thils rules out static
relocation due to the one way translation of address references during
load time. Therefore dynamic relocation which postpones relocation until
execution time has to be employed and there are two important imple-
mentations worth noting here. They are segmentation and paging for the
logical and physical aspects of dynamic program relocation.
- The basic idea concerning these two approaches of implementing

dynamic relocation is virtual addressing. Virtual adé;ess concept
originates from the need to relocate program in memory more than once.
In order to aveid adjusting address references in the pnogram,'mappiﬁg
functions are,employed'to tra;slate addresses in ﬁhe original reioca-
table format called virtual address space into physical address of

real storage or ﬁhysical address space or, ih mathematical notation,

£(a) = b, | o | N .

where £ denotes mapping function and a; and hi are'a&dresses in

virtual and physical address space respectively. This concept is
exemplified in fig. 1.5.

In this case fD acts as relocating function and problem

‘of repetitive relocation is solved, but only theoretically, because

000 T~ 0000 | ‘
075 |~ NS ' b i
N7/ B S s
. V142 | 000 |, 0067
895 | | N c 001 | 0068
N 0248 o 002 | 0069
Program ﬁ\\\; f¢i;¢;;§; . :
N : N N
” | - 2 //’ | 074 | o141
| e A | 075 | oxs
' : Main memory . .
| 895 | 1068

- Fig. 1.5 Virtual storage concept.

-

Segment table pointer if
| 2
@< 5 d >§-F‘< >
two=-part address
T ' Progrm
4 ; Program segment .
N | .
>, Base

~ Fig. 1.6 Address reference in segmentation.

the map shown in Fig. 1.5 is lengthly, ocqupying nuch storage. Segmen~-
tation is one attempt in implementation using logical architecture“
of program modules. In this scheme program's addresg space 1s split;ed
into variable—sizéd blocks; called segments, which reflect iogical
divisions of the pxogram? A segment may répresent a procedure or a
data area. Any ldcation within the program is identified by a two-
part address which specifies the "name" of the segment and the "dis-
placement"” of that location in the segment. When relocated, a base
register, pointed to by the "name" implemented by identifier in the
two~-part address, holds starting location of each segment. The "dis-
placement" part of thé address is then added to this base register
when needed to form physical address. Th;s structure is represeﬁted
graphically in Fig. 1.6‘for clarity. | |

As oppoSéd to segmentaion, in pagiﬁg implementation memory
is divided physically into fix—leﬁgth.blocks of equal size éalled ;
_page frames. Programs and data are divided into logical units, *
called pages, of the same size as the memory page frames; Althéugh
there are differences in fundamenﬁal ideas, the implementations
of both‘techniques are the same, except that in paging-linking of"
program units and data areas is somewhat more complicate than :
ségmentation for the programs aﬁe divided according to physical
.. layout of main storage. But in paging memory allocation isksimpiified
’considerably. Since all pages are of equal sizg, bringing a new
page into main stofage is easier than bringing in a new segment.
No pages need be.rearranged or sﬁifted to make room for the new

' page because the page may reside in an empty'page frame or replacek

| another unused page.

’ To overcome the disadyantages of both approaches, the
techniques are combined? The pregram is‘diﬁided inte pages to fit ;
the memory page frames aﬁd divided into.segments due te logical .
division of program units. In this way, programs are easily linked
together logically and relocaéed in main etorage physically.

Still, there is overhead involved in bridging the virtual
space and the physical auxillary storage used to hold the program
and data modules. The solution in use now ie to permanently map
the physical devices into virtual space that means user would see
his program and‘data as segments in virtual storage and the concept
of main memory, secoﬁdary storage would sﬁddenly fade away or
storage is being emoothed into "one~level” which requires very large
virtual space to accommodate the information physically stored
in auxillary devices. This ultimate concept has been demonstrated
in MULTICS implemented on a Honeywell 645 at MIT. But" there are
many problems that inherents in the design of such.machines and most
'commerc1a1 firm such as IBM takes a cautious approach. The vSaM .
(Virtual Storage Access Method) in IBM 370 is a substltution to one~
level storage idea? It accommodates the mapping of conventional ‘
‘-file system into a virtual space at the time of request Once the file -
is mapped it can be directly referenced by programs in virtual space
enviromment.

No meeter how advance todayis technoleéy is striving, all- 7

myriad of concepts still stem from the primitive approach used in -

earlier machine. This study attempts to understand the underlining ideas

10

of the more elementary relocation mechanism and to explore the lee-
ways and many drawbacks inherent in the design, the hardware aﬁd
software aspects that are required for the evdlution of the system
under study.

In this study, the computer NEAC 2200/200 at the Computer
Service Center, Chulalongkorn University is chosen. The study concen-
trates on the relocating routine incorporated as part 6f the FORTRAN
compiler-D of the computer and is hoped to highlight some fundamental
concepts which would be of valuable use for further study on this,

~ subject.

CﬁAPTER I1

SYSTEM FORMATS

The architecture of the‘computef system under study is
character or byte oriented? But unlike other modern ﬁusiness machines
such as the IBM system 370 and 360, omly six of the eight bits in
each character are for imformation storage with Hollerith code repre-
sentation. The other two bits are/fof punctuations and this sacri-
fice in hardware accounts for:the flexibility of variable length ’
instruction an& data. Furthermore, these punctuation bits also
specify parameters in some controlling functions including‘the
- mechanism of relocation? This inhe;ent capability can be implemented
to accommodate a more advanced relocating concépt as will be dis-
cussed in 1atgr section.

Roufines used in conjunction with the user program are known
after the compilation phase. Then the relocating routine, which is
part of the compiler, would Initiate the loa&er to‘bring,in routines
one by one from the system relocatable object ptogram library, check
and;relocat;‘only the ones that ére‘needed. : |

Due to the low main storage capacity of the céﬁppter, the
relocation on the routines is done'separately, that is, fﬁe routines
are relocated and stored on sécondary storage as physically separate. -
modules. But thelr address references reflect the result of relocating

process, that is, they are logically mappeéd into one contiguous

2

12

memory space.

Using information in manual5 and tape dumps of object codes,
the relocatable object module format’Can be constructed. The module
1s subdivided iﬁto two main components: the text orbnormal processing

function and the relocating information. The format is generally of

the form shown in Fig, 2.1.

Pointer
to each region
of module ¢

External reference table

Parameter list
(aﬁsolu;e)'

Text

Parameter list 8 P
{relocatable}

Initializing routine

Fig; 2.1 ‘Componenté of relocatable object program.

Initialization routine is used to modify parameter length
such as integer variable as specified by the programmer, and also’
many other house keeping functions which vary according to the

processing logic of the module.’

One important component of the format not shown in Fig. 2.1
“1s the used of.punctuation'(item*mark) bit. This bit\is integrated

as part of the address references and specify the type'bf addresses.

- Table 2-1 and 2-2 tabulate rules governing the interpretatiqn of

addresses based on punctuation and address values.

Ttem mark on first cgaracter
of address reference

Absolute address
do not relocate

Ttem mark on middle
character

Unlabeled 'common
address ‘

Item mark on first and
middle character

Labeled common
address

No item mark on first
and middle character

Use fules in
table 2-2

* A , ‘ i
Each address referemce is three characters long. /

g
I

Table 2~1 . Shows the interpretation of addresses
based on item mark and address values.

The characteristic that compounds relocation in this kind of

13

machine is the variable form of words in handling data‘aﬂd instruqtions%

On one extreme side of the scale, an operand can have its field that

occupies the whole main storage if'punctuation is not detected on the

field duriﬁg execution of the instruction. This behavior is quite

useful and is employed in clearing the whole main memory with a

single instruction and even the instruction that initiates the sequence

is also cleared. On the other hand, length of instructlon varies not

only upon the type of operation code but also on the instruction
format which is shown in Fig. 2.2. Due to this complication the
relocating algorithm is somewhat iéhgthiy in dgtermining the type and
length of each instruction And locating the character field that re-
presents address reference of that imstruction. The &ecision taken
when encountering an instruction:is tabulated in table B-2 of the

appendix B.

. A-format: | L I | ,
opcode A-operand B-operand = variant
B~format: | T] [
opcode A-operand B-operand
C=format: | | AN i

opcode A-operand
D~format: [1

opcode

Note: In-.case of missing operands or variant character,
previous value in Imstruction register is assumed.

Fig. 2.2 shows different type of instruction format.

Most instruction can have implicit.address references us{hg'
previous values stored in address register'and‘thefefore inst;ﬁétion
may have nothing but opco@e or length of a single character é;d in

the case of DSA (define symbolic address) instruction whicﬁ%is a

pseudo Instruction the opcode is not required and the re;dcating :

- 14

- 15

routine must be capablerof discriminating this type of character field
from ordinary instruction. ‘ | -
Furthermore, there is the problem of linking which is inherépt
in combining object ﬁodules. Though this is not the topic of the study
© it can, by no means, be avoided and the subject is treated only in
passing.. |
Each program unit to be linked is considered one complete
logical module and is referenced as a whole by only one name (six
characters as in naming ordinary program) or in a more general term,
each logical program unit,has only bne "entry" point whitﬁ is ;eferred
_ to by the.unit name and the entry point is at the beginning Qr "turn-
on-point” of that unit. |
As the compiler is subdivided into physically separate modules
then it can be traced'during compiling process what module is in
present cont:ol of compilation. The module which governs relocation’
of object program can thus be located when addreés references iﬁ’ob—
ject modules compiled are changed. from relocatable to absolute omnes.
From the above proceduré the routine named.ACARTG is found to
be involved in the mechanism of relocafion. Using the changing pattern
of the program under compilation together with the behavior of the
compiler itself, then, of course, long hours of stgdying and tracing
the ACARTG routine andhother related codes, the mechanism and flow of
the relocating process can be deduced. The mechanism of relocation |
worked out here is presented in detailed in the appendix C.

