CHAPTERI1V

THE DIFFUSIVITY-MOBILITY RATIO

FOR HEAVILY DOPED SEMICONDUCTORS

In Chapter II the generalized diffusivity-mobility ratio was reviewed. In this
chapter we will use the resuit of Chapter II to derive the diffusivity-mobility for
heavily doped semiconductors. Before going to our main purpose, we will consider
the electrons behavior in section 4.i and the change in density of states in section 4.2
when impuriticS are added to a system. Finally, we use the result of section 4.2 and
Kane’s density of states to derive and evalvate the diffusivity-mobility ratio for

heavily doped semiconductors in section 4.3 ,

4.1 Screening’
4.1,1 Introduction

The phenomenon of screening is one of the simplest and most important

manifestation of electron-clectron interactions. First, we consider screening in a free

electron gas,
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Suppose a positively charged particle is placed at a given position in the
electron gas and rapidly held there. It will then attract, creating a surplus of negative

charges in its neighborhood, which reduces (or screen) its field. In treading this

screening it is convenient to introduce two electrostatic potentials. The first, ¢,

arises solely from the positively charged particle itself, and therefore satisfies
Poisson’s equation in the form :

-V3"™(F) = 4np™(F), (4.1)
where p™(F) is the particle’s charge density. The second, ¢, is the full physical

potential, produced by both the positively charged particle and the cloud of screening

electrons it induces. It therefore satisfies

—V2¢P(7‘) = 4np(r), - (4.2)
where p is the full charge density,

p(F) = p=(F) +.p"'AF) 4.3)

and p™(F) is the charge density induced in the electron gas by the presence of the

external particles,
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By analogy with the theory of dielectric media, one assume that df"' and ¢ are

linearly related by an equation of the form :
07 (F) = [dFetF.F)0(). (4.4)

In a spatially uniform electron gas £ can depcnd only on the separation between the

point ¥ and F’,but not on their absolute position:

e(F,F) = &Ff=F) 4.5)
Thus (4.4) assumes the form
0= (F) = [dre(F-F) ¢(), | 4.6)
which implies that the corresponding Fourier transforms satisfy
¢ (@) = €(§)¢(é') , 4.7

where the Fourier transforms are defined by

e@ = [drexp[-ig.F]e(), (4.8)
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&gF) = on s qu cxp[lq r] &(q). (4.9)
The quantity £(g) is called the (wave '\(ector dependent) dielectric constant of

the electron gas.

The quantity that turns out to be the most natural to calculate directly is not the

dielectric constant £(g) but the charge density p"’""(i") induced in the electron gas by

the total potential ¢(7 ). We shall examine below how this can be calculated.

The Fourier transform of (4.2) and {4.1) are
3@ = 4np(@), 4.10)
@ = 4@ (@4.11)

Together with (4.3) these give

2
L{o@ - 0@} = p™@: “12)

or

47 ind
6= (@) = {1 7 "¢(q(‘)”}¢< ). @.13)
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Comparing this with (4.7) leads to the relation

4r p™ (@)

@ =1-7%@

(4.14)

In this work, we discuss with electrons in a semiconductor (not in vacuum) so

that it is convenient to insert an effective dielectric constant, &, to take into account of

the effect of interband transitions, the polarization of the ion, etc., in an ad hoc

manner to find

ar_ p™ (@)

g) = 1 -— p .
b ed’ 9D @15)

Relations 4.14 and 4.15 are general results of screening and we will approximate the
indliccd charge density and the total potential in relation 4.14 to give the Thomas-

Fermi theory of screening or the Thomas-Fermi approximation in next section.
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4.1.2 Thomas-Fermi theory of screening

In principle, to find the charge density in the presence of the total potential, ¢,

one must solve the one-electron Schrodinger equation,

2

--;’;V"Iﬂ(?)'- ep(FIE,(F) = EY,(F). (4.16)

The Thomas-Fermi approach is based on a simplification in this procedure that can be
made when the total potential ¢(7) is a very slowly varying function of 7 . We

assume it is meaningful to specify the energy versus wave vector relation of an

electron at the position 7 , and we take this relation to be

2

E(k) = :—mk’ — ed(F). 4.17)

