## CHAPTER IV

## Results

## I. General observation of STZ-rats, Nicardipine treated STZ-rats

## and Nicardipine combined with Cilazapril treated STZ-rats.

The streptozotocin treated rat was used as an experimental model of diabetes meliitus in this study. The objective of this part of the work was to investigate the effects of nicardipine on the diabetic model and the effects of nicardipine combined with cilazapril on the diabetic model with respect to plasma glucose. The results showed in Table 4.1 indicated that all three groups ( $8,16,20$ weeks) of six STZ-rats, six STZ-N rats and six STZ-NC rats were severe hyperglycemia. There was no significantly difference of plasma glucose among these three groups. The body weights of STZ-rats, STZ-N rats and STZ-NC rats were significantly decreased as compared to those of the age-match controls. However, the ratio of heart weight per 100 grams body weight in 16 and 20 weeks of STZ-rat groups, STZ-N rat groups and STZ-NC rat groups were significantly higher than those of control groups.
II. Studies of cardiovascular functions in STZ-rats, nicardipinetreated STZ-rats and nicardipine combined with cilazapril-treated STZ-rats.

Cardiovascular functions including heart rate (HR), mean arterial pressure (MAP), aortic flow rate (AFR), coronary flow rate (CFR), left ventricular isotonic contraction (LVIC) and arterial wall thickeness were determined for all three different age groups ( $8,16,20$ weeks) of six controls, six $\mathrm{STZ}-\mathrm{N}$ rats and six STZ - NC rats as summarized in Tables 4.3-4.10. Means and standard deviations of all these assessed cardiovascular parameters were also demonstrated graphically as showed in Figures 4.1-4.14.

Heart rate of treated and control rats were summarized in the Table 4.4. In eight weeks after treatment, the heart rate of the treated rats were slower than those of control rats. However, the STZ - N rats showed their heart rates were much lower than the others. In the same manner, the sixteen weeks treatments showed that all STZ-treatments have their heart rates lower than those of the controls. However at twenty week experimental period, there were no difference between the STZrats and the controls.

In Table 4.5, the mean arterial pressure showed that at eight weeks of experimental period, mean arterial pressure of STZ-rats, STZ-N rats and STZ-NC rats were significantly less than those of the controls. Moreover, mean arterial pressure of nicardipine treated rats lower than those of the STZ-rats at the same experimental periods. In sixteen weeks
of experiments mean arterial pressure of STZ-N rats and STZ-NC rats were significantly lower than those of the control and the STZ-rats. In addition, the mean arterial pressure of STZ-NC rats group were the lowest in the same age groups. Furthermore, at twenty weeks it was found that mean arterial pressure of STZ-NC rats group were signicantly less than those of the others. The systolic blood pressure and diastolic blood pressure were showed in Tables 4.6-4.7. The results indicated that both systolic blood pressure and diastolic blood pressure were concomitant with the results of mean arterial pressure.

Aortic flow rate of all three different age groups ( $8,16,20$ weeks) of six control rats, STZ-rats, nicardipine treated STZ-rats and nicardipine combined cilazapril treated STZ-rats were not different except that the group of 16 -week STZ-rats that had a decrease of aortic flow rate as compared to another groups.

Table 4.9 showed the coronary flow rate of treated and control rats. At eight weeks, coronary flow rate of STZ-rats, nicardipine treated STZ-rats and nicardipine combined with cilazapril treated STZ-rats group were not different as compared to the control/ rats with the same age. In 16 weeks experiment, coronary flow rate of STZ-rats and nicardipine treated STZ-rats were not different as compared to control group, with the exception of STZ- rats. STZ-treated rats which seem to have their flow rates less than those of the other groups of treatments. However, the flow rate of STZ-NC rats was significantly higher than STZ- rats.

Moreover, at twenty weeks results showed coronary flow of STZ-rat group was significant less than those of controls. Interestingly, STZ-N rats and of STZ-NC rats. The coronary flow rates of were significantly higher than STZ-rats.

Left ventricular isotonic contraction (LVIC, gm/ 100 gm of heart weight) were showed in Table 4.10. At eight weeks, the results of LVIC showed that there was no significant different among the three groups of STZ - rats, nicardipine treated STZ - rats and nicardipine combined cilazapril treated STZ-rats and also with those of controls. However, the results of sixteen and twenty week experimental period, showed the decrease of LVIC in STZ - rat groups as compaired to those of the controls. Interestingly, at 16 and 20 weeks, there were no significant different of LVIC between the groups of nicardipine treated STZ-rat and nicardipine combined with cilazapril treated STZ-rat as compared to those of the control groups.
สถาบันวิทยบริการ


III Studies of morphological examinations of hearts of STZ-rats, nicardipine treated STZ-rats and nicardipine combined treated STZ-rats

The results of morphological studies were showed in Figures 4.15-4.26. The thickness of cross-section of heart specimens were obtained from three controls, three STZ - rats, three STZ-N rats and three STZ-NC rats from each aged groups (8, 16, 20 weeks). In addition, the thickness of left ventricular wall, right ventricular wall and interventricular septal wall were measured randomly by the micrometer of light microscope $400 \times$ - objective. Means and standard deviation of these wall thickness values were calculated and summarized in Table 4.11-4.13.