13 In the next éhapter, important aspects of the mechanism and

002426

16

formats are discussed and attemﬁts made to highlight' their advantages

and drawbacks together with considerations of further implementation

§

in the system thus studied.

[: 2

Range of Addresses

Relocation ;

£ P>
0 £ ADDR 409610

do not relocate

40961 £ ADDR < end of module

0

relocate accordingly

end of module £ ADDR 4 32,76710

do not relocate

ADDR points to entry in
external reference table

replace by entry point of
module being referenced

Table 2-~2 shows rule for relocation
according to ramge of addresses.

¢

. CHAPTER IIT -

-

THE RELOCATION MECHANISM

Due to the batch-oriented nature of the system§ there is only
one set of physical modules connécted logically into one program that :
‘6ccupies main memory at any one‘time and tha; program would be in main
storage’until its execution is concluded. Hence, the relocating scheme
does not support dynamic or repetitive relocation which is never
required in such an environment. What it does, therefore, is just
relocating the assembled modules into éheyavailable main storage.

‘At first glance, the relocation is quite unneéessary if the program -
starts at location'zéro and has the whole main storage to its own.
But it is not the case for two main reasons.

Fiﬁsfly, the main storage is not completely devoid when the
program is ready to be loaded, even in strictly Eatch processing there
’i§~the problem of loading the program unit. Furthermore, some supervisor
programs éuch,as_logical input and output modules or standard calcula-
tion-handliné :putines are absolutely necessary to the execution Jf
shqp.programs compiled from the FORTRAN cOmpiler§ Thegse system modules
occupy, besides the loader, additionél space which varies from pro-
gram to program.'So, unavoidingly, the memory is not available from
the same location as the starting'location of the program compiled
but startsAfrgm elsevhere and the program compiled which starts at

locatioﬁQIUZAAdecimals,has'to be relocated into the avaiiaﬁle‘sto:age

- 18

left from the occupation of the system control pfogram.

The next reason for the use of,relocation is the problem of
linking several modules such as sciehtific subroutings to the user's
object program unit. This time each module has to be relocated in
order that its normal starting location iskmodified t§ reflect one
,cantiguous lqgica1 moduleyin the form of main memory image.

But aé the main storage space available is always fiked for
eaéh individual program execution because no other user's progfams are
to exert tbéir shares on the main memory, there is no need to perfofm
the relocation process twice; firstly to combined several logical modulés
into one contiguous program unit and secondly, to put the linked modules
| iﬂtaathe available space. In the compiler under study, the separate ;
modules are reiocated into the image of availabl; area one by one in
the manner which will reflect ome contiguous modu1e, thus save reloca-
tion time at the cost of dynamic relo;ation.

This drawback is not to be blamed, though, the system is basic—"
ally design for éimple manipulation of software and the’techniqne
aufficgs/for all purposeé and‘inténtions.

~ As for the modules involved aﬁd their reiafionships, fig. 3.1
shows the movements of program units and subroutines under relocatibﬁ.
The system relocatable library which is actually, in the system, part
- of the compiler is located on logical tape unit 0. The.library is
composed of three major group of program units. The first is the‘fixed
and floating point arithmatic handling routines, next is the input and

output program units which perform the necessary'linkage between user's

program and the more complicated input and o t operations: Following

i
4

mua01
Note

19

Tape unit 0 | . _3- . S Tape unit 3
{ Floating point SRR CEU User's main
& fixed poim:\\\1 ‘ Main storage ’,//f> - program
modules ~ £(,5 v
Input/output ——3—> _L??ﬁing | User;s suzplied
, B e 8
modules o Relocation.‘ﬁl\é\\\\\ ubrout ines
Scientific ‘///<8 (‘\\\ , Any chain
subroutines . . . required
System relocatable ' Pone tnitd Private relocatable
1ibrary : P s library
Fixed point
&
floating point
2
- modules
SN I/0 modules
User's modules é(;
& 5 Scientific
‘ 9 subroutines

Binary run tape

Note:The binary run tape (BRT) is comstructed om tape unit 1 from system
- and private library. Fixed and floating point modules are selected (1),
relocated and put on BRT (2) followed by the selection and relocation of
input and.output modules (3&4). Next, user's programs, subroutines or
any chains presented on tape unit 3 1s loaded (5&6), relocated and saved
“on BRT (7). The last to be relocated are the scientific gubroutiﬁés

(8&9) and togéther with some control modules, the BRT is then ready to
be "loaded. :

Fig. 3.1 shows movements of modules during relocationm.

these two groups of routines is a lengthly list of scientific program
units such as sine; cosine, éxponential function and so on. Interspers
with these‘uﬁits are the control program units whiqh supervise the lo-
gical flow of user's program executioﬁ sﬁqh as job-to-job transitiom,
chain linkage, error checking and handling and the likes.

On the logical tape unit 3, after compilation phase is com-
pleted, there exists a group of relocatable user's object program
units which consists fo mainsprogramyénd user supplied subroutines or

'

any chains necessary there of.
, These two sets of system and compiled user's program units

are selectively merged together and-relocated into the available main
storage imége called a load module or binary run tape (BRT). Actually
these program units are separately ielocated and put on tape unit 1.
But though physically they are separate modules on the tape, never-
theless their starting locations and address references reflect a
single contiguous load ﬁidule and once loaded into main storage they
would be physically as well as Jégically merged into one continuous
instructiqn stream. |

Logica11y~§he pfogram units involved would be modifiéd accord-
ing to the normal static relocation scheme as in fig. 3.2. !

As for the mechanism itself, the co?piler module named ACARTG
which performs relocation is logically divided into several parts. fhe
detalls of each part is presented in appendix C together with the

logical flow diagram of the mechanism.

The first part, from location 31174 to 32313 octal, handles

20

ed

housekeeping and initialization, that is calculation of base. or starting

f

21

UNIT 1
10000] L
:'f,ﬁl L 10000
11777
) UNIT 2 ST
"10000 11777
G 12000
"~ |'B 10570 ;\;\;\S> Relocatio# N 3512570
| | A AT "
22 ' E
i — Javkize 24777
e = o
UNIT n 47777 :
. 10000f " 50000
10500 ' P a 50500
Relocatable ‘ 4 Binéry. .
program ‘ - ’ - run ,
unit ‘ tape 7

i

Fig. 3.2 shows logical mapping of relocatable modules 1n§§ythe BRT.

loc#tion of the program toge£her withydata area under relocation, set-
:;iné of héader label for first record (Q-recotd) of the relocated object
codes or, in suﬁsequent record, the label for J~record, and initial—
ization of pointers to be used in thevrelocation pfocess such as poinf-
ers to the cprrent'lo¢at16n in the tape buffer and in the object codes.
In this part théré exists first attempt at resolving externalkrefér;
énces ih region 2 of the program unit to be relocgted and inclusion

of this unit's name into the resolved external‘refereﬁce‘table (addtess
31663 through 32054). |

Anogher-point worth noting is the use of generalrinput and>oﬁt-
~ put routine (32133 through 32160) which compoged‘of two routines at
;ddress 3442 through 4252 and 7440 through 7777. Thege two routinés,
§ia‘parameters, handlie input‘and output operation of every devicés'
émployed in the compilation process including the physical éontrols
such as rewinding or forwarding tapes, checking error or availability
of channels and devices. | .

The next p#rt (32317 through 53076) locates field in the
ins;ruction stream using word and item marks (instructions at addresses
33042 and 33052), relocates and transfers fields to the tape buffer
"(33026 through 33076) and handles field defined via DS (Defing Storage)
instruction (32360 through 32631).

iCodes at address 33115 th?ough 33527 involve classification
of instructions into groups by using the length attribute, then locate
the address part of the instruction and determiﬁe the relocation véluer
~to be augmeﬁtes on each address accpfding to the type of imstruction

(subroutine at 36020 through 36266). Only the branch and DSA- (Define

Symbolic Address) instructions are passed to the next part for further
prccessing. L | | // |
Due to their complicafed relationships to the overall sF;ucture

of the BRT; the address barts of the bfanch and DSA instructidés are
,'treated separately by the codes from 33533 th:bugh 34571‘wh%éh‘comprises
the lengthly process fo linking logically the current modq}; to the
other parts of the BRT because the branch or DSA inétructions can réfer
to the chaining of user's program (handled by instructions at addresses
33533 through 33706), normal branches inside the current unit (instruc-
tibns atf33761 and 33770), references to external modules {34021 ‘
‘through 34155 and 34546 through 34556),’bSA instructions with variantv
character (34562 and 34571) or references to the standard fixed and
floating ?oint arithmatic hanéiing routines é34161 through 34542).

' After the relocation of the‘current module is completed, the
unresolved external reference table is scanned for any reference to

the currenf module (34772 through 35033); If there is ény, then in-
formation is plaéed at the end of the module to aid the second—paSS
resolving process at‘load time of the BRT, this process will be dis-
cuss shortly in this ¢hapter.