Thus we assume that the solution of (4.16) describes a set of electrons with
energies of the simple classical form (4.17). To caicuiate the charge density produced

by these electrons one places their energies into the expression,

n = J‘dE 1 ’ 4.18)
an’ (e -E,)
exp "—‘—k—;T—— + 1
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for the electron number density, to find (with B=1/ksT)

J'dE 1

. — , 4.19)
i xp{ B hk -e¢(F)-E + 1
cxp 2m 4

n(F) =

The induced charge density is just — en(7) + en,, where the second term is the

charge density of the uniform positive background. The number density of the

background is just the density of the electronic system when ¢™ , and hence ¢

vanishes,

' dk 1
m(E) = [ K’ '
exp{ﬁ[ —E,J}+1

4.20)

2m

The value of the Fermi energy , Eg, appéaﬁng in (4.19) and (4.20) will be the same
under the assumption that ¢(7 ) is appreciable onlif in finite region of electron gas,

outside of which the electron density is negligibly pertutbed from its equilibrium
value.

We combine (4.19) and (4.20) to write,

pHF) = —elny(E, +ed(P) - no(E,)}. @21)
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In the present case we assume that e@() is small enough for (4.21) to be expanded

to give in leading grder
on,
2y = 2 e (F). 4.22

Substituting this in (4.14) gives the Thomas-Fermi dielectric constant

Arme” ony
g’ OE,’

&gq) = 1+ (4.23)

It is customary to define the Thomas-Fermi wave vector, Q, by

Q' = 4me’— (4.29)
so that

&g =1+ 3—, (4.25)

In semiconductor media, it is convenient to insert an effective dielectric constant,g, ,

to take account of the effect of interband transition, the polarization of the ions, etc.,

in an ad hoc manner to find

2 4w on '
0 = 5% (4.26)

Q! is called “ Screening length”.
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In general, the electron concentration corresponding to the Fermi energy Ej,

n(Ey) is written in the form :
mE,) = 2|p(E)f(E.E, T)E, 427)

where RE, E,,T) is the Fermi distribution function and p(E) is the density of states. If

we differentiate (4.27) with respect to E;, we obtain

on t af

%, 2 j: p(E)[ % ]dE , (4.28)
, ¥ & i . . .
since = ——— ,and substituting (4.28) in (4.27) give the Thomas-Fermi

JE, - OE
inverse screening length squared
dme’ ) T af
2 3 — ——
Q= 2( . J-_[p(E)( o5 ME . (4.29)

Equation (4.26) and (4.29) are main results of the Thomas-Fermi approximation
which we will use to derive and evaluate the diffusion-mobility ratio for n-type

heavily doped semiconductors.
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4.2 Heavily doped semiconductor
4.2.1 The model

Our model is a pure semiconductor represented by a single filled valence band
separated from an empty conduction band by a band gap. The semiconductor is the'sn
doped with Nd attractive donor impurities so that shaliow impurity states are formed
just below the conduction band. As the doping increases the impurity levels form an
impurity band and at higher concentrations this band broadens until it merges with the
conduction band and becomes a band tail to the conduction band. The semiconductor
is said'® to be heavily doped when the conduction band has a band tail made up of
impurity states. In gallium asenide (GaAs)' this requires a shaliow donor

concentration of N; > 10'7 cm™. We assume that the impurity positions are random

and uncorrelated in the lattice.

We shall also compensate the donor impurities by adding N, acceptor
impurities. In the model we include only the reduction in the number of electrons and
the increase in the impurity potential due to the acceptor impurities. We do not take
account of band tailing in the valence band. If the valence and conduction bands are
well separated, tailing of the valence band should ht}ve little effect on a Fermi cnergj
lying in the conduction band.

