การหาค่าพารามิเตอร์ของมอเตอร์เหนี่ยวนำในขณะหยุดนิ่งด้วยวิธีอัตโนมัติ สำหรับใช้ในระบบควบคุมแบบเวกเตอร์

นาย ชมพู สุขภาพ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมไฟฟ้า ภาควิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2544 ISBN 974-17-0043-1 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

AUTO-TUNING OF INDUCTION MOTOR PARAMETERS AT STAND STILL FOR A VECTOR CONTROL SYSTEM

Mr. Chompoo Sukhapap

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Electrical Engineering Department of Electrical Engineering Faculty of Engineering Chulalongkorn University Academic Year 2001 ISBN 974-17-0043-1

การหาค่าพารามิเตอร์ของมอเตอร์เหนี่ยวนำในขณะหยุคนิ่งด้วยวิธี
อัตโนมัติสำหรับใช้ในระบบควบคุมแบบเวกเตอร์
นายชมพู สุขภาพ
วิศวกรรมไฟฟ้า
อาจารย์ คร.สมบูรณ์ แสงวงค์วาณิชย์

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

(ศาสตราจารย์ คร.สมศักดิ์ ปัญญาแก้ว)

คณะกรรมการสอบวิทย<mark>านิพนธ์</mark>

.....ประธานกรรมการ

(รองศาสตราจารย์ คร.ยุทธนา กุลวิทิต)

.....อาจารย์ที่ปรึกษา

(อาจารย์ คร.สมบูรณ์ แสงวงค์วาณิชย์)

.....กรรมการ

(ผู้ช่วยศาสตราจารย์ คร.มานพ วงศ์สายสุวรรณ)

ชมพู สุขภาพ : การหาค่าพารามิเตอร์ของมอเตอร์เหนี่ยวนำในขณะหยุดนิ่งด้วยวิธี อัตโนมัติสำหรับใช้ในระบบควบคุมแบบเวกเตอร์ (AUTO-TUNING OF INDUCTION MOTOR PARAMETERS AT STAND STILL FOR A VECTOR CONTROL SYSTEM.) อ. ที่ ปรึกษา : อ. คร. สมบูรณ์ แสงวงค์วาณิชย์, 125 หน้า. ISBN 974-17-0043-1

วิทยานิพนธ์นี้นำเสนอการหาก่าพารามิเตอร์ของมอเตอร์เหนี่ยวนำในขณะหยุดนิ่ง โดยใช้อินเวอร์เตอร์ ด้วยการจ่ายรูปแบบสัญญาณแรงดันและกระแสที่เหมาะสมสำหรับการ หาก่าพารามิเตอร์แต่ละตัว และใช้วิธีทำซ้ำกำลังสองน้อยที่สุดในการประมวลผลและลดผล ของสัญญาณรบกวน เพื่อศึกษาผลกระทบจากการใช้อินเวอร์เตอร์ในการหาก่าพารามิเตอร์

สถาบนวทยบรการ

ภาควิชา	วิศวกรรมไฟฟ้า	ลายมือชื่อนิสิต
สาขาวิชา <u></u>	<u>วิศวกรรมไฟฟ้า</u>	ุ ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา <u>.</u>	2544	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

4170275021: Major Power Electronics

KEY WORD: AUTO-TUNING / IDENTIFICATION OF STAND STILL / INDUCTION MOTOR PARAMETER / VECTOR CONTROL / RECURSIVE LEAST-SQUARE

CHOMPOO SUKHAPAP : AUTO-TUNING OF INDUCTION MOTOR PARAMETERS AT STAND STILL FOR A VECTOR CONTROL SYSTEM. THESIS ADVISOR :Dr. SOMBOON SANGWONGWANICH, 125 pp. ISBN 974-17-0043-1

In this thesis a parameter auto-tuning method of an induction motor at stand still using an inverter is proposed. Each parameter of the motor is identified by the injection of an appropriate stator voltage or current of a predetermined pattern. The recursive least-square algorithm is then used in the calculation to reduce the effect of noise. The problems associated with the use of inverter in the auto-tuning process are also investigated.

Department ELECTRICAL ENGINEERING Student's signature..... Field of study ELECTRICAL ENGINEERING Advisor's signature..... Academic year 2001 Co-advisor's signature.....

กิตติกรรมประกาศ

วิทยานิพนธ์นี้สำเร็จลุล่วงไปได้ ด้วยความช่วยเหลือและเอาใจใส่อย่างคียิ่งจากอาจารย์ คร.สมบูรณ์ แสงวงก์วาณิชย์ อาจารย์ที่ปรึกษาวิทยานิพนธ์ ผู้ที่ให้กวามแนะนำตลอดจนความ ช่วยเหลือด้านต่างๆที่เป็นประโยชน์ต่อการทำวิจัยตลอดมา และรุ่นน้องรุ่นพี่รวมถึงเพื่อนใน ห้องปฏิบัติการวิจัยอิเล็กทรอนิกส์กำลังที่ให้กำลังใจที่ดีในการทำวิทยานิพนธ์ รวมทั้งท่านอาจารย์ ทั้งหลายที่ให้กวามรู้ตั้งแต่อดีตจนถึงปัจจุบัน ตลอดจนเงินทุนวิจัยจากห้องปฏิบัติการอิเล็กทรอนิกส์ กำลังและขอขอบคุณ บริษัท A.P.Y ENGINEERING CO., LTD. ที่ส่งเสริม และสนับสนุนในการศึกษาครั้งนี้

สุดท้ายนี้ข้าพเจ้าขอกราบขอบพระคุณบิดา-มารดาและญาติพี่น้องของข้าพเจ้า ที่ให้โอกาส ทางการศึกษาและเป็นกำลังใจด้วยดีตลอดมา

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

สารบัญ

	หน้า
บทคัดย่อภาษาไทย	3
บทคัดช่อภาษาอังกฤษ	จ
กิตติกรรมประกาศ	ฉ
តាទប័ល្វ	Y
สารบัญตาราง	മ
สารบัญภาพ	ณ
สัญลักษณ์ที่ใช้ในวิทยานิพนธ์	น

บทที่

1 บทนำ	1
2 สมการของมอเตอร์เหนี่ยวนำและการทคสอบหาก่าพารามิเตอร์	5
2.1 สมการทั่วไปของมอเตอ <mark>ร์เหนี่</mark> ยวน <mark>ำ</mark>	5
2.2 การทดสอบหาก่าพารามิเตอร์ของมอเตอร์เหนี่ยวนำด้วยวิธีการทดสอบไร้โหลด	
และยึดโรเตอร์	7
2.2.1 การทดสอบไร้โหลด	7
2.2.2 การทดสอบยึด โรเตอร์	8
3 การหาก่าพารามิเตอร์ โดยใช้อินเวอร์เต <mark>อร์</mark>	28
3.1 การหาค่าความด้านทานของขคลวคสเตเตอร์ (<i>R_s</i>)	30
3.2 การหาค่าความเหนี่ยวนำรั่วไหลทางค้านสเตเตอร์ ($\sigma L_{\scriptscriptstyle S}$)	39
3.3 การหาค่าเวลาคงตัวทางเวลาทางด้านโรเตอร์ ($ au_R$) และค่าความต้านทาน	
โรเตอร์สมมู <mark>ลในวงจรสมมูลอ้างอิงโรเตอร์ฟลักซ์(R_R^\prime)</mark>	46
3.4 การหาเส้นกราฟการอิ่มตัวของแกนเหล็ก(Saturation curve)ของมอเตอร์เหนี่ยวนำ	57
4 การทดสอบค่าพารามิเตอร์	66
5 บทสรุปและข้อเสนอแนะ	88
รายการอ้้างอิง	90
กาดผมาวก	92
มแหล่าม	 125
ประวัติผู้เขียนวิทยานิพนธ์	120

สารบัญตาราง

	GI I DE GUITO I A	
ตาราง	ที่	หน้า
2.1	มอเตอร์เหนี่ยวนำ 3 เฟสที่ใช้ทำการทดสอบ	. 9
2.2	ผลการหาค่าพารามิเตอร์มอเตอร์เหนี่ยวนำโดยวิธีทดสอบไร้โหลดและยึดโรเตอร์	26
3.1	ผลการหาค่าพารามิเตอร์มอเตอร์เหนี่ยวนำโคยใช้อินเวอร์เตอร์	65
٩.1	ผลการวัคค่าความต้านทาน $R_{ m s}$ ที่ขั้วของมอเตอร์	102
٩.2	ผลการทคสอบไร้โหลดของมอเตอร์ ABB ที่ความถี่ 50 Hz	103
٩.3	ผลการทคสอบยึคโรเตอร์ของมอเตอร์ ABB ที่ความถี่ 50 Hz	104
গ .4	ผลการทคสอบไร้โหลดของมอเตอร์ ABB ที่ความถี่ 30 Hz	105
٩.5	ผลการทคสอบขึคโรเตอร์ของมอเตอร์ ABB ที่ความถี่ 30 Hz	106
٩.6	ผลการทคสอบไร้โหลดของมอเตอร์ ABB ที่ความถี่ 10 Hz	107
٩.7	ผลการทคสอบขึคโรเตอร์ของมอเตอร์ ABB ที่ความถี่ 10 Hz	108
٩.8	ผลการทคสอบไร้โหลดของมอเตอร์ ABB ที่ความถี่ 2 Hz	109
٩.9	ผลการทคสอบยึคโรเตอร์ของมอเตอร์ ABB ที่ความถี่ 2 Hz	110
٩.1() ผลการทคสอบไร้โหลดของมอเตอร์ SIEMENS ที่ความถี่ 50 Hz	112
٩.1	ผลการทดสอบยึดโรเตอร์ของมอเตอร์ SIEMENS ที่ความถี่ 50 Hz	113
٩.12	2 ผลการทคสอบไร้โหลดของมอเตอร์ SIEMENS ที่ความถี่ 30 Hz	114
٩.13	3 ผลการทคสอบยึคโรเตอร์ของมอเตอร์ SIEMENS ที่ความถี่ 30 Hz	115
٩.14	ผลการทคสอบไร้โหลคของมอ <mark>เตอร์ SIEMENS</mark> ที่ความถี่ 10 Hz	116
٩.15	ร ผลการทคสอบยึคโรเตอร์ของมอเตอร์ SIEMENS ที่ความถี่ 10 Hz	116
٩.16	5 ผลการทคสอบไร้โหลดของมอเตอร์ SIEMENS ที่ความถี่ 2 Hz	117
٩.17	7 ผลการทคสอบยึคโรเตอร์ของมอเตอร์ SIEMENS ที่ความถี่ 2 Hz	118
٩.18	3 ผลการทคสอบไร้โหลดของมอเตอร์ MITSUBISHI ที่ความถี่ 5 <mark>0 H</mark> z	119
٩.19) ผลการทคสอบยึด โรเตอร์ของมอเตอร์ MITSUBISHI ที่ความถี่ 50 Hz	119
٩.20) ผลการทคสอบไร้ โหลคของมอเตอร์ MITSUBISHI ที่ความถี่ 30 Hz	120
٩.2	ผลการทคสอบยึด โรเตอร์ของมอเตอร์ MITSUBISHI ที่ความถี่ 30 Hz	121
٩.22	2 ผลการทคสอบไร้โหลดของมอเตอร์ MITSUBISHI ที่ความถี่ 10 Hz	121
٩.23	3 ผลการทคสอบยึด โรเตอร์ของมอเตอร์ MITSUBISHI ที่ความถี่ 10 Hz	122
٩.24	ผลการทคสอบไร้โหลคของมอเตอร์ MITSUBISHI ที่ความถี่ 2 Hz	123
٩.25	ร ผลการทคสอบยึคโรเตอร์ของมอเตอร์ MITSUBISHI ที่ความถี่ 2 Hz	123

สารบัญภาพ

รูปที่	หน้	l
2.1	วงจรสมมูลของมอเตอร์เหนี่ยวนำในขณะหยุดนิ่ง	
2.3	วงจรสมมูลต่อเฟสของมอเตอร์เหนี่ยวนำในขณะทำการทดสอบไร้ โหลด	
2.4	วงจรสมมูลต่อเฟสของมอเตอร์เหนี่ยวนำขณะทำการทคสอบยึคโรเตอร์	
2.5	ก่ากวามด้านทานของขดลวดสเตเตอร์ ($R_{\mathcal{S}}$) ของมอเตอร์ ABB ที่อุณหภูมิต่างๆ 10	
2.6	ค่ากวามต้ำนทานของขดลวดสเตเตอร์ ($R_{\mathcal{S}}$) ของมอเตอร์ SIEMENS ที่อุณหภูมิต่างๆ 10	
2.7	ค่ากวามต้านทานของขดลวดสเตเตอร์ ($R_{\mathcal{S}}$) ของมอเตอร์ MITSUBISHI ที่อุณหภูมิต่างๆ . 11	
2.8	ค่าความต้านทานสมมูลของกำลังสูญเสียในแกนเหล็กของมอเตอร์ ABB	
	เปรียบเทียบกับแรงดันเฟสที่ความถี่ต่างๆ ณ อุณหภูมิการทดสอบ 44 ° C 12	
2.9	ค่าความต้านทานสมมูลของกำลังสูญเสียในแกนเหล็กของมอเตอร์ SIEMENS	
	เปรียบเทียบกับแรงดันเฟสที่ความถี่ต่างๆ ณ อุณหภูมิการทดสอบ 44 ° C 13	
2.9	ค่าความต้านทานสมมูลของกำลังสูญเสียในแกนเหล็กของของมอเตอร์ MITSUBISHI	
	เปรียบเทียบกับแรงดันเฟสที่ความถี่ต่างๆ ณ อุณหภูมิการทดสอบ 44 ° C 13	
2.10	ค่าความต้านทานขดถวดโรเตอร์ (R_R^\prime) ของมอเตอร์ ABB	
	ณ อุณหภูมิการทดสอบ 44 °C14	
2.11	ค่ากวามด้านทานขคลวดโรเตอร์ (R_R^\prime) ของมอเตอร์ SIEMENS	
	ณ อุณหภูมิการทดสอบ 44 °C 15	
2.12	ค่าความด้านทานขคลวคโรเต <mark>อร์ (R_R^\prime) ของมอเตอร์ MIT</mark> SUBISHI	
	ณ อุณหภูมิการทดสอบ 44 °C 15	
2.13	ค่าความด้านทานขคลวคโรเตอร์ (R_R^\prime)จากการทคสอบยึดโรเตอร์ที่ก่ากระแสพิกัด	
	ของมอเตอร์ทั้ง 3 ตัว ณ อุณหภูมิการทดสอบ 44 ° $m{C}$	
2.14	ค่าความสัมพันธ์ระหว่างความเหนี่ยวนำ L_{S} ของมอเตอร์ ABB	
	กับกระแสเฟสที่ความถี่ต่างๆ ณ อุณหภูมิการทดสอบ 44 $^\circ C$	
2.15	ค่าความสัมพันธ์ระหว่างความเหนี่ยวนำ L_S ของมอเตอร์ SIEMENS	
	กับกระแสเฟสที่ความถี่ต่างๆ ณ อุณหภูมิการทดสอบ 44 ° C	
2.16	ค่าความสัมพันธ์ระหว่างความเหนี่ยวนำ L_S ของมอเตอร์ MITSUBISHI	
	กับกระแสเฟสที่ความถี่ต่างๆ ณ อุณหภูมิการทดสอบ 44 ° C	
2.17	้ ค่าความเหนี่ยวนำ M' และ L_{S} ของมอเตอร์ ABB ที่ความถี่ 50 Hz	
	ณ อุณหภูมิการทดสอบ 44 °C	

	ย เวกะกิม เพ (พด)	
ปที่		หเ
2.18 ค่	ากวามเหนี่ขวนำ M^{\prime} และ $L_{S}^{}$ ของมอเตอร์ SIEMENS ที่กวามถี่ 50 Hz	
ถ	เอุณหภูมิการทดสอบ 44 ° C	. 19
2.19 ค่	ากวามเหนี่ขวนำ M^{\prime} และ $L_{S}^{}$ ของมอเตอร์ MITSUBISHI ที่กวามถี่ 50 Hz	
ถ	เอุณหภูมิการทดสอบ 44 ° C	. 20
2.20 ค่	า L_S และค่า M^{\prime} จากผลการทดสอบไร้โหลดและยึดโรเตอร์ของมอเตอร์ ABB	
ที่	ความถี่2 Hz ณ อุณหภูมิการทดสอบ 44 ° C	. 21
2.21 ค่	า L_S และค่า M' จากผลการทดสอบไร้โหลดและยึดโรเตอร์ของมอเตอร์ SIEMENS	
ที่	ความถี่2 Hz ณ อุณหภูมิการทคสอบ 44 ° C	. 21
2.22 ค่	า L_S และค่า M^{\prime} จากผลการทดสอบไร้โหลดและยึดโรเตอร์ของมอเตอร์ MITSUBISI	HI
ที่	ความถี่2 Hz ณ อุณหภูมิการทดสอบ 44 ° C	. 22
2.23 ค่	าความเหนี่ขวนำ M^{\prime} จากผลการทดสอบยึดโรเตอร์ที่ก่ากระแสพิกัดของมอเตอร์ทั้ง 3 ต้	้ว
í	น อุณหภูมิการทดสอบ 44 ° C	22
2.24 ค่	า σL_S ของมอเตอร์ ABB ที่ความถี่ 2 Hz ณ อุณหภูมิการทคสอบ 44 ° C	23
2.25 ค่	า σL_S ของมอเตอร์ SIEMENS ที่กวามถี่ 2 Hz ณ อุณหภูมิการทดสอบ 44 ° C	24
2.26 ค่	า σL_{S} ของมอเตอร์ MITSUBISHI ที่ความถี่ 2 Hz ณ อุณหภูมิการทดสอบ 44 ° C	24
2.27	ค่าคงที่ทางเวลาทางด้านโรเตอร์ ($ au_R$)จากผลการทุดสอบยึดโรเตอร์ที่ค่ากระแสพิกัด	
6	มองมอเตอร์ทั้ง 3 ตัว ณ อุณหภูม <mark>ิการทดสอบ 44 °C</mark>	25
2.28 เก	ในกราฟการอิ่มตัวของแกนเหล็กของมอเตอร์ของ ABB	
វែ	น อุณหภูมิการทดสอบ 44 ° C	26
2.29 ເຕັ	ในกราฟการอิ่มตัวของแกนเหลีกของมอเตอร์ของ SIEMENS	
ť	น อุณหภูมิการทค <mark>สอ</mark> บ 44 ° C	. 27
2.30 lî	ในกราฟการอิ่มตัวของแกนเหล็กของมอเตอร์ของ MITSUBISHI	
í	น อุณหภูมิการทคสอบ 44 ° C	27
3.1	โครงสร้างของอินเวอร์เตอร์ที่ใช้ในการหาก่าพารามิเตอร์	2
3.2	วงจรสมมูลไฟตรงของมอเตอร์เหนี่ยวนำขณะที่ทำการจ่ายแรงคันเพื่อหาค่า $R_s $	
3.3	รูปแบบการจ่ายแรงคันไฟตรงที่ขนาคต่างๆ	3
3.4	ค่ากระแส i_S และ R_S ขณะที่จ่ายแรงคัน u_S ที่มุม 0 องศา	•••••

รูปที่		หน้า
3.6	ผลการหาก่า ${\it R}_{S}$ ของมอเตอร์ ABB ที่ก่ามุมต่างๆเทียบกับก่าที่วัดด้วยมิเตอร์	
3.7	ผลการหาค่า ${\it R}_{S}$ ของมอเตอร์ ABB เฉลี่ยเทียบกับค่าที่วัดด้วยมิเตอร์	
3.8	ผลการหาค่า $R_{_S}$ ของมอเตอร์ SIEMENS ที่ค่ามุมต่างๆเทียบกับค่าที่วัดด้วยมิเร	าอร์ 36
3.9	ผลการหาค่า $R_{\scriptscriptstyle S}$ ของมอเตอร์ SIEMENS เฉลี่ยเทียบกับค่าที่วัคด้วยมิเตอร์	
3.10	ผลการหาค่า R_s ของมอเตอร์ MITSUBISHI ที่ก่ามุมต่างๆเทียบกับก่าที่วัดด้ว เ	มมิเตอร์37
3.11 M	ลการหาค่า R _s ของมอเตอร์ MITSUBISHI เฉลี่ยเทียบกับค่าที่วัดด้วยมิเตอร์	37
3.12 ភ្ល	ปแบบการสวิตช์ที่ใช้ในการจ่ายแรง <mark>ค</mark> ันพัลส์ให้กับมอเตอร์	
3.13 ว.	งจรสมมูลของมอเต <mark>อร์ขณะจ่ายแรงดันพัลส์ให้กับมอเตอร์</mark>	
3.14 ก _ั	ารใช้วงจรกรองผ่านต่ำ $Fig(zig)$ ในกรองสัญญาณ $cig(Nig)$ และ $yig(Nig)$	
3.15 สั [*]	_ู ้ญญาณกระแสและแรงคันในขณะที่ง่ายแรงคันพัลส์ให้กับมอเตอร์	
3.16 M	ลการคำนวณค่า σL_{S} ด้วยวิธี RLS	
3.17 M	ลการหาค่า σL_{S} ของมอเตอร์ ABB จากการเก็บข้อมูลหลายๆครั้ง	
3.18 M	ลการหาค่า σL_{S} ของมอเตอร์ SIEMENS จากการเก็บข้อมูลหลายๆครั้ง	
3.19 M	ลการหาค่า σL_{S} ของมอเตอร์ MITSUBISHI จากการเก็บข้อมูลหลายๆครั้ง	45
3.20	วงจรสมมูลของมอเตอ <mark>ร์เหนี่ยวนำขณะจ่ายกระ</mark> แสไฟ <mark>ตร</mark> ง	
เป้	บ้าทางด้านสเตเตอร์ที่ก่า +I _s ณ เวลา <i>t</i> < 0	
3.21	วงจรสมมูลของมอเตอร์เหนี่ยวนำขณะจ่ายกระแสไฟตรง	
เข้	บ้าทางด้านสเตเตอร์ที่ก่า – I_s ณ เวลา $t \ge 0$	
3.22	วงจรสมมูลของมอเตอร์เหนี่ยวนำขณะจ่ายกระแสไฟตรง	
เป้	บ้าทางค้านสเตเต <mark>อ</mark> ร์ที่ค่า –I _s ณ เวลา t >> 0	
3.23 f	ค่ากระแสและแรงคันต่างๆในวงจรสมมูลของมอเตอร์	48
3.24 N	ลการควบคุมกระแสทางค้านสเตเตอร์จากค่ากระแส +2 A เป็น –2 A	50
3.25 ค่ ⁻	ำแรงเคลื่อนเหนี่ยวนำ $u_{M'}$ เมื่อควบคุมกระแสทางด้านสเตเตอร์	
จาก	าค่ากระแส +2 A เป็น –2 A	
3.26 N	ลการกำนวณ RLS โดยใช้ข้อมูลในช่วง 100 ms ซ้ำ	
(แส	หดงเฉพาะ 8 รอบแรกของการคำนวณ)	52
3.27 ค่ ⁻	ำของ $ au_R$ ของมอเตอร์ ABB จากการเก็บข้อมูลหลายๆครั้ง	53
	9/	

รูปที่ หน้า	
3.29 ค่าของ $ au_R$ ของมอเตอร์ SIEMENS จากการเก็บข้อมูลหลายๆครั้ง	
3.30 ค่าของ R_R^\prime ของมอเตอร์ SIEMENS จากการเก็บข้อมูลหลายๆครั้ง	
3.31 ค่าของ $ au_{R} $ ของมอเตอร์ MITSUBISHI จากการเกี่บข้อมูลหลายๆครั้ง	
3.32 ค่าของ R_R^\prime ของมอเตอร์ MITSUBISHI จากการเก็บข้อมูลหลายๆครั้ง	
3.33 ผลการทคสอบลักษณะการอิ่มตัวของแกนเหล็ก	
3.34 เส้นกราฟ $\lambda_R'(t)$ เทียบกับ $i_{MR}(t)$ ที่ได้จากการควบคุมกระแส i_S จาก +5 A เป็น –5 A 60	
3.35 ค่าเฉลี่ยเส้นกราฟ $\lambda_R'(t)$ เทียบกับ $i_{MR}(t)$ ที่ได้จากการควบคุมกระแส i_S	
จาก +5 A เป็น –5 A	61
3.36 ค่าเฉลี่ยเส้นกราฟ $\lambda_R'\left(t ight)$ เทียบกับ $i_{MR}\left(t ight)$ ที่ได้จากการควบคุมกระแส i_S จาก +5 A เป็น	
–5 A และจาก-5 A เป็น +5 A	
3.37 เส้นกราฟการอิ่มตัวของแกนเหล็กที่ประมาณได้	
3.38 เส้นกราฟการอิ่มตัวของแกนเหล็กที่ประมาณได้ของมอเตอร์ ABB	
ในช่วงที่ค่ากระแสสร้างฟ <mark>ลักซ์มีค่าบวก63</mark>	
3.39 เส้นกราฟการอิ่มตัวของแกนเหล็กที่ประมาณได้ของมอเตอร์ SIEMENS	
ในช่วงที่ค่ากระแสสร้าง <mark>ฟ</mark> ลักซ์มีค่าบวก	64
3.40 เส้นกราฟการอิ่มตัวของแกนเหล็กที่ประมาณได้ของมอเตอร์ MITSUBISHI	
ในช่วงที่ค่ากระแสสร้างฟลักซ์มีค่าบวก	
4.1 แผนภาพการจำลองระบบของมอเตอร์เหนี่ยวนำที่รวมผลของการอิ่มตัวของแกนเหล็ก 66	
4.2 ความเร็วของโรเตอ <mark>ร์ข</mark> องมอเตอร์ ABB จากการป้อนแรงคัน 3 เฟส	
ที่ก่าพิกัดของมอเตอร์ โดยตรง.	
4.3 แรงดันเฟส (v _u , v _v , v _w) ความถี่ 50 Hz ที่จ่ายให้มอเตอร์ ABB	
4.4 แรงดันเฟส ($v_u^{}, v_v^{}, v_w^{}$) ความถี่ 50 Hz ที่จ่ายให้มอเตอร์ ABB	
ขยายจากแรงคันในรูปที่ 4.3 ช่วงต้น	
4.5 กระแสเฟส (i_u, i_v, i_w) ความถี่ 50 Hz ของมอเตอร์ ABB	
4.6 กระแสเฟส (i_u, i_v, i_w) ความถี่ 50 Hz ของมอเตอร์ ABB	
ขยายจากกระแสในรูปที่ 4.5 ช่วงต้น	