‘Although the compiler has its own input and output routinés

(at 3442 and 7440)3‘they'are~on1y used for outputting to tapes and
~input or output with other peripherals. As for the loading of program
unit into main storage which involved mapping the BRT string into

main ﬁemor& format the compiler turns to the aid of the loader. This

interaction with the loader is reflect in this relocating module

~ through thé codes from 36272‘thr§ugh 36414 which is an exit point to

5

.the loader when the next program unit to begrelocated is requifed.

The rest of the module 1s devoted to determining which of the
program units is to be loaded and relocated next and at the end of the
~module are the data areas and parameters used in the relocationbprocess.

One important point worth noting is the mechanism employed in
resolving external references, the process of which is illustrated in
- fig. 3.3. ,

The starting address of each program unit is calculated before
the unit is’loaded. Aftee loading the turﬁ~on~point is calculated
and entered into the resolved external reference table together with
the unit's name (1), then external refefences in the form of program.
unit ﬁames in region 2 of the current unit are repleced by their corres-
ponding relocated turn-on-point if the program names being referenced
appear in the resolved teble {2). Any extermal reference is affected
through branch instructioﬁ to the e#ternal frogram name in regien 2d
(3), and dfﬁthe correspondingkname is resolved then the branch instruc-
’-’tion is modified, ddring relocation process of the unit, to Brench’
directly to the turneon—point of fhat'external name (4). When there is
reference“te the unresolved name, . then. the:name :is placed dn the un~
resolved‘external reference table (5) along with the‘relocated address
dfwthe eranch‘insttuctidn (6,7 & 8). When the unresolved program unit
is encountered later in the process (9) and its turn—on—point relocated
and put in the resolved table (10) then, after this unit is relocated,
the unresolved table is scanned for any reference to this unit. If

there is, codes are entered at the end of this unit (11) which would

direct the loader to substitute the unresolved branch instruction at

SIN (Unrelecated)

~~

. ot
P Y e

o’

e
/

, ‘

/

Fig. 3.3

ACBFPP

NAME

TURN-ON-POINT

(Relocat
ACEFXP V.CRe ocated)
ALOG ACBFPP . 15750
ACBFXP 16399
_ >SIN 27001 ™
B 10007 -
B 10015
B 10023 N
; " Resolved table
- | ADDR.. QF
SIN NAME | UNRESOLVED
INSTRUCTION
15750} / ‘,Eizﬂ/”’““””aALGG ////ﬁ}377
16399 , - ~ L
ALOG T T 8
\ , / | 12376+27001 €<——
B '15750} ' .
B 16399 f
B '10023‘”¢_,,,~—ﬁ67’ Unresolved table
ALOG (9)- i 2)' NAME | TURN-ON-POINT
ALOG 30216 {10)
i
Substitute content- Resolved table |
at 41377 with :
B30216
@
illustrates the steps 1n feaolving externaljreferences.

 address specified in the unresolved table (12) with the turnron-point
iof this unit (13) and when the whole BRT 1s loaded. further by the
loader, any unresolved branches would be resqlved by this spbstitution
scheme (14). | |

g In the next chapter, discussion on this and previous chapters
are forwaraed, involving advantages and.drawbacks of the system and

‘prospect on fupthe: implementation of dynamic relocatioﬁ;' 'i‘

. T

 CHAPTER IV

DISCUSSION OF THE MECHANISM

Although the relocation mechanism of this compiiég can handle
usual situations In the Software’environment,jihere~are so;é drawb
backs due to the pfimitive design.

As can be seen from the system format described in the pre-
. wvious chapter and in the'appendix, the’relocatable object module = is
divided into ?egions and region 2 is deleted when the external refer-
eﬁces are completely resolved after the load module is creatéd.‘This ~
ﬁeans that gegion 2 is not part of the load module and it amounts to
thé separatlion of relocatable module into twa groups, one group
contains only region 1 and the other region 3, 4 and 5 which then
have to be relocated with different starting locatiom. This results
in complications bofh in the format of the module and the mecha-
nism related. Nevertheless, the whole concept of prograimer bearigé
the weight of developing the relocafable ﬁoduleg according to thét
system format all by himself if he needs such m§dules in workipé wiéh
the FORTRAN program is somewhat cumbersome. Thoﬁgh the greseﬁé state
 of software technology still does not suppﬁrt such luxury gé obtaining
relocatable modules from ordinary user written assembly pfégram, it
is hoped that a more sophisticate system software would aid the pro-
grammer greatly especially in the developmént of the sjstem reloca-

table library and many service modules.

‘1’28

In modern system, most pr&gram units written are cdﬁposed

| of more than one logical subuiit which amounts to simplification in
the software development. This results in the'mﬁltiple calling points

when utilizing these modules. This muléiple entry ﬁoints of the pro=

 gram unit complicates the system format‘sdmwhat, but the flexibility

~ both in program writing and logical structure of the program ia greater

. than the single entry or turn-om-point in the NEAC system. i

As the s&stem relocatable mechanism is strictly static; re=
solving external references is somewhat simplified as this normally'
requires two paéseg of scanning the references like resolving symbol
’ﬁable.ih the normﬁl assembler. In this system the first pass is done
in the relocation phase and any -unresolved references are entered
- in table t; be resolved after the modﬁles being references are ené
countered. Then the second pass is implicitly performed during loading
thé binary run tape which logically comprises a pass through all
the modules imvolved. This saves time but amounts in the inflexibility
of further expansion intc dynamic relocation scheme.

The bright side’of the system under study lies in hardware
construction. The implementation of dynamicmrelocation'technigue
requires inherent information in the progrém all the time it is kep%
active in the system. Butrusiﬁg additional software pointers for the
addressing structure is the overhead that cannot be tolerated both’
in space and superﬁisor execution time. In modern machines there are
special hardware and system software that:support the need. NEAC~
2200 system, on thé other‘hand, useé variable length.copcept of data

and instructions and so requires hardware punctuations, whichfinf‘ :

29

b

this case the word-mark and item-mark bits, in eaCh.charactér?;fhese bité
‘ ére‘nbrmally used in a number of;wéys to handle length and type of the
data. They are, in some instance, used as flagéfand conditiﬁg bits. 8o
this kind ;f hardware overhead is a necessity for this typé of machine.
But as the biﬁs are under-utilized, they can be used to indicate in-.
formation which aids dynaumic relocation. In the FORTRAN system; addresg—
ing structure ﬁses three comsecutive characters to refer to any lo-
'catiop in main storage which means item marks éndrword marks of three
bits each. The word marks inform of word boundaries and so cannot be
of any use, on the other hand the item marks nofmally indicate types‘of
 addressing but there are combinatioﬁs of the three bits left éo ac-
commodate more informagion; This type of bit utilization is employed
in the Burroﬁgh.machine, B5500 and 6700 for exémple? which uses two
special bits assoclate with each word of which the four combinatiahs,'
00, 01, 10vand’11.specify whether the words arevinteger, fioating
“ point number, character or address pointer respectively.
Eventhough the hardware architecture of this machine can be
of use to the‘dynamicrrelocation’1mp1ementation, the overall érchi—
‘ tectu:e is étill far from adequate. Only in thebenvironment of mul~
- tiprogramming can the dynamic relocation be of‘any usé, and this
: kind of enviromment requires and‘ehormous amount of support both. in
software and hgrdware. Fufthermoré, the restructuring of informaticn
concerning the address referenceévmeans rewriting’all the réiqcatable
p:ogtams in the system library. | | |
Neve:theleés, this kind of approach is quite useful 1if theo-

retically created multiprogramming environment‘isiemployed instead

real and practical one, Thoughnthe system would be of 11tt1e or
fixect use to the installation, the model developed can beean~
important tool to ﬁhe underdeveloped computer field in Thailand. ﬁue‘
| -tdﬁtheisimplicigy of‘the machine hardware‘and,softwere, the work inf
:nlved in the developmenfof a pseudo mnltipnogramming environment |
1d not be‘overwhelmming and the observed behavior of ehe~model
dﬁid be less clustered by unimportant details commonly found in more
~modern machines. | D |

This simplicity also lends itself in every direction espe—
ally in the studies of so complex a machine as a computer, 80 much
conplexities of the«system format tenmds to obscur i@portant points.

| Altﬁnughumnch more work remains to be done in this fiel& of
study, this project go far 1s inadequate due to many limitations of
the machines and documents. But. it would nevertheless highlights
some fundamental concepts and rouses any further practical or theo-

' retica1 studies in this or related fields, especially in Thailand.

30

CHAPTER V

CONCLUSION AND SUGGESTION

As has been stated the study/is based on the FORTRAN comﬁilef
of the NEAC 2200/200 computér gystem and the details of relocation
fmechanism are sémewhat‘machiﬂe dependent, so the study of the mecha-
nism had to be done on this machine. Due to the lack of documentation
'aﬁd source listing, object program has to be tracednand’ideés'con-
structed by testing the effect of individual processing flow on the
“machine. This tends to be akward and it turns out that the machine
time spent doing this kind ofbwork'is very excessive. Thg total timg
required in tracing the coding off-line is about four months while‘
that of tracing on-line is about 50 hours in 2 to 3 hours session.

Apart from this there is the problem of acquiring,baéic
knowledge of the system, for example hardware architecture, data
structure, instruction repertoire. The general comncepts of relacation
~ and linking takes three months of study and conceptualizati;n.
‘Utilities and many-operating tricks such as memory an& tape dump
while a minor concern'needs practice. |

The work done while far frém adequgte is what can be achieved
under the circumstance in view of limited timé, experieﬁce and re~
source., But approach to further study on this subject 1s worth the/
~effort and would one way or the other enable a finer understandipé

of the complicate concept of relocation. The i@plementation-of<ﬁy-

{ i
! Fis
o

‘~,: tion in a limited way.

