

จุฬาลงกรณ์มหาวิทยาลัย ทุนวิจัย กองทุนรัชดาภิเษกสมโภช

รายงานผลการวิจัย

กล กายภาพ และชีวสมบัติของโครงเนื้อเยื่อจาก วัสดุประกอบนาโนของไฮยารูโรแนน-เจลาตินที่เสริมแรง ด้วยผลึกนาโนของอัลฟ่าไคติน

โดย

พิชญ์ ศุภผล ถนอม บรรณประเสริฐ ปรินทร หริรักษาพิทักษ์

ตุลาคม 2552

กิตติกรรมประกาศ (Acknowledgement)

คณะผู้วิจัยขอขอบคุณกองทุนรัชดาภิเษกสมโภช จุฬาลงกรณ์มหาวิทยาลัยที่เอื้อเฟื้อทุนวิจัย จนงานสำเร็จลุล่วง ขอขอบคุณวิทยาลัยปิโตรเลียมและปิโตรเคมี จุฬาลงกรณ์มหาวิทยาลัย ที่สนับสนุน อุปกรณ์วิเคราะห์กลสมบัติและกายภาพสมบัติของตัวอย่าง *I-Tissue Lab* คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย และภาควิชากายวิภาคศาสตร์ คณะทันตแพทยศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย ที่ให้ความอนุเคราะห์สถานที่และอุปกรณ์สำหรับเพาะเลี้ยงเซลล์กระดูกและทดสอบ ชีวสมบัติของตัวอย่าง

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

บทคัดย่อภาษาไทย

โครงการวิจัย	กล กายภาพ และชีวสมบัติของโครงเนื้อเยื่อจากวัสดุประกอบนาโนของ ไฮยารูโรแนน-เจลาตินที่เสริมแรงด้วยผลึกนาโนของอัลฟ่าไคติน
ผู้วิจัย	รศ.ดร.พิชญ์ ศุภผล นายถนอม บรรณประเสริฐ นายปรินทร หริรักษาพิทักษ์
เดือนและปีที่ทำวิจัยเสร็จ	ตุลาคม พ.ศ. 2552

บทคัดย่อ

โครงเนื้อเยื่อที่ผลิตจากโพลิเมอร์ธรรมชาติมีกลสมบัติต่ำ ไม่เหมาะกับการซ่อมสร้างเนื้อเยื่อที่ ต้องการความแข็งแรง งานวิจัยนี้มีวัตถุประสงค์เพื่อพัฒนาโครงเนื้อเยื่อธรรมชาติด้วยวิธีแซ่เยือกแข็งและ ระเหิดวัสดุประกอบไฮยารูโรแนน-เจลาตินเสริมแรงด้วยผลึกอัลฟ่าไคติน โดยศึกษาถึงผลของปริมาณ ผลึกไคตินในสัดส่วน 0, 2, 5, 10, 20, และ 30 % ต่อน้ำหนักโพลิเมอร์ที่มีต่อคุณสมบัติของโครงเนื้อเยื่อ พบว่า โครงเนื้อเยื่อมีโครงสร้างภายในเป็นรูพรุนต่อเนื่องขนาดประมาณ 150 ไมโครเมตร การเสริมแรง ด้วยผลึกไคตินขนาดเฉลี่ย 250 x 30 นาโนเมตร (กว้างxยาว) ไม่มีผลต่อโครงสร้างสัณฐานและการดูดซึม น้ำของโครงเนื้อเยื่อ ผลึกไคติน 2% ทำให้โครงเนื้อเยื่อมีความแข็งแรงดึงสูงกว่ากลุ่มอื่น 2 เท่า ผลึกไคติน 20-30% เพิ่มความทนทานต่ออุณหภูมิสูงและการย่อยสลาย ขณะที่ผลึกไคติน 10% ให้ผลของการเจริญ เพิ่มจำนวนเซลล์กระดูกดีที่สุด การปรับปรุง กลสมบัติ กายภาพสมบัติ และชีวสมบัติของโครงเนื้อเยื่อจึง ต้องเสริมแรงด้วยปริมาณผลึกไคตินที่แตกต่างกัน

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Abstract

Project TitleMechanical, physical, and biological properties of scaffolds of
α-chitin whiskers reinforced hyaluronan-gelatin nanocompositesName of theAssoc Prof. Pitt Supaphol, Tanom Bunaprasert,
Parintorn Hariraksapitak

Year

October 2009

Abstract

Tissue scaffolds made of natural derived polymer present poor mechanical properties which limit their use in regenerating high strength tissues. This study aims to develop a novel tissue scaffold from α -chitin whiskers reinforced hyaluronan-gelatin nanocomposites by the freeze-drying method. Scaffolds were fabricated with six different weight ratios of α -chitin whiskers to the polymer i.e., 0, 2, 5, 10, 20, 30% in order to study their influences on scaffolds' properties. The as-prepared scaffolds exhibited interconnected porous structure with mean diameter of 150 µm. The α -chitin whiskers were approximately 250 and 30 nm in length and width respectively. At any weight ratio, presenting of α -chitin whiskers strengthened scaffolds by increasing tensile strength twice comparing with the others. While 20-30% of α -chitin whiskers improved thermal resistance and biodegradation, scaffolds with 10% of α -chitin whiskers could promote proliferation of SaOS-2 cells the best. To enhance mechanical physical or biological properties, scaffolds must be reinforced with distinct weight ratios of the α -chitin whiskers

สารบัญ (Table of Contents)

	หน้า
หน้าปก	i
กิตติกรรมประกาศ	ii
บทคัดย่อภาษาไทย	iii
บทคัดย่อภาษาอังกฤษ	iv
สารบัญ	V
รายการตารางประกอบ	vi
รายการรูปประกอบ	vii
บทที่ 1 บทน้ำ	1
บทที่ 2 การสำรวจแนวความคิดและงานวิจัยที่เกี่ยวข้อง	3
บทที่ 3 วีการวิจัย	9
บทที่ 4 ผลการวิจัยและการอ <mark>ภิปรายผล</mark>	16
เอกสารอ้างอิง	37

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

รายการตารางประกอบ (List of Tables)

ตารางที่ 1	ปริมาณสารตั้งต้นที่ใช้เตรียมสารละลายวัสดุประกอบประกอบไฮยารูโรแนน-	10
	เจลาตินเสริมแรงด้วยผลึกไคติน	
ตารางที่ 2	ขนาดของรูพรุนภายในโครงเนื้อเยื่อวัสดุประกอบไฮยารูโรแนน-เจลาตินเสริมแรง	21
	ด้วยผลึกไคตินชนิดอัลฟ่าวัดจากชิ้นตัว <mark>อ</mark> ย่างตัดตามแนวขวางและแนวดิ่ง	
ตารางที่ 3	กลสมบัติของโครงเนื้อเยื่อวัสดุประกอบไฮยารูโรแนน-เจลาตินเสริมแรงด้วยผลึก	22
	ไคตินชนิดอัล <mark>ฟ่า</mark>	
ตารางที่ 4	อุณหภูมิ (^o ซ) ณ จุดที่น้ำหนักของตัวอย่างลดลง 5, 25 และ 50% และกาก	29
	ที่เหลืออยู่ภายหลังเผาที่อุณหภูมิ 550°ซ	
ตารางที่ 5	การดูดกลืนแสงที่ความยาวคลื่น 570 นาโนเมตร เปรียบเทียบระหว่างวัสดุเลี้ยง	32
	เซลล์ SaOS-2 สามชนิด	

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

รายการภาพประกอบ

(List of Figures)

ภาพที่ 1	โครงสร้างเคมีของไฮยารูโรแนน	3
ภาพที่ 2	โครงสร้างเคมีของเจลาติน	4
ภาพที่ 3	กระบวนการสกัดเจลาตินจากคอลลาเจน	5
ภาพที่ 4	โครงสร้างเคมีของไคติน	6
ภาพที่ 5	โครงสร้างของผลึกอัลฟ่าไคติน	6
ภาพที่ 6	ผลึกไคตินที่ <mark>สกัดได้ถ่ายด้ว</mark> ยกล้องจุล <mark>ทรรศน์อิเลคต</mark> รอนชนิดส่องผ่าน	16
ภาพที่ 7	ฮีสโตแกรมแสดงการกระจายของความยาวของผลึกไคติน	17
ภาพที่ 8	ฮีสโตแกรมแสดงการกระจายของความกว้างของผลึกไคติน	17
ภาพที่ 9	โครงเนื้อเยื่อวัสดุประกอบไฮยารูโรแนน-เจลาตินเสริมแรงด้วยผลึกไคตินชนิดอัลฟ่า	18
ภาพที่ 10-1	โครงสร้างและสัณฐานวิทยาของโครงเนื้อเยื่อวัสดุประกอบไฮยารูโรแนน-เจลาติน	19
	เสริมแรงด้วยผลึกไคตินชนิดอัลฟ่าตัดตามแนวขวาง (1,3,5) และแนวดิ่ง (2,4,6):	
	(1,2) ผลึกไคติน 0% (3,4) ผลึกไคติน 2% (5,6) ผลึกไคติน 5% ถ่ายด้วยกล้อง	
	จุลทรรศน์อิเลคตรอนชนิดส่องกราด	
ภาพที่ 10-2	โครงสร้างและส [ั] ณฐา <mark>นวิทยาของโครงเนื้อเยื่อวัส</mark> ดุประกอบไฮยารูโรแนน-เจลาติน	20
	เสริมแรงด้วยผลึกไคตินชนิดอัลฟ่าตัดตามแนวขวาง (7,9,11) และแนวดิ่ง (8,10,12):	
	(7,8) ผลึกไคติน 10% (9,10) ผลึกไคติน 20% (11,12) ผลึกไคติน 30% ถ่ายด้วย	
	กล้องจุลทรรศน์อิเลคตรอนชนิดส่องกราด	
ภาพที่ 11	อัตราการดูดซึมน้ำที่อุณหภูมิห้องของโครงเนื้อเยื่อวัสดุประกอบไฮยารูโรแนน-	24
	เจลาตินเสริมแรงด้วยผลึกไคตินชนิดอัลฟ่า 🦳	
ภาพที่ 12	น้ำหนักที่เหลือของโครงเนื้อเยื่อวัสดุประกอบไฮยารูโรแนน-เจลาตินเสริมแรงด้วย	25
	ผลึกไคตินชนิดอัลฟ่า ภายหลังจากแช่ในสารละลายฟอสเฟตบัฟเฟอร์และ	
	คอลลาจิเนสที่สภาวะต่างๆ นาน 24 ชม.	
ภาพที่ 13	อินฟาเรดสเปคตรัมของเจลาติน ไฮยารูโรแนน ผลึกไคติน และวัสดุประกอบ	27
	ไฮยารูโรแนน-เจลาตินเสริมแรงด้วยผลึกไคตินชนิดอัลฟ่า	

ภาพที่ 14	แผนภูมิแสดงการเปลี่ยนแปลงน้ำหนัก (%) ของโครงเนื้อเยื่อวัสดุประกอบ	29
	ไฮยารูโรแนน-เจลาตินเสริมแรงด้วยผลึกไคตินชนิดอัลฟ่า ที่อุณหภูมิ 30-600°ซ	
	ในอัตรา 10°ซ/นาที ภายใต้ก๊าซไนโตรเจน (TGA Curve)	
ภาพที่ 15	แผนภูมิแสดงการเปลี่ยนแปลงความร้อนของโครงเนื้อเยื่อวัสดุประกอบ	31
	ไฮยารูโรแนน-เจลาตินเสริมแรงด้วยผลึกไคตินชนิดอัลฟ่า ที่อุณหภูมิ 25-60°ซ	
	ในอัตรา 10°ซ/นาที ภายใต้ก๊าซไนโตรเจน (DSC Curve)	
ภาพที่ 16	การยึดเกาะของเซลล์ <mark>กระดูกชนิด</mark> Sa0S-2 บนโครงเนื้อเยื่อวัสดุประกอบ	33
	ไฮยารูโรแนน-เจลาตินเสริมแรง <mark>ด้</mark> วยผลึกไคตินชนิดอัลฟ่า 30% หลังจาก	
	เพาะเลี้ยงนาน 24 ชม. ถ่ายด้วยกล้องจุลทรรศน์อิเลคตรอนชนิดส่องกราด	
ภาพที่ 17	การยึดเกาะของเซลล์กระดูกชนิ <mark>ด</mark> Sa0S-2 บนโครงเนื้อเยื่อวัสดุประกอบ	34
	ไฮยารูโรแนน-เจลาตินเสริมแรงด้วยผลึกไคตินชนิดอัลฟ่า 30% หลังจาก	
	เพาะเลี้ยงนาน 24 ชม. ถ่ายด้วยกล้องจุลทรรศน์อิเลคตรอนชนิดส่องกราด	
ภาพที่ 18	การดูดกลื่นคลื่นที่ 570 นาโนเมตรของตัวอย่างที่ได้จากการศึกษาการเจริญ	35
	เพิ่มจำนว <mark>นของเซลล์กระดูกชนิด Sa</mark> 0S-2 บนโครงเนื้อเยื่อวัสดุประกอบ	
	ไฮยารูโรแนน-เจลาตินเสริมแรงด้วยผลึกไคตินชนิดอัลฟ่า	

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย viii

บทน้ำ (Introduction)

วิศวกรรมเนื้อเยื่อ (Tissue engineering) เป็นแนวทางในการรักษาความวิการอันเนื่องมาจาก การสูญเสียเนื้อเยื่อหรืออวัยวะ ด้วยการสร้างเนื้อเยื่อใหม่ขึ้นทดแทนเนื้อเยื่อเก่าที่มีความบกพร่อง [1] ซึ่ง มีแนวโน้มที่จะแทนที่การรักษาด้วยวิธีปลูกถ่ายอวัยวะบริจาคหรืออวัยวะเทียมในอนาคต วิศวกรรม เนื้อเยื่อสามารถแก้ไขปัญหาความขาดแคลนอวัยวะบริจาค การปฏิเสธอวัยวะปลูกถ่ายจากระบบ ภูมิคุ้มกันของร่างกาย รวมถึงการผ่าตัดซ้ำซ้อน จึงได้รับความสนใจและมีการพัฒนาอย่างต่อเนื่องตั้งแต่ กลางปี ค.ศ. 1990

การสร้างเนื้อเยื่อใหม่ตามแนวทางวิศวกรรมเนื้อเยื่อ อาศัยวิธีเพาะเลี้ยงเซลล์ที่ต้องการให้ เจริญเติบโตในโครงเนื้อเยื่อ (scaffold) แล้วจึงนำโครงเนื้อเยื่อนั้นไปปลูกถ่ายในตำแหน่งที่ต้องการ หรือ ใช้วิธีฝังโครงเนื้อเยื่อลงในตำแหน่งที่ต้องการโดยตรง และอาศัยคุณสมบัติของโครงเนื้อเยื่อเหนี่ยวนำและ กระตุ้นให้เกิดการสร้างเนื้อเยื่อภายในโครงเนื้อเยื่อนั้น [2, 3] โครงเนื้อเยื่อจึงทำหน้าที่เสมือนเป็นเมตริกซ์ นอกเซลล์ (extracellular matrix) ตลอดช่วงระยะเวลาของการซ่อมสร้างเนื้อเยื่อ ซึ่งจะเสื่อมสลาย (degrade) ไปตามกลไกภายในร่างกายด้วยเงื่อนเวลาที่สอดคล้องกับการเจริญเติบโตของเนื้อเยื่อใหม่ขึ้น แทนที่ [4, 5]

โครงเนื้อเยื่อที่ดีจึงควรจำลองสภาพของเมตริกซ์นอกเซลล์ด้วยคุณสมบัติด้านต่างๆที่ใกล้เคียง กัน ทั้งการทำหน้าที่เป็นโครงสร้างให้เซลล์ได้เกาะยึด การชักนำให้เกิดการตอบสนองของชีวกลไกที่เอื้อ ต่อการสร้างเนื้อเยื่อ มีกลสมบัติที่เพียงพอต่อการรองรับแรงที่เกิดจากน้ำหนักและการทำงานของเนื้อเยื่อ และมีความเข้ากันได้ (compatibility) กับเนื้อเยื่อนั้นๆ ดังนั้นการเลือกชนิดของวัสดุที่ใช้สร้างโครงเนื้อเยื่อ จึงต้องมีความจำเพาะและเหมาะสมกับเนื้อเยื่อแต่ละชนิด