หน้า

รูปที่	
4.7	ความเร็วของ โรเตอร์ของมอเตอร์ SIEMENS จากการป้อนแรงคัน 3 เฟส
จ้	วี่ค่าพิกัดของมอเตอร์ โดยตรง
4.8	แรงคันเฟส (v _u , v _v , v _w) ความถี่ 50 Hz ที่จ่ายให้มอเตอร์ SIEMENS
4.9	แรงดันเฟส (v _u , v _v , v _w) ความถี่ 50 Hz ที่ง่ายให้มอเตอร์ SIEMENS
e	ขยายจากแรงคันในรูปที่ 4.8 ช่วงค้น
4.10	กระแสเฟส (i_{μ}, i_{v}, i_{w}) ความถี่ 50 Hz ของมอเตอร์ SIEMENS
4.11	กระแสเฟส (i_u, i_v, i_w) ความถี่ 50 Hz ของมอเตอร์ SIEMENS
e	ขยายจากกระแสในรูปที่ 4.10 ช่วงต้น
4.12	ความเร็วของโรเตอร์ของมอเตอร์ MITSUBISHI จากการป้อนแรงคัน 3 เฟสโดยตรง
4.13	แรงดันเฟส (v _u , v _v , v _w) ความถี่ 50 Hz ที่จ่ายให้มอเตอร์ MITSUBISHI
4.14	แรงดันเฟส (v _u , v _v , v _w) ความถี่ 50 Hz ที่จ่ายให้มอเตอร์ MITSUBISHI
e	ขยายจากแรงดันในรูปที่ 4.13 ช่ <mark>ว</mark> งต้น
4.15	กระแสเฟส (i_u, i_v, i_w) ความถี่ 50 Hz ของมอเตอร์ MITSUBISHI
4.16	กระแสเฟส (i_u, i_v, i_w) ความถี่ 50 Hz ของมอเตอร์ MITSUBISHI
e	ขยายจากกระแสในรูปที่ 4 <mark>.</mark> 16 ช่ว <mark>งด้น</mark>
4.17	ค่ากระแสเฟสงขาขในช่วงท้ายและค่ากระแสผิดพลา <mark>ด</mark> จากการจำลองระบบ
e	ของมอเตอร์ ABB โคยใช้ค่าพารามิเตอร์จากการทคสอบไร้ โหลคและยึด โรเตอร์
4.18	ค่ากระแสเฟสงขาขในช่วงท้ายและค่ากระแสผิดพลาดจากการจำลองระบบ
e	ของมอเตอร์ ABBโดยใช้ค่าพารามิเตอร์จากการใช้อินเวอร์เตอร์
4.19	ค่ากระแสเฟสขยายในช่วงท้ายและค่ากระแสผิดพลาดจากการจำลองระบบ
ໆ	เองมอเตอร์ SIEMENS โดยใช้ค่าพารามิเตอร์จากการทคสอบไร้ โหลดและยึคโรเตอร์ 78
4.20	ค่ากระแสเฟสขยายในช่วงท้ายและค่ากระแสผิดพลาดจากการจำลองระบบ
e	ของมอเตอร์ SIEMENS โดยใช้ค่าพารามิเตอร์จากการใช้อินเวอร์เตอร์
4.21	ค่ากระแสเฟสขยายในช่วงท้ายและค่ากระแสผิดพลาดจากการจำลองระบบ
e	ของมอเตอร์ MITSUBISHI โดยใช้ก่าพารามิเตอร์จากการทดสอบไร้ โหลดและยึด โรเตอร์. 79
4.22 1	ก่ากระแสเฟสขขาขในช่วงท้ายและก่ากระแสผิดพลาดจากการจำลองระบบ
e	ของมอเตอร์ MITSUBISHI โดยใช้ค่าพารามิเตอร์จากการใช้อินเวอร์เตอร์

หน้า

รูปที่	
4.23	ก่ากระแสเฟสและก่ากระแสผิดพลาดจากการจำลองระบบของมอเตอร์ ABB
ขณ	เะอยู่ตัวที่สภาวะไร้โหลดโดยใช้ค่าพารามิเตอร์จากการทดสอบ
ງ ៩	โหลดและยึด โรเตอร์
4.24	ค่ากระแสเฟสและค่ากระแสผิดพลาดจากการจำลองระบบของมอเตอร์ ABB
ปโ	นะอยู่ตัวที่สภาวะไร้โห <mark>ลด โดยใช้ค่าพ</mark> ารามิเตอร์ <mark>จากการใช้อิน</mark> เวอร์เตอร์
4.25	ค่ากระแสเฟสและค่า <mark>กระแสผิดพลา</mark> ดจากการจำลองระบบของมอเตอร์ ABB
ขถ	นะอยู่ตัวที่สภาวะจ่ายโหลด 1 kW โดยใช้ค่าพารามิเตอร์จากการทดสอบ
ໃຊ້	้ใหลดและขึดโรเตอร์
4.26	ค่ากระแสเฟสและค่ากระแสผิดพลาดของจากการจำลองระบบของมอเตอร์ ABB
ปร	นะอยู่ตัวที่สภาวะจ่ายโหลด 1 kW โดยใช้ค่าพารามิเตอร์จากการใช้อินเวอร์เตอร์
4.27	ค่ากระแสเฟสและค่ากระแสผิดพลาคจากการจำลองระบบของมอเตอร์ SIEMENS
ขณ	เะอยู่ตัวที่สภาวะไร้โหลดโดยใช้ค่าพารามิเตอร์จากการทคสอบ
ไร้	โหลดและขึดโรเตอร์
4.28	ค่ากระแสเฟสและค่ากร <mark>ะแสผิดพลาดจากการจำลองร</mark> ะบบของมอเตอร์ SIEMENS
ขธ	นะอยู่ตัวที่สภาวะไร้ โหลด โดยใช้ก่าพารามิเตอร์จากการใช้อินเวอร์เตอร์
4.29	ก่ากระแสเฟสและก่ากระแสผิดพลาดจากการจำลองระบบของมอเตอร์ SIEMENS
ขถ	นะอยู่ตัวที่สภาวะจ่ายโหลด 1 kW โดยใช้ค่าพารามิเตอร์จากการทดสอบ
ไร้	้ใหลดและขึดโรเ <mark>ตอร์</mark>
4.30	ค่ากระแสเฟสและค่ากระแสผิดพลาดของจากการจำลองระบบของมอเตอร์ SIEMENS
ขธ	นะอยู่ตัวที่สภาวะจ่ายโหลด 1 kW โดยใช้ค่าพารามิเตอร์จากการใช้อินเวอร์เตอร์
4.31	ค่ากระแสเฟสและค่ากระแสผิดพลาดจากการจำลองระบบของมอเตอร์ MITSUBISHI
ขณ	เะอยู่ตัวที่สภาวะไร้โหลดโดยใช้ค่าพารามิเตอร์จากการทดสอบ
ไร้	โหลดและยึดโรเตอร์
4.32	ค่ากระแสเฟสและค่ากระแสผิดพลาดจากการจำลองระบบของมอเตอร์ MITSUBISHI
ปเ	นะอยู่ตัวที่สภาวะ ไร้ โหลด โดยใช้ค่าพารามิเตอร์จากการใช้อินเวอร์เตอร์
4.33	ค่ากระแสเฟสและค่ากระแสผิดพลาดจากการจำลองระบบของมอเตอร์ MITSUBISHI
ปเ	นะอยู่ตัวที่สภาวะจ่ายโหลด 1 kW โดยใช้ค่าพารามิเตอร์จากการทดสอบ
ູ່ໃຊ້	้ใหลดและยึดโรเตอร์

หน้า

รูปที่	
4.34 ค่ากระแสเฟสและค่ากระแสผิคพลาดของจากการจำลองระบบของมอเตอร์ MITSU	JBISHI
ขณะอยู่ตัวที่สภาวะง่ายโหลด 1 kW โดยใช้ค่าพารามิเตอร์งากการใช้อินเวอร์เตอร์	86
n.1 แรงคันจากอินเวอร์เตอร์ ที่จ่ายให้กับมอเต <mark>อร์</mark>	94
ก.2 ลักษณะของแรงคันที่ขั้วของมอเ <mark>ตอร์เทียบกับจุค</mark> กึ่งกลางบัส	94
ข.1 การใช้ตัวควบคุม PI ในการค <mark>วบคุมกระแสทางค้านสเตเตอ</mark> ร์	96
ค.1 การใช้ค่าผิดพลาดในการหาก่าพารามิเตอร์ \hat{X}	98

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

สัญลักษณ์ที่ใช้ในวิทยานิพนธ์

V_{μ}, V_{ν}, V_{w}	ค่าแรงดันสเตเตอร์ในเฟส <i>u</i> , <i>v</i> , <i>w</i>	(V)
$\vec{i}_u, \vec{i}_v, \vec{i}_w$	ค่ากระแสสเตเตอร์ในเฟส <i>u</i> , v , w	(A)
i'_u, i'_v, i'_w	ค่ากระแสสเตเตอร์ในเฟส <i>น</i> , <i>v</i> , <i>w</i> ที่ได้จากผลการจำลองระบบ	(A)
u_x, u_y	ค่าแรงคันสเตเตอร์ที่ได้จากการแปลง 3 แกนเป็น 2 แกน	(V)
i_x, i_y	ค่ากระแสสเตเตอร์ที่ได้ <mark>จากการแปลง 3</mark> แกนเป็น 2 แกน	(A)
u_d, u_q	ค่าแรงคันสเตเตอร์ในแกน d และ q	(V)
i_d, i_q	ค่ากระแสสเตเตอร์ในแกน d และ q	(A)
V_0	ค่าเฉลี่ย 3 เฟสของแรงคันระหว่างเฟส <u>.</u>	(Vrms)
I_0	ค่าเฉลี่ย 3 เฟสของกระแสสเตเตอร์ <u>.</u>	(Arms)
P_0	ค่ากำลังที่จ่ายให้มอเตอร์	(Watt)
P_m	ค่ากำลังสูญเสียทางกล(ง	Watt)
f_0	ความถิ่ของแหล่งจ่าย	(Hz)
V_{s}	ค่าเฉลี่ย 3 <mark>เฟสของแรงดันระหว่างเฟส</mark>	(Vrms)
I_{s}	ค่าเฉลี่ย 3 เฟ <mark>สของ</mark> กระแส <mark>สเตเตอร์</mark>	(Arms)
P_{S}	ค่ากำลังที่ <mark>จ่ายให้</mark> มอเตอร์	(Watt)
f_{s}	ความถี่ของแ <mark>ห</mark> ล่งจ่า <mark>ย</mark>	(Hz)
$V_{\scriptscriptstyle BUS}$	ี่กำแรงดันบัสไฟตรง	(V)
V_{drop}	ค่าแรงคันตกคร่อมสวตช์กำลังขณะนำกระแส <u>.</u>	(V)
u_s	ค่าสเปซเวกเตอร์ของแรงคันสเตเตอร์เมื่ออ้างอิงบนแกนสเตเตอร์	(V)
i _s	ค่าสเปซเวกเตอร์ของกระแสสเตเตอร์เมื่ออ้างอิงบนแกนสเตเตอร์	(A)
<i>u_R</i>	ค่าสเปซเวกเตอร์ของแรงคัน โรเตอร์เมื่ออ้างอิงบนแกนสเตเตอร์	(V)
u_{L_s}	ค่าสเปซเวกเตอร์ของแรงคันตกคร่อมค่าความเหนี่ยวนำ L _s	(V)
<i>u_{M'}</i>	ค่าสเปซเวกเตอร์ของแรงคันตกคร่อมก่าความเหนี่ยวนำ M'	(V)
u _{DT}	ค่าสเปซเวกเตอร์ของแรงคันเนื่องจากเวลาประวิงและความไม่เป็นอุคมกติ	
	ของสวิตช์	(V)
i_R	ค่าสเปซเวกเตอร์ของกระแส โรเตอร์เมื่ออ้างอิงบนแกนสเตเตอร์	(A)
$i_{_{MR}}$	ค่าสเปซเวกเตอร์ของกระแสสร้างฟลักซ์เมื่ออ้างอิงบนแกนสเตเตอร์	(A)

สัญลักษณ์ที่ใช้ในวิทยานิพนธ์ (ต่อ)

λ_s	ค่าสเปซเวกเตอร์ของสเตเต <mark>อ</mark> ร์ฟลักซ์เมื่ออ้างอิงบนแกนสเตเตอร์	(Wb)
$\lambda_{_R}$	ค่าสเปซเวกเตอร์ของโรเตอร์ฟลักซ์เมื่ออ้างอิงบนแกนสเตเตอร์	(Wb)
λ'_R	ค่าสเปซเวกเต <mark>อร์ของโรเตอร์ฟลักซ์ในวงจรสมมู</mark> ลอ้างอิงโรเตอร์ฟลักซ์	(Wb)
ω_m	ก่ากวามเร <mark>็วของโรเตอร์</mark>	(rad/s)
р	จำนวนกู่ของขั้วแม่เหล็ก	
R_{s}	ก่ากวามด้านทานของขวคลวดสเตเตอร์ <u></u>	(Ω)
R_{R}	ก่ากวา <mark>มด้านทานของขวด</mark> ถวดโรเตอร์ที่อ้างอิงมาทางด้านสเตเตอร์ <u></u>	(Ω)
R'_R	ค่าความด้านทานโรเตอร์สมมูลในวงจรสมมูลอ้างอิงโรเตอร์ฟลักซ์	(Ω)
R_{C}	ค่าความด้านทานสมมูลของกำลังสูญเสียในแกนเหล็ก	(Ω)
L_{s}	ค่าความเหนี่ย [่] วนำทางค้าน <mark>สเตเตอร์</mark>	(H)
L_{R}	ค่าความเหนี่ยวนำทางค้านโรเตอร์ที่อ้างอิงมาทางค้านสเตเตอร์	(H)
М	ค่าความเหนี่ย <mark>วนำร่วมที่อ้างอิงมาทางด้านสเตเตอ</mark> ร์	(H)
M'	ค่าความเหนี่ยวนำร่ <mark>วมสมมูลในวงจรสมมูล</mark> อ้างอิงโรเตอร์ฟลักซ์	(H)
$ au_{R}$	ก่ากงที่ทางเวลาทางค้านโรเตอร์	(sec)
T_s	ช่วงเวลาชักข้อมูล	(sec)
<i>x</i> *	ค่าคำสั่งของ <i>x</i>	
Δx	อัตราก <mark>าร</mark> เปลี่ยนแปลงของ x	
σ	ค่าสัมประสิทธิ์ความเหนี่ยวนำรั่วไหลรวม	
$\sigma_{\scriptscriptstyle S}$	ค่าสัมประสิทธิ์ความเหนี่ยวนำรั่วไหลทางด้านสเตเตอร์	
$\sigma_{\scriptscriptstyle R}$	ค่าสัมประสิทธิ์ความเหนี่ยวนำรั่วไหลทางด้านโรเตอร์	
S_u, S_v, S_w	สัญญาณขับนำสวิตช์ในเฟส <i>u</i> , <i>v</i> , <i>w</i>	
<i>R</i> ′	ค่าความด้านทานสมมูลที่ใช้ในการคำนวณการทดสอบไร้ โหลด	(Ω)
X'	ค่ารีแอคแตนซ์สมมูลที่ใช้ในการคำนวณการทคสอบไร้โหลด	(Ω)
<i>R</i> ″	ค่าความด้านทานสมมูลที่ใช้ในการคำนวณการทคสอบยึคโรเตอร์ <u></u>	(Ω)
Χ″	ค่ารีแอคแตนซ์สมมูลที่ใช้ในการคำนวณการทคสอบยึคโรเตอร์	(Ω)
K_{P}, K_{I}	ค่าคงที่ของตัวควบคุมแบบ PI	

บทที่ 1

บทนำ

1.1 ความเบื้องต้น

โดยทั่วไปค่าพารามิเตอร์ของมอเตอร์สามารถประมาณค่าได้จากข้อมูลค่าพิกัดบนป้ายชื่อ (Name plate) หรืออาจคำนวณได้จากการทดสอบไร้ โหลดและยึดโรเตอร์ (No load and locked rotor test) ซึ่งมี ข้อดีคือ การคำนวนไม่ยุ่งยากมากนักแต่ข้อเสียคือใช้เวลาในการทดสอบมากและต้องทำการปลดภาระ หรือยึดตัวโรเตอร์ของมอเตอร์ในขณะทดสอบ ปัจจุบันเรามีวิธีการต่างๆมากมายในการหา ค่าพารามิเตอร์ที่ให้ค่าถูกต้องแม่นยำเพียงพอแก่การนำไปใช้ในระบบควบคุมแบบเวกเตอร์เพื่อให้ได้ สมรรถนะการควบคุมที่ดี วิธีเหล่านั้นแบ่งออกได้เป็น 2 แบบคือ การหาค่าพารามิเตอร์ของมอเตอร์เหนี่ยวนำก่อนการขับมอเตอร์ (Off-line Identification) วิธีนี้ จะนำค่าผลตอบสนองของกระแสและแรงคันที่เราใส่ให้กับมอเตอร์มาประมวลผลด้วยวิธีการต่างๆทาง คณิตศาสตร์เพื่อให้ได้ก่าพารามิเตอร์ของมอเตอร์ก่อนการนำไปใช้งานเพียงครั้งเดียว ซึ่งสัญญาณอินพุต ที่เราใส่ให้กับมอเตอร์อาจจะไม่ทำให้เกิดการหมุนที่เพลาของมอเตอร์ (Identification at stand still) หรือ มีทั้งการหมุนและไม่หมุนที่เพลาของมอเตอร์ ขึ้นกับลักษณะสัญญาณกระแสหรือแรงคันที่ใช้ และ ก่าพารามิเตอร์ของมอเตอร์ที่ได้นี้จะถูกนำไปใช้ตลอดการทำงานในระบบควบคุมแบบเวกเตอร์ ข้อเสีย ของวิธีนี้คือจะไม่คำนึงถึงผลการเปลี่ยนแปลงของก่าพารามิเตอร์ของมอเตอร์ซึ่งเกิดขึ้นได้ในขณะที่ มอเตอร์กำลังทำงาน

 การหาค่าพารามิเตอร์ของมอเตอร์เหนี่ยวนำในขณะที่ขับมอเตอร์ (On-line Identification) วิธีนี้ จะต้องใช้ค่าพารามิเตอร์เริ่มต้นของตัวควบคุมในการเริ่มเดินมอเตอร์ การคำนวณหาค่าพารามิเตอร์ของ มอเตอร์จะกระทำขณะขับมอเตอร์และทำการการปรับเปลี่ยนค่าพารามิเตอร์อย่างต่อเนื่อง อย่างไรก็ตาม วิธีการหาค่าพารามิเตอร์ในขณะที่ขับมอเตอร์อาจจะมีปัญหาทางค้านเสถียรภาพได้ และเพิ่มภาระการ กำนวณของระบบควบคุมมอเตอร์ค้วย

โดยคุณลักษณะที่ได้อธิบายข้างต้น วิธีการหาค่าพารามิเตอร์ก่อนขับนำมอเตอร์จึงเป็นที่นิยม มากกว่าในปัจจุบัน เนื่องด้วยวิธีการหาค่าพารามิเตอร์ที่ต้องขับมอเตอร์ให้หมุนไปที่ความเร็วรอบค่า หนึ่งก่อนจึงจะทำการหาค่า ไม่เหมาะกับการติดตั้งใช้งานของมอเตอร์กับภาระบางชนิดเช่นในระบบ ขนส่งทางสายพานหรือลิฟต์ขนส่ง ระบบปั้มน้ำ เป็นต้น เพราะว่าการปลดภาระของมอเตอร์ออก เพื่อที่จะหาค่าพารามิเตอร์ของมอเตอร์นั้นกระทำได้ยาก หรือถ้าทำได้อาจจะต้องใช้เวลานานและยังมี ปัญหาในเรื่องการตั้งค่าพารามิเตอร์เริ่มต้นของตัวควบคุมเพื่อให้ระบบเริ่มเดินได้ซึ่งอาจจะต้องใช้เวลา และความชำนาญในการปรับตั้ง

ในงานวิจัยนี้เราจึงเลือกใช้วิธีการหาค่าพารามิเตอร์ก่อนขับนำมอเตอร์โดยไม่ทำให้เกิดการหมุน ที่เพลา อย่างไรก็ตามผลของอุณหภูมิ และการอิ่มตัวของแกนเหล็กและผลของการเกิดปรากฏการณ์ทาง ผิว เป็นสิ่งที่มีผลมากต่อการเปลี่ยนแปลงค่าพารามิเตอร์ของมอเตอร์ โดยที่อุณหภูมิจะมีผลต่อการ เปลี่ยนแปลงค่าความต้านทาน การอิ่มตัวของแกนเหล็กจะมีผลต่อการเปลี่ยนแปลงก่าความเหนี่ยวนำ และการเกิดปรากฏการณ์ทางผิว (skin effect) จะมีผลต่อการเปลี่ยนแปลงทั้งค่าความต้านทานและค่า กวามเหนี่ยวนำ ซึ่งงานวิจัยที่ผ่านมาโดยส่วนใหญ่มักจะไม่ได้พิจารณาถึงระดับของค่ากระแสที่ไหลใน ขดลวดของมอเตอร์ทั้งทางด้านสเตเตอร์และโรเตอร์ในขณะทดสอบซึ่งมีผลต่อการอิ่มตัวของแกนเหล็ก และการเกิดปรากฏการณ์ทางผิวในช่วงที่กระแสเกิดสภาวะชั่วครู่ รวมทั้งผลของอุณหภูมิขณะหา ก่าพารามิเตอร์ ซึ่งอาจแตกต่างจากก่าในขณะที่ระบบควบคุมแบบเวกเตอร์ทำงานจริง

ในงานวิจัยนี้ผู้วิจัยจึงได้นำเสนอการหาค่าพารามิเตอร์ของมอเตอร์เหนี่ยวนำก่อนการขับมอเตอร์ ในขณะหยุดนิ่งซึ่งมีข้อดีคือไม่ต้องปลดภาระออกขณะหาค่าพารามิเตอร์ ค่าพารามิเตอร์จะถูกคำนวณ โดยอัตโนมัติจนครบทุกตัวได้แก่ $R_S, \sigma L_S, R'_R$ และ τ_R ซึ่งจำเป็นและเพียงพอในการนำไปใช้กับ ระบบควบคุมแบบเวกเตอร์ โดยมีการพิจารณาถึงผลของการอิ่มตัวของแกนเหล็กอันเนื่องมาจากระดับที่ แตกต่างกันของกระแสที่ไหลในมอเตอร์ทั้งทางด้านสเตเตอร์และโรเตอร์ ในกระบวนการทดสอบหา ก่าพารามิเตอร์เราจะใช้ระบบฮาร์ดแวร์ของอินเวอร์เตอร์แบบแหล่งจ่ายแรงดันที่มีการมอดูเลตแบบสเป ซเวกเตอร์ PWM ซึ่งเป็นระบบที่มีใช้อยู่แล้วในระบบการควบคุมแบบเวกเตอร์ เพื่อจ่ายแรงดันให้กับ มอเตอร์ เราจึงไม่ด้องใช้อุปกรณ์เพิ่มเติมในการหาค่าพารามิเตอร์ของมอเตอร์ นอกจากนั้นในการ กำหนดรูปแบบและวิธีในการสร้างสัญญาณเพื่อหาค่าพารามิเตอร์เราจะคำนึงถึงกวามไม่เป็นอุดมกติ ของอุปกรณ์อิเล็กทรอนิกส์กำลังที่ใช้ในอินเวอร์เตอร์ และจะต้องไม่ทำให้เกิดค่าของกระแสและแรงดัน ที่เกินก่าพิกัดของมอเตอร์อันจะทำให้เกิดความเสียหายต่อระบบหรือมอเตอร์ได้โดยเราจะใช้ข้อมูลจาก ป้ายชื่อของมอเตอร์ร่วมด้วยในการออกแบบ

1.2 วัตถุประสงค์ของการวิจัย

ออกแบบและสร้างระบบอัตโนมัติสำหรับหาก่าพารามิเตอร์ของมอเตอร์เหนี่ยวนำขณะหยุดนิ่ง โดยกำนึงถึงการเปลี่ยนแปลงของก่าพารามิเตอร์แต่ละตัว ณ สภาวะการทำงานต่างๆและใช้ อินเวอร์เตอร์เป็นอุปกรณ์พื้นฐานซึ่งใช้การมอดูเลตแบบสเปซเวกเตอร์ PWM ทำให้ไม่ต้องใช้อุปกรณ์ เพิ่มเติม ก่าพารามิเตอร์ที่หาได้สามารถนำไปใช้กับระบบกวบคุมแบบเวกเตอร์