For the morphological studies of arterial wall thickness were showed in Figures 4.27-4.34 and Table 4.14. The thickness of cross section of arterial wall were obtained from controls, STZ-rats, STZ- N rats and STZ-NC rats from each aged groups.


Tables 4.11-4.14 demonstrated that :

1. At the eight and twenty weeks of experimental period, the results indicated that left ventricular wall of STZ - rats were thicker than those of controls as well as $\mathrm{STZ}-\mathrm{N}$ rats and $\mathrm{STZ}-\mathrm{NC}$ rats. However, the results were not consistent for those groups at sixteen weeks. Since the left ventricular wall of STZ-rats and STZ- N rats were thicker than control and STZ- NC rats as showed in Figures 4.15-4.26 and Tables 4.11-4.13.
2. At eight and twenty weeks of experimental peroid, the right ventricular wall thickness of STZ-rats and STZ-treated rats were not significantly different from the control groups $(\mathrm{p}<0.05)$. However, the results from sixteen weeks studies showed that the right ventricular wall of STZ-rats and STZ-N rats were thicker than controls and STZ-NC rats as grapically demonstrated in Figures 4.15-4.26 and Tables 4.11-4.13.
3. The results of interventricular septum wall thickness indicated that at eight weeks there was no significantly different between the treated and control rats. At sixteen weeks, the interventricular septum wall thickness of STZ - rats was thicker than the other groups. But at twenty weeks the interventricular septum
wall thickness of STZ-rats and STZ-N rats were thicker than those of controls and STZ- NC rats.
4. At sixteen weeks, the arterial wall thickness of STZ-rats were significantly thicker than those of controls, STZ- N rats and STZ- NC rats. Whereas at twenty weeks, the arterial wall thickness of STZ-rats were no significantly difference from those of controls, STZ- N rats and STZ- NC rats. ( $\mathrm{p}<0.05$ ).


Table 4.1 Plasma glucose ( $\mathrm{mg} / \mathrm{dl}$ ) of $8-20$ weeks of controls, STZ-rats, nicardipine treated STZ-rats, nicardipine combined with cilazapril treated STZ-rats


NS $=$ non significant difference as compared to STZ-rat (p<0.05).

* Statistical difference as compared to control ( $\mathrm{p}<0.01$ ).

Table 4.2 Body weight (BW, gm) of 8-20 weeks of controls, STZ-rats, nicardipine treated STZ-rats, nicardipine combined with cilazapril treated STZ - rats.


Table 4.3 Ratio of heart weight per 100 grams body weight 8-20 weeks of controls, STZ-rats, nicardipine treated STZ-rats, nicardipine combined with cilazapril treated STZ-rats.

| Groups | Ratio of heart weight per 100 grams body weight |  |  |
| :---: | :---: | :---: | :---: |
|  | 8 weeks | 16 weeks | 20 weeks |
| Controls $(\mathrm{n}=6)$ | $0.32 \pm 0.03$ | $0.26 \pm 0.01$ | $0.27 \pm 0.01$ |
| STZ-rats $(n=6)$ | $0.40 \pm 0.12$ | $0.45 \pm 0.08^{\#}$ | $0.50 \pm 0.04{ }^{\text {\# }}$ |
| Nicardipine treated STZ-rats $(\mathrm{n}=6)$ | $0.36 \pm 0.02^{\text {Ns }}$ | $0.36 \pm 0.03^{\prime \prime \prime}$ | $0.36 \pm 0.02{ }^{\text {Ns }}$ |
| Nicardipine combined with cilazapril treated STZ-rats $(n=6)$ | $\underbrace{0.38 \pm 0.03^{\text {Ns }}}$ | $0.38 \pm 0.05^{* * *}$ | $0.35 \pm 0.01^{\text {Ns }}$ |

\# Statistical difference as compared to control ( $\mathrm{p}<0.05$ ).
\#\# Statistical difference as compared to STZ-rat ( $\mathrm{p}<0.05$ ).
$\mathrm{NS}=$ non significant difference as compared to STZ-rat ( $p<0.05$ ).

Table 4.4 Heart rate (beats $/ \mathrm{min}$ ) of 8-20 weeks of controls, STZ-rats, nicardipine treated STZ-rats, and nicardipine combined with cilazapril treated STZ-rats.

\# Statistical difference as compared to control ( $\mathrm{p}<0.05$ ).
\#\# Statistical difference as compared to STZ-rat ( $\mathrm{p}<0.05$ ).
NS $=$ non significant difference as compared to STZ-rat ( $p<0.05$ ).