32

namic relocation as a\workAstudy on the machine is presented aé*follOwed

to ensure a continuity of the study somewhat.

Implementation of Dynamié Relocation

Although the system under study:does not suppoft dynamic
relocation scheme, the available hardware features can be combined
with the modified software to give the effect of dynamic relocatiom. ‘
Eventhqughfthe system‘implemented is of little or mo practical use, -
it would be imvaluable in the ligﬁt bf academic study and, with ‘
vspecial attention and effort, can even be useful in real applica- .
, ; E
The first thing in concern is the base or relocation :egister
-which keeps track of the starting location of the program uhit and
- when the operénd addresses are derived in the form of dispiacement
relative to this base address the dyﬁamic movement of the pﬁog;am
can be achieved. »
| In’the IBM 370 series, for example, the sése"regiSter is
user seleéted and can be any of the 16 general purpose register .
- and when the starting location of the'program i1s selected any other
operand addresses aré translaﬁed into thé base~displacement -
“reference pair. Similarly, the’NEAC méchine also has six index
registers specified by three bits which is part of the operand
| address and any one can be seléctéd for this purpose. But'even~1k~'5

.though the compilerjcan be modified to accomplish this feéture,“

it would mean that the other five index registers together with
, . = , ‘ e

e

jﬁ@iteét addressiné mode cannot‘be used by'the’p:ogfammer: InkCGﬁ-‘
3rést with thé IBM_mac&ine, the 1a£tér has extra fieid ih‘the‘
operand address té denote indexing. But the compilér’may be furthgrf'
tailoredito retain the indexing fegture Whigh\is very useéul in,"
program development. Fig. 5.1 depicts the use of impliéit iﬁdexing;:
Qrdinary operand is translated as operand using index :egisfer B
huhbef 1. If other index register is required the other index re-
gistefﬁmpst be added to the base register (index register numbervljf
béfcre reference ﬁo the pperand is performed. of coﬁrse, means
ﬁust be included to retain the previous information in thé base rﬁﬁf
gister. Indirect addressing may be petforméd via this method bu§€;7z”
:'vnuld givé much more complication and the resuit may. not juétif;‘
yyihe‘eff?r£; | ‘ |
‘In the assembler level the modification is quite s%&pler

1bqt‘wbu1d increase programmer's burden, om the other handj;n FORTRAﬁ
pfogramming, the language structure ig not changed but the compiler

. must be tailored to reflect this kind of implementation aﬁd~although ‘

‘ thé'compiler nay siill be in the static reloéation mode, the stan-.
. dard scigntific routihes; which is combined with the user's program,
must be changed to .suite the dynamic relocation mechanism‘implemented.

As for the use of this kind of implementaéioh besidesvaca—

'deﬁic studies, if the system is carried on to some extent with faster

!

auxilary storage devices such’as disks, multiprogramming in such

- a system 1s not.infe#siblé and though it may seem less useful than
e T ; ; g :

.

%
T -

33

34

buying newer and better machines, the knowledge gain is somewhat :

motre than can be found in any text or manufacturer 8 'manual.

Source statement ‘Object ‘code’ in‘symholic form
ADD DATA,CONST, RESULT ADD DATA¥X1,CONST+X1,RESULT+X1
ADD DATA#X3,CONST,RESULT ADD X3,X1,X2

| ADD DATA+X2,CONST+X1,RESULT+X1

Notes: ADD A,B,C means C=A+B. ‘

Fig. 5.1. Tramslationm to effect the use of base register.y

35

REFERENCES

New York: McGraw-Hill Book Co., 1974.

Hsiao, David K. Systems Programming: Concepts of Opeérating and Data

‘Base Systems. Reading, Massachusetts: Addison-Wesley

Publishing Company, Inc., 1975.

.. Tsichritzis, Dionysios C.; Bernstein, Phillip A. Operating Systems.

New York: Academic Press, Inc., 1974.

NEAC-Series 2200 Operating System Mod 1: Easycoder Assembly Lan-

guage. Tokyc: Nippon Electric Co.

-NEACfSeries'ZZOO Operating System Mod 1: FORTRAN Compiler D. Tokyo:

Nippon Electric Co.

Madnick, Stuart E.; Donovan, John J. Operating Systems. New York:

4\ MeGraw-Hill Book Co., 1974.

Gries, David. Compiler Construction for Digital Computers. New York:
. £

John Wiley & Sons, TInc., 1971. .

&

APPENDIX A

FORMAT OF THE BINARY RUN TAPE

General
In NEAC 2200/200 the pertien ef ebject code which,ié load by the
ioagef is referfed to as a program unit, The tape containing‘these unité
is calléd Binary Run Tape of BRT. As recorded on a BRT, a unit appears
as one or more consecutive records. Each record starts with a banner '\
character which specifies the type of the BRT record and is classi-
fied as unblocks, variable-length data record and may vary in length
.up to a maximum of 256 characters. The fifst record of each program
unit 18 called a segment header record and contains identification and
control information pertaining to the unit it represents. Subsequent
records or non—header:records within the unit contain a minimum of
c;ntrol information immediately followed by object codes to be loaded.
Figure A-1 shows the BRT format and table A-l1 and A«2 contain
a brief description of fhe various ﬁypes of fleld presented in a BRT

records.

Record Formats of Program Units

1. Types of information.
A program unit record contains two categories of information:
1.1 Identification and control; and

1.2 Data.

2. Tdentification and control field.

v

37\

For a segment header record, the identification and control field |
‘occupies’the first 24 characters and 7.¢haracter 1ocations'foi a non-
header record. The first character of each record is a banner character

which identifies the BRT record type as explained in table C-1. Charac-

3

" ter at location two through four comtain an octal number which indi~

cates the nuﬁber of characters in the record. Character location five
and six Eontain the record sequence number which is used by loader in
performing efficieni backward searching over a BRI.

The seventh charaster designates the number of characters in

the identification and control fields, which is 24 for segment header

-~ .records and 7 for non-header records.

The format for the first seven character locations is the same
for both types of record. However, the segment header record contains
additional identification and control specified by the prégfammer in
his symbolic program. The identification and control fields are
tabulated by record type and character locations in table A-1l.

3; Data fields.
Immediately following the control information in both types

of record is the data portion which is variable in length. The data

'pbrtion consists of strings of data characters to be loaded inter-

spersed with.controlncharacters. The control.characters are needed for
two purposes:
a) To specify the loading location;

b) As the tape does not have extra bits for punétuations as in

" main storage, the control characters provide information about pﬁnctua-

tion.

38

The dafa of each record has the 'following.characte:j.stics:
a) It begins with a control character;
b) Every record except the last record of a unit terminates
- with the control character octal 77;
¢) The last record of a unit terminates with comtrol octal
61, followed by a three-character address. |
The formats and desctiption of the nine control characters are

t

provided in table A-2.

&

50 54

8 ’

XX XX XX

ot
[

0 wl N|e Lls W N

"
[

ek
(=)

=
0 ~

NN

=t
D

24

40 00 00 00 00 00

39

. “Banner character -

. No. of characters
in record (octal)

- Record sequence number {octal)

No. of char. in ID & control fields

]

" Revision number

~ Six~character program name

Two-character segment name
Octal visibility key

Data to be loaded‘interspersed
with contrel characters

Fig. A-la. Segment header record.

41,44

8°° '8

XXX XX

XX EX

- 07

Sesesm| ~wlon Ll W N =

1ve
o

e— T T

Banner character

No. of character

~in record (octal)

‘Record seqhence number {octal)

No. of char. in ID & control fields

Data to be loaded interspersed

‘with control characters.

§
o

Fig. A~lb. Nom-header record. -

bns

Record Character '
type Location| Name Function
Segmeht- Identifies record type (octal designati
header and 1 - Banner be&ow): : ~
non~headen { 508 - gegment header rec., not last
Trecords : 4 record of a unit; - ‘
© (50 ,548, ’548 - segment header rec., last rec.
&18’448) 3 of a unit;
: . _ﬁls =~ not segment header rec., not last
M record of a unit;
448 ~ not segment header record, last
record of a unit.
) { Record Designates number of characters in rec.
i |1length in octal.
, Record Specifies no. of backspaces (in octal)
5-6 sequence | to position BRT for reading previous
: number segmant header record.
Length of | Designates the no. of char. in the ID
7 ID and & control fields; octal 30 for segment-
control header records, 7 for non~header rec.
Segment- ‘ Revision | Three=char. no. assigned by programmer
header 8-10 | numbexr in his symbolic program. If unassigned,
(508,548) the assembly program assigns zero.
11-16 Program Six—character‘progtam\name assigned
] name by programmer.
17-18 Segment Two-character segment name assigned
' name { by programmer. ‘
v -{Visibili= | Six~char. loading key assigned by pros
19-24 |ty key grammer and used by loader-monitor when
: | (octal) searching for a unit. (It may be use to
: correlate two or more units as a system
subset to be run together or to distin-
guish between different versions of the
same program.)

Table A-~1. Identification and Control Fields of BRT Program Unit. .