งานวิจัยจำนวนมากได้ศึกษาถึงความเหมาะสมในคุณสมบัติของโพลิเมอร์สังเคราะห์ เช่น โพ ลีไกลโคลิค (Polyglycolic) โพลีแลคติก (Polylactic) โพลีแลคติก-ไกลโคลิค (Polylactic-glycolic) และ คุณสมบัติของโพลิเมอร์ธรรมชาติ เช่น ไคโตซาน (Chitosan) คอลลาเจน (Collagen) เจลลาติน (Gellatin) สำหรับสร้างเป็นโครงเนื้อเยื่อ โพลิเมอร์สังเคราะห์มีจุดเด่นในคุณสมบัติและเคมีที่สามารถ ควบคุมได้ ทั้งกลสมบัติ มวลโมเลกุล โครงสร้างของกลุ่ม (block structure) อัตราการเสื่อมสลาย และ วิธีการเชื่อมประสาน [6, 7] แต่มีจุดด้อยตรงที่พื้นผิววัสดุส่วนใหญ่ไม่ชอบน้ำ (hydrophobic) ขาด องค์ประกอบที่มีส่วนซักนำการตอบสนองของชีวกลไกของเซลล์ และอาจเหลือสิ่งเป็นพิษตกค้างหลังจาก สลายตัว ในขณะที่โพลิเมอร์ธรรมชาติมีจุดเด่นในความเข้ากันได้ทางชีวภาพ (biocompatibility) และ เสื่อมสลายได้เองตามธรรมชาติ (biodegradable) โดยไม่มีสิ่งเป็นพิษตกค้าง มีความชอบน้ำ (hydrophilic) และโครงสร้างบางอย่างมีความคล้ายคลึงกับองค์ประกอบของเมตริกซ์นอกเซลล์ จึง จำลองสภาพแวดล้อมภายนอกเซลล์ได้คล้ายคลึงธรรมชาติมากกว่าโพลิเมอร์สังเคราะห์ ส่งผลให้เซลล์มี กิจกรรมและเจริญเติบโตได้ดี [8, 9] แต่โพลิเมอร์ธรรมชาติมีกลสมบัติที่ต่ำกว่าโพลิเมอร์สังเคราะห์ [6] จึง เป็นตัวเลือกที่ด้อยกว่าหากต้องการโครงเนื้อเยื่อที่มีความแข็งแรงสูง เช่นในงานวิศวกรรมเนื้อเยื่อกระดูก เป็นต้น

เพื่อให้ได้โครงเนื้อเยื่อซึ่งผลิตจากโพลิเมอร์ธรรมชาติที่มีคุณสมบัติเพรียบพร้อมสมบูรณ์ การ ปรับปรุงกลสมบัติของโครงเนื้อเยื่อจึงเป็นโจทย์ที่ยังต้องการคำตอบ ซึ่งงานวิจัยจำนวนมากได้ศึกษาถึง วิธีการปรับปรุงคุณสมบัติของโครงเนื้อเยื่อในหลากหลายวิธี ได้แก่ ปรับปรุงการเชื่อมประสาน (crosslink) [10-13] การทำเป็นโพลิเมอร์ผสม (polymer blend) [14, 15] และการดัดแปลงโครงสร้าง ของวัสดุด้วยปฏิกิริยาเคมี [16, 17] เป็นต้น

งานวิจัยนี้มีวัตถุประสงค์ในการผลิตโครงเนื้อเยื่อชนิดใหม่จากโพลิเมอร์ธรรมชาติ และศึกษา คุณสมบัติของโครงเนื้อเยื่อที่ผลิตขึ้น โดยเลือกวัสดุชนิดโพลีแซคคาไรด์ (polysaccharide) และโปรตีนซึ่ง ได้แก่ไฮยารูโรแนนและเจลาตินตามลำดับ สร้างเป็นวัสดุประกอบไฮยารูโรแนน-เจลาตินเสริมแรงด้วย ผลึกอัลฟ่าไคตินที่มีขนาดระดับนาโนเมตร (ผลึกนาโนของอัลฟ่าไคติน) โครงเนื้อเยื่อวัสดุประกอบที่ผลิต ขึ้นนี้คาดว่าจะแสดงคุณสมบัติเด่นของวัสดุที่เป็นองค์ประกอบแต่ละชนิด โดยเฉพาะอย่างยิ่งชีวสมบัติที่ดี ของไฮยารูโรแนนและเจลาติน และกลสมบัติจากการเสริมแรงด้วยผลึกไคติน ซึ่งผลการศึกษาจะเป็น ข้อมูลพื้นฐานสำคัญสำหรับต่อยอดการพัฒนาโครงเนื้อเยื่อชนิดนี้ต่อไป

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

การสำรวจแนวความคิดและการวิจัยที่เกี่ยวข้อง (Survey of Related Literature)

การสำรวจแนวความคิดและการวิจัยที่เกี่ยวข้องกับงานวิจัยนี้ ครอบคลุมถึงธรรมชาติและ คุณสมบัติของวัสดุตั้งต้น ได้แก่ ไฮยารูโรแนน เจลาติน และไคติน และการผลิตโครงเนื้อเยื่อจากวัสดุทั้ง สามชนิด

ธรรมชาติและคุณสมบัติของวัสดุตั้งต้น

1. ไฮยารูโรแนน

ไฮยารูโรแนนเป็นโพลีเมอร์ประเภทโพลีแซคคาไรด์ มีโครงสร้างเป็นเส้นตรง (linear) หน่วย ย่อยเป็นไดแซคคาไรด์ (disaccharide) ซึ่งประกอบด้วย N-acetyl-D-glucosamine เชื่อมต่อกับ Dglucuronic acid ด้วยพันธะ β 1-4 glycosidic โดยแต่ละหน่วยย่อยไดแซคคาไรด์เชื่อมต่อกันด้วย พันธะ β 1-3 เกิดเป็นสายโพลีเมอร์มวลโมเลกุลสูง (ภาพที่ 1)

ภาพที่ 1 โครงสร้างเคมีของไฮยารูโรแนน [18]

ไฮยารูโรแนนเป็นโพลีเมอร์ธรรมชาติที่พบได้ในเนื้อเยื่อของสิ่งมีชีวิต เป็นองค์ประกอบหนึ่งใน กลุ่มโพลีแซคคาไรด์ของเนื้อเยื่อเกี่ยวพัน (connective tissue polysaccharide) ซึ่งอาจเรียกเป็นมิวโคโพ ลีแซคคาไรด์ (mucopolysaccharide) หรือไกลโคสะมิโนไกลแคน (glycosaminoglycan) พบได้มากใน เมตริกซ์นอกเซลล์โดยมีส่วนเกี่ยวข้องกับกิจกรรมต่างๆของเซลล์ ได้แก่ เป็นโครงสร้างพยุงเซลล์ ควบคุม การเกาะยึด การเจริญเติบโต การเปลี่ยนซนิด (differentiation) และการเคลื่อนที่ของเซลล์ เป็นตัวกลาง ในการเกิดปฏิกิริยากับโปรตีนเชื่อมโยง (binding protein) โปรติโอไกลแคน (proteoglycan) [19] และชีว โมเลกุลอื่นๆ เช่น ปัจจัยควบคุมการเจริญเติบโตของเซลล์ (growth factors) นอกจากนี้ยังทำหน้าที่เป็น สารหล่อลื่นบริเวณข้อต่อกระดูกอีกด้วย [8, 9]

จุดเด่นของไฮยารูโรแนนจึงอยู่ที่ชีวสมบัติ (biological properties) ที่เอื้อต่อการซ่อมสร้าง เนื้อเยื่อขึ้นใหม่ ซึ่งผลทางชีวภาพมีความหลากหลายและเปลี่ยนแปลงไปตามขนาดโมเลกุลของไฮยารู โรแนน [20] ไฮยารูโรแนนมวลโมเลกุลสูงมีบทบาทมากในระยะแรกของกระบวนการหายของแผล โดย เป็นส่วนหนึ่งในการสร้างลิ่มเลือด และยับยั้งระบบภูมิคุ้มกันเพื่อเอื้อต่อการทำหน้าที่ของเซลล์อักเสบ ขณะที่ไฮยารูโรแนนมวลโมเลกุลต่ำมีบทบาทในระยะถัดไป โดยชักนำการเคลื่อนที่เข้าสู่บริเวณแผลของ เซลล์ผนังหลอดเลือด (Endothelium) เพื่อสร้างหลอดเลือดใหม่ ทำหน้าที่เป็นตัวกลางในการส่งผ่าน สัญญาณเพื่อการตอบสนองของชีวกลไก กระตุ้นการเพิ่มจำนวน (proliferation) ของไฟโบรบลาส และ การสร้างเส้นใยคอลลาเจน [20] ไฮยารูโรแนนจึงเป็นวัสดุที่เหมาะสมสำหรับใช้ผลิตวัสดุทางการแพทย์ ซึ่งในปัจจุบันมีผลิตภัณฑ์ของไฮยารูโรแนนวางจำหน่ายในท้องตลาดมากกว่า 15 บริษัท โดยเป็น ผลิตภัณฑ์เกี่ยวกับกระดูกและกระดูกอ่อน เวชภัณฑ์ยาเวชภัณฑ์เกี่ยวกับสายตา และเครื่องสำอางค์ [16]

2. เจลาติน

เจลาตินเป็นวัสดุประเภทโปรตีน เป็นส่วนผสมของโอลิโกเมอร์สายเดี่ยวหรือโพลีเปปไทด์สาย เดี่ยว (Single stranded polypeptides) และโอลิโกเมอร์หลายสายหรือโพลีเปปไทด์หลายสาย (Multiple stranded polypeptides) แต่ละสายประกอบด้วยกรดอะมิโนประมาณ 300-4,000 หน่วย ซึ่งมี ไกลซีน (glycine) โพรลีน (praline) และ 4-ไฮดรอกซีโพรลีน (4-hydroxyproline) จำนวนมาก โครงสร้างเคมี โดยทั่วไปเป็น Ala-Gly-Pro-Arg-Gly-Glu-4Hyp-Gly-Pro- โดยมีปริมาณไกลซีนมากถึง 1 ใน 3 และ จัดเรียงตัวที่ทุกๆตำแหน่งที่ 3 บนสายโพบีเปปไทด์ (ภาพที่ 2)

โดยทั่วไปเจลาตินเป็นผลผลิตปลายทางของคอลลาเจนชนิดที่ 1 (type I collagen) จาก ผิวหนังและกระดูก ซึ่งมีโครงสร้างเป็นสายโพลีเปปไทด์พันเกลี่ยวสามสาย (triple helix) คุณสมบัติของเจ ลาตินจึงขึ้นอยู่กับกรรมวิธีที่เลือกใช้ในการผลิต ซึ่งแบ่งได้เป็น 2 วิธีตามวิธีจัดการคอลลาเจน [22] (ภาพ ที่ 3) วิธีที่หนึ่งเป็นการจัดการด้วยเบส (alkaline process, liming) ซึ่งจะไฮโดรไลซ์กลุ่มเอไมด์ (amide group) ของแอสปาราจีน (asparagines) และกลูตามีน (glutamine) ในคอลลาเจนให้เป็นกลุ่มคาร์บอก ซิล (carboxyl group) และปรับเปลี่ยนเป็นแอสปาเตท (aspartate) และกลูตาเมท (glutamate) ในที่สุด การเปลี่ยนแปลงที่กลุ่มคาร์บอกซิลทำให้เจลาตินชนิดนี้มีประจุโดยรวมเป็นลบ และมีจุดไอโซอิเลคตริกต่ำ อยู่ที่ค่าประมาณ 3-5 เจลาตินชนิดนี้เรียกเป็นเจลาตินชนิดกรด หรือ ชนิดบี (acidic gelatin, type B)

อีกวิธีหนึ่งเป็นการจัดการคอลลาเจนด้วยกรด (acidic process) กลไกที่เกิดขึ้นจึงตรงกันข้าม กับวิธีที่หนึ่ง ซึ่งจะเกิดการไฮโดรไลซ์ที่กลุ่มเอไมด์น้อยมาก ทำให้เจลาตินชนิดนี้มีประจุโดยรวมเป็นบวก และมีจุดไอโซอิเลคตริกใกล้เคียงกับคอลลาเจนที่ค่าประมาณ 7-9 เจลาตินชนิดนี้เรียกเป็นเจลาตินชนิด เบส หรือ ชนิดเอ (basic gelatin, type A)

ภาพที่ 3 กระบวนการสกัดเจลาตินจากคอลลาเจน [23]

เจลาตินมีความเข้ากันได้ทางชีวภาพและย่อยสลายได้เองตามธรรมชาติ ทำให้เป็นที่นิยมใช้ โดยทั่วไปในทางการแพทย์และเภสัชกรรม [23] รวมถึงการศึกษาวิจัยเกี่ยวกับระบบควบคุมการ ปลดปล่อยยา (drug controlled release) [24-26] และวิศวกรรมเนื้อเยื่อ [11, 27-30]

3. ผลึกไคติน

ไคตินเป็นโพลีเมอร์ธรรมชาติชนิดโพลีแซคคาไรด์เช่นเดียวกับไฮยารูโรแนน มีมากเป็นอับดับ สองรองจากเซลลูโลส ทำหน้าที่เป็นโครงสร้างเพื่อป้องกันและเสริมความแข็งแรงให้แก่ผนังเซลล์ของ สิ่งมีชีวิต ผนังเซลล์ของเห็ดราและสาหร่ายบางสายพันธุ์ รวมถึงเปลือกนอกของสัตว์จำพวกกุ้ง ปู และ แกนหมึก โครงสร้างของไคตินเป็นโพลีเมอร์ชนิดเส้นตรง มีหน่วยย่อยเป็น N-acetyl-D-glucosamine ที่ เชื่อมต่อกันด้วยพันธะ β 1-4 glycosidic (ภาพที่ 4) โดยทั่วไปมักพบไคตินในรูปของสารประกอบที่ปน อยู่กับสารอื่น เช่น โปรตีน แคลเซียมคาร์บอเนต หรือสารอินทรีย์อื่นๆ

ภาพที่ 4 โครงสร้างเคมีของไคติน [31]

ไคตินมีความเป็นพิษต่ำ มีความเข้ากันได้ทางชีวภาพ (biocompatibility) กับร่างกายมนุษย์ ย่อยสลายได้เองธรรมชาติ (biodegrade) และช่วยเร่งการหายของแผล จึงมีการนำไคตินมาใช้เป็นวัสดุ ทางการแพทย์มากมาย เช่น ไหมเย็บแผล วัสดุปิดแผล ตัวควบคุมการปล่อยยา [32] และผิวหนังเทียม รวมถึงใช้เป็นส่วนผสมของเครื่องสำอางค์และสารเติมแต่งในอาหาร

โครงสร้างของผลึกไคติน (Chitin crystal, whisker) (ภาพที่ 5) มีลักษณะเป็นโครงข่าย หนาแน่น เกิดจากสายโซ่โมเลกุลที่ยาวของไคตินเรียงตัวซ้อนทับกันเป็นแผ่น (pleated sheet) ในแลตติช ผลึก (crystal lattice) ของหน่วยเซล และเกิดพันธะไฮโดรเจนเชื่อมต่อทั้งภายในและระหว่างสายโซ่ โมเลกุล (intramolecular and intermolecular chain) ทำให้มีความแข็งแรงและมีระดับของผลึกสูง (degree of crystallinity) [32] สามารถใช้เป็นสารเติมแต่งเพื่อเสริมแรงให้กับโพลีเมอร์ต่างๆได้ [33-35]

ภาพที่ 5 โครงสร้างของผลึกอัลฟ่าไคติน (a) แนว ac; (b) แนว bc; (c) แนว ab [32]

การผลิตโครงเนื้อเยื่อจากไฮยารูโรแนน เจลาติน และไคติน

โครงเนื้อเยื่อที่ดีควรจำลองการทำหน้าที่ของเมตริกซ์นอกเซลล์ได้อย่างไม่บกพร่อง การผลิต โครงเนื้อเยื่อจึงมีเป้าหมายหลักในการสร้างให้เกิดดุลยภาพของกลสมบัติ กายภาพสมบัติ และชีวสมบัติ ของโครงเนื้อเยื่อ ซึ่งเป็นไปได้ยากที่จะได้มาจากคุณสมบัติของวัสดุชนิดใดชนิดหนึ่งเพียงลำพัง