Table 4.5 Mean arterial pressure ( mmHg ) from common carotid artery of 8-20 weeks of controls, STZ-rats, nicardipine treated STZ-rats, and nicardipine combined with cilazapril treated STZ-rats.

| Groups | Mean arterial pressure ( mmHg ) |  |  |
| :---: | :---: | :---: | :---: |
|  | 8 weeks | 16 weeks | 20 weeks |
| Controls $(n=6)$ | $101.38 \pm 6.18$ | $92.49 \pm 17.56$ | $96.04 \pm 19.49$ |
| $\begin{aligned} & \text { STZ-rats } \\ & \quad(\mathrm{n}=6) \end{aligned}$ | $86.38 \pm 31.68$ | $108.05 \pm 3.85$ | $113.05 \pm 17.84$ |
| Nicardipine treated STZ-rats $(\mathrm{n}=6)$ | $54.71 \pm 20.66^{\prime \prime \prime}$ | $82.72 \pm 21.50$ | $102.49 \pm 19.11^{\text {NS }}$ |
| Nicardipine combined with cilazapril treated STZ-rats $(n=6)$ | $61.0 \pm 21.47^{\mathrm{Ns}}$ | $44.99 \pm 12.15^{*}$ | $76.94 \pm 19.36^{\text {\#\# }}$ |

\# Statistical difference as compared to control ( $\mathrm{p}<0.05$ ).
\#\# Statistical difference as compared to STZ-rat ( $\mathrm{p}<0.05$ ).
NS $=$ non significant difference as compared to STZ-rat ( $p<0.05$ ).

Table 4.6 Systolic blood pressure ( mmHg ) from common carotid artery of 8-20 weeks of controls, STZ-rats, nicardipine treated STZ-rats, and nicardipine combined with cilazapril treated STZ-rats.

| Groups | Systolic blood pressure (mmHg) |  |  |
| :---: | :---: | :---: | :---: |
|  | 8 weeks | 16 weeks | 20 weeks |
| Controls $(\mathrm{n}=6)$ | $115.83 \pm 6.64$ | $107.50 \pm 16.04$ | $112.50 \pm 22.74$ |
| $\begin{aligned} & \text { STZ-rats } \\ & \qquad(n=6) \end{aligned}$ | $105.83 \pm 31.84$ | $129.16 \pm 9.70^{\prime \prime}$ | $134.16 \pm 19.08$ |
| Nicardipine treated | $80.00 \pm 19.74^{\text {\# }}$ | $97.50 \pm 26.22^{* \prime \prime}$ | $122.50 \pm 28.06^{\text {NS }}$ |
| STZ-rats $(\mathrm{n}=6)$ |  |  |  |
| Nicardipine combined with cilazapril treated STZ-rats | $75.8 \pm 25.18^{\prime \prime \prime}$ | $65.00 \pm 12.24^{\text {min }}$ | $94.16 \pm 20.83^{\ldots \#}$ |
|  | 0 a | ص |  |

\# Statistical difference as compared to control ( $p<0.05$ ).
\#\# Statistical difference as compared to STZ-rat ( $\mathrm{p}<0.05$ ).
NS $=$ non significant difference as compared to STZ-rat ( $p<0.05$ ).

+ Statistical difference as compare to nicardipine treated STZ-rat ( $p<0.05$ )

Table 4.7 Diastolic blood pressure ( mmHg ) from common carotid artery of 8-20 weeks of controls, STZ-rats, nicardipine treated STZ-rats, and nicardipine combined with cilazapril treated STZ-rats.

| Groups | Diastolic blood pressure ( mmHg ) |  |  |
| :---: | :---: | :---: | :---: |
|  | 8 weeks | 16 weeks | 20 weeks |
| Controls $(\mathrm{n}=6)$ | $94.16 \pm 6.64$ | $85.00 \pm 18.97$ | $88.33 \pm 16.93$ |
| $\begin{aligned} & \text { STZ-rats } \\ & \quad(\mathrm{n}=6) \end{aligned}$ | $76.66 \pm 31.72$ | $103.33 \pm 9.30$ | $110.83 \pm 19.60$ |
| Nicardipine treated STZ-rats $(\mathrm{n}=6)$ | $47.50 \pm 18.37^{\prime \prime \prime}$ | $68.33 \pm 25.23{ }^{\text {\#\# }}$ | $90.83 \pm 26.34{ }^{\text {NS }}$ |
| Nicardipine combined with cilazapril treated STZ-rats $(n=6)$ | $\begin{aligned} & 49.16 \pm 23.11^{\# \prime \prime} \\ & \text { a } \\ & 99 \text { ² } \end{aligned}$ | $\left\lvert\, \begin{aligned} & 34.16 \pm 13.19^{* i^{*}} \\ & \text { บริการ } \end{aligned}\right.$ | $71.66 \pm 22.94^{\# \#}$ |

\# Statistical difference as compared to control ( $\mathrm{p}<0.05$ ).
\#\# Statistical difference as compared to STZ-rat ( $p<0.05$ ).
NS $=$ non significant difference as compared to STZ-rat ( $p<0.05$ ).