We ignore the electron-electron interaction in the model. Wolff'> has shown

that this is valid provided the interaction between the electron at 7 and impurity at

-

R is represented by a screened coulomb potential. We will show later that screened
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Coulomb potential agrees well with the Thomas-Fermi approximation, screened

coulomb is

2

v(i';—ﬁ) = --8 |:_ |cxp{ er RI} (4.30)

and the conduction band is shifted by a small amount. The Hamiltonian describing

each single electron is then

hZ
H = —2—m:V’+Eg+E° +V(r). 4.31)

Here E is the energy of the bottom of the conduction band in the pure

semiconductors, Eq is the average potential of the impurities and added electrons

E, = [dRv(F-R)

= e (4.32)
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and

VF) = JWF-R) - E, (4.33)

is the fluctuation in the potential at F about the average. For randomly distributed,
statistically independent impurities, we can show in sub-section 4.2.2 that the mean

square fluctuation in V(7 ) reduces to

£, = (VEWVE);

= 2
= (N, + N,)jig- [v(7-R)]

‘ .
4 Z%(N, +N,). (4.34)

The shifted conduction band edge in the impure crystals due to the impurities is
E. = E} + E,. (4.35)

To describe GaAs we take €, = 135 and assume a parabolic conduction band

having an effective mass m” = 0.072 my (m, is electron mass)”, We consider
Z = %1 impuritieé, such as phosphorus(P) as the donor.

This model is identical to that used by Halparin and Lax" in their calculation
of the density of states in the band tail region, and that used by Kane' in his

calculation of the density of states which we will mention it again in sub-section 4.2.2,
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and that used by Hwang' in his evaluation of E; and Q. The model depends upon the
validity of linear screening in the Thomas-Fermi approximation. If the Thomas-Fermi
approximation does not hold, (4.30) is invalid and the concept of a screening length
and must be abandoned in favor of more sophisticated descriptions of screening. The
Thomas-Fermi approximation holds if variations in the impurity potential are small

compared to the electron energy. In the present model this requires

8’75 Ef\—Eg (4.36)
and we take'?

&* = E, - E, (4.37)

as the limit of the present model. This will reguire large impurity cbncentrations (so
that E;-Ec is large) and the electrons will always be “degéneratc” so that Fermi

statistics are required to describe the electron distribution.
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4.2.2 Kane's density of states

The density of states for above model has been derived by several authors such
as Sa-yakanit and Glyde? using the Feynman path integration, Halperin and Lax"
using the minimum counting method, and Kane' using the semiclassical approach. Sa-
’fakanit and Glyde density of states is the most modern among them but it is very
complicated to/ evaluate the density of states. The Kane density of states is easy to
evaluate but it seems to be a rough density of states.

Sritrakool, Glyde and Sa-yakanit' has shown that the Fermi energy Er and the
electron screening length Q! , important parameters for evaluate the diffusivity-
mobility ratio, have little different values when using different density of states to
evaluatg, especially when net carrier concentration is over 10" cm™ (for GaAs). So
we will discuss about Kane’s density of states in this section and use Kane's density

of states to derive and evaluate the diffusivity-mobility ratio in next sub-section.

Kane (1963) has applied a semiclassical method to calculate the density of
states for heavily doped semiconductors. The semiclassical approach assumes
basically one approximation : the classical déscription of the electron wave packet.
The potential fluctuations caused by charged impurities are assumed to be smooth in
the sense that they change a little over tﬁc electron wave length. The electron only
“feels” the potential of the point where it is located that a local density of states can be

defined just as if the potential were constant. A local density of states is defined by

I 1%200A73=
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'3/2

Zh:!

12

—=lE-V®] HE-V(F)), (4.38)

- PUE-VE) =y

where V(F) is the constant potential located at 7, m* is electron effective mass and
H is the Heaviside step function.

Then, the total density of states is simply

p(E) =(p,(E=V (7)),

= on 2h3j[E ~V1" H(E V) P(V)dV

. E
m 32

=l j[E VIV PVYdV (4.39)

where P(V)dV is the probability of finding the potential between V and V+dV. The
calculation of the total density of states then reduces to the calculation of the
distribution function for the potential P(V).

An analytical, exact expression for P(V) exists only on the condition that the
potential at a certain point ¥ can be written as a superposition of the influences of all

impurities in a system with volume . For, if the potential energy V.(F,{7#}) at F,

caused by a configuration of N impurities at position {7}, can be written as a

superposition

N
VF D = Lv(F ~F) (4.40)

=1
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where v(7) is an arbitrary well-defined function. Assuming that the probability of
finding an impurity at a point 7 is constant (and thus equals Q' the probability for

the potential energy to have the value V at position 7 is defined as
df dr, dr,
) = j'Q' & j L 5v ~V(F 7). (4.41)