ไฮยารูโรแนนเป็นวัสดุที่มีชีวสมบัติเหมาะสมกับการเจริญเติบโตของเซลล์ เนื่องจากเป็นสารที่ พบได้ในธรรมชาติของเมตริกซ์นอกเซลล์ แต่มีกลสมบัติด่ำ ดูดซึมน้ำสูง ละลายตัวง่าย และคงสภาพอยู่ ในเนื้อเยื่อได้เพียงระยะเวลาสั้นๆ จึงยังเป็นปัญหาในการนำไปผลิตเป็นโครงเนื้อเยื่อ งานวิจัยจำนวนมาก ให้ความสำคัญต่อการดัดแปลงโครงสร้างเคมีและวิธีการเชื่อมประสานไฮยารูโรแนน เพื่อปรับปรุงกล สมบัติให้ดีขึ้น การศึกษาโดย Luo Y et al. ในปี 2000 [36] ได้ดัดแปลงโครงสร้างของไฮยารูโรแนนให้เป็น อนุพันธ์ของ adipic dihydrazide และเชื่อมประสานด้วย poly(ethylene glycol)-propiondialdehyde สร้างเป็นเจลที่มีคุณสมบัติเหมาะสมสำหรับควบคุมการปลดปล่อยยา ขณะที่ Liu Y et al. ในปี 2005 [13] ใช้วิธีดัดแปลงโครงสร้างของไฮยารูโรแนนไปเป็น Thiolated HA และเชื่อมประสานด้วยพันธะ disulfide ทำให้มีความทนทานต่อการเสื่อมสลายได้นานถึง 42 วัน และมีความเข้ากันได้ทางชีวภาพกับ เซลล์ไฟโบรบลาส รวมถึงการศึกษาของ Segura T et al. ในปี 2005 [12] ซึ่งสังเคราะห์ biotinylatedhyalurnan และเชื่อมประสานด้วย poly(ethylene glycol) diepoxide ได้เป็นไฮโดรเจลที่ใช้เวลาย่อย สลายนานถึง 14 วันด้วยเอ็นไซม์ hyaluronidase เป็นต้น

ถึงแม้ว่าการดัดแปลงโครงสร้างเคมีของไฮยารูโรแนนจะให้ผลการศึกษาที่ดี แต่เนื่องจาก ขั้นตอนยุ่งยาก [12, 13, 36] และไม่มีการศึกษาใดรายงานถึงปริมาณของผลผลิตที่ได้ (yield) การผลิต เป็นสารผสม (blending) ไฮยารูโรแนนจึงเป็นวิธีที่น่าสนใจเนื่องจากทำได้ง่าย และน่าจะได้ผลผลิตต่อ หน่วยสูงกว่า การศึกษาโดย Park et al. ในปี 2002 [37] ได้สร้างโครงเนื้อเยื่อจากสารผสมคอลลาเจน-ไฮ ยารูโรแนนเชื่อมประสานด้วย 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) พบว่าโครง เนื้อเยื่อมีความทนทานต่อการย่อยสลายด้วยเอ็นไซม์คอลลาจิเนสสูงถึง 95% เมื่ออ้างอิงจากน้ำหนักของ โครงเนื้อเยื่อที่เหลืออยู่ และปราศจากความเป็นพิษต่อเซลล์ ในขณะที่การศึกษาโดย Chang et al. ในปี 2003 [28] ประสบความสำเร็จในการเพาะเลี้ยงเซลล์กระดูกอ่อนเป็นเวลานาน 5 สัปดาห์ ในโครงเนื้อเยื่อ ที่ผลิตจากสารผสมเจลาติน-คอนโดรอิติน (chondroitin)-ไฮยารูโรแนน เชื่อมประสานด้วย EDC โดย พบว่ามีการสร้างเมตริกซ์นอกเซลล์ และคอลลาเจนซนิดที่สอง (type II collagen) โดยที่เซลล์ยังคง สภาวะเดิม (phenotype) ผลการศึกษาข้างต้นสอดคล้องกับการศึกษาโดย Liu et al ในปี 2004 [29] ใน แผ่นฟิล์มสารผสมไคโตซาน-เจลาติน-ไฮยารูโรแนน ซึ่งพบว่า อัตราส่วนที่เหมาะสมของสารผสมทำให้ แผ่นฟิล์มมีความทนทานต่อการย่อยสลาย และส่งเสริมการเกาะยึด การเคลื่อน (migration) และการ เจริญเพิ่มจำนวน (proliferation) ของเซลล์ไฟโบรบลาส (fibroblast) การสร้างโครงเนื้อเยื่อจากสารผสมจึงยังคงชีวสมบัติที่ดีของโครงเนื้อเยื่อไว้ได้ ขณะเดียวกันยัง เสริมความทนทานต่อการย่อยสลายทางชีวภาพให้ดีขึ้น และเนื่องจากคุณสมบัติของโครงเนื่อเยื่อที่ผลิต จากสารผสมนั้นแปรไปตามคุณสมบัติของวัสดุตั้งต้น การเพิ่มผลึกไคตินลงในส่วนผสมน่าจะปรับปรุงกล สมบัติของโครงเนื้อเยื่อให้ดีขึ้น การศึกษาโดย Paillet & Dufresne ในปี 2001 [33] ถึงคุณสมบัติของนา โนคอมโพสิต ซึ่งเตรียมขึ้นด้วยการผสมสารละลายคอลลอยด์ของผลึกไคตินที่ได้จากการย่อยสลายไคติน จากแกนหมึกด้วยกรด เข้ากับลาเท็กซ์ซึ่งเป็นโคโพลีเมอร์ระหว่าง styrene และ butyl acrylate (poly(Sco-BuA)) พบว่าผลึกไคตินในสัดส่วนน้ำหนักมากกว่าร้อยละ 10 ทำให้ค่าโมดูลัสเฉือน (shear modulus) สูงขึ้นอย่างมีนัยสำคัญ แต่ไม่ทำให้เกิดการเปลี่ยนแปลงของอุณหภูมิการเปลี่ยนสถานะคล้ายแก้ว (Glass transition temperature, Tg) ของโพลีเมอร์

การศึกษาโดย Morin & Dufresne ในปี 2002 [34] ให้ผลในลักษณะเดียวกัน โดยพบว่าผลึก ไคตินช่วยเสริมให้ค่าโมดูลัสและเสถียรภาพต่ออุณหภูมิของนาโนคอมโพสิตที่มี Poly(carpolactone) เป็นเมตริกซ์นั้น สูงขึ้นตามสัดส่วนน้ำหนักของผลึกไคตินที่เพิ่มมากขึ้น ผลึกไคตินในสัดส่วนน้ำหนักร้อย ละ 2.5 และร้อยละ 10 ทำให้ค่าโมดูลัสเพิ่มขึ้น 0.24 และ 0.61 จิกะปาสคาล ตามลำดับ

ผลการศึกษาโดย Sriupayo J. และคณะในปี 2005 [35] มีส่วนสนับสนุนผลการศึกษา ดังกล่าว โดยศึกษาถึงความแข็งแรงดึงของฟิล์มนาโนคอมโพสิตของไคโตซานและ Poly(vinyl alcohol) ที่ เสริมแรงด้วยผลึกไคติน พบว่าความแข็งแรงดึงมีค่าสูงขึ้นจนถึงจุดสูงสุดเมื่อสัดส่วนน้ำหนักของผลึกไค ตินมีค่าเพียงร้อยละ 2.96 และยังพบว่าการเสริมแรงช่วยให้ฟิล์มนาโนคอมโพสิตมีความทนทานต่อน้ำ มากขึ้น ซึ่งเป็นผลให้การสูญเสียน้ำหนักและอัตราการบวมตัวลดลง มีเสถียรภาพทางมิติมากขึ้น

ผลการศึกษาข้างต้น แสดงให้เห็นถึงความสามารถของผลึกไคตินในการทำหน้าที่เป็นสารเติม แต่ง (filler) ที่เสริมกลสมบัติของโพลีเมอร์ ซึ่งอาจเป็นผลโดยตรงจากรูปทรงทางเรขาคณิตของผลึก ความ แข็งของผลึก และผลจากการรวมตัวเป็นกลุ่มก้อนของผลึกไคตินในเนื้อเมตริกซ์ รวมถึงการสร้างพันธะ ไฮโดรเจนระหว่างผลึกเกิดเป็นโครงข่ายที่มีความแข็งแรงสูง ซึ่งสามารถอธิบายถึงการเปลี่ยนแปลง คุณสมบัติที่เกิดขึ้นได้ด้วย percolation model โดยเฉพาะอย่างยิ่งในกรณีที่สัดส่วนน้ำหนักของผลึกไค ตินมีค่ามาก [33, 34]

ผลึกไคตินจึงอาจจะเป็นตัวเลือกที่ดีในการเสริมกลสมบัติของโครงเนื้อเยื่อที่ผลิตจากสาร ผสมไฮยารูโรแนน-เจลาติน การเพิ่มผลึกไคตินทำให้สารผสมกลายเป็นวัสดุประกอบ (composite) งานวิจัยนี้จึงเลือกที่จะผลิตโครงเนื้อเยื่อจากวัสดุประกอบไฮยารูโรแนน-เจลาตินเสริมแรงด้วยผลึกไคติน และศึกษาถึงกลสมบัติ กายภาพสมบัติ และชีวสมบัติของโครงเนื้อเยื่อที่ได้

วิธีการวิจัย

(Procedure)

ขั้นตอนการวิจัย

ขั้นตอนการวิจัยประกอบด้วย

- สกัดผลึกไคตินจากผงไคติน
- 2. เตรียมสารละลายวัสดุประกอบไฮยารูโรแนน-เจลาตินเสริมแรงด้วยผลึกไคติน
- ขึ้นรูปโครงเนื้อเยื่อจากสารละลายวัสดุประกอบไฮยารูโรแนน-เจลาตินเสริมแรงด้วยผลึก ใคตินด้วยการทำแห้งแบบแช่แข็ง (freezing dry) และการระเหิด (sublimation)
- 4. ทดสอบกลสมบัติ กายภาพสมบัติ และชีวสมบัติของโครงเนื้อเยื่อที่ได้

วิธีการวิจัย

สกัดผลึกไคตินจากผงไคติน

- 1.1. เตรียมสารละลายกรดไฮโดรคลอริกความเข้มข้น 3 N
- 1.2. ต้มผงไคตินในสารละลายกรดไฮโดรคลอริกที่เตรียมไว้ ด้วยอัตราส่วน ผงไคติน:กรด เป็น 1 ก. : 30 มล. ที่อุณหภูมิ 120°ช นาน 6 ชม. โดยปั่นกวนตลอดเวลาด้วยแท่ง แม่เหล็ก
- 1.3. แยกสารแขวนลอย (suspension) ของผลึกไคตินที่ลอยตัวอยู่ชั้นบน ออกจากกาก ไคตินที่ตกตะกอนอยู่ก้นภาชนะ
- 1.4. เจือจางสารแขวนลอย 1.3 ด้วยน้ำกลั่น นำไปปั่นเหวี่ยงที่ความเร็ว 10,000 รอบ/ นาที นาน 5 นาที ทำซ้ำทั้งหมด 3 ครั้ง
- บรรจุสารแขวนลอย 1.4 ลงในถุงไดอะไลซิส (dialysis bag) นำไปแข่ในน้ำสะอาด ภายใต้น้ำไหลนาน 2 ชม. จากนั้นนำไปแข่ในน้ำกลั่นพร้อมกับปั่นกวนตลอดเวลา ด้วยแท่งแม่เหล็ก ทิ้งไว้นานข้ามคืน
- 1.6. เปลี่ยนน้ำกลั่นในภาชนะวันละครั้งจนกว่าความเป็นกรดของสารแขวนลอยผลึกไค ตินมีค่าเป็นกลางเมื่อตรวจด้วยกระดาษลิตมัส จากนั้นเปลี่ยนถ่ายสารแขวนลอย ผลึกไคตินลงในภาชนะที่มีฝาปิด
 - 1.7. เขย่าภาชนะบรรจุสารแขวนลอยผลึกไคตินในเครื่องเขย่าอัลตราโซนิค นาน 5 นาที สำหรับสารแขวนลอยทุกๆ 40 มล. นำไปเก็บไว้ในตู้เย็น
 - 1.8. ตรวจสอบลักษณะของผลึกไคตินที่สกัดได้ด้วยกล้องจุลทรรศน์อิเลคตรอนชนิดส่อง ผ่าน (Transmission electron microscope, TEM, JEOL JEM-2100) น้ำภาพที่ได้

ไปหาค่าเฉลี่ยของขนาด และการกระจายตัวของขนาดของผลึกไคตินด้วยโปรแกรม UTHSCSA Image Tool version 3.00 จากจำนวนทั้งหมด 100 ผลึก

 หาความเข้มข้นโดยน้ำหนัก (กรัม/มิลลิลิตร) ของสารแขวนลอยผลึกไคติน โดยไป เปตสารแขวนลอยจำนวน 1 มล. ใส่ไว้ในภาชนะเปิด นำไปวางทิ้งไว้ข้ามคืนในตู้อบ ที่อุณหภูมิ 50°ซ จนน้ำระเหยออกจนหมด จากนั้นคำนวณหาน้ำหนักของผลึกไค ตินที่เหลืออยู่ในภาชนะ

2. เตรียมสารละลายวัสดุประกอบไฮยารูโรแนน-เจลาตินเสริมแรงด้วยผลึกไคติน

- 2.1. เตรียมสารละลายวัสดุประกอบไฮยารูโรแนน-เจลาติน ความเข้มข้น 2% โดย น้ำหนัก ในน้ำปราศจากไอออน (deionized water) ที่อุณหภูมิ 50° ซ ดังปริมาณ แสดงในตาราง (HA, Gelatin) ปั่นกวนด้วยแท่งแม่เหล็กจนได้สารละลายเนื้อเดียว ไม่มีตะกอนและไม่มีฟองอากาศ วางทิ้งไว้จนเย็นลงที่อุณหภูมิห้อง
- 2.2. เติมเกลือ (sodium chloride) ลงในสารละลายวัสดุประกอบ ดังปริมาณแสดงใน ตาราง (sodium chloride) ปั่นกวนด้วยแท่งแม่เหล็กให้เข้ากันจนเกลือละลาย
- 2.3. ในขณะที่ปั่นกวนสารละลาย 2.2 ด้วยแท่งแม่เหล็กตลอดเวลา เติมสารแขวนลอย ผลึกไคตินลงไป ดังปริมาณแสดงในตารางที่ 1 (CW suspension) ผสมจนเป็นเนื้อ เดียวกัน
- 2.4. เติมสารเชื่อมประสาน 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide ดัง
 ปริมาณแสดงในตาราง (EDC) ปั่นกวนด้วยแท่งแม่เหล็กนาน 2 ชม. วางทิ้งไว้จน
 หมดฟองอากาศ

				CW			
Sample	HA	Gel	NaCl	Suspension	EDC	DI water	Total
สถา	(gm)	(gm)	(gm)	(gm)	(gm)	(gm)	(gm)
1. HA	0.4	0.4	0.24	0.00	0.192	38.77	40
2. HA+2%CW	0.4	0.4	0.24	1.12	0.192	37.65	40
3. HA+5%CW	0.4	0.4	0.24	2.80	0.192	35.97	40
4. HA+10%CW	0.4	0.4	0.24	5.60	0.192	33.17	40
5. HA+20%CW	0.4	0.4	0.24	11.20	0.192	27.57	40
6. HA+30%CW	0.4	0.4	0.24	16.80	0.192	21.97	40

ตารางที่ 1 ปริมาณสารตั้งต้นที่ใช้เตรียมสารละลายวัสดุประกอบประกอบไฮยารูโรแนน-เจลาตินเสริมแรง ด้วยผลึกไคติน

- ขึ้นรูปโครงเนื้อเยื่อจากสารละลายวัสดุประกอบไฮยารูโรแนน-เจลาตินเสริมแรง ด้วยผลึกไคตินด้วยการทำแห้งแบบแช่แข็ง และการระเหิด
 - 3.1. ขึ้นรูปโครงเนื้อเยื่อเป็นแผ่นแบนโดยบรรจุวัสดุประกอบแต่ละกลุ่มปริมาณ 5 ก. ลง ในจานเพาะเชื้อก้นแบน กลุ่มละ 1 จาน เอียงจานไปมาโดยรอบ เพื่อให้วัสดุไหลแผ่ เป็นแผ่นที่มีความหนาสม่ำเสมอและไม่มีฟองอากาศ
 - 3.2. ขึ้นรูปโครงเนื้อเยื่อเป็นก้อนทรงกระบอกโดยบรรจุวัสดุประกอบแต่ละกลุ่มปริมาณ
 0.25 ก. ลงในถาดเลี้ยงเซลล์ขนาด 48 หลุม โดยไม่ให้มีฟองอากาศ
 - 3.3. นำเข้าตู้แช่แข็งที่อุณหภูมิ -40° ข วางทิ้งไว้นาน 24 ชั่วโมง จากนั้นนำไปเข้าเครื่อง ทำแห้งแบบเยือกแข็ง (Freeze dryer) โดยตั้งอุณหภูมิระเหิดที่ -50° ข กิ้งไว้นาน 24 ชั่วโมงเป็นอย่างน้อย
 - 3.4. แกะโครงเนื้อเยื่อที่ได้ออกจากแบบหล่อ เก็บไว้ในภาชนะปิดดูดความชื้นตลอดเวลา จนกว่าจะนำไปทดสอบคุณสมบัติ