+ Statistical difference as compare to nicardipine treated STZ-rat ( $p<0.05$ )

Table 4.8 Aortic flow rate ( $\mathrm{ml} / \mathrm{min}$ ) of $8-20$ weeks of controls, STZ-rats, nicardipine treated STZ-rats, nicardipine combined with cilazapril treated STZ-rats.

\# Statistical difference as compared to control ( $\mathbf{p}<0.05$ ).
\#\# Statistical difference as compared to STZ-rat ( $\mathrm{p}<0.05$ ).
NS $=$ non significant difference as compared to STZ-rat ( $p<0.05$ ).

Table 4.9 Coronary flow rate ( $\mathrm{ml} / \mathrm{min}$ ) of $8-20$ weeks of controls, STZ-rats, nicardipine treated STZ-rats, and nicardipine combined with cilazapril treated STZ-rats.

| Groups | Coronary flow rate ( $\mathrm{ml} / \mathrm{min}$ ) |  |  |
| :---: | :---: | :---: | :---: |
|  | 8 weeks | 16 weeks | 20 weeks |
| $\begin{aligned} & \text { Controls } \\ & \qquad(\mathrm{n}=6) \end{aligned}$ | $5.70 \pm 1.56$ | $4.83 \pm 1.29$ | $6.53 \pm 1.39$ |
| STZ-rats $(\mathrm{n}=6)$ | $4.45 \pm 1.04$ | $3.41 \pm 1.22$ | $3.31 \pm 0.81^{*}$ |
| Nicardipine treated STZ-rats $(\mathrm{n}=6)$ | $5.76 \pm 0.75^{\text {NS }}$ | $4.46 \pm 0.76^{\text {Ns }}$ | $6.50 \pm 1.22^{* *}$ |
| Nicardipine combined with cilazapril treated STZ-rats | 5.53 $\pm 0.81{ }^{\text {NS }}$ | $5.78 \pm 1.37^{* *}$ | $5.25 \pm 1.17^{* *}$ |

= non significant difference as compared to STZ-rats $(p<0.05)$.

* Statistical difference as compared to control ( $\mathrm{p}<0.01$ ).
** Statistical difference as compared to STZ-rat ( $\mathrm{p}<0.01$ ).

Table 4.10 Left ventricular isotonic contraction (LVIC, gm/ 100 gm of heart weight) of 8-20 weeks of controls, STZ-rats, nicardipine treated STZ-rats, and nicardipine combined with cilazapril treated STZ-rats.


NS = non significant difference as compared to STZ-rat ( $p<0.05$ ).

* Statistical difference as compared to control ( $\mathrm{p}<0.01$ ).
** Statistical difference as compared to STZ-rat ( $p<0.01$ ).

Table 4.11 Sizes of left and right ventricular wall and interventricular septum wall (um) of 8 weeks of controls, STZ-rat, nicardipine treated STZ-rats, and nicardipine combined with cilazapril treated STZ-rats.

|  | Sizes of left and right ventricular wall and interventricular septum wall (um) of 8 week rals |  |  |
| :---: | :---: | :---: | :---: |
|  | Left ventricular wall (LV) | Right ventricular wall (RV) | Interventricular septum wall (IVS) |
| Controls $(n=3)$ | $2166.66 \pm 175.09$ | $958.33 \pm 144.42$ | $1673.33 \pm 155.34$ |
| $\begin{aligned} & \text { STZ-rats } \\ & \quad(\mathrm{n}=3) \end{aligned}$ | $\begin{array}{r} 2510.00 \pm \\ 131.14^{*} \end{array}$ | $\begin{array}{\|r} 1056.66 \pm \\ 81.29 \end{array}$ | $\begin{array}{r} 1893.33 \pm \\ 363.53 \end{array}$ |
| Nicardipine treated STZ-rats $(\mathrm{n}=3)$ | $\begin{array}{r} 2175.00 \pm \\ 171.97 \end{array}$ | $\begin{gathered} 976.66 \pm \\ 129.06^{\mathrm{Ns}} \end{gathered}$ | $\begin{gathered} 1858.33 \pm \\ 285.36^{\mathrm{NS}} \end{gathered}$ |
| Nicardipine combined with cilazapril treated STZ-rats ( $\mathrm{n}=3$ ) | $2186.66 \pm$ $132.5{ }_{\sigma}^{\#}$ | - <br> 835. $98.48^{\mathrm{NS}}$ $+\mathrm{N}^{\mathrm{Ns}} 7 \delta$ | $\begin{aligned} & 1411.66 \pm \\ & {\text { 1 } 171.48^{\text {s }}}^{\text {af }} \end{aligned}$ |

\# Statistical difference as compared to control ( $\mathrm{p}<0.05$ ).
\# \# Statistical difference as compared to STZ-rat ( $\mathrm{p}<0.05$ ).
$\mathrm{NS}=$ non significant difference as compared to STZ-rat ( $\mathrm{p}<0.05$ ).

