CHAPTER IV

RESULT AND DISCUSSION

During the investigation of the chemical constituents of the leaves of Aglaia chittagonga Miq., three compounds $\mathrm{ACH} 1, \mathrm{ACH} 2$, and ACH 3 , were isolated from the hexane extract. These compounds gave positive results with Liebermann Burchard test, suggesting their terpenoid nature.

The identification and structure elucidation of the compounds were based on the interpretation of their spectral data, and further confirmed by compansion with those reported values in the literature.

Compound ACH1
Compound ACH 1 was crystallized as white needles from methanol. Its IR spectrum (Figure 8) exhibited a broad band at $3464 \mathrm{~cm}^{-1}$, indicating the presence of hydroxyl group in the molecule.

The 'H NMR (Figure10-11) spectrum of ACH1 is too complex to allow direct assignment of most methylene and methine chemical shifts in the structure. Experiment indicated the signal of 7 methyl protons at $\delta 0.70$. $0.75,0.8,0.9,0.95,(6 \mathrm{H})$, and 1.0 ppm . The presence of downfield singlet of exomethylene proton at $\delta 4.5$ and 4.7 ppm .

The ${ }^{13} \mathrm{C}$ NMR spectrum (Figure12-13) showed the signals of 30 carbons atort, supporting the assignment of ACH1 as a triterpenoid derivative. DEPT (Figure14) experiment indicated the signals of 7 methyl carbons at δ 14.7, 15.5, 16.1, 16.3, 18.1, 19.4, and 28.1 ppm, 11 methylene carbons at δ 18.5, 21.0, 25.3, 27.5, 27.5, 29.9, 34.4, 35.6, 38.8, 40.1, and 109.2 ppm , 6 methine carbons at $\delta 38.1,48.4,48.1,50.5,55.3$, and 79.0 ppm , and

6 Quatemary carbons at $\delta 37.3,38.9,40.9,42.9,43.1$ and 150.8 ppm.
The EIMS of ACH1 (Figure 9) displayed a prominent molecularion peak at $m / z 426 \quad\left(\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}\right)$. Intense EIMS fragment peaks at m / z 189, 191, and 218 were important in showing ACH1 as having a skeleton structure of the lupane-type triterpenoid.(Budzikiewicz et al., 1964 ; Ogunkoya, 1981)
(Figure 3)

Figure 3 Mass fragmentation of ACH 1

Therefore, the identity of ACH 3 was mainly deduced by comparison of its carbon chemical shitts with those of a known triterpenoid, lupeol (Sholichin et al., 1980).

The 7 methyl carbon signals at $28.1,15.5,16.3,16.1,14.7,18.1$, and 6.0 ppm could then be assigned as those of $\mathrm{C}-23, \mathrm{C}-24, \mathrm{C}-25, \mathrm{C}-26, \mathrm{C}-27$, $\mathrm{C}-28$, and C-29 position, respectively. whereas the 11 methylene carbon signals at $\delta 38.8,27.6,18.5 ; 34.4,21.0,25.2,27.5,35.6,29.9,40.0$, and 109.2 ppm were assigned as those of $\mathrm{C}-1, \mathrm{C}-2, \mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-11, \mathrm{C}-12, \mathrm{C}-15$, $\mathrm{C}-16, \mathrm{C}-21, \mathrm{C}-22$ and $\mathrm{C}-30$ position, respectivetively. Similarly, the 6 methine
carbon signal at $\delta 79.0,55.3,50.5,38.1,48.1$ and 48.4 ppm were assigned as those of $\mathrm{C}-3, \mathrm{C}-5, \mathrm{C}-9, \mathrm{C}-13, \mathrm{C}-18$ and $\mathrm{C}-19$, respectively, anc the 6 quaternary carbon signals at $\delta 38.9,40.9,37.3,42.9,43.1$ and 150.8 ppm could then be assigned as those of $\mathrm{C}-4, \mathrm{C}-8, \mathrm{C}-10, \mathrm{C}-14, \mathrm{C}-17$ and $\mathrm{C}-20$, respectively.