1.3 ขอบเขตโครงการวิทยานิพนธ์

ออกแบบระบบการวัดและควบคุมรูปแบบของสัญญาณกระแสและแรงดันที่เหมาะสมเพื่อหา ก่าพารามิเตอร์ของมอเตอร์เหนี่ยวนำขณะที่มอเตอร์หยุดนิ่งด้วยวิธีอัตโนมัติ โดยกำนึงถึงผลของการ อิ่มตัวของแถนเหล็กอันเนื่องมาจากระดับที่แตกต่างกันของกระแสที่ไหลในมอเตอร์ทั้งทางด้านสเต เตอร์และโรเตอร์และกวามไม่เป็นอุดมคติของอุปกรณ์อิเล็กทรอนิกส์กำลัง โดยใช้ระบบฮาร์ดแวร์ของ อินเวอร์เตอร์ พร้อมทั้งหาข้อจำกัดของวิธีที่ใช้ในการหาก่าพารามิเตอร์ ทคสอบก่าที่หาได้จากงานวิจัยนี้ กับก่าพารามิเตอร์ที่หาได้จากวิธีทคสอบไร้โหลดและยึดโรเตอร์

1.4 ขั้นตอนในการดำเนินงาน

1) ศึกษาทฤษฎีระบบควบคุมแบบเวกเตอร์

สึกษาผลกระทบของการอิ่มตัวของแกนเหล็ก

สึกษารูปแบบและข้อจำกัดของวิธีการหาค่าพารามิเตอร์แต่ละตัว

4) จำลองการทำงาน ด้วยระบบคอมพิวเตอร์ เพื่อทดสอบแนวความกิด

5) ปรับปรุงแก้ไขระบบในส่วนซอฟต์แวร์ที่ได้พัฒนาขึ้น

6) เก็บข้อมูล ประเมินผล และสรุปผล

7) เขียนวิทยานิพ[ู]นธ์

1.5 ประโยชน์ที่คาดว่าจะได้รับ

1) พัฒนาเทกนิกการหาค่าพารามิเตอร์เพื่อให้ได้ก่าที่มีกวามเที่ยงตรงมากที่สุด

2) นำค่าพารามิเตอร์ที่ได้ไปใช้กับระบบควบคุมเวกเตอร์

3)ปรับปรุงสมรรถนะของมอเตอร์อันเนื่องมาจากผลของการใช้ค่าพารามิเตอร์ในระบบควบคุม แบบเวกเตอร์

4) สามารถนำผลการศึกษาและวิจัยที่ได้พัฒนาขึ้นไปประยุกต์ใช้ในอุตสาหกรรมได้จริง

จุฬาลงกรณ์มหาวิทยาลัย

บทที่ 2

สมการของมอเตอร์เหนี่ยวนำและการทดสอบหาค่าพารามิเตอร์

ในบทนี้เราจะกล่าวถึงที่มาของสมการของมอเตอร์เหนี่ยวนำสำหรับใช้ในการหาค่าพารามิเตอร์ ในขณะหยุดนิ่ง และการทคสอบหาค่าพารามิเตอร์ด้วยวิธี No-Load และ Locked-Rotor Test เพื่อใช้เป็น ค่าเปรียบเทียบกับค่าที่ได้จากการหาค่าพารามิเตอร์ด้วยวิธีอัตโนมัติ (Auto-tuning) โดยใช้อินเวอร์เตอร์

2.1 สมการทั่วไปของมอเตอร์เหนี่ยวนำ

สมการทั่วไปของมอเตอร์เหนี่ยวนำเขียนให้อยู่ในรูปของสเปซเวกเตอร์ ได้ดังสมการที่ (2.1)-(2.2)

$$u_S = R_S i_S + \frac{d}{dt} \lambda_S \tag{2.1}$$

$$u_R = R_R i_R + \frac{d}{dt} \lambda_R - jp\omega_m \lambda_R$$
(2.2)

โดยมีนิยามดังนี้

$$\lambda_S = L_S i_S + M i_R \tag{2.3}$$

$$\lambda_R = Mi_S + L_R i_R = Mi_{MR} \tag{2.4}$$

ในกรณีของมอเตอร์เหนี่ยวนำแบบกรงกระรอก จะมีค่า $u_R = 0$ จากนิยามข้างต้นสามารถเขียน สมการที่ (2.1) และ (2.2) ได้ใหม่เป็น

$$u_{S} = \left(R_{S} + \frac{M^{2}}{L_{R}^{2}}R_{R}\right)i_{S} + \sigma L_{S}\frac{d}{dt}i_{S} - \left(\frac{R_{R}}{L_{R}} - jp\omega_{m}\right)\left(\frac{M}{L_{R}}\lambda_{R}\right)$$
(2.5)

$$\frac{d}{dt}\left(\frac{M}{L_R}\lambda_R\right) = \frac{M^2}{L_R^2}R_Ri_S - \left(\frac{R_R}{L_R} - jp\omega_m\right)\left(\frac{M}{L_R}\lambda_R\right)$$
(2.6)

โดยที่ $\sigma = 1 - \frac{M^2}{L_S L_R}$

นิยามให้

$$R'_R = \frac{M^2}{L_R^2} R_R$$
 , $M' = \frac{M^2}{L_R}$, $\lambda'_R = \frac{M}{L_R} \lambda_R$

เราสามารถเขียนสมการที่ (2.5) และ (2.6) ได้ใหม่เป็น

$$u_{S} = \left(R_{S} + R_{R}'\right)i_{S} + \sigma L_{S} \frac{d}{dt}i_{S} - \left(\frac{R_{R}'}{M'} - jp\omega_{m}\right)\lambda_{R}'$$
(2.7)

$$\frac{d}{dt}\lambda_R' = R_R'i_S - \left(\frac{R_R'}{M'} - jp\omega_m\right)\lambda_R'$$
(2.8)

ในขณะที่มอเตอร์ห<mark>ขุ</mark>คนิ่ง (*a*_m = 0) สมการที่(2.7) และ (2.8) จะลครูปเป็นสมการที่ (2.9) และ (2.10) ตามลำคับ

$$u_{S} = \left(R_{S} + R_{R}'\right)i_{S} + \sigma L_{S}\frac{d}{dt}i_{S} - \frac{R_{R}'}{M'}\lambda_{R}'$$

$$\tag{2.9}$$

$$\frac{d}{dt}\lambda_R' = R_R' i_S - \frac{R_R'}{M'}\lambda_R'$$
(2.10)

เราจะใช้สมการที่ (2.9) และ (2.10) เป็นสมการพื้นฐานในการนำไปหาค่าพารามิเตอร์ด้วยวิธี อัตโนมัติในขณะหยุดนิ่ง ซึ่งสามารถเขียนเป็นวงจรสมมูลได้ดังรูปที่ 2.1

รูปที่ 2.1 วงจรสมมูลของมอเตอร์เหนี่ยวนำในขณะหยุดนิ่ง

2.2 การทดสอบหาค่าพารามิเตอร์ของมอเตอร์เหนี่ยวนำด้วยวิธีการทดสอบไร้โหลดและยึดโร เตอร์

เราจะทำการทดสอบไร้ โหลดและยึดโรเตอร์เพื่อหาก่าพารามิเตอร์ของมอเตอร์เหนี่ยวนำสำหรับ ใช้ในการเปรียบเทียบกับผลการหาก่าพารามิเตอร์ที่ได้จากการใช้อินเวอร์เตอร์ซึ่งจะกล่าวในหัวข้อ ถัดไป วิธีการทดสอบไร้ โหลดและยึดโรเตอร์นี้เป็นวิธีทดสอบพื้นฐานทั่วไปในการหาก่าพารามิเตอร์ ของมอเตอร์เหนี่ยวนำในเบื้องต้น และในการกำนวณจะต้องใช้ก่ากวามด้านทานของขดลวดทางด้าน สเตเตอร์ (*R_s*) ร่วมด้วย ซึ่งเป็นก่าพารามิเตอร์ที่ต้องหาแยกต่างหาก และสามารถวัดได้โดยใช้มิเตอร์วัด กวามด้านทานที่ขั้วของมอเตอร์ โดยตรง การทดสอบไร้ โหลดและยึดโรเตอร์มีการกำนวณดังต่อไปนี้

2.2.1 การทดสอบไร้โหล<mark>ด</mark>

ทดสอบโดยป้อนไฟ 3 เฟส ให้กับมอเตอร์ในสภาวะไร้โหลดและทำการวัดค่าต่างๆ คือ V_0, I_0, P_0, P_m, f_0 โดยที่ก่ากำลังสูญเสียทางกล (P_m) สามารถหาได้โดยการต่อเส้นกราฟ ความสัมพันธ์ระหว่างก่ากำลังที่ง่ายให้มอเตอร์ (P_0) กับก่าเฉลี่ย 3 เฟสของแรงคันระหว่างเฟส (V_0) จะ ได้ก่า P_m ซึ่งก็คือก่า P_0 ที่ก่า V_0 มีก่าเป็นศูนย์ ในขณะที่ทำการทดสอบไร้โหลดนั้นก่าสลิปจะมีก่าน้อย มาก เราจึงสามารถละเลยก่าความด้านทานทางด้านโรเตอร์ (R'_R) ได้ วงจรสมมูลต่อเฟสของมอเตอร์ ในขณะทำการทดสอบไร้โหลด โดยกำลึงอเตอร์

รูปที่ 2.2 วงจรสมมูลต่อเฟสของมอเตอร์เหนี่ยวนำในขณะทำการทคสอบไร้โหลด

เราสามารถคำนวณค่า R_{C} และ L_{S} ได้โดยใช้สมการที่ (2.11) – (2.14)

$$R' = \frac{P_0 - P_m}{3I_0^2} - R_S \tag{2.11}$$

$$X' = \sqrt{\frac{V_0^2}{3I_0^2} - \left(\frac{P_0 - P_m}{3I_0^2}\right)^2}$$
(2.12)

$$R_C = \frac{R'^2 + X'^2}{R'}$$
(2.13)

$$L_{S} = \frac{R'^{2} + X'^{2}}{\left(2\pi f_{0}\right)X'}$$
(2.14)

2.2.2 การทดสอบยึดโรเตอร์

ทคสอบโดยป้อนไฟ 3 เฟส ให้กับมอเตอร์และทำการยึดโรเตอร์ให้หยุดนิ่งไว้ และทำการวัดค่า ต่างๆดังนี้ V_s, I_s, P_s, f_s ในขณะที่ทำการทดสอบยึดโรเตอร์นั้นค่าแรงดันที่จ่ายให้กับมอเตอร์จะมีค่า น้อยมาก เราสามารถละเลยค่ากำลังสูญเสียของแกนเหล็กได้ และสามารถเขียนวงจรสมมูลต่อเฟสของ มอเตอร์ในขณะทำการทดสอบยึดโรเตอร์ได้ดังรูปที่ 2.3

รูปที่ 2.3 วงจรสมมูลต่อเฟสของมอเตอร์เหนี่ยวนำขณะทำการทดสอบยึดโรเตอร์

ในการคำนวณเราจะนำค่าของ L_s ที่ได้จากการทคสอบไร้โหลดมาใช้ในการคำนวณเพื่อหาค่า M' และ R'_R ดังสมการที่ (2.15) – (2.18)

$$R'' = \frac{P_S}{3I_S^2} - R_S$$
(2.15)

$$X'' = \left(2\pi f_{S}\right)L_{S} - \sqrt{\frac{V_{S}^{2}}{3I_{S}^{2}}} - \left(\frac{P_{S}}{3I_{S}^{2}}\right)^{2}$$
(2.16)

$$R'_{R} = R'' \left(\frac{R''^{2} + X''^{2}}{X''^{2}} \right)$$
(2.17)

$$M' = \frac{X''}{(2\pi f_s)} \left(\frac{R''^2 + X''^2}{X''^2}\right)$$
(2.18)

มอเตอร์ที่ใช้ทำการทดสอบในงานวิจัยนี้ เป็นมอเตอร์เหนี่ยวนำ 3 เฟส ซึ่งมีอยู่ด้วยกัน 3 ตัวดัง ตารางที่ 2.1

ชื่อมอเตอร์	พิก <mark>ั</mark> ดแรงคัน	พิกัดกระแส	ขนาด	พิก <mark>ัคค</mark> วามเร็ว	ความถื่	p.f.
	[Vrms]	[Arms]		[rpm]	[Hz]	
ABB	380-420	2.9	1.1 kW	1410	50	0.73
SEIMENS	400	2.6	1.1 kW	1400	50	0.83
MITSUBISHI	380	3.6	2 Hp	1420	50	-

ตารางที่ 2.1 มอเตอร์เหนี่ยวนำ 3 เฟสที่ใช้ทำการทคสอบ

ในการวัดก่าความต้านทานของขดลวดสเตเตอร์ (*R_s*) เราจะใช้มัลติมิเตอร์ความแม่นยำสูงวัด ความต้านทานที่ขั้วของมอเตอร์โดยตรง และเพื่อที่จะดูแนวโน้มการเปลี่ยนแปลงของก่า *R_s* ตามการ เปลี่ยนแปลงของอุณหภูมิ เราจึงได้ทำการวัดก่า *R_s* ที่อุณหภูมิต่างๆ ของมอเตอร์ทั้ง 3 ตัว ได้ผลการ ทดสอบดังรูปที่ 2.4-2.6

รูปที่ 2.4 ค่าความต้านทานของขคลวคสเตเตอร์ (*Rs*) ของมอเตอร์ ABB ที่อุณหภูมิต่างๆ

รูปที่ 2.5 ค่าความต้านทานของขคลวคสเตเตอร์ (R_{s}) ของมอเตอร์ SIEMENS ที่อุณหภูมิต่างๆ

จากผลการวัดค่าความต่านทานของขดลวดสเตเตอร์ (*R*_s) ที่ได้ดังรูปที่ 2.4-2.6 จะเห็นได้ว่าค่า *R*_s มีค่าเพิ่มขึ้นตามอุณหภูมิในลักษณะเป็นแบบเชิงเส้น แต่ในช่วงที่ค่าของอุณหภูมิมีค่าสูงๆจากรูปจะ เห็นว่ามีลักษณะโด้งขึ้น อาจมีสาเหตุมาจากเราใช้การวัดอุณหภูมิที่เปลือกของมอเตอร์ ซึ่งที่อุณหภูมิค่า สูงนี้ขดลวดของมอเตอร์จะมีอุณหภูมิสูงกว่าที่เปลือกของมอเตอร์ ทำให้เราวัดได้ค่าอุณหภูมิต่ำกว่าค่า อุณหภูมิของขดลวดสเตเตอร์ แต่เราจะได้ค่าความต้านทานของขดลวดสเตเตอร์มีค่าที่สูงกว่าปกติ

จากวิธีการทดสอบไร้โหลดและยึดโรเตอร์ เราได้ทำการทดสอบเพิ่มเติมเพื่อดูผลการ เปลี่ยนแปลงของก่าพารามิเตอร์ต่างๆในสภาวะการทำงานที่ต่างกัน โดยในการทดสอบไร้โหลดเราจะ ทำการปรับเปลี่ยนแรงคันไปที่ก่าต่างๆ และในการทดสอบยึดโรเตอร์เราจะทำการปรับเปลี่ยนกระแส ไปที่ก่าต่างๆ เราจะแยกพิจารณาผลการทดสอบการหาก่าพารามิเตอร์ของแต่ละตัวได้ดังนี้

ก) ความต้านทานสมมูลของกำลังสูญเสียในแกนเหล็ก ($R_{\!C}$)

จากผลการทคสอบไร้ โหลดเราจะได้ก่าความด้านทานสมมูลของกำลังสูญเสียในแกนเหล็ก (*R_C*) เนื่องจากก่า *R_C* เป็นก่ากำลังสูญเสียที่เกิดในแกนเหล็กและมีก่าเปลี่ยนแปลงตามกวามถี่และแรงดัน เรา จึงได้ทำการทคสอบมอเตอร์ทั้ง 3 ตัวเพิ่มเติมที่กวามถี่ต่างๆ ดังแสดงผลในรูปที่ 2.7-2.9

รูปที่ 2.7 ค่าค<mark>วา</mark>มต้านทานสมมูลของกำลังสูญเสียในแก<mark>น</mark>เหล็กของมอเตอร์ ABB เปรียบเทียบกับแรงคันเฟสที่ความถี่ต่างๆ ณ อุณหภูมิการทคสอบ 44 °*C*

จุฬาลงกรณ์มหาวิทยาลัย

รูปที่ 2.9 ค่าความต้านทานสมมูลของกำลังสูญเสียในแกนเหล็กของของมอเตอร์ MITSUBISHI เปรียบเทียบกับแรงคันเฟสที่ความถี่ต่างๆ ณ อุณหภูมิการทคสอบ 44 °C

จากผลการหาก่าความต้านทานสมมูลของกำลังสูญเสียในแกนเหล็ก (*R_C*) จะเห็นได้ว่าก่าความ ด้านทานที่ได้มีก่าลดลงตามแรงคันและความถี่ และในการนำมอเตอร์ไปใช้งานที่มีการปรับความถี่ที่ใช้ รูปแบบการควบกุมแบบ *V* / *f* ซึ่งแรงคันที่ใช้ควบกุมจะมีขนาดลดลงตามความถี่ ดังนั้นก่า *R_C* ที่ ลดลงเมื่อเทียบกับขนาดของแรงคันที่ลดลงตามความถี่แล้ว ก่าของ *R_C* ก็ยังมีขนาดที่ใหญ่มากจน สามารถละเลยได้ ในงานวิจัยนี้จึงได้ละเลยการหาก่า *R_C* นี้

ข) ความต้านทานโรเตอร์ R_R^\prime

ค่าความต้านทานของขคลวคโรเตอร์ (*R*'_R) หาได้จากการทคสอบยึคโรเตอร์ เนื่องจากในมอเตอร์ เหนี่ยวนำแบบกรงกระรอกส่วนใหญ่แล้ว เส้นลวดอลูมิเนียมที่ใช้เป็นแท่งตัวนำทางค้านโรเตอร์จะมี ขนาดใหญ่ ผลของปรากฏการณ์ทางผิวจึงมีผลต่อการเปลี่ยนแปลงของค่า *R*'_R ทำให้ค่า *R*'_R เปลี่ยนแปลงตามความถี่ เราจึงได้ทำการทคสอบที่ความถี่ต่างๆ เพิ่มเติมดังแสดงผลการทคสอบการหา ค่า *R*'_R ของมอเตอร์ทั้ง 3 ตัว ได้ดังในรูปที่ 2.10-2.12

รูปที่ 2.10 ค่าความต้านทานขคลวคโรเตอร์ (*R*'_R) ของมอเตอร์ ABB ณ อุณหภูมิการทคสอบ 44 *°C*

ณ อุณหภูมิการทคสอบ 44 °C

เราสามารถแสดงผลการทดสอบยึดโรเตอร์เพื่อหาก่าก่ากวามต้านทานขดลวดโรเตอร์ (R'_R) ที่ เปลี่ยนแปลงตามกวามถี่ของมอเตอร์ทั้ง 3 ตัวได้ดังรูปที่ 2.13

รูปที่ 2.13 ค่าความต้านท<mark>านขดลวดโรเตอร์ (*R*[']_R) จากการ</mark>ทดสอบยึดโรเตอร์ที่ค่ากระแสพิกัด ของมอเตอร์ทั้ง 3 ตัว ณ อุณหภูมิการทดสอบ 44 °*C*

จากรูปที่ 2.10-2.13 จะเห็นได้ว่าค่า *R*[']_R มีค่าลดลงตามความถี่เนื่องจากผลของปรากฏการณ์ทาง ผิวมากกว่าการลดลงตามขนาดแรงคัน อย่างไรก็ตามในขณะที่มอเตอร์ถูกใช้งาน ความถี่ทางไฟฟ้าที่ เกิดขึ้นในขดลวดโรเตอร์จะมีค่าที่น้อย คือมีค่าเท่ากับความถี่สลิป ดังนั้นในการหาค่าความต้านทานของ ขดลวดโรเตอร์เราจึงจะหาค่าที่ความถี่ต่ำเป็นหลัก

ค) ความเหนี่ยวนำทางด้ำนสเตเตอร์ (L_{s})

ค่าความเหนี่ยวนำทางด้านสเตเตอร์ (*L_s*) ที่ได้จากการทดสอบไร้โหลดที่ความถี่ต่างๆ แสดงได้ ดังรูปที่ 2.14-2.16

กับกระแสเฟสที่ความถี่ต่างๆ ณ อุณหภูมิการทดสอบ 44 °C

รูปที่ 2.16 ค่าความสัมพันธ์ระหว่างความเหนี่ยวนำ *L_s* ของมอเตอร์ MITSUBISHI กับกระแสเฟสที่ความถี่ต่างๆ ณ อุณหภูมิการทคสอบ 44 °*C*

จากรูปที่ 2.14-2.16 จะเห็นว่าค่า L_s จะเปลี่ยนแปลงตามความถี่เล็กน้อย แต่จะมีแนวโน้มการ เปลี่ยนแปลงตามค่ากระแสมากว่า ซึ่งในงานวิจัยนี้จะได้ศึกษาถึงผลการเปลี่ยนแปลงของค่าความ เหนี่ยวนำตามการเปลี่ยนแปลงของกระแสนี้ในรูปของเส้นกราฟการอิ่มตัวของแกนเหล็ก

ง) ความเหนี่ยวนำร่วม (M')

ค่าความเหนี่ยวนำร่วม (*M*') ที่ได้จากการทคสอบยึดโรเตอร์นั้น ในการคำนวณต้องอาศัยข้อมูล ของค่า *L_s* ที่ได้จากการทคสอบไร้โหลดด้วย ในที่นี้เราจะใช้ก่า *L_s* จากการทคสอบที่แรงดันและ ความถี่พิกัด ผลการทคสอบหาก่า *M*' ที่ความถี่ 50 Hz เทียบกับก่า *L_s* ที่ความถี่เดียวกันแสดงได้ดังรูป ที่ 2.17-2.19

รูปที่ 2.17 ก่ากวามเหนี่ยวนำ *M*′ และ *L*_s ของมอเตอร์ ABB ที่กวามถี่ 50 Hz ณ อุณหภูมิการทดสอบ 44 °C

รูปที่ 2.18 ค่าความเหนี่ยวนำ M' และ L_{s} ของมอเตอร์ SIEMENS ที่ความถี่ 50 Hz ณ อุณหภูมิการทคสอบ 44 °C

รูปที่ 2.19 ค่าความเหนี่ยวนำ M' และ L_s ของมอเตอร์ MITSUBISHI ที่ความถี่ 50 Hz ณ อุณหภูมิการทดสอบ 44 °C

จากรูปที่ 2.17-2.19 จะเห็นว่าค่า M' ที่ได้จากการทดสอบยึดโรเตอร์เป็นค่าในช่วงที่ฟลักซ์มีค่า น้อย (ค่ากระแสสร้างฟลักซ์น้อย) แต่ค่า L_s ที่ได้จากการทดสอบไร้ โหลดเป็นค่าในช่วงที่ฟลักซ์มีค่าสูง จากสภาวะที่ก่าของฟลักซ์มีความแตกต่างกันเช่นนี้ การใช้ค่า L_s ไปคำนวณไปหาค่า M' จึงเป็นค่าที่ ยังไม่ถูกต้องนัก เพื่อการศึกษาถึงแนวโน้มการเปลี่ยนแปลงของค่า M' และค่าความเหนี่ยวนำรั่วไหล รวม (σL_s) เราจึงได้ทำการทดสอบไร้ โหลดและยึดโรเตอร์ที่ความถี่ต่ำๆ ในที่นี้เราจะใช้ความถี่ที่ 2 Hz และได้ผลการทดสอบดังแสดงในรูปที่ 2.20-2.22 ทั้งนี้ในการคำนวณค่า M' ณ แต่ละค่ากระแส เราจะ ใช้ค่า L_s ที่ประมาณได้จากเส้นกราฟของก่า L_s ในแต่ละรูป (รูปที่ 2.20-2.22) ณ ค่ากระแสนั้นๆ

นอกจากนี้เราสามารถแสดงผลการหาค่าความเหนี่ยวนำ M' ที่ได้จากการทคสอบยึดโรเตอร์ที่ ก่ากระแสพิกัดของมอเตอร์ทั้ง 3 ตัว ณ ที่ความถี่ต่างๆ โดยในการคำนวณค่า M' เราจะใช้ค่า L_s โดยประมาณที่ความถี่ 50 Hz ร่วมด้วยในการคำนวณ แสดงได้ดังรูปที่ 2.23

รูปที่ 2.20 ค่า L_s และค่า M' จากผลการทคสอบไร้โหลคและยึคโรเตอร์ ของมอเตอร์ ABB ที่ความถี่ 2 Hz ณ อุณหภูมิการทคสอบ 44 °C

รูปที่ 2.21 ค่า *L_s* และค่า *M'* จากผลการทคสอบไร้โหลคและยึคโรเตอร์ของมอเตอร์ SIEMENS ที่ความถี่ 2 Hz ณ อุณหภูมิการทคสอบ 44 °*C*

รูปที่ 2.22 ค่า L_s และค่า M' จากผลการทดสอบไร้โหลดและยึดโรเตอร์ของมอเตอร์ MITSUBISHI ที่ความถี่ 2 Hz ณ อุณหภูมิการทดสอบ 44 °C

