การพัฒนาโปรแกรมเพื่อคำนวณออกแบบระบบท่อสำหรับขนถ่ายมลสาย

นายเชาว์ ไตรทิพย์ชาติสกุล

สถาบนวิทยบริการ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเคมี ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2545 ISBN 974-17 -1700 -8 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

PROGRAM DEVELOPMENT FOR SLURRY TRANSMISSION PIPELINE DESIGN

Mr. Chao Trithipchatsakul

สถาบนวทยบรการ

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Chemical Engineering Department of Chemical Engineering Faculty of Engineering Chulalongkorn University Academic Year 2002 ISBN 974-17-1700-8

หัวข้อวิทยานิพนธ์	การพัฒนาโปรแกรมเพื่อคำนวณออกแบบระบบท่อสำหรับขนถ่าย
	มลสาย
โดย	นายเชาว์ ไตรทิพย์ชาติสกุล
สาขาวิชา	วิศวกรรมเคมี
อาจารย์ที่ปรึกษา	อาจารย์ ดร. สมประสงค์ ศรีชัย
อาจารย์ที่ปรึกษาร่วม	นายสุพรรณ จินดาเวช

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็นส่วน หนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

> คณบดีคณะวิศวกรรมศาสตร์ (ศาสตราจารย์ ดร. สมศักดิ์ ปัญญาแก้ว)

คณะกรรมการสอบวิทยานิพนธ์

..... ประธานกรรมการ

(รองศาสตราจารย์ ดร. ชัยฤทธิ์ สัตยาประเสริฐ)

(อาจารย์ ดร. สมประสงค์ ศรีชัย)

.....อาจารย์ที่ปรึกษาร่วม

(นายสุพรรณ จินดาเวช)

.....กรรมการ

(รองศาสตราจารย์ ดร. ไพศาล กิตติศุภกร)

.....กรรมการ

(อาจารย์ ดร. วิทย์ สุนทรนันท์)

เซาว์ ไตรทิพย์ชาติสกุล : การพัฒนาโปรแกรมเพื่อคำนวณออกแบบระบบท่อสำหรับขน ถ่ายมลสาย. (PROGRAM DEVELOPMENT FOR SLURRY PIPELINE TRANSMISSION DESIGN) อ. ที่ปรึกษา : อาจารย์ ดร. สมประสงค์ ศรีชัย, อาจารย์ที่ ปรึกษาร่วม : นายสุพรรณ จินดาเวช 105 หน้า. ISBN 974-17 -1700 -8.

งานวิจัยฉบับนี้มีวัตถุประสงค์เพื่อพัฒนาโปรแกรมคอมพิวเตอร์ด้วยภาษาวิสชวล เบสิค สำหรับใช้คำนวณความเร็ววิกฤตและความดันลดของระบบท่อขนถ่ายมลสาย (ของไหลสองวัฏ ภาค คือ ของเหลวและของแข็ง) ที่สภาวะอุณหภูมิและความเข้มข้นคงที่ มลสายที่ศึกษาเป็น ประเภทที่ตกตะกอนได้และขนถ่ายโดยระบบท่อในแนวระดับ การพัฒนาโปรแกรมได้เลือกโมเดล ที่นำเสนอโดย Turian R.M. และ Oroskar A.R. (1980) Gillies R.G. และ Shook C.A. (1991) และ Zandi I. และ Govatos G. (1967) สำหรับทำนายความเร็ววิกฤตของมลสายที่ไหลในท่อ ขนาด 1/2 - 6 นิ้ว และ 8 - 20 นิ้ว และตั้งแต่ 22 - 24 นิ้ว ตามลำดับ สำหรับการคำนวณหาค่า ความดันลดของมลสายได้เลือกโมเดลที่นำเสนอโดย Durand R. และ Condolios E. (1952) Newit D.M. (1956) และ Zandi I. และ Govatos G. (1967) ตามลำดับ นอกจากที่กล่าวมาแล้ว โปรแกรมยังสามารถช่วยคำนวณออกแบบระบบท่อขนถ่ายมลสายเชิงออปติมัม ซึ่งผลลัพธ์ที่ได้คือ ขนาดเส้นผ่าศูนย์กลางท่อและความเข้มข้นของมลสายที่เหมาะสม ซึ่งโปรแกรมการคำนวณออก แบบเชิงออปติมัมจะคำนึงถึงอัตราการสูญเสียพลังงานในการขนถ่ายต่อหน่วยที่น้อยที่สุดเป็น เงื่อนไขบังคับสำคัญ

โปรแกรมที่ได้รับการพัฒนาแล้วเสร็จ ได้ถูกนำมาทดสอบเปรียบเทียบกับข้อมูลอ้างอิงที่ ได้จากผลการทดลองของนักวิจัยคณะอื่น ของมลสายภายใต้สภาวะอุณหภูมิและความเข้มข้นคง ที่ พบว่าในท่อขนาด 1/2 - 12 นิ้ว โปรแกรมสามารถทำนายค่าความเร็ววิกฤตได้สอดคล้องกับข้อ มูลอ้างอิงโดยมีค่าเบี่ยงเบนไปจากผลการทดลอง <u>+</u>30 % และในท่อขนาด 6 - 8 นิ้ว โปรแกรม สามารถทำนายค่าความดันลดได้สอดคล้องกับข้อมูลอ้างอิงโดยมีค่าเบี่ยงเบนไปจากผลการ ทดลอง <u>+</u>40 %

ภาควิชา	วิศวกรรมเคมี	_ลายมือชื่อนิสิต
สาขาวิชา	วิศวกรรมเคมี	_ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา	2545	_ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

4271419321 : MAJOR CHEMICAL ENGINEERING

KEY WORD: SLURRY / PIPELINE DESIGN / SOLID-LIQUID FLOW / DESIGN / TWO PHASE FLOW
 CHAO TRITHIPCHATSAKUL : PROGRAM DEVELOPMENT FOR SLURRY
 PIPELINE TRANSMISSION DESIGN. (SOLID-LIQUID) THESIS ADVISOR :
 SOMPRASONG SRICHAI, Ph.D., THESIS COADVISOR : SUPAN JINDAVECH,
 105 pp. ISBN 974-17 -1700 -8.

The objective of this research is to develop a computer program by using Visual Basic language for predicting critical velocity and pressure loss of setting slurry twophase flow systems (solid-liquid) in isothermal cases of horizontal pipeline system. Slurry flow in pipe critical velocity program was developed by using models proposed by Turian R.M. and Oroskar A.R. (1980), Gillies R.G. and Shook C.A. (1991) and Zandi I. and Govatos G. (1967) for slurry flow in pipe size 1/2 to 6 inch, 8 to 20 inch and 22 to 24 inches respectively. For slurry two-phase flow pressure loss calculation was based on the studies of Durand R. and Condolios E. (1952), Newitt D.M. (1956) and Zandi I. and Govatos G. (1967) respectively. Furthermore, developed program can be used for slurry pipeline optimum design, using energy loss as an objective function.

Program results were tested against experimental data of slurry flow in pipe from reference data from other researchers at constant temperature and concentration. The result of prediction of critical velocity in pipe size 1/2 - 12 inches are consistent with the experimental data at deviation of ± 30 % and the result of pressure loss calculation in pipe size 6 - 8 inches are within ± 40 % of experimental value.

Department	Chemical Engineering	<u>.</u> Student's signature
Field of study	Chemical Engineering	Advisor's signature
Academic year	2002	.Co-advisor's signature

กิตติกรรมประกาศ

วิทยานิพนธ์ฉบับนี้สามารถสำเร็จลุล่วงไปได้ ด้วยความช่วยเหลือและสนับสนุน อย่างดีจากหลายท่าน ผู้วิจัยขอขอบคุณ อ.ดร. สมประสงค์ ศรีชัย อาจารย์ที่ปรึกษาวิทยานิพนธ์ และคุณสุพรรณ จินดาเวช ที่ปรึกษาร่วม ที่ได้ประสิทธิประสาทความรู้ ให้คำแนะนำและข้อคิด ต่างๆ ของการวิจัยมาด้วยดีตลอด ขอขอบพระคุณประธานการสอบวิทยานิพนธ์ รศ.ดร. ชัยฤทธิ์ สัตยาประเสริฐ ขอขอบพระคุณกรรมการการสอบวิทยานิพนธ์ รศ.ดร. ไพศาล กิตติศุภกร และ อ.ดร. วิทย์ สุนทรนันท์ อาจารย์ประจำภาควิชาวิศวกรรมเคมี ที่ได้กรุณาให้คำแนะนำรวมทั้งข้อคิด เห็นต่างๆ ของงานวิจัยนี้ นอกจากนี้ขอขอบคุณ เพื่อนๆ และน้องๆ ทุกคนที่อยู่เบื้องหลังความ สำเร็จนี้

ท้ายนี้ผู้วิจัยใคร่ขอกราบขอบพระคุณ บิดามารดา ซึ่งให้การสนับสนุนด้านการเงิน และให้กำลังใจแก่ผู้วิจัยเสมอมาจนกระทั่งสำเร็จการศึกษา

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

สารบัญ

	หน้า
บทคัดย่อภาษาไทย	খ
บทคัดย่อภาษาอังกฤษ	ବ
กิตติกรรมประกาศ	ନ୍ଥ
สารบัญ	ป
สารบัญตาราง	ผ
สารบัญภาพ	ป
คำอธิบายสัญลักษณ์	ลี
บทที่	
1. บทน้ำ	1
1.1 ความเป็นมาและค <mark>วามสำคัญของปัญหา</mark>	1
1.2 วัตถุประสงค์ของการวิจัย	2
1.3 ขอบเขตของการวิจัย	2
1.4 วิธีดำเนินการวิจัย	3
1.5 ประโยชน์ที่คาดว่าจะไ <mark>ด้รับ</mark>	3
2. แนวคิด ทฤษฎี และงานวิจ <mark>ัย</mark> ที่เกี่ย <mark>วข้อง</mark>	4
2.1 การไหลในท่อแบบหนึ่งวัฏภา <mark>ค</mark>	4
2.2 การเคลื่อนที่ของอนุภาคในของไหล	9
2.3 การไหลในท่อของมลสาย (สองวัฏภาค)	17
2.4 เอกสารและงานวิจัยที่เกี่ยวข้อง	21
2.4.1 ความเร็ววิกฤต	21
2.4.2 ความดันลดของการไหลในท่อแบบสองวัฏภาค	22
2.4.3 สมการเอมไพริกัลของ Durand และ Condolios	25
2.4.4 สมการเอมไพริกัลของ Zandi และ Govatos	27
2.4.5 สมการเอมไพริกัลของ Turian และ Oroskar	29
2.4.6 สมการเอมไพริกัลของ Gillies และ Shook	30
3. การออกแบบขั้นตอนคำนวณและการพัฒนาโปรแกรม	31
3.1 ขอบเขตข้อมูลและระบบหน่วย	31
3.2 ส่วนของตัวโปรแกรม	33
3.3 แบบแผนและขั้นตอนการพัฒนาโปรแกรม	36