- 42

Control character

: - Meaning
No. {0ctal | Binaxry
1|01 O0unnn | Interpret the nnnn digits as a binary number. Move
to ' following nnnn chars. to successive locations,plac-
17 ing leftmost char. in location specified by current
setting of distribution counter (in X6), clear punc-
tuation in locations into which the chars. are
. moved. Advance distribution counter by nnnn.
2121 Olnnun | Perform same function as control char. no. 1, and
to set word mark in leftmost char. location loaded.
37 3 ' ’ ;
3 | 41 | 10nnnn | Perform same functions as control char. no. 1, and
to set an item mark in leftmost char. location loaded.
44 60 !110000 Place following 3 chars. into distribution counter.
' (The next string will be loaded with its leftmost
char. at this address.)
5161 110001 | Terminate loading. Interpret the following 3 chars.
, . | as normal starting location for unit just loaded.
6| 62 .| 110010 | Clear area of memory, using following 7 chars. to
identify area to be cleared and char. with which to
. clear it. (Chars, 1 thru 3 are interpreted as lowest
’ ‘address of the area to be cleared; chars. 4 thru 6
are interpreted as highest address; and char. 7 is
transferred to every location in the cleared areas
~ with punctuation marks cleared.)
7] 63 110011 Set an item mark in 1ocation whose address is’one
i less than current setting of dis. counter.
8| 64 110100 | Set an item mark in the location whose address is 1
: less than current value of dis. counter. '
9 »77 111111 | Read the next record.

Table A-2. Data Field Control Characters.

. APPENDIX B T

RELOCATABLE OBJECT MODULE FORMAT

In FORTRAN D compiler the compiled program units are kept in re-
locatable format before 1inked _and reiﬁcated with other units to form
a single load module with fixed address. The relocatable module is or-
ganized into code regions and certain addressing conventions. is used to
allow proper relocation and intercoﬁmunicatibn bétweeh ﬁodules. There
ére\three considerétions céncerning,thgée conventions: |
| 1. Regionalizationg |

2, Address interpretation; ' ,“ - ERe R

3. Relocation of address fields.

Regionalization

: ' : . /
Each program unit begins at 4096, . and five DSA statements

10
(Define Symbolic Address) at’tpia origin define six coding region boun-
daries ésvspecified in table B-l. Each region must be contiguous and
consecutive in membry, and each cont;ins‘specific data fype-to which a
corresponding relocation factor applies. These regions are shown dia-
gramatically in fig. B~1 and are described‘as followed.
~ Region 1 contains constants, data ato:age’areas, and,argement

DSA statements. This reglon may be empty. All information and punctua-

: ~
tion is reproduces when this :égion“iSarelqcated.

Region 2 contains the names of all other prdgram units which are
"called" by the present unit. Each namg appears 1ef£ justified in a,éixé
character field. A word mark on the leftmost‘charactef is the only‘ |
punctuation.fhegion 2 may be émpty; it is deleted dufing reloéation.

Region 3 is the inmstruction string or "text" and must éontain
at 1east'onebinstruction. The first character in this region is the
'turn-on-point” to which control will be transfgrréd when the unit is
called. There must be a word mark oﬁitheileftmost character of each
~instruction; no other word marks are perﬁitted. All address fields in
this region are relocated. Calls t;‘other program units are indicated
by branches to the a&dresses of the left-justified names in region 2.
These addresses will be replace& by the ;elocatgd turn-on-points‘qf
the called ﬁn;t whéh this region ié processed.
| Region 4 contains DSA staﬁemeﬁfs that are relocated in the same
manner as region 3. This region may be empty.

Region 5 contains const;nts, data storage areas, or argument
DSA. Thus it serves as an auxillary storage region which can be conve-
niently adjﬁsted‘%y initialization code in region*G.'This region may
be emp£§ and reproduced when relocated. ‘ S5 |

Region 6 contailns initialization coding. This code 1is exécuted
before the ﬁrogram unit is relocated. Aftef loading of the unit, control
is passed on to this region. Job parameters such as integer or mantissas
precision, memory size, etc., can be interrogated by this region‘and
other,regions, usually region‘S, are adjusted accordingly. If the region
dimensions are altered as the result qf_initializat@on,~the correspond-

ing_iegion—boundary pointer"ié adjusted accordingly¢ This region is

N

45

deleted when the program unit isfrelocated.‘;k

3

Address Interpretation

Each instruction in region 3 begins with a word-marked char-
acter and continues thru to the location preceeding the next word mark.
Address fields within instructions are determined by an instruction

length algorithm summarized in table B-2. .

" Relocation of Address TFields

Punctuation of a direct or indirect address field indicates
_whether it is to be relocated and which relocation delta (offset) should
. bé used. The item marks to control relocation can be set~by"initializa—v‘

. tion coding. | ‘ k
. . | | %

- Punctuation . Type of Address

Item mark on first character - Absolute addr.: no relocation

Ttem mark on middle char. Unlabeled common address

Item mark on first and‘middie‘3 Labeled coﬂmOn address

Is !“ %
! E

~ characters
No item marks on firat and . .- Mot a common address; use

middle characters e appropriate regional delta

as followed.

A
If there are no item marks on the first and middlelcharadte:s ‘ \
- of the address, the relocation delta appropriate to the region is

chosen by the following table

4096
DSA
DSA

DSAS

For indexed address, the delta for regibn31\is uséd‘in

= ADDR

= ADDR =
= ADDR =

= ADDR

ADDR =

409610

DSA;

DSA2

DSA5

i

[

do.not relocate

add delta of region 1

replace by address of turn-on-
point in unit called

add delta of region 3

- do not relocate

S,

Location

Notes

Points to lst char. in
region 5. : ' -

DSA Contents.
4096~-4098 | 1 | Points to lst location Normally the first
i not in region 1. location in region Z.
4099-~4101 | 2 | Turn-on-point. When region 2 is empty
DSAl is same as DSAZ.
| 4102-4104 | 3 |Points to last opcode If region &4 empty, DSA3
~ in region 3. should be repeated as
: DSA4.
4105-4107 | 4 |Points to last location
v in region 4.
4108-4110 | 5

Normally lst location
in region 6. f

Table B-1 specifies region beundaries using DSA entries.

N

%

relocation

Delete

Detete

Delete

Fig. B~1 shows regionalization of

Region pointer DSA

Region 1

Region 2

Region 3

Region 4

Reglon 5

Region

6

.

Text

DSA argument

4

47

Unrelocated data area

External reference

Auxillary storage area . :
Initialization code

rélocatable module. .

Instruction Secondar No. of | Character
“length ' characteZistics address | position " Example
_ {character) fields | addresses ;
= 0 — NOoP
2. —— 0 e CAM 00
3 - 1 123 DSA addr
No item mark /s
on last char. 234 BS addr
® Item mark omn ’ ‘
last char. g E : ‘ ‘
4 Branch ‘1 © 234 B»addr
instruction -
Item mark on
last char. , . '
Not a branch y 123 DSA addr,V
instruction
50r 6 — 1 234 SCR addr,V
7 or more PDT,PCB K 1 234 PDT addr, yoeee
7 or more | not a PDT,PCBy 2. 234,567 MCW addr,addr

Table B-2 shows algorithm used in determining ﬁypes of inmstructionm.

 APPENDIX C R

RELOCATING ROUTINE

The relocating rqutiné‘is the compiler program unit named
ACARTG and is list on the-following pages together with gemeral
descriptions of the working of the codes. The next is the flowchart ,

as derived from the object program. .

W¢

q

31176
31203 -

312067

31213

31217

~31223

31232

31251

T 31260

31265

31274 -
31301
“31310

31314
31315
31324

“ 31330

31331

31336
31342
31343

T 31347

31356

31365

31374

31404

31414

"31420

31424

- 31433 <

31442

B3l451

31460

31467

31476

31505

31511

31520
- 31527

31533

31551

zgzzizzzzzzzzzzzzzzzizzzzzzzzzizzzszzzzzzzzz

154000001000001 :
14037135

65032036
22036124
65031420
22000022000026

33006511006512

6503134745
14037156007715
- 6500651700 - - .
14037232400007
65007502 o o

20

14037237400007
65007502 §

65007420
22
65007420
22
23031300

140000200044J7
14000175000151

49 \.\‘.

[External Reference Table(Region 2)
~ with turn-on-point of that progranm

} Replace entry (program name) in
‘gv,upit'in resolved ESD Table.

- 15006700000030 |
~54031301031303010" ’;fguﬂ

~14037157007715

5500620601000054

23036124
35006671
14006727006671

14006727005323

34010002006727

35037225006727

14000030006700

“14003000000030 7
14600205600204 |

65005231

14005330600102
14006727005323,

65005231

14005330600124f
14000111600054
65007502

~5403121300523004"

Calculate base . locatlion of progran
and data areas; convert to octal
then print out as part of Object
Ekmorylum. : ,

30

14000030003000 |

B 31556 W
—--31565 -~ W 15006700000030
{ 31574 W 65005570
31600 W~ 33010002037225
31607 W 6503164542 '
= 31614 - W 14037163033160 | - S
v 31623 W 14037225037276 Initialize pointer to tape buffer
. 31632 — W--3503722500667] p area; checljc-ts:ar;ing agdgess of
B 31641 W. 65031663 Program un: ¢ be loaded.
- 31645 W 14010005037276 |- : 3
31654 W 35010005006671 J
~ 31663 W 140373130372642"
o 31672 W 15000111706704
T 31701 W 15006727 " | Include the name of program unit
: 31705 W 2400670670 7 just loaded (being relocated)
31712 - W 2400000470 | -and its starting address in \
31717 W 33006706037141 resolved ESD Table. SR
© 31726 - W 6500546544 /) 2
31733 W 330100020100935 Y ‘ o
31742 W~ 6503206142 Check for any extermal reference
31747 W 14710003000004 in Regiom 2 of this program unit.
e 317856 W 24000004667) :
31763 W 14006703000020
~31772 W 33100000400000
32001 W 2400002070
32006 W 6503117442 *
32013 W 35037145000020 Replace each external reference in
32022 W 33006706000020 ¢ Reglon 2 with its starting address
32031 W 6503177245 if that reference 1s resolved.
- 32036 W +~35037151000004 S e
32045 W 33010002000004
- 32054 W 6503176344
ﬂ 32061 W 14006743600032)
-7 32070 W 14000113 f o
32074 W 14 e ' Set header label for the segment heads
gg?gg \:!I izggz_}gz ' r record of program unit (Q-record)
- 321G6 W 14037310600003
T 32115 W 14037144006734
32124 W 65032216 :
32130 W 000372 . Contain number of char. in buffer.
321337 W 14037176700022 | get end of record character ($),
1321427 W 14032132600006 p yecord mark and no. of char. in the
K gg%zg} - z 20030554031153 i record; then branch to write this