4. ทดสอบกลสมบัติ กายภาพสมบัติ และชีวสมบัติของโครงเนื้อเยื่อ

- 4.1. ทดสอบความแข็งแรงดึง (Tensile strength) ค่าโมดูลัสยืดหยุ่น (Modulus of elasticity) และการยืดตัวขณะขาด (Elongation at break) ของโครงเนื้อเยื่อด้วย Universal testing machine (Lloyd UTM model LRX-Plus, UK) โดยตัดแต่ง ตัวอย่างโครงเนื้อเยื่อชนิดแผ่นแบนให้มีขนาด 50x5x1 มม. นำไปดึงจนขาดใน เครื่องทดสอบด้วยน้ำหนัก (Load cell) 10 นิวตัน ระยะเคลื่อนของหัวดึง 10 มม./ นาที ทดสอบตัวอย่างกลุ่มละ 5 ชิ้น นำค่าที่ได้ไปหาค่าเฉลี่ยและส่วนเบี่ยงเบน มาตรฐาน
- 4.2. ทดสอบการดูดซึมน้ำ (Water absorption) โดยเริ่มจากชั่งน้ำหนักโครงเนื้อเยื่อรูป ทรงกระบอกในสภาวะแห้งสนิท นำไปแช่ในน้ำปราศจากไอออนและวางทิ้งไว้ที่ อุณหภูมิห้องจนครบตามเวลาที่กำหนด จากนั้นนำโครงเนื้อเยื่อขึ้นจากน้ำ วางไว้บน แผ่นแก้วที่เอียงทำมุม 45 องศากับพื้นระนาบนาน 1 นาทีเพื่อไล่น้ำส่วนเกินออก แล้วชั่งน้ำหนักในทันที กำหนดเวลาทดสอบที่ 15, 30, 45, 60 นาที 1, 3, และ 6 ชม. ทดสอบตัวอย่างโครงเนื้อเยื่อกลุ่มละ 5 ชิ้น คำนวณหาอัตราการบวมน้ำจากสมการ

น้ำค่าที่ได้ไปหาค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐาน

- 4.3. ทดสอบการย่อยสลายทางชีวภาพ (biodegradability) ในตัวกลาง 2 ชนิดใน 2 สภาวะ โดย
 - 4.3.1. แช่โครงเนื้อเยื่อรูปทรงกระบอกในสารละลายฟอสเฟตบัฟเฟอร์ (Phosphate Buffer Saline Solution, PBS) วางไว้ที่อุณหภูมิห้อง 24 ชม.
 - 4.3.2. แช่โครงเนื้อเยื่อรูปทรงกระบอกในสารละลายฟอสเฟตบัฟเฟอร์ (Phosphate Buffer Saline Solution, PBS) และนำไปเขย่าที่ความเร็ว รอบ 70 รอบ/นาที ในตู้อบอุณหภูมิ 37°ช เป็นเวลา 24 ชม.
 - 4.3.3. แซ่โครงเนื้อเยื่อรูปทรงกระบอกในสารละลายคอลลาจิเนส (Collagenase)
 ความเข้มข้น 373 นาโนกรัม/มล. [38, 39] นำไปเขย่าที่ความเร็วรอบ 70
 รอบ/นาที ในตู้อบอุณหภูมิ 37°ช เป็นเวลา 24 ชม.

นำตัวอย่างไปทำให้แห้งด้วยวิธีการแช่เยือกแข็งนาน 48 ชม. (วิธีเดียวกับ 3.3) ชั่ง น้ำหนักของโครงเนื้อเยื่อในสภาวะแห้งสนิท คำนวณหาค่าเฉลี่ยและส่วนเบี่ยงเบน มาตรฐาน ของน้ำหนักที่เหลืออยู่จากตัวอย่างโครงเนื้อเยื่อกลุ่มละ 4 ชิ้น

- 4.4. ตรวจสัณฐานวิทยา ความพรุน (porosity) ขนาดของรูพรุน (pore size) และความ ต่อเนื่องของรูพรุน (interconnectivity) โดยสุ่มเลือกตัวอย่างโครงเนื้อเยื่อรูป ทรงกระบอกกลุ่มละ 1 ชิ้น ตัดกึ่งกลางชิ้นตัวอย่างในแนวระนาบและแนวดิ่ง นำไป ยึดบนผิวแท่งทองเหลืองทรงกระบอกด้วยกระดาษกาว จากนั้นเคลือบทองที่ผิว ตัวอย่างด้วยเครื่อง JEOL JFC-1100 sputtering device นาน 4 นาที แล้วจึงนำไป ส่องด้วยกล้องจุลทรรศน์อิเลคตรอนชนิดส่องกราด (JEOL JSM-5200 Scanning electron microscope, SEM) นำภาพที่บันทึกได้ไปวิเคราะห์ด้วยโปรแกรม Image Tool (UTHSCSA) version 3.00 เพื่อวัดขนาดของรูพรุน โดยหาค่าเฉลี่ยจากรูพรุน จำนวน 50 ตำแหน่ง/ภาพ/ตัวอย่าง คำนวณหาค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐาน ของขนาดรูพรุนภายในโครงเนื้อเยื่อทั้งในแนวระนาบและแนวดิ่ง
- 4.5. ตรวจการตอบสนองต่อคลื่นอินฟาเรดของโครงเนื้อเยื่อวัสดุประกอบ เปรียบเทียบ กับไฮยารูโรแนน เจลาติน และผลึกไคติน ด้วย Fourier transformed infrared spectrophotometer (FTIR, Thermo Nicolet Nexus® 670) เพื่อตรวจหาการ เปลี่ยนแปลงโครงสร้างเคมีของวัสดุประกอบจากวัสดุตั้งต้นแต่ละชนิด โดยสุ่มเลือก ตัวอย่าง 1 ชิ้นอย่างอิสระ (random sampling) จากตัวอย่างแต่ละกลุ่ม ใช้ปริมาณ

ตัวอย่าง 2-5 มก.ผสมกับผงโปแตสเซียมโบรไมด์ (KBr) เพื่อบดและอัดเป็นแผ่น ตัวอย่างสำหรับตรวจวัด

- 4.6. ตรวจสอบอุณหสมบัติ (Thermal properties) โดยสุ่มเลือกตัวอย่าง 1 ขึ้นอย่าง อิสระจากตัวอย่างแต่ละกลุ่ม นำไปหาอุณหภูมิเปลี่ยนสถานะคล้ายแก้ว (Glass transition temperature) ด้วย Differential scanning calorimeter (DSC7, Perkin Elmer) โดยใช้ตัวอย่างปริมาณ 5 มก. อัดในจานอลูมิเนียมแล้วให้ความร้อนในช่วง อุณหภูมิ 25-80°ซ ด้วยอัตรา 10 องศาเซลเซียส/นาที และนำตัวอย่างไปทดสอบหา อุณหภูมิในการสลายตัว (Degradation temperature) และความทนทานต่อ อุณหภูมิ (Thermal stability) ด้วยThermogravimetric Analyzer (TGA7, Perkin Elmer) โดยใช้ตัวอย่างปริมาณ 2 มก. วางบนจานแพลทินัมแล้วเผาที่อุณหภูมิ 30-600°ซ ด้วยอัตรา 10°ซ/นาที ภายใต้ก๊าซไนโตรเจน
- 4.7. ทดสอบความเป็นพิษต่อเซลล์กระดูก (human osteoblast cytotoxic test) ด้วย MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) assay โดยวิธีอ้อม (indirect technique) เริ่มจากเพาะเลี้ยงเซลล์กระดูก (human osteoblast cell line, SaOS-2) ในอาหารเลี้ยงเซลล์ชนิด α-minimum essential medium เสริมด้วย 10% ซีรัมลูกวัว (Fetal bovine serum), 1% แอล-กลูตามีน (Lglutamine) และ 1% ยาปฏิชีวนะ (Antibiotic and antimycotic formulation) ซึ่ง ประกอบด้วยเพนนิซิลินจีโซเดียม (Penicillin G Sodium) สเตรปโตไมซินซัลเฟต (Streptomycin sulfate) และ แอมโฟเทอริซินบี (Amphotericin B) ในบรรยากาศที่ มีความชื้นสัมพัทธ์ 95% และ คาร์บอนไดออกไซด์ 5% ที่อุณหภูมิ 37°ซ ขยาย ขอบเขต (passaged) ทุกๆ 3-4 วัน

นำตัวอย่างโครงเนื้อเยื่อกลุ่มที่ 1 (ไม่มีผลึกไคติน) และกลุ่มที่ 6 (ผลึกไค ติน 30%) รูปทรงกระบอกไปแช่ในอาหารเลี้ยงเซลล์ที่ปราศจากซีรัม (serum-free medium) เสริมด้วย 1% แอล-กลูตามีน และ 1% ยาปฏิชีวนะ ซึ่งประกอบด้วยเพน นิซิลินจีโซเดียม สเตรปโตไมซินซัลเฟต และ แอมโฟเทอริซินบี ปริมาณ 500 ไมโครลิตร/ตัวอย่าง เป็นเวลา 24 ชม. อาหารเลี้ยงเชื้อนี้ (ซึ่งอาจเรียกว่าเป็น

"อาหารปนเปื้อน") จะนำไปทดสอบหาความเป็นพิษต่อเซลล์กระดูกมนุษย์ โดยเริ่มจากเพาะเลี้ยงเซลล์กระดูก (SaOS-2) ในถาดเลี้ยงเซลล์ขนาด 24 หลุมในอัตรา 40,000 เซลล์/หลุม ด้วยอาหารที่มีซีรัม เป็นเวลา 16 ชม.เพื่อให้เซลล์ เติบโตและเกาะบนผิวถาดเลี้ยง จากนั้นเปลี่ยนอาหารเลี้ยงเซลล์เป็นชนิดปราศจาก ซีรัม และคงสภาพอดอาหาร (starved) นั้นไว้เป็นเวลา 24 ชม. เมื่อครบ กำหนดเวลาจึงเปลี่ยนอาหารที่ปราศจากซีรัมเป็นอาหารปนเปื้อนที่เตรียมไว้และ เลี้ยงต่อไปอีก 24 ซม. จากนั้นหาจำนวนเซลล์ที่เหลือรอดชีวิตด้วยวิธีเอ็มทีที (MTT assay)

วิธีเอ็มที่ที่อาศัยการเปลี่ยนเกลือเตตราโซเลียมที่มีสี่เหลืองเป็น ผลึกฟอร์มาซานที่มีสีม่วงด้วยเอมไซม์ดีไฮโดรจิเนส (dehydrogenase enzyme) ซึ่ง หลั่งจากไมโตรคอนเดรียของเซลล์ที่มีชีวิต ดังนั้นปริมาณผลึกฟอร์มาซานจึงเป็น สัดส่วนโดยตรงกับปริมาณเซลล์ที่มีชีวิต เริ่มต้นโดยเปลี่ยนอาหารปนเปื้อนที่ใช้เลี้ยง เซลล์มาแล้ว 24 ซม.ในถาดเลี้ยงเซลล์ขนาด 24 หลุม เป็นสารละลายเอ็มที่ที่ความ เข้มข้น 5 มก./มล. ปริมาณ 500 ไมโครลิตร แล้วนำไปอบในตู้เลี้ยงเซลล์ที่อุณหภูมิ 37° ซ นาน 1 ซม. จากนั้นดูดสารละลายเอ็มที่ที่ออกและเปลี่ยนเป็นสารละลายได เมทิลซัลฟอกไซด์ (dimethylsulfoxide, DMSO) ปริมาณ 1,000 มล.ซึ่งผสม บัฟเฟอร์ไกลซีน (glycine buffer, pH 10) ปริมาณ 100 มล. ต่อ 1 หลุมของถาด เลี้ยงเซลล์ เพื่อละลายผลึกฟอร์มาซาน นำถาดเพาะเลี้ยงเซลล์ไปเขย่าหมุน (Rotary agitation) นาน 10 นาที แล้วจึงนำสารละลายไดเมทิลซัลฟอกไซด์ไปวัดค่าการ ดูดกลืนแสงที่ความยาวคลื่น 570 นาโนเมตรด้วยเครื่องสเปคโตรโฟโตมิเตอร์ (Thermospectronic Genesis10 UV/Visible Spectrophotometer) คำนวณหา ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานของค่าที่ได้

4.8. ทดสอบการเกาะยึด (Attachment) และการเจริญเพิ่มจำนวน (Proliferation) ของ เซลล์กระดูก SaOS-2 บนโครงเนื้อเยื่อ เริ่มต้นจากสุ่มเลือกตัวอย่างโครงเนื้อเยื่อรูป ทรงกระบอก จำนวนกลุ่มละ 3 ชิ้น (ยกเว้นตัวอย่างกลุ่มที่ 6, ผลึกไคติน 30%, จำนวน 5 ชิ้น) นำไปวางในถาดเพาะเลี้ยงเซลล์ขนาด 24 หลุม ทำให้ปราศจากเชื้อ ด้วยเอทานอล 70% ปริมาณ 1 มล./หลุม เป็นเวลา 30 นาที จากนั้นกำจัดเอทานอ ลออกแล้วล้างโครงเนื้อเยื่อด้วยสารละลายฟอสเฟตบัฟเฟอร์ (PBS) ซ้ำ 2 ครั้ง บรรจุ เซลล์กระดูก SaOS-2 จำนวน 40,000 เซลล์/ตัวอย่าง ลงบนโครงเนื้อเยื่อโดยตรง เติมอาหารเลี้ยงเซลล์ชนิด **Q**-minimum essential medium เสริมด้วย 10% ซีรัม ลูกวัว, 1% แอล-กลูตามีน และ 1% ยาปฏิชีวนะ ซึ่งประกอบด้วยเพนนิชิลินจี โชเดียม สเตรปโตไมซินซัลเฟต และ แอมโฟเทอริชินบี ปริมาณ 1.5 มล./หลุม ใน บรรยากาศที่มีความชื้นสัมพัทธ์ 95% และ คาร์บอนไดออกไซด์ 5% ที่อุณหภูมิ 37° ซ เมื่อครบกำหนดเวลาที่ 1, 4, 24, 48, และ 72 ซม. แล้วจึงดูดอาหารเลี้ยงเชื้อออก ล้างโครงเนื้อเยื่อด้วยสารละลายฟอสเฟตบัฟเฟอร์ 2 ครั้ง นำโครงเนื้อเยื่อกลุ่มละ 3 ชิ้น ไปหาปริมาณเซลล์ที่มีชีวิตอยู่ภายในด้วยวิธีเอ็มทีที (วีธีเดียวกับ 4.7) สำหรับ ตัวอย่างโครงเนื้อเยื่อกลุ่มที่ 6 ที่เหลืออยู่นั้น ใช้เพื่อสังเกตการเจริญของเซลล์กระดูก บนโครงเนื้อเยื่อโดยตรงหลังจากเพาะเลี้ยงเซลล์เป็นเวลานาน 1 และ 7 วัน ด้วย กล้องจุลทรรศน์ชนิดส่องกราด โดยยึดเซลล์ด้วยการแช่โครงเนื้อเยื่อในสารละลายก ลูตารอลดีไฮด์ 3 % (3% glutaraldehyde solution) ปริมาณ 500 ไมโครลิตร/หลุม นาน 30 นาที จากนั้นล้างโครงเนื้อเยื่อด้วยสารละลายฟอสเฟตบัฟเฟอร์อุณหภูมิ 4 องศาเซลเซียส แล้วจึงกำจัดน้ำออกโดยแช่โครงเนื้อเยื่อในสารละลายเอทานอล ความเข้มข้น 30, 50, 70, 90, และ 100% ตามลำดับ นาน 2 นาที/ความเข้มข้น วาง โครงเนื้อเยื่อทิ้งไว้ที่อุณหภูมิห้องจนแห้งสนิท นำไปยึดบนแท่งทองเหลือง และส่องดู ด้วยกล้องจุลทรรศน์อิเลคตรอนชนิดส่องกราดเพื่อตรวจสภาพการยึดเกาะของเซลล์ และศึกษาสัณฐานวิทยาของเซลล์

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

ผลการวิจัยและการอภิปรายผล

(Result and Discussion)

1. สัณฐานวิทยาและขนาดของผลึกไคติน

ผลึกไคตินที่สกัดได้แสดงคุณสมบัติความเป็นสารแขวนลอยในน้ำ (colloids suspension) เมื่อมองด้วยตาเปล่า ความเป็นคอลลอยด์ของผลึกไคตินเป็นผลจากการผลักตัวกันของผลึก โดยภายใต้ สภาวะกรดดังเช่นที่ใช้ในกระบวนการสกัดผลึกไคติน จะเกิดกระบวนการรับประจุบวก (protonation) ของกลุ่มอะมิโนในโมเลกุลของไคตินซึ่งประกอบขึ้นจากหน่วยย่อยชนิด N-acetyl-D-glucosamine ดัง สมการ [40]