รูปที่ 2.23 ค่าความเหนี่ยวนำ M' จากผลการทคสอบยึดโรเตอร์ที่ค่ากระแสพิกัดของมอเตอร์ทั้ง 3 ตัว ณ อุณหภูมิการทคสอบ 44 °C

จากรูปที่ 2.20-2.23 จะเห็นได้ว่าแนวโน้มการเปลี่ยนแปลงของค่า *M*' จะมีความคล้ายคลึงกับ แนวโน้มการเปลี่ยนแปลงของค่า *L_s* คือจะมีการเปลี่ยนแปลงของค่า *M*' ตามค่ากระแสมากว่า และ เปลี่ยนแปลงตามความถี่เล็กน้อย

จ) ค่าความเหนี่ยวนำรั่วไหลรวม (σL_s)

ผลการทดสอบก่ากวามเหนี่ยวนำรั่วไหลรวม (σL_s) ซึ่งกำนวณจากผลต่างระหว่าง L_s และ M' ที่ได้จากการทดสอบไร้โหลดและยึดโรเตอร์ที่กวามถี่ต่ำ(2 Hz) แสดงได้ดังรูปที่ 2.24-2.26

รูปที่ 2.25 ค่า σL_s ของมอเตอร์ SIEMENS ที่ความถี่ 2 Hz ณ อุณหภูมิการทดสอบ 44 °C

รูปที่ 2.26 ค่า σL_{s} ของมอเตอร์ MITSUBISHI ที่ความถี่ 2 Hz ณ อุณหภูมิการทคสอบ 44 °C

จากผลการทดสอบในรูปที่ 2.24-2.26 จะเห็นได้ว่าค่าของ σL_s มีแนวโน้มลดลงเมื่อฟลักซ์มีค่า มากและลดลงอีกทีเมื่อฟลักซ์มีค่าน้อยๆ ค่าความเหนี่ยวนำรั่วไหลรวม (σL_s) นี้จึงเป็นค่าที่มีความ ซับซ้อนและเนื่องจากค่า σL_s มีค่าน้อยเมื่อเทียบกับค่า L_s , M' ในงานวิจัยนี้เราจึงใช้วิธีการหาค่า σL_s ที่สภาวะเดียว คือสภาวะที่ค่าฟลักซ์เป็นศูนย์

```
ณ) ค่าคงที่ทางเวลาทางด้านโรเตอร์ (	au_R)
```

จากการทดสอบยึดโรเตอร์ที่ค่ากระแสพิกัดของมอเตอร์ทั้ง 3 ตัวซึ่งจะได้ค่า R'_R และ M' ที่ เปลี่ยนแปลงตามความถี่ดังแสดงในรูปที่ 2.13 และ 2.23 นั้น เราสามารถนำค่าที่ได้นี้มาคำนวณหา ค่าคงที่ทางเวลาทางด้านโรเตอร์ (τ_R) ได้โดยการคำนวณ $\tau_R = M'/R'_R$ และได้แสดงผลการหาค่า τ_R ที่เปลี่ยนแปลงตามความถี่ได้ดังรูปที่ 2.27

รูปที่ 2.27 ค่าคงที่ทางเวลาทางค้านโรเตอร์ (au_R) จากผลการทคสอบยึคโรเตอร์ที่ค่ากระแสพิกัค ของมอเตอร์ทั้ง 3 ตัว ณ อุณหภูมิการทคสอบ 44 °C

จากรูปที่ 2.27 จะเห็นได้ว่าค่าคงที่ทางเวลาทางด้านโรเตอร์ (au_R) นั้นจะมีค่าลดลงเมื่อความถี่มีค่า เพิ่มขึ้นเนื่องจากผลของปรากฏการณ์ทางผิวทำให้ก่า R_R' เพิ่มขึ้นตามความถี่ดังรูปที่ 2.13 นั้น ทำให้ก่า au_R มีค่าลดลงตามความถี่ดังแสดงในรูปที่ 2.27

เราสามารถสรุปผลการทคสอบไร้โหลคและยึคโรเตอร์หาค่าพารามิเตอร์ ที่ความถี่ 50 Hz ได้ดัง ตารางที่ 2.2 และเส้นกราฟการอิ่มตัวของแกนเหล็กของมอเตอร์ทั้ง 3 ตัวแสดงได้ดังรูปที่ 2.28-2.30 ซึ่ง กำนวณได้จากผลกูณของกระแสเฟสกับเส้นกราฟก่า L_s – σL_s ที่ความถี่ 50 Hz

ค่าพารามิเตอร์ มอเตอร์ R_{s} σL_s R'_R M' τ_R $[\Omega]$ [mH][mH] $[\Omega]$ [ms]415.4 ABB 7.96 43.4 6.10 68.1 SEIMENS 8.80 43.8 441.9 6.22 71.0 MITSUBISHI 27.8 95.5 5.10 340.0 3.56

ตารางที่ 2.2 ผลการหาค่าพา<mark>รามิเตอร์มอเตอร์เหนี่ยวนำ</mark>โดยวิธีทดสอบไร้โหลดและยึดโรเตอร์

รูปที่ 2.28 เส้นกราฟการอิ่มตัวของแกนเหล็กของมอเตอร์ของ ABB ณ อุณหภูมิการทดสอบ 44 °C

บทที่ 3

การหาค่าพารามิเตอร์โดยใช้อินเวอร์เตอร์

ในบทนี้เราจะกล่าวถึงการหาค่าพารามิเตอร์ของมอเตอร์ โดยใช้อินเวอร์เตอร์ในการจ่ายสัญญาณ กระตุ้นซึ่งมีโครงสร้างดังรูปที่ 3.1 ในส่วนของฮาร์ดแวร์ที่ใช้อ่านค่ากระแสเราได้ใช้ CT HC-PSG30V4B15 ซึ่งมีพิกัดกระแสที่ 30 Amp (Saturate at \pm 75 Amp) ให้เอาท์พุท \pm 4 V \pm 2% มี Linearity \pm 1.5% และในส่วนของฮาร์ดแวร์ที่ใช้อ่านค่าแรงดันเราได้ใช้ IC HP4562 และค่าความด้านทานในการ แยกโดดและทอนระดับแรงดันลง ซึ่งค่าของแรงดัน V_{BUS} ที่ใช้ในงานวิจัยอยู่ที่ 540 V จากค่าของ กระแสและแรงดันที่ ได้จะถูกทำให้อยู่ในรูปของแรงดันที่มีค่าเหมาะสมสำหรับให้ ไมโกรกอนโทรลเลอร์อ่านค่าโดยใช้ A/D ซึ่งไมโกรกอนโทรลเลอร์ที่ใช้ในงานวิจัยนี้ใช้ CPU ของ HITACHI เบอร์ SH7042 ซึ่งมี A/D 10 bit มี Linearity \pm 1.5% ซึ่งจากผลการทดสอบการอ่านค่ากระแส และแรงดันจนได้ค่าในไมโครคอนโทรลเลอร์แล้วจะมีค่าผิดพลาด \pm 2% และ \pm 2% ตามลำดับ การหาค่าพารามิเตอร์ในโครงงานนี้จะใช้วิธีการแยกหาค่าพารามิเตอร์ทีละตัวโดยแบ่งเป็น 3 กลุ่มคือ

1. การหาก่าความต้านทานทางด้านสเตเตอร์ (R_s)

2. การหาค่าความเหนี่ยวนำรั่วใหลรวม (σL_s)

 การหาค่าคงตัวทางเวลาทางค้านโรเตอร์ (τ_R) และค่าความต้านทานโรเตอร์สมมูลใน วงจรสมมูลอ้างอิงโรเตอร์ฟลักซ์ (R'_R) ซึ่งจะทำให้ได้ค่าความเหนี่ยวนำร่วมสมมูลในวงจรสมมูลอ้างอิง โรเตอร์ฟลักซ์ (M') มีค่าเท่ากับ τ_RR'_R

โดยในแต่ละกลุ่มจะใช้อินเวอร์เตอร์ในการจ่ายแรงคันและกระแส ด้วยรูปแบบและค่าที่ เหมาะสมเพื่อที่จะกระตุ้นให้ได้ข้อมูลของค่าพารามิเตอร์ที่ต้องการหาในระบบออกมาอย่างเพียงพอ และในการจ่ายแรงคันและกระแสนี้จะต้องมีก่าไม่มากจนเกินไปที่อาจจะทำให้เกิดความเสียหายต่อ ระบบ และมีก่าไม่น้อยเกินไปซึ่งจะทำให้เกิดความผิดพลาดสูงในการกำนวณ

ในการคำนวณหาค่าพารามิเตอร์เราจะใช้วิธีทำซ้ำกำลังสองน้อยที่สุด (Recursive Least Square ; RLS) ช่วยในการประมวลผลเพื่อช่วยลดผลของสัญญาณรบกวนด้วย

ในตอนต้นนี้เราจะทำการทคสอบและแสดงผลการหาค่าพารามิเตอร์เฉพาะในกรณีมอเตอร์ของ ABB หลังจากนั้นในตอนท้ายของบท จะทำการสรุปค่าพารามิเตอร์ของมอเตอร์ทั้ง 3 ตัวที่ใช้ในการ ทคสอบ

รูปที่ 3.1 โครงสร้างของอินเวอร์เตอร์ที่ใช้ในการหาก่าพารามิเตอร์

3.1 การหาค่าความต้านทานของขดลวดสเตเตอร์ ($R_{\rm S}$)

ค่าความต้านทานของขดลวดสเตเตอร์ สามารถหาได้โดยการป้อนแรงดันไฟตรงให้กับมอเตอร์ และวัดกระแสสเตเตอร์ที่ไหล เราสามารถคำนวณหาค่า *R*_s ได้จากอัตราส่วนของแรงดันต่อกระแส อย่างไรก็ตามผลของค่าประวิงเวลา (Dead time) ในการสวิตช์ และผลความไม่เป็นอุดมคติของสวิตช์ใน อินเวอร์เตอร์ทำให้แรงดันที่อินเวอร์เตอร์สร้างได้ไม่ตรงกับแรงดันกำสั่งซึ่งเราใช้ในการกำนวณ เรา สามารถเขียนวงจรสมมูลไฟตรงของมอเตอร์เหนี่ยวนำขณะที่ทำการจ่ายแรงดันเพื่อหาค่า *R*_s ได้ดังรูปที่ 3.2

รูปที่ 3.2 วงจรสมมูลไฟตรงของมอเตอร์เหนี่ยวนำขณะที่ทำการจ่ายแรงคันเพื่อหาค่า R_s

จากการศึกษาข้อมูลของสวิตช์กำลัง ที่ใช้ในอินเวอร์เตอร์ (ดูในภาคผนวก ก) ค่าความต้านทาน ของสวิตช์มีค่าน้อยมากสามารถละเลยได้เลย และส่วนของแรงดันที่หายไปเนื่องจากแรงดันตกคร่อม สวิตช์และเวลาประวิง (*u_{DT}*) สามารถเขียนรวมเข้ากับสมการของมอเตอร์เหนี่ยวนำในขณะหยุดนิ่ง ในขณะที่ป้อนแรงดันไฟตรงให้กับมอเตอร์ได้ดังสมการ

$$u_S^* - u_{DT} = u_S = R_S i_S \tag{3.1}$$

เนื่องจากเราสามารถประมาณได้ว่าค่าแรงคัน u_{DT} ไม่ขึ้นกับค่ากระแสสเตเตอร์เราจึงสามารถลด ผลของแรงคันที่หายไปเนื่องจากแรงคันตกคร่อมสวิตช์และเวลาประวิงได้โดยการจ่ายแรงคันที่ขนาด ต่างกันให้กับมอเตอร์และคำนวณหาค่าความด้านทาน R_s จากอัตราการเปลี่ยนแปลงของแรงคัน (Δu_s) ต่อการเปลี่ยนแปลงของกระแส (Δi_s) และเพื่อหลีกเลี่ยงการจ่ายแรงคันที่ค่าต่ำๆ เราจะใช้ แรงคันเริ่มต้นที่ค่าประมาณเท่ากับแรงคันที่หายไปเนื่องจากค่าเวลาประวิง ในที่นี้แรงคัน *แ_{DT}* มี ค่าประมาณ 20 โวลต์ ค่าแรงคันกำสั่งที่จ่ายให้มอเตอร์แสดงได้ดังรูปที่ 3.3

ในที่นี้การเลือกก่าขนาดของแรงดันที่เพิ่มแต่ละขั้นจะพิจารณาจากก่ากระแสพิกัดของมอเตอร์ และการกำหนดจำนวนขั้นของก่าแรงดัน<mark>กำสั่งที่ใช้ใ</mark>นการทดสอบ

รูปที่ 3.3 รูปแบบการจ่ายแรงคันไฟตรงที่ขนาคต่างๆ

ค่า *R_s* คำนวณได้จากความชั้นของเส้นกราฟความสัมพันธ์ระหว่างแรงดันกับกระแสตามสมการที่ (3.2)

$$R_{S} = \frac{\Delta u_{S}}{\Delta i_{S}} = \frac{u_{S}\left(n\right) - u_{S}\left(n-1\right)}{i_{S}\left(n\right) - i_{S}\left(n-1\right)}$$
(3.2)

โดยที่ "*n* " แสดงถึงลำดับของข้อมูลในแต่ละขั้น

จากข้อมูลที่ได้ในแต่ละขั้น เราสามารถใช้วิธีการกำนวณด้วย RLS มาช่วยกำนวณก่า *R_s* ในแต่ ละขั้นของแรงคันได้ สมการที่ (3.2) สามารถเขียนให้อยู่ในรูปเวลาไม่ต่อเนื่องเพื่อนำไปกำนวณด้วยวิธี RLS ดังนี้ (ดูรายละเอียดในภากผนวก ก)

สัญญานออก :	$y(N) = \Delta u_S(N)$	(3.3)

สัญญาณเข้า :
$$c(N) = \Delta i_S(N)$$
 (3.4)
พารามิเตอร์ : $\hat{X}(N) = R_S$ (3.5)

จากการใช้เวกเตอร์แรงคันคำสั่ง *u*_s คังรูปที่ 3.3 และใช้ค่ามุมของเวกเตอร์แรงคันมีค่าเป็น 0 องศาได้ผลการทคสอบคั่งแสดงในรูปที่ 3.4

(ข) ผลการสู่เข้าของค่า R_{S} ด้วยการคำนวณ RLS

รูปที่ 3.4 ค่ากระแส i_s และ R_s งณะที่ง่ายแรงคัน u_s ที่มุม0 องศา

เนื่องจากขดลวดมอเตอร์ 3 เฟสอาจมีค่าความด้านทานต่างกันเล็กน้อยในแต่ละขด เพื่อให้ได้ ค่าเฉลี่ย 3 เฟสของความด้านทาน เราจึงทำการป้อนเวกเตอร์แรงดันที่ค่ามุมต่างๆกันในที่นี้เราเลือกใช้ 3 ก่ากือที่มุมเท่ากับ 0, 120, และ 240 องศา แล้วนำค่าที่ได้มาหาค่าเฉลี่ย ซึ่งผลการทดสอบการหาค่า *R*_s แสดงในรูปที่ 3.5

(พ) ผถการถูเขางองพา K_S พระการท่าน รณ RES รูปที่ 3.5 การหาค่า R_S ด้วยการจ่ายแรงดันที่ค่ามุม 0 , 120 , 240 องศา

เนื่องจากค่า R_s จะมีค่าเปลี่ยนไปตามอุณหภูมิดังแสดงในรูปที่ 2.4-2.6 ในการเปรียบเทียบค่า ความต้านทานทางด้านสเตเตอร์ที่หาได้จากอินเวอร์เตอร์ เราจึงเปรียบเทียบกับค่าความต้านทานที่วัด โดยตรงที่ขั้วของมอเตอร์หลังจากหยุดการทดสอบแล้วทันที ผลการทดสอบการหาค่า R_s ของมอเตอร์ ABB ซ้ำหลายๆครั้ง ที่ค่ามุมต่างกันแสดงได้ดังรูปที่ 3.6 และค่าเฉลี่ยของ R_s ที่หาได้แสดงในรูปที่ 3.7 และเรายังทำการหาค่า R_s กับมอเตอร์ของ SIEMENS และของ MITSUBISHI ด้วยแสดงได้ดังรูปที่ 3.8-3.11

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

รูปที่ 3.6 ผลการหาค่า $R_{_S}$ ของมอเตอร์ ABB ที่ค่ามุมต่างๆเทียบกับค่าที่วัดด้วยมิเตอร์

รูปที่ 3.7 ผลการหาค่า $R_{\scriptscriptstyle S}$ ของมอเตอร์ ABB เฉลี่ยเทียบกับค่าที่วัดด้วยมิเตอร์

รูปที่ 3.8 ผลการหาค่า R_{s} ของมอเตอร์ SIEMENS ที่ค่ามุมต่างๆเทียบกับค่าที่วัดด้วยมิเตอร์

รูปที่ 3.9 ผลการหาค่า R_s ของมอเตอร์ SIEMENS เฉลี่ยเทียบกับค่าที่วัดด้วยมิเตอร์

รูปที่ 3.10 ผลการหาค่า R_s ของมอเตอร์ MITSUBISHI ที่ค่ามุมต่างๆเทียบกับค่าที่วัดด้วยมิเตอร์

รูปที่ 3.11 ผลการหาค่า $R_{\scriptscriptstyle S}$ ของมอเตอร์ MITSUBISHI เฉลี่ยเทียบกับค่าที่วัดด้วยมิเตอร์

จากผลการหาค่า *R_s* ที่ได้เมื่อเทียบกับค่าที่วัดด้วยมิเตอร์จะได้ค่าผิดพลาดของค่า *R_s* ของ มอเตอร์ ABB, SIEMENS และ MITSUBISHI ประมาณ +1.1 %,+0.6 % และ +3.9 % ตามลำดับ ซึ่ง อาจมีสาเหตุจากค่าความผิดพลาดจากการอ่านค่ากระแสและแรงดันของอินเวอร์เตอร์ และจากรูปที่ 3.6-3.11 จะเห็นว่าเมื่อเราทำการหาค่า *R_s* หลายๆครั้งต่อเนื่องกัน ความร้อนจากการที่เราจ่ายแรงดันไฟตรง นานๆทำให้อุณหภูมิสูงขึ้นซึ่งมีผลให้ค่า *R_s* เพิ่มขึ้นด้วย

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

3.2 การหาค่าความเหนี่ยวนำรั่วไหลทางด้านสเตเตอร์ (σL_s)

การหาค่าการหาค่าความเหนี่ยวนำรั่วไหลทางค้านสเตเตอร์ เราใช้วิธีการป้อนแรงคันค่าสูงใน ช่วงเวลาสั้นๆ (แรงคันพัลส์) ในที่นี้เราใช้แรงคันบัสไฟตรงเป็นตัวจ่ายแรงคัน และใช้รูปแบบการสวิตช์ ดังแสดงในรูปที่ 3.12 เราสามารถเขียนวงจรสมมูลของมอเตอร์ขณะที่เราใช้รูปแบบการสวิตช์นี้ แสดง ได้คังในรูปที่ 3.13

รูปที่ 3.12 รูปแบบการสวิตช์ที่ใช้ในการจ่ายแรงคันพัลส์ให้กับมอเตอร์

รูปที่ 3.13 วงจรสมมูลของมอเตอร์ขณะจ่ายแรงคันพัลส์ให้กับมอเตอร์

ในช่วงเวลาที่เราป้อนแรงคันพัลส์นี้กระแสสเตเตอร์จะเพิ่มขึ้นในลักษณะเชิงเส้นด้วยความชันค่า หนึ่ง เนื่องจากมอเตอร์ โดยทั่วไปค่ากงตัวทางเวลาทางด้านสเตเตอร์จะมีค่าน้อยกว่าทางด้านโรเตอร์มาก ดังนั้นในช่วงที่ทำการป้อนแรงดันพัลส์แคบๆนี้ เราสามารถละเลยผลการเปลี่ยนแปลงของฟลักซ์ ทางด้านโรเตอร์ได้ จากสมการของมอเตอร์เหนี่ยวนำในขณะหยุดนิ่งและจากการละเลยผลการ เปลี่ยนแปลงของฟลักซ์ทางด้านโรเตอร์ ($\frac{d\lambda'_R}{dt} = 0$) เราสามารถเขียนสมการทางด้านสเตเตอร์ได้ดัง สมการที่ (3.6)

$$u_S = R_S i_S + \sigma L_S \frac{d}{dt} i_S \tag{3.6}$$

จากการที่เราใช้แรงดันบัสไฟตรงค่าสูงในการจ่ายแรงดัน ผลกระทบจากความไม่เป็นอุดมคติของ สวิตช์จึงมีค่าน้อยจนสามารถละเลยได้ ในช่วงเวลาสั้นๆนี้ข้อมูลของกระแสจะถูกอ่านเข้า ใมโครคอนโทรลเลอร์ด้วยช่วงเวลาชักข้อมูล (Sampling time) ที่น้อยที่สุดเพื่อให้ได้ข้อมูลจำนวนมาก พอสำหรับการกำนวณ แต่ด้วยขีดจำกัดของไมโครคอนโทรลเลอร์ที่ใช้ เราจะแยกการอ่านข้อมูลกับการ กำนวณออกจากกันโดยข้อมูลที่อ่านได้ในช่วงเวลาที่จ่ายแรงดันพัลส์จะถูกเก็บไว้ก่อนแล้วนำมากำนวณ ภายหลัง

ในขณะที่จ่ายแรงคันพัลส์แคบๆนี้ แรงคันบัสไฟตรงจะตกลงเล็กน้อย เพื่อชคเชยแรงคันที่ลคลงนี้ ข้อมูลของแรงคันบัสไฟตรงจะถูกอ่านเข้ามาพร้อมกับกระแสด้วย และเพื่อชคเชยแรงคันตกคร่อมความ ด้านทาน *R_s* เราจะนำก่ากวามต้านทานที่หามาได้ก่อนหน้านี้มาใช้ในการกำนวณด้วย สมการที่ (3.6) สามารถเขียนในรูปเวลาไม่ต่อเนื่องได้เพื่อเป็นสมการสำหรับการกำนวณ RLS คังสมการที่ (3.7) – (3.9)

สัญญานออก :	$y(N) = u_S(N) - R_S i_S(N)$	(3.7)
สัญญาณเข้า :	$c(N) = i_S(N) - i_S(N-1)$	(3.8)
พารามิเตอร์ :	$\hat{X}(N) = \frac{\sigma L_S}{T_S}$	(3.9)

เนื่องจากค่า c(N) ในสมการที่ (3.8) เป็นค่าอนุพันธ์ของกระแสซึ่งจะไวต่อสัญญาณรบกวนที่ ความถี่สูง เพื่อที่จะลดผลนี้เราจึงออกแบบวงจรกรองผ่านต่ำ F(z) เพื่อกรองสัญญาณทั้ง c(N) และ y(N) ดังแสดงในรูปที่ 3.14 การใช้วงจรกรองผ่านต่ำทั้งสองข้างของสมการนี้ จะไม่มีผลต่อการ ้คำนวณหาค่าของพารามิเตอร์ ในการออกแบบค่าความถี่ตัดข้ามของวงจรกรองผ่านต่ำนี้เราได้เลือกใช้ที่ ความถี่ 1/5 ของความถี่ของช่วงเวลาชักข้อมูล

รูปที่ 3.14 การใช้วงจรกรองผ่านต่ำ F(z) ในกรองสัญญาณ c(N) และ y(N)

ผลการทคสอบหาค่า σL_s สามารถแสดงสัญญาณกระแสและแรงคันในขณะที่จ่ายแรงคันพัลส์ให้กับ มอเตอร์คังรูปที่ 3.15 และผลการคำนวณค่า σL_s ด้วยวิธี RLS แสดงได้คังรูปที่ 3.16

รูปที่ 3.15 สัญญาณกระแสและแรงคันในขณะที่จ่ายแรงคันพัลส์ให้กับมอเตอร์

(บ) ค่า σL_s ที่คำนวณได้ในแต่ละช่วงเวลา

รูปที่ 3.16 ผลการคำนวณค่า $\sigma L_{
m s}$ ด้วยวิชี RLS

จากผลการจ่ายแรงดันพัลส์และการคำนวณค่า *σL_s* ด้วยวิธี RLS กับมอเตอร์ ABB ข้างต้น ได้ผลการทดสอบการหาค่า *σL_s* หลายๆครั้งแสดงดังรูปที่ 3.17 และเรายังได้ใช้วิธีการหาค่า *σL_s* แบบนี้กับมอเตอร์ของ SIEMENS และมอเตอร์ของ MITSUBISHI ผลการทดสอบการหาค่า *σL_s* ของ มอเตอร์ทั้งสอง หลายๆครั้งแสดงได้ดังรูปที่ 3.18-3.19

รูปที่ 3.18 ผลการหาค่า σL_{s} ของมอเตอร์ SIEMENS จากการเก็บข้อมูลหลายๆครั้ง

รูปที่ 3.19 ผลการหาค่า $\sigma L_{
m s}$ ของมอเตอร์ MITSUBISHI จากการเก็บข้อมูลหลายๆครั้ง