65007502 4 record to tapee

g RO

32174

32203

32207

32216

32225

32243

32252
~32261

32270

32307

32317

- 32326 - -
32332
32341

32345

32354
32360
32367

32376

- 32405

32415
32424
32434

32450

32454

32463

32477

-~ 3oBaE -

32516

- 32822 -

32531

1325641 -

32550

32566 -

32601

32614

32624
32631

ZE I I LI EEE IS EE S E S S S EESEEEEE S S ESSESEESEXESEESTEEE

~ 20710014

~ 22500001

65033000

6503244045

o
14037264600003"

14037153600011
14006734

34037136006734

15037135000024 -

14600011037351

~14037351000024

34037145000024
34000030000024

-14000030037245 -

34037132037265

5503273360000341

22710014
14037276500003
34006671500003

- 23500001 -

34037147000024

14037276037124

~35006653037126

14037124006712

~1073727400671601

14006716032447
5503244003725200
65032714

—~5503245473712200

65032714

“‘34037136037124“”“

33037276037124

14006716032540

'5403252273712240

65032541

©34037136037124
55032506737122185
114037124037276°

35037136037124

14037124006715

22006707

© 340066T71006712

34006671096715

- 23006707

1000670?70665031

2400002670
65032317 |

5i

et label for non~header record

| (J~record).

Initialize X5 for the relocation
process (X5 signifies address of

6ugrent character in program string
being relocated).

et pointer to the end of buffer

raaeh 1if J-record.

,-Transfer control character 60 and

?relocate starting address of
this program string to tape buffer

| area; 1f Q-record 37276 would
. Contain 10017.

Routine to handle data area defined
by DA-statement; this routine
scans the area until difference in

s Fcharacter of punctuation mark is

detected then use control character

62 to specify this area in the tape
buffer area.

52 -

- 5503310200665300

732638 W R

32645 W -33037276010016 |-

32654 W 6503267442 B

32661 W 14037163032733 -

32670 W 65036674 Handle character with item mark:
32674 W 5503457500665300 | 4f jtem mark at the begining of
7327064 © W 5503311500665300 the field then normal processing

_32'71" W) 32006653037252}1 P (control character 40); if not,

32724 W 14037252706650 Tequired special handling eg.
32733 W 65033000 check end of program, or check

32737 W 33037245000024% buffer-filled condition
32746 W 6503213342 NG ; - -

32753 W 14033062032733
32762 W 14037246700022
T 32771 W 34037136000024
33000 « W 35006653
33004 WU 140000240066582 Initialization before processing
33013 W 34037136000024 Oof the next field.
733022 W 35037252 -
33026 W 33037245000024)} d
33035 W 6503267446 This loop transfers character to

33042 W 5403270473727410 | buffer until buffer is filled or
. 33052 W 5403263573727420 r punctuation mark is detected or
P 33062 0 W 65036674 number of character transferred
. 33066 W 5503236000665317 exceeds 17, (data area defined

33076 W 65033026 "~ J by DA-stateément).

33102 W 14037163037252 Process field with item mark

- 33111 W 65033062 ’ " (control character 40)

. ggiéz x . éggg;;gzgigggg Start processing of fleld begins

33133 W 6503342244 with word mark;‘ check 1f Region 1

S 33140 T 65033223 is being prOcessed. .
33144 W 14033062033140) ‘
ggi:; s égggsg;iooeabz For field in Regiom 1, shift
- 33166 W 34037276006671 — Pointer 1if turnp—on-point is not
33175 W_.23037274 | Aofasl (oot 100175,
~-33201 W ~35010005006671 I >4 ~
. 33210 W 14010005037276 . g
L3321 7 W 65033022 - \yj‘«;ﬁ’.‘:' Lo

“33223
33232

© 33274 -
33310 -
33327

33236

33252

33267
33303
33317

33336

~ 33345

- 33361U“V

33352
33366

33376

33632

33457 -
33467
v33470”WW

33617

33406

33416 -

33422

33436

u33“42hw

33452

33474

33514

33520 -

33527

33533

33537

-~ 33546

33555

33564

33574

~ 33603

33612
33626

33635 |

|- 33641

,m33672,,,
e 7_;,?:,.,'.,33,7 06- -

33650

33657

33666

33677

EZEZEZEZZEZZEXEZEEEEZEEEEEZEZEZEEEZEEEZZEEEEZ£££€X£

©33005354037127

A
/

“”14037275000020»7
21033712

33037276010013

65033422641
1040000147777730
\,2403712467. s

2403712770

© 33037276010010

6503341641

~35000020037124 =
5503371203712404
~34037136000020 -

33037124037153

6503347644
33037124037150
6503342244

5503371673727465
5403456273712520
5503343673727400
65036020

75403264573727420

65033062
65036020

- 1073727403344210

2403346567
3203700303345770
3z

65033422
5503341673727464

- 5503341673727466

65036020

34037145000020““}

65033416

35037351

14400003033573

- 14005351037127

34037136037351

- 5503364173712571

34037155037127
6503355543

23

Set pointers to appropriate
positions in the current instruc-,
tion (field begins with word mark)

Determine length of instruction

- S and gype of opcode.

~

Check,IM at beginning of field.

"=, Branch to transfer to buffer.

If NOP instruction (00) branch to
, check type of address and relocate
then change opcode to 40.

PDT/PCB checkin)
(single operand}.For instruction
of length 7 or

2 operands
P more.,

instruction

Routine for exit to cali—chéin pro

“‘f unit (ACBCCH). '
14037014036752 | o1

15000111737311 |

65006052

14037351400003 -

34006671000020

- 15037272737305 -

15000020

35006671000020
65005500 oy

33712

;WMW¢33716.WM

33726

- 33735 -

33742

33751 -

33761

33770

33775

WMQ.34OOS‘MM

34014

U g o 3402 1 o i

34031

34047

~ 34053

34060
34067
34077

PR —— 3 4 1 07 N—

34113

© 34122

34132

34145

34161

34170

34175

36204

34211
34220
34225

34234

34241

34250

34255

34284

34] BB

 EE L EErFEIESSEIEEEEEEESEEEEESEETEEIETEEEEE

20033712

-~ 5403341640000120

33400002037017
6503353342
14400002000004

~~3203713300000270
33000004010005

6503341643 ‘
5503416100000200

33000004010002
6503341644

"55034544610000000

34006671000020

- 15100005737305

15000020
2403730770
35006671000020

5403413600000420
5403411303371220
65005534

14037307000004

©3203717610000140

65005534

14037307000004 -
3203717610000120
~ 65034077
33000004037022

6503432042

33000004037025

6503433342

33000004037030

6503434642

33000004037033

6503436142
33000004037036
6503437442 :

33000004037041
6503440742

J_———a—\¢~_—-—1k - s R RS P

54

kHandle branch or.DSA instruction;

This part classifies normal
branch {operand point to address
in Region 3), branch to special
Program unit and.call to external
program unit. :

Check external reference to
Program unit, if external
Symbolic name not resolved
incluse into unresolved ESD Table,

if resolyed branch to 34546 to
resolve reference point.

Set flag in unresolved external
reference entry to designate
branch or DSA imstruction.

“Check dummy branch instruction

which standard program unit is
being referred to.

Standard program units are,
ACBFPR

ACBFXR L

ACBFPP C 0

ACBFXP

-DAOIO

ACBOIO

- 34301

734355

© 34370

34271
34305

34320

36327
34333
34342 7

34346
34361

34374

34403

34407

34416

34425

364434

344641
34446
364455 -

34464

34500

34513
34520

34527

34542

34546

34556

34571

34604
e 3"613 S

34620
34636

34655

34662

3

T 34314

T EEIETEEEEETSESIEZIESEESSEIEIESESESSEESESIEEETETEEEE

|

34507

i

5403430540000020*.;
65033416 ‘ i
21400000000002 :
65034556 e
14037063037011
- 65034416 b
14037071037011 |
65034416 0 (o
14037077037011

65034416

14037105037011
65034416 N
14037113037011
- 65034416 "N

14037121037011
14006703000014

~ 33300000037011

2400001467

~ 6503453342 -
3503714500001 4
~33006706000014—

6503442545

-~ 34006671000020
15037011737305
15000020 =

2403730770

.35006671000020 -

65005534

65034556

~1010000540000221

65033422

-35037136000020

]

4003526003735220
33037245037124 .,

65033416

'35037136000024"

33037276010016

6503213345

14000024037124
34037145037124

i

~14300000400002 |

J

55

i

Select standard program unit
} name to gheckvif resolved.' -

LA X

Check if external reference

(standard program unit) is

resolved; if yes replace operand
of branch instruction with
resolved address; if no include
symbolic program name and address
of reference into unresolved

ESD Table. :

Place turn-on-point of resolved
external reference in operand
field of branch instructiion.
Handle DSA instruction with variar

Check end of program unit.