 $GIu-NH2 + H^+ \leftrightarrow GIu-NH3^+$

หมู่ฟังก์ชัน NH3⁺ ที่เกิดขึ้น เป็นแหล่งกำเนิดของแรงผลักระหว่างประจุ (electrostatic repulsive force) ซึ่งการศึกษาโดย Revel and Marchessaultf ในปี 1993 [41] พบว่าเกิดประจุบวกขึ้น ภายหลังจากไฮโดรไลซิสด้วยกรดเพียง 15 นาที และโดยที่ผลึกไคตินมีขนาดเล็กในระดับนาโนเมตร จึงมี พื้นที่ผิวมากและเป็นผลให้เกิดแรงผลักระหว่างประจุในปริมาณมากตามไปด้วย อย่างไรก็ตามการรับ ประจุบวกของกลุ่มอะมิโนอาจจะเกิดขึ้นไม่ทั้งหมด ทำให้เกิดพันธะไฮโดรเจนดึงดูดระหว่างผิวผลึกไคติน ในบางตำแหน่ง เกิดเป็นกลุ่มผลึกในลักษณะเกาะกลุ่มกันบางส่วน (partial aggregation) ภาพจาก กล้องจุลทรรศน์อิเลคตรอนชนิดส่องผ่าน (ภาพที่ 6) จึงแสดงให้เห็นผลึกไคตินรูปร่างเรียวยาวและหัวท้าย แหลม โดยมีทั้งผลึกที่กระจายตัวแยกออกเป็นผลึกเดี่ยว (individual crystallites) และที่เกาะกันเป็นกลุ่ม ผลึก (crystal bundles)

ภาพที่ 6 ผลึกไคตินที่สกัดได้ถ่ายด้วยกล้องจุลทรรศน์อิเลคตรอนชนิดส่องผ่าน

ความเข้มข้นของสารแขวนลอยผลึกไคตินที่วัดได้มีค่าเป็น 1.417% (มวล/ปริมาตร) มีค่า ใกล้เคียงกับค่าที่ได้จากการศึกษาโดย Sriupayo et al. ในปี 2005 (1.48%) [35]

ขนาดของผลึกไคตินที่สกัดได้มีค่าเฉลี่ยความยาวและความกว้างเป็น 255.70 ± 55.77 และ 30.65 ± 5.77 นาโนเมตร ตามลำดับ คำนวณค่าอัตราสัดส่วนของความยาวต่อความกว้างโดยเฉลี่ย (aspect ratio, Length/Width) ได้ค่าประมาณ 8 การกระจายตัวของขนาดความยาวและความกว้างของ ผลึกไคตินแสดงในแผนภูมิฮิสโตแกรม (ภาพที่ 7 และ 8) ซึ่งจะสังเกตได้ว่า มากกว่าร้อยละ 50 ของผลึก ใคตินมีความยาวอยู่ในช่วง 203-277 นาโนเมตร และมีความกว้างอยู่ในช่วง 27-35 นาโนเมตร ขนาดของ ผลึกไคตินในการทดลองนี้มีค่าอยู่ภายในช่วงของขนาดของผลึกไคตินจากการศึกษาโดย Nair & Dufresne ในปี 2003 [42] (ยาว 100-600 นาโนเมตร, กว้าง 4-40 นาโนเมตร) และ การศึกษาโดย Lu et al. ในปี 2004 [43] (ยาว 100-650 นาโนเมตร, กว้าง 10-80 นาโนเมตร)

ภาพที่ 8 ฮีสโตแกรมแสดงการกระจายของความกว้างของผลึกไคติน

2. โครงสร้างและสัณฐานวิทยาของโครงเนื้อเยื่อ

โครงเนื้อเยื่อที่ผลิตได้มีลักษณะเป็นก้อนฟองน้ำที่มีรูพรุน น้ำหนักเบา และมีสีเข้มขึ้นตาม สัดส่วนที่เพิ่มมากขึ้นของปริมาณผลึกไคติน (ภาพที่ 9)

ภาพที่ 9 โครงเนื้อเยื่อวัสดุปร<mark>ะกอบไฮยารูโรแนน-เจลา</mark>ตินเสริมแรงด้วยผลึกไคตินชนิดอัลฟ่า (ตัวเลขแสดงสัดส่วนน้ำหนักของผลึกไคตินต่อน้ำหนักของวัสดุประกอบไฮยารูโรแนน-เจลาติน)

ความพรุนภายในโครงเนื้อเยื่อมีความจำเป็นต่อการส่งผ่านเข้า-ออกของสารอาหาร อากาศ และของเสียจากเซลล์ รวมถึงการสร้างหลอดเลือดใหม่ที่จำเป็นสำหรับการสร้างเนื้อเยื่อ [44] จาก ภาพถ่ายกล้องจุลทรรศน์อิเลคตรอนชนิดส่องกราดของโครงเนื้อเยื่อที่ผลิตได้ (ภาพที่ 10-1,2) โครงสร้าง และสัณฐานวิทยาของโครงเนื้อเยื่อในทุกกลุ่มตัวอย่างมีรูพรุนทั่วทั้งชิ้น รูพรุนมีรูปร่างกลมและมีความ ต่อเนื่องจากชั้นตื้นสู่ชั้นที่ลึกกว่า (Interconnectivity) ทั้งนี้ไม่พบความแตกต่างระหว่างสัณฐานวิทยาของ ชิ้นตัวอย่างที่ตัดตามแนวขวางและตามแนวดิ่ง ซึ่งแสดงถึงลักษณะสัณฐานวิทยาที่ดีของโครงเนื้อเยื่อที่ เป็นรูปแบบเดียวกันในทุกมิติ [9] แต่จะสังเกตเห็นว่าความสมบูรณ์ของโครงเนื้อเยื่อในกลุ่ม "ผลึกไคติน 30%" ดูด้อยกว่ากลุ่มอื่นเล็กน้อย โดยเฉพาะชิ้นตัวอย่างที่ตัดในแนวดิ่งที่ผนังของรูพรุนดูไม่ใคร่ต่อเนื่อง

ภาพที่ 10-1 โครงสร้างและสัณฐานวิทยาของโครงเนื้อเยื่อวัสดุประกอบไฮยารูโรแนน-เจลาตินเสริมแรงด้วยผลึกไค ตินชนิดอัลฟ่าตัดตามแนวขวาง (1,3,5) และแนวดิ่ง (2,4,6): (1,2) ผลึกไคติน 0% (3,4) ผลึกไคติน 2% (5,6) ผลึกไค ติน 5% ถ่ายด้วยกล้องจุลทรรศน์อิเลคตรอนชนิดสองกราด

20

ภาพที่ 10-2 โครงสร้างและสัณฐานวิทยาของโครงเนื้อเยื่อวัสดุประกอบไฮยารูโรแนน-เจลาตินเสริมแรงด้วยผลึกไค ตินชนิดอัลฟ่าตัดตามแนวขวาง (7,9,11) และแนวดิ่ง (8,10,12): (7,8) ผลึกไคติน 10% (9,10) ผลึกไคติน 20% (11,12) ผลึกไคติน 30% ถ่ายด้วยกล้องจุลทรรศน์อิเลคตรอนชนิดส่องกราด

	<u> </u>				
		ขนาดของรูพรุ	น (เมเครเมตร)		
	ชิ้นตัวอย่างเ	ตัดแนวขวาง			
ño o do a	ช่วง	ค่าเฉลี่ย	ช่วง	ค่าเฉลี่ย	
ตวอยาง	(ต่ำสุด-สูงสุด)	(Mean \pm SD)	(ต่ำสุด-สูงสุด)	(Mean \pm SD)	
ผลึกไคติน 0%	92.34 – 208.76	140.91 ± 21.82^{a}	112.80 – 231.37	165.76 ± 27.68^{aa}	
ผลึกไคติน 2%	114.42 – 181.98	139.38 ± 16.01^{b}	108.37 – 182.09	$145.44 \pm 15.31^{\text{b}}$	
ผลึกไคติน 5%	104.12 - 224.47	153.15 ± 23.92 ^c	110.59 – 171.08	142.70 ± 13.84^{c}	
ผลึกไคติน 10%	118.01 – 202.32	158.86 ± 19.08^{d}	104.27 – 205.35	$162.76 \pm 23.63^{\text{d}}$	
ผลึกไคติน 20%	113.48 – 200.48	151.44 ± 19.29 ^e	105.77 – 180.96	143.85 ± 17.19^{e}	
ผลึกไคติน 30%	108.48 – 184.36	155.41 ± 15.67^{f}	97.22 – 231.27	148.99 ± 25.09^{f}	

ขนาดของรูพรุนของโครงเนื้อเยื่อที่ผลิตได้แสดงในตารางที่ 2

ตารางที่ 2 ขนาดของรูพรุนภายในโครงเนื้อเยื่อวัสดุประกอบไฮยารูโรแนน-เจลาตินเสริมแรงด้วยผลึกไคตินชนิดอัลฟ่าวัด จากชิ้นตัวอย่างตัดตามแนวขวางและแนวดิ่ง^{a,b,c,d,e,f} เปรียบเทียบเฉพาะภายในตัวอย่างกลุ่มเดียวกันที่ระดับ นัยสำคัญต่ำกว่า 0.05; ทดสอบด้วยสถิติ One Way ANOVA with Tukey HSD, จำนวนข้อมูลเป็น 50.

ขนาดของรูพรุนในทุกกลุ่มตัวอย่างอยู่ในช่วงประมาณ 100-200 ไมโครเมตรทั้งในระนาบนอน และระนาบดิ่ง โดยมีค่าเฉลี่ยอยู่ในช่วงประมาณ 150 ไมโครเมตร ซึ่งเมื่อพิจารณาจากค่าของส่วน เบี่ยงเบนมาตรฐานจะพบความเหลื่อมกันของขนาดรูพรุนในทุกกลุ่มตัวอย่าง ขณะเดียวกันสถิติทดสอบ แสดงให้เห็นว่ารูพรุนในระนาบนอนมีขนาดไม่แตกต่างจากรูพรุนในระนาบดิ่งเมื่อเปรียบเทียบภายในกลุ่ม ตัวอย่างเดียวกันยกเว้นกลุ่มควบคุม ผลการทดลองแสดงให้เห็นว่าปริมาณที่เพิ่มขึ้นของผลึกไคตินไม่มีผล ต่อขนาดของรูพรุนที่เกิดขึ้นภายในโครงเนื้อเยื่อแต่อย่างไร ด้วยขนาดของรูพรุนที่เล็กกว่า 200 ไมโครเมตร การส่งผ่านของอาหารและอากาศ รวมถึงการเจริญของหลอดเลือดใหม่ภายในโครงเนื้อเยื่อที่ ผลิตขึ้นนี้อาจเป็นไปอย่างจำกัด ทำให้เกิดสภาวะออกซิเจนต่ำภายในโครงเนื้อเยื่อซึ่งเหมาะสมกับการ เจริญของกระดูกอ่อน (cartilage) มากกว่ากระดูก (bone) [5, 45]

เพื่อให้ได้โครงเนื้อเยื่อที่มีรูพรุนเฉลี่ยขนาดใหญ่กว่า 200 ไมโครเมตร ในขั้นตอนขึ้นรูปโครง เนื้อเยื่อด้วยวิธีแช่เยือกแข็งและการระเหิด จำเป็นต้องลดอัตราการเย็นตัวของสารละลายวัสดุประกอบให้ ต่ำลงกว่าที่กำหนดในการทดลองนี้ ซึ่งการศึกษาโดย Shapiro and Cohen ในปี 1997 [46] ได้อธิบายถึง เหตุผลเกี่ยวกับอัตราการเย็นตัวอย่างรวดเร็ว ว่าเป็นสาเหตุให้เกิดการสูญเสียความร้อนที่ใช้ในการสร้าง ผลึกน้ำแข็ง (heat of crystallization) ทำให้เกิดเฉพาะผลึกน้ำแข็งที่มีขนาดเล็กซึ่งจะกลายเป็นรูพรุน ขนาดเดียวกันภายหลังจากที่ผลึกน้ำแข็งนั้นระเหิดไป สอดคล้องกับผลการศึกษาโดย Kang et al. ในปี 1999 [47] ในการขึ้นรูปโครงเนื้อเยื่อเจลาตินซึ่งพบว่า อุณหภูมิแซ่เยือกแข็งที่ -20°ซ ทำให้โครงเนื้อเยื่อมี ขนาดของรูพรุนใหญ่กว่าที่อุณหภูมิ -80°ซ หรือการแช่เยือกแข็งในไนโตรเจนเหลว อย่างมีนัยสำคัญ (250, 85 และ 45 ไมโครเมตร ตามลำดับ)

กลสมบัติของโครงเนื้อเยื่อ

โครงเนื้อเยื่อที่ดีควรมีความทนทานต่อแรงที่มากระทำ ทั้งในระหว่างกระบวนการซ่อมสร้าง เนื้อเยื่อในห้องปฏิบัติการและในคลินิก รวมถึงมีความสามารถในการซดเซยกลสมบัติของอวัยวะเพื่อการ ทำหน้าที่ได้อย่างไม่บกพร่อง ดังเช่นในงานวิศวกรรมเนื้อเยื่อกระดูกเป็นต้น

งานวิจัยนี้ศึกษากลสมบัติของโครงเนื้อเยื่อด้วยวิธีการดึงชิ้นตัวอย่างจนขาด ผลการศึกษา แสดงด้วยค่าของความแข็งแรงดึง ค่าโมดูลัสยืดหยุ่น และการยืดตัวขณะขาดในตารางที่ 3

ตัวอย่าง	โมดูลัสยืดหยุ่น (MPa)	การยืดตัวขณะขาด (%)	ความแข็งแรงดึง (MPa)
ผลึกไคติน 0% 🏓	00.988 ± 0.099 ^a	53.476 ± 10.688^{a}	0.518 ± 0.064^{a}
ผลึกไคติน 2%	14.096 ± 2.228^{b}	28.346 ± 6.163^{b}	$1.028\pm0.089^{\text{b}}$
ผลึกไคติน 5%	19.958 ± 3.640^{b}	06.357 ± 1.418 ^c	$0.532 \pm 0.153^{\text{a,c}}$
ผลึกไคติน 10%	12.456 ± 2.000 ^b	11.632 ± 4.154 ^{c,d}	$0.478 \pm 0.190^{\text{a,c}}$
ผลึกไคติน 20%	07.103 ± 0.931 ^c	$16.070 \pm 0.955^{\text{b,d}}$	$0.465\pm0.058^{\text{a}}$
ผลึกไคติน 30%	11.963 ± 0.472^{b}	$16.030 \pm 3.396^{\text{b,d}}$	0.722 ± 0.081^{c}

ตารางที่ 3 กลสมบัติของโครงเนื้อเยื่อวัสดุประกอบไฮยารูโรแนน-เจลาตินเสริมแรงด้วยผลึกไคตินชนิดอัลฟ่า ^{a,b,c,d,} เปรียบเทียบเฉพาะภายในกลุ่มตัววัดเดียวกันที่ระดับนัยสำคัญต่ำกว่า 0.05; ทดสอบด้วยสถิติ One Way ANOVA with Dunnett T3, จำนวนตัวอย่างเป็น 5.