- The complete carbon chemical shift assignment of ACH1 was found to be fully in agreement with those of lupeol (Table 6).

Table 6 Comparison of ${ }^{13} \mathrm{C}$-NMR chemical shifts of ACH 1 and lupeol

position	ACH1	lupeol	position	ACH1	lupeol
1	38.8	38.7	16	35.6	35.6
2	27.6	27.5	17	43.1	43.0
3	79.0	79.0	18	48.1	48.0
4	38.9	38.9	19	48.4	48.3
5	55.3	55.3	20	150.8	150.9
6	18.5	18.3	21	29.9	29.9
7	34.4	34.3	22	40.1	40.0
8	40.9	40.9	23	28.1	28.0
9	50.5	50.5	24	15.5	15.3
10	37.3	37.2	25	16.3	16.1
11	21.0	21.0	26	16.1	16.0
12	25.2	25.2	27	14.70	14.6
9	38.1	38.1	98	28	18.16
14	42.9	42.9	29	18.4	19.3
14	27.5	27.5	30	109.2	109.3

* Solvent CDCl_{3} : NMR Spectra Measurements : A JEOL PFT-100

Therefore, it was concluded that ACH 1 is lupeol, the structure of which is shown below.

Figure 4 The structure of $\mathrm{ACH1}$ (MW. 426)
Lupeol is a known terpenoid previously isolated from several species of meliaceous plants, ie. Guarea trichilioides (Furlan, Roque and Filho, 1993) , Trichilia claussenii (Pupo et al .,1996) and Aglaia harmsiana (Inada et al.,1995). Previous pharmacological studies of lupeol revealed antimalarial (Alves et al.,1997), antitumor (Moriarity et al., 1998 ; Miles et al.,1976), and anti inflammatory activities (Geetha et al., 1998 ; Akihisa et al.,1996).

Compound ACH2

Compound ACH 2 was crystallized as white needles from methanol. The molecutar formular of $\mathrm{C}_{31} \mathrm{H}_{54} \mathrm{O}_{3}$ was suggested for this compound based on its EIMS motecular ion peak at $m / 2474$, and the $[\mathrm{M}-\mathrm{OH}]^{+},\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+},\left[\mathrm{M}-\mathrm{OH}-\mathrm{CH}_{3}\right]^{*}$, $\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3}\right]^{+}$at $\mathrm{m} / \mathrm{Z} 457,456,442,441$, respectively. (Figure 15)

The presence of hydroxyl groups in the molecule was atso confirmed by a very intense IR absorption band at $3470 \mathrm{~cm}^{-1}$ (Figure 16)

The 'HNMR spectrum of ACH2 (Figure19) showed a pair of upfield thylene proton doublets at $\delta 0.31$ and 0.53 ppm (1 H each, $J=4 \mathrm{~Hz}$). These two doublets are charactenstic of non-equivalent protons of a cyclopropyl inethylene group in the cycloartane skeleicn. (Inada et al.,1997).

The complete ${ }^{13} \mathrm{C}$-NMR chemical shift assignments of ACH 2 were shown in Table 6.

Figure 5 Structure of (24R)-cycloartane -3 α. 24, 25-triol (75), (24R)-cycloartane-3 β,
24. 25-triol (76) , ACH2 and ACH3