Employing the identity

1 -
é(x—a) = Eje“"“)'dt,

we can rewrite (4.41) as

P(FV) = -z-l;je“" F@Fyde | 4.42)
! where
1019 |5
: fur)y = [I%e-w(?—i)r] . (4.43)
41

* The impurity is complstely random,
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Thermodynamically, the extensive properties of a structure do not change if the

volume increases. Applying this principle, the distribution function P(7,V) becomes
1 N
PW) = Lim - ) Je [1+--I dR(e™® - 1)] dt (4.44)
Nema

where N is impurity density. Moreover, P(V} turns out to be independent of position
7 , because the change of variables in Eq. (4.44) does not alter the integral if £ — oo,

Suppose that

= [aR(exp(~iv(R)) - 1). (4.45)

Q

If v(F ) decreases sufficiently rapidly, then A rapidly approaches a constant value, even

while the volume £ keeps increasing, The foliowing relationship then applies :

lim[1+ A]" = eotam),

L3

and we finally obtain the exact result

PYV) = % ]cxp[in + F_[dﬁ(e-'““"—l)] dt . (4.46)
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In the high-density limit (Gaussian model : v— 0, N — eo and Nv* = finite), P(V)
reduces to
N

2
2' [aR v’(fz)], (4.47)

PYV) = 51; jdr exp[ﬂ_/t - i}\_ftjdﬁ WR) -

where N I dR v(R) means average potential of the charged impurities, is denoted by

E; ,and N j dR v?(R) is the mean square fluctuation in the potential of the charged

impurities or fluctuation parameter'' ,&; . So that

PW) = %Idt exp[in — iEt — %z’]
1 (V—Eo>’]
g 4.48
(Zﬂga)m‘ exp[ | 2§Q | | ( )

This is the distribution function of the potential energy V for high-density limit.

In high-density limit (highly impure semiconductors), Kane treats the potential

of impurity(v) as the screened Coulomb potential

2
yi-R) = - %; exp(— gfF - ), (4.49)
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the potential agrees well with the Thomas-Fermi approximation used by Kane to
construct the semiclassical density of states, as we show below.
From the Thomas-Fermi theory of screening (sub-section 4.1.2), we consider

the case where the external potential is that of a point charge (only Z = +1 impurity) :

Xt g €
NS 4.50
M) = T (4.50)
and its Fourier transform is
41ee
&t p=r
). F T 4.51
¢ (g £°q2 ( )

Substituting (4.51) and (4.25) in (4.7), the total potential will then be

A e

¥g) = m. (4.52)

The Fourier transform can be inverted to give

4rre
00 = [t D

[
o exp{-Q Iﬂ}., (4.53)
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but the potential energy of electron at 7 due to an impurity at R ,wF-R),

WF~R) = —ed(F-R)

€ 2 =
—=—exp{-0[F - &}, (4.54)

&|F - R|

same as (4.49).

Constructing the density of states with a screened Coulomb potential by

substituting (4.48) in (4.39) gives the Kane density of states

312 E V - E.)?
p(E) = E;z_hm [av(E-V)" exp[—-——( 25&,,“) ] (4.55)

4nNe® '
where E, = - 4,56
Q EOQ'Z ( )
27Ne’
= . 4,57
% = g (4.37)

Equation (4.55) can be written in terms of the parabolic cylinder function D_,_,,(2),

which offers useful mathematical relations as




42

"2 . (E'—E )2 E.-E
p(E) = 4_';:2?%: cxp{—Tcoo—} D_,,{ :[5; ) (4.58)

where

D _.(z) = ;ex —i ch —-'?-2-— 5"V ds
- = Tr2+a) F 4 [17FT27F

For general bottom of the conduction band edge in the pure semiconductor E; and

the shifted conduction band edge in an impure semiconductor due to impurities E,

(4.58) can be written as
m"? (E-E,-E2)* E,+E}-E

pE) = —=&" cxp{-— D, ——==—1 ' (4.59)
4n’h 45, ,‘50

or

*3/2
m

. E-E.)* E.~-E
PE) = o5l exp{-"(“"xgg"g)—} D.m[ch (4.60)

of which its asymptotes are

m'? 12 (E-E,)
p(E)=—=—>—{E-E_) when —=%= >> 1
Jin.zhs c Jg_c

_m™ §o (E-E.) (E~E,)
p(E) = 4’:2’!3 (EC—E):”Z GX[{—T%—T‘ when _,JE_T<<_1
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Equation (4.58), (4.59) and (4.60) is Kane’s density of states which we want to derive
and evaluate the diffusivity-mobility ratio for n-type heavily doped semiconductor in

next section.
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Figure 1 Kane’s density of states at temperature T = 10K, without compensation ratio
(NJ/N4 = 0.0) for net carrier concentration Nz - N, = 1.000x10" cm™ (= —— - —),