จากผลการหาค่า σL_s เราได้เฉลี่ยค่าดังนี้ มอเตอร์ ABB มีค่า $\sigma L_s = 41.2 \ mH$, มอเตอร์ SIEMENS มีค่า $\sigma L_s = 41.7 \ mH$ และมอเตอร์ MITSUBISHI มีค่า $\sigma L_s = 25.5 \ mH$, จากค่าที่ได้เมื่อ เทียบกับค่าจากการทดสอบไร้ โหลดและยึดโรเตอร์ มีก่าผิดพลาด -5%, -5% และ -8% ตามลำดับ ซึ่ง น่าจะมีสาเหตุจากค่าความผิดพลาดจากการอ่านก่ากระแสและแรงดันส่วนหนึ่ง และจากการที่เรานิยาม ให้การเปลี่ยนแปลงของฟลักซ์ทางด้านโรเตอร์มีก่าน้อย ($\frac{d\lambda'_R}{dt} = 0$) ซึ่งในทางปฏิบัติฟลักซ์ทางด้านโร เตอร์อาจมีก่าเปลี่ยนแปลงบ้างเล็กน้อยซึ่งทำให้มีผลต่อก่ากระแสและแรงดันที่อ่านได้มีก่าเพี้ยนไป และ จากการเลือกใช้ก่าความถิ่ตัดข้ามในวงจรกรองผ่านต่ำก็อาจทำให้ผลการกำนวณได้ก่าที่น้อยลง

3.3 การหาค่าเวลาคงตัวทางเวลาทางด้านโรเตอร์(\u03c6 R R) และค่าความต้านทานโรเตอร์ สมมูลในวงจร สมมูลอ้างอิงโรเตอร์ฟลักซ์ (R' R)

ในการหาค่า τ_R และ R'_R เราจะจ่ายกระแสไฟตรงเข้าทางค้านสเตเตอร์คังในรูปที่ 3.20 ที่ ค่ากระแสสร้างฟลักซ์พิกัค (+ I_s) ด้วยตัวควบคุมกระแสแบบ PI (ที่ใช้การออกแบบคังในภาคผนวก ข) ด้วยระยะเวลาหนึ่งเพื่อให้มอเตอร์เข้าสู่สภาวะอยู่ตัวและสร้างโรเตอร์ฟลักซ์ที่คงที่ค่าหนึ่ง ซึ่งมีค่าคัง สมการที่ (3.10)

รูปที่ 3.20 วงจรสมมูลของมอเตอร์เหนี่ยวนำขณะจ่ายกระแสไฟตรง เข้าทางค้านสเตเตอร์ที่ค่า $+I_s$ ณ เวลา t < 0

$$\lambda_R' = M' I_S \tag{3.10}$$

จากนั้นเราจะควบคุมให้กระแสสเตเตอร์ลดลงเป็นค่า $-I_s$ อย่างรวดเร็วแบบขั้นบันไดที่เวลา t=0 ซึ่งจะทำให้เกิดกระแสไหลดังรูปที่ 3.21 จากสมการของมอเตอร์เหนี่ยวนำในขณะหยุดนิ่งจะ กำนวณได้ว่า ในช่วงเวลา t > 0 โรเตอร์ฟลักซ์จะมีค่าลดลงตามสมการที่ (3.11) และจะเหนี่ยวนำให้เกิด แรงดันขึ้นที่ขั้วของมอเตอร์ทางด้านสเตเตอร์ ตามสมการที่ (3.12)

รูปที่ 3.21 วงจรสมมูลของมอเตอร์เหนี่ยวนำหลังจ่ายกระแสไฟตรง เข้าทางด้านสเตเตอร์ที่ก่า $-I_s$ ณ เวลา t=0

$$\frac{d\lambda'_R}{dt} = -R'_R I_S - \frac{\lambda'_R}{\tau_R}$$
(3.11)

$$u_{S} = -R_{S}I_{S} + \frac{d\lambda_{R}'}{dt}$$
(3.12)

ที่เวลา t >> 0 มอเตอร์จะเข้าสู่สภาวะอยู่ตัวใหม่ดังรูปที่ 3.22

รูปที่ 3.22 วงจรสมมูลของมอเตอร์เหนี่ยวนำขณะจ่ายกระแสไฟตรง เข้าทางค้านสเตเตอร์ที่ค่า –I_s ณ เวลา t >> 0

แรงดัน *u_s* ที่ขั้วของกับมอเตอร์สามารถทราบค่าได้โดยทางอ้อมจากสัญญาณกำสั่ง *u^{*}_s* ของตัว ควบคุมกระแสแบบ PI ซึ่งสามารถนำไปกำนวณหาค่าพารามิเตอร์ได้ จากสมการที่ (3.11) และ (3.12) เราสามารถกำนวณได้ว่าแรงดันสเตเตอร์ที่สังเกตได้จะมีก่าดังสมการที่ (3.13)

$$u_{S}^{*} - u_{DT} = -R_{S}I_{S} - 2R_{R}'I_{S}e^{-t/\tau_{R}}$$
(3.13)

ค่าแรงดัน u_s^* ในสภาวะอยู่ตัว $u_s^*(\infty)$ จะเป็นผลรวมของแรงดันตกคร่อมสวิตช์ แรงดันจากผล ของเวลาประวิงและแรงดันตกคร่อม R_s เราสามารถใช้ค่าแรงดันในสภาวะอยู่ตัว $u_s^*(\infty)$ นี้ลบออก จากแรงดันชั่วขณะ(Transient) ของ u_s^* จะได้เป็นแรงดันตกคร่อมความเหนี่ยวนำ $L_s(u_{L_s})$ แสดงดัง รูปที่ 3.23

รูปที่ 3.23 ค่ากระแสและแรงคันต่างๆในวงจรสมมูลของมอเตอร์

และในช่วงที่กระแสกำลังเปลี่ยนจาก I_s เป็น $-I_s$ นั้น จะมีแรงคันชั่วขณะเนื่องจากค่า σL_s เข้ามา ปะปนในสัญญาณ u_s^* ด้วย ดังนั้นเพื่อที่จะกำจัดผลของค่าชั่วขณะนี้ เราจึงตัดแรงดันในช่วงเวลานี้ (เวลาตั้งแต่ $0-t_{CUT}$ โดยที่ก่าของ t_{CUT} เป็นจำนวนเท่าของก่า T_s) ทิ้งไป ไม่นำมาพิจารณา และ หลังจากที่กระแสทางด้านสเตเตอร์ (i_s) เข้าสู่สภาวะอยู่ตัวแล้ว แรงดันตกกร่อมตัวเหนี่ยวนำ σL_s จะมี ก่าเป็นศูนย์ แรงดัน u_{L_s} จึงเหลือแต่แรงดันตกกร่อมตัวเหนี่ยวนำ $M'(u_{M'})$ จากสมการที่ (3.13) เรา สามารถเขียนสมการของ $u_{M'}$ ได้ดังสมการที่ (3.14)

$$u_{M'} = u_S^* - u_S^* \left(\infty \right) = -2R'_R I_S e^{-t/\tau_R}$$
(3.14)

โดยที่ $t_{CUT} \leq t < \infty$

เราสามารถจัครูปแบบสมการที่ (3.14) ได้ใหม่โดยใช้การคำนวณลอการิทึมร่วมด้วย ทำให้เราได้ สมการเชิงเส้นเป็น

$$\ln[u_{M'}] = -\frac{t}{\tau_R} + \ln[2R'_R I_S]$$
(3.15)

จากสมการที่ (3.15) เราสามารถใช้การคำนวณด้วยวิธี RLS ในการหาก่าพารามิเตอร์ ซึ่งเมื่อเขียน ให้อยู่ในรูปแบบเวลาไม่ต่อเนื่องสำหรับการคำนวณ RLS จะได้เป็นสมการที่ (3.16)-(3.18)

สัญญาณออก: $y(N) = \ln \left[u_{M'}(N) \right]$ (3.16)

สัญญาณเข้า:
$$c(N) = [k \ 1]$$
 (3.17)

พารามิเตอร์:
$$\hat{X}(N) = \left[-\frac{T_S}{\tau_R} \ln[2R'_R I_S]\right]^T$$
 (3.18)

โดยที่ k = a, a + 1, a + 2, ... และ $a = t_{CUT} / T_S$

นอกจากนี้ในการคำนวณด้วยวิชี RLS เรายังใช้การคำนวณแบบทำซ้ำ โดยนำข้อมูลชุดเดิมของ y(N) และ c(N) มาคำนวณใหม่ โดยที่ค่าเริ่มต้นของเมตริกซ์ P และพารามิเตอร์ Xิ นั้น จะใช้ค่า สุดท้ายจากการคำนวณในรอบก่อนหน้านี้ ทั้งนี้ก็เพื่อให้มีข้อมูลยาวเพียงพอที่ค่าพารามิเตอร์จะลู่เข้าหา ค่าในสภาวะอยู่ตัวได้

ค่าพารามิเตอร์ $-\frac{T_S}{\tau_R}$ และค่า $\ln[2R'_RI_S]$ ในเมตริกซ์ \hat{X} ที่ได้จากการคำนวณ RLS สามารถ นำมาหาค่าของ τ_R และ R'_R ได้ โดยผลการทดสอบหาค่า τ_R และ R'_R แสดงได้ดังรูปที่ 3.24-3.25

รูปที่ 3.24 ผลการควบคุมกระแสทางค้านสเตเตอร์จากค่ากระแส +2 A เป็น –2 A

รูปที่ 3.24 แสดงแรงคันคำสั่งที่ได้จากการใช้ตัวควบคุมกระแสและค่ากระแสผิดพลาดจากการ ควบคุม และเพื่อหลีกเลี่ยงผลกระทบจากแรงคันชั่วขณะจากค่า *σL_s* เราจะไม่นำค่าแรงคัน *u*^{*}_s ในช่วง 1 ms (*t_{CUT}* = 1 ms) มาคิด

(ข) ผลการกำนวณลอกาลิทึมเทียบเป็นก่าต่อหน่วยซึ่งใช้ $V_{BASE}=220\sqrt{2}$

รูปที่ 3.25 ค่าแรงเคลื่อนเหนี่ยวนำ *u_{M'} เ*มื่อควบคุมกระแสทางค้านสเตเตอร์ จากค่ากระแส +2 A เป็น –2 A

จากรูปที่ 3.25 จะเห็นว่าช่วงเวลาหลังจาก 100 ms ผลการคำนวณลอกาลิทึมเริ่มจะมีสัญญาณ รบกวนเข้ามาปะปนมาก เพราะเป็นช่วงที่แรงคันมีค่าน้อย คังนั้นในการนำไปประมวลผลค้วย RLS เรา จะเลือกใช้ข้อมูลในช่วงต้น (0-100 ms) เท่านั้น

(ข) การลู่เข้าของค่า R_R^\prime

รูปที่ 3.26 ผลการคำนวณ RLS โดยใช้ข้อมูลในช่วง 100 ms ซ้ำ (แสดงเฉพาะ 8 รอบแรกของการคำนวณ)

จากข้อมูลแรงเกลื่อนเหนี่ยวนำ $u_{M'}$ ในรูปที่ 3.25 เราสามารถนำไปคำนวณด้วยวิชี RLS โดยใช้ ชุดข้อมูลเดิมซ้ำเป็นจำนวน 40 รอบ เราก็จะได้ผลของก่า au_R และ R'_R ก่าสุดท้ายเป็นกำตอบดังรูปที่ 3.26 เราทำการทดสอบการหาก่า au_R และ R'_R หลายกรั้งและได้ผลการทดสอบดังรูปที่ 3.27-3.28

โดยวิธีการเดียวกันนี้ เราจะนำไปใช้ในการหาค่า au_R และ R'_R กับมอเตอร์ของ SIEMENS และ มอเตอร์ของ MITSUBISHI ด้วยได้ผลการทดสอบดังรูปที่ 3.29-3.32

รูปที่ 3.28 ค่า R_R' ของมอเตอร์ ABB จากการเก็บข้อมูลหลายๆครั้ง

รูปที่ 3.30 ค่า R_R' ของมอเตอร์ SIEMENS จากการเก็บข้อมูลหลายๆครั้ง

รูปที่ 3.32 ค่า *R*'_R ของมอเตอร์ MITSUBISHI จากการเก็บข้อมูลหลายๆครั้ง
จากผลการทดสอบหาค่า τ_R ของมอเตอร์ทั้ง 3 ตัวได้ผลดังนี้ มอเตอร์ ABB มีค่า $\tau_R = 106 ms$ มอเตอร์ SIEMENS มีค่า $\tau_R = 106 ms$ และมอเตอร์ MITSUBISHI มีค่า $\tau_R = 106 ms$ เมื่อนำไป เปรียบเทียบกับค่าที่ได้จากการทดสอบไร้โหลดและยึดโรเตอร์ จะได้ค่าเปอร์เซนต์ความผิดพลาด ดังนี้คือ +55.6 % , +54.9 % และ +41.4 % ตามลำดับ จะเห็นได้ว่าค่า τ_R ที่หาได้จากการใช้ อินเวอร์เตอร์มีค่ามากกว่าค่าที่ได้จากการทดสอบยึดโรเตอร์ที่ 50 Hz เนื่องจากขณะที่ทำการทดสอบยึด โรเตอร์นั้นค่า ฟลักซ์ที่เกิดขึ้นในตัวของมอเตอร์มีค่าต่ำกว่าค่าฟลักซ์ของมอเตอร์ขณะใช้งานจริง จึงทำ ให้ได้ค่าที่ไม่ถูกต้องนัก ส่วนค่าที่เราได้จากการใช้อินเวอร์เตอร์นั้นเราได้ทำการจ่ายกระแสเพื่อสร้างฟ ลักซ์ที่ก่าพิกัดของมอเตอร์ จึงน่าจะได้ค่าที่ถูกต้องมากกว่า

ผลการทดสอบหาค่า R'_R ของมอเตอร์ทั้ง 3 ตัวได้ผลดังนี้ มอเตอร์ ABB มีค่า $R'_R = 4.05 \Omega$ มอเตอร์ SIEMENS มีค่า $R'_R = 4.50 \Omega$ และมอเตอร์ MITSUBISHI มีค่า $R'_R = 2.65 \Omega$ เมื่อนำไป เปรียบเทียบกับค่าที่ได้จากการทดสอบไร้โหลดและยึดโรเตอร์ จะได้ค่าเปอร์เซนต์ความผิดพลาด ดังนี้กือ –33.6%, -27.6% และ –27.0% ตามลำดับ จะเห็นได้ว่าค่า R'_R ที่หาได้จากการใช้อินเวอร์เตอร์ มีก่าน้อยกว่าค่าที่ได้จากการทดสอบยึดโรเตอร์ที่ 50 Hz เนื่องจากการทดสอบยึดโรเตอร์ที่ 50 Hz นี้ ก่ากระแสและแรงดันที่เกิดขึ้นในโรเตอร์จะมีค่าความถี่ 50 Hz ซึ่งมีค่าสูงกว่าการใช้งานตามปกติ ที่ มักจะมีก่าต่ำ และจากผลการทดสอบยึดโรเตอร์หาค่า R'_R ที่ความถี่ก่าต่างๆ จะเห็นได้ว่ามีค่าลดลงตาม ความถี่อันเนื่องจากผลของปรากฏการณ์ทางผิว จากการที่เราใช้อินเวอร์เตอร์หาค่า R'_R โดยการใช้การ จ่ายกระแสไฟตรงและใช้ค่าของแรงคันในช่วงเวลาชั่วขณะในการคำนวณค่า R'_R ซึ่งมีค่าความถี่ต่ำนั้น เราน่าจะได้ก่า R'_R ที่มีค่าถูกต้องมากกว่า เพราะค่าผิดพลาดที่เกิดจากผลของปรากฏการณ์ทางผิวมีค่า ลดลง

3.4 การหาเส้นกราฟการอิ่มตัวของแกนเหล็ก (Saturation curve) ของมอเตอร์เหนี่ยวนำ

จากการทดสอบหาค่าพารามิเตอร์ด้ยวิธีไร้โหลดและยึดโรเตอร์จะเห็นได้ว่าค่า L_s หรือ M' นั้น มีแนวโน้มการเปลี่ยนแปลงน้อยที่ค่ากระแสสร้างฟลักซ์น้อยกว่าพิกัด และมีแนวโน้มที่ค่าจะ เปลี่ยนแปลงมากในทางที่ลดลงที่ค่ากระแสสร้างฟลักซ์มากกว่าพิกัด จากค่า τ_R และ R'_R ที่หาได้ใน หัวข้อ 3.3 เราสามารถนำมาหาก่าความเหนี่ยวนำร่วม $M' = \tau_R R'_R$ ได้ อย่างไรก็ตามค่าที่ได้จะมี ลักษณะเชิงเป็นค่าเฉลี่ยของค่า M' ในช่วงที่กระแสสร้างฟลักซ์มีค่าอยู่ระหว่างสูนย์ถึงค่าพิกัด ซึ่ง สามารถนำไปใช้ในการควบคุมมอเตอร์เหนี่ยวนำได้ในระดับหนึ่ง แต่ถ้าเราต้องการให้ได้การควบคุมที่ มีสมรรถนะสูง เรามีความจำเป็นที่จะต้องใช้ค่า M' ที่มีค่าเปลี่ยนแปลงตามค่ากระแสสร้างฟลักซ์แทน การใช้ก่าเฉลี่ยของ M' กล่าวคือเราต้องอาศัยข้อมูลเส้นกราฟการอิ่มตัวของแกนเหล็กในการควบคุม นั้นเอง ซึ่งในหัวข้อนี้จะได้กล่าวถึงการหาเส้นกราฟการอิ่มตัวของแกนเหล็กนี้

จากวิธีทดสอบในหัวข้อ 3.3 ที่ทำการควบคุมกระแสทางค้านสเตเตอร์ให้เปลี่ยนแปลงแบบขั้น และนำแรงคันที่ได้จากการควบคุมมาหาค่าพารามิเตอร์นั้น เราสามารถนำวิธีการเดียวกันนี้มาใช้ในการ หาเส้นกราฟการอิ่มตัวของแกนเหล็กได้ด้วย แต่จะใช้การควบคุมกระแสทางค้านสเตเตอร์ให้มีค่าสูง กว่าค่าพิกัดของกระแสสร้างฟลักซ์ ในที่นี้เราเลือกใช้กระแสควบคุมที่ 2.5 เท่าของค่ากระแสสร้างฟลักซ์ พิกัด และใช้ค่าพารามิเตอร์ทางค้านโรเตอร์ที่ได้ก่อนหน้านี้จากการควบคุมกระแสทางด้านสเตเตอร์ที่ ค่ากระแสสร้างฟลักซ์อยู่ในพิกัดมาใช้ในการหาเส้นกราฟการอิ่มตัวของแกนเหล็กนี้ด้วย

จากสมการของมอเตอร์เหนี่ยวนำในขณะหยุคนิ่ง สามารถจัคสมการใหม่ได้เป็น

$$u_{L_s} = u_s^* - R_s i_s - u_{DT} = \sigma L_s \frac{d}{dt} i_s + \frac{d}{dt} \lambda_R'$$
(3.19)

เนื่องจากเราได้ตัดแรงดันชั่วขณะตั้งแต่เวลา 0 ถึง t_{cut} ทิ้งไปดังนั้น การอินทิเกรตสมการที่ (3.19) เพื่อหาค่าโรเตอร์ฟลักซ์ (λ'_R) จึงเป็นการอินทิเกรตในช่วง t_{cut} ถึง t โดยที่ $t_{cut} < t < \infty$ เมื่อแทนค่า $i_S(t) = -I_S$ เราจะได้ผลการอินทิเกรตดังแสดงในสมการที่ (3.20) และจากรูปที่ 3.23 สามารถหา ค่ากระแสสร้างฟลักซ์ได้จากสมการที่ (3.21)

$$\lambda_{R}^{\prime}(t) = \int_{t_{cut}}^{t} u_{L_{S}}(t) dt + \lambda_{R}^{\prime}(t_{cut}) + \sigma L_{S} I_{S}$$
(3.20)

$$i_{MR}(t) = -I_S - \frac{u_{M'}(t)}{R'_R}$$
(3.21)

โดยที่ก่า $\lambda(t_{cut})$ เป็นก่าเริ่มต้นของการอินทิเกรต กำหนดให้ก่าโรเตอร์ฟลักซ์ ณ เวลา t=0 ทีก่าดังนี้

$$\lambda_R'(0) = M'(0)I_S \tag{3.22}$$

โดยที่ก่า $\lambda'_{R}(0)$ และ M'(0) เป็นก่าที่ยังไม่ทราบก่า เนื่องจากช่วงเวลา 0 ถึงเวลา t_{cut} เป็นช่วงเวลา สั้นๆ ก่าโรเตอร์ฟลักซ์ในมอเตอร์ยังกงเปลี่ยนแปลงไม่มาก ดังนั้นในช่วงที่ฟลักซ์เปลี่ยนแปลงแกบๆนี้ เราอาจประมาณได้ว่า การเปลี่ยนแปลงมีลักษณะเป็นเชิงเส้นและก่า M' มีก่าเท่ากับ M'(0) ซึ่งเราจะ ได้ว่า ณ เวลา $t = t_{CUT}$

$$\lambda_{R}'(t_{cut}) = \left[2e^{-R_{R}'t_{cut}/M'(0)} - 1\right]M'(0)I_{S}$$
(3.23)

และเมื่อเราทำการอินทิเกรตตามสมการ (3.20) จนถึงค่า $t = t_f$ ซึ่งเป็นจุดเวลาที่ฟลักซ์อิ่มตัวทางด้าน ลบแล้ว เราจะได้ว่า

$$\lambda_{R}'(t_{f}) = -\lambda_{R}'(0) = -M'(0)I_{S}$$
$$= -\int_{t_{CUT}}^{t_{f}} u_{L_{S}}dt + \lambda_{R}'(t_{cut}) + \sigma L_{S}I_{S}$$
(3.24)

เราสามารถใช้การคำนวณแบบวนรอบ (Interation) ในการแก้สมการที่ (3.23) และ (3.24) เพื่อหาค่า M'(0) และ $\lambda'_R(t_{CUT})$ เมื่อเราได้ค่า $\lambda'_R(t_{CUT})$ ก็จะสามารถแทนลงในสมการที่ (3.20) และหาค่า $\lambda'_R(t)$ ณ เวลาใดๆได้ ซึ่งเมื่อนำมาพล็อตกับกระแสสร้างฟลักซ์ $i_{MR}(t)$ ซึ่งคำนวณได้จากสมการที่ (3.21) ก็จะได้เป็นเส้นกราฟการอิ่มตัวของแกนเหล็กดังแสดงในรูปที่ 3.33-3.34

รูปที่ 3.33 ผลการทคสอบลักษณะการอิ่มตัวของแกนเหล็ก

รูปที่ 3.34 เส้นกราฟ $\lambda_R'(t)$ เทียบกับ $i_{MR}(t)$ ที่ได้จากการควบคุมกระแส i_S จาก +5 A เป็น –5 A

เมื่อนำผลในรูปที่ 3.34 ไปหาค่าเฉลี่ย เพื่อกรองเอาสัญญาณรบกวนออกโดยการใช้ Moving average filter จะได้กราฟที่เรียบขึ้นดังแสดงในรูปที่ 3.35

ในทำนองกลับกันเราสามารถทำการควบคุมกระแสในทิศทางตรงข้ามกับที่ทำก่อนหน้านี้โดย ควบคุมกระแสสเตเตอร์ให้เปลี่ยนจาก –5 A เป็น +5 A แบบขั้นบันไดและนำไปหาค่าเฉลี่ยและเขียน เส้นกราฟรวมกับเส้นกราฟในรูปที่ 3.35 ได้ดังรูปที่ 3.36

รูปที่ 3.35 ค่าเฉลี่ยเส้นกราฟ $\lambda'_{R}(t)$ เทียบกับ $i_{MR}(t)$ ที่ได้จากการควบคุมกระแส i_{S} จาก +5 A เป็น –5 A

รูปที่ 3.36 ค่าเฉลี่ยเส้นกราฟ $\lambda'_R(t)$ เทียบกับ $i_{MR}(t)$ ที่ได้จากการควบคุมกระแส i_S จาก +5 A เป็น –5 A และจาก -5 A เป็น +5 A

จากเส้นกราฟทั้ง 2 เส้นในรูปที่ 3.36 เราสามารถนำไปประมาณเส้นกราฟการอิ่มตัวของแกน เหล็กได้โดยนำค่าฟลักซ์ที่ได้จากเส้นกราฟทั้งสองเส้น ณ ค่ากระแส i_{MR} หนึ่งๆ มาบวกกันแล้วหาร สอง และนำค่าเฉลี่ยของฟลักซ์ที่ได้มาพล็อตเส้นกราฟการอิ่มตัวใหม่จะได้ผลดังรูปที่ 3.37

รูปที่ 3.37 เส้นกราฟการอิ่มตัวของแกนเหล็กที่ประมาณได้

อย่างไรก็ตาม เนื่องด้วยในการนำเส้นกราฟการอิ่มตัวของแกนเหล็กไปใช้งาน เราจะถือว่า เส้นกราฟการอิ่มตัวในซีกกระแสบวกและลบมีลักษณะสมมาตร จึงสามารถประมาณเส้นกราฟในช่วงที่ ก่าของกระแสสร้างฟลักซ์มีค่าเป็นบวกได้โดยหาค่าเฉลี่ยของขนาดของฟลักซ์ ณ กระแสสร้างฟลักซ์ที่มี ก่าบวกและลบ จากรูปที่ 3.37 เราประมาณเส้นกราฟการอิ่มตัวของแกนเหล็กได้ดังรูปที่ 3.38 และเราได้ แสดงการเปรียบเทียบกับผลการหาเส้นกราฟการอิ่มตัวของแกนเหล็กที่ได้จากวิธีไร้โหลดและยึดโร เตอร์จากรูปที่ 2.28 ซึ่งจะต้องทำการเปลี่ยนเส้นกราฟการอิ่มตัวของแกนเหล็กในรูปที่ 2.28 นี้ให้อยู่ใน สเปซเวกเตอร์ก่อน