เมื่อสัมผัสด้วยมือเปล่า โครงเนื้อเยื่อที่เสริมความแข็งแรงด้วยผลึกไคตินมีความยืดหยุ่น น้อยลงและค่อนข้างแข็งกระด้างเมื่อเปรียบเทียบกับกลุ่มควบคุม จากตารางที่ 3 สถิติทดสอบแสดงให้ เห็นถึงค่าโมดูลัสยืดหยุ่นของโครงเนื้อเยื่อที่เพิ่มขึ้นอย่างมีนัยสำคัญเมื่อเสริมความแข็งแรงด้วยผลึกไคติน ตั้งแต่ 2 ถึง 30% แต่ปริมาณผลึกไคตินที่เพิ่มขึ้นมีผลต่อโมดูลัสยืดหยุ่นอย่างไม่แตกต่างกัน เว้นแต่กลุ่ม ผลึกไคติน 20% ซึ่งมีค่าต่ำกว่ากลุ่ม 10 และ 30% เล็กน้อย ภาพรวมของค่าโมดูลัสยืดหยุ่นสอดคล้องกับ ค่าของการยืดตัวขณะขาด โดยพบว่ากลุ่มควบคุมมีการยืดตัวสูงสุดและแตกต่างจากกลุ่มอื่นๆอย่างมี นัยสำคัญ ขณะที่การยืดตัวขณะขาดจบงกลุ่มทดลองนั้นมีความคาบเกี่ยวกันและปราศจากแนวโน้มไป ตามสัดส่วนปริมาณผลึกไคตินที่เพิ่มขึ้น ทั้งนี้แตกต่างจากค่าความแข็งแรงดึง โครงเนื้อเยื่อที่เสริมแรงด้วย ผลึกไคติน 2% มีค่าความแข็งแรงดึงสูงสุดและแตกต่างจากกลุ่มอื่นอย่างมีนัยสำคัญ ขณะที่กลุ่มทดลอง อื่นให้ค่าความแข็งแรงดึงไม่แตกต่างจากกลุ่มควบคุม ผลดังกล่าวมีความสอดคล้องกับผลการศึกษาของ Sriupayo et al. ในปี 2005 [35] ซึ่งพบว่าผลึกไคตินปริมาณ 2.96% ให้ค่าความแข็งแรงสูงสุดใน แผ่นฟิล์มวัสดุประกอบไคโตซาน ในขณะที่ ปริมาณ 7.4, 14.8, 22.2 และ 29.6% นั้นทำให้ค่าความ แข็งแรงดึงลดต่ำลงและแตกต่างกันเองอย่างไม่มีนัยสำคัญ หากเปรียบเทียบระหว่างผลการทดลองใน กลุ่มผลึกไคติน 2% กับกลสมบัติโดยเฉลี่ยของกระดูก จะพบว่าค่าโมดูลัสยืดหยุ่นของโครงเนื้อเยื่อต่ำกว่า ของกระดูกถึงประมาณ 1,000 เท่า (16.4 จิกะปาสคาล) ขณะที่ความแข็งแรงดึงมีค่าต่ำกว่าถึง 100 เท่า (117.4 เมกะปาสคาล) [48] แสดงให้เห็นถึงจุดด้อยในกลสมบัติของโครงเนื้อเยื่อที่ผลิตจากโพลีเม อร์ธรรมชาติ [6]

ผลการทดลองถึงกลสมบัตินี้แสดงให้เห็นว่า การเสริมแรงด้วยผลึกไคตินเพียง 2% ให้ผลที่ ชัดเจนในการลดความยืดหยุ่น และเพิ่มความแข็งแรงดึงของโครงเนื้อเยื่อวัสดุประกอบไฮยารูโรแนน-เจ ลาตินอย่างมีนัยสำคัญ การเพิ่มสัดส่วนของปริมาณผลึกไคตินให้สูงขึ้นถึง 30% ไม่ช่วยให้กลสมบัติของ โครงเนื้อเยื่อดีขึ้นแต่อย่างไร ถึงแม้ว่าค่าของกลสมบัติที่วัดได้นั้นเป็นผลร่วมกันจากสองปัจจัยภายในโครง เนื้อเยื่อ ซึ่งได้แก่กลสมบัติของตัวเนื้อวัสดุประกอบเองและความพรุนภายในชิ้นตัวอย่าง แต่จาก การศึกษาถึงสัณฐานวิทยาและความพรุนของโครงเนื้อเยื่อที่ไม่พบความแตกต่างกันในทุกกลุ่มควบคุม ค่าของกลสมบัติที่วัดได้จึงน่าจะสะท้อนมาจากกลสมบัติของวัสดุประกอบโดยตรง และใช้เป็นตัวแทน ของกลสมบัติโครงเนื้อเยื่อได้ อย่างไรก็ตามอาจพบความคลาดเคลื่อนของผลการทดลองบ้างสำหรับค่า โมดูลัสยืดหยุ่นในกลุ่มผลึกไคติน 20% และค่าการยืดตัวขณะขาดในกลุ่มผลึกไคติน 5% ซึ่งแสดงค่าที่ แตกต่างจากกลุ่ม

4. การดูดซึมน้ำและการย่อยสลายทางชีวภาพ

ภาพที่ 11 แสดงอัตราการดูดซึมน้ำของโครงเนื้อเยื่อที่อุณหภูมิห้องตั้งแต่เวลา 15 นาทีจนถึง 24 ชั่วโมง พบว่าทุกกลุ่มตัวอย่างมีการดูดซึมน้ำค่อนข้างใกล้เคียงกันใน 60 นาทีแรก โดยเป็นสัดส่วน มากกว่า 95% ของน้ำหนักทั้งหมดของโครงเนื้อเยื่อที่ดูดซึมน้ำเอาไว้ซึ่งเป็นค่าที่สูงมาก เทียบได้กับการ ดูดซึมน้ำของวัสดุประเภทซึมซับพิเศษ (superabsorbent) [49] ซึ่งปริมาณการดูดซึมน้ำในการทดลองนี้ มีค่าใกล้เคียงกับการศึกษาของ Park et al. ในปี 2002 [37] ในโครงเนื้อเยื่อรูปฟองน้ำชนิดคอลลาเจน ผสมไฮยารูโรแนน การดูดซึมน้ำในปริมาณมากเป็นคุณสมบัติเฉพาะตัวจากความเข้ากันได้ดีกับน้ำ (hydrophilicity) ของวัสดุประเภทไฮโดรเจลเช่น ไฮยารูโรแนน เจลาติน หรืออัลจิเนต [7] ซึ่งเป็นประโยชน์ ในงานวิศวกรรมเนื้อเยื่อจากการเป็นสภาพแวดล้อมชุ่มน้ำที่ช่วยปกป้องเซลล์และสารผลิตจากเซลล์เช่น ดีเอ็นเอ หรือ เปปไตด์ (peptide) รวมถึงเป็นเส้นทางลำเลียงแลกเปลี่ยนสารอาหารและผลผลิตต่างๆเข้า และออกจากเซลล์ [31] จากผลการทดลอง (ภาพที่ 11) ที่แสดงถึงการดูดซึมน้ำในปริมาณใกล้เคียงกันของโครง เนื้อเยื่อในทุกกลุ่มตัวอย่าง โดยเฉพาะอย่างยิ่งภายใน 60 นาทีแรก รวมถึงการลดลงของปริมาณการดูด ซึมน้ำที่มีแนวโน้มในลักษณะเดียวกันเมื่อเวลาผ่านไป การเสริมแรงด้วยผลึกไคตินจึงมีผลกระทบต่อการ ดูดซึมน้ำของโครงเนื้อเยื่อน้อยมาก อาจเป็นเพราะสัณฐานวิทยาของโครงเนื้อเยื่อที่มีรูพรุนต่อเนื่องตลอด ทั่วทั้งชิ้นในตัวอย่างทุกกลุ่มนั้น ช่วยให้เกิดพฤติกรรมแคปปิลลารี (capillary reaction) ดูดน้ำผ่านรูพรุน จนเต็มโครงเนื้อเยื่อได้อย่างรวดเร็ว [49] ทำให้โครงเนื้อเยื่อมีการดูดซึมน้ำในปริมาณมากด้วยอัตราเร็วสูง ซึ่งสังเกตได้จากปริมาณการดูดซึมอยู่ที่จุดสูงสุดภายในเวลา 15 นาทีแรก

การดูดซึมน้ำในปริมาณสูงทำให้โครงเนื้อเยื่อมีจุดด้อยในเรื่องของกลสมบัติ [31] และอาจ ย่อยสลายได้โดยง่าย การย่อยสลายของไฮโดรเจลเกิดขึ้นได้จากกระบวนการไฮโดรไลซิส (hydrolysis) การละลาย (dissolution) และ การย่อยสลายโดยเอนไซม์ (enzymatic cleavage) [7] การทดลองนี้ ศึกษาการย่อยสลายของโครงเนื้อเยื่อที่เวลา 24 ซม.ในสารละลายฟอสเฟตบัฟเฟอร์ที่อุณหภูมิห้อง (25 องศาเซลเซียส) ในสภาวะนิ่ง และ อุณหภูมิ 37°ซ ภายใต้การเขย่าด้วยความเร็วรอบ 70 รอบ/นาที เพื่อ สังเกตการย่อยสลายจากกระบวนการไฮโดรไลซิสซึ่งอาจเกิดร่วมกับการละลาย และศึกษาการย่อยสลาย ในเอ็นไซม์คอลลาจิเนส (collagenase) ที่ความเข้มข้น 373 นาโนกรัม/มล. ซึ่งเป็นค่าความเข้มข้นที่พบ ในน้ำไขข้อ (synovial fluid) ของผู้ป่วยโรคไขข้อกระดูกอักเสบ (osteoarthritis) [38, 39] โดยศึกษาที่ อุณหภูมิ 37°ซ ภายใต้การเขย่าด้วยความเร็วรอบ 70 รอบ/นาที ผลการศึกษาแสดงโดยน้ำหนักที่ลดลง ของโครงเนื้อเยื่อในสภาวะที่แห้งสนิท (ภาพที่ 7)

ภาพที่ 12 น้ำหนักที่เหลือของโครงเนื้อเยื่อวัสดุประกอบไฮยารูโรแนน-เจลาตินเสริมแรงด้วยผลึก ใคตินชนิดอัลฟ่า ภายหลังจากแช่ในสารละลายฟอสเฟตบัฟเฟอร์และคอลลาจิเนสที่สภาวะต่างๆ นาน 24 ชม. a,b,c,* เปรียบเทียบที่ระดับนัยสำคัญต่ำกว่า 0.05; ทดสอบด้วยสถิติ One Way ANOVA with Tukey HSD, จำนวนตัวอย่างเป็น 4.

ล่

จากภาพที่ 12 การแช่โครงเนื้อเยื่อในสารละลายฟอสเฟตบัฟเฟอร์เพียง 24 ชั่วโมงที่ อุณหภูมิห้องทำให้น้ำหนักของโครงเนื้อเยื่อลดลงเหลือ 58-76% ของน้ำหนักเริ่มต้น โดยไม่พบแนวโน้มที่ สัมพันธ์กับปริมาณไคตินที่เพิ่มขึ้นซึ่งสอดคล้องกับพฤติกรรมการดูดซึมน้ำของโครงเนื้อเยื่อ การย่อย สลายโครงเนื้อเยื่อโดยกระบวนการไฮโดรไลซิสและ/หรือการละลายโดยปราศจากเอ็นไซม์จึงเริ่มต้นตั้งแต่ 24 ชั่วโมงแรก

ผลดังกล่าวแตกต่างจากการทดลองย่อยสลายโครงเนื้อเยื่อในสภาพเลียนแบบสภาวะร่างกาย ที่อุณหภูมิ 37 องศาเซลเซียสร่วมกับการเขย่าที่ความเร็วรอบ 70 รอบ/นาที อุณหภูมิที่สูงขึ้นและการขยับ เคลื่อน ทำให้น้ำหนักของโครงเนื้อเยื่อลดลงอย่างมีนัยสำคัญเมื่อเปรียบเทียบภายในกลุ่มตัวอย่างที่มี ปริมาณผลึกไคตินเท่ากัน ทั้งนี้อาจเกิดการย่อยสลายโมเลกุลไฮยารูโรแนนด้วยความร้อน (Thermal degradation) [50] ร่วมด้วย ทำให้น้ำหนักของโครงเนื้อเยื่อลดลงเหลือ 33-60% ของน้ำหนักเริ่มต้น การ เสริมแรงด้วยปริมาณผลึกไคติน 20-30% เป็นผลให้โครงเนื้อเยื่อทนต่อการย่อยสลายในสภาวะนี้ได้อย่าง มีนัยสำคัญเมื่อเทียบกับกลุ่มควบคุม ถึงแม้ค่าเฉลี่ยของน้ำหนักที่เหลืออยู่จะแสดงให้เห็นแนวโน้มที่ลดลง ของการย่อยสลายเมื่อปริมาณผลึกไคตินเพิ่มขึ้น แต่สถิติทดสอบบ่งชี้ว่าปริมาณผลึกไคติน 5-30% ให้ผล ในระดับที่ต่างกันอย่างไม่มีนัยสำคัญ

เช่นเดียวกับการย่อยสลายในเอ็มไซม์คอลลาจิเนสในสภาวะเลียนแบบร่างกายมนุษย์ น้ำหนัก ของโครงเนื้อเยื่อที่เหลืออยู่ลดต่ำลง เมื่อเปรียบเทียบกับการย่อยสลายในสารละลายฟอสเฟตบัฟเฟอร์ที่ สภาวะเดียวกัน ซึ่งน่าจะเป็นผลจากการที่เอ็มไซม์คอลลาจิเนสไปตัดพันธะเปปไตด์ (peptide bone) ที่ ตำแหน่งของกรดอะมิโน "ไกลซีน" ในโครงสร้างของโมเลกุลเจลาติน [37] ประกอบกับการย่อยสลายไฮ ยารูโรแนนด้วยความร้อน และการขยับเคลื่อนของโครงเนื้อเยื่อภายในสารละลายตัวกลาง ทำให้โครง เนื้อเยื่อมีน้ำหนักเหลือเพียง 11-52% ของน้ำหนักเริ่มต้น อย่างไรก็ตาม การเสริมแรงผลึกไคตินในสัดส่วน ไม่ต่ำกว่า 5% ของน้ำหนักวัสดุประกอบ ทำให้โครงเนื้อเยื่อมีความต้านทานต่อการย่อยสลายด้วย เอนไซม์ดีขึ้นอย่างมีนัยสำคัญ ซึ่งอาจเป็นเพราะเกิดการเชื่อมประสานระหว่างโมเลกุลผลึกไคตินกับวัสดุ ประกอบ ทำให้เอนไซม์คอลลาจิเนสเข้าถึงตำแหน่งตัดพันธะได้ยากขึ้น [51]

5. การดูดกลืนคลื่นอิ<mark>นฟาเร</mark>ด

จากภาพแสดงอินฟาเรดสเปคตรัมของเจลาติน ไฮยารูโรแนน ผลึกไคติน และวัสดุประกอบไฮ ยารูโรแนน-เจลาตินเสริมแรงด้วยผลึกไคตินซนิดอัลฟ่า (ภาพที่ 13) เจลาตินมีการการดูดกลืนแสงอิน ฟาเรดที่คลื่นความถี่ 1656, 1547, 1450 และ 1237 ซม⁻¹ ซึ่งเป็นการตอบสนองของกลุ่มพันธะเอไมด์ (amide bond, CO-NH) ที่ปรากฏอยู่ในโครงสร้างของโมเลกุลโปรตีน [37, 52, 53] ในขณะที่ไฮยารูโรแน นซึ่งโครงสร้างโมเลกุลประกอบด้วยหน่วยย่อยของกรด กลูคูโรนิค (Glucuronic) และอซิติลกลูโคซามีน (Acetylglucosamine) มีการดูดกลืนที่คลื่นความถี่ 1412 และ 1076 ซม⁻¹ แสดงถึงการปรากฏอยู่ของ กลุ่มเกลือคาร์บอกซิล (carboxylate salt; symmetric stretching) และกลุ่มพันธะเอสเทอร์ (ester bond, CO-OH) ตามลำดับ อินฟาเรดสเปคตรัมของไฮยารูโรแนนมีลักษณะคล้ายกับของผลึกไคติน เนื่องจากทั้งสองชนิดเป็นสารประเภทโพลีแซคคาไรด์ แต่ผลึกไคตินแสดงการดูดกลืนที่ชัดเจนและแคบ กว่า (sharp) ในหลายช่วงความถี่ เนื่องจากโครงสร้างมีความเป็นผลึก [32] โดยเฉพาะที่ตำแหน่งความถี่ 1076 (พันธะเอสเทอร์), 1378 (กลุ่มเกลือคาร์บอกซิล) 3267 และ 3446 ซม⁻¹ (กลุ่มไฮดรอกซิล, OH) [53]

ผลึกไคตินที่สกัดได้ยังแสดงสเปคตรัมของพันธะเอไมด์หนึ่ง (amide I) ซึ่งแยกออกเป็นสอง ความถี่คือ 1621 และ 1656 ซม⁻¹ และสเปคตรัมของพันธะเอไมด์สอง (amide II) ที่ความถี่ 1556 ซม⁻¹ [52, 54] ความถี่ 1621 ซม⁻¹ นั้นเป็นลักษณะที่พบได้เฉพาะในผลึกไคตินชนิดอัลฟ่าเท่านั้น ขณะที่ความถี่ 1656 ซม⁻¹ นั้นเกิดจากการเหยียดออก (stretch) ของพันธะไฮโดรเจนระหว่างกลุ่มคาร์บอนิล (CO) กับ

ภาพที่ 13 อินฟาเรดสเปคตรัมของเจลาติน ไฮยารูโรแนน ผลึกไคติน และวัสดุประกอบไฮยารู โรแนน-เจลาตินเสริมแรงด้วยผลึกไคตินชนิดอัลฟ่า

กลุ่มเอมีน (NH) ของสายโซ่ข้างเคียง (intra-sheet chain) ซึ่งเป็นตำแหน่งความถี่เดียวกับที่พบในพันธะ เอไมด์ในโมเลกุลโปรตีน [32]