Table 7 The comparison of ${ }^{13} \mathrm{C}$-NMR spectral data

Position	75	76	ACH2	ACH3	Position	75	76	ACH2	ACH3
1	27.5	32	30.2	30.8	16	26.3	26.5	26.5	25.2
2	28.8	30.4	30.4	34.8	17	52.3	52.4	52.4	52.3
3	77.1	78.9	78.8	76.6	18	18.0	18.1	18.1	17.8
4	39.6	40.5	40.5	44.6	19	29.8	29.9	29.9	27.3
5	41.1	47.2	47.1	43.3	20	36.4	36.4	36.4	36.4
6	21.1	21.1	21.1	24.6	21	18.5	18.5	18.4	18.4
7	28.1	28.2	28.1	28.1	22	33.6	33.6	33.7	33.7
8	48.1	48.0	40.8	46.9	23	28.6	28.8	28.3	28.3
9	19.9	20.0	20.0	23.5	24	79.7	79.7	77.6	77.6
10	26.5	26.1	26.1	29.5	25	73.2	73.2	77.6	77.6
11	26.3	26.0	26.0	26.9	26	23.3	23.3	18.8	18.8
12	33.6	33.0	32.9	32.9	27	26.6	26.6	20.8	20.8
13	45.3	45.3	45.3	45.3	28	25.3	25.5	25.4	.
14	48.9	48.8	48.8	48.9	29	21.3	14.0	14.0	14.4
15	35.5	35.6	35.5	35.3	30	19.3	19.4	19.3	19.1

The ${ }^{1} H$ NMR spectrum of $A C H 2$ also showed the presence of eight methyt protons at $\delta 0.78(\mathrm{~s}), 0.86(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}), 0.87(\mathrm{~s}), 0.94(6 \mathrm{H}, \mathrm{s}), 1.07$ (s), 1.11 (s) and 3.2 (s).

The ${ }^{13}$ C-NMR (Figure23) and DEPT(Figure24-25) spectra of compound ACH2 exhibited the signal 7 methyl carbons at δ 18.1, 18.4, 18.8, 20.8, 25.4,14, 19.3 and one methoxyl carbon at $\delta 49.0 \mathrm{ppm}, 11$ methylene carbons at $\delta 32,30.4,21.1,28.1,26.0,32.9,35.5,26.5,29.9,33.7$, and $28.3 \mathrm{ppm}, 6$ methine carbons at $\delta 78.8,47.1,48.0,52.4,36.4$ arid 77.6 ppm , and 6 quatemary carbons at $\delta 40.5,20.0,26.1,45.3,48.8$ and 77.6 ppm .

The elucidation of ACH 2 structure was chiefly done by comparison of ${ }^{13} \mathrm{C}$ NMR chemical shifts of this triterpenoid with those corresponding signals of (24R)-cycloartane $-3 \alpha, 24,25-$ triol (75) and (24R)-cycloartane-3 β. 24, 25-triol (76) (inada et al., 1997b), both of which possess the same basic structure as ACH 2. Methine proton signals of $\mathrm{H}-3$ and $\mathrm{H}-24$ at $\delta 3.26$ ($\mathrm{dd}, J=7.8,4.4 \mathrm{~Hz}$) and $3.34(\mathrm{dd}, J=10,1.83 \mathrm{~Hz}$), respectively. indicated the orientation of hydroxyl groups al both position to be beta.

The structure of ACH2 was also confirmed by the HMBC experiment (Figure 34-39). The Me -29 proton signal at $\delta 0.79 \mathrm{ppm}$ displayed three-bond correlations with $\mathrm{C}-28(\delta 25.4 \mathrm{ppm}), \mathrm{C}-5(\delta 47.1 \mathrm{ppm})$, and $\mathrm{C}-3(\delta 78.8 \mathrm{ppm})$, confirming its position as attached at $\mathrm{C}-4$. Another methyt proton signal at $\delta 0.95 \mathrm{ppm}$ (Me-28) showed three-bond coupling with C-29 ($\delta 14.0$ $\mathrm{ppm}), \mathrm{C}-5(\boldsymbol{\delta} 47.1 \mathrm{ppm})$, and $\mathrm{C}-3(\delta 78.8 \mathrm{ppm})$, indicating its attachment as at $\mathrm{C}-4$ position. The $\mathrm{Me}-18$ proton signal at $\delta 0.95 \mathrm{ppm}$ displayed three-bond correlation with.C-12 ($\delta 32.9 \mathrm{ppm}), \mathrm{C}-14(\delta 48.8 \mathrm{ppm})$, and $\mathrm{C}-17$ ($\delta 52.4 \mathrm{ppm}$) confirming its position as attached at C-13. Correlations could also be observed between $\mathrm{Me}-30$ signal at $\delta 0.87 \mathrm{ppm}$ and $\mathrm{C}-8$
($\delta 48.0$), C-13 ($\delta 45.3 \mathrm{ppm}), \quad$ C-15 ($\delta 35.5 \mathrm{ppm})$, as well as between $\mathrm{Me}-26(\delta 1.07 \mathrm{ppm})$ and $\mathrm{Me}-27(\delta 1.11 \mathrm{ppm})$ proton signals and $\mathrm{C}-24(\delta 77.6$ $\mathrm{ppm})$, confirming the assignments of all these positions. The long-range coupling of $\mathrm{Me}-21$ proton signal at $\delta \mathbf{\delta} .86 \mathrm{ppm}$ with $\mathrm{C}-17(\boldsymbol{\delta} 52.4 \mathrm{ppm})$ and $\mathrm{C}-22(\delta 33.7 \mathrm{ppm})$ indicated the position of this methyl group at $\mathrm{C}-20$ in side-chain. The methoxyl proton at $\delta 3.2 \mathrm{ppm}$ showed !ong -rang coupling with C-25. Intense EIMS peak at $m / z 73$, which corresponded to the formation of $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}={ }^{+} \mathrm{OCH}_{3}\right]$ fragment., confirming the presence of methoxyl group at $\mathrm{C}-25$ in side-chain.