รูปที่ 3.38 เส้นกราฟการอิ่มตัวของแกนเหล็กที่ประมาณได้ของมอเตอร์ ABB ในช่วงที่ก่ากระแสสร้างฟลักซ์มีก่าบวก

โดยวิธีการหาเส้นกราฟการอิ่มตัวของแกนเหล็กที่กล่าวมาเราจะนำไปใช้กับมอเตอร์ของ SIEMENS และมอเตอร์ของ MITSUBISHI ได้ผลของเส้นกราฟการอิ่มตัวของแกนเหล็กที่ประมาณได้ ในช่วงที่ค่ากระแสสร้างฟลักซ์มีค่าเป็นบวก คังรูปที่ 3.39-3.40

รูปที่ 3.39 เส้นกราฟการอิ่มตัวของแกนเหล็กที่ประมาณได้ของมอเตอร์ SIEMENS ในช่วงที่ค่ากระแสสร้างฟลักซ์มีค่าบวก

รูปที่ 3.40 เส้นกราฟการอิ่มตัวของแกนเหล็กที่ประมาณได้ของมอเตอร์ MITSUBISHI ในช่วงที่ค่ากระแสสร้างฟลักซ์มีค่าบวก

จากผลการทดสอบการหาเส้นกราฟประมาณการอิ่มตัวของแกนเหล็กที่ได้จากการใช้ อินเวอร์เตอร์มีค่าใกล้เคียงกับเส้นกราฟการอิ่มตัวของแกนเหล็กที่ได้จากการทดสอบไร้ โหลด

เราสามารถสรุปผลการทคสอบการหาค่าพารามิเตอร์ โดยใช้อินเวอร์เตอร์ ของมอเตอร์ทั้ง 3 ตัวได้ ดังตารางที่ 3.1

	<u>ค่าพารามิเตอร์</u>				
ชื่อมอเตอร์	R _s	σL_s	M'	R'_R	$ au_{\scriptscriptstyle R}$
	[Ω]	[<i>mH</i>]	[<i>mH</i>]	[Ω]	[<i>ms</i>]
ABB	8.05	41.2	429.3	4.05	106
SEIMENS	8.8 <mark>5</mark>	41.7	495.0	4.50	110
MITSUBISHI	5.30	25.5	357.8	2.65	135

ตารางที่ 3.1 ผลการหาค่าพารามิเตอร์มอเตอร์เหนี่ยวนำโดยใช้อินเวอร์เตอร์

บทที่ 4

การทดสอบค่าพารามิเตอร์

ในบทนี้จะกล่าวถึงการทคสอบความถูกค้องก่าพารามิเตอร์ที่หาโดยใช้อินเวอร์เตอร์เปรียบเทียบ กับก่าพารามิเตอร์ที่หาจากการทคสอบไร้โหลดและยึดโรเตอร์ ซึ่งจะใช้การทด สอบโดยเปรียบเทียบ พฤติกรรมที่เกิดจากมอเตอร์จริงกับที่เกิดจากการจำลองมอเตอร์เหนี่ยวนำด้วยก่าพารามิเตอร์ที่หาได้ จากสมการทั่วไปของมอเตอร์เหนี่ยวนำ เมื่อเรารวมผลของการอิ่มตัวของแกนเหล็กด้วย สามารถ เขียนเป็นแผนภาพการกำนวณได้ดังรูปที่ 4.1

รูปที่ 4.1 แผนภาพการจำลองระบบของมอเตอร์เหนี่ยวนำที่รวมผลของการอิ่มตัวของแกนเหล็ก

จากรูปที่ 4.1 จะเห็นได้ว่าเราต้องใช้ค่าของแรงดันและความเร็วของมอเตอร์มาเป็นอินพุทให้กับ แบบจำลอง ซึ่งในการทดสอบค่าพารามิเตอร์ที่หาได้เราจะนี้เราจะใช้การป้อนแรงคัน 3 เฟส จากการ ไฟฟ้า ความถี่ 50 Hz ที่ค่าพิกัดของมอเตอร์ให้กับมอเตอร์โดยตรง (Direct on line) และทำการเก็บข้อมูล ของแรงดันและความเร็วของมอเตอร์ในช่วงเวลาชั่วขณะ (Transient) มาเป็นสัญญาณอินพุทให้กับ ระบบจำลองในรูปที่ 4.1 โดยใช้ค่าพารามิเตอร์ที่หามาได้ในการจำลองการทำงาน เราจะเปรียบความ ถูกต้องของค่าพารามิเตอร์โดยการเปรียบเทียบกระแสของมอเตอร์จากการจำลองกับกระแสจริงของ มอเตอร์ที่ได้จากการป้อนแรงคัน 3 เฟสในข้างต้นซึ่งในที่นี้เราได้เก็บข้อมูลในช่วงเวลา 0.45 sec มาใช้ ในการคำนวณ ข้อมูลของความเร็วที่ได้ ของมอเตอร์ ABB แสดงดังรูปที่ 4.2

รูปที่ 4.2 ความเร็วโรเตอร์ของมอเตอร์ ABB จากการป้อนแรงคัน 3 เฟส ที่ค่าพิกัคของมอเตอร์โดยตรง

แรงดันของมอเตอร์ที่เราทำการเก็บเป็นแรงดันระหว่างเฟส _{v_{uv} และ _{v_{vw}} ซึ่งเราจะทำการแปลง เป็นแรงดันเฟส (v_u,v_v,v_w) ก่อนเพื่อใช้กับระบบจำลอง แสดงดังรูปที่ 4.3 และรูปขยายแรงดันในช่วง ด้นของรูปที่ 4.3 แสดงดังรูปที่ 4.4 ส่วนข้อมูลของกระแสของมอเตอร์ที่ใช้สำหรับเปรียบเทียบจะเป็น กระแสทั้ง 3 เฟส (i_u,i_v,i_w) แสดงดังรูปที่ 4.5 และรูปขยายกระแสในช่วงด้นของรูปที่ 4.5 แสดงดังรูป ที่ 4.6}

เวลา [90 *ms / DIV*]

รูปที่ 4.5 กระแสเฟส (i_u, i_v, i_w) ความถี่ 50 Hz ของมอเตอร์ ABB

รูปที่ 4.6 กระแสเฟส (*i_u,i_v,i_w*) ความถี่ 50 Hz ของมอเตอร์ ABB ขยายจากกระแสในรูปที่ 4.5 ช่วงต้น

เราจะเก็บข้อมูลของความเร็วโรเตอร์ ค่าแรงคันและกระแส ของมอเตอร์ STEMENS และของ มอเตอร์ MITSUBISHI ได้เช่นเดียวกับมอเตอร์ ABB แสคงได้ดังรูปที่ 4.7-4.16

รูปที่ 4.7 ความเร็วโรเตอร์ของมอเตอร์ SIEMENS จากการป้อนแรงคัน 3 เฟส ที่ค่าพิกัดของมอเตอร์โดยตรง

เวลา [90 *ms / DIV*]

เวลา [10 *ms / DIV*]

เวลา [90 *ms / DIV*]

รูปที่ 4.10 กระแสเฟส (i_u, i_v, i_w) ความถี่ 50 Hz ของมอเตอร์ SIEMENS

รูปที่ 4.11 กระแสเฟส (i_u, i_v, i_w) ความถี่ 50 Hz ของมอเตอร์ SIEMENS ขยายจากกระแสในรูปที่ 4.10 ช่วงต้น

รูปที่ 4.12 ความเร็วโรเตอร์ของมอเตอร์ MITSUBISHI จากการป้อนแรงคัน 3 เฟส โดยตรง

73

เวลา [10 *ms / DIV*]

รูปที่ 4.14 แรงคันเฟส (*v_u*,*v_v*,*v_w*) ความถี่ 50 Hz ที่จ่ายให้มอเตอร์ MITSUBISHI ขยายจากแรงคันในรูปที่ 4.13 ช่วงค้น

รูปที่ 4.15 กระแสเฟส (i_u, i_v, i_w) ความถี่ 50 Hz ของมอเตอร์ MITSUBISHI

รูปที่ 4.16 กระแสเฟส (*i_u,i_v,i_w*) ความถี่ 50 Hz ของมอเตอร์ MITSUBISHI ขยายจากกระแสในรูปที่ 4.15 ช่วงต้น

เราจะทดสอบความเที่ยงตรงของค่าพารามิเตอร์ที่หาได้จากการใช้อินเวอร์เตอร์ เทียบกับ ค่าพารามิเตอร์ที่หาได้จากการทดสอบไร้โหลดและยึดโรเตอร์ โดยใช้การเปรียบเทียบกระแสในแต่ละ เฟสที่ได้จากการจำลองระบบ (i'_u, i'_v, i'_w) จากการแปลงกระแส i_s ของระบบจำลองในรูปที่ 4.1 กับ กระแสจริงในแต่ละเฟสที่เก็บข้อมูลได้จากการวัด (i_u, i_v, i_w) สามารถแสดงผลการเปรียบกระแสของ มอเตอร์ ABB ได้ดังรูปที่ 4.17-4.18 ผลการเปรียบกระแสของมอเตอร์ SIEMENS ได้ดังรูปที่ 4.19-4.20 และผลการเปรียบกระแสของมอเตอร์ MITSUBISHI ได้ดังรูปที่ 4.21-4.22

ของมอเตอร์ ABBโดยใช้ค่าพารามิเตอร์จากการใช้อินเวอร์เตอร์

รูปที่ 4.19 ค่ากระแสเฟสขยายในช่วงท้ายและค่ากระแสผิดพลาดจากการจำลองระบบของมอเตอร์ SIEMENS โดยใช้ค่าพารามิเตอร์จากการทดสอบไร้โหลดและยึด โรเตอร์

รูปที่ 4.21 ค่ากระแสเฟสขยายในช่วงท้ายและค่ากระแสผิดพลาดจากการจำลองระบบของมอเตอร์ MITSUBISHI โดยใช้ค่าพารามิเตอร์จากการทดสอบไร้ โหลดและยึด โรเตอร์

ของมอเตอร์ MITSUBISHI โดยใช้ก่าพารามิเตอร์จากการใช้อินเวอร์เตอร์

จากผลการทดสอบก่าพารามิเตอร์ในรูปที่ 4.17-4.22 ในช่วงเวลา 0-180 ms ที่มอเตอร์เริ่มหมุน และมีก่ากระแสสเตเตอร์ที่สูง ในช่วงนี้จะเกิดการเปลี่ยนแปลงของก่าฟลักซ์สูง กระแสทางค้านโรเตอร์ จะมีขนาดและความถิ่ที่สูง ดังนั้นในช่วงนี้ก่าพารามิเตอร์ทางด้านสเตเตอร์ (*R_s* และ *σL_s*) และ ก่าพารามิเตอร์ทางด้านโรตอร์ (*M'* และ *R'_R*) จะมีผลต่อการเปลี่ยนแปลงกระแสทางด้านสเตเตอร์ นอกจากนี้ยังมีผลของปรากฏการณ์ทางผิวด้วย จากรูปที่ 4.17-4.22 จะเห็นได้ว่าก่ากระแสผิดพลาดจาก การใช้ก่าพารามิเตอร์ที่ได้จากการใช้อินเวอร์เตอร์มีก่าใกล้เกียงกันเมื่อเทียบกับก่ากระแสผิดพลาดจาก ก่าพารามิเตอร์ที่ได้จากการใช้อินเวอร์เตอร์มีก่าใกล้เกียงกันเมื่อเทียบกับก่ากระแสผิดพลาดจาก ก่าพารามิเตอร์ที่ได้จากการใช้อินเวอร์เตอร์มีก่าใกล้เกียงกันเมื่อเทียบกับก่ากระแสผิดพลาดจาก ก่าพารามิเตอร์ที่ได้จากการทดสอบไร้โหลดและยึดโรเตอร์ และในช่วงเวลาหลังจาก 180 ms เป็นต้นไป ซึ่งกวามเร็วของมอเตอร์เข้าสู่สภาวะกงตัวแล้วการเปลี่ยนแปลงของก่าฟลักซ์จะมีก่าน้อยลง จึงเหลือแต่ ก่าพารามิเตอร์ทางด้านสเตเตอร์และก่ากวามเหนี่ยวนำ *L_s* ที่มีผลต่อก่ากระแสทางด้านสเตเตอร์ ในช่วง นี้จากรูปที่ 4.17-4.22 จะเห็นได้ว่าก่ากระแสผิดพลาดจากการใช้ก่าพารามิเตอร์ทั้งสองวิธีมีขนาดที่ ใกล้เกียงกัน

จากผลการทดสอบที่ได้ดังรูปที่ 4.17-4.22 จะเห็นว่าในช่วงต้นๆซึ่งความเร็วและกระแสมีการ เปลี่ยนแปลงและความแปรปรวนสูง จึงยากในการนำไปใช้ในการเปรียบเทียบความเที่ยงตรงของ ค่าพารามิเตอร์และจากรูปคลื่นกระแสที่ได้จากการวัดในช่วงท้าย (รูปขยายทางด้านซ้ายของรูป) จะเห็น ว่ามีค่าความละเอียดของข้อมูลมีน้อย สังเกตจากข้อมูลมีลักษณะเป็นขั้นบัน ได เนื่องจากเราต้องใช้สเกล ขยายของส โคบให้กรอบคลุมข้อมูลของกระแสในช่วงต้นซึ่งมีค่าที่สูง ทำให้ข้อมูลกระแสในช่วงท้ายที่ เก็บได้มีความละเอียดน้อย ดังนั้นเราจะทำการทดสอบเพิ่มเติม โดยการทดสอบมอเตอร์ขณะอยู่ตัว (Steady state) ที่สภาวะไร้โหลด และที่สภาวะง่ายโหลด 1 kw โดยทำการเก็บผลเช่นเดียวกับช่วงก่อน จะต่างกันที่ก่าความเร็วของมอเตอร์ที่ได้จะมีค่าคงที่ดังนี้

มอเตอร์ ABB สภาวะไร้โหลดมีความเร็วของมอเตอร์ 1497 rpm และสภาวะขณะจ่ายโหลด 1 kW มีความเร็วของมอเตอร์ 1406 rpm

มอเตอร์ SIEMENS สภาวะไร้โหลดมีความเร็วของมอเตอร์ 1497 rpm และสภาวะขณะจ่ายโหลด 1 kW มีความเร็วของมอเตอร์ 1386 rpm

มอเตอร์ MITSUBISHI สภาวะไร้โหลดมีความเร็วของมอเตอร์ 1498 rpm และสภาวะขณะจ่าย โหลด 1 kW มีความเร็วของมอเตอร์ 1448 rpm

สามารถแสดงผลการเปรียบเทียบค่ากระแสในแต่ละเฟสและค่ากระแสผิดพลาดจากการจำลอง ระบบของมอเตอร์ ABB , SIEMENS และ MITSUBISHI ใด้ดังรูปที่ 4.23-4.34

รูปที่ 4.23 ค่ากระแสเฟส<mark>และค่ากระแสผิดพลาดจากการจำลอง</mark>ระบบของมอเตอร์ ABB ขณะอยู่ตัว ที่สภาวะไร้โหลดโดยใช้ค่าพารามิเตอร์จากการทดสอบไร้โหลดและยึดโรเตอร์

รูปที่ 4.24 ค่ากระแสเฟสและค่ากระแสผิดพลาดจากการจำลองระบบของมอเตอร์ ABB ขณะอยู่ตัว

รูปที่ 4.26 ก่ากระแสเฟสและก่ากระแสผิดพลาดจากการจำลองระบบของมอเตอร์ ABB ขณะอยู่ตัวที่สภาวะจ่ายโหลด 1 kW โดยใช้ก่าพารามิเตอร์จากการใช้อินเวอร์เตอร์

รูปที่ 4.27 ค่ากระแสเฟสและค่ากระแสผิดพลาดจากการจำลองระบบของมอเตอร์ SIEMENSขณะอยู่ตัว ที่สภาวะไร้โหลดโดยใช้ค่าพารามิเตอร์จากการทดสอบไร้โหลดและยึดโรเตอร์

รูปที่ 4.28 ค่ากระแสเฟสและค่ากระแสผิดพลาดจากการจำลองระบบของมอเตอร์ SIEMENS ขณะอยู่ตัว ที่สภาวะไร้โหลด โดยใช้ค่าพารามิเตอร์จากการใช้อินเวอร์เตอร์

รูปที่ 4.29 ค่ากระแสเฟสและค่ากระแสผิดพลาดจากการจำลองระบบของมอเตอร์ SIEMENSขณะอยู่ตัว ที่สภาวะจ่ายโหล<mark>ด 1 kW โดยใช้ค่าพารามิเตอร์จากการ</mark>ทดสอบไร้โหลดยึดโรเตอร์

รูปที่ 4.30 ค่ากระแสเฟสและค่ากระแสผิดพลาดจากการจำลองระบบของมอเตอร์ SIEMENS ขณะอยู่ ตัวที่สภาวะจ่ายโหลด 1 kW โดยใช้ก่าพารามิเตอร์จากการใช้อินเวอร์เตอร์

รูปที่ 4.31 ค่ากระแสเฟสและค่ากระแสผิดพลาดจากการจำลองระบบของมอเตอร์ MITSUBISHI ขณะ อยู่ตัวที่สภาวะไร้ โหลด โดยใช้ค่าพารามิเตอร์จากการทดสอบไร้ โหลดยึด โรเตอร์

รูปที่ 4.32 ค่ากระแสเฟสและค่ากระแสผิดพลาดจากการจำลองระบบของมอเตอร์ MITSUBISHI ขณะอยู่ตัวที่สภาวะไร้ โหลด โดยใช้ค่าพารามิเตอร์จากการใช้อินเวอร์เตอร์

รูปที่ 4.33 ค่ากระแสเฟสและค่ากระแสผิคพลาคจากการจำลองระบบของมอเตอร์MITSUBISHIขณะอยู่ ตัว ที่สภาวะจ่ายโหลค 1 kW โคยใช้ค่าพารามิเตอร์จากการทคสอบไร้โหลดยึดโรเตอร์

รูปที่ 4.34 ค่ากระแสเฟสและค่ากระแสผิดพลาดจากการจำลองระบบของมอเตอร์ MITSUBISHI ขณะอยู่ตัว ที่สภาวะจ่ายโหลด 1 kW โดยใช้ค่าพารามิเตอร์จากการใช้อินเวอร์เตอร์

จากผลการทดสอบค่าพารามิเตอร์ในรูปที่ 4.23-4.34 ในสภาวะมอเตอร์ไร้โหลดนั้นมอเตอร์ทั้ง 3 ตัวจะมีค่ากระแสผิดพลาดจากการใช้ค่าพารามิเตอร์ที่ได้จากการทดสอบไร้โหลดและยึดโรเตอร์กับ ก่าพารามิเตอร์ที่ได้จากการใช้อินเวอร์เตอร์ มีค่าใกล้เคียงกัน เนื่องจากที่สภาวะมอเตอร์ไร้โหลดนี้ ก่าพารามิเตอร์ที่มีผลต่อค่ากระแสได้แก่ค่า R_s , σL_s และ M' ซึ่งจากผลการหาค่าพารามิเตอร์จาก วิธีการทดสอบไร้โหลดและยึดโรเตอร์ดังตารางที่ 2.2 กับค่าพารามิเตอร์จากการใช้อินเวอร์เตอร์ดัง ตารางที่ 3.1 จะได้ค่า R_s , σL_s และ M' มีค่าใกล้เคียงกันจึงได้ค่าค่ากระแสผิดพลาดมีค่าใกล้เคียงกัน

ในสภาวะมอเตอร์ที่มอเตอร์จ่ายโหลดนั้นจะเห็นได้ว่ามีค่ากระแสผิดพลาดจากการใช้ ค่าพารามิเตอร์ที่ได้จากการทดสอบไร้โหลดและยึดโรเตอร์จะมีค่ามากกว่าเมื่อใช้ค่าพารามิเตอร์ที่ได้จาก การใช้อินเวอร์เตอร์ เนื่องจากที่สภาวะมอเตอร์จ่ายโหลดนี้ค่าพารามิเตอร์ทุกตัวจะมีผลต่อค่ากระแส ซึ่ง จากผลการหาค่าพารามิเตอร์จากวิธีการทดสอบไร้โหลดและยึดโรเตอร์ดังตารางที่ 2.2 กับ ค่าพารามิเตอร์จากการใช้อินเวอร์เตอร์ดังตารางที่ 3.1 ค่าที่มีความแตกต่างกันมากคือค่าของ R'_{k} และค่า τ_{R} แต่จากผลการจำลองระบบที่ได้จะเห็นว่าค่าพารามิเตอร์ที่ได้จากการใช้อินเวอร์เตอร์จะได้ค่ากระแส ผิดพลาดที่น้อยกว่าดังนี้การใช้อินเวอร์เตอร์หาค่าพารามิเตอร์จึงได้ค่าที่ถูกต้องมากกว่า

เมื่อเปรียบเทียบผลการจำลองระบบโดยใช้ค่าพารามิเตอร์ที่ได้จากการใช้อินเวอร์เตอร์ที่สภาวะ ใร้โหลดและที่สภาวะจ่ายโหลด จะเห็นได้ว่ามีค่ากระแสผิดพลาดเพิ่มขึ้นเมื่อมีการจ่ายโหลด เนื่องจาก กวามถี่บนตัวโรเตอร์มีค่าเพิ่มขึ้นตามค่าสลิปที่เพิ่ม ทำให้ค่ากวามด้านทาน *R*'_R มีค่าเปลี่ยนแปลงอัน เนื่องจากผลของปรากฏการณ์ทางผิวทำให้เราได้ค่ากระแสผิดพลาดเพิ่มขึ้น

จากการใช้งานในสภาวะทั่วไปของมอเตอร์ซึ่งค่ากระแสและแรงคันบนตัวโรเตอร์จะมีค่าความถี่ ที่ต่ำนั้น เราสามารถสรุปได้ว่าค่าพารามิเตอร์ที่ได้จากการใช้อินเวอร์เตอร์จะมีค่าความถูกต้องมากกว่า เนื่องจากวิธีนี้ได้ทำการหาค่าพารามิเตอร์ทางด้านโรเตอร์ที่ความถี่ต่ำ ส่วนค่าพารามิเตอร์ที่ได้จากการ ทดสอบไร้โหลดและยึดโรเตอร์จะมีค่าความผิดพลาดมากเนื่องจากวิธีนี้ในขณะที่ทำการหา ค่าพารามิเตอร์ทางด้านโรเตอร์จะมีค่าฟลักซ์ในระดับที่ต่ำมากและเกิดความถี่บนตัวโรเตอร์มีค่าสูงทำให้ ค่าที่ได้เกิดการผิดพลาดเนื่องผลของปรากฏการณ์ทางผิว

บทสรุปและข้อเสนอแนะ

บทที่ 5

ในการหาก่าความด้านทานของขุดลวดสเตเตอร์ โดยใช้ความแตกต่างของแรงดันและกระแสนั้น จะเห็นได้ว่าสามารถลดความผิดพลาดในการคำนวณก่า อันเนื่องมาจากผลของเวลาประวิงและความไม่ เป็นอุดมคติของสวิตซ์ลงได้ และคำนวณก่าได้ใกล้เคียงกับก่าที่วัดได้จากมอเตอร์ โดยตรงด้วยมิเตอร์วัด ก่ากวามด้านทานที่มีความแม่นยำสูง

ค่าความเหนี่ยวนำรั่วไหลรวมที่เราได้ออกแบบโดยใช้สัญญาณพัลส์ในการกระตุ้นเพื่อให้ได้ ข้อมูลเพื่อใช้ในการคำนวณค่าโดยใช้ค่าความต้านทานและค่าแรงดันพัลส์ที่เราง่ายร่วมในการคำนวณ ด้วย จากการที่เราใช้สัญญาณพัลส์ค่าสูงด้วยเวลาที่แคบนี้ทำให้เราสามารถละเลยผลจากความไม่เป็น อุดมคติของสวิตช์ ผลของเวลาประวิง และละเลยการเปลี่ยนแปลงของฟลักซ์ในมอเตอร์ได้ จากผลการ ทคสอบ จะเห็นได้ว่าเราสามารถ คำนวณได้ก่า ที่ใกล้เกียงกับค่าที่ได้จากผลการทดสอบไร้โหลดและยึด โรเตอร์

การหาก่าพารามิเตอร์ทางด้านโรเตอร์ได้แก่ ค่าเวลาคงตัวทางด้านโรเตอร์ (τ_R) ค่าความด้านทาน ทางด้านโรเตอร์ (R'_R) และก่าความเหนี่ยวนำร่วม (M') ซึ่งเราได้ออกแบบใช้สัญญาณกระตุ้น ทางด้านสเตเตอร์ โดยใช้การควบคุมกระแสทางด้านสเตเตอร์และนำสัญญาณแรงดันที่ได้จากการ ควบคุมกระแสนี้มาใช้ในการกำนวณก่าพารามิเตอร์ทางด้านโรเตอร์ จากผลการทดสอบจะเห็นได้ว่า ก่าที่ได้แตกต่างจากก่าที่ได้จากผลการทดสอบยึดโรเตอร์มากเนื่องจาก ในการทดสอบยึดโรเตอร์นั้นจะ ทำให้เกิดสภาวะที่ทำให้เกิดการผิดเพี้ยนของก่าพารามิเตอร์ ก็อจะมีสภาวะที่ฟลักซ์มีก่าต่ำกว่าพิกัดมาก และความถี่ที่เกิดบนตัวโรเตอร์จะมีก่าสูงซึ่งทำให้เกิดผลของปรากฏการณ์ทางผิว ก่า R'_R ที่ได้จึงมีก่า มากขึ้นตามแนวโน้มการเปลี่ยนแปลงของก่า R'_R จากผลการทดสอบในรูปที่ 2.10-2.13 และทำให้ τ_R มีก่าลดลงด้วย แต่ก่าที่เราได้จากการใช้อินเวอร์เตอร์นั้น เราใช้การควบคุมกระแสทางด้านสเตเตอร์เพื่อ สร้างฟลักซ์ที่ก่าพิกัด และช่วงของแรงดันที่เราใช้หาก่า τ_R และ R'_R นั้นจะมีความถี่ต่ำผลของ ปรากฏการณ์ทางผิวจึงมีก่าลดลงก่าที่ได้จึงน่าจะมีความถูกต้องมากขึ้น

จากผลการทคสอบค่าพารามิเตอร์ที่ได้จากวิธีการหาค่าโดยใช้อินเวอร์เตอร์และจากการหาโดยวิธี ไร้โหลดและยึดโรเตอร์โดยการจ่ายแรงคัน 50 Hz จากการไฟฟ้าโดยตรงนั้น จะเห็นได้ว่าก่าพารามิเตอร์ ที่ได้จากวิธีการหาโดยอัตโนมัติจะได้ค่าถูกต้องมากกว่าเมื่อเทียบกับก่าที่ได้จากการหาโดยวิธีไร้โหลด และยึดโรเตอร์

เนื่องจากก่ากวามด้านทานทางด้านสเตเตอร์และทางด้านโรเตอร์ จะมีก่าเปลี่ยนแปลงไปตาม อุณหภูมิ ดังนั้นการหาก่าโดยวิธีอัตโนมัติ จะได้ก่ากวามถูกต้อง ณ อุณหภูมิที่ทำการหาก่าพารามิเตอร์ นั้น แต่เมื่อเรานำมอเตอร์ไปใช้งานจะทำให้ตัวของมอเตอร์มีอุณหภูมิที่สูงขึ้น ก่ากวามด้านทานของ มอเตอร์ก็จะมีก่าเปลี่ยนไป แนวทางในการแก้ปัญหานี้อาจทำได้โดยการใช้ระบบการกวบคุมที่มีกวาม กงทนต่อการเปลี่ยนแปลงของก่ากวามด้านทานนี้ หรืออีกแนวทางหนึ่งกือการใช้ระบบกวบคุมหาก่า กวามด้านทานที่เปลี่ยนแปลงไปขณะทำการกวบคุม (On-line identification)

ค่าความเหนี่ยวนำของมอเตอร์ซึ่งมีค่าเปลี่ยนแปลงไปตามค่าฟลักซ์ในมอเตอร์นั้นหรือเส้นกราฟ การอิ่มตัวของแกนเหล็ก เราสามารถนำเส้นกราฟการอิ่มตัวของแกนเหล็กนี้ไปใช้ในการควบคุมได้ ก็จะ สามาถแก้ปัญหาการเปลี่ยนแปลงของค่าความเหนี่ยวนำตามค่าฟลักซ์ในมอเตอร์นี้ได้

รายการอ้างอิง

ภาษาไทย

โสภณ สมัยรัฐ. "ระบบควบเวกเตอร์เหนี่ยวนำแบบเวกเตอร์ด้วยไมโครคอนโทรลเลอร์".วิทยานิพนธ์ ปริญญามหาบัณฑิต ภาควิชาวิศวกรรมไฟฟ้า จุฬาลงกรณ์มหาวิทยาลัย, 2538.