‘Check if buffer is filled before

placing informatéon to resolve

~ external reference.

Lo 34666
T i B I S 7 5 -
g 34705

~36714
34720

. 34733
C 34743
. 34752
' 34756
34765 -
DT 34772
- 35010

,,,,,,,,,,,,,,,,

35015

35024
35033
35040
~35047

35056
35062

35072

& a5102

35111
~35115~
35124
35140
35147
e 35156
S R, 3 5 1 6 2

35175
. 35204
35210

- 35220
35227

~ 35236
35245
35254
35260

34724

35130

35166W

zzzzz;zzzzzzzizzzzzEzizﬁiiiiizzzz

Ezszizzzg

l

- 35267 W 65034646

~~14100003500003

14033062034662

4003472403735220} |
14006727500003

~14005343
65035245

14037246500004

14006727

14005343 -

34037150000024
~ 65034620 -
33037307037313
6503527342
14037242000004

- 33037307.000004

6503827342

33100000000111
35037155000004
6503500145 s

14037163034662

14037273

3203713350000160
5403511510000102 ‘
~—14037145005343

- 65035124 :

140371460053643 -

20737305

- 5403516610000101

14037163034636

21037352

65035210
1403716703463p.

14037167034675
20037352

1010000010001 141
~14000004037242

34037155037242

~34037155037307

i

14037163034675

34037147000024,2

34037136037124

65034620 ‘.wpmmk;

Place starting location of -

program unit just relocated after
pointer to branch or DSA

ingtruction that makes the -
reference.

If there is no unresolved ESD
branch to 35273.

Check if there 1is any reference to
the program unit just relocated;

. 1f po branch to 35273

if yes continee through 35040.

Place pointer (address) of
branch instruction, that refers
this program unit, at the end of
this program unit (in buffer
area) .

Set & modify flag and opcode to
indicate type of reference

(Branch or DSA instruction).

Delete entry in unresolved ESD

‘table that has just been resolved.

57

' 15005336737305

35273 W :
= --35302 - W 5403535500672420 - SO
oo 38312 W 33037135006724 B A RS e
B e 35321 W 6503577142 e SRR 1
. 35326 W 5403534200523005
com-35338 - W 65035355 B
» 35342 W 1400672700672‘9 :
~ 35351 W 20006724 -
, 35355 W 6501453140 : -
e 35362 W~ 34010016006727) Compute starting address for
35371 W 35010005006727 ;} next program unit to be re;ocated.
35400 W 65035418 ¢
f 35404 W 40
o 35408 W 540276T400667520
35415 W 3203714760000307.} set panner character to 54, or
7777735425 7 W 1400536050003 7 | 44_(last record), set 61008202
35434 W 35000030000024% at8the end of buffer (branch to.
35443 W 34037136000024 7 | loader after load) and set \\
35452 W 14000024600006 number of character of the \
T 35461 W 200305564031152 7) record. b
5“ 22232 ’ w ' 2(5)035517 . 8 } Braach to check if any standard
Program unit ig required. :
354757 W 14003427000114 } Set condition to load program
135504 W - 14037136000157 * J upit by visibility & relative
35513 W 65035745 . Position and tape drivei0.
35517 W 34037136000010
e .35526 W 34037151037055 . : : ~
- 35535 - W - 5503567500001006 gﬁﬁgaifui?{ o ;‘;guiﬁzg‘?a“‘
> E)
35545 W 5503557100001007 if yes, load that unit.
35555 -~~~ W - 5403571173704520 -
35565 W 65035517 .
35571 - W - 23035474 =~ Set conditions to load program
35575 W 14037136000157 unit after standard program umit
35606 W 14006706006633 | (by visibility & relative position)
35613 W 140371630357581 and set conditions to test when
35622 W 14033062006262 | user's program unit is required
35631 W 65035745 (program name: 000000).
35635 W 140371630062%2
35644 W 14006633006706 | Set condition to test:.if user's
35853 7 W 23036324035404 program unit (drive # 3) is to
35662 W 14003427000114 | be loaded.
35671 W 65036272 \ '
= 35675 W 33007377037134 .
= 38704 W 6503557142 } Check if ACBQIO is needed.
» M‘3§7’11 W 14737053000111 B Prepare to load standard program
35720 : W 14004662000004 'y unit needed (search mode 60, drive
35727 W 14037273000157 ‘# 0 and program name as required)
35736 W 14003434000L14u)
- 35745 W -

650 07502 ik

N

35761

35771

36005

36014

36020

36034

36040 W

36050

36070

W
W
W
W
W
W
W
W
W
W
W
W
W
W
............... 3 6 1 00 PR WK

36110 W
36120 W
W
- w,
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W

36124
36125
36134

36164 W

36150

36187

36164

36200

— - 36207V

36214

U 3 6 2 2 3 s Yy B

36227
- 36237
36246

36261

PR 3 6 2 6 5 i
" 36266

35752

36252

35765 W

T 65036272

©14400002037127 - r\eroutine to determine type

6503613444
65036125644

6503613443

~35037342400002
'35006721400002 >~

- 2 1 S ,MM,,‘.WMA_M»W;,@{; »‘,
65036136 Y

58

4

14000030006700

65006230 R
5403600500523004_

- 65035326

14006727006724

2403614770

35037351 .. .of address & relo ate .
32037128023735170 . accordingly. care

3203713303712570 o
5403622703712620 . o
5403626103712520 G
5503615003735100 N ' |
5503615003735170

40

3203735140000070 p 1ndex and return.’

- 34006662400002 } Relocate with delta I; reset

65033422

3303712700664T7)

If address 1s not a common address
or not absolute; check if to
relocate with delta I,III or no.
relocation. ' ‘

33037127010002

'

33037127010016
34006671400002 !
65036134

54036252037125201

- For common address; test labeled
-or unlabeled, then relocate
. ‘accordingly.’

65036261
21400001 o

36276

36305
36320

36314

36324

36331

"36340

36345
36365
36405

36414

36420
36436
36451
36456

~36325 -

36427

366452

59

35005230 et : : '
14004407000020 | Set X4 to point to buffer area;

-~ 14036774000151 ') set own code. exit;

65000202 branch to search program unit
65036405~ - | required then return when founded
40 \ to execute own code.

35037351 S\ 17 ‘
33001735036776 - ‘ :
6503640545 - Check own code requirement of

2200177703735101 [user's program unit (program

~5503642003735101 galen 000000) .

3200177703735104 |
5500641603735104 .- con S
14000175000151) Reset own code exit and load

65000172 ' { program unit. ,
14004407000014 BN

- 14037176300008— .« -

14300002000014 . ° -

22 PP A

'-65007420www*wwwf¢,.;.z-

22

Hiziiiggzii22222EZEEZZZZEZZEZEEEEZZEZEEEZZZE£E§

36463 20
36664 W 65007420
36470 26
36471 33300007037232 ' . °
~36500 ~ W 6503646445~ |
36505 65007420 S0 ot S |
‘‘‘‘‘‘ 36 5 1 1 - . 2 2 - e ,,A,WV,___M._',V_\»? ‘ . ’; [e . e) -
36512 65007420 B ‘ S At Lo
36516 22 o e .
36517 14000020004407 NI Ca it
36526 W-122031300 T
36532 65036571 '
—36536 W 5503655500173220 -
36546 14037147001732 \
36555 W 3203731000173270
36565 65036626 : oo Do
——— 36871 W~ 14037156036644 -

o 36600 14037156007715 ‘ IETE ‘ SR
—— 36607 ~ W~ 14037001000151 ~ o ;
36616 5403653600173205 - R TR

36626 ~3200205140012277
36636 14 ot
36640 65007502 .
’ ‘ e X \

' \f‘mm‘mw 367 50 iz

g,

36660

36670

- 3 6674 <

36T01

3672Q
—- 36727

36736

(. s 36742 S

36745
36753

‘: ~~~~~ 3 6 7 5 6 JEA—

36761

jwwww36764“””

36767

36775

T 36TTT

37002

37012

)“37015 . g

37020

-.'..‘..‘,moww, 37023 (RS-

37026

37031

37034

37042

st e 37 045 o

37050

37053

37056

37064

37072
-~ 37100
T37106

',H37114

S ..‘36645 T—
— 36654 JERE

36664

W 212322266747
W 242146314615
W 2123224631646

!

}

©20003437 -

60

1400002000000#

65003442

21003437

~34037136037276-

2403674170

65000172

Transfer one charéctéf'from progra
107372747000220"_ _ to the tape buffer and update

34037136000024 . pointer as necessary.

- 34037136006653—

0 O 4 5 47 A _.wm,.w;maw.w{ l

-~ 00O00Q # S ¢

65033066

Constants, parameters and working

050003 areas for the relocating routine.-

001732

001777

- O O 2 O 5 1 o ,.v_A__.___w.*:,_,.fm__./ﬂ.‘::

002002

O 3 6 3 20 ;wm,’,,“,MMW%W.,,WM{ ; kL 3

0047
036626
4000

~1515151581515 Working area for prog. name of std. prog.

