CHAPTER III

POSITIVE LATTICE ORDERED 0-SEMIFIELDS

Definition 3.1. Let R be a positive ordered semiring. R is called a positive lattice ordered semiring iff the partial order of R is a lattice, that is for every $x, y \in R$, $x \vee y$ and $x \wedge y$ exist.

Examples 3.2. (1) Q_0^+ , \mathbb{R}_0^+ are positive lattice ordered semifields.

(2) From Example 2.6. (2), we have that K is a positive lattoce ordered semifield. To prove this, let $x, y \in K$. Then $x \le x + y, y \le x + y$. Thus x + y is an upper bound of x and y. Let $w \in K$ be such that $x \le w$ and $y \le w$. Then x + w = w and y + w = w, (x + y) + w = x + (y + w) = x + w = w. Thus $x + y \le w$, so $x \lor y = x + y$.

If x = 0 or y = 0 then $x \wedge y$ exists. Suppose that x, y are nonzero. So $x + y \neq 0$. Since $x + xy(x + y)^{-1} = [x(x + y) + xy](x + y)^{-1} = (x^2 + xy + xy)(x + y)^{-1} = (x^2 + xy)(x + y)^{-1} = [x(x + y)](x + y)^{-1} = x$, $xy(x + y)^{-1} \leq x$.

Similarly, $xy(x + y)^{-1} \le y$. Then $xy(x + y)^{-1}$ is a lower bound of x and y. Let $w \in K$ be such that $x \ge w$ and $y \ge w$. Then x + w = x and y + w = w. Therefore $w + xy(x + y)^{-1} = [w(x + y) + xy](x + y)^{-1} = (wx + wy + xy)(x + y)^{-1} = [wx + (w + x)y](x + y)^{-1} = (wx + xy)(x + y)^{-1} = [x(w + y)x](x + y)^{-1} = xy(x + y)^{-1}$, so $w \le xy(x + y)^{-1}$. Hence $x \land y = xy(x + y)^{-1}$.

(3) Let $(G, ..., \le)$ be a lattice ordered group. Let $K = G \cup \{a\}$ where a is a new symbol such that $a \notin G$. Define + on K by $x + y = x \vee y$ and a + x = x + a = x for all $x, y \in K$ and define a.x = x.a = a and $a \le x$ for all $x \in K$.

Then we have that K is a positive lattice ordered semifield where

x + x = x for all $x \in K$.

(4) Let K be a positive lattice ordered semifield. Then $(K, +^*, ., \le)$ is a positive lattice ordered semifield such that x + x = x for all $x \in K$ where $x + y = x \lor y$ for all $x, y \in K$.

Remark 3.3. Let K be a positive ordered semifield. Then the following statements hold:

- (1) For every $x, y \in K$, if $x \vee y$ exists then $xw \vee yw$ exists for all $w \in K$. Moreover, $(x \vee y)w = xw \vee yw$.
- (2) For every $x, y \in K$, if $x \wedge y$ exists then $xw \wedge yw$ exists for all $w \in K$. Moreover, $(x \wedge y)w = xw \wedge yw$.

Proof (1) Let $x, y \in K$ be such that $x \vee y$ exists. Let $w \in K$. If w = 0 then done. Suppose that $w \neq 0$. Since $x \leq x \vee y$ and $y \leq x \vee y$, $xw \leq (x \vee y)w$ and $yw \leq (x \vee y)w$. Hence $(x \vee y)w$ is an upper bound of xw and yw. Let $z \in K$ be such that $xw \leq z$ and $yw \leq z$. Then $x \leq zw^{-1}$ and

 $y \le zw^{-1}$, so $x \lor y \le zw^{-1}$. Hence $(x \lor y)w \le z$. Therefore $(x \lor y)w = wx \lor wy$.

(2) Dually (1). #

Theorem 3.4. ([1]) Every positive lattice ordered group G is a distributive lattice, that is for any $x, y, z \in G$, $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$.

Proof See [1], pp. 294.

<u>Proposition 3.5.</u> Let K be a positive ordered semifield. Then the following statements are equivalent:

(1) K is a lattice.

- (2) for every $x \in K$, $x \vee 1$ exists.
- (3) for every $x \in K$, $x \wedge 1$ exists.
- (4) P is a lattice where P is the positive cone of K.

Proof Obviously, $(1) \rightarrow (2)$ and $(1) \rightarrow (4)$.

To show that $(2) \to (3)$, assume (2). Let $x \in K$. If x = 0 then $0 = x \wedge 1$, so done. Suppose that $x \neq 0$. By assumption, $x^{-1} \vee 1$ exists. Let $y = x^{-1} \vee 1$. Claim that $x \wedge 1 = y^{-1}$. Since $x^{-1} \leq y$ and $1 \leq y$, $y^{-1} \leq 1$ and $y^{-1} \leq x$. Thus y^{-1} is a lower bound of x and $y^{-1} \leq x$. Thus y^{-1} is a lower bound of $y^{-1} \leq x$. Then $y^{-1} \leq y^{-1} \leq y^{-1}$. Since $y = x^{-1} \vee 1$, $y \leq y^{-1} \leq y^{-1}$. So we have the claim.

To prove (3) \rightarrow (1), assume (3). Let w, y \in K. If x = 0 then $0 = 0 \land y = x \land y$, so done. Assume that $x \neq 0$. By assumption, $yx^{-1} \land 1 = z$ for some $z \in K$. By Remark 3.3., $x \land y = x[(yx^{-1}) \land 1] = xz$. Thus $x \land y$ exists. Next, to show that $x \lor y$ exists for all x, $y \in K$, let x, $y \in K$. If x = 0 or y = 0 then done. Suppose that x, y are nonzero. By above $x^{-1} \land y^{-1} = w$ for some $w \in K$. Since $(x + y)^{-1} \le x^{-1}$ and $y^{-1} \le w$, $0 \ne (x + y)^{-1} \le w$, so $w \ne 0$. Since $w \le x^{-1}$ and $w \le y^{-1}$, $x \le w^{-1}$ and $y \le w^{-1}$. Thus w^{-1} is an upper bound of x and y. Let $z \in K$ be such that $x \le z$ and $y \le z$. If z = 0 then done. Suppose that $z \ne 0$. Since $z^{-1} \le x^{-1}$ and $z^{-1} \le y^{-1}$ and $z^{-1} \land y^{-1} = w$, $z^{-1} \le w$. Thus $w^{-1} \le z$, so $x \lor y = w^{-1}$. Hence (1) holds.

To prove (4) \rightarrow (3), assume (4). Let $x \in K$. If x = 0 then $x \wedge 1$ exists. Suppose that $x \neq 0$. By Remark 2.10. (6), $x = pq^{-1}$ for some $p, q \in P$. By assumption, $p \wedge q = z$ for some $z \in P$. Hence $x \wedge 1 = pq^{-1} \wedge 1 = q^{-1}(p \wedge q) = zq^{-1}$, so we have (3).

Proposition 3.6. Let K be a positive lattice ordered semifield. Then the following statements hold:

- (1) For every nonzero element $x \in K$, $x = pq^{-1}$ for some $p, q \in P$ such that $p \wedge q = 1$.
 - (2) For every $x, y \in K$, $(x \lor y)(x \land y) = xy$.
 - (3) For every $x \in K$, $x = (x \lor 1)(x \land 1)$.
 - (4) For every $x, y \in K^*$, $(x \vee y)^{-1} = x^{-1} \wedge y^{-1}$ and $(x \wedge y)^{-1} = x^{-1} \vee y^{-1}$.
- Proof (1) Let x ∈ K be such that x ≠ 0. By Remark 2.10. (6), x = pq⁻¹ for some p, q ∈ P. Let a = p(p ∧ q)⁻¹ and b = q(p ∧ q)⁻¹. So a, b ∈ P, a ∧ b = [p(p ∧ q)⁻¹] ∧ [q(p ∧ q)⁻¹] = 1 and x = pq⁻¹ = [p(p ∧ q)⁻¹][(p ∧ q)q⁻¹] = ab⁻¹.
- (2) Let $x, y \in K$. If x = 0 or y = 0 then done. Suppose that x, y are nonzero. Then $(x \lor y) \neq 0$. Since $x \le (x \lor y)$ and $y \le (x \lor y)$, $(x \lor y)^{-1} \le x^{-1}$ and $(x \lor y)^{-1} \le y^{-1}$. So $xy(x \lor y)^{-1} \le x$ and $xy(x \lor y)^{-1} \le y$. Hence $xy(x \lor y)^{-1}$ is a lower bound of x and y. Let $z \in K$ be such that $z \le x$ and $z \le y$. Thus $zx \le xy$ and $zy \le xy$, so $z(x \lor y) = zx \lor zy \le xy$. Thus $z \le xy(x \lor y)^{-1}$. Therefore $x \land y = xy(x \lor y)^{-1}$, so $(x \lor y)(x \land y) = xy$.
 - (3) Follows directly from (2).
- (4) Let $x, y \in K^*$. Since $x \le x \lor y$ and $y \le x \lor y$, $(x \lor y)^{-1} \le x^{-1}$ and $(x \lor y)^{-1} \le y^{-1}$. Then $(x \lor y)^{-1}$ is a lower bound of x^{-1} and y^{-1} . Let $w \in K$ be such that $w \le x^{-1}$ and $w \le y^{-1}$. Hence $xw \le 1$ and $yw \le 1$, so $(x \lor y)w = xw \lor yw \le 1$. Then $w \le (x \lor y)^{-1}$, so $(x \lor y)^{-1} = x^{-1} \lor y^{-1}$. Next, to show that $(x \land y)^{-1} = x^{-1} \lor y^{-1}$, since $x, y \ne 0$, $xy, x \lor y$ are nonzero. Then $x \land y = xy(x \lor y)^{-1} \ne 0$. Therefore $(x \land y)^{-1} = (x \lor y)(xy)^{-1} = x^{-1} \lor y^{-1}$.

Note that for nonzero elements x, y in a positive lattice ordered semifield K, $x \lor y$ and $x \land y$ are nonzero.

<u>Proposition 3.7.</u> Let K be a positive lattice ordered semifield. Then the following statements hold: for every $x, y, z \in K$

- (1) if $x \le y$ then $x \lor z \le y \lor z$ and $x \land z \le y \land z$,
- (2) $x + (y \land z) \le (x + y) \land (x + z)$ and $x + (y \lor z) \ge (x + z) \lor (x + z)$ and
- (3) $(x + y) \land z \le (x \land z) + (y \land z)$ and $(x + y) \lor z \le (x \lor z) + (y \lor z)$

Proof Let $x, y, z \in K$.

- (1) Assume that $x \le y$. Since $y \le y \lor z$ and $z \le y \lor z$, $x \lor z \le y \lor z$. Since $x \land z \le x \le y$ and $x \land z \le z$, $x \land z \le y \land z$.
- (2) Since $y \wedge z \le y$ and z, $x + (y \wedge z) \le x + y$ and x + z. Hence $x + (y \wedge z) \le (x + y) \wedge (x + z)$. Dually, $x + (y \vee z) \ge (x + y) \vee (x + z)$.
- (3) Suppose that $x, y, z \neq 0$. Since $x \leq x + y$, by (1) $x \wedge z \leq (x + y) \wedge z$. Thus $[(x + y) \wedge z]^{-1} \leq (x \wedge z)^{-1}$, so $xz[(x + z) \wedge z]^{-1} \leq xz(x \wedge y)^{-1}$. Similarly, $yz[(x + y) \wedge z]^{-1} \leq yz(y \wedge z)^{-1}$. Therefore $(x + y) \wedge z = z(x + y)[(x + y) \vee z]^{-1} = zx[(x + y) \vee z]^{-1} + zy[(x + y) \vee z]^{-1} \leq xz(x \vee z) + yz(y \vee z)$. $z = (x \wedge z) + (y \wedge z)$. Since $z \leq x \vee z$ and $z \leq y \vee z$, $z = (x \vee z) + (y \vee z)$. Clear that $z \leq (x \vee z) + (y \vee z)$. Therefore $z \leq (x \vee z) + (y \vee z)$.

Theorem 3.8. ([2]) Let K be a positive lattice ordered semifield and $a_1, a_2, \ldots, a_m, b_1, b_2, \ldots, b_n \in P$ such that $a_1a_2...a_m = b_1b_2...b_n$. Then there exist elements $c_{ij} \in P$ for all $i \in \{1, 2, ..., m\}$ and $j \in \{1, 2, ..., n\}$ satisfying

- (1) $a_i = c_{i1}c_{i2}...c_{in}$ $i \in \{1,2,...,m\},$
- (2) $b_i = c_{1i}c_{2i}...c_{mi} i \in \{1,2,...,n\},$
- (3) $c_{i+1,j}c_{i+2,j} \dots c_{mj} \wedge c_{i,j+1}c_{i,j+2} \dots c_{in} = 1$ for all i < m, j < n.

Proof See [2], pp. 68.

Corollary 3.9. If $a, b_1, b_2, ..., b_n$ are in the positive cone of a positive lattice ordered semifiled K such that $a \le b_1 b_2 ... b_n$ then there exist $a_1, a_2, ..., a_n \in P$ satisfying $a = a_1 a_2 ... a_m$ with $a_i \le b_i$ for all $i \in \{1, 2, ..., n\}$.

Proof It follows from Theorem 3.8.. #

<u>Proposition 3.10.</u> Let K be a positive lattice ordered semifield. Then the following statements hold:

- (1) For every $x, y \in K$, $(x \lor y)^n = x^n \lor x^{n-1} y \lor x^{n-2} y^2 \lor ... \lor xy^{n-1} \lor y^n$ and $(x \land y)^n = x^n \land x^{n-1} y \land x^{n-2} y^2 \land ... \land xy^{n-1} \land y^n$.
- (2) If $x \in K$ and $x^n \ge 1$ for some $n \in Z^+$ then $x \ge 1$.
- (3) For every $x \in K$, $(x \vee 1)^n = x^n \vee 1$ and $(x \wedge 1)^n = x^n \wedge 1$ for all $n \in Z^+$.

Proof (1) We shall prove by induction on n. Let $x, y \in K$, for n = 1, then done. Assume that (1) is true for $n - 1 \ge 1$.

Then $(x \lor y)^n = (x \lor y)^{n-1}(x \lor y)$ $= (x^{n-1} \lor x^{n-2}y \lor ... \lor xy^{n-2} \lor y^{n-1})(x \lor y)$ $= (x^{n-1} \lor x^{n-2}y \lor ... \lor xy^{n-2} \lor y^{n-1})x \lor (x^{n-1} \lor x^{n-2}y \lor ... \lor xy^{n-2} \lor y^{n-1})y$ $= x^n \lor x^{n-1}y \lor x^{n-2}y^2 \lor ... \lor x^2y^{n-2} \lor y^{n-1}x \lor x^{n-1}y \lor x^{n-2}y^2 \lor ... \lor xy^{n-1} \lor y^n$ $= x^n \lor x^{n-1}y \lor x^{n-2}y^2 \lor ... \lor xy^{n-1} \lor y^n.$ Dually, $(x \land y)^n = x^n \land x^{n-1}y \land x^{n-2}y^2 \land ... \land xy^{n-1} \land y^n.$

- (2) Let $x \in K$ and $x^n \ge 1$ for some $n \in Z^+$. If n = 1 then done. Suppose that $n \ge 2$. Then by (1), $(x \lor 1)^n = x^n \lor x^{n-1} \lor ... \lor x \lor 1 = (x \lor y)^n = x^n \lor x^{n-1} \lor ... \lor x$ (since $x^n \ge 1$) = $x(x^{n-1} \lor ... \lor 1) = x(x \lor 1)^{n-1}$. Therefore $x \lor 1 = x$, so $1 \le x \lor 1 = x$.
- (3) Let $x \in K$ and $n \in Z^{+}$. If x = 0 then done. Suppose that $x \neq 0$. For $0 \le k \le n$, $(x^{n-k} \lor x^{-k})^{n} = x^{(n-k)n} \lor ... \lor x^{(n-k)k} (x^{-k})^{(n-k)} \lor ... \lor (x^{-k})^{n}$. By (2), $(x^{n-k} \lor x^{-k}) \ge 1$, so $x^{n} \lor 1 \ge x^{k}$ for all $0 \le k \le n$.

Hence $(x \lor 1)^n = x^n \lor x^{n-1} \lor ... \lor x \lor 1 = x^n \lor 1$. Next, $(x \land 1)^n = [x(x \lor 1)^{-1}]^n = x^n (x \lor 1)^{-n} = x^n (x^n \lor 1)^{-1} = x^n \land 1$.

Theorem 3.11. Let S be a positive lattice ordered commutative semiring with multiplicative zero 0 which is M.C.. If S satisfies the property that: for every $x, y, z \in S$, xz < yz implies that x < y then S can be embedded into a positive lattice ordered semifield.

Proof By Theorem 2.7., we have that $K = S \times (S - \{0\})/_{\sim}$ is the positive ordered semifield. To show that K is a lattice, let $\alpha \in K$.

Fix $a \in S - \{0\}$. If $\alpha = 0$ then done. Suppose that $a \neq 0$. Choose $(x, y) \in \alpha$. Then $x \vee a$ and $y \vee a$ exist in S. Claim that $\alpha \vee [(a, a)] = [(xa \vee ya, ya)]$. Clearly, $[(xa \vee ya, ya)]$ is upper bound of α and [(a, a)]. Let $\beta \in K$ be such that α and $[(a, a)] \leq \beta$. Then there exist (b_1, b_2) , $(b_3, b_4) \in \beta$, $(z, w) \in \alpha$ and $c \in S - \{0\}$ such that $zb_2 \leq wb_1$ and $cb_4 \leq cb_3$. Since $c \neq 0$, $b_4 \leq b_3$. Then $yab_4 \leq yab_3$. Since $zb_2 \leq wb_1$ and $b_1b_4 = b_2b_3$, $zb_2b_4 \leq wb_1b_4 = wb_2b_3$. Since $b_2 \neq 0$, $zb_4 \leq wb_3$, so $zyb_4 \leq wyb_3$. Since zy = xw, $zwb_4 \leq wyb_4$, so $zb_4 \leq yb_4$. Hence $zab_4 \leq yab_3$. This show that $(za \vee ya)b_4 = zab_4 \vee yab_4 \leq yab_3$, so $[(za \vee ya, ya)] \leq [(b_3, b_4)] = \beta$. Therefore $\alpha \vee [(a, a)] = [(za \vee ya, ya)]$. So we have the claim. By Proposition 3.5. (2), K is a positive lattice ordered semifield and $z \in K$. The absolute value of z, denoted by |z|, is defined to be $z \vee z^{-1}$.

In [2], pp. 76 we have the following elementary properties: for every $x, y \in K$

(1) $|x| \ge 1$ and $|x| = |x^{-1}|$.

- (2) |x| = 1 iff x = 1.
- (3) $|xy^{-1}| = (x \vee y)(x \wedge y)^{-1}$.
- $(4) \quad |x| = (x \vee 1)(x \wedge 1)^{-1}$
- (5) $|x^n| = |x|^n$ for all $n \in Z^{\uparrow}$.
- (6) $|xy| \le |x| |y|$

Proposition 3.13. Let K be a positive lattice ordered semfield and x, y, $z \in K$.

- (1) $|(x \vee z)(y \vee z)^{-1}| |(x \wedge z)(y \wedge z)^{-1}| = |xy^{-1}|.$
- (2) $|(x \vee z)(y \vee z)^{-1}| \leq |xy^{-1}|$ and $|(x \wedge z)(y \wedge z)^{-1}| \leq |xy^{-1}|$.
- $(3) |x+y| \leq |x| + |y|.$
- (4) $|(x+z)(y+z)^{-1}| \le |xy^{-1}|$.

Proof Let $x, y, z \in K$.

- (1) $\left| (x \vee z)(y \vee z)^{-1} \right| \left| (x \wedge z)(y \wedge z)^{-1} \right|$
- $= [(x \lor z) \lor (y \lor z)][(x \lor z) \land (y \lor z)]^{-1}[(x \land z) \lor (y \land z)][(x \land z) \land (y \land z)]^{-1}$
- $= [(x \vee y) \vee z][(x \wedge y) \vee z]^{-1}[(x \vee y) \wedge z][(x \wedge y) \wedge z]^{-1}$
- $= [(x \vee y) \vee z][(x \wedge y) \vee z]^{-1}[(x \vee y)z][(x \vee y) \vee z]^{-1}[(x \wedge y) \vee z][(x \wedge y)z]^{-1}$
- $= (x \vee y)(x \wedge y)^{-1} = |xy^{-1}|.$
- (2) Since $1 \le \left| (x \lor z)(y \lor z)^{-1} \right|$, $\left| (x \land z)(y \land z)^{-1} \right| \le \left| (x \land z)(y \land z)^{-1} \right|$ $\left| (x \lor z)(y \lor z)^{-1} \right| = \left| xy^{-1} \right|$. Thus $\left| (x \land z)(y \land z)^{-1} \right| \le \left| xy^{-1} \right|$.

Similarly, $|(x \vee z)(y \vee z)^{-1}| \leq |xy^{-1}|$.

- (3) Since $x \le |x|$ and $y \le |y|$, $x + y \le |x| + |y|$. Since $x \le x + y$ and $y \le x + y$, $(x + y)^{-1} \le x^{-1}$ and $(x + y)^{-1} \le y^{-1}$. Then $(x + y)^{-1} \le (x + y)^{-1} + (x + y)^{-1} \le x^{-1} + y^{-1} \le |x| + |y|$. This prove that |x| + |y| is an upper bound of x + y and $(x + y)^{-1}$. Hence $|x + y| = (x + y) \lor (x + y)^{-1} \le |x| + |y|$.
 - (4) $|(x + z)(y + z)^{-1}| = [(x + z) \lor (y + z)][(x + z) \land (y + z)]^{-1}$ $\leq [(x \lor y) + z][(x + z) \land (y + z)]^{-1}$

$$\leq [(x \vee y) + z][(x \wedge y) + z]^{-1}.$$

Claim that $[(x \lor y) + z][(x \land y) + z]^{-1} \le (x \lor y)(x \land y)^{-1}$.

Since $x \wedge y \leq x \vee y$, $z(x \wedge y) \leq z(x \vee y)$. Thus

$$(x \wedge y)[(x \vee y) + z] = (x \wedge y)(x \vee y) + (x \wedge y)z$$

$$\leq (x \wedge y)(x \vee y) + (x \vee y)z$$

$$= (x \vee y)[(x \wedge z) + z].$$

Hence $[(x \lor y) + z][(x \land y) + z]^{-1} \le (x \lor y)(x \land y)^{-1}$, so we have the claim. Since $|(x + z)(y + z)^{-1}| \le [(x \lor y) + z][(x \land y) + z]^{-1}$, by the claim $|(x + z)(y + z)^{-1}| \le (x \lor y)(x \land y)^{-1} = |xy^{-1}|$. Hence $|(x + z)(y + z)^{-1}| \le |xy^{-1}|$.

<u>Definition 3.14.</u> Let K be a positive lattice ordered semifield. Let $x, y \in K$, x and y are said to be <u>orthogonal</u> iff $x \wedge y = 1$, denoted by $x \perp y$.

Let \perp_x be the set of all elements $y \in K$ such that $x \perp y$, that is $\perp_x = \{y \in K \mid x \wedge y = 1\}.$

Remark 3.15. ([2]) Let K be a positive lattice ordered semifield. the following statements hold: for every $x, y, z \in K$

- (1) $x \perp y$ and $x \perp z$ imply that $x \perp yz$.
- (2) $x \perp y$ and $z \geq 1$ imply that $x \wedge yz = x \wedge z$.
- (3) $x \perp y$ and $x \perp z$ imply that $x \perp (y \vee z)$ and $x \perp (y \wedge z)$.
- (4) $x \perp y$ implies that $x \vee y = xy$.
- (5) $x \perp y$ implies that $|x| \perp |y|$.

<u>Definition 3.16.</u> Let K be a positive lattice ordered semifield. Let I be a convex subgroup of K. I is said to be an <u>L-ideal</u> iff for every $x, y \in I$, $x \lor y, x \land y \in I$.

Remark 3.17. Let K be a positive lattice ordered semifield. Then the following statements clearly hold:

- (1) {1} and K are trivial L-ideals of K.
- (2) The intersection of a family of L-ideal of K is an L-ideal of K.

 Also the union of an increasing chain of L-ideals of K is an L-ideal.
- (3) Let I be a convex subgroup of K. I is an L-ideal of K iff $x \lor 1 \in I$ for all $x \in I$.

Proposition 3.18. Let K be a positive lattice ordered semifield and $I \subseteq K$. Then I is an L-ideal of K iff it is an a-convex subgroup of K such that for every $a \in I$, $x \in K$ if $|x| \le |a|$ then $x \in I$.

Proof Assume that I is an L-ideal of K. Let $a \in I$, $x \in K$ be such that $|x| \le |a|$, then $x, x^{-1} \le |a|$ and $|a| \in I$. By the o-convexity of I and $|a|^{-1} \le x \le |a|$, $x \in I$.

Conversely, we must show that I is o-convex and $x \lor 1 \in I$ for all $x \in I$. Let $x, y \in I$, $z \in K$ be such that $x \le z \le y$. Then $1 \le zx^{-1} \le yx^{-1}$. Since $|zx^{-1}| = zx^{-1} \le yx^{-1} \le |yx^{-1}|$ and $yx^{-1} \in I$, by assumption $zx^{-1} \in I$. Hence $z \in I$. Let $x \in I$. Since $1 \le |x \lor 1| = x \lor 1 \le |x|$, $x \lor 1 \in I$. Therefore I is an L-ideal of K.

Proposition 3.19. Let A and B be L-ideals of a positive lattice ordered semifield K. Then AB is an L-ideal of K which is the smallest L-ideal containing A and B.

Proof By Proposition 1.34., we have that AB is an a-convex subgroup of K containing A and B. Let $x \in A$, $y \in B$ and $c \in K$ be such that

 $|c| \le |xy|$. Since $|xy| \le |x| |y|$, $|c| \le |x| |y|$. By Corollary 3.9., the exist $a, b \in P$, such that $a \le |x|$ and $b \le |y|$ and |c| = ab. Since $a, b \in P$, $a \in A$ and $b \in B$. Hence $|c| \in AB$. Because $1 \le |c \lor 1| = c \lor 1 \le |c|$, we can prove in a manner similar to the above that $c \lor 1 \in AB$. Since $|c| = (c \lor 1)(c \land 1)^{-1}$ and |c|, $c \lor 1 \in AB$, $c \land 1 \in AB$. Since $c = (c \lor 1)(c \land 1)$, $c \in AB$. Thus by Proposition 3.18, $c \in AB$ is an L-ideal.

Next, let I be an L-ideal of K such that A, B \subseteq I. Let a \in A and b \in B. Then a, b \in I, so that ab \in I. Hence AB \subseteq I. #

Corollary 3.20. Let K be a positive lattice ordered semifield and I an L-ideal of K. For every $x, y \in I$ and $z \in K$, $(x \lor z)(y \lor z)^{-1}$, $(x \land z)(y \land z)^{-1} \in I$.

Proof Let $x, y \in I$ and $z \in K - \{0\}$. By Proposition 3.13. (2), $|(x \lor z)(x \lor z)^{-1}|$, $|(x \land z)(x \land z)^{-1}| \le |xy^{-1}|$. By Proposition 3.18., $(x \lor z)(y \lor z)^{-1}$, $(x \land z)(x \land z)^{-1} \in I$.

Proposition 3.21. Let K be a positive lattice ordered semifield and $a \in K$. Then $A = \{x \in K \mid |x| \perp |a|\}$ is an L-ideal of K.

Proof Let $x, y \in A$. Then $|x| \wedge |a| = |y| \wedge |a| = 1$. Then $1 \le |xy^{-1}| \wedge |a| \le |x| |y^{-1}| \wedge |a| = |x| |y| \wedge |a|$. By Remark 3.15. (1), $|x| |y| \wedge |a| = 1$, so $|xy^{-1}| \wedge |a| = 1$. Hence $xy^{-1} \in A$, so A is a multiplicative subgroup. Let $z \in K$. Then $1 \le |(x+z)(y+z)^{-1}| \wedge |a| \le |xy^{-1}| \wedge |a| = 1$, so $(x+z)(y+z)^{-1} \in A$. By Proposition 3.14., A is an a-convex subgroup of K. Let $z \in K$ and $x \in A$ be such that $|z| \le |x|$. Then $1 \le |z| \wedge |a| \le |x| \wedge |a| = 1$, so $|z| \wedge |a| = 1$. Hence $z \in A$. By proposition 3.18., A is an L-ideal of K.

Definition 3.22. Let K be a positive lattice ordered semifield and $a \in K$. The principal L-ideal generated by a, denoted by $\langle a \rangle_L$, is the smallest

L-ideal of K containing a.

Remark 3.23. Let K be a positive lattice ordered semifield and $a \in K$. Then $\langle a \rangle_L = \{x \in K \mid |x| \leq |a|^m \text{ for some } m \in Z^+\}$.

Proof Let $B = \{x \in K \mid |x| \le |a|^m \text{ for some } m \in Z^+\}$. To show that B is L-ideal, let $x, y \in B$. Then there exist $m, n \in Z^+$ such that $|x| \le |a|^m$ and $|y| \le |a|^n$. Then $|xy^{-1}| \le |x| |y^{-1}| = |x| |y| \le |a|^{m+n}$, $xy^{-1} \in B$. Let $z \in K$. Since $|(x+z)(y+z)^{-1}| \le |xy^{-1}| \le |a|^{m+n}$, $(x+z)(y+z)^{-1} \in B$. Hence B is a-convex subgroup.

Let $w \in K$ be such that $|w| \le |x|$ for some $x \in B$. Then $|x| \le |a|^m$ for some $m \in Z^+$, hence $|w| \le |a|^m$. Thus $w \in B$. By Proposition 3.18., B is an L-ideal of K. Clear that B contains a.

Let J be an L-ideal of K containing a. Then $|a|^m \in J$ for all $m \in Z^+$. Let $x \in B$. Then $|x| \le |a|^n$ for some $n \in Z^+$. Since $|x| \le |a|^n = ||a|^n|$, by Proposition 3.27., $x \in J$. Hence $B \subseteq J$. Therefore $|x| = \{x \in K \mid |x| \le |a|^m \text{ for some } m \in Z^+\}$.

Proposition 3.24. Let K be a positive lattice ordered semifield and $a, b \in K$. Then $|a| \perp |b|$ if and only if $\langle a \rangle_L \cap \langle b \rangle_L = \{1\}$.

Proof Assume that $|a| \perp |b|$. Then $|a| \wedge |b| = 1$. Let $\langle a \rangle_L \cap \langle b \rangle_L$. Then there exists $m \in \mathbb{Z}^+$ such that $|x| \leq |a|^m$ and $|x| \leq |b|^m$. Since $|a| \perp |b|$ and $|b| \geq 1$, by Remark 3.15. (2), $|a| \wedge |b|^m$ = $|a| \wedge |b| = 1$. Thus $|a| \perp |b|^m$. By Remark 3.15. (2), $|a| \perp |b|^m$ and $|a| \geq 1$, we have that $|a|^m \wedge |b|^m = |a| \wedge |b|^m = 1$. So $|a|^m \perp |b|^m$. Hence $|x| \leq |a|^m \wedge |b|^m = 1$, so x = 1. Conversely, assume that $\langle a \rangle_L \cap \langle b \rangle_L = \{1\}$. Since $|a| \wedge |b| \leq |a|$ and $|a| \wedge |b| \leq |b|$, $|a| \wedge |b| \in \langle a \rangle_L \cap \langle b \rangle_L$. By assumption, $|a| \wedge |b| = 1$. Therefore $|a| \perp |b|$.

Definition 3.25. Let K and M be positive lattice ordered semifield. A map $f: K \to M$ is said to be an L-homomorphism iff f is a homomorphism and for every $x, y \in K$, $f(x \lor y) = f(x) \lor f(y)$.

The definitions of L-epimorphisms, L-monomorphisms and L-isomorphisms are defined as one would expect. If there is an L-isomorphism from K onto M, we denoted by $K \cong_L M$.

Remark 3.26. Let $f: K \to M$ be an L-homomorphism between positive lattice ordered semifields. Then the following statements hold:

- (1) f is isotone.
- (2) kerf is an L-ideal of K.
- (3) $f(x \wedge y) = f(x) \wedge f(y)$ for all $x, y \in K$.
- (4) If I' is an L-ideal of M then $f^{-1}(I')$ is an L-ideal of K containing ker f.
- Proof (1) Let $x, y \in K$ be such that $x \le y$. Then $x \lor y = y$. Hence $f(y) = f(x \lor y) = f(x) \lor f(y)$, so $f(x) \le f(y)$.
- (2) By Remark 2.15. (2), ker f is a convex subgroup of K. Let $x \in \ker f$. Then $f(x \vee 1) = f(x) \vee f(1) = 1 \vee 1 = 1$, $x \vee 1 \in \ker f$. Hence $\ker f$ is an L-ideal of K.
- (3) Let $x, y \in K$. If x = 0 or y = 0 then done. Suppose that x, y are nonzero. $f(x \wedge y) = f(xy(x \vee y)^{-1}) = f(x)f(y)[f(x) \vee f(y)]^{-1} = f(x) \wedge f(y)$.
- (4) Let I be an L-ideal of M. By Remark 2.15. (3), we have $f^{(1)}(I)$ is a convex subgroup of K containing ker f. Let $x \in f^{(1)}(I)$. Then

 $f(x) \in I'$. Since I' is an L-ideal, $f(x \lor 1) = f(x) \lor f(1) = f(x) \lor 1 \in I'$. Thus $x \lor 1 \in f^{-1}(I')$, hence $f^{-1}(I')$ is an L-ideal of K.

Let K be a positive lattice ordered semifield and I an L-ideal of K. Then $K_{/I}$ is a positive ordered semifield.

To prove that $K_{/I}$ is a lattice, let $x \in K$. If x = 0 then $xI \vee I = I$ exists. Suppose that $x \neq 0$. Claim that $xI \vee I = (x \vee 1)I$. Choose $a \in xI$ and $b \in I$. Then a = xi for some $i \in I$. Since $ix(bx)^{-1} = ib^{-1} \in I$, by Corollary 3.20, $(a \vee b)[b(x \vee I)]^{-1} = (ix \vee b)(bx \vee b)^{-1} \in I$. Since $b \in I$, $(a \vee b)(x \vee I)^{-1} \in I$. Hence $(a \vee b)I = (x \vee 1)I$. Therefore \vee is well-defined. Clearly, $(x \vee I)I$ is an upper bound of xI and I. Let $\alpha \in K_{/I}$ be such that xI, $I \leq \alpha$. Then there exist $i, j \in I$ and $a, b \in \alpha$ such that $xi \leq a$ and $j \leq b$. Then $(i \wedge j)(x \vee I) = (i \wedge j)x \vee (i \wedge j) \leq ix \vee j \leq a \vee b = a(1 \vee ba^{-1})$. Since $ba^{-1} \in I$, $ba^{-1} \vee I \in I$. This prove that $(x \vee I)I \leq aI = \alpha$. Hence $xI \vee I = (x \vee I)I$. By Proposition 3.5. (2), $K_{/I}$ is a positive lattice ordered semifield.

Note that the projection map Π defined by $\Pi(x) = xI$ for all $x \in K$ is an L-epimorphisdm of K onto $K_{/I}$.

Theorem 3.27. (First Isomorphism Theorem)

Let $f: K \to M$ be an L-epimorphism of positive lattice ordered semifields. Then $K/_{\ker f} \cong_L M$.

Proof By Theorem 2.20., we have that φ is an epimorphism. To show that φ is a lattice epimorphism, let $x, y \in K$. Then $\varphi(x \ker f \vee y \ker f) = \varphi((x \vee y) \ker f) = f(x \vee y) = f(x) \vee f(y) = \varphi(x \ker f) \vee \varphi(y \ker f)$.

Lemma 3.28. Let H a subsemifield of a positive lattice ordered semifield K, and I an L-ideal of K. Then $H \cap I$ is an L-ideal of H and HI is subsemifield of K.

Proof This proof is similar to the proof of Lemma 2.21.. #Theorem 3.29. (Second Isomorphism Theorem) Let H be a subsemifield of a positive lattice ordered semifield K. Let I be an L-ideal of K such that $P_{HI} \subseteq P_H$. Then $H/H \cap I \cong_L HI/I$.

Proof This proof is similar to the proof of Lemma 2.22.. # Lemma 3.30. Let D and I be L-ideals of a positive lattice ordered semifield K such that $I \subseteq D$. Then $D_{/I}$ is an L-ideal of $K_{/I}$.

Proof This proof is similar to the proof of Lemma 2.23.. #

Theorem 3.31. (Third Isomorphism Theorem)

Let K be a positive lattice ordered semifield, D and I are L-ideals of K such that $I \subseteq D$. Then $(K/I)_{/(D/I)} \cong_L K/D$.

Proof This proof is similar to the proof of Theorem 2.24.. #Proposition 3.32. Let $f: K \to M$ be an L-epimorphism of a positive lattice ordered semifields. If I' is an L-ideal of M then $K/f^{-1}(I') \cong_L M/I'$.

Proof This proof is similar to the proof of Theorem 2.25.. # Proposition 3.33. ([3]) Let $\{K_i \mid i \in I\}$ be a family of positive ordered semifields. Then $\prod_{i \in I} K_i$ is a lattice iff K_i is a lattice for all $i \in I$.

Proof See [3], pp. 46.. #

Definition 3.34. Let K be a positive lattice ordered semifield. A congruence ρ on K is said to be an L-congruence for every $x, y, z \in K$, $x \rho y$ implies that $(x \vee z) \rho (y \vee z)$.

Remark 3.25 Let K be a positive lattice ordered semifield.

- 1) for every $x, y \in K^*$, $x \rho y$ implies $x^{-1} \rho y^{-1}$.
- 2) for every $x, y, z \in K$, $(x \wedge z) \rho (y \wedge z)$.

Examples 3.35. (1) Every positive lattice ordered semifield has the trivial L-congruence, that is for every $x, y \in K$, $x \cap y$ iff x = y.

(2) Let I be an L-ideal of positive lattice ordered semifield K. Define a relation ρ_I on K by $x \rho_I y$ iff $xy^{-1} \in I$ or x = y = 0 for all $x, y \in K$. Then we have that ρ_I is a congruence on K. We must show that $(x \vee z) \rho_I (y \vee z)$ and $(x \wedge z) \rho_I (y \wedge z)$ for all $x, y, z \in K$.

Let $x, y, z \in K$ be such that $x \rho_I y$. If x = 0 then done. Suppose that $x \neq 0$. Then $xy^{-1} \in I$. By Corollary 3.20., $(x \vee z)(y \vee z)^{-1}$, $(x \wedge z)(y \wedge z)^{-1} \in I$. Hence $(x \vee z) \rho_I (y \vee z)$ and $(x \wedge z) \rho_I (y \wedge z)$. Therefore ρ_I is an L-congruence of K induced by I.

Note that I is an equivalence class of K/ρ_I and ρ_I is a unique L-congruence on K such that $I \in K/\rho_I$.

To prove uniqueness, let ρ be an L-congruence on K such that $I \in K/_{\rho^*}$. Let $x, y \in K$ be such that $x \rho$ y. If x = 0 then done. Suppose

that $x \neq 0$. Then $yx^{-1} \in I$. Since $1 \in I$, $yx^{-1} \in I$. Thus $x \rho_I y$. Thus $\rho \subseteq \rho_I$. Obviously, $\rho_I \subseteq \rho^*$. Therefore $\rho_I = \rho^*$.

Let ρ be an L-congruence on a positive lattice ordered semifield K. Let $I_{\rho} = \{ x \in K \mid x \rho 1 \}$. Then we have that I_{ρ} is a convex subgroup of K. Let $x \in I_{\rho}$. Then $x \rho 1$, so $(x \vee 1) \rho (1 \vee 1) = 1$. Thus $x \vee 1 \in I_{\rho}$, so I_{ρ} is an L-ideal of K.

Proposition 3.36. Let K be a positive lattice ordered semifield, I the set of all L-ideals of K and I the set of all L-congruences on K. Then there exists an order isomorphism from I onto I.

Proof Similar to the proof of Proposition 1.41.. #

Let K be a positive lattice ordered semifield and I an L-ideal of K. Then $P \cap I$ is a convex subsemigroup of P.

Let S be a convex subsemigroup of P containing S. Let $\langle S \rangle$ be a multiplicative subgroup of K generated by S. Then $\langle S \rangle$ is an L-ideal of K.

To prove this, let $x, y \in \langle S \rangle$. Then $x = st^{-1}$ and $y = uv^{-1}$ for some $s, t, u, v \in S$. Let $z \in K$ be such that $x \le z \le y$. Then $st^{-1} \le z \le uv^{-1}$, $sv \le ztv \le ut$. By the o-convexity of S, $ztv \in S$. So $z = ztv(tv)^{-1} \in \langle S \rangle$, hence $\langle S \rangle$ is o-convex.

Let a, b \in K be such that a + b = 1. By the a-convexity of S, asv + but \in S. Then $ax + by = a(st^{-1}) + b(uv^{-1}) = (asv + but)(vt)^{-1} \in \langle S \rangle$. Hence $\langle S \rangle$ is a-convex.

Next, to show that $\langle S \rangle$ is lattice, let $x \in \langle S \rangle$, Then there exist $s, t \in S$ such that $x = st^{-1}$ and $s \wedge t = 1$. Thus $x \vee 1 = (st^{-1}) \vee 1 = (s \vee t)t^{-1} = [st(s \wedge y)]t^{-1} = s(s \wedge t)^{-1} = s \in S$. Therefore $\langle S \rangle$ is an L-ideal of K.

Proposition 3.37. Let K be a positive lattice order semifield. Let \mathscr{A} be the set of all L-ideals of K and \mathscr{B} the set of all a-convex subsemigroups of P containing 1. Then there exists a bijection from \mathscr{A} onto \mathscr{B} .

Proof Define $\varphi: \varnothing \to \mathscr{B}$ by $\varphi(I) = I \cap P$ for all $I \in \varnothing'$ and define $\Psi: \mathscr{B} \to \varnothing'$ by $\Psi(S) = \langle S \rangle$ for all $S \in \mathscr{B}$. To show that $\varphi \circ \Psi = \operatorname{Id}_{\mathscr{B}}$ and $\Psi \circ \varphi = \operatorname{Id}_{\mathscr{B}}$ let $S \in \mathscr{B}$. Then $\varphi \circ \Psi(S) = \varphi(\Psi(S)) = \varphi(\langle S \rangle) = \langle S \rangle \cap P$. Since $S \subseteq P$, $S \subseteq \langle S \rangle \cap P$. Let $X \in \langle S \rangle \cap P$. Then $X \geq 1$ and $X = ab^{-1}$ for some $A, b \in S$ and $A \wedge b = 1$. So $X = X \vee 1 = (ab^{-1}) \vee 1 = (a \vee b)b^{-1} = a \in S$ since $A \vee B = ab$. Hence $A \vee B = ab$. Hence $A \vee B = ab$. Hence $A \vee B = ab$. Clear that $A \vee B = ab$. Next, let $A \vee B = ab$. Then $A \vee B = ab$. Then $A \vee B = ab$. Therefore $A \vee B = ab$.