ภาษาอังกฤษ

- Ashwin M., Khambadkone, Joachim Holtz, "Vector-Controlled Induction Motor Drive with a self-Commissioning Scheme", <u>IEEE Trans. on Industry Electronics</u>, Vol.38 No.5, October 1991, pp 322-327.
- Friedrich FrÖhr, and Fritz Orttenburger, "Introduction to Electronic Control Engineering", Siemens Aktiengesellschaft, Berlin and Munchen, 1982.
- Gene F. Frankrin, J. David Powell, Michael L. Workman, "Digital Control of Dynamic System", Addison-Wesley Publishing Company, United State of America, 1990.
- Hangwen Pan, Jinshen Jiang, Joachim Holtz, "Decoupling Control and Parameter Identification of Field-Oriented Induction Motor with Saturation", <u>IEEE Trans. on Industry Electronics</u>, 1996, pp 757-761.
- H. Rasmussen, M. Knudsen, M. Tonnes, "Parameter Estimation of Inverter and Motor Model at Satndstill using Measured Currents only", <u>IEEE Trans. on Industry Electronics</u>, 1996, pp 331-336.
- Katsuhiko Ogata, "Discrete-Time Control System", Prentice-Hall International, United States of America, 1987.
- M. Ruff, H. Grotstollen, "Off-Line Identification of the Electrical Parameters of an Industrial Servo Drive System", <u>IEEE Trans.</u>, 1996, pp 213-220.
- Peter Vas. "Sensorless Vector and Direct Torque control". New York: Oxford Univ. Press, 1998, pp 705-720.

- R.J.A.Gorter, A.Veltman, P.P.J.Van den Bosch. "Skin effect impact on induction motor parameters estimation using an output-error identification method". <u>Conf. Rec. of PESC'94</u>, Vol.1, 1994, pp. 763-768.
- Toshihiko Noguchi, Paiboon Nakmahachalasint, Narin Watanakul, "Precise Torque Control of Induction Motor with On-Line Parameter Identification in Consideration of Core Loss", <u>IEEE</u> <u>Trans.</u>, 1997, pp 113-118.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

ภาคผนวก

ภาคผนวก ก ผลของเวลาประวิงและความไม่เป็นอุดมคติของสวิตช์กำลัง

จากการที่เราใช้อินเวอร์เตอร์เป็นตัวจ่ายแรงคันให้กับมอเตอร์ ผลของเวลาประวิงและความไม่ เป็นอุดมคติของสวิตช์ทำให้ได้แรงคันที่ขั้วของมอเตอร์ไม่เท่ากับแรงคันคำสั่งเราจะประมาณความไม่ เป็นเชิงเส้นของสวิตช์ด้วยสมการเชิงเส้นเพื่อศึกษาถึงผลกระทบที่เกิดขึ้น จากข้อมูลของสวิตช์ที่ใช้ใน อินเวอร์เตอร์ ซึ่งในโครงงานนี้ใช้โมดูล IPM เบอร์ 15RSH120 เราสามารถเขียนสมการประมาณ กวามสัมพันธ์ของแรงคันตกคร่อมสวิตช์กำลัง กับกระแสที่ผ่านสวิตช์ได้เป็น

IGBT น้ำกระแส ;
$$V_{CE} \cong 1.0 + 0.1 \times I_C$$
 (ก.1)

ใคโอคที่ต่อขนานนำกระแส ;
$$V_{EC} \cong 1.0 + 0.08 \times I_C$$
 (ก.2)

จากสมการข้างต้นจะเห็นได้ว่าก่าความต้านทานของสวิตช์ (0.08~0.1Ω) เมื่อเทียบกับก่าความ ต้านทานของมอเตอร์แล้วมีก่าน้อยมากจนสามารถละเลยได้ คงเหลือแต่แรงดันตกกร่อมสวิตช์ (V_{drop}) ซึ่งมีก่าประมาณ 1.0 Volt

เมื่อแรงคันคำสั่งมีขนาดเท่ากับ $\|u_s^*\|$ และมีค่ามุมเป็นศูนย์ จากสมการการแปลงแกนอ้างอิงเราจะ ได้แรงคันคำสั่งในแต่ละเฟสมีค่าคังสมการที่ (ก.3)

$$\begin{bmatrix} v_u^* \\ v_v^* \\ v_w^* \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & 0 \\ -1/2 & \sqrt{3}/2 \\ -1/2 & -\sqrt{3}/2 \end{bmatrix} \begin{bmatrix} \cos 0^\circ & \sin 0^\circ \\ -\sin 0^\circ & \cos 0^\circ \end{bmatrix} \begin{bmatrix} \left\| u_s^* \right\| \\ 0 \end{bmatrix}$$
(f).3)

เมื่อนำค่าคำสั่ง v_u^*, v_v^*, v_w^* ไปใช้คำนวณรูปแบบการสวิตช์จะได้เป็นสัญญาณขับนำสวิตช์ในแต่ ละเฟสเป็น S_u, S_v, S_w ตามลำคับ (ดูรูปที่ ก.1)

ในการเปิดปิดสวิตช์เราจะต้องใส่เวลาประวิง (Dead time) เข้าไปเพื่อไม่ให้สวิตช์ตัวบนและตัว ล่างของกิ่งวงจรเดียวกันเกิดการลัดวงจร (Shoot through) ลักษณะของแรงดันที่จ่ายให้กับมอเตอร์เมื่อ กิดรวมเวลาประวิงของสวิตช์และแรงดันตกกร่อมสวิตช์ สามารถแสดงได้ดังรูปที่ ก.2

รูปที่ ก.2 ลักษณะของแรงคันที่ขั้วของมอเตอร์เทียบกับจุคกึ่งกลางบัส

โดยที่

DT = Dead time = 4.0 μs A = Turn on time = 0.7 μs B = Turn off time = 1.7 μs V_{BUS} = แรงดันบัสไฟตรง V_{drop} = แรงดันตกคร่อมสวิตช์กำลัง

ด้วยการจ่ายแรงดัน $\|u_s^*\|$ ที่เป็นค่าไฟตรงจาก สมการที่ (ก.3) จะเห็นได้ว่าแรงดันคำสั่ง v_u^* จะทำ ให้กระแส i_u มีค่าเป็นบวกและแรงดันคำสั่ง v_v^* และ v_w^* จะทำให้กระแส i_v และ i_w มีค่าเป็นลบ จากรูป ที่ ก.2 เราสามารถแสดงสมการของค่าแรงดันที่ขั้วของมอเตอร์ที่ถูกรบกวนจากการประวิงเวลาในการ สวิตช์ได้ดังสมการที่ ก.4

$$\begin{bmatrix} v_u \\ v_v \\ v_w \end{bmatrix} = \begin{bmatrix} v_u^* - \left(DT - t_{on} + t_{off}\right) \left(\frac{V_{BUS}}{2} - V_{drop}\right) \times \frac{2}{T_S} \\ v_v^* + \left(DT - t_{on} + t_{off}\right) \left(\frac{V_{BUS}}{2} - V_{drop}\right) \times \frac{2}{T_S} \\ v_w^* + \left(DT - t_{on} + t_{off}\right) \left(\frac{V_{BUS}}{2} - V_{drop}\right) \times \frac{2}{T_S} \end{bmatrix}$$
(fi.4)

เราสามารถเขียนสมการของกระแสและแรงคันในรูปของสเปซเวกเตอร์ได้ดังสมการที่ (ก.5)

$$u_{S} = u_{S}^{*} - u_{DT}$$

$$(n.5)$$

$$\tilde{\eta} \qquad u_{DT} = \left(DT - t_{on} + t_{off}\right) \left(\frac{V_{BUS}}{2} - V_{drop}\right) \times 2 \times \sqrt{\frac{2}{3}} \times \frac{2}{T_{S}} \times \frac{i_{S}}{\|i_{S}\|}$$

โดยที่

ภาคผนวก ข

การออกแบบค่าอัตราขยายของตัวควบคุม PI ในวงรอบควบคุมกระแส

ในการควบคุมกระแสทางค้านสเตเตอร์เราได้ใช้ตัวควบคุมแบบ PI คังในรูปที่ ข.1 เนื่องจากใน การหาค่าพารามิเตอร์ เราจำเป็นต้องควบคุมกระแสทางค้านสเตเตอร์ให้ติดตามค่าคำสั่งซึ่งเป็นสัญญาณ แบบขั้นบันได เราจึงต้องออกแบบระบบให้มีความเร็วในการตอบสนองสูงจึงได้เลือกใช้การออกแบบ โดยวิธี Magnitude-optimum

รูปที่ ข.1 การใช้ตัวควบคุม PI ในการควบคุมกระแสทางค้านสเตเตอร์

จากรูปที่ ข.1 เมื่อให้อินเวอร์เตอร์มีค่าอัตราขยายเป็น 1 และอาศัยข้อมูลของค่าพารามิเตอร์ ทางด้านสเตเตอร์ (*R_s*และ σ*L_s*) โดยวิธีของ Magnitude-optimum เราสามารถคำนวณหาค่า *K_P* และ *K_I* ได้ดังสมการที่ (ข.1) และ (ข.2)

$$K_P = \frac{\sigma L_S}{2T_S} \tag{(0.1)}$$

$$K_I = \frac{R_S}{2T_S} \tag{(0.2)}$$

จากสมการที่ (ข.1)และ (ข.2) เราสามารถคำนวณฟังก์ชันถ่ายโอนวงรอบปิคได้ดังสมการที่ (ข.3)

$$F_{close}(s) = \frac{1}{1 + 2sT_s + 2s^2T_s^2}$$
(v.3)

การใช้การออกแบบในลักษณะนี้จะทำให้มีระบบผลตอบสนองต่อสัญญาณคำสั่งแบบขั้นที่เร็ว โดยมีช่วงเวลาขาขึ้น (Rise time) มีค่าเท่ากับ 4.7*T_s และมีช่วงเวลาเข้าที่ (Settling time) เท่ากับ 8.4<i>T_s* สำหรับช่วงผ่อนผัน (Tolerance) ± 2<mark>% และมีค่าพุ่งเกิน (Over Shoot) 4.3% เทียบกับสัญญาณคำสั่ง</mark>

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

ภาคผนวก ค

การคำนวณทำซ้ำกำลังสองน้อยที่สุด

ในที่นี้เราจะพิจารณาระบบเชิงเส้นทั่วไปที่มีความสัมพันธ์ระหว่างสัญญาณเข้า (u) และสัญญาณ ออก (y) เขียนอยู่ในรูปฟังก์ชันถ่ายโอนเวลาไม่ต่อเนื่องได้ดังสมการที่ (ค.1)

$$G(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_n z^{-n}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_n z^{-n}}$$
(A.1)

เราสามารถหาค่าพารามิเตอร์ (*a*₁,ĸ ,*a_n*,*b*₀,ĸ ,*b_n*) ของระบบได้โดยการสร้างสมการที่มี รูปแบบเดียวกับระบบและใช้ก่าผิดพลาดระหว่างสัญญาณออกของระบบจริงกับสัญญาณออกที่กำนวณ ได้จากสมการที่ (ก.2) มาใช้ในการปรับเปลี่ยนก่าพารามิเตอร์ของสมการเพื่อให้เกิดก่าผิดพลาดน้อย ที่สุดเขียนเป็นแผนภาพได้ดังรูปที่ ก.1

$$G(z) = \frac{\hat{b}_0 + \hat{b}_1 z^{-1} + \hat{b}_2 z^{-2} + \dots + \hat{b}_n z^{-n}}{1 + \hat{a}_1 z^{-1} + \hat{a}_2 z^{-2} + \dots + \hat{a}_n z^{-n}}$$
(A.2)

รูปที่ ค.1 การใช้ค่าผิดพลาดในการหาค่าพารามิเตอร์ \hat{X}

เมื่อ X เป็นพารามิเตอร์จริงของระบบและ Xิ เป็นพารามิเตอร์ที่ต้องการหาค่า จากรูปที่ ค.1 เรา สามารถเขียนเป็นความสัมพันธ์ได้ดังสมการที่ (ค.3)

$$y(k) = u(k) \cdot \hat{X} + \varepsilon(k) \tag{A.3}$$

โดยที่ : $0 \le k \le N$

N : จำนวนจุดข้อมูลที่สุ่มมาใช้ในการกำนวณ

เมื่อมีจำนวนข้อมูลถึงอันดับที่ k โดยที่ $n \le k \le N$ เราสามารถเขียนสมการที่ (ค.3)ได้ใหม่เป็นสมการ ที่ (ค.4)

$$Y(N) = C(N) \cdot \hat{X} + \mathcal{E}(N) \tag{(A.4)}$$

โดยที่

$$Y(N) = \begin{bmatrix} y(n) & y(n+1) & L & y(N) \end{bmatrix}^T$$
(A.5)

$$C(N) = \begin{bmatrix} y(n-1) & L & y(0) & u(n) & L & u(0) \\ y(n) & L & y(1) & u(n+1) & L & u(1) \\ M & 0 & M & M & 0 & M \\ y(N-1) & L & y(N-n) & u(N) & L & u(N-n) \end{bmatrix}$$
(A.6)

$$\hat{X}(N) = \begin{bmatrix} -a_1 & -a_2 & L & -a_n \end{bmatrix} b_0 & b_1 & L & b_n \end{bmatrix}^T$$
(A.7)

$$\mathcal{E}(N) = \begin{bmatrix} \varepsilon(n) & \varepsilon(n+1) & \varepsilon(N) \end{bmatrix}^T$$
 (A.8)

ในวิธีการคำนวณแบบ Least-squares เราจะใช้ครรชนีสมรรถนะ (Performance index) คังสมการที่ (ก.9)

$$J_{N} = \frac{1}{2} \sum_{k=n}^{N} \varepsilon^{2} \left(k \right) = \frac{1}{2} \varepsilon^{T} \left(N \right) \cdot \varepsilon \left(N \right)$$
(A.9)

เราสามารถคำนวณหาค่าพารามิเตอร์ $\hat{X}(N)$ ที่ทำให้ $J_{_N}$ มีค่าน้อยที่สุดได้โดยการหาอนุพันธ์ ของค่า $J_{_N}$ เทียบกับค่า $\hat{X}(N)$ ดังสมการที่ (ค.10)

$$\frac{\partial J_N}{\partial \hat{X}(N)} = 0 \tag{(a.10)}$$

จากสมการที่ (ค.4)-(ค.10) ถ้าค่าของเมติรกซ์ $\left[C^{T}\left(N
ight)\cdot C\left(N
ight)
ight]^{-1}$ สามารถหาค่าได้แล้ว เราสามารถหา ค่าของ \hat{X} ที่เราต้องการได้จากสมการที่ (ค.11)

$$\hat{X}(N) = \left[C^{T}(N) \cdot C(N)\right]^{-1} C^{T}(N) \cdot Y(N)$$
(n.11)

เนื่องจากการคำนวณหาค่า Xิ จากสมการที่ (ค.11) โดยตรงจะยุ่งยาก เราจึงนิยมที่จะใช้การ คำนวณในรูปแบบทำซ้ำ (Recursive) เพื่อทำการปรับเปลี่ยนค่า Xิ ทุกครั้งที่ได้ข้อมูลใหม่เข้ามา สมมุติ ว่าระบบได้ข้อมูลอันดับที่ (N+1) เข้ามาอีก 1 ชุด สมการที่ (ค.4) สามารถเขียนได้เป็น

$$\begin{bmatrix} Y(N) \\ y(N+1) \end{bmatrix} = \begin{bmatrix} C(N) \\ c(N+1) \end{bmatrix} \cdot \hat{X}(N+1) + \begin{bmatrix} \mathscr{E}(N) \\ \varepsilon(N+1) \end{bmatrix}$$
(A.12)

โดยที่ $c(N+1) = [y(N)L \quad y(N-n)Mu(N+1)L \quad u(N+n)]$

เราสามารถหาค่า $\hat{X}\left(N+1
ight)$ ใหม่ได้ดังสมการที่ (ค.13)

$$\hat{X}(N+1) = \hat{X}(N) + K(N+1)\left[y(N+1) - c(N+1)\cdot\hat{X}(N)\right]$$
(n.13)

โดยที่

$$K(N+1) = \frac{P(N) \cdot c^{T}(N+1)}{1 + c(N+1) \cdot P(N) \cdot c^{T}(N+1)}$$
(A.14)

$$P(N+1) = P(N) - \frac{P(N) \cdot c^{T}(N+1) \cdot c(N+1) \cdot P(N)}{1 + c(N+1) \cdot P(N) \cdot c^{T}(N+1)}$$
(A.15)

เราเรียกสมการที่ (ค.13)-(ค.15) ว่าสมการการคำนวณแบบ Recursive-Least squares (RLS) โดย การคำนวณ แบบ RLS นี้จำเป็นที่จะต้องกำหนดค่าเริ่มต้นของค่าเมตริกซ์ P และค่าเมตริกซ์ Xิ ก่อน ซึ่งโดยทั่วไปการกำหนดค่าเริ่มต้นนี้ สามารถทำได้ 2 แบบ คือ

1. การกำหนดค่าเริ่มต้นโดยใช้ข้อมูลตั้งแต่ 0 ถึง *n* ดังสมการที่ (ค.16)-(ค.17)

$$P_{0} = \left[C^{T}(n) \cdot C(n) \right]^{-1}$$

$$\hat{X}_{0} = P_{0} \cdot C^{T}(n) \cdot Y(n)$$
(A.16)
(A.17)

2. กำหนดค่าเป็นตัวเลขโดยให้

$$P_0 = \alpha I_{n \times n} \tag{(A.18)}$$

$$\hat{X}_0 = \begin{bmatrix} 0 \end{bmatrix}_{n \times n} \tag{(A.19)}$$

เมื่อ α เป็นค่าคงที่ที่มีค่ามากค่าหนึ่ง

ภาคผนวก ง

ข้อมูลผลการทดสอบไร้โหลดและยึดโรเตอร์

ข้อมูลจากการทดสอบไร้โหลดและยึดโรเตอร์และผลการวัดค่าความด้านทาน *R_s* ที่ขั้วของ มอเตอร์ ซึ่งได้แสดงผลการคำนวนในบทที่ 2 นั้น เราจะแสดงข้อมูลเบื้องต้นที่ใช้ในการกำนวนได้ ดังนี้

อุณหภู <mark>มิ</mark>	ค่า $R_{_S}\left(\Omega ight)$ ของมอเตอร์			
(°C)	ABB	SIEMENS	MITSUBISHI	
53	8.39	9.09	5.20	
52	8.30	9.04	5.18	
51	8.23	9.00	5.17	
50	8.19	8.97	5.16	
49	8.14	8.94	5.15	
48	8.10	8.91	5.14	
47	8.07	8.88	5.14	
46	8.03	8.85	5.13	
45	8.00	8.82	5.12	
44	7.96	8.80	5.10	
43	7.93	8.77	5.09	
42	7.89	8.75	5.08	
41	7.85	8.73	5.06	
40	7.82	8.71	5.05	
39	7.78	8.68	5.04	
38	7.75	8.66	5.03	

			<i>ν</i>	
d	Q I 9/		de	6
mara 190 0 1	010000000000000000000000000000000000000	at D	90910910 0910	DIMOR.
		11 K.	1/19/19/01/11/	רופוטוי
FILD INFL N.I		B IC	10 0 0 0 0 0	Derioa

37	7.71	8.64	5.01
36	7.67	8.62	5.00
35	7.64	8.60	4.99
34	7.60	8.57	4.98
33	7.57	8.56	4.96

ตารางที่ ง.2 ผลการทดสอบไร้ โหลดของมอเตอร์ ABB ที่ความถี่ 50 Hz

$V_0(V)$	$I_0(A)$	$P_0(W)$	$f_0(Hz)$	$\omega_m(rpm)$
420.4	1.975	192	49.906	1496
402.1	1.734	161	49.990	1498
380.3	1.519	134	49.995	1498
360.9	1.380	116	49.946	1496
341.2	1.265	102	49.917	1496
321.3	1.166	90	49.921	1496
301.5	1.075	79	49.984	1498
281.0	0.989	70	50.016	1499
260.9	0.908	61	50.044	1500
241.4	0.835	54	50.053	1500
220.9	0.761	46	50.052	1500
200.9	0.690	40	50.055	1500
180.3	0.621	34	50.016	1499
160.3	0.553	29	49.966	1497
141.3	0.491	24	50.024	1498
120.2	0.422	20	49.906	1493
100.8	0.366	17	49.892	1492
81.7	0.303	14	49.975	1491
61.5	0.245	11	49.992	1485

40.0	0.204	9	49.975	1462
------	-------	---	--------	------

f _S (Hz) 49.993 49.989 50.021 50.013
49.993 49.989 50.021 50.013
49.989 50.021 50.013
50.021 50.013
50.013
49.999
50.081
50.083
50.072
50.070
50.041
49.987
49.952
49.960
49.987
50.032
50.027
50.001
49.989
50.007
49.932
49.900
49.868
49.876
49.889

ตารางที่ ง.3 ผลการทคสอบยึคโรเตอร์ของมอเตอร์ ABB ที่ความถี่ 50 Hz

38.50	1.138	53.5	49.939
34.39	1.019	42.7	50.008
32.21	0.956	37.5	49.994
27.33	0.814	27.1	49.965
23.90	0.713	20.8	50.023
20.43	0.612	15.3	50.006
17.79	0.535	11.6	50.000
13.96	0.422	7.2	50.030
10.54	0.320	4.1	49.998

ตารางที่ ง.4 ผลการทดสอบไร้ โหลดของมอเตอร์ ABB ที่ความถี่ 30 Hz

<i>V</i> ₀ (<i>V</i>)	$I_0(A)$	$P_0(W)$	$f_0(Hz)$	$\omega_m(rpm)$
230.24	1.5207	96.6	29.959	898
220.19	1.3968	84.4	29.959	898
210.27	1.2952	74.7	29.959	898
201.24	1.2136	67.4	29.959	898
190.01	1.1293	59.5	29.959	898
181.51	1.0651	54.0	29.959	898
170.27	0.9869	47.7	29.959	898
161.38	0.9318	43.3	29.959	898
151.21	0.8688	38.0	29.959	898
140.95	0.8054	33.6	29.959	898
131.04	0.7453	29.5	29.959	898
120.27	0.6823	25.5	29.959	898
111.61	0.6350	22.6	29.959	898
101.32	0.5739	19.1	29.959	897
90.57	0.5138	16.0	29.959	897
80.90	0.4592	13.6	29.959	897