A set of major cross-peaks observed between the cyclopropyi methylene proton signals at $\delta 0.31$ and ($\mathrm{H}-19$) $0.53 \mathrm{ppm}(\mathrm{H}-19)$ and $\mathrm{C}-1$ ($\delta 32.0 \mathrm{ppm}$), C-5 $(\delta 47.1 \mathrm{ppm}), \mathrm{C}-8(\delta 48.0 \mathrm{ppm}), \mathrm{C}-11(\delta 26.0 \mathrm{ppm})$ indicated that the position of the cyclopropane ring was between C-9 and C-10.

Therefore it was concluded that ACH2 is a cycloartane-type triterpenoid with a β-hydroxylgroup at C-3 in ring A and 24β-hydroxyl, 25 methoxyl in side-chain (25 -Methoxylcycloartane - $3 \boldsymbol{\beta}, 24$ - diol). (Figure 6)

Compound ACH3

Compound ACH 3 was crystallized as white needles from methanol. The molecular formular of $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{3}$ was suggested for this compound based on EIMS molecular ion peak at $m / 2460$, and the $[\mathrm{M}-\mathrm{OH}]^{+},\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+},\left[\mathrm{M}-\mathrm{OH}-\mathrm{CH}_{3}\right]^{+}$.
$\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3}\right]^{+}$at $\mathrm{m} / 2443,442,428,427$, respectively. (Figure 40)
The presence of hydroxyl groups in the molecule was also confirmed by a very intense \mathbb{R} absorption band at $3402 \mathrm{~cm}^{-1}$ (Figure 41)

The ${ }^{1} \mathrm{H}$ NMR spectrum of ACH3 (Figure 43) showed a pair of upfield methylene proton doublets at $\delta 0.12$ and 0.36 ppm (1 H each, $\mathrm{J}=4 \mathrm{~Hz}$). These two doublets are characteristic of nun- equivalent protons of a cyclopropyl methylene group in the cycloartane skeleton. (inada et al.,1997) The ${ }^{1} \mathrm{H}$ NMR spectrum of ACH3 also showed the presence of seven methyi protons at δ $0.87(\mathrm{~d}, J=6 \mathrm{~Hz}), 0.87(\mathrm{~s}), 0.95(\mathrm{~s}), 0.96(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}), 1.07(\mathrm{~s}), 1.1(\mathrm{~s})$, and 3.2(s).