004754 ACBFXR e

050002
704435 :
004753 ACBFPR

s

Operand of branch instructions

004755 ACEFPP } fhat refer tq standard routines.

004756 ACBPXP
004761 DAOIO

004757 'ACBOIO'““M"‘;

+

”212322266751Wwﬂi‘

050000

“ap7361 [
037055

037063 Sl
212322264751

Table of the six standard.
 program unit used. -

J I PR ‘ c o s

212322264747

61

37122 W
37125 W 000000 '

37130 © "W 0003727(250) 3 record 1ength of program record in tape
37133 W 000000 10°* ‘ e ’
3136 W o1 T , {

37137 W 037353 F
37143 W 0002 WSl S
37146 W 23 W Se—— - \\
— - BPLAT W Qb | SRR g
37150 W 05 AN o SR E ‘
............. 3 ? 1 5 1 .- w i 06 e ,;.y_,v,f.mw.w,w.wg |
37152 W 26 :
PR — 3 7 1 5 3 ~ W R 0 7 oo el ... A W.__,_,_.,_\w_.‘,?’n
{ 37154 W 10 /=
"““‘“"*”"‘"37155 W11
3715 W 20 X
: : ;-—uv-w;wm_. 3 7 1 5 7 [, w — 3 0 RN, 5,
, 37160 W 000035 i
s, 37 1 6 3 vt w 40 Y N
37164 W 000045 ;
TT3T167 W 54 Banner character for *-record.
37170 W 000065 :)
— 37173~ W 000072 | -
37176 W 77 Control character ($ to set end of tape record).
37177 W 002477 Ry - e
37202 W 005645
~37205 W 000114 :
5 37210 W 031223 Contain exit point to monitor. 3
—— 37213 W 000157 |
- 37216 W 2123242325
~ 37223 - W~ 010017
37226 W 0125462615
37233 W 0125513115
37240 W 151515
e 372643 W 0031150 s
; 37246 W &4 Control character.
37247 0 W 100000 \ \
37252 W 20
37253 W 000161
37256 W 212322254322
37264 WG ner character for J-record.
37265 W 212322233350 ,

I;MW37273””

37277
~ 37308 -
37310

SUCT— 37 3 1 1 .

37314

-~ 37317
37329V

37343

< 37351

~~;;3?352q”

W 60004547

W 400000000000

‘W 030157 Pointer to table of unresolved ESD entry.r

W 50
"W 030157 Base address of unresolved ESD Table.
W 000202 , :
"W 00 .

W 000202

; W 61702474
~ 37332

W 000000000000003231 B S S
W 777777777777
_W 00

-

W l 156000016126000000000()01600001572lOlﬁOOO

Tape buffer area.

62

2

SET POINTER
16 BEGIN OF
TATE BUFFER

L

COMPUTE BEGIN
ADDRESS OF
PROGRAM UMIT

ARD DATA ARER

PRINT THE
ADDRESS

OMPUTE
RELOCATION
AUSMENT

A

ADD SYMBOLIC
NAME AND ADDR.

1 oF CURRENT UNTT
Jo RESDLVED
REFERENCE TAB!

B
RESOVE EBSD .

ENTRY {F
POSSIBLE

55T LABEL ‘\
=

FO
| SEGMENT-HERDER
REWRD

- Yo RESOLNE

RELOCATE
 THAS
PROGRAM

CORIT

<

SET POINTER

REFERENCE
1o THIS
PROGRAM

N\

SEY LABEL
FOR

TRAILER
RECCRD

WRITE
tape #1

SET LOADER

1O LOAD
STAMDARD
ROUTINE

INITIALIZE
POINTER

-

PLACE
CTARTING ADDR.

COIN
TAFE BUFFER

SET LOADER
To LOAD i
ORDINARY -

ROUTINE

PERFORM
INITIALIZATION
: OF THAT
FROSRAM UNIT

SET LQADER
TO LOAD
. USER'S)
PROGRAM UNIT

63

(sTART) _
.) ,

CLEARCOUNTER | -
&F CHAR.IN

RELOCATE
Pa?o‘lsnn L FET CONTROL -
. Al
UNIT CHARALTER ‘
To 20g .

INSTRUCTION

BUFFER FILLED

SET LONTROL
CHARPCTER :
To 404 I;—*—'——J Y L

SET POINTERCSY |

: . AS NEEDED YO - |/
DETERMIME
INSTRUCTION
LENGTH

YR ON PO
AT NORMAL
10017,)

SET POINTER
TO6 NEW

TURN ON POINT

&

| oF ADDRESS

CHECK YYPE

AND. -
RELOLATE

“TRANSFER
As
DA-TYPE TRANSFER ;
PNSTRUCTION CURRENT —
A S
@
TRANSFER
CONTROL
CHAR. 60
CHECK
| ENDOF
. @ _|rReLocATION
DECREMENT g - :
PINTER o
BYONE - zﬁ:ﬂmi.” oF
NO OPCOD! .
¢ = "'S’“' ? . INSTRULTION INTO
CONTROL CRAR.

S

J

CLEAR -NO: DF
CHAR. YO ZERD

PROCESS
PLAOR B
INSTRUCTION

CHECK TYPE
OF ADDRESS .
AND ‘

RELOCATE

N

CLEAR INDEX BITS
AND SUBSTITUTE
005 OPCODE WITH 44,

PCB OR POT
INSTR.

{vouBLE
| OPERANDS)

CHECK TYPE

OF ADDRESS
AND

¢ RELOLATE |

4

ADVANCE
< POINTER

1O
SECOND OPERAND

INITIALIZE
POINTER To

START OF UNRE-
SOLVED ESD

HAME MATCHE

a

STEP POINTER

T0
NEXT ENTRY

" HET POINTER
TO UNRESOLVE D
REFERENCE (BOR
DSAY TO THIS UNIT

PLACE POINTER
AT THE END
OF PROGRAM

™ BUFFER

€%

SET POINTER
TO RESOLVE
RECEAENCE
TO THS
PROGRAW

PLACE
TURN-ON=POINT
BF THIS PROGRAM
AFTER THE POINTER
TO ALCOMMODATE
RESOLVING OF EsP

USING LOADER

PELETE ENTRY
FROM

UNRESOLVED
TABLE

ADVANCE
PEINTER
oF

BuUFFER

o~

65

((sTart)

MOVE CURRENY SET POINTER. | . :
CHARACTER TO ‘ To FiRST o
BUFFER (ONE : . CHARACTE R
CHARALIER) o OF FIELD.
. My AL
ATVANCE . o . mAsstR
POINTER OF RER : e |] paerves
CURRENT CHAR. ; . ' ¥ 5TEP To : . . \NSTRDLT\ON
PEING RELOONTER . - 1 NEXT CHAR. TR e e
! OF FIELD
ATNANCE
POINTER OF ~
CURRENT woChA- L

_Tion IN BPUFFER

N

INCRE MENT "
NUMBER OF =
CHAR. MOVED ; ‘ , INCREMENT : Move

BY 1 : . 4 COUNTER | conTRoL cHAR.

F OF NUMBE R
OF CHARACTER CG'ZB’) FiRGY
CHELKED AND LAST

N N £ - Nt LOCATION AN_b
RETURN _ L | , CHARACTER

! THAT FILLE THE

»

TRANSFER

CURRENT , CRLCULATE ol ik -~
CHARBLTER |-FIRST & LAST p— RETURN
; LOCATION S p -

OF THiS FIELD

RELOCATE
; FIRST & LASY
N : : 4 LOCATION

{ STARY ’

SAVE
INDEX
TS

OMMON ADDR

RELOCATE .
FOR

UNLABELED

CCMMON ADDR.

I

CHECK TYPE

OF ADDRESS
AND

£ REL(!ATE

RELOCATE

FOR
LABELED

E0MMON ADDR.

RESTORE
INDEY
eits

- 67

68

PROCESS
bsAORB | | ,
INSTRUCTION] | . CHECK
S S END OF
VL L : o RELOCATIO
A"
CE ADDRESS
INCLUDE ACBCCH Py
NTRY 1N " | OF CURRENT &/bsA
" ooty INSTR, CRELOCAYEDY -
Tt abLE -] IN UNRE. TaBLE <)
i v THEN BUFFER
s 1% FILLED; 567
SETFLAG IN TABLE t NO. OFcHam
CLEAR ‘ T6 [NDICATE B N AND T7g 14 BUF
INDEX BITS " 4 OR DSA INSTR.
WRITE
1 RECORD
CHECK WHICH Sl SET LABEL
STANDAR D ey P -, FOR
ROUTINE ; : NQN ~HMEADER
Y115 caLED —— RECORD
PROCESS REP,

TO STANDARD
! ROUTINE (SAME INITIALIZE
' AS OTHER REF.) APPRAPRIATE
POINTERS

WITh RESOLVED
ESD ADDRESS

REPLACE ADDR. ‘ . : : . ’
OF INSTRUCTION . o I 3 [

R

PLACE UNRE SOLVE!

ENTRY IN
UNRESOLVED
REFERENCE TARLE

BIOGRAPHY

Mr. Yunyong Teng-amnuay was born on'tEe:ZOth of August 1954,
graduaﬁed with the»Bachelor Degfee in Electrical Engineering with
First Class Honour from the Department‘of,Electrical\Enginéering,
Faculty of Engineering, Chulalongkorn Universit& and now wﬁrks as

a lecturer in the Department of Computer Engineering at the same

~university.

69

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (English)
	Abstract (Thai)
	Acknowledgememts
	Contents
	Chapter I Concepts of relocation
	Chapter II System formats
	Chapter III The relocation mechanism
	Chapter IV Discussion of the mechanism
	Chapter V Conclusion and suggestion
	References
	Appendix
	Vita