70.36	0.4039	11.2	29.959	896
61.23	0.3593	9.4	29.959	895
51.60	0.3074	7.6	29.959	894
41.50	0.2531	6.0	29.959	891
31.63	0.2110	4.9	29.959	885
21.09	0.1664	3.9	29.959	863

ตารางที่ ง.5 ผลการทคสอบยึดโรเตอร์ของมอเตอร์ ABB ที่กวามถี่ 30 Hz

$V_{S}(V)$	$I_S(A)$	$P_{S}(W)$	$f_{S}(Hz)$
9 <mark>6.5</mark> 4	3.531	496.5	29.958
93.7 <mark>8</mark>	3.425	467.7	29.957
91.91	3.337	447.4	29.959
89.30	3.236	421.5	29.958
87.00	3.159	400.4	29.959
82.91	3.007	363.1	29.959
80.03	2.900	338.1	29.959
78.36	2.839	324.0	29.959
75.93	2.752	304.1	29.967
73.15	2.653	282.2	29.958
69.13	2.508	252.1	29.960
66.84	2.424	235.6	29.958
64.05	2.325	216.4	29.960
61.26	2.224	198.0	29.958
58.76	2.134	182.2	29.960
55.94	2.033	165.3	29.958
52.46	1.908	145.4	29.960
50.47	1.837	134.7	29.956
47.29	1.722	118.3	29.968

45.73	1.667	110.7	29.960
41.98	1.532	93.5	29.958
38.45	1.405	78.5	29.957
36.65	1.342	71.4	29.960
34.06	1.248	61.8	29.958
31.50	1.157	53.0	29.963
28.33	1.042	42.9	29.960
24.79	0.915	33.0	29.957
23.27	0.860	29.1	29.961
20.32	0.753	22.3	29.957
16.99	0.632	15.6	29.951
14.50	0.541	11.4	29.953
11.48	0.431	7.2	29.948
8.53	0.322	4.0	29.973
6.1	0.232	2.1	29.955

ตารางที่ ง.6 ผลการทคสอบไร้ โหลดของมอเตอร์ ABB ที่ความถี่ 10 Hz

$V_0(V)$	$I_0(A)$	$P_0(W)$	$f_0(Hz)$	$\omega_m(rpm)$
86.19	1.7389	84.1	9.9987	300
80.78	1.5228	65.9	9.9987	300
75.24	1.3484	53.2	9.9987	300
70.87	1.2328	44.6	9.9987	300
65.96	1.1195	37.5	9.9987	300
60.74	1.0197	31.7	9.9987	300
55.45	0.9175	25.6	9.9987	300
50.57	0.8271	21.2	9.9987	300
45.54	0.7372	16.8	9.9987	300
40.18	0.6468	13.3	9.9987	300

35.07	0.5606	10.2	9.9987	300
31.64	0.5023	8.3	9.9987	300
25.70	0.4049	5.7	9.9987	300
21.05	0.3343	4.1	9.9987	299
15.27	0.2500	2.5	9.9987	297
10.41	0.1778	1.5	9.9987	291

ตารางที่ ง.7 ผลการทคสอบยึดโรเตอร์ของมอเตอร์ ABB ที่กวามถี่ 10 Hz

$V_{S}(V)$	$I_S(A)$	$P_{S}(W)$	$f_{S}(Hz)$
80.59	3.533	476.0	9.9986
79.29	3.443	456.5	9.9988
77.6 <mark>7</mark>	3.361	436.7	9.9991
74.95	3.237	405.8	9.9991
72.99	3.140	383.4	9.9987
70.27	3.044	357.7	9.9989
67.22	2.930	329.1	9.9989
65.41	2.842	310.7	9.9983
63.62	2.756	293.0	9.9985
61.00	2.643	269.5	9.9986
58.29	2.521	245.5	9.9984
56.99	2.466	234.8	9.9989
53.58	2.319	207.5	9.9992
51.84	2.242	194.2	9.9991
50.14	2.172	181.9	9.9985
48.37	2.097	169.4	9.9985
45.20	1.963	148.2	9.9988
42.44	1.847	130.9	9.9987
39.59	1.723	114.0	9.9981

37.05	1.616	100.0	9.9998
35.42	1.546	91.5	9.9987
33.11	1.448	80.0	9.9989
30.89	1.353	69.8	9.9993
28.00	1.228	57.4	9.9979
26.02	1.143	49.7	9.9999
22.97	1.011	38.8	9.9966
21.89	0.963	35.2	9.9950
18.57	0.820	25.4	9.9969
17.08	0.756	21.6	10.0023
14.13	0.627	14.8	9.9993
11.90	0.529	10.5	10.0020
10.54	0.470	8.3	9.9973
7.20	0.322	3.9	9.9996

ตารางที่ ง.8 ผลการทดสอบไร้โหลดของมอเตอร์ ABB ที่ความถี่ 2 Hz

	T(A)	\mathbf{D} (III)	C (II)	
$V_0(V)$	$I_0(A)$	$P_0(W)$	$f_0(Hz)$	$\omega_m(rpm)$
31.09	1.8558	85.1	2.00320	60
29.40	1.7193	73.7	2.00300	60
27.76	1.5966	63.9	2.00220	60
26.47	1.5020	56.9	1.99866	60
25.57	1.4389	52.3	1.99680	60
24.45	1.3647	47.2	2.00130	60
23.46	1.3005	42.9	1.99933	60
22.22	1.2227	37.9	2.00040	60
21.20	1.1612	34.2	2.00270	60
20.07	1.0937	30.4	2.00110	60
19.61	1.0678	28.9	1.99769	60

18.88	1.0260	26.7	1.99915	60
18.00	0.9755	24.2	1.99917	60
16.76	0.9045	20.8	1.99919	60
15.44	0.8302	17.5	1.99964	60
14.34	0.7689	15.1	1.99986	60
13.28	0.7095	12.8	2.00010	60
12.11	0.6445	10.6	1.99994	60
10.95	0.5805	8.6	1.99971	60
10.43	0.5526	7.8	1.99797	60
9.63	0.5093	6.7	2.00180	60

ตารางที่ <mark>ง.9 ผลการทดสอบยึด โรเตอร์ของมอเตอร์ ABB ที่</mark>ความถี่ 2 Hz

$V_{S}(V)$	$I_S(A)$	$P_{S}(W)$	$f_{S}(Hz)$
64.10	3.535	382.2	1.99958
62.66	3.427	362.0	1.99945
61.96	3.318	346.8	2.00010
60.47	3.210	327.4	1.99975
59.92	3.160	319.5	1.99981
59.69	3.158	317.9	1.99978
57.67	3.010	292.8	1.99965
56.04	2.931	276.9	1.99969
53.22	2.786	250.0	1.99973
52.25	2.709	238.6	2.00010
50.12	2.578	217.9	1.99982
48.32	2.474	201.6	1.99970
47.76	2.448	197.1	1.99966
45.93	2.340	181.3	2.00000
45.27	2.306	176.0	1.99975

43.85	2.225	164.5	1.99986
42.29	2.141	152.7	1.99973
41.44	2.095	146.4	1.99961
40.03	2.020	136.4	1.99965
38.03	1.917	123.1	1.99993
37.96	1.912	122.5	1.99986
35.36	1.779	106.2	1.99994
34.36	1.729	100.3	1.99975
33.92	1.708	97.8	1.99977
33.07	1.667	93.1	1.99972
31.75	1.599	85.8	1.99917
31.00	1.562	81.8	1.99888
28.77	1.452	70.6	1.99971
26 <mark>.6</mark> 5	1.350	60.8	1.99928
26.41	1.334	59.5	1.99941
26.36	1.333	59.4	1.99968
24.74	1.256	52.5	1.99839
22.55	1.146	43.7	2.00170
22.14	1.126	42.1	2.00180
21.86	1.113	41.1	1.99950
20.37	1.038	35.8	1.99846
19.14	0.977	31.6	2.00100
18.40	0.940	29.2	1.99975
17.28	0.883	25.8	1.99950
14.97	0.766	19.4	1.99919
12.16	0.624	12.8	1.99818
10.60	0.545	9.8	1.99898
8.39	0.433	6.2	2.00180
5.98	0.311	3.2	1.99000
L	I	I	1

	$V_0(V)$	$I_0(A)$	$P_0(W)$	$f_0(Hz)$	$\omega_m(rpm)$
	410.8	1.8443	180.8	50.063	1500
	400.6	1.6938	161.3	49.990	1498
	380.2	1.4332	128.4	50.021	1499
	360.4	1.2582	106.6	<u>50</u> .025	1499
	341.6	1.1342	91.8	49.984	1497
	320.9	1.0252	78.9	49.995	1497
	300.9	0.9439	69.1	49.921	1496
	281.6	0.8681	60.2	50.044	1499
	260.2	0.7934	52.3	49.981	1498
	242.0	0.7274	45.4	50.076	1500
	221.4	0.6555	38.5	50.026	1499
	201.1	0.5980	33.1	49.993	1497
	181.2	0.5339	27.8	50.044	1499
	161.5	0.4715	23.4	49.995	1497
	140.4	0.4090	19.1	50.081	1499
	121.1	0.3553	15.6	50.045	1497
	102.3	0.3033	12.8	50.028	1496
6	81.2	0.2460	10.0	50.008	1493
b	60.1	0.1919	7.7	50.058	1489
9	41.4	0.1542	6.4	49.939	1471
	16N N	1 0 0 1	b d l l		190

ตารางที่ ง.10 ผลการทคสอบไร้ โหลดของมอเตอร์ SIEMENS ที่ความถี่ 50 Hz

$V_{S}\left(V ight)$	$I_S(A)$	$P_S(W)$	$f_{S}\left(Hz ight)$
95.02	2.672	320.7	49.971
90.27	2.525	288.3	50.009
85.94	2.403	260.8	49.998
82.77	2.312	241.7	49.962
80.23	2.240	226.8	49.999
77.14	2.151	209.3	50.049
73.59	2.050	190.4	50.040
68.53	1.909	164.9	50.025
65.98	1.837	152.9	50.025
<mark>61</mark> .40	1.710	132.6	49.925
57. <mark>9</mark> 7	1.615	118.2	49.923
54.36	1.514	103.9	49.954
51.36	1.430	92.7	49.998
47.89	1.333	80.6	50.025
43.86	1.221	67.6	50.004
41.16	1.147	59.6	49.967
37.29	1.039	48.9	50.032
33.09	0.919	38.6	50.004
30.02	0.834	31.7	50.068
26.48	0.733	24.7	50.080
23.52	0.653	19.6	50.035
19.24	0.535	13.1	50.027
15.08	0.420	8.1	50.017
11.48	0.320	4.7	50.026
8.18	0.229	2.4	49.992

ตารางที่ ง.11 ผลการทคสอบยึคโรเตอร์ของมอเตอร์ SIEMENS ที่กวามถี่ 50 Hz

$V_0\left(V ight)$	$I_0(A)$	$P_0(W)$	$f_0(Hz)$	$\omega_m(rpm)$
240.8	1.6276	112.0	29.959	897
230.1	1.4254	90.4	29.959	897
220.2	1.2785	76.6	29.959	897
211.2	1.1765	66.5	29.959	897
200.0	1.0756	57.2	29.959	897
191.6	1.0095	51.2	29.959	897
180.7	0.9301	44.8	29.959	897
171.8	0.8718	40.1	29.959	897
161. <mark>2</mark>	0.8107	35.4	29.959	897
151.1	0.7556	31.2	29.959	897
141.7	0.7006	27.6	29.959	897
131.4	0.6463	23.9	29.959	897
121.2	0.5913	20.5	29.959	897
111.0	0.5393	17.4	29.959	897
100.8	0.4865	14.8	29.959	897
90.3	0.4341	12.2	29.959	897
80.8	0.3865	10.0	29.959	897
70.1	0.3368	8.1	29.959	896
60.9	0.2936	6.6	29.959	896
50.3	0.2469	5.1	29.959	895
40.6	0.1983	3.9	29.959	893
N 161 N				

ตารางที่ ง.12 ผลการทคสอบไร้ โหลดของมอเตอร์ SIEMENS ที่ความถี่ 30 Hz

$V_{S}(V)$	$I_S(A)$	$P_S(W)$	$f_{S}(Hz)$
77.29	2.640	301.9	29.960
73.41	2.500	271.4	29.957
67.82	2.307	231.3	29.958
63.68	2.168	204.0	29.960
58.91	2.002	174.3	29.961
54.87	1.861	150.9	29.958
50.05	1.700	125.7	29.959
45.25	1.536	102.7	29.968
40.63	1.376	82.8	29.960
3 <mark>6.</mark> 24	1.228	65.9	29.950
31.1 <mark>4</mark>	1.057	48.7	29.959
26.66	0.903	35.7	29.957
21.77	0.736	23.8	29.949
17.52	0.593	15.5	29.954
13.26	0.445	8.8	29.966
8.48	0.285	3.6	29.955
4.14	0.140	0.9	30.028

ตารางที่ ง.13 ผลการทคสอบยึคโรเตอร์ของมอเตอร์ SIEMENS ที่ความถี่ 30 Hz

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

$V_0(V)$	$I_0(A)$	$P_0(W)$	$f_0(Hz)$	$\omega_m(rpm)$
85.28	1.6160	79.0	9.9987	299
80.92	1.4127	61.4	9.9987	299
75.32	1.2156	46.1	9.9987	299
70.92	1.1014	38.1	9.9987	299
65.67	0.9785	31.1	9.9987	299
60.95	0.8962	25.7	9.9987	299
55.81	0.8007	20.8	9.9987	299
51.58	0.7343	17.6	9.9987	299
45.16	0.6321	13.3	9.9987	299
40.32	0.5590	10.5	9.9987	299
36.89	0.5066	8.7	9.9987	299
31.08	0.4262	6.3	9.9987	299
26.31	0.3553	4.7	9.9987	299
21.75	0.2914	3.1	9.9987	299
16.91	0.2249	2.0	9.9987	298
11.84	0.1553	1.1	9.9987	296

ตารางที่ ง.14 ผลการทคสอบไร้ โหลดของมอเตอร์ SIEMENS ที่ความถี่ 10 Hz

ตารางที่ ง.15 ผลการทดสอบยึดโรเตอร์ของมอเตอร์ SIEMENS ที่กวามถี่ 10 Hz

$V_{S}(V)$	$I_{S}(A)$	$P_S(W)$	$f_{S}(Hz)$
65.90	2.671	294.8	9.9987
60.89	2.464	251.3	9.9986
56.82	2.296	218.4	9.9986
51.89	2.095	182.0	9.9988
43.04	1.737	125.2	9.9984
37.72	1.523	96.2	9.9985

33.35	1.347	75.3	9.9984
28.66	1.157	55.6	9.9987
23.99	0.968	38.9	9.9994
19.54	0.784	25.7	9.9982
14.76	0.591	14.7	10.0000
10.54	0.417	7.4	9.9985
5.76	0.224	2.2	10.0018

ตารางที่ ง.16 ผลการทดสอบไร้โหลดของมอเตอร์ SIEMENS ที่ความถี่ 2 Hz

$V_0(V)$	$I_0(A)$	$P_0(W)$	$f_0(Hz)$	$\omega_m(rpm)$
35.44	2.0303	109.87	2.00660	60
33.16	1.8575	92.82	1.99821	60
30.94	1.6904	77.67	1.99901	60
28.64	1.5313	63.95	1.99893	60
26.23	1.3704	51.35	1.99926	60
24.50	1.2602	43.44	1.99909	60
21.81	1.0963	32.91	1.99989	60
19.57	0.9711	25.81	1.99997	60
17.59	0.8652	20.47	1.99943	60
15.05	0.7325	14.70	1.99975	60
13.00	0.6287	10.84	1.99977	60
10.92	0.5241	7.56	2.00050	60
8.41	0.4009	4.46	1.99952	60
5.86	0.2784	2.18	2.00010	59

$V_{S}\left(V ight)$	$I_S(A)$	$P_S(W)$	$f_S(Hz)$
54.31	2.766	252.6	2.00070
51.72	2.602	226.2	1.99991
49.42	2.440	202.9	1.99970
46.68	2.275	178.8	2.00010
44.64	2.150	161.6	1.99911
42.44	2.028	144.9	1.99992
39.98	1.896	127.7	1.99922
35.72	1.684	101.4	1.99948
33.29	1.565	87.9	1.99984
31.40	1.473	78.1	2.00010
28.6 <mark>9</mark>	1.343	65.1	1.99985
26.25	1.226	54.4	1.99956
24.07	1.123	45.7	1.99975
21.87	1.015	37.5	1.99960
19.42	0.900	29.6	2.00020
17.18	0.796	23.1	1.99979
15.05	0.690	17.6	1.99906
12.46	0.570	12.0	2.00010
10.40	0.472	8.3	1.99800
7.57	0.343	4.4	1.99989
6.76	0.307	3.5	1.99885

ตารางที่ ง.17 ผลการทคสอบยึคโรเตอร์ของมอเตอร์ SIEMENS ที่ความถี่ 2 Hz

$V_0(V)$	$I_0(A)$	$P_0(W)$	$f_0(Hz)$	$\omega_m(rpm)$
400.5	2.1509	228.4	50.113	1503
381.3	1.8992	192.6	50.158	1503
360.8	1.6964	164.4	50.172	1505
341.5	1.5394	143.3	50.159	1505
321.9	1.4161	125.8	<u>50</u> .116	1503
302.7	1.3049	111.0	50.046	1502
281.7	1.1841	96.0	49.996	1500
260.0	1.0678	82.5	49.934	1498
240.3	0.9738	71.7	49.943	1499
221.9	0.8914	62.4	49.943	1499
203.8	0.8135	54.1	50.019	1501
180.8	0.7175	44.5	50.050	1502
161.7	0.6413	37.1	50.049	1501
140.6	0.5573	29.7	50.109	1503
121.3	0.4830	23.6	50.118	1503
102.5	0.4114	18.2	50.077	1502
81.0	0.3294	12.8	50.065	1502
61.0	0.2540	8.5	50.058	1502
40.8	0.1784	5.0	50.056	1502

ตารางที่ ง.18 ผลการทดสอบไร้ โหลดของมอเตอร์ MITSUBISHI ที่ความถี่ 50 Hz

ตารางที่ ง.19 ผลการทคสอบยึดโรเตอร์ของมอเตอร์ MITSUBISHI ที่กวามถี่ 50 Hz

$V_{S}\left(V ight)$	$I_{S}(A)$	$P_{S}(W)$	$f_{S}(Hz)$
85.34	4.066	423.9	50.035
80.65	3.801	371.3	49.983
77.80	3.641	341.0	49.957

73.60	303.404298.5		49.935
70.64	3.226	269.3	50.054
67.51	3.053	241.0	50.051
63.04	2.809	203.7	50.011
59.88	2.637	179.5	49.950
56.09	2.428	151.8	49.990
52.38	2.223	127.2	49.982
48.76	2.022	105.2	50.004
45.18	1.826	85.7	49.977
41.82	1.638	68.9	50.036
38.60	1.460	54.9	50.001
3 <mark>4</mark> .67	1.241	39.8	50.012
30.70	1.021	27.2	49.998
27.49	0.844	18.9	49.976
23.73	0.640	11.4	50.027
20.34	0.466	6.5	50.030
14.16	0.206	1.9	50.004

ตารางที่ ง.20 ผลการทดสอบไร้โหลดของมอเตอร์ MITSUBISHI ที่ความถี่ 30 Hz

$V_0(V)$	$I_0(A)$	$P_0(W)$	$f_0(Hz)$	$\omega_m(rpm)$
231.58	1.8765	133.1	29.959	899
220.49	1.6945	114.9	29.959	900
200.40	1.4329	89.5	29.959	901
180.07	1.2346	71.1	29.959	902
161.25	1.0776	57.2	29.959	903
140.05	0.9199	44.2	29.959	904
120.11	0.7812	34.0	29.959	905
100.33	0.6475	25.1	29.959	906

81.42	0.5261	17.9	29.959	907
60.78	0.3960	11.3	29.959	908
41.64	0.2769	6.4	29.959	909
21.50	0.1564	2.7	29.959	910

ตารางที่ ง.21 ผลการทดสอบยึด โรเตอร์ของมอเตอร์ MITSUBISHI ที่ความถี่ 30 Hz

$V_{S}(V)$	$I_S(A)$	$P_{S}(W)$	$f_{S}(Hz)$
65.72	3.664	334.6	29.959
61.17	3.380	285.1	29.959
<mark>55.84</mark>	3.048	231.1	29.959
52. <mark>3</mark> 6	2.833	199.5	29.958
47.35	2.524	158.1	29.981
42. <mark>2</mark> 5	2.204	120.8	29.959
37.58	1.920	90.9	29.936
33.42	1.658	67.8	29.959
28.35	1.341	44.1	29.959
24.27	1.082	28.7	29.959
19.24	0.761	14.4	29.959
15.18	0.503	6.5	29.981

ตารางที่ ง.22 ผลการทคสอบไร้ โหลดของมอเตอร์ MITSUBISHI ที่ความถี่ 10 Hz

$V_0\left(V ight)$	$I_0(A)$	$P_0(W)$	$f_0(Hz)$	$\omega_m(rpm)$
81.14	1.8363	76.5	9.9987	300
75.71	1.6190	58.6	9.9987	300
70.29	1.4382	47.6	9.9987	300
61.49	1.2027	34.9	9.9987	300

56.41	1.0826	30.0	9.9987	300
52.28	0.9830	23.6	9.9987	300
47.64	0.9011	19.7	9.9987	300
42.54	0.7848	16.4	9.9987	300
37.81	0.6941	13.3	9.9987	300
33.11	0.6031	10.3	9.9987	300
29.02	0.5258	7.7	9.9987	300
23.49	0.4250	5.3	9.9987	300
19.50	0.3539	4.0	9.9987	300
14.65	0.2599	2.4	9.9987	300
10.11	0.1753	1.2	9.9987	300
	//// 5			·

ตารางที่ ง.23 ผลการทดสอบยึดโรเตอร์ของมอเตอร์ MITSUBISHI ที่กวามถี่ 10 Hz

$V_{S}(V)$	$I_{S}(A)$	$P_{S}(W)$	$f_{S}(Hz)$
56.70	3.792	345.5	9.9987
51.29	3.438	277.3	9.9987
46.60	3.108	226.9	9.9970
42.11	2.803	184.8	10.0005
37.11	2.440	142.8	9.9970
32.88	2.149	110.2	9.9970
28.92	1.886	83.3	10.0005
23.27	1.496	52.0	9.9952
18.76	1.180	32.1	9.9987
14.37	0.874	17.4	10.0023
9.43	0.522	6.0	10.0005

$V_0(V)$	$I_0(A)$	$P_0(W)$	$f_0(Hz)$	$\omega_m(rpm)$
29.93	2.280	81.9	1.99950	60
27.87	2.039	66.5	1.99975	60
26.17	1.854	55.6	1.99975	60
24.30	1.645	45.4	1.99975	60
22.21	1.472	35.7	1.99975	60
20.61	1.319	29.0	2.00000	60
18.24	1.135	22.1	1.99476	60
16.63	1.010	17.7	1.99975	60
14.52	0.868	12.8	2.00000	60
12.44	0.729	8.8	2.00000	60
10.45	0.586	5.9	2.00020	60
8.86	0.474	4.0	2.00000	60
6.64	0.333	1.9	1.99925	60

ตารางที่ ง.24 ผลการทคสอบไร้ โหลดของมอเตอร์ MITSUBISHI ที่ความถี่ 2 Hz

ตารางที่ ง.25 ผลการทคสอบยึค โรเตอร์ของมอเตอร์ MITSUBISHI ที่ความถี่ 2 Hz

$V_{S}(V)$	$I_S(A)$	$P_S(W)$	$f_S(Hz)$	
51.37	3.880	308.6	2.00100	
47.41	3.528	258.3	2.00000	
43.46	3.190	213.2	1.99975	
39.68	2.857	175.3	1.99925	
36.08	2.599	142.5	1.99925	
31.96	2.279	109.9	1.99847	
28.28	2.002	84.5	1.99925	
24.51	1.719	62.0	1.99900	
20.57	1.418	41.8	1.99626	

สถาบนวทยบรการ จุฬาลงกรณ์มหาวิทยาลัย

16.53	1.126	26.1	2.00330
12.61	0.827	14.0	1.99900
9.19	0.575	6.6	1.99950

ประวัติผู้เขียนวิทยานิพนธ์

นาย ชมพู สุขภาพ เกิดเมื่อวันที่ 10 มกราคม พ.ศ. 2518 ที่จังหวัดสุพรรณบุรี สำเร็จการศึกษา ระดับปริญญาวิศวกรรมศาสตรบัณฑิต สาขาวิศวกรรมไฟฟ้า (ไฟฟ้ากำลัง) จากสถาบันเทคโนโลยีพระ จอมเกล้าพระนครเหนือในปีการศึกษา 2539 และได้เข้าศึกษาต่อในหลักสูตรวิศวกรรมศาสตร มหาบัณฑิต สาขาวิศวกรรมไฟฟ้า (อิเล็กทรอนิกส์กำลัง) ณ ภาควิชาวิศวกรรมไฟฟ้า คณะ วิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ในภาคต้นของปีการศึกษา 2541

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย