PRELIMINARIES

In this chapter we shall give some notations, definitions and
theorems used in this thesis, Our notations are :

Z is the set of all integers,

Z is the set of all positive integers,

+ +

Z,= Z U0},

+ - . . -
Q is the set of all positive rational numbers,

-+

Q, = Q w (0},

R is the set of all positive real numbers and

+

R, = R U {0}.

In this thesis, if we do not give the definitions of a binary
operations or order on any subset of IR; then we shall mean the usual
. binary operations and order on it

As usual one may write y2x for x<y and x<y or y>x to

mean that X <yand x=y. If neither x <y nor y<x then x and y are

said 10 be incomparable and' this is denoted by x| ]y.

Definition 1.1. Let (P, <) be a partially ordered set. P is said to be
complete iff every subset of P which has a lower bound has an infimum.

In [5], p. 5 it was shown that a partially ordered set is complete iff

every subset of P which has an npper bound has a supremum.



Definition 1.2. Let (P, <) 'be a partially ordered set, P is a lower
[upper] semilattice iff inf {x, y} [sup (x, y}] exists for all x,y € P and
denoted by x Ay [x vyl. P is said to be a lattice iff P is both a lower

and upper semiiattice.

Definition 1.3. Let (P, <) be a partially ordered set. A nonempty subset
S of P is called dense in P iff for every x,y € P, x <y implies that

there exists z € S such that x <z <y.

Definition 1.4, Let (S, +) be a semigroup. S is said to be a band iff for

every X € S, x+Xx=xX.

Let (L, <) be an upper [lower] semilattice. Define a binary operation
+, On L by x+$y=xvy[xr\y] for all x,y € L. Then we have that
(L,+ S) is a commutative band, |

Let (L ,+) be a commutative band. Define a binary operation <, on L
by x<,y iff x+y=y for allx,y € L. Then we have that

(L.<) is an upper semilattice such that x vy=x+y for all x,y € L.

Proposition 1.5. Let L be a nonempty set. Let &7 be the set of all
semilattice structure on L and of the set of all commutative band structures

on L. Then there exists a bijection between & and oF

Proof Define ¢ : ¢/ by o((L,+)=(L,<) for all (L +)e o
and define W : &F—of by WL, <) =(@L,+,) for all L. e d
To show that Yo =1dy and ¢V =1ds, let (L, +) € &F. Thén
Woo (L. +) =L, N =L, ,<)=(,+c ) Let x,y eL.



Therefore x + =Xvy=x+y.So + +=+,hence‘-Po(p=ld0¢. Next, let

<.V <
(L,$)e . Then @o¥(L,9)=0WL, D=0+ =L,%, ).
Let x,y €L be such that x < __y. Then X+ . y=Yy. Since X+t . y=xvy,

xvy=y. So x<Yy, hence <, _c<. Similarly, < C <, hence <=x__. Thus

Qo' =1dy. Therefore ¥ is a bijection. 4

Definition 1.6, Let L be a nonempty set and A, v be binary operations on
L such that

1) (L,A) and (L,v) are commutative bands and

ii) for every X,y €L, x vxAay)=x and xA(xvy)=Xx

Then (L, A, Vv)is called a lattice algebra,

Let (L,A,v) be a lattice algebra. Define <., on L by

xSy ff xAy=x for all x,y € L. Then we have that
(L, <.,) is a partially ordered set.

Note that for every x,y € L, we define x <, y iff xAy=xis
equivalent to x vy=y.

Next to show that (L, <., s latlice, claam that' inf{x,y}) =xAy
and supi{x,y}=xvy for all x,y € L. Let i,y € L, clear that x Ay <, X
and x Ay <, y. Thus x Ay is a lower bound of x and y. Let we L
be such that w<,,x andw<,,y. Then wax=w and wAy=w, |
Therefore
WARXAY)SWAX)AYy=WAY=W, 50 WSX,, XA Y Thus inf{x,y} =x A y.

Similarly, sup{x,y}=xvy for allx,y € L. |

Let (L, <) be a lattice. Then we have that (L, Ac, v<) is a lattice

algebra where X Aqy = inf(X,y) and x v¢y=sup{x,y] for all x,y € L.



Proposition 1.7. Let L be a nonempty set. Let & be the set of all lattice
algebra structures on L and & the set of all lattice structures on L. Then

there exists a bijection between & and &

Proof Define ¢ : £ & by (L ,<) =(L, Ac, V) for all
(L,<)e & and define ¥: > ZLby Y(L,A,v)=(L,<,) for al
(L.A,v) e To show that Yo =1ldg and @o¥ =Idg let(L,<) e &Z.
Then Woo (L, ) =¥ (@ (L, ) =YL, Acs ) = L, Snevg)-

To show that <-<, . let x,y € L. Assume that X Sacvg Y Iff
XAsY=X, s0XAYy=x Then x<y,50 S CS Similarly,s_c_s.,\svs,
hence Yo @ = Idg. Next, let (L, A,Vv) e &. Then QoL ,A, V)=
oL, A, v) =0(L, <., D=L, ,nc,, V<, ) To show that v= V€
and A=nAg, .let X,y el.Then xAc  y=inf(x,y}=xAy and xvg vy

=sup{x,y} =x vy. Hence @o¥ =1Idgy. Therefore ¥ is a bijection. 4

Definition 1.8, Let L be a lattice: algebra. L is said to be a distributive
lattice algebra iff for every x,y,zel, Xv(yAZ) =(xVvyY)AXVI).

Remark 1.9. Let L be a lattice algebra. Then L is a distributive lattice

algebra iff for every x,y,Zz€e L, XA(YVZ=XAY)V(XAZ.

Proof Assume that L is lattice distributive algebra. Let x,y,z € L.
Then (xx\y)v(x.«z):[(x.«y)_vx];x[(x/\y)vz]
=XA[(xvz)Aa(yvazl
=[xAEXVIDIA(YyVZ)
=xa(yvz).

The proof of the converse is similar, 4
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Definition_1.10. Let L be a lamice. L 1s said to be a distributive lattice

iff for every X,y,z€L, xv(yanz)=x vy n(xvaz).

Corollaryi.11. Let Lbe a nonempty set. Let oY be the set of all
distributive lattice algebra L and 9 be the set of all distributive lattice

structures on L. Then there exists a bijection between < and 9B,

Proof Similar to the proof of Proposiion 1.7.. M

Definition 1.12. 1et (P, <) be a partially ordered set. P is a totally
ordered set if for every x,y.€ P, x<y or y<x,

Definition 1.13. Let (P, <) and (P, <) be partially ordered sets.

A function f:P— P is said to be isotone iff x <y implies f(x)slf(y)
for all x,yeP, f is.said to be an_order isomorphism iff f is bijection
and both f and f are isotone. In this case, Pand P are called order

Definition. 1.14. Let P and P be lattices and f: P —>P is said to be a

lattice homomorphism iff for every x,y € P, f(x v y) = f(x) v f(y) and
fix A y) =5(x) A f(y).

Remark 1.15. Let P and P be lattices and f: P — P. Then the following
statements clearly hold :
(1) if f is a lattice homomorphism then f is isotone

(2) if f is an order isomorphism then f is a lattice homomorphism.



Definition 1.16. A subset C of P is said to be ordered convex_ subset iff
for every x,y € C and z € P the inequalities x Sz<y imply z e C.
From now on we shall call an ordered convex subset an o-convex

subset,
Example 1.17. (1) Let P be a partially ordered set, x € P. {x} is an
o~convex subset of P,

(2) Every interval of R is an o-convex subset of R.

3 Ih RxR, {(x ,y)]x2+y2$4] is an o-convex subset
of RxR where (x,¥)S(z,w) iffi x<z and y<w for all x,y,z, we R.

Remark .18, (1) The intersection of a family of o-convex subsets of a
partially oredered set is o-convex. Also the union of an increasing chain of
o-convex subsets is o-convex.

2 If f:P>P is amn isotone map and c an o-comvex

subset of P. Then f'l(C') is an o-convex subset of P.

Praof 1) Clearly.
2) Let C be an o-convex subset of P. Let x,y e f (C) and
z€P be such that x <z<y. Since f jis isotone, f(x) < f(z) < f(y). Since
f(x), f(y) € C' and C' is o-convex, f(z) € C. Therefore z & f (C). .

Definition 1.19. = A triple (R, +,.) is a semiring iff
(1) (R,.) is a semigroup,
(2) (R, +) is a commutative semigroup and

(3) for every x,y,z€R, x(y+2z)=xy +xz and (y + Z)X = yX + ZX.



Definition_1.20. Let (R, +,.) be a commutative semiring with multiplicative
zero (. R is said to be a O-semifield iff (R., .) is a group and, x +0=x
for all x € K. A subset H of (-semifield K is called a subsemifield of K
iff H is an O-semifield under the same operations. And a subset S of K.

is said to be conic iff SAS = {1},

Remark 1.21. The intersection of a family subsemifields of a (-semifield is
a subsemifield. Hence the intersection of all subsemifields is the smallest

subsemifield of a semifield and will be called the prime semifield.

Proposition 1.22. (J4]) Let K be a O-semifield. If there is x € K such that
x has an additive inverse. Then every element in K has an additive

inverse and hence K is a field,

Proposition 1.23. ([4]) If K is a O-semifield then the prime semifield of K
is either isomorphic to Q:, or Z, where p ts a prime number or the

semifield (0, 1} with 1 +1=1.

In our thesis, we shall study only ' O-semifields which are not

fields. So from now on we shall use the word semifield for (-semifields.

Example 1.24. (1) Q,, R, are semifields.

(2) Let G be a lattice abelian group with zero 0. Then we
can define a binaty operation+on Gby x+y=xvy and'x+0=0+x=x
for all x,y € G. Then G w {0} is a semifield. |

(3) Let K={2'|neZ) U {0}. then K is a semifield with usual

max{n, m)

multiplication and ) for all m,n e Z



Definition . 1.25. Let S be a semiring with multiplicative zero 0. Then S is
said to be muitiplicatively cancellative (M.C.) iff for every x,y,z € S,
Xy =xz implies that x=0 or y=z And S is said to be additively
cancellative (A.C.) iff for every x,y,z€ S, x+y =x+ 2 implies that y =z

Theorem 1.26. ([4])) Let S be a commutative semiring with multiplicative
zero 0. Then S can be embedded into a semifield iff S is multiplicatively

cancellative.

We shall now give the construction of semifield of quotients of
seruring S which appears in [4], pp. 27-28.

Assume that S is having M.C. the property. Define a relation ~ on
S x(S-{0}) by
(X, ¥)~(z,w) iff xw=1zy for all (x,y),(z,w) € Sx (S ~{0]). It is easy
to show that ~ is an equivalence relation.

Let o, B €S x(S—{0}), . Define + and . on S x (8§ —{0})/_as
follow : Choose (x ,y) € a, (z,w) € B define

oa+fp= [(xw+yz,yw)] and
B = [z ywl
In [4], it was shown that (8§ x (S —{0});_,+,.) is the semifield of

quotients of S,

Proposition  1.27. ([4]) Let S a commutative semiring with multiplicative zero
0 having M.C. of order > 1. Then S x (S —{0]);_ is the smallest semifield

containing S up to isomorphism.



Examples_1.28. (1) Z+0 i$ a commutative semiring with multiplicative zero
which is M.C.. 7

(2) Let S= Z xZ U{(0,0)}. Then S with the usual
additon and multiplication are a commutative semiring with muitiplicative

zero which is M.C..

(3) Let ZJV21={a+b¥2 |abeZy). Then Zyv2] is a
commutative semiring with muitiplicative zero which is M.C..

(4) Let S be a commutative semiring with multiplicative
zero which 1s AC. and M.C.. Let S[x] = {(a")nez.,.} a €8S for all ne z
and a, # 0 for only fulit;:ly 1:nany n}. Define + and . on S[x] as follows :
for (a,) , ¢ z» () , ¢ 2+ € SIx] define
@) nert O)pezr= (@ +b), <z and
@) ez Gpez= (2 o) ez

Then we have that Sfx] i& a commutative semiring with

multiplicative zero which 1s M.C..

Definition1.29. Let K be a semifield. A subset C of K is called an

algebraically convex subset of K 1iff for every X,y € Cand a, b € K such
that a+b=1, ax +by € C.

From now on we shall call algebraically convex subsets a-convex

subsets,

Remarkl.30. (1) The intersection of a family of a-convex subsets of
semifield is a-convex. And umion of the increasing chain of a-convex sets

iS an a-convex.
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(2) Let C be an a-convex subset of a semifield K. For every
n € Z+, a;, &,,...,, 2, €K, x,, X5,... , X, €C and il a =1, il ax;, € C,
1= 1=

(3) Let C be a subset of a semifield K, the smallest an

a-convex subset of K containing C is {il ax Ine zZ', a, €K, x,€eC and
=

a=1 for all ie{l,2,..,n}].
1= -

Proof To prove (3), let B = {ilaixi IneZ’, a ek, x.€C and
1=

i]ai=l for all i e€{},2,..,n}}. To show that B is an a-convex subset
1=

of K containing C, let il Bx, , il by,€ B and a,b € K be such that
= 1=

a+b=1.So a(ilaixi) + b(i}biyi) = il(aaixi + bb,y,) €B since i}(aai +bb,) =
1= = 1= 1=

1. Clearly C is contained in B, so B is an a-convex subset of K which

containing C,

Let D be an a-convex subset of K containing C. To show that B c D,

let ]2] ax; € B. Assume that a,, a,,..., 4, are nonzero. Since X, X,,... ; X, €C ¢ D,

X;» X3 » X, € D. By the a-convexity of D, gaixi € D. 4
1

Definition1.31. A subset C of a semifield K is called an a-convex
subgroup of K iff C is a mutiplicative subgroup of K and it is an

a-convex subset of K.



Remark 1.32. Let K be a semifield.

(1) {1} and K‘ are trivial a-convex subgroups of K.

(2) The intersection of a family of a-convex subgroupsl of K is an
a-convex subgroup of K, Also the union of an increasing chain of aconvex

subgroups is an a-convex subgroup of K.

Proposition 1.33. Let K be a semifield and C a multiplicative subgroup of
K. Then the following statements are equivalent :
(1) C is aconvex. ‘
(2) for every x,y € C and a e K, (x +a)(y + a)-] e C.
(3) for every X € C and a,be K such that a+b=1, ax+be C.
(4) for every x,y e Cand a,b € Ksuch that a+b eC,ax +by €C.
(5) for every xe€C and a,be K such that a+be C, ax +b € C.

Proof (1) >(2) Let x,y € C and a € K. Then xy'1 e C. By (1),
(x+a)y+a) =y(y+ a) (xy ) +a(y +a) eC.

(2) >(1) Let x,ye C and a,b € K be such that a+b=1. If
a=0then b=1. So ax + by =y € C. Suppose that a= 0. Thus (ax+by)y'1
= (ax + by)ay + by) =[x + (by)a Hy.+ (by)a ] € C. Therefore ax + by € C.

'(3)_--)(1) Let x,ye C and a,beK be such that a+b=1.
Since x,y € C, xy-le C. By (3), (ax + by)y'1 = a(xy-l) + b € C. Therefore
ax + by € C.

(1) > (@) Let x,yeC and a,b e K be such that a+be C.
By (1), (ax +by)a+b) =[a(a+b) Ix+b@a+b)'y e C. Since a+beC,
ax + by € C.

(5) > (@) Let x,yeC and a,be K be such that a+b e C.
Then xy €C. By (5), (ax + by)y-l =(ax)y +be C. Hence ax + by € C.



The remaining cases are clearly seen to be true. 4

Proposition 1.34. 1et A and B be a-convex subgroups of a semifield K.

Then AB is an a-convex subgroup of K.

Proof Clearly, AB is a multiplicative subgroup of K. Let x € A,
ye€B and a,be K be such that a+b = 1. Since A is a-convex, ax +b € A,
Since B is a-convex, (axy + b)(ax + b)-1 = fax(ax + b)-l]y + fb(ax + b)-l] € B.
Thus a(xy) + b = (ax + b)[(axy + b)(ax + b) ] € AB. Hence AB is an

a-convex subgroup of K. p

Notation Let K be a semifield and Sc K. Let (S) be the multiplicative

subsemigroup of K pgenerated by S and <S >, is the a-convex subgroup of

K generated by S. Therefore <§ >, = {(f;aixi )(ilbjyj)-l 1 m,ne€ Z al, bje
1= J=

K, x,y,€(8) and i'lai = ilbj=1 for all i € {1, 2, .., m} and
1= =

je L 2, .,n}}

To prove this, let B = { (i.llalxl )(ilbjyj)-I | m,n € Z+, a, bj e K,
1= ‘|=

y;€ (S) and iai=)flbj=1form15e (1,2, .., m)andj € {1,2,..n}}.
1= =

Let (ga'xi )(ilbiyi )-l s (f C.Z. )(f d.w. )-I € B. Then
== = KRR = _
(Ii;laixj )(li;‘bi}’i Yﬂ[(}g;cjlj )(12:1 dw; )‘1]‘l = (li;l Ji;]laidjxiwj)(?jlf blcjy z) € B.

Let a,be K be such that a+b=1.

Then  a[(Q ax, )(iilbiyi Yy b ez ) dw: )]
. 1= 1= J—l 3 j=1 1]
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-1
= [a(!z;l ax;) (ngldjwj ) + b(-'i;ll ¢y )(12] by; )](gg;bjdjyiwj )
= )flil aadxw + }flil bb.c.y.z.](ﬁ‘}fl bdyw. ) eB. Clearly, S CB.
55 = SRR S =) B = i = B

Therefore B is an a-convex subgroup of K containing S. Let D be an

a-convex subgroup containing S. Let (le‘aixi)(zlj‘biyi)-l € B. Then x,y, € (S)
1= 1=

for all ie{l,2,..,n}. So x,y, € D for all i. Since D is a-convex,

i‘qxi, i‘biyi € D. Hence (i‘qxi )(iibiyi )'1 € D since D is a subgroup.
1= = 1= 1=

So B €D, hence B=<S>n.#

Definition 1.35. Let K and M be semifields. A function f: K =M is
called a homomorphism of-K into M iff for every x,y € K

(1) f(x) =0 if and only if x =0,

(2) f(x +y) =1f(x) -+ f(x) and

(3) fixy) = f(x)(y).

And the kemel of f is the set {x e K| f(x) = 1}, which is
denoted by kerf,

A homomorphism f: K -—M is called a mopomorphism iff f is
injective, an epimorphism if f is onto and an isomorphism if f is bijection.
K and M ‘are said to be isomorphic. if there exists an isomorphism of K
onto M and we denote this by K =M. Note that if f: K -M is an

-1
isomorphism then f is also an isomorphism.

Remark 1.36. Let f: K —+M be a homomorphism of semifields. Then the
following statements hold :

(1) £x7) = (fx)) for all x € K .



(2) kerf is an a-convex subgroup of K.

(3) If C is an a-convex subgroup of M then f.l(Cl) is an
a-convex subgroup of K containing ker f.

4) i f is onto and C an aconvex subgroup of K then f(C) is

an a-convex subgroup of M.

Proof (1) Obviously,

(2) Clear that ker f is a multiplicative subgroup of K.
let x e kerf and a,b € K be such that a +b € ker f. Then f(x) =1 and
f(a) + f(b) = f(a + b) = 1, so f(ax + b) = f(a)f(x) + f(b) = f(a) + f(b) = 1. Hence
ax +b € ker f Therefore ker f is an a-convex subgroup of K.

() Cleady, £ (C) is a multiplicative subgroup of K
containing ker f. Let x e f (C) and a,b € K be such that a+b e f (C).
Then f(x) € C and f(a) + f(b) = f(a + b) € ol By the a-convexity of C’,
f(ax + b) = f(@)f(x) + f(b) e C. So ax +b e f (C), hence f (C) is an
a-convex subgroup of K.

(4) Let C be an aconvex subgroup of K. Clearly f(C) is a
multiplicative subgroup of M. Let x € f(C) and al, b €K be such that
a +b =1, Then thereis ¢ e C such that f(c) = x. Since f 1s onto, f(a) = a
and f(b) = b for some a,b € K. Then f(a + b) = f(a) + f(b) = a+b=1
Since C is a-convex, (ac + b)(a + b)-l = [a(a + b)-ljc + b(a + b)-1 € C. Hence
ficac + b)a + b) ] = [f(ac + D)[f(a + )] = f(a)f(c) + f(b) = ax + b € £(C).

Therefore f(C) is an a-convex subgroup of M. "

We shall give some examples of an a-convex subgroups of semifield.



16

Examplel.37. Let R xIRu {(0,0)} be a semifield. Define f: RxR v

+

-+ +
{(0,0)] >R, by f((x,y)=x for all (x,y)e RxR v ((0,0)}. It is easy
+
to show that f is a homomorphism and kerf = {(1, X) [ x € R}.
By Remark 1.36.(2), {(1,x) | x € R} is an a-convex subgroup of

Rx RU {(0. 0)].

Proposition_1.38. Let f: K -+ M be an epimorphism of semifields. Let & be
the set of all a-convex subgroﬁps of K containing ker f and %' the set
of all aconvex subgroups of M. Then there exists an order isomorphism

from & onto %

Proof Define ¢ : N by (p(C’)=f'l(C/) for all C € ¥ and
define W(C) =f(C) for all C € % To show that ¢ o¥ =Idy and Yoo =
ldg', let C € B Then @ oFC) = ¢(P(C)) = O(C)) = £ ((C)). Clearly,

C o f(KC)). Let x e £ (F(C)). Then f(x) e f(C), so f(x) =f(c) for some
c € C. Then f(xc’l) = f(x)f(c)-1 =1. So xc-le ker f. Since kerf c C, xc'] e C.
Hence x € C. Thus f (f(C)) = C, so f (f(C)) = C. Therefore @ oW = Idgs

Next, let C € .. Then ¥ o (C) = V(@(C)) = ¥(f (C)) = f (C)).

Since f is onto, f(f.l(C’ ))=CI. Thus ‘Poq):Idg:’. Hence ¢ is a bijection.

Clearly ¢ and ¥ are isotone. Therefore ¢ is an order isomorphism. #

Definition 1.39. Let K be a semifield and p an equivalence relation on K.
p is called a congruence on K if for any x,y,z € K,

(1) xp 0 if and only if x =0,

(2) x py implies that (xz) p(yz) and

(3) x py implies that (x +z) p (y + 2).



Remark 1.40. (1) The intersection of a family of congruences on semifield

K is a congruence on K.

-1 - -
(2) x py implies x pyl for all x,y e K.

Let K be a semifield and p a congruence on K. Let K/p be the

set of all equivalence classes of K with respect to p.
We shall show that (1 Ip={xekK { xpl] is an a-convex subgroup

of K.

Let x,y € [l]p. Then xpl and y p 1. Thus (xy) py, so (xy)p L.
Hence xy € [l]p. Since x p1, x #0. Then xx-l px'l, SO x-l € [l]p_Hence
[1 ]p is a multiplicative subgroup. Next, let a,b € K be such that
a+b=1Sincexpland ypl,(ax) pa and (by) p b, so {ax + by) p (a + by)
and (by +a) p(a+b). Hence (ax +by) p(a+b),so (ax +by) p=1.
Therefore [1]5 is an a-convex subgroup of K.

Let C be an a-convex subgroup of a semifield K. Define a relation
pcon K by x p.y iff xy-]eC or x=y=0 for all x,y € K.
Then we have that p. is a congruence on K and denoted Ix}p, = xC.

Let K/pC be the set of all equivalence classes of K with repect to

Pe» we shall use the notation K~ instead of K/p,. -
Define + and . on K/~ as follows : for xC,yC e Kic

xC+yC = x+y)C and xC.yC = (xy)C.

To prove that + and . are well-defined, let xC, yC € K/C‘ Choose

a € xC and b € yC, Then xa € C or x=a=0 and yb-1 eCor y=b=0
If x=a=0 then ab=xy=0. Thus (ab)C =(xy)C and (a+b)C =bC=yC=
(x + y)C. This prove is similar for y =b =0 then done. Suppose thata, b #0.
Then xa-x, yb-l € C. Then (Jlty)(ab).l € C, 50 (xy)C = (ab)C. So . is well-defined.



Since C is a-convex, (x +y)(a+b) = [a(a +b) J(xa") + [bla + b) I(yb") € C,
s0 (x +y)C =(a+ b)C. Therefore + is well-defined.

Then we have that (K/C ,+,.) 18 a semifield.

Proposition 1.4]. Let K be a semificld. Let o¥ be the set of all congruence
structures on K and 3B the set of all a-convex subgroups of K. Then

there exists an order isomorphism form <Y onto 3.

Proof Define ¢ : c— @ by O(p) =[1lp for all pe ¥ and define
¥: B> e by WC)=p,for allCe B. To show that ¢ ,¥ = Idg and
Yo@=1du, let p*e & Then W.@(p*) = F(pp *) =¥(1lp") = Plilye-
Let x,y e K be such that x p[”p, y. Then Jl{y-1 e[l]pr or x=y=0.
| If x=y=0 then xp*y. If xy-l € [1]p* then xy.1 p* I. Hence x p*y.
Therefore p“]p_g p*. Similarly, p* c p“]p_‘ Thus p[Hp,= p*.

Let C e 3. Then ¢ .'*¥(C) =(p(‘P(C))=(p(pC)=[1]pC. Let x € [l]pc. Then
X pcl, so x € C. Hence [l]pcg C. If xeC then xp. L. So x e[l]pc.
Thus C ¢ [1]pc, so C= [l]pc. Therefore @ is a bijection. Clearly ¢ and

‘Y are isotone, hence ¢ is an order isomorphism from ¢ onto 3. 4

Corollary 1.42. Let K be a semifield and C an a-convex subgroup of K.
Let o be the set of all aconvex subgroups of K/~ except {C} and B

the set of all a-convex subgroups of K that strictly contain C. Then there

exists an order isomorphism form <% onto 9.

Proof Note that for every @e o, L is an a-convex subgroup of

K which is strictly containing C. To prove this, let x,y € ;{g. Then there



exist o, 8 € @ such that x e a and y € B. Then xy € aff € &
' -1 -1
Since o € @, there is an o € ‘@ such that ao =C. Since 1 € C,
-1 -1
1=uv for some ue a and v e a . By the definition of &, ux € C.
-1 -1 i -1
— v = = o o
Therefore 1 =uv =(uvx )X, and (ux )ve vC=qQ gyﬂ. Thus x ey-@.
Let a,be K be such that a+b=1, Then aC + bC =(a + b)C = C. Hence

(ax + by)C = (aC)xC) + (bCYyC) = (aC)a + (PC)P € &, so ax + by € ;;Jag.
Since @ # {C}, there exists an o € ‘D~ {C]. Choose x € .. Hence x ¢ C.
Thus gg is an a-convex subgroup of K which is a strictly containing C.
Define ¢ : c— & by ¢(D) =X for all D e ¥ and define
VY: B > o by ¥D)=]ID) for all D € 3 where [] is the projection
map of K onto K/~. To show that ¢,V =Idgand W.@=1d,, let
De &, Then ¥ ,0(D) = Y(p(D)) =¥(Z3) = I o). Let o € @-Choose
xea [Ix)=xC=ae H(gé'g). Let e H(&J.Eg). There exists X € £
such that [](x) =p. Since x € Sé.g. X € a, for some o, € @. Then
o, =xC={Ix)=p € &
Next, let D e &B. Then ¢ .¥(D) = (¥(D)) = ¢([ID)) = L J1X),
Let d e D. Since d € dC=TI(d), d e ‘LI, Let x € Y100, There
exists d, € D such that x € [Id) = d,C. So x €d,C, xd, € C = D. Since
d e D, x € D. Therefore @ is bijection. Clearly @ and ¥ are isotone,

hence ¢ is an order isomorphism from <% onto 9B, 4

Proposition 1.43. Let f: K - M be a homomorphism of semifields. Define
pr on K by xpry if and only if f(x) =f(y) for all x,y € K. Then there

exists a unique monomorphism f: K/pf—> M such that foll=f and
moreover if f is onto then f is an isomorphism, that is K/pf =M where

IT is the projection map of K onto K/p,-'



Proof Clearly, pg is a congruence on K. Define f£: K/pf—-;M by
f.([x]p') =f(x) for all x € K, Then we have that f. is a monomorphism,
Let x & K. Then fell(x) = £ (T1(0) =f (], ) = f(x). Hence foll=f.
Suppose that g : K/pf—>M is a monomorphism such that geIl =f.
Let [x], €Ky, Then g(ixl,, ) =geTI(x) = fx) = foll(x) = f'([x]pf ).
Therefore g =f*, M

Propositonn 1.44. Let K be a semifield and C K. Then C is an

a-convex subgroup of K iff C is a kemel of some epimorphism.

Proof Assume that C is an a-convex subgroup of K. Define
I1: K - Ky~ by [1(x) =xC for all x € K. Then TI is an epimorphism and

ker [1=C.

The converse follows from Remark 1.36. (2). ¥

)

From Proposition 1.44, a map Il: K — K/~ iscalled the canonical

projection of K onto Kje-.

Theorem_1.45. (First Isomorphism Theorem)
Let f: K —> M be a homomorphism of semifields.
Then Kp. ¢ =Imf. Hence if f is onto then Kjp. ¢ =M.

Proof Clearly, by Remark 1.36. (2) ker f is an a-convex subgroup
of K. Define @:Kjyo.s—>Imf as follows: let o € Ky ¢ choose x €

define @(a) = f(x). To show that ¢ is weli-defined, let x,y € K be such



that xker f = ykerf. Then xy'] € ker f, so f(xy-]) = 1. Thus @(xker f) = f(x) =
f(y) = @(ykerf). Hence ¢ is well-defined. And @(0) = f(0) = 0.
Clearly, ¢ is a homomorphism and bijection.

Hence Kfi. ¢ =Imf. 4

Lemma 1.46. Let H be a subsemifield of a semifield K and C an a-convex
subgroup of K. Then HN C is an a-convex subgroup of H. And HC is a
subsemifield of K.

Proof Clearly, HNC is a rﬁultiplicative subgroup of H.

Letxe HNCand a,b e H be such that a +b e H. Since H is of K
subsemifield and x,a,b e H, ax +b e H, Since C is a-convex subgroup,
ax+b e C. Hence ax + b e Hn C . Therefore HNC is an a-convex
subgroup of H.

To show that HC is a subsemifield of K. HC # @ since 0 =01 for
OeH and 1eC. Let x,y € (HC)‘. Then x =h,c, and y =h,c, for some
h, h, e H- and c,, ¢, € C, Thus xy-1 = (hlcl)(hzcz)-1 = (hlhﬁ-l)(clczhl) € HC‘.
Since C is a-convex, [h (h,+ hi)-]]c1 + [hy(h, + hj).l]c2 €C. Thus x+y=
hic, + hyc,= (8, + h)l(h,c, + hc)(h, +hy) } € HC.

Therefore HC is a subsemifield of K. 3

Theorem 1.47, (Second Isomorphism Theorem)
Let H be a subsemifield of a semifield K and C an a-convex

subgroup of K. Then H/H r\CEHC/C‘

Proof Define ¢ : H - HCjo by ¢(x) =xC for all x € H. Then ¢

is an epimorphism. For each x € ker @, xC=¢(x)=C, sox € C.
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Then x e HNC, so ker@ c HN C. Clearly, H N C cker ¢, hence ker ¢ =

HAC. By Theorem 1.45., Hyy mCEHC/C' 4

Lemma_t.48, Let D and H be a-convex subgroups of a semifield K such

that Hc D. Ther Dpyy is an a-convex subgroup of Kpy.

Proof Clearly, Dpy is a multiplicative subgroup of Kpy. To show
that D/H is a-convex, let xH e DfH and aH, bH « KIH be such that

aH + bH = H. Choose h,, h, €H such that ah,+ bh,= 1.

Since D is an a-convex subgroup of K, (ah)x + bh, € D. So (aH)(xH) + (bH)
= (ah)H(xH) + (bh)H = (ah x + bh)H € D/H' Therefore DfH is an a-convex
subgroup of Kpy. #

Theorem 1.49. (Third Isomeorphism Theorem)
Let K be a semifield, D and H a-convex subgroups of K such

that Hc D. Then (K/H) D )5 KfD'
M

Proof Define @:Kpgy — Kpy by ¢(xH) =xD for all x € K.

We have that ¢ is well-defined and epimorphism. Let xH € ker ¢. Then
xD =@(xH) =D, so x € D. Hence xH € DfH' Next, jet xH € D/H‘ Thus

x €D and 9o(xH)=xD =D, so xH € ker . Therefore ker ¢ = Dy

By Theorem 1.45., (K/H) /(DIH) = K/D' 4

Proposition 1.50. Let f: K —» M be an epimorphism of semifields. If C is

an a-convex subgroup of M then Ky' ) =M.
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Proof By Remark 1.36. (3), f-](Cf) is an a-convex subgroup of K.
Define ¢ : K » M/’ by 9(x)=f(x)C for all x € K. Then @ is an
epimorphism. Let x € Ker ¢. Then f(x)CI = @(x) = CI, so f(x) € C,.
Hence x € f.l(Cl), so ker ¢ C fhl(CI). Similarly, f'l(Cf) C ker . Therefore
AN 1 i
f C)= ker Q. By Theorem 1.45., K/f (C) ..—..Mlc. #

Definition 1.51. Let {K, | i € I} be a family of semifields. The direct
product of the family (K, | i€ 1}, denoted by TJK, is the set of all

elements (x),_, in the cartesian product of the family {K; | ie1} and

(0 where 0 =(0) together . with operations + and - defined as usual, that

iegl

is for any (%) ¢y, ) ic, €lIK;
X ;e17 O icr = (X +Y) .y and

X ier” Wi = Y icr
Then we have that !;l'Ki is a semifield.
Proposition 1.52. Let (K, | i € I} be a family of semifields. Then the
following statements hold :
(1) for each k €l, the canonical projection I, : };I’Kiﬁl(k given by
IL((x) ; ) = X, is an epimorphism of semifields,
(2) if I,+ 1, =1 for alliel then for each k €1 the canonical
injection 1 _: KkﬂEIIKi given by 1;(xk) = (x,)

e where x,=1 for 12k for

all x, € K'k and 1(0) =0, is a monomorphism of semifields.

Proof Obvious. M



Note that for every (X);.p (¥)iec1€ %Ki’ suppose that
IM(x) ;. p=T0(y);c, ) for all kel Then x;=y, for all 1€ I, hence

X)ie1= 0 ier

Proposition 1.53. Let {K, | i € I} be a family of semifields and L a
semifield. For each k € I, let ¢,: L — K_be a homomorphism of semifields.

Then there is a unique homomorphism ¢:L —» !;I]Ki such that I1°¢p =@,

for all k e L.

Proof Define ¢ :L — I;;IIKi by @) = (@x)},.,) for all x e L. We
shall show that ¢ is a homomorphism, @(0) = ((¢;0));.) =©0);., =0.
Let x,y €L. Then Q(x+ ) = (@ +7)),¢) = (@K + Q0N o) =
@) oD + @Y ) = 0K+ 0, OGY) = (XY ; 9 = @O ; )
= (X)) ;  YUP(Y) 1 ) = OX)P(y). Therefore ¢ is a homomorphism.

For each k e I, IL,°0(x) = [,(0() = (9,00 ; ¢ ) = ) for all
x € L. Hence Ilop =@, for all k € l. To prove uniqueness, suppose that
there is a homomorphism ‘¥ : L — [IK; such that T1°¥ = ¢, for all k €l
Let x € Land k € L So TL(¥(x)) = ¥ () = ¢,x) = [1,°9 (x) = [1,(¢(x))
which implies that ‘¥(x) = @(x). Therefore ¥ = ¢. v

Proposition 1.54. Let {K, i iel} be a family of semifields and let C, be

an a-convex subgroup of K, for all i € I. Then ll:EIlCi is an a-convex

subgroup of %Ki and %Ks /H,C- = !;_Il(l(ijc ).
H3 i

Proof Define ¢ :TIK, =1 Ky-)by 0((x) ;) =(xC) ;)

for all (x),_,€ %Ki‘ Then ¢ is an epimorphism.



To prove that ker ¢ =[IC, let (x); ., € ker .
Then (xC);;1=0(x) ;) =(C) cps0 xC=C for all i e I. Thus x,€ C
for all iel, so (x),.;€ EEI‘Ci. Therefore ker ¢ %Ci. It is clear that
ll.;IICig ker ¢. Hence !;’Fa = ker . By Remark 1.36 (2), we get that !'EIICi is

an a-convex subgroup of I1K, By Theorem 1.45., 1K/ c = %(KVC)° "
' i€l 1 i

Definition 1.55. Let L be a subsemifield of a direct product of family of
semifields {K,| i € I}. L is said to be a subdirect product of {K;|ie 1)
iff for every ke, II(L) =K, where Il_is the projection map.

Example 1.56. Let K be a semifield. Let L={(x,x) | x € K}. Then L is
a subdirect product of K x K U ((0,0)]

Definition 1.57. Let {Kili € I} be a family of semifields z:mdr L a semifield.
Let g:L > %Ki be a homomorphism g is said to be a representation of
L as a subdirect product of {Kil 1e€l} iff Img is a subdirect product of
{Kil iell.

Definition 1.58. Let K be a semifield. K is said$to be a subdirectly
imeducible iff for every family {K,| i€ I} of semifieids and for every
monomorphic - representation f : K —» [TK, ‘there exists 'k € I such that ITof
1s an isomorphism.

A semifield K is not subdirectly irreducible, we shall call K that a
Theorem 1.59. Let g:L > Ell'-l(.I be a representation of L as a subdirect

product of (K| i€ ). Then Img =Ly yerry g
4
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Proof Define @:L —Img by ¢(x)=g(x) for all x € L. Then
¢ is an epimorphism. To show that ker ¢ = nker [Log, let x e L be such
that @(x) =(1);.; So gx)=(1) . For exh k €}, HkOg(x) = 1,, then
X € ker [log Hence x € Nnker ILog. Thus ker ¢ < Nker [T0g.

Next, let x € nker [Log. Then ILeg(x)=1, for all k € I which
implies that g(x) =(1),.; Since @(x) =gx)=1, x € ker @.

Hence nker [1og  ker ¢. By Theorem 145, Img =L/ 1. Mog 4

Corollary 1.60. Let g:L— I1K; be a monomorphic representation of L as

a subdirect product of {Kil iel}. Then NnkerIlog= {1}, hence Img = L.

Proof To show that M ker I1og ={1], let x € Nnker [1,og. Then
[leg (x) =1, for all k €l. This implies that g(x) =(1,),., Since g is

monomorphism, x = 1. Therefore N ker Ilog = {1}. M

E[ngs]ngn_LﬁL Let L be a semifield and %= {C, | C, is an a-convex
subgroup of L ,for all i e I}. Define fg:L —II(Ljc) by fe)=GC);

for all x € L. Then fg is a representation of L as a subdirect product of

{L/Ci | i € 1}. Furthermore, if AC;= (1) then feg is a monomorphic

representation of L.

Proof Clearly, fg is a homomorphism of L. To show that Im fg is
subdirect product, let k € I and x € L. [1ofg(x) = [1 (fe(x)) = IT((xC) ; )
=xC_ € L/Ck' Thus I (Im f&) C L/Ck. Let x € L. Then xC, € L/Ck. Then

fe(x) € B(L/C.) and Tl (fe(x)) = xC, € [L(Im fg). Hence L/Cx c IL(Im fe).



Therefore [ ofe (L) = [1,(Im fg) =L/C1<' Hence fg is a representation of L
as a subdirect product of “‘/C.l iell.
Next, assume that %Ci:‘{l}' To prove that fe -is 1-1, let x € L be

such that fg(x) =(C) ;. Then (xC), ¢ =(C); .y, so x e C for all iel

By assumption, x = 1. Hence fg is 1—1.#

Proposition 1.62. Let K be a semifield and % the set of all a-convex
subgroups of K except {1}. Then K is subdireclly irreducible iff % has a

minimum element.

Proof Assume that K is a subdirecily irreducible. Suppose that € has
no minimun element. Then N %= {1]. By Proposition 1.61., we have that
fo: K”Eq(K/C) defined by fg(x)=(xC).ce which is a monomorphic

representation of L as a subdirect product of (K- | C e E. By

assumption, there exists a C,& % such that rlcoofq;,? is an isomorphism of
L. Claim that C = {1}. Let x € C,. Then Hcoofg»(x)——-_l'lco(f%(x))=
nco((xc)ce%’ ) =xC,. Since x €C,, x € ker Hcoofg. Since Hcoofg? is an
isomorphism, x = 1. So we have the claim. It is a contradiction, since
{11=C, ¢ %, Therefore & has a minimum element.

Conversely, assume that € has a2 minimum element say C .
Let {K;|iel) be a family of semifields and ‘f : K =] K; a monomorphic
representation of K as a subdirect product of (K, lie I[}. Then by Remark
1.36 (2), we have that { ker [Lof | iel} is a set of a-convex subgroups

of K. Since f is a monomorphism, 0, ker ITof = {1}. Suppose that fori el,

ker [Tof # {1]. Then {ker Ilof [iel) < ¢ Therefore C_c Qlker Ilof =

m —




{1}. So C_= {1}, a contradiction. Therefore there exists k € 1 such that
ker IT,of = {1}, Claim that Ilof is an isomorphism. Let X,y € K be such
that IT of(x) = Il of(y). Hence x),r‘1 € ker [1of = {1}, sox=y. So we have

the claim. Therefore K is a subdirectly irreducible. ,

Next, we want to show that every semifield is a subdirect product

of subdirectly irreducible semifields. First we need the lemmas.

Lemma 1,63, Let K be a semifield and x,y € K' such that x #y. Then

-1
there is a maximal a-convex subgroup M of K such that xy ¢ M.

Proof Let x,y €K be such that x #y. Let % = {C | C is an
aconvex subgroup of K and xy'le C}. €= since {1} € €

By Zom's Lemma, % has a maximal element. .

Lemma 1.64. By assumption of Lemma 1.63., let o ={C | C is an a-convex
subgroup of K such that M < C]. Then <% has a minimum element.

Proof o =@ since K €/ If there is C e/ and xy-ieC then
this contradicts the minimality of M. Therefore for every C e€c%, ch-1 eC.
Then we have that ~ <& is an a-convex subgroup of K which is the

- B
minimum._element and xy € N o Hence N ¥ # M, 7

Lemma 1.65. By assumption of Lemma 1.63,, Kpg 18 a subdirectly

irreducible semifields.

Proof Let & be the set of all aconvex subgroups of Kpyy except

{M}. By Corollary 1.42., we have that & is isomorphic to the set of all



a-convex subgroups of K strictly containing M. By Lemma 1.64.,

% has a minimum element. By Proposition 1.62., Kpq is a subdirectly

irreducible semifields. "

Theorem 1.66. Let K be a semifield. Then K is a subdirect product of
subdirectly irreducible semifields.

Proof By Lemma 1.63., for x,y € K- and x #y, we have that ny

is an a-convex subgroup of K such that xy'] ¢ C,,. By Lemma 1.65., K/ny

is a subdirectly irredudible for all X,y e K and x=y.
Let ?:{ny|x,yel( and x#y). Let x € n¥. Suppose
that x 1. Then x ¢ C,,, a contradiction since x € 7 & Son €= {1}.

~ Thus by Proposition 1.61., we have fg: K"Eg"(/c is a monomorphic
representation of K as a subdirect product of {Kyc | C e %). Therefore
fe(K) is a subdirect’ product of [K/C | C e%}. Since K=fg(K), K is a

subdirect product of a subdirectly irreducible semifields. M
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