1.000x10"® cm™ (— ~— =), 5.000x10¢ cm® (-~ =~ = = ), and for free particles

(——)
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4.3 The diffusivity-mobility ratio for n-tvpe heavily doped semi ggndu_c;gr§

In previous section the Thomas-Fermi approximation of screening and the

generalized diffusivity-mobility ratio were known. In this section we will derive the

 diffusivity-mobility ratio for n-type heavily doped semiconductors in limit of the

Thomas-Fermi approximation and compare our result with the empirical diffusivity-

mobility ratio by Van Cong and Debiais in extremely high degenerate region.

4.3.1 The diffusivity-mobility ratio for n-tvpe heavily doped semiconductors

The generalized diffusivity-mobility ratio, the ratio between the diffusion
coefficient D and the majority-carrier mobility & in n-type semiconductors, is known

in the form (2.11)

D n (dE |
il ;(d—n’] , (4.61)
TY

where an E; is measured from the bottom of the conduction band. To evaluate the
value of the ratio D/, one needs to know how the Fermi energy depends on the
electron concentration. Physically, when extra electrons are introduced to a system,

the Fermi energy increases as a function of electron concentration. The number of

electron concentration n is simply determined from the expression




46

n = 2] p(Ef(E,E,.T)E, (4.62)

where p(E) is the electron density of states of the system, when a single state is

allowed in each energy level, and f is the Fermi distribution function. Inversely, the
Fermi energy is dependent on the number of electron concentration through the
relation in (4.62) and seems to be easy to determine.

However, the density of states is also a function of the electron concentration
as the increase of the tail according to doping, for example. The doping enhances the
screening of potential of the positive ions seen by an electron, the screening constant
Q@ is related to tl';c density of states through a simple equation in the Thomas-Fermi

approximation as (4.29)

. _ o [4me’) T ¥
0 = 2( . }_J_p(E)[— =5 JE . oM

From the Thomas-Fermi approximation of screening (sub-section 4.1.2), we know

that the relation between Q and dn/dE; (4.26) is

Q= ——. (4.64)




Equation (4.61) with (4.63) and (4.64), we obtain the D/u

of states as

47

ratio in terms of density

-1
D -

il % [ jp(E)(-gE)dE] . (4.65)
integrating by parts leads above equation to

D nl| 7 ‘ B

a [ [ ¢(E)f(E,E,,T)dE] : (4.66)
where

q,( E) = MEZ

dE °
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Figure 2 Derivative of ‘Kane’s density of states O(E) at temperature T = 10K, without

compensation ratio (N/Ny = 0.0) and net carrier concentration Ny - N, =

1.000x10'%cm
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By considering the characteristic of @ versus E (Figure 2), we see that
i) as E—>—=: ®—0,
iiyas E—re0o : &0,
which agree well with the Sommerfeld expansion’ [Appendix]. Expansion of the

integral in (4.66) leads to

-1

D _ nl] : 2 " 0(E)

i 28[ -Jitb(E)dE - ga,(kgT) ———‘aEm-. E_J SN (X 1)
or

-1

D n - 2it?2ip(E)

7 = 2 |PEheg 2T : 4.68

#' 2e [p( x,ﬁ'uEf ‘ ;al‘( B ) Fls-sl | ( )

where the coefficients a, are

1
M- {2 > 22(")}g(2:‘) , (4.69)

where ¢(x) is the Reimann Zeta function. Some coefficients are a; = 1.645, a; = 1.89%4,

as = 1.971.
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Equation (4.68) is the diffusivity-mobility ratio for n-type heavily doped
| semiconductors in limit of the Thomas-Fermi approximation or moderately degenerate
‘ region and higher.