The ${ }^{13} \mathrm{C}$-NMR (Figure 48) and DEPT (Figure 49-50) spectra of compound ACH3 exhibited the signals of 6 methyl carbons at δ 14.5, 17.8, 18.4, 18.9, 19.1, 20.8, and one methoxyl carbon at $\delta 49.0$ ppm, $\quad 11$ methylene carbons at $\delta 24.6,25.2,26.9,27.3,28.1,28.3$, 30.8. 32.9, 33.7, 34.8, and 35.3 ppm , 7 methine carbons at $\delta 36.4$, $43.3,44.6,46.9,52.3,76.6$, and 77.6 ppm and 5 quatemary carbons at $\delta 23.5,29.5,45.3,48.9$. and 77.6 ppm . When compared to ACH 2 , the compound ACH3 exhibited molecular ion peak at $m / 2460$ (14 mass unit less than ACH 2) and one more methyl carbon while showing one less methine and quatemary carbon, (Table 7). In addition, the elucidation of the struture of ACH3 was mainly accomplished by comparison of the ${ }^{13} \mathrm{C}$ NMR chemical shitl data (Table 7), those of ACH_{3}.

Table 8 Comparison of ACH 2 and ACH 3

The structure of ACH 3 was also confirmed by the HMBC experiment. (Figure 58-62) The $\mathrm{Me}-29$ proton signals at $\delta 0.96 \mathrm{ppm}$ displayed threebond correlations with beth $\mathrm{C}-3(\delta 76.6 \mathrm{ppm})$ and $\mathrm{C}-5$ ($\delta 44.3 \mathrm{ppm})$, confirming its position as attached at C-4. Another methyl proton signal at $\delta 0.95 \mathrm{ppm}$ ($\mathrm{Me}-18$) showed three-bond coupling with $\mathrm{C}-12(\delta 32.9 \mathrm{ppm})$, $\mathrm{C}-14(\delta 48.9 \mathrm{ppm})$, and $\mathrm{C}-17(\delta 52.3 \mathrm{ppm})$, indicating its attachment as at C-13 position. Correlations could alsi be observed between $\mathrm{Me}-30$ signal at $\delta 0.87 \mathrm{ppm}$ and $\mathrm{C}-8(\delta 46.9), \mathrm{C}-13(\delta 45.3 \mathrm{ppm}), \mathrm{C}-15(\delta 35.3 \mathrm{ppm})$, as well as $\mathrm{Me}-26$ ($\delta 1.07 \mathrm{ppm}$) and $\mathrm{Me}-27$ ($\delta 1.11 \mathrm{ppm}$) proton signats and $\mathrm{C}-24(\delta 77.6 \mathrm{ppm})$, confirming the assignments of all these positions. The long-range coupling of $\mathrm{Me}-21$ proton signal at $\delta 0.87 \mathrm{ppm}$ with $\mathrm{C}-17$ (δ $52.3 \mathrm{ppm})$ and $\mathrm{C}-22(\delta 33.7 \mathrm{ppm})$ indicated the position of this methyl group at C-20 in side-chain. The methoxyl proton at $\delta 3.2 \mathrm{ppm}\left(\mathrm{OCH}_{3}\right)$ showed long-range coupling with $\mathrm{C}-25$ and intense EIMS peak at $\mathrm{m} / \mathrm{z} 73$, which corresponded to the formation of $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}={ }^{*} \mathrm{OCH}_{3}\right]$ fragment, confirming the presence of methoxyt group at C-25 in side-chain.

A set of major cross-peaks observed between the cyclopropyl methylene proton signals at $\delta 0.12$ and $0.36 \mathrm{ppm}(\mathrm{H}-19)$ and $\mathrm{C}-1(\delta 30.8$ ppm), C-5 ($\delta 43.3 \mathrm{ppm}), \mathrm{C}-8(\delta 46.9 \mathrm{ppm}), \mathrm{C}-11(\delta 26.9 \mathrm{ppm})$ indicated that the position of the cyclopropane ring was between C-9 and C-10 .

Therefore it was concluded that the structure ACH3 loss $\mathrm{Me}-28$ in a cycloartane skeleton with a β-hydroxyl group at position-3 and 24β hydroxyl 25 methoxyl groups in the. side-chain (25 -Methoxyl-28-norcycloartane-3 β, 24 -diol). (Figure 7)

Figure 7 25-Methoxyl-28-norcycloartane-3 β, 24 - diol
 สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

