

PRELIMINARIES

In this chapter we shall give some notations, definitions and theorems used in this thesis. Our notations are:

Z is the set of all integers,

Z is the set of all positive integers,

 $Z_0^{\dagger} = Z^{\dagger} \cup \{0\},$

Q is the set of all positive rational numbers,

 $Q_0^{\dagger} = Q^{\dagger} \cup \{0\},$

IR is the set of all positive real numbers and

 $\mathbb{IR}_0^+ = \mathbb{IR}^+ \cup \{0\}.$

In this thesis, if we do not give the definitions of a binary operations or order on any subset of \mathbb{R}_0^+ then we shall mean the usual binary operations and order on it.

As usual one may write $y \ge x$ for $x \le y$ and x < y or y > x to mean that $x \le y$ and $x \ne y$. If neither $x \le y$ nor $y \le x$ then x and y are said to be incomparable and this is denoted by $x \mid y$.

<u>Definition 1.1.</u> Let (P, \leq) be a partially ordered set. P is said to be <u>complete</u> iff every subset of P which has a lower bound has an infimum.

In [5], p. 5 it was shown that a partially ordered set is complete iff every subset of P which has an upper bound has a supremum.

Definition 1.2. Let (P, \leq) be a partially ordered set, P is a <u>lower</u> [upper] semilattice iff inf $\{x, y\}$ [sup $\{x, y\}$] exists for all $x, y \in P$ and denoted by $x \wedge y$ [x \vee y]. P is said to be a <u>lattice</u> iff P is both a lower and upper semilattice.

Definition 1.3. Let (P, \le) be a partially ordered set. A nonempty subset S of P is called dense in P iff for every $x, y \in P$, x < y implies that there exists $z \in S$ such that x < z < y.

Definition 1.4. Let (S, +) be a semigroup. S is said to be a band iff for every $x \in S$, x + x = x.

Let (L, \leq) be an upper [lower] semilattice. Define a binary operation $+ \leq$ on L by $x + \leq y = x \vee y$ [$x \wedge y$] for all $x, y \in L$. Then we have that $(L, + \leq)$ is a commutative band.

Let (L, +) be a commutative band. Define a binary operation \leq_+ on L by $x \leq_+ y$ iff x + y = y for all $x, y \in L$. Then we have that (L, \leq_+) is an upper semilattice such that $x \vee y = x + y$ for all $x, y \in L$.

Proposition 1.5. Let L be a nonempty set. Let \mathscr{S} be the set of all semilattice structure on L and \mathscr{I} the set of all commutative band structures on L. Then there exists a bijection between \mathscr{S} and \mathscr{I} .

Proof Define $\phi: \mathscr{G} \to \mathscr{G}$ by $\phi((L, +)) = (L, \leq_+)$ for all $(L, +) \in \mathscr{G}$ and define $\Psi: \mathscr{G} \to \mathscr{G}$ by $\Psi((L, \leq)) = (L, +_{\leq})$ for all $(L, \leq) \in \mathscr{G}$. To show that $\Psi \circ \phi = \operatorname{Id}_{\mathscr{G}}$ and $\phi \circ \Psi = \operatorname{Id}_{\mathscr{G}}$, let $(L, +) \in \mathscr{G}$. Then $\Psi \circ \phi ((L, +)) = \Psi(\phi((L, +))) = \Psi((L, \leq_+)) = (L, +_{\leq_+})$. Let $x, y \in L$.

Therefore $x +_{\leq_+} y = x \vee y = x + y$. So $+_{\leq_+} = +$, hence $\Psi \circ \varphi = \operatorname{Id}_{\mathscr{A}}$. Next, let $(L, \leq) \in \mathscr{B}$. Then $\varphi \circ \Psi((L, \leq)) = \varphi(\Psi(L, \leq)) = \varphi((L, +_{\leq})) = (L, \leq_{+_{\leq}})$. Let $x, y \in L$ be such that $x \leq_{+_{\leq}} y$. Then $x +_{\leq} y = y$. Since $x +_{\leq} y = x \vee y$, $x \vee y = y$. So $x \leq y$, hence $\leq_{+_{\leq}} \subseteq \leq$. Similarly, $\leq \subseteq \leq_{+_{\leq}}$, hence $\leq = \leq_{+_{\leq}}$. Thus $\varphi \circ \Psi = \operatorname{Id}_{\mathscr{B}}$. Therefore Ψ is a bijection.

Definition 1.6. Let L be a nonempty set and \wedge , \vee be binary operations on L such that

- i) (L, \wedge) and (L, \vee) are commutative bands and
- ii) for every $x, y \in L$, $x \vee (x \wedge y) = x$ and $x \wedge (x \vee y) = x$ Then (L, \wedge, \vee) is called a lattice algebra.

Let (L, \wedge, \vee) be a lattice algebra. Define $\leq_{\wedge\vee}$ on L by $x \leq_{\wedge\vee} y$ iff $x \wedge y = x$ for all $x, y \in L$. Then we have that $(L, \leq_{\wedge\vee})$ is a partially ordered set.

Note that for every $x, y \in L$, we define $x \le_{\wedge \vee} y$ iff $x \wedge y = x$ is equivalent to $x \vee y = y$.

Next to show that $(L, \leq_{\wedge \vee})$ is lattice, claim that $\inf\{x, y\} = x \wedge y$ and $\sup\{x, y\} = x \vee y$ for all $x, y \in L$. Let $x, y \in L$, clear that $x \wedge y \leq_{\wedge \vee} x$ and $x \wedge y \leq_{\wedge \vee} y$. Thus $x \wedge y$ is a lower bound of x and y. Let $w \in L$ be such that $w \leq_{\wedge \vee} x$ and $w \leq_{\wedge \vee} y$. Then $w \wedge x = w$ and $w \wedge y = w$. Therefore

 $w \wedge (x \wedge y) = (w \wedge x) \wedge y = w \wedge y = w$, so $w \leq_{\wedge \vee} x \wedge y$. Thus $\inf\{x, y\} = x \wedge y$. Similarly, $\sup\{x, y\} = x \vee y$ for all $x, y \in L$.

Let (L, \leq) be a lattice. Then we have that $(L, \wedge_{\leq}, \vee_{\leq})$ is a lattice algebra where $x \wedge_{\leq} y = \inf\{x, y\}$ and $x \vee_{\leq} y = \sup\{x, y\}$ for all $x, y \in L$.

Proposition 1.7. Let L be a nonempty set. Let $\mathscr S$ be the set of all lattice algebra structures on L and $\mathscr L$ the set of all lattice structures on L. Then there exists a bijection between $\mathscr S$ and $\mathscr L$.

Proof Define $\phi: \mathscr{L} \to \mathscr{S}$ by $\phi((L, \leq)) = (L, \wedge_{\leq}, \vee_{\leq})$ for all $(L, \leq) \in \mathscr{L}$ and define $\Psi: \mathscr{S} \to \mathscr{L}$ by $\Psi((L, \wedge, \vee)) = (L, \leq_{\wedge \vee})$ for all $(L, \wedge, \vee) \in \mathscr{S}$. To show that $\Psi \circ \phi = \operatorname{Id}_{\mathscr{L}}$ and $\phi \circ \Psi = \operatorname{Id}_{\mathscr{L}}$ let $(L, \leq) \in \mathscr{L}$. Then $\Psi \circ \phi ((L, \leq)) = \Psi(\phi((L, \leq))) = \Psi((L, \wedge_{\leq}, \vee_{\leq})) = (L, \leq_{\wedge \leq \vee \leq})$.

To show that $\leq = \leq_{\bigwedge \leq \bigvee \leq}$, let $x, y \in L$. Assume that $x \leq_{\bigwedge \leq \bigvee \leq} y$ iff $x \wedge_{\leq} y = x$, so $x \wedge y = x$. Then $x \leq y$, so $\leq_{\bigwedge \leq \bigvee \leq} \subseteq \leq$. Similarly, $\leq \subseteq \leq_{\bigwedge \leq \bigvee \leq}$, hence $\Psi \circ \varphi = \operatorname{Id}_{\mathscr{D}}$. Next, let $(L, \wedge, \vee) \in \mathscr{D}$. Then $\varphi \circ \Psi((L, \wedge, \vee)) = \varphi((U, \wedge, \vee)) = \varphi((L, \wedge, \vee)) = \varphi((L, \wedge, \vee)) = \varphi((L, \wedge, \vee)) = \varphi((L, \wedge, \vee, \vee)) = \varphi((L, \wedge, \vee)) =$

Remark 1.9. Let L be a lattice algebra. Then L is a distributive lattice algebra iff for every x, y, $z \in L$, $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$.

Proof Assume that L is lattice distributive algebra. Let x, y, z \in L. Then $(x \land y) \lor (x \land z) = [(x \land y) \lor x] \land [(x \land y) \lor z]$ $= x \land [(x \lor z) \land (y \lor z)]$ $= [x \land (x \lor z)] \land (y \lor z)$ $= x \land (y \lor z).$

The proof of the converse is similar.

พอสมุพกลาง สุถาบันวิทยบริธาร จุฬาถงกรณ์มหาวิทยาลัย <u>Definition 1.10.</u> Let L be a lattice. L is said to be a <u>distributive lattice</u> iff for every $x, y, z \in L$, $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$.

Corollary 1.11. Let L be a nonempty set. Let ∞ be the set of all distributive lattice algebra L and \mathcal{B} be the set of all distributive lattice structures on L. Then there exists a bijection between ∞ and \mathcal{B} .

Proof Similar to the proof of Proposition 1.7..

<u>Definition 1.12.</u> Let (P, \leq) be a partially ordered set. P is a <u>totally</u> ordered set if for every $x, y \in P$, $x \leq y$ or $y \leq x$.

Definition 1.13. Let (P, \leq) and (P', \leq') be partially ordered sets. A function $f: P \to P'$ is said to be isotone iff $x \leq y$ implies $f(x) \leq' f(y)$ for all $x, y \in P$, f is said to be an order isomorphism iff f is bijection and both f and f^{-1} are isotone. In this case, P and P' are called order isomorphic.

<u>Definition 1.14.</u> Let P and P' be lattices and $f: P \to P'$ is said to be a <u>lattice homomorphism</u> iff for every $x, y \in P$, $f(x \lor y) = f(x) \lor f(y)$ and $f(x \land y) = f(x) \land f(y)$.

Remark 1.15. Let P and P be lattices and $f: P \rightarrow P'$. Then the following statements clearly hold:

- (1) if f is a lattice homomorphism then f is isotone
- (2) if f is an order isomorphism then f is a lattice homomorphism.

Definition 1.16. A subset C of P is said to be <u>ordered convex subset</u> iff for every $x, y \in C$ and $z \in P$ the inequalities $x \le z \le y$ imply $z \in C$.

From now on we shall call an ordered convex subset an o-convex subset.

Example 1.17. (1) Let P be a partially ordered set, $x \in P$. $\{x\}$ is an o-convex subset of P.

- (2) Every interval of IR is an o-convex subset of IR.
- (3) In $\mathbb{R} \times \mathbb{R}$, $\{(x,y) | x^2 + y^2 \le 4\}$ is an o-convex subset of $\mathbb{R} \times \mathbb{R}$ where $(x,y) \le (z,w)$ iff $x \le z$ and $y \le w$ for all $x, y, z, w \in \mathbb{R}$.

Remark 1.18. (1) The intersection of a family of o-convex subsets of a partially oredered set is o-convex. Also the union of an increasing chain of o-convex subsets is o-convex.

(2) If $f: P \to P'$ is an isotone map and C' an o-convex subset of P'. Then $f^{-1}(C')$ is an o-convex subset of P.

Proof 1) Clearly.

2) Let C' be an o-convex subset of P'. Let $x, y \in f^{-1}(C')$ and $z \in P$ be such that $x \le z \le y$. Since f is isotone, $f(x) \le f(z) \le f(y)$. Since f(x), $f(y) \in C'$ and C' is o-convex, $f(z) \in C'$. Therefore $z \in f^{-1}(C')$.

Definition 1.19. A triple (R, +, .) is a semiring iff

- (1) (R, .) is a semigroup,
- (2) (R, +) is a commutative semigroup and
- (3) for every $x, y, z \in R$, x(y + z) = xy + xz and (y + z)x = yx + zx.

Definition 1.20. Let (R, +, .) be a commutative semiring with multiplicative zero 0. R is said to be a 0-semifield iff (R, .) is a group and, x + 0 = x for all $x \in K$. A subset H of 0-semifield K is called a subsemifield of K iff H is an 0-semifield under the same operations. And a subset S of K is said to be conic iff $S \cap S^{-1} = \{1\}$.

Remark 1.21. The intersection of a family subsemifields of a 0-semifield is a subsemifield. Hence the intersection of all subsemifields is the smallest subsemifield of a semifield and will be called the prime semifield.

Proposition 1.22. ([4]) Let K be a 0-semifield. If there is $x \in K$ such that x has an additive inverse. Then every element in K has an additive inverse and hence K is a field.

<u>Proposition 1.23.</u> ([4]) If K is a 0-semifield then the prime semifield of K is either isomorphic to Q_0^+ or Z_p where p is a prime number or the semifield $\{0, 1\}$ with 1 + 1 = 1.

In our thesis, we shall study only 0-semifields which are not fields. So from now on we shall use the word semifield for 0-semifields.

Example 1.24. (1) Q_0^+ , \mathbb{R}_0^+ are semifields.

- (2) Let G be a lattice abelian group with zero 0. Then we can define a binary operation + on G by $x + y = x \lor y$ and x + 0 = 0 + x = x for all $x, y \in G$. Then $G \cup \{0\}$ is a semifield.
- (3) Let $K = \{2^n \mid n \in Z\} \cup \{0\}$, then K is a semifield with usual multiplication and $2^n + 2^m = 2^{\max\{n, m\}}$ for all $m, n \in Z$.

Definition 1.25. Let S be a semiring with multiplicative zero 0. Then S is said to be multiplicatively cancellative (M.C.) iff for every $x, y, z \in S$, xy = xz implies that x = 0 or y = z. And S is said to be additively cancellative (A.C.) iff for every $x, y, z \in S$, x + y = x + z implies that y = z.

Theorem 1.26. ([4]) Let S be a commutative semiring with multiplicative zero 0. Then S can be embedded into a semifield iff S is multiplicatively cancellative.

We shall now give the construction of semifield of quotients of semiring S which appears in [4], pp. 27-28.

Assume that S is having M.C. the property. Define a relation \sim on $S \times (S - \{0\})$ by

 $(x, y) \sim (z, w)$ iff xw = zy for all $(x, y), (z, w) \in S \times (S - \{0\})$. It is easy to show that \sim is an equivalence relation.

Let $\alpha, \beta \in S \times (S - \{0\})/_{\sim}$. Define + and . on $S \times (S - \{0\})/_{\sim}$ as follow: Choose $(x, y) \in \alpha$, $(z, w) \in \beta$ define $\alpha + \beta = [(xw + yz, yw)] \text{ and }$ $\alpha\beta = [(xz, yw)].$

In [4], it was shown that $(S \times (S - \{0\}))/_{\sim}, +, .)$ is the semifield of quotients of S.

Proposition 1.27. ([4]) Let S a commutative semiring with multiplicative zero 0 having M.C. of order > 1. Then $S \times (S - \{0\})/_{\sim}$ is the smallest semifield containing S up to isomorphism.

Examples 1.28. (1) Z_0^+ is a commutative semiring with multiplicative zero which is M.C..

- (2) Let $S = Z^{+} \times Z^{+} \cup \{(0,0)\}$. Then S with the usual addition and multiplication are a commutative semiring with multiplicative zero which is M.C..
- (3) Let $Z_0^{\dagger}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in Z_0^{\dagger}\}$. Then $Z_0^{\dagger}[\sqrt{2}]$ is a commutative semiring with multiplicative zero which is M.C..
- (4) Let S be a commutative semiring with multiplicative zero which is A.C. and M.C.. Let $S[x] = \{(a_n)_{n \in Z^+} | a_n \in S \text{ for all } n \in Z^+ \text{ and } a_n \neq 0 \text{ for only finitely many } n\}$. Define + and . on S[x] as follows: for $(a_n)_{n \in Z^+} (b_n)_{n \in Z^+} \in S[x]$ define

$$(a_n)_{n \in Z^+} + (b_n)_{n \in Z^+} = (a_n + b_n)_{n \in Z^+} \text{ and}$$

 $(a_n)_{n \in Z^+} \cdot (b_n)_{n \in Z^+} = (\sum_{i \to i = n} a_i b_i)_{n \in Z^+}$

Then we have that S[x] is a commutative semiring with multiplicative zero which is M.C..

<u>Definition 1.29</u>. Let K be a semifield. A subset C of K is called an algebraically convex subset of K iff for every $x, y \in C$ and $a, b \in K$ such that a + b = 1, $ax + by \in C$.

From now on we shall call algebraically convex subsets a-convex subsets.

Remark 1.30. (1) The intersection of a family of a-convex subsets of semifield is a-convex. And union of the increasing chain of a-convex sets is an a-convex.

- (2) Let C be an a-convex subset of a semifield K. For every $n \in Z^+, \, a_1, \, a_2, ..., \, a_n \in K, \, x_1, \, x_2, ... \, , \, x_n \in C \ \text{ and } \sum_{i=1}^n \, a_i = 1, \, \, \sum_{i=1}^n \, a_i x_i \in C.$
- (3) Let C be a subset of a semifield K, the smallest an a-convex subset of K containing C is $\{\sum_{i=1}^n a_i x_i \mid n \in Z^+, a_i \in K, x_i \in C \text{ and } \sum_{i=1}^n a_i = 1 \text{ for all } i \in \{1, 2, ..., n\}\}.$

Proof To prove (3), let $B = \{\sum_{i=1}^{n} a_i x_i \mid n \in Z^+, a_i \in K, x_i \in C \text{ and } \sum_{i=1}^{n} a_i = 1 \text{ for all } i \in \{1, 2, ..., n\}\}$. To show that B is an a-convex subset of K containing C, let $\sum_{i=1}^{n} a_i x_i$, $\sum_{i=1}^{n} b_i y_i \in B$ and $a, b \in K$ be such that a + b = 1. So $a(\sum_{i=1}^{n} a_i x_i) + b(\sum_{i=1}^{n} b_i y_i) = \sum_{i=1}^{n} (aa_i x_i + bb_i y_i) \in B$ since $\sum_{i=1}^{n} (aa_i + bb_i) = 1$. Clearly C is contained in B, so B is an a-convex subset of K which containing C.

Let D be an a-convex subset of K containing C. To show that $B \subseteq D$, let $\sum_{i=1}^{n} a_i x_i \in B$. Assume that $a_1, a_2, ..., a_n$ are nonzero. Since $x_1, x_2, ..., x_n \in C \subseteq D$, $x_1, x_2, ..., x_n \in D$. By the a-convexity of D, $\sum_{i=1}^{n} a_i x_i \in D$. #

Definition 1.31. A subset C of a semifield K is called an a-convex subgroup of K iff C is a multiplicative subgroup of K and it is an a-convex subset of K.

Remark 1.32. Let K be a semifield.

- (1) {1} and K are trivial a-convex subgroups of K.
- (2) The intersection of a family of a-convex subgroups of K is an a-convex subgroup of K. Also the union of an increasing chain of a-convex subgroups is an a-convex subgroup of K.

Proposition 1.33. Let K be a semifield and C a multiplicative subgroup of K. Then the following statements are equivalent:

- (1) C is a-convex.
- (2) for every $x, y \in C$ and $a \in K$, $(x + a)(y + a)^{-1} \in C$.
- (3) for every $x \in C$ and $a, b \in K$ such that a + b = 1, $ax + b \in C$.
- (4) for every $x, y \in C$ and $a, b \in K$ such that $a + b \in C$, $ax + by \in C$.
- (5) for every $x \in C$ and $a, b \in K$ such that $a + b \in C$, $ax + b \in C$.

Proof (1) \to (2) Let x, y \in C and a \in K. Then xy⁻¹ \in C. By (1), $(x + a)(y + a)^{-1} = y(y + a)^{-1}(xy^{-1}) + a(y + a)^{-1} \in$ C.

- (2) \rightarrow (1) Let x, y \in C and a, b \in K be such that a + b = 1. If a = 0 then b = 1. So $ax + by = y \in$ C. Suppose that $a \neq 0$. Thus $(ax + by)y^{-1} = (ax + by)(ay + by)^{-1} = [x + (by)a^{-1}][y + (by)a^{-1}]^{-1} \in$ C. Therefore $ax + by \in$ C.
- $(3) \rightarrow (1)$ Let $x, y \in C$ and $a, b \in K$ be such that a + b = 1. Since $x, y \in C$, $xy \in C$. By (3), $(ax + by)y = a(xy) + b \in C$. Therefore $ax + by \in C$.
- (1) \to (4) Let x, y \in C and a, b \in K be such that $a + b \in$ C. By (1), $(ax + by)(a + b)^{-1} = [a(a + b)^{-1}]x + b(a + b)^{-1}y \in$ C. Since $a + b \in$ C, $ax + by \in$ C.
- (5) \rightarrow (4) Let $x, y \in C$ and $a, b \in K$ be such that $a + b \in C$. Then $xy^{-1} \in C$. By (5), $(ax + by)y^{-1} = (ax)y^{-1} + b \in C$. Hence $ax + by \in C$.

The remaining cases are clearly seen to be true.

#

Proposition 1.34. Let A and B be a-convex subgroups of a semifield K.

Then AB is an a-convex subgroup of K.

Proof Clearly, AB is a multiplicative subgroup of K. Let $x \in A$, $y \in B$ and $a, b \in K$ be such that a + b = 1. Since A is a-convex, $ax + b \in A$. Since B is a-convex, $(axy + b)(ax + b)^{-1} = [ax(ax + b)^{-1}]y + [b(ax + b)^{-1}] \in B$. Thus $a(xy) + b = (ax + b)[(axy + b)(ax + b)^{-1}] \in AB$. Hence AB is an a-convex subgroup of K.

Notation Let K be a semifield and $S \subseteq K$. Let (S) be the multiplicative subsemigroup of K generated by S and (S) is the a-convex subgroup of

K generated by S. Therefore
$$\langle S \rangle_a = \{(\sum_{i=1}^m a_i x_i)(\sum_{j=1}^n b_j y_j)^{-1} \mid m, n \in \mathbb{Z}^+, a_i, b_j \in \mathbb{Z}^+ \}$$

K,
$$x_i, y_j \in (S)$$
 and $\sum_{i=1}^m a_i = \sum_{j=1}^n b_j = 1$ for all $i \in \{1, 2, ..., m\}$ and $j \in \{1, 2, ..., n\}$

To prove this, let $B = \{ (\sum_{i=1}^{n} a_i x_i) (\sum_{j=1}^{n} b_j y_j)^{-1} \mid m, n \in \mathbb{Z}^+, a_i, b_j \in \mathbb{K}, \}$

$$x_i, y_j \in (S)$$
 and $\sum_{i=1}^m a_i = \sum_{j=1}^n b_j = 1$ for all $i \in \{1, 2, ..., m\}$ and $j \in \{1, 2, ..., n\}\}$.

Let
$$(\sum_{i=1}^{n} a_i x_i)(\sum_{i=1}^{n} b_i y_i)^{-1}$$
, $(\sum_{j=1}^{m} c_j z_j)(\sum_{j=1}^{m} d_j w_j)^{-1} \in B$. Then

$$(\sum_{i=1}^n a_i x_i^-) (\sum_{j=1}^n b_i y_i^-)^{-1} \} [(\sum_{j=1}^m c_j z_j^-) (\sum_{j=1}^m d_j w_j^-)^{-1}]^{-1} = (\sum_{i=1}^n \sum_{j=1}^m a_i d_j x_i w_j) (\sum_{i=1}^n \sum_{j=1}^m b_i c_j y_i z_j^-)^{-1} \in B.$$

Let $a, b \in K$ be such that a + b = 1.