; Usually, the second term in parenthesis of (4.68) is very small, compared with
the first term especially in extremely degenerate region (very high Er). Then (4.68)

becomes

(4.70)

In extremely degenerafe region, the band tail density of states has same values as

parabolic band density of states, po(E) :

1 2m- 2
po(E) = —;[—2] E”z, (4.71)

where E measured from the bottom edge of conduction band.

Combining (4.70) and (4.71) provides

N2 -1 '
D n 1 {2m
il [ ) E}”] ' )
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By comparing (4.72) with (4.61), we see that

1 2mu n
dn = 2 (Z—;,—)(—;,—-J E;"dE,. (4.73)
Integrating both side of (4.73) gives
e \I2E
1 1 Y2m
dn' < 2(%J[.____] .(EllﬂdEl
;[ 4n* A n? A d
e V32
4 1 Y2m
"t = 5(&?)(?‘) Y
or
R’ 3 213
Ej= — [3n%(n-n,)] . 4.74)

In extremely degenerate region, n is much larger than n; , therefore n—n, =n and

(4.74) becomes

2/3

-
E, = o= [377n] (4.75)
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Substituting (4.75) in (4.72) gives

2 112 -l
D n 1 {2m h? 3
2w [T ]

2 113
-2 [ﬁj n?s, (.76)

D 113
E“ (-—»J u*, 4.7
K S -

which is identical to that derived by Van Cong and Dabiais result in ( 3.22).

Finaily, we obtain the diffusivity-mobility ratio for n-type heavily doped
semiconductors in the limit of the Thomas-Fermi approximation. In the next chapter,

we will make use of this result to obtain the numerical results.
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4.3.2 Numerical evaluation

In order to' evaluate the diffusivity-mobility ratio for n-type heavily doped that
we derive in previous section (4.68) at temperature T we need to know the Fermi
energy, Ey, and the screening length Q! for a given net carrier concentration (N, -
N,) and a compensation ratio (N/Ny).

Within the band model assumed in section 4.2, the net carrier concentration is
N.=N, = 2 [dEp (E)f(E.E,.T). (478)

where f(E, Ey, T) is the Fermi distribution function and p,(E) is Kane’s density of

states (4.58),

— E-E)*|  [E.-E |
pr(E) = 4”7:"?13 & exp{--(—#} D_m[ E ] (4.79)

This result is used to determine the Fermi energy = E; . In the Thomas-Fermi

approximation the square of ‘the inverse screening length (4.29) is

: _ o {4me) | _
Q* = 2( . ]_[dEpK(E)( ap:) (4.80)
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Since the density of states p,(E) depends upon Q through (4.57),

g = (2"::] (N, +N,). 4.81)

Equation (4.78) and (4.80) must be solved iteratively unti} self consistent. To begin

the iteration, we use an inverse screening length obtained using the degenerate

parabolic band density of states po(E) :

i (2m \9 112
PE) = =7 (h_z) (E-E.)", (4.82)
to substitute in (4.80) and obtain

4m'e? T3 T I
0 = %;,— [—E(N,—N,,)] \ (4.83)

Since the final screening length obtained by (4.80) differs by only 10-20% from this

initial screening length, the iteration then converges rapidly. In the integrands we

replace the lower limit (-eo) by

Eun = Ec — 46";2 (4.84)
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and the upper limit (+e0) by

E., = E;, + 15k, T (4.85)

max

which introduces an error of less than 0.01% in the integratiohs.
Within the Fermi energy, Er, and the screening length, Q! for a given net
carrier concentration (Ny - N,) and a cdmpcnsation ratio (N, / N;), we obtain a

numerical result of the diffusivity-mobility ratio from (4.68)

-1

p (N,-N, c 3" p, (E
’; = (_dze"—"—)'lpx(E)ls-E! +§al(kBT)2: apExz(d ) . (4.86)
= EEE’-

In practice, the infinite-term summation is replaced by a two-term summation of with

an error less than 0.001% in limit of the Thomas-Fermi approximation (4.36)
&P < E, - E.. (4.87)
The numerical evaluation process which we mention above, can be summarized into

the flow chart in figure 3. Numerical results of the diffusivity-mobility ratic in the

limit of the Thomas-Fermi approximation are shown in next chapter.
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Figure 3 Flow chart of numerical evaluation of the diffusivity-mobility ratio.
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