CHAPTER 11
POSITIVE ORDERED 0-SEMIFIELDS

In this chapter, we shall give some fundamental theorems of a
theory of positive ordered semifields.

Definitton 2.1. Let < be a partial order on a semiring S. < is said to be
compatible iff it satisfies the following property for every x,y,z € §,x <y

implies that 1) x +2< y+2Z and 2)xz<yz and zx <zy if z>0.

Definition 2.2, A system (R,+,.,<) is said to be a partjally ordered
semiring iff (R, +,.) is a semiring and < is a compatible partial order on
R. If 0<x for all x e R then we say that R is a positive ordered

,

Examples 2.3. (1) Z; is a positive ordered semiring.
2) ZJVZ1={a+b¥2 |abeZ,) is a positive ordered.
semiring where a + b¥2<c +dV2 iff a<c and b<d for all a,b,c,deZ;.
(3) From (2), Z:,[\D_ ] 'has a natural partial order as a subset

of ]R: is a positive ordered semiring,

Definition 2.4. Let (R,+,.,<) be a positive ordered semiring. R is said to
be a positive ordered_semifield iff (R ,.) is a group.

Remark 2.5, Let K be a positive ordered semifieid. Then the following

statements hold :
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S|
(1) for every nonzero elements x,y € K, x <y implies y <x .

(2) for every Xx,y,z€ K, xz<yz implies that z=0 or x<y.

Examples 2.6, (1) Q:), lft‘.:J are positive ordered semifields.
(2) Let K be a semifield such that 1 + 1 = 1. Define a
relation £ on K by x <y if and only if x+y=y for all x,y € K.
Then we have that < is a partial order on K. To show that < is a
compatible, let x,y € K be such that x <y. Then x +y=y. Let z € K.
Then x+2z)+(y+z)=(x+y)+z=y+2z and Xxz+ yz = (x + y)z = yz which
imply that (x +2z)< (y +z) and xz<yz, Thus £ is a compatible,
Since 0 +x=x for all x e K, 0< x for all x € K.
Therefore K is a positive ordered semifield. _
(3) Let K be a semifield which is additively cancellative.

Define & relation < on K by x <y if and only if there exists z € K such
that x + z=y. To show that < is a compatible partial order, clearly < 'is
reflexive smce x+0=x for all x e K. Let x,y € K be such that x <y
and y S x. Then there are u,ve K such that x +u=y and y+v=x.
Hence y=x+u=(y+v)+u=y+@u+v). By AC, u+v =0 which
implies that u=v =0, so x=y. Let x,y,z€ K be such that x <y and
y £z. Then there are u,v € K such that x +u=y and y+ v=2z Hence
XtUu+v)=(X+u)+v=y+v=2z s0 x<z Next let x,y € K be such
that x < y.l Then there exists u € K such that x +u=y. Let z € K. Thus
X+z+u=y+z and xz+uz=(X+u)z=yz, 50 X+z<y+z and xz< yz.
Therefore < is a compatible partial order on K. Obviously, 0 < x for all
x € K. Hence K is a positive ordered semifield.

(4) Let K and L be positive ordered semifields. Define a relation
< on K xL U {(©,0) by



(x,y)<(z,w) if and only if x<z and y<w for ali (x,y),
z.,.w)e K'x L‘u {(0,0)). Then K-x L-u {(0,0)} is a positive ordered
semifield.

(5) Let K and L be positive ordered semifields such that K
which is additively cancellative, Define a relation < on K xL U {(0,0))
by (x,y)s-(z,w) if and only if X<z or x=z and y<w for all
x,y),(z,w)e K‘x L‘ Vv {(0, 0}}. Then K‘x L‘u {(0,0)} is a positive
ordered semifield. |

Note that the partial order < defined in Example 2.6. (5), is called

the lexicographic order.

Theorem 2.7. Let S be a positive ordered commutative semiring with
multiplicative zero 0 having the M.C. property. If S satisfies that for every
X, ¥, 2 €S, xz<yz implies that x <y then S can be embeded into a

poSitive ordered semifield.