Then
$$a[(\sum_{i=1}^{n} a_i x_i)(\sum_{i=1}^{n} b_i y_i)^{-1}] + b[(\sum_{j=1}^{m} c_j z_j)(\sum_{j=1}^{m} d_j w_j)^{-1}]$$

$$= [a(\sum_{i=1}^{n}a_{i}x_{i})\;(\sum_{j=1}^{m}d_{j}w_{j}\;)\;+\;b(\sum_{j=1}^{m}c_{j}z_{j}\;)(\sum_{i=1}^{n}b_{i}y_{i}\;)](\sum_{i=1}^{n}\sum_{j=1}^{m}b_{i}d_{j}y_{i}w_{j}\;)^{-1}$$

$$= \big[\sum_{i=1}^{n} \sum_{j=1}^{m} a a_i d_j x_i w_j + \sum_{i=1}^{n} \sum_{j=1}^{m} b b_i c_j y_i z_j \big] \big(\sum_{i=1}^{n} \sum_{j=1}^{m} b_i d_j y_i w_j \big)^{-1} \in B. \text{ Clearly, } S \subseteq B.$$

Therefore B is an a-convex subgroup of K containing S. Let D be an a-convex subgroup containing S. Let $(\sum_{i=1}^n a_i x_i)(\sum_{i=1}^n b_i y_i)^{-1} \in B$. Then $x_i, y_i \in (S)$ for all $i \in \{1, 2, ..., n\}$. So $x_i, y_i \in D$ for all i. Since D is a-convex, $\sum_{i=1}^n a_i x_i, \sum_{i=1}^n b_i y_i \in D$. Hence $(\sum_{i=1}^n a_i x_i)(\sum_{i=1}^n b_i y_i)^{-1} \in D$ since D is a subgroup. So $B \subseteq D$, hence $B = \langle S \rangle_{a^*}$

Definition 1.35. Let K and M be semifields. A function $f: K \to M$ is called a homomorphism of K into M iff for every $x, y \in K$

- (1) f(x) = 0 if and only if x = 0,
- (2) f(x + y) = f(x) + f(x) and
- (3) f(xy) = f(x)f(y).

And the kernel of f is the set $\{x \in K \mid f(x) = 1\}$, which is denoted by ker f.

A homomorphism $f: K \to M$ is called a monomorphism iff f is injective, an epimorphism if f is onto and an isomorphism if f is bijection. K and M are said to be isomorphic if there exists an isomorphism of K onto M and we denote this by $K \cong M$. Note that if $f: K \to M$ is an isomorphism then f^1 is also an isomorphism.

Remark 1.36. Let $f: K \to M$ be a homomorphism of semifields. Then the following statements hold:

(1)
$$f(x^{-1}) = (f(x))^{-1}$$
 for all $x \in K$.

- (2) ker f is an a-convex subgroup of K.
- (3) If C' is an a-convex subgroup of M then $f^{-1}(C')$ is an a-convex subgroup of K containing ker f.
- (4) If f is onto and C an a-convex subgroup of K then f(C) is an a-convex subgroup of M.

Proof (1) Obviously.

- (2) Clear that ker f is a multiplicative subgroup of K. Let $x \in \ker f$ and $a, b \in K$ be such that $a + b \in \ker f$. Then f(x) = 1 and f(a) + f(b) = f(a + b) = 1, so f(ax + b) = f(a)f(x) + f(b) = f(a) + f(b) = 1. Hence $ax + b \in \ker f$ Therefore $\ker f$ is an a-convex subgroup of K.
- (3) Clearly, $f^{-1}(C')$ is a multiplicative subgroup of K containing ker f. Let $x \in f^{-1}(C')$ and $a, b \in K$ be such that $a + b \in f^{-1}(C')$. Then $f(x) \in C'$ and $f(a) + f(b) = f(a + b) \in C'$. By the a-convexity of C', $f(ax + b) = f(a)f(x) + f(b) \in C'$. So $ax + b \in f^{-1}(C')$, hence $f^{-1}(C')$ is an a-convex subgroup of K.
- (4) Let C be an a-convex subgroup of K. Clearly f(C) is a multiplicative subgroup of M. Let $x \in f(C)$ and $a', b' \in K$ be such that a' + b' = 1. Then there is $c \in C$ such that f(c) = x. Since f is onto, f(a) = a' and f(b) = b' for some a, $b \in K$. Then f(a + b) = f(a) + f(b) = a' + b' = 1. Since C is a-convex, $(ac + b)(a + b)^{-1} = [a(a + b)^{-1}]c + b(a + b)^{-1} \in C$. Hence $f[(ac + b)(a + b)^{-1}] = [f(ac + b)][f(a + b)]^{-1} = f(a)f(c) + f(b) = a'x + b' \in f(C)$. Therefore f(C) is an a-convex subgroup of M.

We shall give some examples of an a-convex subgroups of semifield.

Example 1.37. Let $\mathbb{R} \times \mathbb{R} \cup \{(0,0)\}$ be a semifield. Define $f: \mathbb{R} \times \mathbb{R} \cup \{(0,0)\} \to \mathbb{R}_0^+$ by f((x,y)) = x for all $(x,y) \in \mathbb{R} \times \mathbb{R}^+ \cup \{(0,0)\}$. It is easy to show that f is a homomorphism and $\ker f = \{(1,x) \mid x \in \mathbb{R}\}$.

By Remark 1.36. (2), $\{(1, x) \mid x \in \mathbb{R}\}$ is an a-convex subgroup of $\mathbb{R} \times \mathbb{R} \cup \{(0, 0)\}$.

Proposition 1.38. Let $f: K \to M$ be an epimorphism of semifields. Let \mathscr{C} be the set of all a-convex subgroups of K containing ker f and \mathscr{C}' the set of all a-convex subgroups of M. Then there exists an order isomorphism from \mathscr{C} onto \mathscr{C}' .

Proof Define $\phi: \mathscr{C}' \to \mathscr{C}'$ by $\phi(C') = f^{-1}(C')$ for all $C' \in \mathscr{C}'$ and define $\Psi(C) = f(C)$ for all $C \in \mathscr{C}$. To show that $\phi \circ \Psi = \operatorname{Id}_{\mathscr{C}}$ and $\Psi \circ \phi = \operatorname{Id}_{\mathscr{C}'}$, let $C \in \mathscr{C}$. Then $\phi \circ \Psi(C) = \phi(\Psi(C)) = \phi(f(C)) = f^{-1}(f(C))$. Clearly, $C \subseteq f^{-1}(f(C))$. Let $x \in f^{-1}(f(C))$. Then $f(x) \in f(C)$, so f(x) = f(c) for some $c \in C$. Then $f(xc^{-1}) = f(x)f(c)^{-1} = 1$. So $xc^{-1} \in \ker f$. Since $\ker f \subseteq C$, $xc^{-1} \in C$. Hence $x \in C$. Thus $f^{-1}(f(C)) \subseteq C$, so $f^{-1}(f(C)) = C$. Therefore $\phi \circ \Psi = \operatorname{Id}_{\mathscr{C}}$

Next, let $C' \in \mathscr{C}'$. Then $\Psi \circ \phi(C') = \Psi(\phi(C')) = \Psi(f^{-1}(C')) = f(f^{-1}(C'))$. Since f is onto, $f(f^{-1}(C')) = C'$. Thus $\Psi \circ \phi = Id_{\mathscr{C}'}$. Hence ϕ is a bijection. Clearly ϕ and Ψ are isotone. Therefore ϕ is an order isomorphism. #

Definition 1.39. Let K be a semifield and ρ an equivalence relation on K. ρ is called a <u>congruence</u> on K if for any x, y, z \in K,

- (1) $x \rho 0$ if and only if x = 0,
- (2) $x \rho y$ implies that $(xz) \rho (yz)$ and
- (3) $x \rho y$ implies that $(x + z) \rho (y + z)$.

Remark 1.40. (1) The intersection of a family of congruences on semifield K is a congruence on K.

(2) $x \rho y$ implies $x^{-1} \rho y^{-1}$ for all $x, y \in K$.

Let K be a semifield and ρ a congruence on K. Let K/ρ be the set of all equivalence classes of K with respect to ρ .

We shall show that $[1]_{\rho} = \{x \in K \mid x \rho 1\}$ is an a-convex subgroup of K.

Let $x, y \in [1]_{\rho}$. Then $x \cap 1$ and $y \cap 1$. Thus $(xy) \cap y$, so $(xy) \cap 1$. Hence $xy \in [1]_{\rho}$. Since $x \cap 1$, $x \neq 0$. Then $xx^{-1} \cap x^{-1}$, so $x^{-1} \in [1]_{\rho}$. Hence $[1]_{\rho}$ is a multiplicative subgroup. Next, let $a, b \in K$ be such that a + b = 1. Since $x \cap 1$ and $y \cap 1$, $(ax) \cap a$ and $(by) \cap b$, so $(ax + by) \cap (a + by)$ and $(by + a) \cap (a + b)$. Hence $(ax + by) \cap (a + b)$, so $(ax + by) \cap (a + b)$. Therefore $[1]_{\rho}$ is an a-convex subgroup of K.

Let C be an a-convex subgroup of a semifield K. Define a relation ρ_C on K by $x \rho_C y$ iff $xy^{-1} \in C$ or x = y = 0 for all $x, y \in K$. Then we have that ρ_C is a congruence on K and denoted $[x]_{\rho_C} = xC$.

Let K/ρ_C be the set of all equivalence classes of K with repect to ρ_C , we shall use the notation K/C instead of K/ρ_C .

Define + and . on $K_{/C}$ as follows: for xC, $yC \in K_{/C}$ xC + yC = (x + y)C and $xC \cdot yC = (xy)C$.

To prove that + and \cdot are well-defined, let xC, $yC \in K/C$. Choose $a \in xC$ and $b \in yC$. Then $xa^{-1} \in C$ or x = a = 0 and $yb^{-1} \in C$ or y = b = 0. If x = a = 0 then ab = xy = 0. Thus (ab)C = (xy)C and (a + b)C = bC = yC = (x + y)C. This prove is similar for y = b = 0 then done. Suppose that $a, b \neq 0$. Then xa^{-1} , $yb^{-1} \in C$. Then $(xy)(ab)^{-1} \in C$, so (xy)C = (ab)C. So \cdot is well-defined.

Since C is a-convex, $(x + y)(a + b)^{-1} = [a(a + b)^{-1}](xa^{-1}) + [b(a + b)^{-1}](yb^{-1}) \in C$, so (x + y)C = (a + b)C. Therefore + is well-defined.

Then we have that $(K_{/C}, +, .)$ is a semifield.

Proposition 1.41. Let K be a semifield. Let \varnothing be the set of all congruence structures on K and \mathscr{B} the set of all a-convex subgroups of K. Then there exists an order isomorphism form \varnothing onto \mathscr{B} .

Proof Define $\varphi: \mathscr{A} \to \mathscr{B}$ by $\varphi(\rho) = [1]_{\rho}$ for all $\rho \in \mathscr{A}$ and define $\Psi: \mathscr{B} \to \mathscr{A}$ by $\Psi(C) = \rho_C$ for all $C \in \mathscr{B}$. To show that $\varphi \circ \Psi = \mathrm{Id}_{\mathscr{B}}$ and $\Psi \circ \varphi = \mathrm{Id}_{\mathscr{A}}$, let $\rho^* \in \mathscr{A}$. Then $\Psi \circ \varphi(\rho^*) = \Psi(\varphi(\rho^*)) = \Psi([1]_{\rho^*}) = \rho_{[1]_{\rho^*}}$. Let $x, y \in K$ be such that $x \rho_{[1]_{\rho^*}} y$. Then $xy^{-1} \in [1]_{\rho^*}$ or x = y = 0. If x = y = 0 then $x \rho^* y$. If $xy^{-1} \in [1]_{\rho^*}$ then $xy^{-1} \rho^* 1$. Hence $x \rho^* y$. Therefore $\rho_{[1]_{\rho^*}} \subseteq \rho^*$. Similarly, $\rho^* \subseteq \rho_{[1]_{\rho^*}}$. Thus $\rho_{[1]_{\rho^*}} = \rho^*$. Let $C \in \mathscr{B}$. Then $\varphi \circ \Psi(C) = \varphi(\Psi(C)) = \varphi(\rho_C) = [1]_{\rho_C}$. Let $x \in [1]_{\rho_C}$. Then $x \rho_C 1$, so $x \in C$. Hence $[1]_{\rho_C} \subseteq C$. If $x \in C$ then $x \rho_C 1$. So $x \in [1]_{\rho_C}$. Thus $C \subseteq [1]_{\rho_C}$, so $C = [1]_{\rho_C}$. Therefore φ is a bijection. Clearly φ and Ψ are isotone, hence φ is an order isomorphism from \mathscr{A} onto \mathscr{B} . # Corollary 1.42. Let K be a semifield and C an a-convex subgroup of K. Let \mathscr{A} be the set of all a-convex subgroups of K that strictly contain C. Then there exists an order isomorphism form \mathscr{A} onto \mathscr{B} .

Proof Note that for every $\mathcal{D} \in \mathcal{A}$, $\bigcup_{\alpha \in \mathcal{D}}^{\alpha}$ is an a-convex subgroup of K which is strictly containing C. To prove this, let $x, y \in \bigcup_{\alpha \in \mathcal{D}}^{\alpha}$. Then there

exist $\alpha, \beta \in \mathcal{D}$ such that $x \in \alpha$ and $y \in \beta$. Then $xy \in \alpha\beta \in \mathcal{D}$.

Since $\alpha \in \mathcal{D}$, there is an $\alpha^{-1} \in \mathcal{D}$ such that $\alpha \alpha^{-1} = C$. Since $1 \in C$, 1 = uv for some $u \in \alpha$ and $v \in \alpha^{-1}$. By the definition of α , $ux^{-1} \in C$. Therefore $1 = uv = (uvx^{-1})x$, and $(ux^{-1})v \in vC = \alpha^{-1} \subseteq \bigcup_{\alpha \in \mathcal{D}}^{\alpha}$. Thus $x^{-1} \in \bigcup_{\alpha \in \mathcal{D}}^{\alpha}$. Let $a, b \in K$ be such that a + b = 1. Then aC + bC = (a + b)C = C. Hence $(ax + by)C = (aC)(xC) + (bC)(yC) = (aC)\alpha + (bC)\beta \in \mathcal{D}$, so $ax + by \in \bigcup_{\alpha \in \mathcal{D}}^{\alpha}$. Since $\mathcal{D} \neq \{C\}$, there exists an $\alpha \in \mathcal{D} - \{C\}$. Choose $x \in \alpha$. Hence $x \notin C$. Thus $\bigcup_{\alpha \in \mathcal{D}}^{\alpha}$ is an a-convex subgroup of K which is a strictly containing C.

Define $\varphi: \mathscr{A} \to \mathscr{B}$ by $\varphi(\mathscr{D}) = \overset{\circ}{\underset{\alpha \in \mathscr{D}}{\otimes}}$ for all $\mathscr{D} \in \mathscr{A}$ and define $\Psi: \mathscr{B} \to \mathscr{A}$ by $\Psi(D) = \Pi(D)$ for all $D \in \mathscr{B}$ where Π is the projection map of K onto $K_{/C}$. To show that $\varphi \circ \Psi = \operatorname{Id}_{\mathscr{B}}$ and $\Psi \circ \varphi = \operatorname{Id}_{\mathscr{A}}$, let $\mathscr{D} \in \mathscr{A}$. Then $\Psi \circ \varphi(\mathscr{D}) = \Psi(\varphi(\mathscr{D})) = \Psi(\overset{\circ}{\varphi}(\mathscr{D})) = \Pi(\overset{\circ}{\varphi}(\mathscr{D}))$. Let $\alpha \in \mathscr{D}$. Choose $\alpha \in \alpha$. $\alpha \in \alpha$. $\alpha \in \alpha \in \alpha$. Let $\beta \in \alpha$. Let $\beta \in \alpha$. There exists $\alpha \in \alpha$ such that $\alpha \in \alpha$. Since $\alpha \in \alpha$ for some $\alpha \in \alpha$. Then $\alpha \in \alpha \in \alpha$. Then $\alpha \in \alpha \in \alpha$.

Next, let $D \in \mathcal{B}$. Then $\phi \circ \Psi(D) = \phi(\Psi(D)) = \phi(\Pi(D)) = \bigcup_{x \in D} \Pi(x)$. Let $d \in D$. Since $d \in dC = \Pi(d)$, $d \in \bigcup_{x \in D} \Pi(x)$. Let $x \in \bigcup_{x \in D} \Pi(x)$. There exists $d_0 \in D$ such that $x \in \Pi(d_0) = d_0C$. So $x \in d_0C$, $xd_0^{-1} \in C \subseteq D$. Since $d_0 \in D$, $x \in D$. Therefore ϕ is bijection. Clearly ϕ and Ψ are isotone, hence ϕ is an order isomorphism from \mathscr{A} onto \mathscr{B} .

Proposition 1.43. Let $f: K \to M$ be a homomorphism of semifields. Define ρ_f on K by $x \rho_f y$ if and only if f(x) = f(y) for all $x, y \in K$. Then there exists a unique monomorphism $f: K/\rho_f \to M$ such that $f \circ \Pi = f$ and moreover if f is onto then f is an isomorphism, that is $K/\rho_f \cong M$ where

 Π is the projection map of K onto $K/_{O_f}$.

Proof Clearly, ρ_f is a congruence on K. Define $f: K/\rho_f \to M$ by $f'([x]_{\rho_f}) = f(x)$ for all $x \in K$. Then we have that f' is a monomorphism.

Let $x \in K$. Then $f \circ \Pi(x) = f'(\Pi(x)) = f'([x]_{\rho_f}) = f(x)$. Hence $f \circ \Pi = f$. Suppose that $g: K/_{\rho_f} \to M$ is a monomorphism such that $g \circ \Pi = f$. Let $[x]_{\rho_f} \in K/_{\rho_f}$. Then $g([x]_{\rho_f}) = g \circ \Pi(x) = f(x) = f \circ \Pi(x) = f'([x]_{\rho_f})$. Therefore g = f''.

Proposition 1.44. Let K be a semifield and $C \subseteq K$. Then C is an a-convex subgroup of K iff C is a kernel of some epimorphism.

Proof Assume that C is an a-convex subgroup of K. Define $\Pi: K \to K_{/C}$ by $\Pi(x) = xC$ for all $x \in K$. Then Π is an epimorphism and $\ker \Pi = C$.

The converse follows from Remark 1.36. (2).

From Proposition 1.44, a map $\Pi: K \to K/C$ is called the canonical projection of K onto K/C.

Theorem 1.45. (First Isomorphism Theorem)

Let $f: K \to M$ be a homomorphism of semifields. Then $K/_{\ker f} \cong \operatorname{Im} f$. Hence if f is onto then $K/_{\ker f} \cong M$.

Proof Clearly, by Remark 1.36. (2) ker f is an a-convex subgroup of K. Define $\phi: K/_{kerf} \to Im f$ as follows: let $\alpha \in K/_{kerf}$ choose $x \in \alpha$ define $\phi(\alpha) = f(x)$. To show that ϕ is well-defined, let $x, y \in K$ be such

that $x \ker f = y \ker f$. Then $xy^{-1} \in \ker f$, so $f(xy^{-1}) = 1$. Thus $\phi(x \ker f) = f(x) = f(y) = \phi(y \ker f)$. Hence ϕ is well-defined. And $\phi(0) = f(0) = 0$.

Clearly, ϕ is a homomorphism and bijection.

Hence $K_{kerf} \cong Im f._{\#}$

Lemma 1.46. Let H be a subsemifield of a semifield K and C an a-convex subgroup of K. Then $H \cap C$ is an a-convex subgroup of H. And HC is a subsemifield of K.

Proof Clearly, $H \cap C$ is a multiplicative subgroup of H. Let $x \in H \cap C$ and $a, b \in H$ be such that $a + b \in H$. Since H is of K subsemifield and $x, a, b \in H$, $ax + b \in H$. Since C is a-convex subgroup, $ax + b \in C$. Hence $ax + b \in H \cap C$. Therefore $H \cap C$ is an a-convex subgroup of H.

To show that HC is a subsemifield of K. $HC \neq \emptyset$ since 0 = 01 for $0 \in H$ and $1 \in C$. Let $x, y \in (HC)^*$. Then $x = h_1c_1$ and $y = h_2c_2$ for some $h_1, h_2 \in H^*$ and $c_1, c_2 \in C$. Thus $xy^{-1} = (h_1c_1)(h_2c_2)^{-1} = (h_1h_2^{-1})(c_1c_2^{-1}) \in HC^*$. Since C is a-convex, $[h_1(h_1 + h_2)^{-1}]c_1 + [h_2(h_1 + h_2)^{-1}]c_2 \in C$. Thus $x + y = h_1c_1 + h_2c_2 = (h_1 + h_2)[(h_1c_1 + h_2c_2)(h_1 + h_2)^{-1}] \in HC$.

Therefore HC is a subsemifield of K. "

Theorem 1.47. (Second Isomorphism Theorem)

Let H be a subsemifield of a semifield K and C an a-convex subgroup of K. Then $H_{H} \cap C \cong HC/C$.

Proof Define $\phi: H \to HC/C$ by $\phi(x) = xC$ for all $x \in H$. Then ϕ is an epimorphism. For each $x \in \ker \phi$, $xC = \phi(x) = C$, so $x \in C$.

Then $x \in H \cap C$, so $\ker \phi \subseteq H \cap C$. Clearly, $H \cap C \subseteq \ker \phi$, hence $\ker \phi = H \cap C$. By Theorem 1.45., $H_{H \cap C} \cong HC_{C}$.

Lemma 1.48. Let D and H be a-convex subgroups of a semifield K such that $H \subseteq D$. Then $D_{/H}$ is an a-convex subgroup of $K_{/H}$.

Proof Clearly, $D_{/H}$ is a multiplicative subgroup of $K_{/H}$. To show that $D_{/H}$ is a-convex, let $xH \in D_{/H}$ and aH, $bH \in K_{/H}$ be such that aH + bH = H. Choose h_1 , $h_2 \in H$ such that $ah_1 + bh_2 = 1$. Since D is an a-convex subgroup of K, $(ah_1)x + bh_2 \in D$. So $(aH)(xH) + (bH) = (ah_1)H(xH) + (bh_2)H = (ah_1x + bh_2)H \in D_{/H}$. Therefore $D_{/H}$ is an a-convex subgroup of $K_{/H}$.

Theorem 1.49. (Third Isomorphism Theorem)

Let K be a semifield, D and H a-convex subgroups of K such that $H \subseteq D$. Then $(K/H)/(D/H) \cong K/D$.

Proof Define $\phi: K_{/H} \to K_{/D}$ by $\phi(xH) = xD$ for all $x \in K$. We have that ϕ is well-defined and epimorphism. Let $xH \in \ker \phi$. Then $xD = \phi(xH) = D$, so $x \in D$. Hence $xH \in D_{/H}$. Next, let $xH \in D_{/H}$. Thus $x \in D$ and $\phi(xH) = xD = D$, so $xH \in \ker \phi$. Therefore $\ker \phi = D_{/H}$. By Theorem 1.45., $(K_{/H})_{/(D_{/H})} \cong K_{/D}$.

Proposition 1.50. Let $f: K \to M$ be an epimorphism of semifields. If C' is an a-convex subgroup of M then $K/f^{-1}(C') \cong M/C'$.

Proof By Remark 1.36. (3), $f^{-1}(C')$ is an a-convex subgroup of K. Define $\varphi: K \to M_{/C'}$ by $\varphi(x) = f(x)C'$ for all $x \in K$. Then φ is an epimorphism. Let $x \in K$ er φ . Then $f(x)C' = \varphi(x) = C'$, so $f(x) \in C'$. Hence $x \in f^{-1}(C')$, so $\ker \varphi \subseteq f^{-1}(C')$. Similarly, $f^{-1}(C') \subseteq \ker \varphi$. Therefore $f^{-1}(C') = \ker \varphi$. By Theorem 1.45., $K_{/f}^{-1}(C') \cong M_{/C'}$.

Definition 1.51. Let $\{K_i \mid i \in I\}$ be a family of semifields. The direct product of the family $\{K_i \mid i \in I\}$, denoted by $\prod_{i \in I} K_i$, is the set of all elements $(x_i)_{i \in I}$ in the cartesian product of the family $\{K_i^* \mid i \in I\}$ and 0 where $0 = (0_i)_{i \in I}$ together with operations + and · defined as usual, that is for any $(x_i)_{i \in I}$, $(y_i)_{i \in I} \in \prod_{i \in I} K_i$,

$$(x_i)_{i \in I} + (y_i)_{i \in I} = (x_i + y_i)_{i \in I}$$
 and

$$(x_i)_{i \in I} \cdot (y_i)_{i \in I} = (x_i y_i)_{i \in I}$$

Then we have that $\prod_{i \in I} K_i$ is a semifield.

<u>Proposition 1.52.</u> Let $\{K_i \mid i \in I\}$ be a family of semifields. Then the following statements hold:

- (1) for each $k \in I$, the canonical projection $\Pi_k : \prod_{i \in I} K_i \to K_k$ given by $\Pi_k((x_i)_{i \in I}) = x_k$ is an epimorphism of semifields,
- (2) if $1_i + 1_i = 1_i$ for all $i \in I$ then for each $k \in I$ the canonical injection $l_k : K_k \to \prod_{i \in I} K_i$ given by $l_k(x_k) = (x_i)_{|i| \in I}$ where $x_i = 1_i$ for $i \neq k$ for all $x_k \in K_k$ and $l_k(0) = 0$, is a monomorphism of semifields.

Proof Obvious.

Note that for every $(x_i)_{i \in I}$, $(y_i)_{i \in I} \in \prod_{i \in I} K_i$, suppose that $\Pi_k((x_i)_{i \in I}) = \Pi_k((y_i)_{i \in I}) \text{ for all } k \in I. \text{ Then } x_i = y_i \text{ for all } i \in I, \text{ hence}$ $(x_i)_{i \in I} = (y_i)_{i \in I}.$

Proposition 1.53. Let $\{K_i \mid i \in I\}$ be a family of semifields and L a semifield. For each $k \in I$, let $\phi_k \colon L \to K_k$ be a homomorphism of semifields. Then there is a unique homomorphism $\phi \colon L \to \prod_{i \in I} K_i$ such that $\prod_k \circ \phi = \phi_k$ for all $k \in I$.

Proof Define $\varphi: L \to \prod_{i \in I} K_i$ by $\varphi(x) = ((\varphi_i(x))_{i \in I})$ for all $x \in L$. We shall show that φ is a homomorphism, $\varphi(0) = ((\varphi_i(0))_{i \in I}) = (0_i)_{i \in I} = 0$. Let $x, y \in L$. Then $\varphi(x + y) = ((\varphi_i(x + y))_{i \in I}) = ((\varphi_i(x) + \varphi_i(y))_{i \in I}) = (\varphi_i(x)_{i \in I}) + (\varphi_i(y)_{i \in I}) = \varphi(x) + \varphi(y), \varphi(xy) = ((\varphi_i(xy))_{i \in I}) = (\varphi_i(x)\varphi_i(y)_{i \in I}) = ((\varphi_i(x))_{i \in I})((\varphi_i(y)_{i \in I}) = \varphi(x)\varphi(y)$. Therefore φ is a homomorphism.

For each $k \in I$, $\Pi_k \circ \phi(x) = \Pi_k(\phi(x)) = \Pi_k((\phi_i(x))_{i \in I}) = \phi_k(x)$ for all $x \in L$. Hence $\Pi_k \circ \phi = \phi_k$ for all $k \in I$. To prove uniqueness, suppose that there is a homomorphism $\Psi: L \to \prod_{i \in I} K_i$ such that $\Pi_k \circ \Psi = \phi_k$ for all $k \in I$. Let $x \in L$ and $k \in I$. So $\Pi_k(\Psi(x)) = \Pi_k \circ \Psi(x) = \phi_k(x) = \Pi_k \circ \phi(x) = \Pi_k(\phi(x))$ which implies that $\Psi(x) = \phi(x)$. Therefore $\Psi = \phi$.

Proposition 1.54. Let $\{K_i \mid i \in I\}$ be a family of semifields and let C_i be an a-convex subgroup of K_i for all $i \in I$. Then $\prod_{i \in I} C_i$ is an a-convex subgroup of $\prod_{i \in I} K_i$ and $\prod_{i \in I} K_i / \prod_{i \in I} C_i \cong \prod_{i \in I} (K_i / C_i)$.

Proof Define $\phi: \prod_{i\in I} K_i \to \prod_{i\in I} (K_{i}/C_i)$ by $\phi((x_i)_{|i|\in I}) = ((x_iC_i)_{|i|\in I})$ for all $(x_i)_{|i|\in I} \in \prod_{i\in I} K_i$. Then ϕ is an epimorphism.

To prove that $\ker \varphi = \prod_{i \in I} C_i$, let $(x_i)_{i \in I} \in \ker \varphi$.

Then $(x_iC_i)_{i \in I} = \phi((x_i)_{i \in I}) = (C_i)_{i \in I}$, so $x_iC_i = C_i$ for all $i \in I$. Thus $x_i \in C_i$ for all $i \in I$, so $(x_i)_{i \in I} \in \prod_{i \in I} C_i$. Therefore $\ker \phi \subseteq \prod_{i \in I} C_i$. It is clear that $\prod_{i \in I} C_i \subseteq \ker \phi$. Hence $\prod_{i \in I} C_i = \ker \phi$. By Remark 1.36 (2), we get that $\prod_{i \in I} C_i$ is an a-convex subgroup of $\prod_{i \in I} K_i$. By Theorem 1.45., $\prod_{i \in I} K_i / \prod_{i \in I} C_i \cong \prod_{i \in I} (K_i / C_i)$. #

Definition 1.55. Let L be a subsemifield of a direct product of family of semifields $\{K_i \mid i \in I\}$. L is said to be a subdirect product of $\{K_i \mid i \in I\}$ iff for every $k \in I$, $\prod_k (L) = K_k$ where \prod_k is the projection map.

Example 1.56. Let K be a semifield. Let $L = \{(x, x) \mid x \in K\}$. Then L is a subdirect product of $K \times K \cup \{(0, 0)\}$

Definition 1.57. Let $\{K_i \mid i \in I\}$ be a family of semifields and L a semifield. Let $g: L \to \prod_{i \in I} K_i$ be a homomorphism g is said to be a representation of L as a subdirect product of $\{K_i \mid i \in I\}$ iff Im g is a subdirect product of $\{K_i \mid i \in I\}$.

Definition 1.58. Let K be a semifield. K is said to be a <u>subdirectly</u> irreducible iff for every family $\{K_i \mid i \in I\}$ of semifields and for every monomorphic representation $f: K \to \prod_{i \in I} K_i$ there exists $k \in I$ such that $\prod_k \circ f$ is an isomorphism.

A semifield K is not subdirectly irreducible, we shall call K that a subdirectly reducible.

Theorem 1.59. Let $g: L \to \prod_{i \in I} K_i$ be a representation of L as a subdirect product of $\{K_i \mid i \in I\}$. Then Im $g \cong L/_{\bigcap \ker \Pi_k \circ g}$.

Proof Define $\phi: L \to \operatorname{Im} g$ by $\phi(x) = g(x)$ for all $x \in L$. Then ϕ is an epimorphism. To show that $\ker \phi = \bigcap \ker \Pi_k \circ g$, let $x \in L$ be such that $\phi(x) = (1_i)_{i \in I}$. So $g(x) = (1_i)_{i \in I}$. For each $k \in I$, $\Pi_k \circ g(x) = 1_k$, then $x \in \ker \Pi_k \circ g$ Hence $x \in \bigcap \ker \Pi_k \circ g$. Thus $\ker \phi \subseteq \bigcap \ker \Pi_k \circ g$.

Next, let $x \in \bigcap \ker \Pi_{k}^{\circ} g$. Then $\Pi_{k}^{\circ} g(x) = 1_{k}$ for all $k \in I$ which implies that $g(x) = (1_{i})_{i \in I}$. Since $\phi(x) = g(x) = 1$, $x \in \ker \phi$. Hence $\bigcap \ker \Pi_{k}^{\circ} g \subseteq \ker \phi$. By Theorem 1.45, $\operatorname{Im} g \cong L/\bigcap \ker \Pi_{k}^{\circ} g$ #

Corollary 1.60. Let $g: L \to \prod_{i \in I} K_{i}$ be a monomorphic representation of L as a subdirect product of $\{K_{i} \mid i \in I\}$. Then $\bigcap \ker \Pi_{k}^{\circ} g = \{1\}$, hence $\operatorname{Im} g \cong L$.

Proof To show that $\cap \ker \Pi_k \circ g = \{1\}$, let $x \in \cap \ker \Pi_k \circ g$. Then $\Pi_k \circ g(x) = 1_k$ for all $k \in I$. This implies that $g(x) = (1_i)_{i \in I}$. Since g is monomorphism, x = 1. Therefore $\cap \ker \Pi_k \circ g = \{1\}$. #

Proposition 1.61. Let L be a semifield and $\mathscr{C} = \{C_i \mid C_i \text{ is an a-convex subgroup of } L$, for all $i \in I\}$. Define $f_{\mathscr{C}} : L \to \prod_{i \in I} (L/C_i)$ by $f_{\mathscr{C}}(x) = (xC_i)_{i \in I}$ for all $x \in L$. Then $f_{\mathscr{C}}$ is a representation of L as a subdirect product of $\{L/C_i \mid i \in I\}$. Furthermore, if $\bigcap_{i \in I} C_i = \{1\}$ then $f_{\mathscr{C}}$ is a monomorphic representation of L.

Proof Clearly, $f_{\mathscr{C}}$ is a homomorphism of L. To show that $\operatorname{Im} f_{\mathscr{C}}$ is subdirect product, let $k \in I$ and $x \in L$. $\Pi_{k^0} f_{\mathscr{C}}(x) = \Pi_k(f_{\mathscr{C}}(x)) = \Pi_k((xC_i)_{i \in I})$ $= xC_k \in L_{/C_k}$. Thus $\Pi_k(\operatorname{Im} f_{\mathscr{C}}) \subseteq L_{/C_k}$. Let $x \in L$. Then $xC_k \in L_{/C_k}$. Then $f_{\mathscr{C}}(x) \in \prod_{i \in I} (L_{/C_i})$ and $\Pi_k(f_{\mathscr{C}}(x)) = xC_k \in \Pi_k(\operatorname{Im} f_{\mathscr{C}})$. Hence $L_{/C_k} \subseteq \Pi_k(\operatorname{Im} f_{\mathscr{C}})$.

Therefore $\Pi_{k} \circ f_{\mathscr{C}}(L) = \Pi_{k}(\operatorname{Im} f_{\mathscr{C}}) = L_{C_{k}}$. Hence $f_{\mathscr{C}}$ is a representation of L as a subdirect product of $\{L_{C_{k}} \mid i \in I\}$.

Next, assume that $\bigcap_{i\in I}C_i=\{1\}$. To prove that $f_{\mathscr{C}}$ is 1-1, let $x\in L$ be such that $f_{\mathscr{C}}(x)=(C_i)_{i\in I}$. Then $(xC_i)_{i\in I}=(C_i)_{i\in I}$, so $x\in C_i$ for all $i\in I$. By assumption, x=1. Hence $f_{\mathscr{C}}$ is 1-1. #

Proposition 1.62. Let K be a semifield and C the set of all a-convex subgroups of K except {1}. Then K is subdirectly irreducible iff C has a minimum element.

Proof Assume that K is a subdirectly irreducible. Suppose that \mathscr{C} has no minimum element. Then $\cap \mathscr{C} = \{1\}$. By Proposition 1.61., we have that $f_{\mathscr{C}} \colon K \to \prod_{c \in \mathscr{C}} (K/_{C})$ defined by $f_{\mathscr{C}}(x) = (xC)_{c \in \mathscr{C}}$ which is a monomorphic representation of L as a subdirect product of $\{K/_{C} \mid C \in \mathscr{C}\}$. By assumption, there exists a $C_0 \in \mathscr{C}$ such that $\Pi_{C_0} \circ f_{\mathscr{C}}$ is an isomorphism of L. Claim that $C_0 = \{1\}$. Let $x \in C_0$. Then $\Pi_{C_0} \circ f_{\mathscr{C}}(x) = \Pi_{C_0} (f_{\mathscr{C}}(x)) = \Pi_{C_0} ((xC)_{C \in \mathscr{C}}) = xC_0$. Since $x \in C_0$, $x \in \ker \Pi_{C_0} \circ f_{\mathscr{C}}$. Since $\Pi_{C_0} \circ f_{\mathscr{C}}$ is an isomorphism, x = 1. So we have the claim. It is a contradiction, since $\{1\} = C_0 \in \mathscr{C}$. Therefore \mathscr{C} has a minimum element.

Conversely, assume that \mathscr{C} has a minimum element say C_m . Let $\{K_i \mid i \in I\}$ be a family of semifields and $f: K \to \prod_{i \in I} K_i$ a monomorphic representation of K as a subdirect product of $\{K_i \mid i \in I\}$. Then by Remark 1.36 (2), we have that $\{\ker \Pi_i \circ f \mid i \in I\}$ is a set of a-convex subgroups of K. Since f is a monomorphism, $\bigcap_{i \in I} \ker \Pi_i \circ f = \{1\}$. Suppose that for $i \in I$, $\ker \Pi_i \circ f \neq \{1\}$. Then $\{\ker \Pi_i \circ f \mid i \in I\} \subseteq \mathscr{C}$. Therefore $C_m \subseteq \bigcap_{i \in I} \ker \Pi_i \circ f = \{1\}$. {1}. So $C_m = \{1\}$, a contradiction. Therefore there exists $k \in I$ such that $\ker \Pi_{k^0} f = \{1\}$. Claim that $\Pi_{k^0} f$ is an isomorphism. Let $x, y \in K$ be such that $\Pi_{k^0} f(x) = \Pi_{k^0} f(y)$. Hence $xy^{-1} \in \ker \Pi_{k^0} f = \{1\}$, so x = y. So we have the claim. Therefore K is a subdirectly irreducible. #

Next, we want to show that every semifield is a subdirect product of subdirectly irreducible semifields. First we need the lemmas.

Lemma 1.63. Let K be a semifield and $x, y \in K$ such that $x \neq y$. Then there is a maximal a-convex subgroup M of K such that $xy^{-1} \notin M$.

Proof Let x, y \in K be such that x \neq y. Let $\mathscr{C} = \{C \mid C \text{ is an a-convex subgroup of K and xy}^1 \notin C\}$. $\mathscr{C} \neq \emptyset$ since $\{1\} \in \mathscr{C}$. By Zom's Lemma, \mathscr{C} has a maximal element.

Lemma 1.64. By assumption of Lemma 1.63., let $\varnothing = \{C \mid C \text{ is an a-convex subgroup of K such that } M \subset C\}$. Then $\varnothing M$ has a minimum element.

Proof $\varnothing \neq \varnothing$ since $K \in \varnothing A$. If there is $C \in \varnothing A$ and $xy^{-1} \notin C$ then this contradicts the minimality of M. Therefore for every $C \in \varnothing A$, $xy^{-1} \in C$. Then we have that $\bigcap \varnothing A$ is an a-convex subgroup of K which is the minimum element and $xy^{-1} \in \bigcap \varnothing A$. Hence $\bigcap \varnothing A \neq M$.

Lemma 1.65. By assumption of Lemma 1.63., K/M is a subdirectly irreducible semifields.

Proof Let $\mathscr C$ be the set of all a-convex subgroups of $K_{/M}$ except $\{M\}$. By Corollary 1.42., we have that $\mathscr C$ is isomorphic to the set of all

a-convex subgroups of K strictly containing M. By Lemma 1.64., what a minimum element. By Proposition 1.62., K/M is a subdirectly irreducible semifields.

Theorem 1.66. Let K be a semifield. Then K is a subdirect product of subdirectly irreducible semifields.

Proof By Lemma 1.63., for $x, y \in K$ and $x \neq y$, we have that C_{xy} is an a-convex subgroup of K such that $xy^{-1} \notin C_{xy}$. By Lemma 1.65., $K_{C_{xy}}$ is a subdirectly irreducible for all $x, y \in K$ and $x \neq y$.

Let $\mathscr{C} = \{ C_{xy} \mid x, y \in K \text{ and } x \neq y \}$. Let $x \in \cap \mathscr{C}$. Suppose that $x \neq 1$. Then $x \notin C_{x1}$, a contradiction since $x \in \cap \mathscr{C}$. So $\cap \mathscr{C} = \{1\}$. Thus by Proposition 1.61., we have $f_{\mathscr{C}} \colon K \to \prod_{C \in \mathscr{C}} K_{/C}$ is a monomorphic representation of K as a subdirect product of $\{K_{/C} \mid C \in \mathscr{C}\}$. Therefore $f_{\mathscr{C}}(K)$ is a subdirect product of $\{K_{/C} \mid C \in \mathscr{C}\}$. Since $K \cong f_{\mathscr{C}}(K)$, K is a subdirect product of a subdirectly irreducible semifields.