Table 4.12 Sizes of left and right ventricular wall and interventricular septum wall (um) of 16 weeks of controls, STZ-rats, nicardipine treated STZ-rats, and nicardipine combined with cilazapril treated STZ-rats.

|  | Sizes of left and right ventricular wall and interventricular septum wall (um) of 16 weeks |  |  |
| :---: | :---: | :---: | :---: |
|  | Left ventricular wall (LV) | Right ventricular wall (RV) | Interventricular sepum wall(IVS) |
| Controls $(n=3)$ | $2211.00 \pm 243.13$ | $860.00 \pm 35.00$ | $1559.00 \pm 27.55$ |
| $\begin{aligned} & \text { STZ-rats } \\ & \quad(\mathrm{n}=3) \end{aligned}$ | $\begin{array}{\|c} 2648.33 \pm \\ 141.09^{\#} \end{array}$ | $\begin{array}{r} 991.66 \pm \\ 25.65^{\circ} \end{array}$ | $\begin{array}{\|c} 2053.33 \pm \\ 140.02^{\#} \end{array}$ |
| Nicardipine treated STZ-rats $(\mathrm{n}=3)$ | $\begin{aligned} & 2273.3333 \pm \\ & 253.2456^{\text {NS }} \end{aligned}$ | $\begin{gathered} 953.3333 \pm \\ 22.5462^{*} \end{gathered}$ | $\begin{gathered} 1875.0000 \pm \\ 130.2881^{\mathrm{NS}} \end{gathered}$ |
| Nicardipine combined with cilazapril treated STZ-rats ( $\mathrm{n}=3$ ) | $\begin{array}{r} 2218.33 \pm \\ 165.40 \end{array}$ | $\begin{array}{r} 875.00 \pm \\ 62.45= \end{array}$ | $\begin{aligned} & 1818.33 \pm \\ & 105.63^{\mathrm{NS}} \end{aligned}$ |

\# Statistical difference as compared to control ( $\mathrm{p}<0.05$ ).
\# \# Statistical difference as compared to STZ-rat ( $\mathrm{p}<0.05$ )
NS $=$ non significant difference as compared to STZ-rat ( $\mathrm{p}<0.05$ ).

+ Statistical difference as compared to nicardipine treated STZ-rat ( $\mathrm{p}<0.05$ ).
* Statistical difference as compared to control ( $\mathrm{p}<0.01$ ).
** Statistical difference as compared to STZ-rat ( $\mathrm{p}<0.01$ ).

Table 4.13 Sizes of left and right ventricular wall and interventricular septum wall (um) of 20 weeks of controls, STZ-rats, nicardipine treated STZ-rats, and nicardipine combined with cilazapril treated STZ-rats.

|  | Sizes of left and right ventricular wall and interventricular septum wall (um) of 20 week rats |  |  |
| :---: | :---: | :---: | :---: |
|  | Left ventricular wall (LV) | Right ventricular wall (RV) | Interventricular sepum wall (IVS) |
| Controls $(\mathrm{n}=3)$ | $2355.00 \pm$ 140.00 | $\begin{array}{r} 970.00 \pm \\ 133.32 \end{array}$ | $\begin{array}{r} 1960.00 \pm \\ 221.97 \end{array}$ |
| $\begin{aligned} & \text { STZ-rats } \\ & \qquad(\mathrm{n}=3) \end{aligned}$ | $\begin{array}{r} 3130.00 \pm \\ 330.45^{\circ} \end{array}$ | $\begin{array}{r} 1075.00 \pm \\ 25.00 \end{array}$ | $\begin{gathered} 2371.66 \pm \\ 201.01^{*} \end{gathered}$ |
| Nicardipine treated STZ-rats $(\mathrm{n}=3)$ | $\begin{array}{r} 2620.33 \pm \\ 67.41^{\prime \prime} \end{array}$ | $9_{104.76^{\mathrm{NS}}}$ | $\begin{gathered} 2213.33 \pm \\ 50.58^{\text {NS }} \end{gathered}$ |
| Nicardipine combined with cilazapril treated STZ-rats $(\mathrm{n}=3)$ | $\begin{array}{r} 2488.33 \pm \\ 92.91^{* *} \end{array}$ | $\begin{gathered} 991.66 \pm \\ 187.63^{\text {Ns }} \end{gathered}$ | $\begin{gathered} 1893.33 \pm \\ 129.06^{\text {"It }} \end{gathered}$ |

\# Statistical difference as compared to control ( $\mathrm{p}<0.05$ ).
\# \# Statistical difference as compared to STZ-rat ( $\mathrm{p}<0.05$ ).
NS = non significant difference as compared to STZ-rat ( $p<0.05$ ).

* Statistical difference as compared to control ( $\mathrm{p}<0.01$ ).
** Statistical difference as compared to STZ-rat ( $\mathrm{p}<0.01$ ).

Table 4.14 Area of arterial wall thickening ( $\mu_{\mathrm{m}}{ }^{2}$ ) from 16-20 weeks of controls, STZ-rats, nicardipine treated STZ rats and nicardipine combined with cilazapril treated STZ rats.

| Groups | Area of arterial wall thickness per surface area of |  |
| :--- | :---: | :---: |
|  | vascular wall $\left(\mu \mathrm{m}^{2}\right)$ |  |

\# Statistical difference as compared to control ( $\mathrm{P}<0,05$ ).
\# Statistical difference as compared to STZ-rat $(\mathrm{P}<0.05)$.
NS non significant difference as compared to $\operatorname{STZ}-\operatorname{rat}(\mathrm{P}<0.05)$.


Values are mean $\pm S D ; n=6$ rats.

Figure 4.1 Plasma glucose ( $\mathrm{mg} / \mathrm{dl}$ ) of controls, STZ rats, nicardipine 9 919 treated STZ-rats (STZ-N) and nicardipine combined with cilazapril treated STZ - rats (STZ-NC) at 8, 16 and 20 weeks.

Values are mean $\pm \mathrm{SD} ; \mathrm{n}=6$ rats.

* $=$ Statistical difference as compared to control ( $\mathrm{p}<0.01$ ).

NS $=$ non significant difference as compared to STZ-rat ( $\mathrm{P}<0.05$ ).


Values are mean $\pm S D ; n=6$ rats.

Figure 4.2 Body weight (Bw,gm) of controls, STZ-rats nicardipine treated STZ-rats (STZ-N) and nicardipine combined with cilazapril treated STZ-rats (STZ-NC) at 8, 16 and 20 weeks.

Values are mean $\pm S D ; n=6$ rats.

* $=$ Statistical difference as compared to control ( $p<0.01$ ).

NS $=$ non significant difference as compared to $\operatorname{STZ}-\operatorname{rat}(\mathrm{P}<0.05)$.


Figure 4.3 Ratio of heart weight per 100 grams body weight (\%) of controls, STZ - rats, nicardipine treated STZ - rats (STZ-N) and nicardipine combined with cilazapril treated STZ-rats (STZ-NC) at 8, 16 and 20 weeks.

Values are mean $\pm \mathrm{SD} ; \mathrm{n}=6$ rats.
\#\# = Statistical difference as compared to STZ-rat ( $\mathrm{p}<0.05$ ).

* $=$ Statistical difference as compared to control ( $\mathrm{P}<0.01$ ).
** = Statistical difference as compared to STZ-rat ( $p<0.01$ ).
NS $=$ non significant difference as compared to $\operatorname{STZ}-\operatorname{rat}(\mathrm{P}<0.05)$.


$$
\text { Values are mean } \pm S D ; n=6 \text { rats. }
$$

Figure 4.4 Heart rate (beats, min) of controls, STZ - rats, nicardipine treated STZ - rats (STZ-N) and nicardipine combined with (9) cilazapril treated STZ - rats (STZ-NC) at 8, 16 and 20 weeks.

Values are mean $\pm S D ; n=6$ rats.
$\#=$ Statistical difference as compared to control $(\mathrm{P}<0.05)$.
\#\# = Statistical difference as compared to STZ-rat ( $p<0.05$ ).
NS $=$ non significant difference as compared to $S T Z-$ rat $(P<0.05)$.
mmHg


Values are mean $\pm S D ; n=6$ rats.

Figure 4.5 Mean arterial pressure ( mmHg ) of controls, STZ - rats, nicardipine treated STZ-rats $(\mathrm{STZ}-\mathrm{N})$ and nicardipine combined with cilazapril treated 9 STZ-rats (STZ-NC) at 8,16 and 20 weeks.

Values are mean $\pm S D ; n=6$ rats.
\# = Statistical difference as compared to control ( $\mathrm{P}<0.05$ ).
\#\# = Statistical difference as compared to STZ-rat (p<0.05).
NS $=$ non significant difference as compared to STZ-rat ( $\mathrm{P}<0.05$ ).


Values are mean $\pm S D ; n=6$ rats.

Figure 4.6 Systolic blood pressure ( mg Hg ) of controls, STZ-rats, nicardipine treated STZ-rats (STZ-N) and nicardipine combined with cilazapril treated STZ-rats (STZ-NC) at 8,16 and 20 weeks.