Proof Using the construction of Theorem 1.28., we have that
K={Sx(S- {0})}/~ is a semifield. Now define a relauon < on K as

follows : let ¢, e K a< [} iff there exists (a,b) e and (c,d) e B
such that ad < bc. To show that < is a partial order, clearly < is
reflexive. Let a, B € K be such that a < and B < a. Then there are
(a,b),(c,d)ea and (e,f),(g,h) € B such that af <be, dg<ch, ad =bc
and eh = fg. Since gd < ch, bcg = adg < ach. Since bcg < ach, bg < ah. Since
eh = fg, bge < ahe = afg. Then be < af. Since af <be and be < af, be = af.

Hence o =P, so < is anti-symetric.
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Let o, B,y € K be such that o <f and P <y. Then there are (a,b) € a,
c,d).e,HDep, (g,h) ey such that ad <bc, eh <fd. Since eh < fg and
cf = de, cfh = ehd < fgd. Thus ch < gd, so bch < bgd. Since ad < bc and

bch < bdg, adh < beh. Therefore ah < bg. .Henoe a<y so S is transitive,
Therefore < is partial order. let a,p € K be such that o < . Then there
are {(a,b)e a and (c,d) e B such that ad <bc. Let vy e K.

Choose (e ,f) € v. Since ad < bc, adef < beef. Thus ay = [(a, b)l[(e, D] =
[(ae , b)] < [(ce , dD)} = [(c , d)}i(e , D)} = By. Since ad < be, adf < bef. Then
f(adf + bde) < f( bef + bde), df(af + be) < bf(cf + de), It follows that
a+y={@a,b]l+ e, D]=[(aftbe , b)] < [(cf +de,df)] ={(c,d)] + [{e, D] =
$ + v. Therefore < is compatible. Clearly, 0 < o for all o e K.

Therefore K is a positive ordered semifield. Fix a € S~ {0}. Define
f:8—K by f(x}=[(xa,a)] for all x € S. Then f is a semiring
homomorphism, To show that f is isotone, let X,y € S be such that
x <y. Then (xa)a < (ya)a, so f(x) ={(xa, a)] < [(ya,a)] =f(y). Hence f is

isotone.
#

Definition 2.8, Let C be a subset of a positive ordered semifield K. C is
called a convex subset of K if is both an a-convex and o-convex subset
of K.

Definiton 2.9. let K be a positive ordered semifield.
The set P={xeK|le} is called the positive cone of K.

Remark 2.10. Let P be the positive cone of a positive ordered semifield K.
Then the following statements hold :

(1) If P=1{1} then |K|=2.
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(2) P is a multiplicative subsemigroup of K.

(3) 1+x e P for all x € K, hence P is an additive ideal of K,
that is K+PcP.

(4) P is a conic subset of K where P-1 = {x-l| x € P}

(5) P is a convex subset of K.

{6) For every X € K‘, X =ab-l for some a, b e P.

(7) For every X,y €P, xy =1 implies that x =y = 1.

(8) If H is a subsemifield of K then P, =P nH where

P,=f{xeH]|xx1).

Proof (1) Assume that P =[1}. Let X,y € K*. Then x <x+y and
y<x+y Thus (x + y)xnl, x + y)y;l € P, Since P={1}, (x+ y)x'lz
(x + y)y-l =1. Hence x =y.

(5) Let x,ye P and a,b € K be such that a+b =1 Then
1<x and 1<y, so a<ax and b<by. Thus 1 =a+b <ax+by. Therefore
ax + by € P. Hence P is an a-convex subset of K. Clearly P is an
o-convex subset of K.

6) Let x e K'. Then there y € K such that 1 <x and

-1 o1 -1
x £y. Thus y, yx € P. Hence x--y(yxl) has indicated form. 4

Theorem 2.1]. Let K be a semifield and P < K‘. Suppose that P satisfies
that

(1) P is a multiplicative subsemigroup of K ,

(2) P is a conic subset of K,

(3 1+xe€P for all x e K and

(4) P is an a-convex subset of K.
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Then there exists a unique positive compatible partial order on K

induced by P such that P is the positive cone.