เมื่อผสมไฮยารูโรแนนเข้ากับเจลาตินและเชื่อมประสานด้วยตัวเชื่อมประสาน EDC (crosslink agent) วัสดุประกอบไฮยารูโรแนน-เจลาตินที่ได้ (ผลึกไคติน 0%) แสดงการดูดกลืนอินฟาเรดที่คลื่น ความถี่ 1650, 1550, 1412 และ 1076 ซม' ซึ่งแสดงถึงทั้งพันธะเอไมด์และเอสเทอร์บนโครงสร้างของ วัสดุประกอบ ตัวเชื่อมประสาน EDC ทำให้เกิดการสร้างพันธะเอไมด์ระหว่างกลุ่มคาร์บอกซิลในเจลาติน และ/หรือในกรดกลูคูโรนิคของไฮยารูโรแนนกับกลุ่มอะมิโนในเจลาติน และพันธะเอสเทอร์ระหว่างกลุ่ม คาร์บอกซิลดังกล่าวกับกลุ่มไฮดรอกซิลในสายเจลาตินและ/หรือในสายไฮยารูโรแนน [55] ทั้งนี้ปฏิกิริยา ดังกล่าวสามารถเกิดขึ้นกับผลึกไคตินได้ด้วยเช่นกัน อินฟาเรดสเปคตรัมของวัสดุประกอบไฮยารูโรแนน-เจลาตินที่เสริมแรงด้วยผลึกไคตินมีการดูดกลืนคลื่นความถี่ 1378 และ1076 ซม' ด้วยความเข้มที่สูงขึ้น (higher intensity) ตามปริมาณผลึกไคตินที่เพิ่มขึ้น และพบตำแหน่งบ่าของการดูดกลืน (absorption shoulder) ที่ตำแหน่งความถี่ 3267 ซม' ซึ่งมีขอบเขตชัดเจนมากขึ้นตามปริมาณผลึกไคตินที่เพิ่มขึ้น เช่นกัน

อินฟาเรดสเปคตรัมจึงแสดงให้เห็นถึงการผสาน (Blending) เข้าด้วยกันระหว่างวัสดุทั้งสาม ชนิดในโครงเนื้อเยื่อวัสดุประกอบไฮยารูโรแนน-เจลาตินเสริมแรงด้วยผลึกไคตินนิดอัลฟ่า

อุณหสมบัติของโครงเนื้อเยื่อ

การทดสอบอุณหสมบัติของโครงเนื้อเยื่อวัสดุประกอบไฮยารูโรแนน-เจลาตินเสริมแรงด้วย ผลึกไคตินชนิดอัลฟ่า ทำโดยศึกษาเสถียรภาพของวัสดุในอุณหภูมิที่เพิ่มสูงขึ้นจนกระทั่งเกิดการย่อย สลายภายใต้ก๊าซไนโตรเจน แสดงผลเป็นแผนภูมิของน้ำหนักที่เปลี่ยนแปลงไปดังภาพที่ 14

จากแผนภูมิ (ภาพที่ 14) การเปลี่ยนแปลงน้ำหนักตามอุณหภูมิของทุกกลุ่มตัวอย่างมีรูปแบบ เดียวกัน น้ำหนักของตัวอย่างทุกกลุ่มลดลงน้อยกว่า 5% ในช่วงอุณหภูมิต่ำกว่า 200°ซ โดยไม่แตกต่าง กันอย่างมีนัยสำคัญ เมื่ออุณหภูมิสูงขึ้นถึง 210-230°ซ น้ำหนักของตัวอย่างกลับลดลงอย่างรวดเร็วโดยมี อัตราการลดลงสูงสุดที่อุณหภูมิ 245-250°ซ ซึ่งแสดงผลจากจุดสูงสุดบนแผนภูมิแสดงอัตราการ เปลี่ยนแปลงน้ำหนักตามเวลา (derivative curve)

การลดลงของน้ำหนักในช่วงอุณหภูมิ 260-360°ซ มีความแตกต่างกันระหว่างตัวอย่างที่มี ปริมาณผลึกไคตินแตกต่างกันอย่างเห็นได้ชัด หากเปรียบเทียบที่อุณหภูมิเดียวกันภายในช่วงอุณหภูมิ ดังกล่าว ตัวอย่างที่มีปริมาณผลึกไคตินสูงมีน้ำหนักคงเหลืออยู่มากกว่าน้ำหนักของตัวอย่างที่มีปริมาณ ผลึกไคตินต่ำกว่า เสถียรภาพของโครงเนื้อเยื่อที่อุณหภูมิสูงจึงมีความสัมพันธ์โดยตรงกับปริมาณผลึกไค

ติน ซึ่งอาจแสดงผลในเชิงปริมาณได้ โดยการวิเคราะห์หาค่าของอุณหภูมิที่ต้องใช้ในการลดน้ำหนักของ ตัวอย่างลงค่าหนึ่งๆ และหาปริมาณกากของวัสดุที่เหลืออยู่ (residue) ดังแสดงในตารางที่ 4

ภาพที่ 14 แผนภูมิการเปลี่ยนแปลงน้ำหนัก (%) ของโครงเนื้อเยื่อวัสดุประกอบไฮยารูโรแนน-เจลาติน เสริมแรงด้วยผลึกไคตินชนิดอัลฟ่า ที่อุณหภูมิ 30-600 องศาเซลเซียส ในอัตราเพิ่มอุณหภูมิ 10°ซ/นาที ภายใต้ก๊าซไนโตรเจน (TGA Curve)

ตัวอย่าง	T-5% (°C)	T-25% (°C)	T-50% (°C)	กากที่ 550 [°] ซ (น้ำหนัก %)
ผลึกไคติน 0%	200.64	264.86	362.57	40.41
ผลึกไคติน 2%	212.61	269.02	368.00	39.64
ผลึกไคติน 5%	194.44	268.43	374.95	39.56
ผลึกไคติน 10%	213.28	274.18	387.80	42.54
ผลึกไคติน 20%	203.27	278.48	385.04	40.00
ผลึกไคติน 30%	214.43	290.66	390.45	41.11

ตารางที่ 4 อุณหภูมิ (^oซ) ณ จุดที่น้ำหนักของตัวอย่างลดลง 5, 25 และ 50% (T-5%, T-25% และ T-50% ตามลำดับ) และน้ำหนักเศษกากตัวอย่างที่เหลืออยู่ภายหลังเผาที่อุณหภูมิ 550°ซ การลดลงของน้ำหนักในช่วงอุณหภูมิ 260-360 °ซ มีความแตกต่างกันระหว่างตัวอย่างที่มี ปริมาณผลึกไคตินแตกต่างกันอย่างเห็นได้ชัด หากเปรียบเทียบที่อุณหภูมิเดียวกันภายในช่วงอุณหภูมิ ดังกล่าว ตัวอย่างที่มีปริมาณผลึกไคตินสูงมีน้ำหนักคงเหลืออยู่มากกว่าน้ำหนักของตัวอย่างที่มีปริมาณ ผลึกไคตินต่ำกว่า เสถียรภาพของโครงเนื้อเยื่อที่อุณหภูมิสูงจึงมีความสัมพันธ์โดยตรงกับปริมาณผลึกไค ติน ซึ่งอาจแสดงผลในเชิงปริมาณได้ โดยการวิเคราะห์หาค่าของอุณหภูมิที่ต้องใช้ในการลดน้ำหนักของ ตัวอย่างลงค่าหนึ่งๆ และหาปริมาณกากของวัสดุที่เหลืออยู่ (residue) ดังแสดงในตารางที่ 4

จากตารางที่ 3 T-5% ซึ่งแสดงถึงการลดลงของน้ำหนักตัวอย่างในระยะแรก (5%) เกิดขึ้นที่ อุณหภูมิประมาณ 200°ซ สังเกตได้ว่าอุณหภูมิที่ใช้ในการเผาแต่ละกลุ่มตัวอย่างแตกต่างกันไม่มากนัก และเป็นไปอย่างไม่มีแนวโน้ม ขณะที่ T-25% และ T-50% ซึ่งหมายถึงการลดลงของน้ำหนักตัวอย่าง 25 และ 50% ตามลำดับ พบว่าตัวอย่างที่มีปริมาณผลึกไคตินสูงต้องใช้อุณหภูมิในการเผาสูงขึ้นตามไปด้วย ผลึกไคตินปริมาณ 10-30% โดยน้ำหนักของวัสดุประกอบช่วยสร้างเสถียรภาพต่อความร้อนได้ดีกว่าผลึก ใคตินปริมาณ 2 หรือ 5% อย่างเห็นได้ชัด การเสริมแรงด้วยผลึกไคตินจึงมีผลให้เสถียรภาพต่อความร้อน ของวัสดุประกอบเพิ่มสูงขึ้น อย่างไรก็ตามจากการที่กากวัสดุจากการเผาที่อุณหภูมิ 550°ซ เหลืออยู่ใน ปริมาณใกล้เคียงกัน แสดงให้เห็นว่าผลดังกล่าวอาจจำกัดอยู่ในบางช่วงอุณหภูมิเท่านั้น (260-360°ซ) ซึ่ง เป็นช่วงอุณหภูมิที่สูงกว่าอุณหภูมิในการใช้งานโครงเนื้อเยื่อ (37°ซ)

ที่อุณหภูมิ 37°ซ โครงเนื้อเยื่อวัสดุประกอบไฮยารูโรแนน-เจลาตินอาจเกิดการเปลี่ยนแปลง สภาพทางกายภาพ เนื่องจากเป็นอุณหภูมิที่สูงกว่าอุณหภูมิเปลี่ยนสถานะคล้ายแก้วของวัสดุประกอบ ซึ่งจากการทดสอบด้วย Differential scanning calorimeter ภายใต้ก๊าซไนโตรเจน พบว่าอุณหภูมิเปลี่ยน สถานะคล้ายแก้วมีค่า 35.75°ซ (ภาพที่ 15) และมีค่าสูงขึ้นเมื่อปริมาณผลึกไคตินมีสัดส่วนมากขึ้น ผลที่ ได้มีความสอดคล้องกับผลจากการศึกษาถึงการเปลี่ยนแปลงน้ำหนักตามอุณหภูมิช้างต้น การที่โครง เนื้อเยื่อที่มีผลึกไคติน 5-30% มีอุณหภูมิเปลี่ยนสถานะคล้ายแก้วสูงกว่าหรือเท่ากับ 37°ซ อาจเป็นสาเหตุ ให้ความทนทานต่อการย่อยสลายทางชีวภาพดีกว่าโครงเนื้อเยื่อที่มีผลึกไคติน 2-5% (ภาพที่ 12)

จุฬาลงกรณมหาวทยาลย

ภาพที่ 15 แผนภูมิการเปลี่ยนแปลงความร้อนของโครงเนื้อเยื่อวัสดุประกอบไฮยารูโรแนน-เจลาตินเสริมแรงด้วย ผลึกไคตินชนิดอัลฟ่า ที่อุณหภูมิ 25-60 องศาเซลเซียส ในอัตราเพิ่มอุณหภูมิ 10°ซ/นาที ภายใต้ก๊าซไนโตรเจน (DSC Curve)

7. ความเป็นพิษต่อเซลล์กระดูก

การทดสอบความเป็นพิษด้วยวิธีเอ็มทีที อาศัยการเปรียบเทียบค่าการดูดกลืนแสงที่ความยาว คลื่น 570 นาโนเมตรของสารละลายฟอร์มาซานในไดเมทิลซัลฟอกไซด์ที่ได้จากการเลี้ยงเซลล์ในโครง เนื้อเยื่อ กับสารละลายฟอร์มาซานที่ได้จากการเลี้ยงเซลล์ในถาดเพาะเลี้ยงเซลล์ซึ่งถือเป็นค่าควบคุม (control) เนื่องจากค่าการดูดกลืนแสงที่วัดได้แปรผันตามปริมาณเซลล์ที่มีชีวิต ความแตกต่างอย่างมี นัยสำคัญของค่าการดูดกลืนแสงระหว่างกลุ่มควบคุมกับกลุ่มทดลอง จึงแสดงถึงแนวโน้มความเป็นพิษ ของวัสดุ

งานวิจัยนี้เลือกทดสอบความเป็นพิษต่อเซลล์กระดูกชนิด SaOS-2 ในโครงเนื้อเยื่อที่ ปราศจากผลึกไคติน และในโครงเนื้อเยื่อที่มีผลึกไคติน 30% ซึ่งเป็นตัวแทนสำหรับพิสูจน์ความเป็นพิษ อันเนื่องมาจากปริมาณผลึกไคตินบนสมมติฐานที่ว่า หากไม่พบความเป็นพิษในโครงเนื้อเยื่อที่มีผลึกไค ติน 30% แล้วโครงเนื้อเยื่อในกลุ่มอื่นซึ่งมีผลึกไคตินน้อยกว่าย่อมปราศจากความเป็นพิษด้วย ผลการ ทดลองแสดงในตารางที่ 5

	การดูดกลื่นแสง (570 นาโนเมตร)			
ตัวอย่าง	ถาดเลี้ยงเซลล์	ผลึกไคติน 0%	ผลึกไคติน 30%	
1	0.575	0.524	0.465	
2	0.508	0.536	0.410	
3	0.537	0.487	0.409	
4	0.540	0.569	0.428	
ค่าเฉลี่ย	0.540 ± 0.027*	0.529 ± 0.034*	0.428 ± 0.026	

ตารางที่ 5 การดูดกลืนแสงที่ความยาวคลื่น 570 นาโนเมตร เปรียบเทียบระหว่าง วัสดุเลี้ยงเซลล์ SaOS-2 สามชนิด * นัยสำคัญต่ำกว่า 0.05; ทดสอบด้วยสถิติ One Way ANOVA with Tukey HSD, จำนวนตัวอย่างเป็น 4.

จากตารางที่ 4 สถิติทดสอบแสดงให้เห็นว่า ค่าเฉลี่ยของการดูดกลืนแสงในกลุ่มโครงเนื้อเยื่อที่ ปราศจากผลึกไคติน (ผลึกไคติน 0%) ไม่แตกต่างจากถาดเลี้ยงเซลล์อย่างมีนัยสำคัญ ในขณะที่ค่าจาก โครงเนื้อเยื่อที่เสริมแรงด้วยผลึกไคติน 30% ต่ำกว่าทั้งสองกลุ่มอย่างมีนัยสำคัญ แสดงให้เห็นถึงแนวโน้ม ของความเป็นพิษต่อเซลล์กระดูกอันเนื่องมาจากผลึกไคตินที่สูงถึง 30% ดังนั้นจึงจำเป็นต้องทดสอบการ เกาะยึดและการเจริญเพิ่มจำนวนของเซลล์กระดูก SaOS-2 ในโครงเนื้อเยื่อทุกกลุ่ม เพื่อยืนยันและขยาย ผลของปริมาณผลึกไคตินที่มีต่อการเจริญเติบโตของเซลล์กระดูกลงในรายละเอียด

8. การเกาะยึดและการเจริญเพิ่มจำนวนของเซลล์กระดูก

การยึดเกาะของเซลล์กระดูกบนโครงเนื้อเยื่อวัสดุประกอบไฮยารูโรแนน-เจลาตินเสริมแรงด้วย ผลึกไคติน 30% ภายหลังจากเพาะเลี้ยงนาน 1 และ 7 วัน แสดงด้วยภาพถ่ายกล้องจุลทรรศน์อิเลคตรอน ชนิดส่องกราดที่กำลังขยายต่างๆในภาพที่ 16 และ 17 ตามลำดับ

ที่เวลา 1 วัน พบว่าเซลล์กระดูกมีรูปร่างกลม มีการกระจายตัวเกาะอยู่บนผิวโครงเนื้อเยื่อ โดยทั่วไป (ภาพที่ 16(1)) เซลล์ส่วนใหญ่ถูกทับถมอยู่ใต้โครงเนื้อเยื่อเนื่องจากการยุบตัวของโครงเนื้อเยื่อ ในขั้นตอนการเตรียมตัวอย่าง สังเกตได้จากการพบเซลล์ในชั้นล่างร่วมกับพบรอยนูนของเซลล์บนพื้นผิว โครงเนื้อเยื่อ (ภาพที่ 16(4), ลูกศร) แสดงให้เห็นว่าเซลล์สามารถเข้าถึงตำแหน่งต่างๆภายในโครงเนื้อเยื่อ โดยผ่านทางรูพรุนภายในได้ นอกจากนี้ยังพบแขนงไซโตปลาสซึม (cytoplasmic process, filoprodia) ที่ ยืดยาวออกไปรอบตัวเซลล์ (ภาพที่ 16(5), ลูกศร) บ่งชี้ถึงการตอบสนองขั้นต้นของเซลล์กระดูกต่อพื้นผิว วัสดุอันประกอบด้วยการเกาะ (attachment) การยึดติด (adhesion) และการเหยียดตัว(spreading) ซึ่ง คุณภาพในการตอบสนองนี้ส่งผลต่อการเจริญเพิ่มจำนวน (proliferation) และการปรับเปลี่ยนคุณสมบัติ ของเซลล์ (differentiation) [56] ที่จะเกิดขึ้นต่อไป ภายหลังจากเพาะเลี้ยงเซลล์นาน 7 วัน รูปร่างของเซลล์เปลี่ยนแปลงไปอย่างเห็นได้ชัด เซลล์ มีรูปร่างแบนและฝังตัวกลมกลืนไปกับผิวเนื้อเยื่อจนสังเกตเห็นได้อยาก (ภาพที่ 17, ลูกศร) แสดงถึงการ ปรับตัวของเซลล์ให้มีการยึดติดและเหยียดตัวแผ่ขยายไปบนพื้นผิวโครงเนื้อเยื่อ [8] ผลการศึกษา ดังกล่าวแสดงให้เห็นว่าโครงเนื้อเยื่อวัสดุประกอบประกอบไฮยารูโรแนน-เจลาตินเสริมแรงด้วยผลึกไคติน 30% มีความเข้ากันได้และส่งเสริมการเจริญของเซลล์กระดูกในเบื้องต้น ถึงแม้ว่าผลจากการทดสอบ ความเป็นพิษจะแตกต่างจากกลุ่มควบคุมอย่างมีนัยสำคัญก็ตาม

ภาพที่ 16 การยึดเกาะของเซลล์กระดูกชนิด Sa0S-2 บนโครงเนื้อเยื่อวัสดุประกอบไฮยารูโรแนน-เจลาตินเสริมแรงด้วย ผลึกไคตินชนิดอัลฟ่า 30% หลังจากเพาะเลี้ยงนาน 24 ชม. ถ่ายด้ายกล้องจุลทรรศน์อิเลคตรอนชนิดส่องกราด

ภาพที่ 17 การยึดเกาะของเซลล์กระดูกชนิด Sa0S-2 บนโครงเนื้อเยื่อวัสดุประกอบไฮยารูโรแนน-เจลาตินเสริมแรงด้วย ผลึกไคตินชนิดอัลฟ่า 30% หลังเพาะเลี้ยงนาน 7 วัน ถ่ายด้วยกล้องจุลทรรศน์อิเลคตรอนชนิดส่องกราด

ใพื่อศึกษาถึงผลของปริมาณผลึกไคตินที่มีต่อการเจริญของเซลล์กระดูก งานวิจัยนี้ทดสอบการ เจริญเพิ่มจำนวนของเซลล์กระดูกเปรียบเทียบในโครงเนื้อเยื่อทุกกลุ่มที่เวลา 1, 24, 48, และ 72ซม. ผล การทดสอบแสดงด้วยปริมาณการดูดกลืนแสงที่ 570 นาโนเมตร ซึ่งสัมพันธ์โดยตรงกับปริมาณเซลล์ที่มี ชีวิตเช่นเดียวกับการทดสอบความเป็นพิษต่อเซลล์ด้วยวิธีเอ็มทีที ผลการศึกษาแสดงดังภาพที่ 18

ภาพที่ 18 การดูดกลืนคลื่นที่ 570 นาโนเมตรของตัวอย่างที่ได้จากการศึกษาการเจริญเพิ่มจำนวน ของเซลล์กระดูกชนิด SaOS-2 บนโครงเนื้อเยื่อวัสดุประกอบไฮยารูโรแนน-เจลาตินเสริมแรงด้วยผลึก ไคตินชนิดอัลฟ่า ^{*,+, #, 1} นัยสำคัญต่ำกว่า 0.05; ทดสอบด้วยสถิติ One Way ANOVA with Tukey HSD เฉพาะที่เวลาเดียวกัน จำนวนตัวอย่างเป็น 4.

จากผลการทดลอง ในชั่วโมงแรกจำนวนของเซลล์กระดูกในโครงเนื้อเยื่อวัสดุประกอบทุกกลุ่ม มีมากกว่าในถาดเลี้ยงเซลล์ แต่เมื่อเวลาผ่านไปอัตราการเพิ่มจำนวนเซลล์กระดูกในถาดเลี้ยงเซลล์เพิ่ม มากขึ้นกว่าในโครงเนื้อเยื่อวัสดุประกอบอย่างมีนัยสำคัญ โดยเฉพาะอย่างยิ่งที่เวลา 48 และ 72 ซม. อาจ เป็นไปได้ว่าปริมาณไฮยารูโรแนนที่ผสมในสัดส่วน 50% โดยน้ำหนักนั้นมากเกินไป ทำให้การยึดเกาะและ การเจริญเพิ่มจำนวนของเซลล์โดนจำกัด [20] การศึกษาโดย Liu et al. ในปี 2004 [29] พบว่า ความ เข้มข้นของไฮยารูโรแนนเพียง 0.1% สามารถส่งเสริมการยึดเกาะ การขยับเคลื่อน (migration) และการ เจริญเพิ่มจำนวนของเซลล์ไฟโบรบลาสบนแผ่นฟิล์มไฮยารูโรแนน-เจลาติน-ไคโตซานอย่างมีนัยสำคัญ เมื่อเปรียบเทียบกับความเข้มข้นที่ 0.5 หรือ 1% แสดงให้เห็นถึงความสำคัญของปริมาณไฮยารูโรแนนใน สิ่งแวดล้อมรอบๆเซลล์ที่มีต่อการตอบสนองของเซลล์ในเชิงบวก

อย่างไรก็ตาม ผลจากการทดลองพบแนวโน้มของการเพิ่มจำนวนเซลล์กระดูกในโครงเนื้อเยื่อ ทุกกลุ่มเมื่อเวลาผ่านไปนานขึ้น เมื่อเปรียบเทียบผลระหว่างโครงเนื้อเยื่อแต่ละกลุ่ม โครงเนื้อเยื่อที่มี ปริมาณผลึกไคติน 10% มีการเจริญเพิ่มจำนวนเซลล์กระดูกมากกว่าโครงเนื้อเยื่อในกลุ่มอื่นอย่างมี นัยสำคัญในทุกช่วงเวลาขณะที่กลุ่มอื่นๆแสดงผลที่ไม่แตกต่างกัน ดังนั้นหากคำนึงถึงชีวสมบัติของโครง เนื้อเยื่อ การเสริมแรงวัสดุประกอบไฮยารูโรแนน-เจลาตินด้วยผลึกไคตินนั้นจำเป็นต้องกำหนดสัดส่วน ของผลึกไคตินไว้ที่ประมาณ 10% เพื่อที่จะปรับปรุงชีวสมบัติของโครงเนื้อเยื่อให้มีความเข้ากันได้ และ ส่งเสริมการเจริญเพิ่มจำนวนของเซลล์กระดูกได้ดีที่สุด

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

เอกสารอ้างอิง (References)

- Hollander AP, Hatton PV. Biopolymer Methods in Tissue Engineering. Totowa, New Jersey: Humana Press; 2004.
- Rezwan K, Chen QZ, Blanker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. *Biomaterials* 2006;27:3413-3431.
- 3. Griffith LG. Polymeric Biomaterials. Acta Materialia 2000;48:263-277.
- 4. Kofron MD, Li X, Laurencin CT. Protein-and-gene-based tissue engineering in bone repair. *Current opinion in Biotechnology* 2004;15:399-405.
- 5. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. *Biomaterials* 2005;26:5474-5491.
- Mathew HWT. Polymer for tissue engineering scaffold. In: Dumitriu S, editor. Polymeric Biomaterials. New York: Marcel Dekker Inc; 2002. p. 168.
- 7. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold desing variables and applications. *Biomaterials* 2003;24:4337-4351.
- Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell.
 4 ed. New York: Garland Science; 2002.
- Mikos AG, Lu L, Temenoff JS, Tessmar JK. Synthetic bioresorbable polymer scaffolds. In: Schoen FJ, Lemons JE, editors. Biomaterials science: An introduction to materials in medicine. 2 ed. California: Elsevier Inc; 2004. p. 735-749.
- 10. Lee KY, Rowley JA, Eiselt P, Moy EM, Bouhadir KH, Mooney DJ. Controlling mechanical and swelling properties of Alginate hydrogels independently by cross-linker type and cross-linking density. *Macromolecules* 2000;33:4291-4294.
- 11. Shu XZ, Liu Y, Palumbo F, Prestwich GD. Disulfide-crosslinked hyaluronan-gelatin hydrogel films: A covalent mimic of the extracellular matrix for in vitro cell growth. *Biomaterials* 2003;24:3825-3834.
- Segura T, Anderson BC, Chung PH, Webber RE, Shull KR, Shea LD. Crosslinked hyaluronic acid hydrogels: A strategy to functionalize and pattern. *Biomaterials* 2005(26):359-371.

- 13. Liu Y, Shu XZ, Prestwich GD. Biocompatibility and stability of disulfide-crosslinked hyaluronan films. *Biomaterials* 2005;26:4737-4746.
- 14. Liu LS, Thompson AY, Heidaran MA, Poser JW, Spiro RC. An osteoconductive collagen/hyaluronate matrix for bone regeneration. *Biomaterials* 1999;20:1097-1108.
- 15. Wong M, Siegrist M, Wang X, Hunziker E. Development of mechanically stable alginate/chondrocyte constructs: Effects of guluronic acid content and matrix systhesis. *Journal of Orthopaedic Research* 2001;19(493-499).
- Prestwich GD, Marecak DM, Marecek JF, Vercruysse KP, Ziebell MR. Controlled chemical modification of hyaluronic acid: Synthesis, applications, and biodegradation of hydrazide dervatives. *Journal of Controlled Release* 1998;53:93-103.
- 17. Shu XZ, Liu Y, Palumbo FS, Luo Y, D PG. In situ crosslinkable hyaluronan hydrogels for tissue engineering. *Biomaterials* 2004;25(1339-1348).
- 18. Prestwich GD. Biomaterials form chemically-modified hyaluronan. http://www.glycoforum.gr.jp/science/hyaluronan/HA18/HA18E.html 2001.
- 19. Kikuchi T, Yamada H, Fujikawa K. Effects of high molecular weight hyaluronan on the distribution and movement of proteoglycan around chondrocytes cultured in alginate beads. *Osteoarthritis and Cartilage* 2001;9:351-356.
- 20. Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: An information-rich system. *Eur J Cell Biol* 2006;85:699-715.
- 21. Chaplin M. Water structure and science. <u>http://www.lsbu.ac.uk/water/hygel.html</u> 2007.
- 22. Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. *J Controlled Release* 2005;109:256-274.
- 23. Tabata Y, Nagano A, Muniruzzaman M, Ikada Y. In vitro sorption and desorption of basic fibroblast growth factor from biodegradable hydrogels. *Biomaterials* 1998;19:1781-1789.
- Brown KE, Leong K, Huang C-H, Dalal R, Dalal R, Green GD, et al. Gelatin/chondroitin 6sulfate microspheres for the delivery of therapeutic proteins to the joint. *Arthritis & Rheumatism* 1998;41(12):2185-2195.
- 25. Vadnelli MA, Rivasi F, Guerra P, Forni F, Arletti R. Gelatin microspheres crosllinked with D,L-glyceraldehyde as a potential drug delivery system: preparation, characterization, in vitro and in vivo studies. *Int J Pharm* 2001;215:175-184.

- 26. Vandervoort J, Ludwig A. Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use. *Eur J Pharm Biopharm* 2004;57:251-261.
- Choi YS, Hong SR, Lee YM, Song KW, Park MH, Nam YS. Studies on gelatin-containing artificial skin: II. Preparation and characterization of cross-linked gelatin-hyaluronate sponge. *J Biomedical Materials Research* 1999;48:631-639.
- 28. Chang CH, Liu HC, Lin CC, Chou CH, Lin FH. Chondroitin-hyaluronan-tri-copolymer scaffold for cartilage tissue engineering. *Biomaterials* 2003;24:4853-4858.
- 29. Liu H, Yin Y, Yao K, Ma D, Cui L, Cao Y. Influence of the concentrations of hyaluronic acid on the properties and biocompatibility of Cs-Gel-HA membranes. *Biomaterials* 2004;25:3523-3530.
- 30. Lee SB, Kim YH, Chong MS, Hong SH, Lee YM. Study of gelatin-containing artificial skin
 V: fabrication of gelatin scaffolds using a salt-leaching method. *Biomaterials* 2005;26:1961-1968.
- 31. Hoffman AS. Hydrogels for biomedical applications. *Advanced Drug Delivery Reviews* 2002;43:3-12.
- 32. Rinaudo M. Chitin and chitosan: Properties and applications. *Progress in Polymer Science* 2006;31:603-632.
- Paillet M, Dufresne A. Chitin shisker reinforced thermoplastic nanocomposites. Macromolecules 2001;34(6527-6530).
- 34. Morin A, Dufresne A. Nanocomposites of chitin whiskers from Riftia tubes and poly(caprolactone). *Macromolecules* 2002;35:2190-2199.
- 35. Sriupayo J, Supaphol P, Blackwell J, Rujiravanit R. Preparation and characterization of αchitin whisker-reinforced chitosan nanocomposite films with or without heat treatment. *Carbohydrate Polymers* 2005;62:130-136.
- 36. Luo Y, Kirker KR, Prestwich GD. Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. *Journal of Controlled Release* 2000;69:169-184.
- Park S-N, Park J-C, Kim HO, Song MJ, Suh H. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3dimethylaminopropyl)carbodiimide cross-linking. *Biomaterials* 2002;23:1205-1212.

- Maeda S, Sawai T, Uzuki M, Takahashi Y, Omoto H, Seki M, et al. Determination of interstitial collagenase (MMP-1) in patients with rheumatoid arthritis. *Annals of the Rheumatic Diseases* 1995;54:970-975.
- 39. Holland TA, Tabata Y, Mikos AG. Dual growth factor delivery from degradable oligo(poly(ethylene glycol)fumarate) hydrogel scaffolds for cartilage tissue engineering. *Journal of Controlled Release* 2005;101:111-125.
- 40. Li J, Revol J-F, Naranjo E, Marchessault RH. Effect of electrostatic interaction on phase separation behaviour of chitin crystallite suspensions. *International Journal of Biological Macromolecules* 1996;18:177-187.
- 41. Revol JF, Marchessault RH. In vitro chiral nematic ordering chitin crystallites. *International Journal of Biological Macromolecules* 1993;15:329-335.
- 42. Nair KG, Dufresne A. Crab shell chitin whiskers reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. *Biomacromolecules* 2003;4:657-665.
- 43. Lu Y, Weng L, Zhang L. Morphology and properties of soy proteinisolate thermoplastics reinforced with chitin whisker. *Biomacromolecules* 2004;5:1046-1051.
- 44. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. *Biomaterials* 2000;21:2529-2543.
- 45. Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material srufaces in regulating bone and cartilage cell response. *Biomaterials* 1996;17:137-146.
- 46. Shapiro L, Cohen S. Novel alginate sponges for cell culture and transplantation. *Biomaterials* 1997;18:583-590.
- 47. Kang H-W, Tabata Y, Ikada Y. Fabrication of porous gelatin scaffolds for tissue engineering. *Biomaterials* 1999;20:1339-1344.
- 48. Currey J. Incompatible mechanical properties in compact bone. *Journal of Theoretical Biology* 2004;231:569-580.
- 49. Park H, Park K. Hydrogels in Bioapplications. In: Ottenbrite RM, Huang SJ, Park K, editors. Hydrogels and biodegradable polymers for bioapplications; 1994; Washington DC; 1994. p. 1-10.
- 50. Lapcik LJ, Lapcik L, Smedt SD, Demeester J, Chabrecek P. Hyaluronan: Preparation, structure properties and applications. *Chemical reviews* 1998;98(8):2663-2684.

- 51. Vizarova K, Bakos D, Rehakova M, Perikova M, Panakova E, Koller J. Modification of layered atelocollagen: enzyamatic degradation and cytotoxicity evaluation. *Biomaterials* 1995;16:1217-1221.
- 52. Magoshi J, Mizuide M, Magoshi Y. Physical properties and struture of silk. VI. Conformational changes in silk fibroin induced by immersion in water at 2 to 130^oC. *Journal of Polymer Sciences and Polymer Physics* 1979;17:515-520.
- Coates J. Interpretation of infrared spectra, A practical approach. In: Meyers RA, editor. Encyclopedia of Analytical Chemistry. Chichester: John Wiley & Sons Ltd; 2000. p. 10815-10837.
- Nair KG, Dufresne A. Crab shell chitin whiskers reinforced natural rubber nanocomposites.
 Effect of chemical modification of chitin whiskers. *Biomacromolecules* 2003;4:1835-1842.
- 55. Tomihata K, Ikada Y. Cross-linking of hyaluronic and with water-soluble carbodiimide. Journal of Biomedical Materials Research 1997;37:243-251.
- 56. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials 2000;21:667-681.