Values are mean $\pm$ SD; $n=6$ rats.
\# $={ }^{9}$ Statistical difference as compared to control ( $\mathrm{P}<0.05$ ).
\#\# = Statistical difference as compared to STZ-rat ( $p<0.05$ ).
$+=$ Statistical difference as compared to nicardipine treated STZ-rat ( $\mathrm{p}<0.05$ ).
$\mathrm{NS}=$ non significant difference as compared to $\mathrm{STZ}-\mathrm{rat}(\mathrm{P}<0.05)$.


Values are mean $\pm S D ; n=6$ rats.

Figure 4.7 Diastolic blood pressure ( mmHg ) of controls, STZ - rats, nicardipine treated STZ - rats (STZ - N) and nicardipine combined with cilazapril treated STZ-rats (STZ-NC) at 8, 16 and 20 weeks.

Values are mean $\pm \mathrm{SD} ; \mathrm{n}=6$ rats.
\# = Statistical difference as compared to control ( $\mathrm{P}<0.05$ ).
$\# \#$ = Statistical difference as compared to STZ-rat (p $<0.05$ ).
$+\quad=$ Statistical difference as compared to nicardepine treated STZ-rat ( $\mathrm{p}<0.05$ ).


Values are mean $\pm S D ; n=6$ rats.

Figure 4.8 Aortic flow rate ( $\mathrm{m} / \mathrm{min}$ ) of controls, STZ - rats, nicardipine treated STZ- rats(STZ-N) and nicardipine combined with cilazapril treated STZ-rats (STZ -NC) at 8,16 and 20 weeks.

Values are mean $\pm \mathrm{SD} ; \mathrm{n}=6$ rats.
\# = Statistical difference as compared to control ( $\mathrm{P}<0.05$ ).
NS $=$ non significant difference as compared to STZ - rat ( $\mathrm{P}<0.05$ ).


Values are mean $\pm S D ; n=6$ rats.

Figure 4.9 Caronary flow rate ( $\mathrm{m} / \mathrm{min}$ ) of controls, STZ - rats, nicardipine treated STZ - rats (STZ-N) and nicardipine combined with cilazapril freated STZ-rats (STZ-NC) at 8,16 and 20 weeks.

Values are mean $\pm \mathrm{SD} ; \mathrm{n}=6$ rats.

* = Statistical difference as compared to control ( $\mathrm{P}<0.01$ ).
** $=$ Statistical difference as compared to STZ-rats ( $\mathrm{P}<0.01$ ).
NS $=$ non significant difference as compared to $\operatorname{STZ}-\operatorname{rat}(\mathrm{P}<0.05)$.


Values are mean $\pm S D ; n=6$ rats.

Figure 4.10 Left ventricular isotonic contraction ( $\mathrm{gm} / 100 \mathrm{gm}$ of heart weight) of controls STZ-rats, nicardipine treated STZ - rats (9/ (STZ-N) and nicardipine combined/with cilazapril treated STZ-rats (STZ-NC) at 8,16 and 20 weeks.

Values are mean $\pm \mathrm{SD} ; \mathrm{n}=6$ rats
\# = Statistical difference as compared to control ( $\mathrm{P}<0.01$ ).
** $=$ Statistical difference as compared to STZ-rats ( $\mathrm{P}<0.01$ ).
$\mathrm{NS}=$ non significant difference as compared to $\mathrm{STZ}-\mathrm{rat}(\mathrm{P}<0.05)$.


Values are mean $\pm S D ; n=3$ rats.

Figure 4.11 Size of interventricular septum wall $(\mu \mathrm{m})$ of controls, STZ-rats, nicardipine treated STZ-rat (STZ-N) and
) $9 / 9$ nicardipine combined with cilazapril treated STZ - rats (STZ-NC) at 8,16 and 20 weeks.

Values are mean $\pm S D ; n=3$ rats.
\# = Statistical difference as compared to control ( $\mathrm{P}<0.05$ ).
\#\# = Statistical difference as compared to STZ-rat $(\mathrm{P}<0.05)$.
$\mathrm{NS}=$ non significant difference as compared to STZ $-\mathrm{rat}(\mathrm{P}<0.05)$.


Values are mean $\pm S D ; n=3$ rats.

Figure 4.12 Size of left yentricular wall $(\mu \mathrm{m})$ of control, STZ - rats, nicardipine treated STZ-rats (STZ-N) and nicardipine 19 combined with cilazapril/treated STZ-rats (STZ-NC) at 8,16 and 20 weeks.

Values are mean $\pm \mathrm{SD} ; \mathrm{n}=3$ rats \# = Statistical difference as compared to control ( $\mathrm{P}<0.05$ ).
\#\# = Statistical difference as compared to STZ-rat $(\mathrm{P}<0.05)$.
$\mathrm{NS}=$ non significant difference as compared to $\mathrm{STZ}-\mathrm{rat}(\mathrm{P}<0.05)$.


Figure 4.13 Size of right ventricular wall $(\mu \mathrm{m})$ of control, STZ - rats, nicardipine treated STZ-rats (STZ-N) and nicardipine combined with cilazapril treated STZ-rats (STZ-NC) at 8,16 and 20 weeks. Values are mean $\pm S D ; n=3$ rats
\# = Statistical difference as compared to control ( $\mathrm{P}<0,05$ ).

* = Statistical difference as compared to control ( $\mathrm{P}<0.01$ ).
** $=$ Statistical difference as compared to STZ - rat $(\mathrm{P}<0.01)$.
$+=$ Statical difference as compared to nicardipine treated STZ-rat ( $\mathrm{P}<0.05$ ).
$\mathrm{NS}=$ non significant difference as compared to $\mathrm{STZ}-\mathrm{rat}(\mathrm{P}<0.05)$.


Values are mean $\pm S D ; n=3$ rats.

Figure 4.14 Area of arterial wall thickness per surface area of ventricular wall $\left(\mu \mathrm{m}^{2}\right)$ of control, STZ - rats, nicardipine treated
9 $9 /$ STZ-rats $(S T Z-N)$ and nicardipine combined with cilazapril treated STZ - rats (STZ-NC) at 16 and 20 weeks.

Values are mean $\pm \mathrm{SD} ; \mathrm{n}=3$ rats
$\#=$ Statistical difference as compared to control ( $\mathrm{P}<0.05$ ).
$\# \#=$ Statistical difference as compared to STZ-rat $(P<0.05)$.
$\mathrm{NS}=$ non Significant difference as compared to $\mathrm{STZ}-\operatorname{rat}(\mathrm{P}<0.05)$.


Figure 4.15 The cross - section ofo8 - week control heart sherwed a $9 /$ eft ventricle (LV), Gightoventricle (RV) and intervenfricular 9 septum (IVS).
(Eosin \& Hematoxylin x 40)

 septum (IVS) .
(Eosin \& Hematoxylin $\times 40$ )


Figure 4.1 the eross - section of 20 - week contgh beat shoyed
9
9
left ventricfe (LV), right ventricle (RV) and interventricular septum (IVS).
(Eosin \& Hematoxylin x 40)


Figure $4 d^{8}$ o. The cross - section $\sigma \mathrm{of} 8$ - waeek STZ - ret heart showed septum (IVS) .
(Eosin \& Hematoxylin x 40)


Figure 4,19 , The enoss - section of 66 rweek SI 6 rat heart showed septum (IVS) .
(Eosin \& Hematoxylin x 40)


Figure 4.20 The cross-section of 20 -week STZ- rat heart showed a left venftcle(LV), dight ventricle (RVd and inlervemiticular 9
septum (IVS) .
(Eosin \& Hematoxylin x 40)


Figure $4.29 /$ The fossी-section af 8 -weensTz 9 pat heat showed left ventricle (LV), right ventricle (RV) and interventricular septum (IVS) .
(Eosin \& Hematoxylin x 40)

 septum (IVS) .
(Eosin \& Hematoxylin x 40)


Figure 4.23 , The cross-section of 20 -week STZ - N rat heart showed 9 left ventricle (LV), tignt ventricle (RV) and interventricular septum (IVS) .
(Eosin \& Hematoxylin x 40)


## สถาบันวิทยบริการ

Figure 4.24 The cross - section of ${ }^{\sigma}$ o week sTZ $-9 y C$ cat dieart showed septum (IVS).
(Eosin \& Hematoxylin x 40)


Figure 4.25 The cross-section of d6-week SEZ - NC rat heart showed a 9 len ventride (EV , rightovenfricle $(\mathrm{RV})$ and interventricular 9 septum (IVS).
(Eosin \& Hematoxylin x 40)


Figure 4.26 The cross-section of $20^{-}$-week STZ NC rat heait showed Q left venticle (LV), righto ventricle (RV) and irterventricular septum (IVS).
(Eosin \& Hematoxylin x 40)

 septum (IVS) .
(Eosin \& Hematoxylin x 40)


Figure 4.28 Lightphoto migrograph of intramural ooronary artery from
left ventricular myocardium of 20 -week control heart.

[^0]

Figure 4.29 Lightphoto micrograph of intramural coronary artery from



Figure 4.30 Lfightphoto micrograph/of intramural coronary artery from

$$
99 \text { left ventricular myocardium of } 20 \text { - week STZ-fat heart. }
$$



Figure 4.31 Lightphoto micrograph of intramufal coronary artery from
 9 (Elastic x 400)


Figure 4.32 Lightphoto micrograph of intramural coronary artery from



Figure 4.33 Lightphoto micrograph of intramurab coronary artery from




[^0]:    (Elastic x 400)