Proof Define <, on K as follows: for every x,y € K,
xS,y if and only if x=0 or y}l:;l e P.
Claim that <, is a partial order. Since 1 € P, <, is reflexive. Let x,y € K
be such that x <,y and y<,x. Then x=0 or yx-leP and y=0 or
x),'—1 € P.
Case 1. x=0 and y=0. Then x =y.
Case 2. x=0 and xy-1 € P, 'a contradiction.
Case 3. yx €P and y=0. Similar to Case 2.
Case 4. yx-], J(y-1 € P. Then xy'] eP nP-]. By (2), )»:y—1 =1, so x=Yy.
Therefore <, is anti-symmetric. Let X,y,z € K be such that x <,y and
y<p2 Then x=0 or ),')»:.l €P and y=0 or zy.l € P. If x=0 then done.
Suppose that x #0. Thus yx'l eP. If y=0 then 0=yx'l eP, a
contradiction. So y #0, thus zy-1 € P. By (1), zx-l ==(zy'])(yx-l) € P. Hence
X<p12, S0 £, is transitive, So we have the claim.
To show that ‘Sp is a compatible, let x,y € K be such that xS, y.
Then x =0 or yx-leP. Let z € K. ‘
Case 1. x=0.
Subcase Il z2=0. Then 0=x+z<,y+z and 0=xz<,yz
Subcase 12 z#0. Then O =xz<,yz By (3), 1 +yz &P,
So (y+z)z-1 € P, hence x+z=25,y+z
Case 2. x #0. Then yxbleP.
Subcase 2.1 z=0. Then 0 =xz<,yz and X +z=x<S,y=y+2z
Subcase 2.2 z#0. Then (yz)(m)"l =yx.1 €P, so x2<,yz. By (4),

-1 -1 -1 -1
(y+z2)(x+z) =x(x+2z) (yx )+2(x+2) €P, Hence X+2z<,y+2

T 121062609
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Therefore <, is a compatible. Clearly, 0 <, x for all x €K and P is the
positive cone of K.

Hence K is a positive ordered semifield having P as a positive
cone. To prove the uniqueness, let <* be a compatible partial order of K
such P is the positive cone. Let x,y € K be such that xs*y, If x=0
then done. Suppose that x #0, so 1 <* yx'l. Thus yx'1 €P, so x5,y
Hence <* ¢ <. Similarly, <, c <*. Therefore < =<* s0 <, is the

unique compatible partial order on K having P as its positive cone. 4

Coroflary 2.12. Let K be a semifield. Let o be the set of all subsets of

K which satisfy (1) —(4) in the Theorem 2.11. and B the set of all
positive compatible partial orders on K. Then there exists an order

isomorphism from <& onto 4.

Proof Define ¢ : o> @ as follows : let P € < Then Theorem
i.ll. determines a unique positive compatible partial order <, induced by
P on K, define ®(P) =<, Clearly ¢ is a bijection. To prove that ¢ is
isotone, let P, Q € ¥ be such that P € Q. Then there exist compatible
partial orders <, and <, such that P={xeK | 1<,x} and Q=
{xeK| 1 4 x}, respectively. Let x,y € K be such that x<,y. If x=0
then done. Suppose that x # (. Then yx'l € P. Since Pc Q, y:fl € Q. Then
X<,y This prove that SpS g S0 0F) C Q). Hence ¢ is isotone. It
remains to prove that q)—1 is isotone, let <, <* € B be such that < ¢ <*,
Let xe ¢ (<). Then 1<x since @ (<)={yeK | 1<y} Since s
<*, 1 s*x. Thus xeq)-](s*) where (p-l(S*)={yeK | 1<*y}.
Therefore (p-l(s)g;(p-l( <*), so (p-1 is isotone. Hence @ is an order

isomorphism. 4
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Definition 2.13. Let C be a convex subset of a positive ordered semifield
K. C is said to be a convex subgroup of K if C is a multiplicative

subgroup of K.

Definition 2.14. Let K and M be positive ordered semifields. A function
f: XM is called an order homomorphism of K into M if f is an
isotone homomorphism of semifields.
An order homomorphism f:K M is called an order
monomorphism iff 'f is injection and f(Py) =P, an order epimorphism if -
f is onto and f(Py) =P, and' an order isomoxphism if fis bijection and f-l
is isotone. If there exists an order isomorphism of K onto M then we

say that K and M are order isomorphic, denoted by K=o M.

Remark 2.15, Let f: K —+M be an order homomorphism of positive‘ordcred
semifields. Then the following statements hold :

(1) f(P) <Py,

(2) kerf is a convex subgroup of K.

Gy I Cf lis a convex subgroup of M then f-l(Cf) 1S a convex

subgroup of K containing ker f.

Proof (1) Obviously.
(2) By Remark 1.37 (2), kerf is an a-convex subgroup of K.
Let x,yekerf and z € K be such that x <z<y. Since f is isotone,
1 =f(x) <f(z) <f(y) = 1. Hence f(z) =1, so z € ker f. Therefore ker f is a
~convex subgroup of K.
(3) By Remark 137 3), f (C) is an a<convex subgroup of K.

-1
Let xef (Cf) and z € K be such that x <z <y. Since f is isotone,
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f(x) < f(z) < 1(y). By the o-convexity of C’, f(z) eC. So z e f'l(C’), hence

f-l(Cr) is a convex subgroup of K. 4

Proposition _2.16. Let f: K—>M be an order homomorphism of positive
ordered semifields and f is a bijection. Then f is isotone iff f(P,) =Py
Proof Assume that f—1 is isotone. Clearly, f(Py) < P,. Let y € P,
Then y 2 1. Since f is onto, f(x) =y for some x e K. Since f‘l 1s isotone,

1=f(1)<f(y)=f (fx)) =x. Thus x € Py, 50 y € f(P,), it follows that
P, f(P,). Therefore f(P)=Py,.

Conversely, assume that f(P.) =P,. Let X,y € L be such that x <y.
If x=0 then done. Suppose "that x;t'O. Then )n{1 € P,. By assumtion,
there exists p € P, such that f(p) =yx-!. Since f is onto, there are a,b e K
such that f(a)=x and f(b)=y. Then f(p)=yx =f(b)f(a) =f(ba ). Since
fis 1-1, ba € P,.So b2 a Therefore f (x) = f (f(a) =2 < b =f (f(b)) =

£'(y). Hence f is an isotone,

Let C be a convex subgroup of a positive ordered semifield K.

Then K/C 1s a semifield. Define a relaton < on K/C as follows : for
o, B € Kyp, define o <P if and only if there are a € 0. and b e f§ such

that a<b. To show that < is a partial order, it is clear that < is

reflexive. Let @, B € K/~ be such that o< and B <o Then there are

a,d e and b,ce P such that a<b and ¢ <d.
Case 1. ¢=0. Then b=0 since be f =[0], so a=0.
Therefore o = aC = [0] = bC = §,

Case 2. d =0. Hence c=0, so o =[0] = §.
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Case 3. ¢#0 and d=0, By definition of o and P, be ,ad e C. Thus
ad-l < bd-1 < bc-l. Since C is o-convex, bd-1 € C. Hence B =bC=dC =aq.
'i‘herefore < is énti-symmeu‘ic. ,

Let o, f3, 7€ Kjc be such that a < anﬁ B <7. Then there exists a € q,
b,c €EP and d ey such that a<b and ¢ <d. ¥f c=o0 then b=0, so

. a=0. Hence o =0]<Y. Suppose that c 0. By definition of B, bc. e C.
Then (bd)c € dC =Y. Since a< (bo)c <(bd)e, & =aC < dC =.
Therefore < is transitive, hence < is a partial order.

Next, to show that < is compatible, let a, B € K/~ be such that
a < B. Then there exists ae€® and be B such that a<b. Let Y € Kj.

Choose c € y. Then we have that a+c<b+c and ac<bc. So a+y=
8C+cC=(a+c)C<(b+c)C=bC+cC=p +y and ay= (aCXcC) = (ac) C
< (bc)C = (bCYcC) = f#y. Thus < is a compatible on K/c. Cleatly, [0)<a

for all o € Kj~. Therefore K/c is a positive ordered semifield.
From the above, we define <* on Kjc as follows:let a, B e Kic

define by oo <P if and only if for every a € o, there exists b € B such

that 2 <b. Then we get that <* is a positive compatible partial order on

ch.

Remack 2,17, (1) The two definitions of compatible partial order of Kic as

above are equivalent.

(2) Every element of K/c is a convex subset of K.
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Proof (1) Obviously, <* g <. Let a, B € K¢ be such that a <.

If o=0 then done. Suppose that o= 0. Then there exist a € o and be
such that a<b. Since a#0,a=0. Let c € a. By the definition of a,

. . N .1
'« C. Since a<b, 1<ba. So c<c(da) and c(ba ) =bica ) € bC = B,

ca
hence o <* B. Therefore <* ¢ <,s0 <* =X,

To prove (2), let o € K/C‘ If o = [0} then done. Suppose that

o #[0]. Let x,ye o and ze K be such that x<z<y. Since a # [0},
x=0. So 1_<.1r.x.1 Syx-l. By the definition of «, y:{1 € C. Since C is
o-convex, z:n:-l € C. Thus z = x(zx-l) € xC=oa. Let a,be K be such that
a+b=1. Since C is a-convex, a +'b(yx-l) € C. S0 ax + by = x[(ax + by)x'l]

=Xx[a + b(yx'l)} e xC = a.. Therefore o0 is a convex subset of K. 4

Proposition 2.18. Let K be a positive ordered semificld and C a convex
subgroup of K. Then there exists a positive compatible partial order on

Kjc such that the projection map [I is an order epimorphism of K onto

ch.

Proof Define [I:K — Ky~ by [I(x)=xC for all x € K. Then IT is

an- onto homomorphism, let x,y € K be such that x €'y, So [I(x) =xC <yC

=TII(y). Hence I] is an isotone, so [I(Py) c P“/ .
c
Let G'EPK/C' Then a2 C, so there are ¢ €C and a € a such that

c<a Thus ac e P;. Hence H(ac.l) = (ac.l)C = aC = o € [I(Py), hence

Py, € TI(Py). Therefore Il is an order epimorphism. P

Corollary 2.19. An a-convex subgroup C of a positive ordered semifield K.
Then C is the kemel of some order homomorphism iff it is an o-convex

subset of K.
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Proof Assume that C is the kemel of some order homomorphism.
By Remark 2.15. (2), C is an o-convex subset of K.

The converse follows from Proposition 2.18.. M

Theorem 2.20. (First Isomorphism Theorem)
Let f: K> M be an order epimorphism of positive ordered

semifields. Then Kp..¢f =0 M.

Proof Let ¢ be the isomorphism defined in the proof of Theorem
1.45.. |
To show that @ is isotone, let x,y € K be such that xker f < yker f.
Then there are a, b € ker f such that xa <yb. If y=0 then done. Suppose
that y # 0. So Jrcy-1 < ba . Since f is isotone and ba.i € ker f, f(xy-l) < f(ba-l) = 1.
Thus f(x) < f(y), so ¢ is isotone.
Next, we shall prove that (p'l is isotone. Since f is an order

epimorphism, f(P,) =P,,. Let y € P,,. Then there exists x € Py such that

f(x)=y. So xkerf € P, . Then @(xkerf) =f(x)=y e (P, ).
Acer £ fker f
This show that P, c ‘P(Px,k f). By Proposition 2.16., (pbl is isotone.
&r

Therefore ¢ is an order isomorphism, s0 K. ¢ =M. 4

Lemma 2.2]1. Let K be a positive ordered semifield, H a subsemifield of K
and C a convex subgroup of K. Then HN C is a convex subgroup of H.

And HC is a subsemifield of K.

Proof By Lemma 1.46., we shown that HN C and HC are a-convex

subgroup of H and a subsemifield of K, respectively. It remains to prove



that HN C is an o-convex of subgroup H, let x,ye HNC and ze¢ H
be such that x <z <y. By the o-convexity of C, z€ C. Then HNC is

a convex subgroup of H, as required. 4

Theorem 2.22. (Second Isomorphism Theorem)
Let H be a subsemifield of a positive ordered semifield K. Let C

be a convex subgroup of K such that Pyc c Py Then Hpyy |~ =oHCyn.

Proof Let ¢ be the epimorphism given in the proof of Theorem

1.47. To show that ¢(Py} =P, , let x € P,. Then x €« H and x 2 1. So

ic’

o(x) =xC = C, hence ¢(P,) c Py . Let & € P, . Then there exists an

e HCe
a € Py, such that aC=a. Since P,.c Py, a € P, Therefore ¢(a)=2aC =
o € ¢(P,). Hence PHCIng) (Pyy). Therefore ¢ (Py) = PHCIC’ sO @ is an order
epimorphism and we have that ker ¢ = Hn C. By Theorem 2.20.,,

H/H AC = HC)( 4

Lemma 2.23. Let D and H be convex subgroups of a positive ordered

semifield K such that Hc D. Then Dpy is a convex subgroup of Kpy.

Proof By Lemma 1.48. we proved that Dpy is an a-convex subgroup
of Kpy. let @, P €Dy and Y& Kpg be such that o <y <B. Then there

are ae€d, bcey and d € B.such that a<b and c Sd. By the definition
of y, cb" eH, since HCD, cb'e D. Claim that a,d € D. There is x & D
such that o =xH. Since a € a, there exists h € H such that a = xh. Since
Hc D, a=xh € D. Similarly, d € D. So we have the claim. Thus

- -1 -1 -1
da1 € D. Since a<b and ¢<d, cb <ca <da . By the o-convexity of D,
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ca € D. Since 2 € D, ceD, y=cH e Dy, so Dyy is a convex subgroup

of Kny: M
Theorem 2.24. (Third 1somorphism Theorem)
Let K be a positive ordered semifield, D and H are convex

subgroups of K such that Hc D. Then (K/y) D )’—_'«: Kip
M

Proof Let ¢ be the epimorphism given in the proof of Theorem
1.49. show that ‘p(PK,H):PK;D' let a € Kpyy be such that H<a. Then

there are ae @ and he H be such that h<a Smce Hc D, h e D. Thus
¢(a) = ¢(aH) = aD. Since h<a and h e D, ¢(a)=aD =D, so ¢(a) ePK,D.

Let o e P Then @ =zD. Then there exist X € D and a € a such that

K}D'
azx. So xH<aH. Thus (ax )H € B and ¢((ax )H) = (ax )D = aD =

Q€ (p(PKlH ). Hence (p(PKjH) =Py . Therefore ¢ is an order epimorphism

/D

and ker ¢ = Dygy, by Theorem 2.20., (K/H)/(D/ = Ky
H

Proposjtion 2,25 let f: K 5 M be an epimorphism of positive ordered

semifields, If C is a convex subgroup of M then K/f-l(C’) = Myc.

Proof By Remark 2.15. (3), f-l(C!) is a convex subgroup of K.
Let ¢ be an epimorphism as the proof of Theorem 1.50.. To show that
¢ is isotone, let X,y € K be such that x <y. Since f is isotone,
f(x) < f(y). So @(x) =f(x)C’S f(y)C’-—* ¢(y). Hence ¢ is isotone.

f ]
Let o € PMIC,Then C <0, so there are a € 0 and ¢ € C such that c < a,

-l . -1
Hence ac € P,. Since f(PK)=PM, f(p) =ac for some p € Py. Then



o(p) = f(p)Cr = (achI)C’ =aC =0 € ¢(Py). So Py e S ¢(P,). By Proposition
2.16., (.p.l is isotone. Therefore ¢ is order isomorphism and we have that

ker ¢ = f-l(Cf). By Theorem 2.20., K/f‘J (CI) =5 M/C’. 4

Proposition 2.26, Let K be a positively ordered semifield, C a convex
subgroup of K, and P the positive cone of K. Let [1:K — K;- be the

projection map. Then [I(P) is the positive cone of Ky-~. Furthermore, if

P-C=@ then P-C is a multiplicative subsemigroup of C.

Proof : Clear that [J(P) is the positive cone of Kye.

Let x,y € P~C. Then xy € P. Suppose that xy € C. Then xyC =C.
Since x,y € P, xC and yC e [I(P). So (xC)}(yC) =xyC=C. Since [I(P) is

the positive cone of Kjr, XC = yC = C. Thus x,y € C, a contradiction.
Hence xy ¢ C, so xy e P-C. 4

Theorem 2.27. Let P be a commutative semiring with 1. Then there exists
a positive ordered semifield K having its the positive cone isomorphic to
P iff P satisfies the following statements :
(1) P is M.C. with zero,
(2) for every x,ye P, xy=1 implies x=y =1,
3) for every x,y,a, b e P there is d € P such that
ax + by = da + db. |

Proof let K be the semifield as in Theorem 1.27..

Define a relation on K as follows : for a, B € K.
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o <[P iff there exists (a,b)e a, (c,d) € B and p € P such that
pad =bc and 0 <a for all a € K.

To show that < is compatible on K, it is clear that < is
reflexive. Let o, f € K be such that « < and [ <. There exist (a,b),
x,y)eaq, (c,d),(z.w)ep and p,q € P such that pad =bc and qyz =
xw, Since ay = bx, (ay)w = (bx)w = b(xw) = b(qyz). By (1), aw =qbz. Then
daw = dqbz. Since cw =zd, daw = cwbg. By (1), da =cbq. Since bec = pad,
ad = padq. By (1), we have 1 =pq. By (2}, p=q=1. Thus ad =bc, hence
o=p. Thus < is anti-symmetric. Let @, B,y € K be such that a < and
B <y. Then there are (a,b)ea, (c,d),(e.HeB,(g,h)ey and p,qeP
such that pad =bc and geh =fg. Since qeh = fg, gehc = fgc. Then gehc =
- fgc = deg. By (1), ghc =dg. Then paghc = padg. Since pad =bc, pahqc =
beg. By (1), ahpg =bg. Hence o <7, so < is transitive. Let o, P € K be
such that o < B. Then .the.re exist (a,b)ea, (c,d)eP and peP such
that pad = bc. Let ¥ € K. Choose (¢, f) € ¥. Then padef = beef, Thus
ay< By. And by (3), there exists q € P such that adfp + bde = qadf + gbde.
Then qd(af + be) = bef + bde = b(cf + de), so qdf(af + be) = bf(cf + de). Hence
& +Y<P+7. Therefore < is a compatible partial order.

Define @ :P — K by ©(x) =[(x,1)] for all x € P. We have that

¢ is -a monomorphism., To show that ¢(P) = {& € K|o'. 21, D}, letx € P,
Then “G(x) = [(x ; 1)] 21, 1)} Thus ¢x) e {a e K| a>il; D]
Let Be{aeK|az[(l,1)]}. Then there exists (a,b) € B and p € P
such that pb=a. Thus ¢(@) = [(p, 1)) = [(bp , B)] = [(a, L)} = B € o(P).
Hence ¢(P)={ o € K| a=[(1,1)]}, P= @(P). This proves that @(P) is
the positive cone of K.

Conversely, let P be a positive cone of some positive ordered

semifield K. Then (1) and (2) clearly hold. Let x,y,a b e P. By the



a-convexity of P, (ax +by)@a+b) = [a(a +b) Jx + [ba + b) Iy € P, Then

(ax + byXa + b)'1 =p for some p € P. Thus ax + by = pa + pb, (3) holds. 4
Definition 2.28. Let K be a semifield and C an a-convex subgroup of K.
A compatible partial order on C is a partial order < on C such that for

every X,y,2 € C, x <y implies xz <yz.

Proposition 2.29. Let C be an a-convex subgroup of semifield K. Let < be
a compatible partial order on C and <* a compatible partial order on

semifield K/c- Suppose that

(1) for every x,y € P. and 2, b € K are such thata + b = 1, ax + by € P
where P.={xeC|x21)
(2) for every x € K, 1 +x € C implies 1 +x € P..

(3) for every x e C,ye U and a b € K such that
aEPKﬂ:-‘Cl

a+b=) and ax +by e K- C.
Then there exists a compatible partial order £ on K such that <
is the restriction of the partial order on C and the projection map II is

an order epimorphism.

Proof 1et P=P.u U . We shall show that P satisfies
aePy (C}

(1) - (4) of Theorem 2.11.
(1) Let x,yeP
Case 1. x,y € P.. Then xy € P, cP.

Qass_Z.xePc'andyeBforsomeﬁePK,—(C}.’Ihus xy e Ja .
C aEPK‘c“{Cl
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Case 3. xeo and ye § for some o, f € PK,C—{C}. Then (xy)C = (xC)

(yC)=0LBePK/C. If xye C thenC=@xy)C=0ff. Thus a = =C, a

2
contradiction. Thus xy ¢ C, so Xy € PKIC_{C}' Hence P c P.

-1 -1
(2) Let xe PAP . Then x,x €P.

-1 -1
Case 1. x,x €P.. Thus x,x 21, so x=1

L~ .1
Case 2. x € P. and xl € B for some f PKIC_{C}' Then C = (xx )C =
-1 7
(xC)(x C)=CP =, a contradiction.
-1
Case 3. xe o and y € B for some o, P € PKIC_[C}' So C=(xx )C=(xC)

- B
x'C)=0p. Thus 0= =C, a contradiction. Therefore P AP = {1).
(3) Let x e K.

Case 1. L +x ¢ C. Then (1+x)C=C+xCEPKIC. Thus 1+x e Jo -
K~

since 1+x¢gC :
Case 2, 1+x€C. Then 1 +x € P..
Hence 1 +x € P for all x € K.
(4) Let x,ye P and a,be K be such that a+b=1. So we have
that aC + bC =C.
Case 1, x,y e P, so done.

Case 2. x,yeP. and ye B for some P € PKIC_{C}‘ Thus y E&jp.“‘ o
KIC-

so by assumption ax + by € K - C, Since aC +bC = C and a’Ber,v
c

(ax + by)C = (aC)a + (C)P € Py, Therefore (ax + by)C e PK’C-—{C}, $0

ax+bye Ua .
aEPKIC'fC]
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Case 3. xea and y e P for some O.,BEPKIC—{C}._Then x,ye Ua

Q.EPK ﬂ:.

o 0 Gx+bya+ by) =[aa+b) Jx+[ba+b) Jye K- C and a+by=

fba+b) ly +aa+b) e K-C. If ax+by € C then C = (ax + by)C =
[(ax + by)a + by) ]C(a + by)C. Since [(ax + by)(a + by) IC and
(a+by)CeP & {(ax + by)(a+by)'I]C =(a+by)C=C. So a+byeC,

a contradiction. Thus ax + by ¢ C. Hence ax + by € EPO“ o % P is an
[+2 K,'C-

a-convex subset of K. By Theorem 2.11., P is the positive cone of K.
Let < be a positive compatible partial order induced by P.

Next, to show that < is the restriction of < on C let x,yeC
be .such that x S'y in C. Then yx'l € P. Since yx-l € C, yx-l € P.. Thus
y 2 Xx. Hence < s the restriction of < on C.

Finally, to prove that TI(P) =P . let x € P.
c

Case 1. x € P.. Then x € C, H(x):xC=CEle.
) c

Case 2, x e P for some P e PK!C_{C]' So IM(x)=xC=P € Pxfc_{C} CPKIC'

Therefore II(P) c P, n Let § € Py "

Case 1. $=C. Then II1) =C=§ e N(P) c TI(P).

Case 2. B#C. Then B e \wa .Choose x € f. Then II(x) =xC=
aEPKﬁ-{cj .

B e n(ggpgp_lq);n(m. Hence Py cTI(P), so T(B) =Py, .,
Definition 2.30. Let (K, | i € I} be a family of positive ordered

semifields. The direct product of a family {K, | i € I}, denoted by 1K,
defined as a direct product semifield with natural partial order <, that is

for every (X} ie1 () er € II;IIKi’

) ;e 1S(¥) s M x<y, for all iel
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Remark 2.31. Let {K, | ieI) be a family of positive ordered semifields.

Then PHKizl;IlPi where P, = {x € K| | x21] for all iel
i€l

Proposition 2.32. Let {K | ieI} be a family of positive ordered semifields

and C. a convex subgroup of K; for all i € I. Then FEIICi is

a convex subgroup of !;I]Ki and !-EIIKi/rIICi =o I;;II(KVC,)'
1€ i

Proof Let ¢ be an epimorphism as the proof of Proposition 1.53.,
To show thta ¢ is isotone, et (x); . p (¥): oy el.;llKi be such that

(%) ;c1 SG)ser Then <y, for all iel, xC<yC for all iel

Hence (P((Ki) ie [) = (xici) i I < (in.‘) el= (p((yl) - [)- Hence @ is iSOtOI'IC, .
(P c P . Next, let xC)._,eP .Then xC) . ., = () , _p
q)( li-EIlKi ) = El (Kﬂci) ( i 1) iel ,-I;Ij(xil'ci) i el iel

so x,C;2C, for all i €. Thus there exist ¢, d, € C; such that xc; 2 d,

-1 -1
for all iel Thus (xc)d, € P, for all I, so {((xc)d, ), _,€P Then

K,

iet !

OUEM, ) ;o) = ([Exe)d; 1C) ;o1 = (XC) 1 € OPpy ) ence

icf !

P < OP ). Therefore @ is an order epimorphism.
N &) ITK,
‘El(K‘ICj ier !

Clearly ker ¢ = !;_I]Ci, by Theorem 2.20., !;I]Ki /% i =o !;Il (K,-jci). 4

Proposition 2.33. Let D be a partially ordered semiring. I (D,.) is a
group then D can be embedded into a positive ordered semifield iff for
every x,y €D, x=x+y.

Proof Obviously. ¢
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