	۰	,		
สา	รบ	ณ	(ด	อ)
-	-	ັພ	۱	

บทที่	หน้า
3.3.1 ขั้นตอนการคำนวณความดันลด	37
3.3.2 ขั้นตอนการคำนวณออกแบบระบบท่อเชิงออปติมัม	44
4. การทดสอบโปรแกรมและตัวอย่างการใช้โปรแกรม	51
4.1 ผลการทดสอบโปรแกรม	51
4.1.1 การทดสอบโปรแกรมทำนายความเร็ววิกฤต	51
4.1.2 การทดสอบโปรแกรมทำนายความดันลด	58
4.2 การสรุปวิเคราะห์โปรแกรม	69
4.3 ตัวอย่างการใช้โปรแกรม	76
5. สรุปผลการดำเนินงานและข้อเสนอแนะ	80
5.1 สรุปผลการดำเนินงาน	80
5.2 ข้อเสนอแนะ	81
รายการอ้างอิง	. 83
ภาคผนวก	. 85
ประวัติผู้เขียนวิทยานิพนธ์	105

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

สารบัญตาราง

ตารางที		หน้า
2.1	แสดงองค์ประกอบความเป็นทรงกลมของอนุภาคต่างๆ	14
2.2	แสดงองค์ประกอบเชิงความเป็นทรงกลมของรูปทรงต่างๆ	15
3.1	แสดงขอบเขตข้อมูลการทดลองที่เป็นรากฐานโปรแกรมการ	
	คำนวณการไหลในท่อแบบสองวัฏภาค	31
3.2	ตารางแสดงการแปลงหน่วยของตัวแปรและพารามิเตอร์ที่	
	จำเป็นสำหรับโปรแกรมคำนวณการไหลในท่อแบบสองวัฏภาค	32
4.1	ตารางแสดงการเปรียบเทียบค่าความเร็ววิกฤตของมลสาย Silica	
	Sand ความหนา <mark>แน่น 2890 kg/m³ และน้ำ ในท่อขน</mark> าดต่างๆ	51
4.2	ตารางแสดงการ <mark>เปรียบเทียบค่าความเร็ววิกฤตของมลส</mark> าย ความ	
	หนาแน่น 1350 kg/m ³ และน้ำในท่อขนาดต่างๆ	53
4.3	ตารางแสดงการเปรียบเทียบค่าความเร็ววิกฤตของมลสาย	
	Coal ความหนาแน่น 1410 kg/m ³	53
4.4	ตารางแสดงการเปรียบเทียบค่าความเร็ววิกฤตของมลสาย	
	Coal ความหนาแน่น 1500 kg/m ³	54
4.5	ตารางแสดงการเปร <mark>ียบเทียบค่าความเร็ววิกฤตของ</mark> มลสาย	
	Iron Ore ความหนาแน่น 5245 kg/m ³ และ Kerosene	54
4.6	ตารางแสดงการเปรียบเทียบค่าความเร็ววิกฤตของมลสาย	
	Sand ความหนาแน่น 2650 kg/m ³ และ น้ำ ในท่อขนาดต่างๆ	55
4.7	ตารางแสดงการเปรียบเทียบค่าความเร็ววิกฤตของมลสาย	
	Sand ความหนาแน่น 2658 kg/m ³	56
4.8	ตารางแสดงการเปรียบเทียบค่าความเร็ววิกฤตของมลสาย	
	สินแร่ ความหนาแน่น 2670 kg/m ³ และ น้ำ ในท่อ 8 นิ้ว	56
4.9	ตารางแสดงการเปรียบเทียบค่าความเร็ววิกฤตของมลสาย	
	สินแร่ ความหนาแน่น 2900 kg/m ³ และ น้ำ ในท่อขนาด 6 นิ้ว	57
4.10	ตารางแสดงการเปรียบเทียบค่าความเร็ววิกฤตของมลสาย	
	สินแร่ ความหนาแน่น 2280 kg/m³ และ น้ำ ในท่อขนาด 8" นิ้ว	57
4.11	ตารางแสดงการเปรียบเทียบค่าความเร็ววิกฤตของมลสาย	
	สินแร่ ความหนาแน่น 2870 kg/m ³ และน้ำ ในท่อขนาด 8" นิ้ว	57

สารบัญ	(ต่อ)

ตารางท์		หน้า
4.12	ตารางแสดงการเปรียบเทียบค่าความดันลดของมลสายทราย	
	ความหนาแน่น 2650 kg/m³และน้ำ ในท่อ ขนาด 6 และ 8 นิ้ว	58
4.13	ตารางแสดงการเปรียบเทียบค่าความดันลดของมลสาย Sand	
	ความหนาแน่น 2890 kg/m³ และ น้ำ ในท่อขนาด	59
4.14	ตารางแสดงการเปรียบเทียบค่าความดันลดของมลสายสินแร่	
	Taconite Milling ความหนาแน่น 2900 kg/m³ และ น้ำ	60
4.15	ตารางแสดงการเปรียบเทียบค่าความดันลดของมลสายสินแร่	
	Crude Anhydrite ความหนาแน่น 2740 kg/m³ และ น้ำ	61
4.16	ตารางแสดงการ <mark>เปรียบเทียบค่าความดันลดของมลสาย</mark> สินแร่	
	Calcium-Phosphate ความหนาแน่น 2870 kg/m³ และ น้ำ	62
4.17	ตารางแสดงก <mark>ารเปรียบเทียบค่าความดันลดของมลสายสินแร่</mark>	
	Limestone ความหนาแน่น 2680 kg/m ³ และ น้ำ ในท่อ 6 นิ้ว	63
4.18	ตารางแสดงค่าความดันลดของมลสายสินแร่ Tailing from Borax	
	Refining ความหนาแน่น 2280 kg/m ³ และ น้ำ ในท่อขนาด 6 นิ้ว	64
4.19	ตารางแสดงการเปรียบเทียบค่าความดันลดของมลสายสินแร่	
	Red Mud Slurry ความห <mark>นาแน่น 2670 kg/m³ และ น้ำ</mark>	65
4.20	ตารางแสดงการเปรียบเทียบค่าความดันลดของมลสายสินแร่	
	Cement Kile Feed ความหนาแน่น 2750 kg/m³ และ น้ำ	65
4.21	ตารางแสดงการเปรียบเทียบค่าความดันลดของมลสาย	
	Crude Anhydrite ความหนาแน่น 2750 kg/m ³ และน้ำ	66
4.22	ตารางแสดงอัตราการสิ้นเปลืองพลังงานในการขนถ่ายมลสาย	
	Gold Slime Non uniform size ความหนาแน่น 2725 kg/m³ และ น้ำ	67
4.23	ตารางเปรียบเทียบอัตราการสิ้นเปลืองพลังงานของโปรแกรมออปติมัม	68
4.24	ตารางแสดงการวิเคราะห์ผลการทดสอบโปรแกรมทำนายความ	
	เร็ววิกฤตเทียบกับข้อมูลอ้างอิง	69
4.25	ตารางแสดงการวิเคราะห์ผลการทดสอบโปรแกรมทำนายความ	
	ดันลดเปรียบเทียบกับข้อมูลอ้างอิง	71
4.26	ตารางแสดงการวิเคราะห์ผลการทดสอบโปรแกรมทำนายความ	
	ดันลดเปรียบเทียบกับข้อมูลอ้างอิง (กรณีคัดแยกข้อมูลออก)	72

สารบัญภาพ

รูปภาพ	ที่	หน้า
2.1	แผนภาพแสดงองค์ประกอบความเสียดทานของ Moody	7
2.2	แผนภาพแสดงความหยาบสัมพัทธ์ของผนังท่อของ Moody	8
2.3	แผนภาพแสดงความสัมพันธ์ระหว่าง Re _P และ C _D ของทรงกลม	
	ผิวเรียบ	13
2.4	แผนภาพแสดงความสัมพันธ์เปรียบเทียบระหว่าง Re _P และ C _D	
	ของอนุภาครูปทรงต่างๆ	13
2.5	แผนภาพแสดงความสัมพันธ์ระหว่างความดันลดและความเร็ว	
	การไหลของมลส <mark>ายในท่อ 3 นิ้</mark> วที่ความเข้มข้นต่างๆ	23
2.6	แผนภาพแสดงความสัมพันธ์ระหว่างความดันลดและความเร็ว	
	การใหลของมลสายในท่อ 6 นิ้วที่ความเข้มข้นต่างๆ	23
2.7	แผนภาพแสด <mark>งความสัมพันธ์ระหว่างความดันลดและค</mark> วามเร็ว	
	การใหลของม <mark>ลสายในท่อ 9 นิ้วที่ความเข้มข้นต่างๆ</mark>	23
2.8	แผนภาพแสดงความ <mark>สัมพันธ์ระหว่างความดันลดส่วน</mark> เกิน	
	ของมลสายเทียบกับน้ำในท่อ ขนาด 9 นิ้ว ที่ความเข้มข้นต่างๆ	23
2.9	แผนภาพแสดงความ <mark>สัมพันธ์ระหว่างความดัน</mark> ลดส่วนเกินต่อ	
	หนึ่งหน่วยความเข้มข้นข <mark>องมลสายท่อขนาด 9</mark> นิ้ว	24
2.10	แผนภาพแสดงความสัมพันธ์ระหว่างความดันลดส่วนเกิน	
	ของมลสายในท่อขนาดต่างๆ ที่ความเข้มข้น 15 %	24
2.11	แผนภาพแสดงความสัมพันธ์ระหว่างความดันลดส่วนเกิน	
	ต่อหนึ่งหน่วยของมลสายในท่อขนาดต่างๆ	26
2.12	แผนภาพแสดงผลการทดลองของ Durand แสดงความสัมพันธ์	
	ของกลุ่มตัวแปรต่างๆ	26
3.1	แสดงหน้าต่างรับข้อมูลโปรแกรม	34
3.2	หน้าต่างแสดงผลการคำนวณของโปรแกรม	35
4.1	แผนภูมิแสดงความสัมพันธ์ระหว่างความเร็ววิกฤตที่ทำนาย	
	โดยโปรแกรมเปรียบเทียบกับข้อมูลอ้างอิง โดยมีน้ำเป็นของ	
	ใหลขับเคลื่อน (แยกตามชนิดของของแข็ง)	70

ں ا	
สารแถ	(ตค)
	(****)

รูปภ	าพที่	หน้า
4.2	แผนภูมิแสดงความสัมพันธ์ระหว่างความเร็ววิกฤตของมลสาย	
	Iron Ore และ Kerosene ที่ทำนายโดยโปรแกรมเปรียบเทียบ	
	กับข้อมูลอ้างอิง	70
4.3	แผนภูมิแสดงความสัมพันธ์ระหว่างความเร็ววิกฤตที่ทำนาย	
	โดยโปรแกรมเปรียบเทียบกับข้อมูลอ้างอิง โดยมีน้ำเป็นของไหล	
	ขับเคลื่อน (แยกตามขนา <mark>ดท่อ)</mark>	71
4.4	แผนภูมิแสดงความสัมพันธ์ระหว่างความดันลดที่ทำนายโดย	
	โปรแกรมเปรียบเที <mark>ยบกับข้อมูล</mark> อ้างอิง โ <mark>ดยมีน้ำเป็น</mark> ของไหล	
	ขับเคลื่อน	73
4.5	แผนภูมิแสดงค <mark>วามสัมพันธ์ระหว่างความดันลดที่ทำนา</mark> ยโดย	
	โปรแกรมเปรียบเทียบกับข้อมูลอ้างอิง โดยมีน้ำเป็นของไหล	
	ขับเคลื่อน (คำนึงค่า Sh <mark>ape</mark> Factor <u>)</u>	73
4.6	แผนภูมิแสดงความสัมพันธ์ระหว่างความดันลดที่ทำนายโดย	
	โปรแกรมเปรียบเ <mark>ทียบกับข้อมูลอ้างอิง โดยมีน้ำเป็นของไหล</mark>	
	ขับเคลื่อน (กรณีตัดข้อมูลทดสอบที่มีค่า Operating Velocity	
	ต ้ ำกว่า ค่า Critical Velocity ออกจากช้อมูลท _ุ ดสอบ)	74
4.7	แผนภูมิแสดงความสัมพันธ์ระหว่างความดันลดที่ทำนายโดย	
	โปรแกรมเปรียบเทียบกับข้อมูลอ้างอิง โดยมีน้ำเป็นของไหล	
	ขับเคลื่อน (แยกตามขนาดท่อ)	74
4.8	แผนภูมิแสดงความสัมพันธ์ระหว่างความดันลดที่ทำนายโดย	
	โปรแกรมเปรียบเทียบกับข้อมูลอ้างอิง โดยมีน้ำเป็นของไหล	
	ขับเคลื่อน (แยกตามความเข้มข้น)	75
4.9	แสดงความสัมพันธ์ระหว่างอัตราการสิ้นเปลืองพลังงานในการ	
	ขนถ่ายมลสายที่ทำนายโดยโปรแกรมเปรียบเทียบกับข้อมูล	
	ค้างคิง โดยน้ำเป็นขคงไหลขับเคลื่อน	75

สัญลักษณ์

ภาษาอังกฤษพิมพ์ใหญ่

A	พื้นที่หน้าตัดท่อ		
A _p	พื้นผิวของอนุภาค		
A _{pp}	พื้นที่ภาพฉาย		
C _D	สัมประสิทธิ์แรงต้า <mark>นการเค</mark> ลื่อนที่ของอนุภาค		
C _v	ความเข้มข้นเชิงปริมาตรของมลสาย		
C _w	ความเข้มข้นเชิงน้ำหนักของมลสาย		
D	ขนาดเส้นผ่าศูนย์กลางท่อ		
F _e	แรงภายนอก		
F _b	แรงลอยตัวของอนุภาค		
F _D	แรงต้านทานการเคลื่อนที่ของอนุภาค		
K ₁	ค่าคงที่ Shape factor ของอนุภาคในช่วง Stoke's Law		
K ₂	ค่าคงที่ Shape factor ของอนุภาคในช่วง Newton's Law		
L	ความยาวของท่อ		
N	ไอนัมเบอร์		
Q _s	อัตราการใหลเซิงปริมาตรของมลสาย		
Re	เรย์โนลด์สนัมเบอร์		
Re _p	อนุภาคเรย์โนลด์สนัมเบอร์		
S	ความถ่วงจำเพาะของอนุภาค		
V _c	ความเร็ววิกฤต		
V _{op} 616	ความเร็วปฏิบัติการ		
V _{opt}	ความเร็วปฏิบัติการที่เหมาะสม		
V _s	ความเร็วการตกตะกอนของอนุภาคในมลสาย		
V _t	ความเร็วบั้นปลายของอนุภาคในของไหล		

ภาษาอังกฤษพิมพ์เล็ก

a _e	ความเร่งเนื่องจากแรงภายนอก
d _p	ขนาดเส้นผ่าศูนย์กลางของอนุภาค
d _a	ขนาดเส้นผ่าศูนย์กลางของอนุภาคที่คำนวณจากภาพฉาย

f	แฟกเตอร์ความเสียดทาน		
g	ความเร่งเนื่องจากแรงโน้มถ่วงโลก		
h _w	ความดันลดเนื่องจากการไหลในท่อของน้ำ		
h _L	ความดันลดเนื่องจากการไหลในท่อของของไหล		
h _s	ความดันลดเนื่องจากการไหลของมลสายในท่อ		
m	มวลของอนุภาค		
n	ค่าคงที่ของ Madui และ Whitmore		
r	ท่อ		
t	เวลา		

อักษรกรีก

$ ho_{ m w}$	ความหนาแน่นของน้ำ
ρ _L	ความหนาแน่นของของไหล
ρ _m	ความหนาแน่นของมลสาย
$ ho_s$	ความหนาแน่นของอนุภาค
$\mu_{\rm w}$	ความหนืดของน้ำ
$\mu_{ m L}$	ความหนืดของของไหล
μ_{s}	ความหนึดของมลสาย
φ	Sphericity shape factor
$\phi_{\rm v}$	Volumetric shape factor
τ	ความเค้นเฉือน
γ	น้ำหนักจำเพาะ
а а а	ความหยาบของผนังท่อ

จุฬาลงกรณ์มหาวิทยาลัย

บทที่ 1 บทนำ

1.1 ความเป็นมาและความสำคัญของปัญหา

ปัจจุบันการขนถ่ายอนุภาคของแข็งทางระบบท่อเริ่มเข้ามามีบทบาทสำคัญมาก ยิ่งขึ้นทุกวันในภาคอุตสาหกรรมต่างๆ ทั่วไป โดยเฉพาะกับอุตสาหกรรมเหมืองแร่ ในแต่ละปีจะมี การศึกษาความเป็นไปได้ของโครงการ รวมถึงการออกแบบ หรือก่อสร้างระบบท่อขนถ่ายมลสาย อย่างต่อเนื่อง แต่เนื่องจากการที่ระบบของไหลมีอนุภาคของแข็งเข้ามาเกี่ยวข้อง ทำให้การออก แบบมีความยุ่งยากมากกว่าการไหลแบบหนึ่งวัฏภาค ดังนั้น ซอฟต์แวร์สำหรับการจำลองระบบท่อ โดยมีน้ำหรือน้ำมันเป็นของไหลขับเคลื่อน (Pipeline Hydraulic Simulation) จึงมีความจำเป็น สำหรับการออกแบบและการหาค่าพารามิเตอร์การออกแบบที่ดีที่สุด

ในงานออกแบบเชิงวิศวกรรมของระบบท่อขนถ่ายมลสายในแนวระดับ วิศวกรผู้ ออกแบบจะต้องระมัดระวังเป็นพิเศษ เนื่องจากการไหลของมลสายในท่อเป็นการไหลแบบสองวัฏ ภาค ซึ่งเป็นปรากฏการณ์การไหลที่ซับซ้อน เพราะมีแรงกระทำระหว่างอนุภาคของแข็งกับของ เหลวเข้ามาเกี่ยวข้องขณะเกิดการไหล ในกรณีการไหลแบบหนึ่งวัฏภาค วิศวกรผู้ออกแบบสามารถ กำหนดให้ของไหลไหลภายในท่อได้ที่ทุกช่วงความเร็วตั้งแต่ช่วงการไหลแบบราบเรียบจนกระทั่ง เป็นการไหลแบบปั่นป่วน แต่ในกรณีของมลสายซึ่งเป็นการไหลแบบสองวัฏภาค ความเร็วการไหล หรืออัตราการขนถ่ายจะต้องถูกควบคุมเป็นพิเศษ และจำกัดให้มีค่าอยู่ในช่วงแคบๆเท่านั้น โดย เฉพาะการขนถ่ายมลสายที่ตกตะกอนได้ ซึ่งถ้าความเร็วการขนถ่ายต่ำกว่าความเร็วค่าๆ หนึ่ง อนุภาคของแข็งจะตกตะกอนแยกตัวออกจากของไหล และสะสมที่บริเวณท้องท่อ ทำให้พื้นที่หน้า ตัดท่อลดลง และกีดขวางการขนถ่าย ทำให้ความดันลดมีค่าสูง ก่อให้เกิดความเสียหายร้ายแรง อาจถึงขั้นทำให้ระบบท่ออุดตันได้ ในทางตรงกันข้ามซึ่งถ้าความเร็วการขนถ่ายสูงเกินไป จะส่ง ผลให้ความดันลดในระบบท่อมีค่าสูง ทำให้อัตราความสิ้นเปลืองการใช้พลังงานในการขนถ่ายสูง ตามลำดับ ซึ่งอาจไม่คุ้มค่าในเชิงเศรษฐศาสตร์

ช่วงต้นปี ค.ศ. 1950 จวบจนปัจจุบัน ได้มีผู้ทำการศึกษาวิจัยพฤติกรรมการไหล ของมลสายในท่อแนวระดับหลายคณะ และได้เสนอสมการเอมไพริกัลที่มีรูปแบบต่างๆ กัน สำหรับ ทำนายความดันลดและความเร็ววิกฤต และพบว่าทั้งความดันลดและความเร็ววิกฤต ของการไหล ภายในท่อของมลสายขึ้นอยู่กับปัจจัยต่างๆ หลายปัจจัย และสามารถจำแนกออกเป็นหมวดหมู่ได้ ดังต่อไปนี้ 1. สมบัติกายภาพของของแข็ง ได้แก่ ขนาดของอนุภาคของแข็ง รูปร่างของ
 อนุภาคของแข็ง การแจกแจงขนาดของอนุภาค และความหนาแน่นของอนุภาค

2. สมบัติกายภาพของของไหล ได้แก่ ความหนาแน่น และความหนืด

 สมบัติกายภาพของท่อ ได้แก่ ขนาดเส้นผ่าศูนย์กลางท่อ และความหยาบของ ผนังท่อปกติจะขึ้นอยู่กับวัสดุที่ใช้ทำท่อ

 4. คุณสมบัติของของไหลและการไหล ได้แก่ ความเร็วการไหล และความเข้มข้น ของอนุภาคในมลสาย เป็นต้น

แต่เนื่องจากสมการเอมไพริกัลนั้นมีพื้นฐานโครงสร้างมาจากข้อมูลการทดลอง ดัง นั้นกลุ่มสมการเอมไพริกัลรูปแบบต่างๆ ที่ถูกคิดค้นขึ้นมานั้น แต่ละสมการจึงมีขอบเขตการนำไป ใช้ทำนายความดันลดหรือความเร็ววิกฤตได้อย่างจำกัด ขึ้นอยู่กับขอบเขตข้อมูลการทดลอง และ ถ้านำไปคำนวณนอกขอบเขตที่ระบุไว้ ย่อมเกิดข้อผิดพลาดได้ ซึ่งปัจจุบันยังไม่มีสมการใดสามารถ ทำนายความดันลดและความเร็ววิกฤตได้แม่นยำพอเพียงที่ทุกช่วงขอบเขตของชุดตัวแปรอิสระ ทำ ให้การคำนวณความดันลดและความเร็ววิกฤตได้แม่นยำพอเพียงที่ทุกช่วงขอบเขตของชุดตัวแปรอิสระ ทำ ให้การคำนวณความดันลดและความเร็ววิกฤตไปแร่องยุ่งยากซับซ้อน สิ้นเปลืองเวลามากและมี โอกาสที่จะคำนวณผิดสูง ซึ่งเป็นปัญหาของวิศวกรผู้ออกแบบ ดังนั้นงานวิจัยนี้ จึงได้นำชุดสมการ เอมไพริกัลสำหรับคำนวณความดันลดที่ช่วงขอบเขตการใช้งานต่างๆ มาพัฒนาสร้างเป็นโปรแกรม คอมพิวเตอร์สำเร็จรูป บนระบบปฏิบัติการวินโดว์ ที่สามารถทำงานบนเครื่องคอมพิวเตอร์แบบ บุคคลได้ ทั้งนี้เพื่อให้วิศวกรผู้ออกแบบสามารถออกแบบระบบท่อขนถ่ายมลสายได้อย่างถูกต้อง รวดเร็ว มีประสิทธิภาพ และที่สำคัญ คืออัตราการสิ้นเปลืองพลังงานในการขนถ่ายต่อหน่วยต่ำที่ สุด

1.2 วัตถุประสงค์ของการวิจัย

พัฒนาโปรแกรม สำหรับช่วยคำนวณออกแบบระบบท่อขนถ่ายมลสาย โดย โปรแกรมสามารถทำนายความดันลด ความเร็วการขนถ่าย ความเข้มข้นของมลสาย และขนาดท่อ ที่เหมาะสม โดยคำนึงถึงอัตราการสิ้นเปลืองพลังงานในการขนถ่ายต่อหน่วยที่น้อยที่สุดเป็นเงื่อนไข บังคับสำคัญ

1.3 ขอบเขตของการวิจัย

 สึกษาเฉพาะมลสายประเภทที่สามารถตกตะกอนได้ หรือมลสายที่มีอนุภาค ของแข็งในของไหล ขนาดใหญ่กว่า 44 ไมครอน

2. ศึกษาการไหลของมลสายในท่อแนวระดับเท่านั้น

3. ของเหลวที่ใช้ในการขับเคลื่อนคือ น้ำ

 ข้อมูลป้อนเข้าโปรแกรม คือ สมบัติกายภาพของ ของแข็ง ของเหลว และท่อ ได้แก่ ความหนาแน่น ความหนืด ขนาดของอนุภาค ขนาดเส้นผ่านศูนย์กลางท่อ และความหยาบ ของผนังท่อ เป็นต้น

5. การแสดงผลของโปรแกรมคือ ขนาดท่อ ความเร็วปฏิบัติการวิกฤต ความเข้ม ข้นในการขนถ่าย ความดันลด และอัตราการสิ้นเปลืองพลังงานต่อหน่วย

1.4 วิธีดำเนินการวิจัย

 ศึกษาทฤษฏีที่เกี่ยวข้องกับการไหลของมลสายภายในท่อ ได้แก่ การไหลภาย ในท่อแบบหนึ่งวัฏภาค การเคลื่อนที่ของอนุภาคในของไหล เบื้องต้นเกี่ยวกับมลสาย ประเภทของ มลสาย หรือการไหลแบบสองวัฏภาคของของแข็งและของเหลว และสมการเอมไพริกัลสำหรับ คำนวณความดันลดและความเร็ววิกฤตของนักวิจัยแต่ละคณะที่นำเสนอหรือตีพิมพ์ทางวารสาร

2. กำหนดขอบเขต และแนวทางการศึกษา รวมถึงการเลือกตัวแปลภาษา คอมพิวเตอร์ที่เหมาะสม

จัดทำขั้นตอนและแผนผังการแก้ปัญหาหรือการคำนวณเพื่อให้ได้ผลลัพธ์คือ
 ค่าพารามิเตอร์ที่จำเป็นสำหรับการออกแบบระบบท่อขนถ่ายมลสาย

4. ดำเนินการพัฒนาโปรแกรม และการทดสอบโปรแกรม

5. สรุปผลงานวิจัย และข้อเสนอแนะ

1.5 ประโยชน์ที่คาดว่าจะได้รับ

 1. ได้โปรแกรมคอมพิวเตอร์สำเร็จรูป สำหรับใช้ทำนายความดันลด ความเร็ว ปฏิบัติการวิกฤต ความเข้มข้นในการขนถ่าย และขนาดท่ออย่างเหมาะสม

 เป็นเครื่องมือสำคัญ สำหรับใช้จำลองระบบท่อ เพื่อการศึกษาและคำนวณออก แบบชั้นต้น อย่างรวดเร็วและมีประสิทธิภาพ

บทที่ 2 แนวคิด ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

2.1 การไหลในท่อแบบหนึ่งวัฏภาค

การไหลในท่อของของไหล สามารถเป็นได้ทั้งการไหลแบบราบเรียบ (laminar flow) และการไหลแบบปั่นป่วน (turbulent flow) ในกรณีของท่อกลมที่มีของไหลหนึ่งวัฏภาคไหล เต็มท่อ ค่าความดันลดหรือพลังงานที่สูญเสียไปกับความเสียดทานเนื่องจากการไหลในท่อกลม สามารถคำนวณจากสมการ

$$h_{L} = \frac{LfV^{2}}{2gD}$$
 (2-1)
 h_{L} คือ ความดันลด มีหน่วยเป็น เมตร (ฟุต)

L	คือ	ความยาวท่อ มีหน่วยเป็น เมตร (ฟุต)
f	คือ	องค์ประกอบความเสียดทาน
v	คือ	ความเร็วของไหล มีหน่วยเป็น เมตร (ฟุต)ต่อวินาที
D	คือ	ขนาดเส้นผ่านศูนย์กลางท่อ มีหน่วยเป็น เมตร (ฟุต)
a	คือ	ความเร่งจากแรงโน้มถ่วงโลก มีหน่วยเป็น เมตร (ฟต)ต่อวินาที ²

เรียกสมการ (2-1) ว่า สมการสำหรับหาความเสียดทานของท่อ หรือเรียกอีกชื่อว่า Darcy-Weisbach Equation สำหรับค่าองค์ประกอบความเสียดทาน (f) เป็นค่าคงที่ที่ไม่มีหน่วยและเป็น ฟังก์ชันของค่าเรย์โนลด์นัมเบอร์ (Re) ค่าองค์ประกอบความเสียดทานแปรค่าตามเรย์โนลด์นัม เบอร์และความหยาบของผิวท่อ (E) ส่วนความดันลด (h_i) แปรผันตาม L/D มีหน่วยเป็นความยาว เมตร (ฟุต) เช่นเดียวกับ Velocity head (V²/2g) ดังนั้นจึงสามารถบอกค่าความดันลดที่เกิดขึ้น เนื่องจากความเสียดทานอยู่ในเทอมของ Velocity head ได้

1) <u>การใหลแบบราบเรียบภายในท่อกลม (Laminar Flow)</u>

สำหรับในกรณีของการไหลแบบราบเรียบนั้น อัตราการไหลโดยปริมาตร Q เป็น สัดส่วนโดยตรงกับปริมาตรตันที่ถูกห้อมล้อมโดยเส้นแสดงลักษณะการเปลี่ยนแปลงของความเร็ว ปริมาตรตันในที่นี้ก็คือก้อนของไหลตันรูปพาราโบลอยด์ที่มีส่วนสูงมากสุดเป็นสัดส่วนกับความเร็ว สูงสุด u_{max} และมีส่วนสูงเฉลี่ยเท่ากับครึ่งหนึ่งของส่วนสูงมากสุด

้ฉะนั้นความเร็วเฉลี่ย V_{avg} = 0.5 u_{max} (2-2)

ดังนั้น
$$V_{avg} = \frac{h_L \gamma D^2}{32 \mu_L}$$
 (2-3)

เมื่อย้ายค่าแล้วคูณไขว้สมการ (2-3) ก็จะได้ สมการความดันลดที่เกิดขึ้นเนื่องจากความเสียดทาน อันเนื่องมาจากการไหล คือ

$$h_{L} = \frac{32\,\mu_{L}V}{\gamma D^{2}} \tag{2-4}$$

μ_Lคือความหนืดของของไหล มีหน่วยเป็น กก.ต่อเมตรวินาทีγคือน้ำหนักจำเพาะ มีหน่วยเป็น แรงต่อหนึ่งหน่วยปริมาตร

เรียกสมการ (2-4) นี้ว่า สมการ Hangen-Poiseuille Law ที่สำหรับใช้กับการไหลในท่อที่มีการไหล แบบราบเรียบ

จากสมการ Hangen-Poiseuill สามารถกล่าวได้ว่าในกรณีที่เป็นการไหลแบบ ราบเรียบนั้น ค่าความดันลดเป็นสัดส่วนกับความเร็วยกกำลังหนึ่ง หรือ n = 1 ซึ่งสามารถพิสูจน์ได้ โดยการทดลอง ข้อดีของสมการนี้ก็คือไม่มีค่าสัมประสิทธิ์ที่ได้จากการทดลองหรือตัวประกอบที่ได้ จากการทดลองใด ๆ จะมีแต่เพียงคุณสมบัติทางกายภาพของของไหล เช่น ความหนืด ความ หนาแน่น น้ำหนักจำเพาะ เท่านั้นและจะเห็นได้จากสมการว่าในกรณีที่เป็นการไหลแบบราบเรียบ นั้น ความเสียดทานจะไม่ขึ้นอยู่กับความหยาบของผิวภายในท่อเลย ซึ่งก็เป็นความจริงที่สามารถ พิสูจน์ได้โดยการทดลอง

จะเห็นได้ว่า พลังงานที่สูญเสียไปกับความเสียดทาน h_. นี้สามารถหาได้โดยวิธี การวิเคราะห์มิติอีกด้วย ดังนั้นเมื่อนำเอา h_. จากสมการจากการวิเคราะห์มิติและสมการ Hangen-Poiseuille Law มาเท่ากันแล้ว ค่าองค์ประกอบความเสียดทาน ก็จะมีค่าเป็น

> f = $\frac{64}{\text{Re}}$ (2-5) ดังนั้น ถ้าหาก Re = 2000 ก็จะสามารถหาความดันลดอันเนื่องมาจากความ

ดงนน ถาหาก Re = 2000 กจะสามารถหาความดนสดอนเนองมาจากความ เสียดทานขณะเกิดการไหลได้จาก สมการ Hangen- Poiseuille Law หรือจากสมการวิเคราะห์มิติ โดยใช้ค่าองค์ประกอบความเสียดทาน ที่คำนวณจากสมการที่ (2-5)

2) <u>ความขรุขระของผนังท่อ</u>

ความดันลดของการไหลแบบปั่นป่วนนอกจากจะขึ้นกับขนาดเส้นผ่านศูนย์กลาง ของท่อ ความยาวของท่อ ความเร็วเฉลี่ยในการไหลและความหนืดของของไหลแล้ว ยังขึ้นอยู่กับ ความขรุขระของผนังท่ออีกด้วย ด้วยวิธีการต่างๆ ของนักวิทยาศาสตร์ สามารถหาขนาดความ ขรุขระและบอกค่าขนาดความขรุขระนี้ด้วยองค์ประกอบทางด้านรูปร่าง นอกจากนี้ยังสามารถ พิสูจน์ได้ด้วยว่าความเสียดทานนี้ไม่เพียงแต่จะขึ้นอยู่กับขนาดของผิวแต่ยังขึ้นกับรูปร่างของส่วนที่ ยื่นเลยออกมาจากผิวอีกด้วย

จากความพยายามของวิศวกรชาวเยอรมันชื่อ Nikuradse ศิษย์คนหนึ่งของ Prandtl เขาได้ทำการเคลือบภายในผนังท่อขนาดต่างๆ ด้วยเม็ดทรายที่ผ่านการคัดขนาดโดยการ ร่อนด้วยตะแกรง ดังนั้นทรายแต่ละชุดจึงมีขนาดเท่าๆ กัน โดยกำหนดให้ขนาดเส้นผ่านศูนย์กลาง ของเม็ดทรายนี้เป็น **ɛ** และเรียกขนาดของเม็ดทรายนี้ว่าความขรุขระสัมบูรณ์ จากสมการการ วิเคราะห์มิติเกี่ยวกับการไหลภายในท่อนั้นได้พิสูจน์ให้เห็นว่าในกรณีของท่อผิวเรียบนั้น องค์ ประกอบความเสียดทาน จะเป็นพังก์ชันของค่าเรย์โนลด์นัมเบอร์ (Re) โดยปกติแล้วเราจะใส่ค่า ขนาดความขรุขระ **ɛ** ให้เป็นตัวแปรสำหรับหาองค์ประกอบความเสียดทานด้วย และก็ปรากฏว่า f = f (Re,**ɛ**/D) เราเรียกค่า **ɛ**/D ว่าความขรุขระสัมพัทธ์ ในการทดลองของ Nikuradse นั้นค่า ความขรุขระสัมพัทธ์ **ɛ**/D จะมีค่า อยู่ในช่วง 0.000985 – 0.0333

3) แผนภูมิสำหรับหาองค์ประกอบความเสียดทาน

สมการต่างๆ ที่กล่าวมานั้นยังไม่สะดวกต่อการหาค่าองค์ประกอบความเสียดทาน ดังกล่าว ดังนั้นจึงมีผู้ค้นคว้าจัดทำแผนภูมิเพื่อความสะดวกในการใช้งาน ดังที่แสดงในแผนภูมิรูป ภาพที่ 2.1 ซึ่งจัดทำโดย Moody โดยพลอตมาจากข้อมูลการทดลองที่ดีที่สุดเท่าที่จะหาได้ จาก แผนภูมิจะเห็นได้ว่าเส้นกราฟในแผนภูมินั้นแบ่งออกเป็น 4 ช่วงด้วยกัน คือ

1. ช่วงแรก เป็นช่วงที่มีการไหลแบบราบเรียบ

 2. ต่อมาเป็นช่วงวิกฤต ในช่วงนี้ค่าต่างๆ จะไม่แน่นอนเพราะการไหลอาจจะเป็น ได้ทั้งแบบปั่นป่วนหรือแบบราบเรียบก็ได้

3. บริเวณหรือช่วงที่เป็นรอยต่อ (transition zone) ในช่วงดังกล่าวนี้ค่า *f* จะเป็น ฟังก์ชันของ Re และ **ε**/D

 4. ช่วงที่เป็นการไหลแบบปั่นป่วนโดยสมบูรณ์ ในช่วงดังกล่าวนี้ค่า f จะไม่ขึ้นอยู่ กับค่า Re แต่จะขึ้นกับ *E*/D

ในแผนภูมินี้ไม่มีเส้นแบ่งช่วงที่กำลังมีการเปลี่ยนแปลงการไหลอย่างเด่นชัด เส้น ประที่ใช้แบ่งช่วงทั้งสองนี้ได้มาจากสมการตามการแนะนำของ R.J.S. Pigott สมการดังกล่าวนี้ คือ

$$Re = 3500D/E$$
 (2-6)

รูปภาพที่ 2.1 แผนภาพแสดงองค์ประกอบความเสียดทานของ Moody

ด่าดวามบรุบระสัมพัทธ์ของท่อที่ผลิตบายในอุตสาหกรรม

รูปภาพที่ 2.2 แผนภาพแสดงความหยาบสัมพัทธ์ของผนังท่อของ Moody

ในการใช้แผนภูมิดังกล่าวนี้เราสามารถหาค่าของ **ɛ** ได้จากตารางและเนื่องจาก **ɛ**/D ไม่มีหน่วย ดังนั้นถึงแม้ว่าจะใช้หน่วยในระบบใดก็ตามก็จะได้ค่าเท่าๆ กัน สำหรับค่า **ɛ**/D ของท่อในอุตสาห กรรมนั้นหาได้จากรูปที่จัดทำโดย Moody เช่นเดียวกัน ตามรูปที่ 2.2 ในการใช้แผนภูมิและสมการ วิเคราะห์มิติ นี้ควรจะใช้ค่าที่ถูกต้องของเส้นผ่านศูนย์กลางภายในของท่อ เส้นผ่านศูนย์กลางภาย ในของท่อจะมีขนาดเล็กกว่าขนาดระบุของท่อเล็กน้อย

สำหรับในช่วงที่เป็นการไหลแบบปั่นป่วนโดยสมบูรณ์แล้วนั้น ความเสียดทานจะ เป็นสัดส่วนโดยตรงกับ V² และไม่ขึ้นอยู่กับค่าของเรย์โนลด์นัมเบอร์ ในกรณีดังกล่าวนี้ค่าองค์ ประกอบความเสียดทาน จะขึ้นอยู่กับความขรุขระสัมพัทธ์แต่เพียงอย่างเดียว งานในทางปฏิบัติ นั้นส่วนใหญ่แล้ว จะอยู่ในช่วงหัวเลี้ยวหัวต่อ หรือบริเวณที่เป็นรอยต่อ ฉะนั้นจึงจำเป็นต้องรู้ค่าที่ แน่นอนของค่าเรย์โนลด์นัมเบอร์

ค่าองค์ประกอบความเสียดทาน สามารถคำนวณได้จากสมการ แต่ต้องทราบค่า เรย์โนลด์นัมเบอร์และค่าความหยาบของผนังท่อ ด้วยสมการของ Colebrook-White's Equation ซึ่งได้รับการพิสูจน์แล้วว่าให้ค่าความถูกต้องเทียบเท่า แผนภูมิที่จัดทำโดย Moody

$$\frac{1}{\sqrt{f}} = (-2) \log \left[\frac{\varepsilon}{3.71D} + \frac{2.51}{\operatorname{Re}\sqrt{f}} \right]$$
(2-7)

โดยที่

Re	=	$\frac{\rho VD}{\mu}$	(2-8)
3	คือ	ความขรุขระของผนังท่อ มีหน่วยเป็น เมตร (ฟุต)	
D	คือ	ขนาดเส้นผ่านศูนย์กลางท่อ มีหน่วยเป็น เมตร (ฟุต)	
V	คือ	ความเร็วของไหลในท่อ มีหน่วยเป็น เมตร (ฟุต)ต่อวินาที	
μ	คือ	ความหนืดของไหล หน่วยเป็น กก. ต่อเมตร (ฟุต) วินาที	

2.2 การเคลื่อนที่ของอนุภาคในของไหล (Particle Dynamics)

1) Particle Drag

การเคลื่อนที่ของอนุภาคในก๊าซและของเหลวเป็นปรากฏการณ์ที่พบได้ทั่วไปใน อุตสาหกรรมเคมี หน่วยปฏิบัติการที่เกี่ยวข้องยกตัวอย่างเช่น ฟลูอิดไดเซชัน ถังตกตะกอน เครื่อง มือแยกสาร ระบบขนถ่ายด้วยกำลังไฮดรอลิกและนิวแมติก เป็นต้น ในกรณีที่มีของแข็งอยู่ในของ ใหล อาจพิจารณาได้ 4 รูปแบบคือ

- ของแข็งอยู่กับที่และมีของเหลวไหลผ่าน
- ของไหลอยู่นิ่ง และมีของแข็งเคลื่อนที่ในของไหล

- ทั้งของแข็งและของไหลต่างเคลื่อนที่
- ทั้งของแข็งและของไหลต่างอย่นิ่ง

เมื่อพิจารณาเฉพาะในกรณีที่มีการเคลื่อนที่ จากรูปแบบต่างๆ ที่เกิดขึ้น สิ่งที่เรา มักให้ความสนใจได้แก่ ความเร็วสัมพัทธ์ระหว่างวัฏภาคทั้งสอง ในระหว่างการเคลื่อนที่สัมพัทธ์จะ เกิดแรงต้านขึ้นที่ผิวของของแข็ง แรงต้านนี้เรียกว่า Drag force ในการเคลื่อนที่ จะต้องมีพลังงาน ้ส่วนหนึ่งถูกใช้ไปในการเอาชนะแรงต้า<mark>นทาน แร</mark>งต้านทานและพลังงานที่ใช้ในการชดเชยนี้จะขึ้น อยู่กับชนิดของการไหล และรูปร่างของของแข็ง การไหลแบบราบเรียบจะเกิดขึ้นกรณีที่ของไหลจะ ใหลที่ความเร็วต่ำ และของแข็งมีขนาดเล็ก หรือเมื่อของไหลมีความหนืดสูง การสูญเสียพลังงาน เบื้องต้นจะสูญเสียให้กับแรงเสียดทาน ถ้าความเร็วเฉลี่ยในการไหลเพิ่มขึ้น อิทธิพลของแรงเฉื่อย จะมีค่ามากขึ้นและทำให้การไหลเปลี่ยนรูปแบบเป็นการไหลแบบปั่นป่วน

ในกรณีที่ของแข็งที่เคลื่อนที่มีลักษณะเป็นทรงกลม ซึ่งมีรัศมี r แรงต้านทานที่ เกิดขึ้นจะมีความสัมพันธ์กับความเร็วดังสมการ

Drag force,	F	=	$\pi r^2 C_D \rho \frac{u^2}{2}$	(2-9)
หรือ	$\frac{F}{A}$	=	$C_D \rho \frac{u^2}{2}$	(2-10)

โดยที่ C_{D} คือ drag coefficient

> คือ projected area ของอนุภาค А

คือ ความเร็วของอนุภาค มีหน่วยเป็น เมตร (ฟุต)ต่อวินาที u

ซึ่งเมื่อเปรียบเทียบกับสมการที่คำนวณหาความดันลดของการไหลในท่อ

$$\Delta \rho = f \frac{L}{D} \rho \frac{v^2}{2}$$
(2-11)

จะพบว่า C_D มีลักษณะคล้าย f โดยที่สมการจะมีเทอม L/D ซึ่งอธิบายถึงสัดส่วนของระบบ แต่ เนื่องจากวัตถุที่กำลังพิจารณามีลักษณะเป็นทรงกลม ดังนั้น L/D จึงมีค่าเท่ากับ 1 ในการไหลใน ท่อพบว่า f ขึ้นอยู่กับค่า เรย์โนลด์นัมเบอร์ และความหยาบของผนังท่อ ในกรณีของการเคลื่อนที่ ของของแข็งในของไหลก็มีลักษณะเช่นเดียวกัน สำหรับทรงกลมผิวเรียบ C_n จะขึ้นอยู่กับค่า เรย์ ในลด์นัมเบอร์ เพียงอย่างเดียว ค่าเรย์โนลด์นัมเบอร์ ของวัตถหาได้จาก

$$\operatorname{Re}_{p} = \frac{\rho d_{p} u}{\mu}$$
(2-12)

โดยที่ d คือ เส้นผ่าศูนย์กลางของวัตถุ ho , μ คือ ความหนาแน่นและความหนืดของของไหล

เมื่อเปรียบเทียบรูปแสดงความสัมพันธ์ระหว่าง C_D - Re_p ตามรูปภาพที่ 2.3 กับ แผนภูมิของ Moody แล้วพบว่าทั้งสองภาพมีลักษณะคล้ายกัน และที่ค่าเรย์โนลด์นัมเบอร์ มีค่า น้อยๆ *f* และ C_D จะเป็นสัดส่วนผกผันกับ Re และ Re_p ตามลำดับ

กรณีท่อ
$$f = \frac{04}{\text{Re}}$$
 (Poiseuille's equation) (2-13)
กรณีทรงกลม $C_{\text{D}} = \frac{24}{\text{Re}_{p}}$ (Stoke's Law) (2-14)

้สำหรับช่วงที่เรย์โนลด์นัมเบ<mark>อร์ มีค่าปา</mark>นกลางระหว่าง 1 < Re_p < 1000 ค่า C_p สามารถคำนวณ

เมื่อ เรย์โนลด์นัมเบอร์ มีค่ามากกว่า 1000 ค่า C_p จะไม่ขึ้นอยู่กับค่า Re_p อีกต่อไปและจะเป็นค่า คงที่ (Newton's Law)

$$C_{\rm D} = 0.44$$
 1000 < $Re_{\rm p}$ < 350000 (2-16)

ตัวอย่างของการเคลื่อนที่ของ ของแข็งในของไหล ได้แก่ การกำจัดฝุ่นละอองออกจากอากาศ หรือ Flue gas การแยกอนุภาคออกจากน้ำเสียเพื่อที่จะสามารถปล่อยน้ำทิ้งลงสู่ท่อสาธารณะได้ ใน การเคลื่อนที่ของของแข็งผ่านของไหล ต้องอาศัยแรงจากภายนอกมากระทำต่อของแข็งนั้น ซึ่งแรง ภายนอกอาจมาจาก แรงโน้มถ่วง แรงเหวี่ยง หรือ แรงจากสนามไฟฟ้า หรือ สนามแม่เหล็ก

พิจารณาของแข็งที่เคลื่อนที่ในของไหล แรงทั้งหมดที่กระทำต่อวัตถุประกอบด้วย

- แรงภายนอก เช่น แรงโน้มถ่วง หรือ แรงเหวี่ยง
- แรงลอยตัว ซึ่งจะขนานกับแรงภายนอก แต่มีทิศทางตรงข้ามกับแรงภายนอก

• Drag force ซึ่งจะปรากฏเมื่อมีความเร็วสัมพัทธ์ระหว่างวัตถุและของไหล โดยที่ drag force จะกระทำในทางที่ขนานแต่มีทิศทางตรงกันข้ามของการเคลื่อนที่ของวัตถุ

พิจารณา วัตถุทรงกลมที่มีมวล m เคลื่อนที่ผ่านของไหลภายใต้แรงภายนอกที่ กระทำ (F_e) โดยให้ความเร็วสัมพัทธ์เท่ากับ u แรงลอยตัวบนวัตถุเท่ากับ F_b และ drag force = F_D ดังนั้น แรงลัพธ์ที่กระทำบนวัตถุ = $F_e - F_b - F_D$ ความเร่งในการเคลื่อนที่ของวัตถุ = a = du/dt จากกฎของนิวตัน $\Sigma F = ma$ $F_e - F_b - F_D = m \frac{du}{dt}$ (2-17) โดยที่แรงภายนอกสามารถเขียนได้ในรูป

แรงลอยตัว (มวลของปริมาตรของของไหลที่ถูกแทนที่ด้วยวัตถุ และถูกเร่งด้วยแรงภายนอก) จะหา ได้จากสมการ

$$F_{\rm b} = m \frac{\rho}{\rho_p} a_{\rm e}$$
 (2-18)

ในส่วนของ Drag force จะคำนวณได้จาก

$$F_{\rm D} = A C_D \rho \frac{u^2}{2}$$
 (2-19)

แทนค่า F_D ในสมการ (2<mark>-</mark>17) จะได้สมการ

$$\frac{du}{dt} = a_e - \frac{\rho}{\rho_p} a_e - A C_D \rho \frac{u^2}{2} / m$$
 (2-20)

2) องค์ประกอบเชิงรูปร่าง (Shape Factor)

อนุภาคของแข็งที่พบในภาคอุตสาหกรรมส่วนมากมักไม่พบทรงกลมที่สมบูรณ์ แบบ ในการทำนายความเร็วบั้นปลายของอนุภาคที่มีรูปทรงไม่เป็นทรงกลมจะมีความยุ่งยากกว่า เดิมตามที่ได้กล่าวมาข้างต้น ทั้งนี้เนื่องมาจากผลกระทบของรูปร่างที่มีต่อพฤติกรรมการเคลื่อนที่ ของอนุภาคในของไหล ได้มีผู้ทำการทดลองศึกษาการพฤติกรรมการเคลื่อนที่ของอนุภาคที่มีรูป ทรงไม่เป็นทรงกลมและเสนอแนวคิดเกี่ยวกับองค์ประกอบเชิงรูปร่างมากพอสมควร จากรูปภาพที่ 2.4 แสดงความสัมพันธ์ระหว่าง C_D และ Re_P ของรูปทรงต่างๆ โดยเปรียบเทียบกับอนุภาคทรง กลมผิวเรียบ ความสัมพันธ์ที่เป็นที่นิยมมาก มี 2 ความสัมพันธ์ คือ องค์ประกอบเชิงปริมาตรและ รูปร่างและ องค์ประกอบเชิงความเป็นทรงกลม

ก. องค์ประกอบเชิงปริมาตรและรูปร่าง (Volumetric shape factor)

องค์ประกอบเชิงปริมาตรและรูปร่างสามารถให้คำจำกัดความได้ว่า เป็นสัดส่วน ระหว่างปริมาตรของอนุภาคที่ได้จากการวัดกับปริมาตรของอนุภาคที่คำนวณได้จากเส้นผ่านศูนย์ กลางของอนุภาคที่คำนวณได้จากภาพฉาย

$$\mathbf{\phi}_{v} = V_{p}/d_{a}^{3}$$
 (2-21)

โดยที่ d คือ เส้นผ่านศูนย์กลางของอนุภาคที่คำนวณได้จากพื้นที่ภาพฉาย

$$d_{a} = \left(\frac{4A_{PP}}{\pi}\right)^{0.5}$$
(2-22)

รูปภาพที่ 2.3 แผนภาพแสดงความสัมพันธ์ระหว่าง Re_P และ C_D ของทรงกลมผิวเรียบ

Drag coefficients for spheres, disks, and cylinders: A_i = area of particle projected on a plane normal to direction of motion; C = overall drag coefficient, dimensionless: D_r = diameter of particle; F_i = drag or resistance to motion of body in fluid; Re = Reynolds number, dimensionless; u = relative velocity between particle and main body of fluid; u = fluid viscosity; and ρ = fluid density. (From Lapple and Shepherd, Ind. Eng. Chem., **32**, 605 [1946].)

รูปภาพที่ 2.4 แผนภาพแสดงความสัมพันธ์เปรียบเทียบระหว่าง Re_P และ C_D ของอนุภาครูปทรง ต่างๆ เฮย์วูด (Heywood, 1938) ประยุกต์องค์ประกอบเชิงปริมาตรและรูปร่างเข้ากับ สมการความสัมพันธ์ของเรย์โนลด์นัมเบอร์ของอนุภาคและ drag coefficient

$$C_{da} = \frac{8gd_{a}(\rho_{s} - \rho_{L})}{\pi V_{t}^{2} \rho_{L}}$$
(2-23)

$$Re_{da} = \frac{\rho D u}{\mu}$$
 โดยที่

C_{da} คือ drag coefficient ที่คำนวณจากเส้นผ่านศูนย์กลางของอนุภาคที่คำนวณได้จากภาพฉาย Re_{da} คือ เรย์โนลด์นัมเบอร์ของอ_{นุภาค}

ข. องค์ประกอบเชิงความเป็นทรงกลม (Sphericity Shape Factor) องค์ประกอบเชิงความเป็นทรงกลม สามารถให้คำจำกัดความได้ว่า เป็นสัดส่วน ระหว่างพื้นผิวทรงกลมที่มีปริมาตรเท่าอนุภาคต่อพื้นผิวของอนุภาค

$$\phi = 4\pi \left(\frac{3V_{P}}{4\pi}\right)^{2/3} / A_{P}$$
(2-24)

โดยที่ A_p คือ พื้นผิวของอนุภาค V_p คือปริมาตรของอนุภาค และ **\$** คือ องค์ประกอบความเป็น ทรงกลม ได้มีผู้ศึกษาทดลองวัดค่าองค์ประกอบความเป็นทรงกลมของอนุภาคต่างๆ และ ประมาณค่าดังแสดงในตารางที่ 2.1

ตารางที่ 2.1 แสดงองค์ประกอบความเป็นทรงกลมของอนุภาคต่างๆ

วัสดุ	ค่าประมาณควา	เมเป็นทรงกลม (φ)
Sand		0.95
Rounded Sand		0.83
Flint Sand		0.65
Coal dust		0.73
Coal		0.696
Bottom ash		0.80
Field 1 ash		0.90
Kaolin		0.95
Ocean bed		0.95
Kaolin		0.80
Tailing 1		0.90

Tailing 2	0.75
Tailing 3	0.53

(ข้อมูลจาก J.H. Perry (ed), Chemical Engineers' Handbook, McGraw-Hill,1984)

บราวน์ (Brown, 1950) ได้เตรียมแหล่งข้อมูลที่มีคุณค่าทางด้านองค์ประกอบเชิง ความเป็นทรงกลมรูปทรงต่างๆ ดังแสดงในตารางที่ 2.2 ตารางที่ 2.2 แสดงองค์ประกอบเชิง<mark>ความเป็นทรงก</mark>ลมรูปทรงต่างๆ

	รูปทรง	ความเป็นทรงกลม (φ)
	ทรงกลม	1.0
	รูปแปดเหลี่ยม	0.847
	ลูกบาศก์	0.806
	ปริซึม (มิติ)	
	a x a x 2a	0.767
	a x 2a x 2a	0.761
	a x 2a x 3a	0.725
	ทรงกระบอก (รัศมี และความสูง))
	ความสูง = รัศมี/15	0.254
	ความสูง = รัศมี/10	0.323
	ความสูง = รัศมี/3	0.594
	ความสูง = รัศมี	0.827
	ความสูง = 3 เท่าของรัศมี	0.860
	ความสูง = 10 เท่าของรัศมี	0.691
	ความสูง = 20 เท่าของรัศมี	0.580

(ข้อมูลจาก Nigel P. Brown, Design of Solid-Liquid System,1991)

3) ความเร็วบั้นปลาย (Terminal Velocity, V,)

โดยปกติ drag force จะแปรผันตามความเร็วกำลังสอง u² สำหรับการไหลของ วัตถุในของไหลด้วยแรงโน้มถ่วงจะหาได้จากสมการ (2-20) ในกรณีของ แรงภายนอกเท่ากับ แรง โน้มถ่วง a_e = g

$$\frac{dV_t}{dt} = g - \frac{\rho}{\rho_p} g - A C_D \rho \frac{V_t^2}{2m}$$
(2-25)

พบว่าความเร่งจะมีค่าลดลงอย่างต่อเนื่อง เมื่อเวลาผ่านไป และจะมีค่าเท่ากับศูนย์ในที่สุด ซึ่งทำ ซึ่งความเร็วค่านี้เรียกว่าความเร็วบั้นปลาย ให้วัตถุมีความเร็วคงที่และเป็นความเร็วสูงสุด (Terminal Velocity, V,) ภายใต้สภาวะการตกอย่างอิสระ สมการในการหา V, จะหาได้จากสม การ (2-21) โดยกำหนดให้เทอม

$$\frac{du}{dt} = 0 \quad A = \frac{\pi d_p^2}{4} \quad \text{และ m} = \frac{\pi d_p^3 \rho_s}{6} \quad \text{จะได้ว่า}$$
$$V_t = \left(\frac{4gd_p(\rho_s - \rho_w)}{3C_D \rho_w}\right)^{0.5} \quad (2-26)$$

โดยที่

C = f(Re_p)

กรณีการไหลอยู่ในช่วง Stoke's Law คือ Re_P < 1 สามารถคำนวณหาความเร็วบั้นปลาย จาก (Pettyjohn and Chistiansen, Chem. Eng. Prog., 1948)

สมการ
$$V_t = K_1 \frac{gd_p^2(\rho_s - \rho_w)}{18\mu_w}$$
 (2-27)

 $K_1 = (0.843) \log\left(\frac{\phi}{0.065}\right)$ โดยที่

กรณีการใหลอยู่ในช่วง Newton's Law คือ Re_P > 1000 สามารถคำนวณหา ความเร็วบั้นปลาย

จาก
$$V_t = \left(\frac{4gd_p(\rho_s - \rho_w)}{3K_2\rho_w}\right)^{0.5}$$
 (2-28)
โดยที่ $K_2 = 5.32 - 4.88\phi$

กรณีการใหลอยู่ในช่วง Intermediate Region คือ 1 < ${
m Re}_{
m P}$ < 1000 สามารถคำนวณหา ความเร็วบั้นปลาย จาก

$$V_{t} = 0.153 \, K_{2} \left(\frac{g \, d_{p}^{-1.6} (\rho_{s} - \rho_{w})}{\mu_{w}^{0.6} \rho_{w}^{0.4}} \right)^{0.714}$$
(2-29)

$$\mathsf{K}_2 = (0.843) \log\left(\frac{\phi}{0.065}\right)$$

โดยที่

G

- ความเร็วบั้นปลาย มีหน่วยเป็น เมตรต่อวินาที V_{t} คือ
- CD คือ Drag coefficient

ความหนาแน่นของอนุภาค มีหน่วยเป็น กก.ต่อเมตร³ คือ ρ_s

 ho_L คือ ความหนาแน่นของของไหล มีหน่วยเป็น กก.ต่อเมตร 3

μ_L คือ ความหนืดของของไหล มีหน่วยเป็น กก.ต่อเมตรวินาที

φ คือ องค์ประกอบเชิงความเป็นทรงกลม (Sphericity Shape Factor)

ค่า C_D สามารถอ่านได้จากกราฟแสดงความสัมพันธ์ระหว่าง C_D กับ Re_p โดยที่ มีข้อกำหนดว่าวัตถุต้องอยู่ห่างกันและห่างจากผนังเพียงพอที่จะไม่รบกวนกัน และเคลื่อนที่ด้วย ความเร็วเท่ากับ V_t

4) Hindered Settling

เมื่อวัตถุมีระยะทางในการเคลื่อนที่อย่างอิสระโดยอยู่ห่างจากวัตถุอื่นๆ ดังนั้นการ เคลื่อนที่จะไม่ได้รับผลกระทบจากภายนอก ซึ่งการเคลื่อนที่เช่นนี้ว่า Free Settling ถ้าหากมีการ รบกวนจากวัตถุตัวอื่นแม้ว่าจะไม่เกิดการชนกัน จะเรียกกระบวนการเช่นนี้ว่า Hindered Settling ซึ่งค่า C_p ที่เกิดขึ้นจะมีค่ามากกว่า C_p ที่เกิดจาก Free Settling

ในกระบวนการ Hindered Settling ความเร็วเกรเดียนท์ (velocity gradient) รอบวัตถุจะถูกรบกวนด้วยวัตถุข้างเคียง ซึ่งทำให้วิธีการหา drag force วิธีทั่วไปไม่สามารถใช้ได้ แต่อย่างไรก็ตาม Madui และ Whitmore (Br. J. Appl. Phys.,1958) ได้ทำการทดลองและหา ความสัมพันธ์ Settling velocity V และ ความเร็วบั้นปลาย (V,) ได้ดังสมการ

 $V_{s} = V_{t}(1-C_{v})^{n}$ (2-30)

โดยที่ ถ้าการไหลอยู่ในช่วง Stork's law n มีค่าเท่ากับ 4.65 และถ้าการไหลอยู่ในช่วง Newton's law n มีค่าเท่ากับ 2.33 และ C_v คือความเข้มข้นเชิงปริมาตร

2.3 การไหลในท่อของมลสาย (สองวัฏภาค)

ปัจจุบันการขนถ่ายอนุภาคของแข็งทางระบบท่อเริ่มเข้ามามีบทบาทสำคัญมาก ยิ่งขึ้นโดยเฉพาะกับอุตสาหกรรมเหมืองแร่ ในแต่ละปีจะมีการศึกษาความเป็นไปได้ของโครงการ รวมถึงการออกแบบและก่อสร้างระบบท่อขนถ่ายมลสายระยะไกลมีจำนวนหลายโครงการ แต่ เนื่องจากการที่มีอนุภาคของแข็งเข้ามาเกี่ยวข้อง ทำให้การคำนวณออกแบบมีความยุ่งยากมาก กว่าการไหลแบบหนึ่งวัฏภาค ดังนั้น การออกแบบระบบท่อสำหรับขนถ่ายของแข็งที่มีน้ำเป็นของ ไหลขับเคลื่อน (Pipeline Hydraulic Simulation) จึงมีความจำเป็นอย่างมากสำหรับการคำนวณ ออกแบบหรือการหาภาวะที่ดีที่สุด

1. <u>รูปแบบการใหล (Flow Regime)</u>

ขณะปฏิบัติการขนถ่ายมลสายในท่อแนวระดับ รูปแบบการไหลของมลสายจะ เป็นรูปแบบใดนั้น ขึ้นกับคุณสมบัติทางกายภาพของของแข็งและของเหลว ได้แก่ ความถ่วง จำเพาะของของแข็ง (s) ขนาดของอนุภาคของแข็ง (d_p) ความเร็วการไหลเฉลี่ย (V) ความหนาแน่น ของของไหล (**ρ**_L) ความหนืดของของไหล (**μ**) ความเข้มข้นเชิงปริมาตรของมลสาย (C_v) และ ขนาดท่อ (D) ดังนั้น 4 รูปแบบการไหลของมลสายในท่อแนวระดับที่สามารถเกิดขึ้นได้ คือ

ก. การใหลแบบโฮโมจีเนียส (Homogeneous Flow)

การไหลแบบโฮโมจีเนียส สามารถเกิดขึ้นได้ในกรณีที่อนุภาคของแข็งในมลสายมี ความเข้มข้นสูง และมีขนาดเล็ก (ประมาณเล็กกว่า 44 ไมครอน) มากพอที่จะแขวนลอยได้ในของ ไหล ความสัมพันธ์ระหว่าง shear stress - shear strain ของมลสายมักจะแสดงต่างไปจากของ ไหลบริสุทธิ์เดิมที่เป็นตัวขับเคลื่อน ซึ่งโดยปกติจะใช้น้ำเป็นของไหลขับเคลื่อน และมลสายมักจะ แสดงพฤติกรรมแบบนอนนิวโตเนียน รูปแบบการไหลสามารถเป็นได้ทั้งแบบราบเรียบและแบบปั่น ป่วน ในการคำนวณความดันลด จำเป็นต้องใช้ความรู้เกี่ยวกับรีโอโลยีในการแก้ปัญหา ซึ่งอยู่นอก ขอบเขตการศึกษาครั้งนี้ ตัวอย่างของมลสายประเภทนี้ คือ น้ำโคลน และน้ำเสียที่ออกจาก Flue Gas Scrubber เป็นต้น

ข. การใหลแบบซูโดโฮโมจีเนียส (Pseudo-Homogeneous Flow)

การไหลแบบซูโดโฮโมจีเนียส คือการไหลในท่อของมลสายประเภทที่ตกตะกอนได้ การไหลแบบนี้จะเกิดขึ้นได้ก็ต่อเมื่อ เป็นการไหลแบบปั่นป่วนและความเร็วการไหลสูงมากพอที่จะ ทำให้ อนุภาคของแข็งที่แขวนลอยในมลสายกระจัดกระจายตัวอย่างสม่ำเสมอทั่วถึงตามพื้นที่ภาค ตัดขวางท่อ จนกระทั่งสามารถกล่าวได้ว่าเป็นของไหลเนื้อเดียว และความดันลดสามารถคำนวณ ได้ด้วย สมการของ Darcy-Weisbach โดยใช้ความเข้มข้นและความหนืดของมลสายแทนของไห ลบริสุทธ์หรือน้ำซึ่งจะได้กล่าวในหัวข้อต่อไป

ค. การใหลแบบเฮทเทอโรจีเนียส (Heterogeneous Flow)

ในการออกแบบระท่อขนถ่ายมลสายที่ตกตะกอนได้ ปกตินิยมควบคุมให้มีการ ใหลในรูปแบบนี้ ซึ่งการไหลแบบเฮทเทอโรจีเนียสสามารถเกิดขึ้นได้ ก็ต่อเมื่อ อนุภาคของแข็งมี ขนาดใหญ่ หรือมีความถ่วงจำเพาะสูง และความเร็วของการไหลมีค่าเท่ากับความเร็ววิกฤต จนทำ ให้อนุภาคของแข็งแยกตัวออกจากของไหล แต่ก็ยังคงแขวนลอยในของไหล และเกิดเกรเดียนท์ของ ความเข้มข้นในแนวภาคตัดขวางของพื้นที่หน้าตัดท่อ ปกติอนุภาคของแข็งที่แขวนลอยในมลสาย ประเภทนี้ จะไม่เข้าไปปรับรีโอโลยีของของไหล ช่วงประมาณตั้งแต่ปี ค.ศ. 1950 ได้มีผู้ทำการศึกษาค้นคว้าพฤติกรรมการไหล ของมลสายรูปแบบนี้ และได้ตีพิมพ์ผลงานออกมาเป็นจำนวนมาก อย่างไรก็ตามความรู้ต่างๆ อยู่ ในรูปสมการเอมไพริกัล และมีข้อจำกัดในการนำไปใช้ ในการศึกษาวิจัยครั้งนี้ ผู้เขียนมุ่งเน้นไปที่ การไหลแบบเฮทเทอโรจีเนียส เนื่องจาก การไหลลักษณะเช่นนี้มีประสิทธิภาพและความปลอดภัย พอเพียง และอัตราการสิ้นเปลืองพลังงานต่อหน่วยน้อยที่สุด

ง. การไหลแบบแยกเป็นชั้น (Flow with Sliding Bed)

การไหลประเภทนี้มักเกิดขึ้น กรณี อนุภาคของแข็งมีขนาดโตและความเร็วการ ไหลมีค่าน้อยกว่าความเร็ววิกฤตมาก ดังนั้น แรงโน้มถ่วงที่กระทำต่ออนุภาคจึงมีค่ามากกว่าแรง พยุงอันเนื่องมาจากแรงลอยตัวหรือ Drag force ขณะเกิดการไหลอนุภาคของแข็งมีแนวโน้มตก ตะกอนบริเวณท้องท่อ บางครั้งอาจมีการกลิ้งไถลของอนุภาคไปตามท้องท่อ มลสายแยกออกเป็น สองชั้นอย่างชัดเจน การไหลประเภทนี้ไม่เป็นที่ต้องการ และวิศวกรผู้ปฏิบัติงานต้องป้องกันไม่ให้ เกิดขึ้น ผลกระทบ คือ ขาดแคลนข้อมูลการไหลในลักษณะนี้ และยังขาดการศึกษาอย่างต่อเนื่อง

 2) โครงสร้างกระบวนการออกแบบระบบท่อ(Outline of slurry pipeline design) ในการออกแบบระบบท่อ ตัวแปรหรือพารามิเตอร์ที่ต้องการทราบสามารถจำแนก เป็นหมวดได้ดังนี้

- ก. หมวดกระบวนการ (Process Consideration)
 - 1) การเลือกของไหลส่งกำลัง โดยปกติจะใช้น้ำเป็นของไหลส่งกำลัง
 - 2) การเลือกความเข้มข้นที่เหมาะสม
 - 3) การคำนวณความเร็ววิกฤต
 - 4) การคำนวณความดันลด
- ข. หมวดเครื่องกล (Mechanical Consideration)
 - 1) การเลือกประเภทเครื่องสูบ
 - 2) การเลือกจำนวนและตำแหน่งของสถานีเครื่องสูบ
 - การควบคุมอัตโนมัติ
 - 4) การเลือกวิธีการก่อสร้างระบบท่อใต้ดินหรือบนดิน
- ค. หมวดทางด้านเศรษศาสตร์ (Economic Factors)
 - 1) การลงทุน
 - 2) ค่าดำเนินการ
 - การเลือกขนาดท่อที่เหมาะสมและค่าใช้จ่ายทางด้านพลังงาน

การศึกษาครั้งนี้ผู้เขียนมุ่งเน้นไปที่หมวด ก และ หมวด ค และเฉพาะบางหัวข้อที่เกี่ยวข้องเท่านั้น

3) สมบัติกายภายของมลสาย (Physical Properties of Suspension)

ข้อมูลที่เป็นพื้นฐานการคำนวณออกแบบระบบท่อขนถ่ายมลสาย ก็คือ ข้อมูลที่ เป็นสมบัติกายภาพของ ของแข็งและของไหล ได้แก่ ความหนาแน่น และ ความหนืด เป็นต้น

ก. ความหนาแน่น (Density)

ความหนาแน่นของของแข็งและของไหลสามารถประเมินได้จากความถ่วงจำเพาะ ส่วนมลสายก็สามารถวัดได้โดยตรงด้วยวิธีการธรรมดา แต่บางครั้งก็อาจเกิดข้อผิดพลาดได้เช่นกัน โดยเฉพาะมลสายที่อนุภาคของแข็งตกตะกอนเร็ว เช่นที่บริเวณท้องท่อค่าความหนาแน่นที่วัดได้จะ มีค่าสูงเกินจริง ดังนั้น ในทางปฏิบัติสามารถคำนวณความหนาแน่นของมลสาย จากความหนา แน่นของของแข็งและของไหล

$$\rho_{m} = \frac{100}{\frac{c_{w}}{\rho_{s}} + \frac{100 - c_{w}}{\rho_{L}}}$$
(2-31)

โดยที่ C_w คือ สัดส่วนความเข้มข้นของของแข็งในมลสายโดยน้ำหนัก แต่โดยทั่วไป การไหลในท่อมักเกี่ยวข้องกับการไหลเชิงปริมาตร ดังนั้น ความเข้มข้นเชิงปริมาตร สามารถคำนวณได้จาก

$$c_{v} = \frac{100C_{w} / \rho_{s}}{\frac{c_{w}}{\rho_{s}} + \frac{100 - c_{w}}{\rho_{t}}} = \frac{C_{w} \rho_{m}}{\rho_{s}}$$
(2-32)

$$c_{w} = \frac{C_{v} \rho_{s}}{C_{v} \rho_{s} + (100 - C_{v})} = \frac{C_{v} \rho_{s}}{\rho_{m}}$$
(2-33)

ข. ความหนืด (Viscosity)

ผลกระทบที่สำคัญของการที่อนุภาคของแข็งแขวนลอยในของไหลก็คือ ความ หนืดที่เปลี่ยนไป ในหัวข้อนี้จะพิจารณาเฉพาะความหนืดที่เปลี่ยนแปลงอันเนื่องมาจากอนุภาคทรง กลม กรณีมลสายเจือจาง EINSTEIN ปี ค.ศ. 1905 เสนอสมการความสัมพันธ์ต่อไปนี้

$$\frac{\mu_m}{\mu_o} = 1 + 2.5 \,\mathrm{C_v} \tag{2-34}$$

กรณีมลสายเข้มข้น THOMAS ค.ศ 1962 ทำการวิเคราะห์ความสัมพันธ์ของข้อมูล นำเสนอสมการ ความสัมพันธ์ดังต่อไปนี้

$$\frac{\mu_m}{\mu_o} = 1 + 2.5 \text{ C}_{\text{V}} + 10.05 \text{ C}_{\text{V}}^2 + 0.00273 \exp(16.6 \text{ C}_{\text{V}})$$
(2-35)

โดยที่

 $\mu_{\scriptscriptstyle m}$ $\,$ คือ ความหนืดของมลสาย

 μ_{\circ} คือ ความหนืดของของไหลบริสุทธิ์

C_v คือ ความเข้มข้นเชิงปริมาตรของของแข็งในมลสาย

2.4 เอกสารและงานวิจัยที่เกี่ยวข้อง

ความพยายามในการพัฒนาสมการคำนวณความดันลดของมลสายเริ่มจากการที่ Blatch (1906) เสนอสมการความสัมพันธ์ของความดันลด ดังแสดงในสมการต่อไปนี้

$$h_{\rm s} = h_{\rm w} + AC \tag{2-36}$$

ต่อมา Howard (1939) ได้ศึกษามลสายที่มีทรายเป็นส่วนประกอบในท่อขนาด 10.2 ซ.ม. โดย ศึกษาถึงอิทธิพลของขนาดของอนุภาคที่มีต่อการไหลของมลสาย และต่อมา Wilson (1942) ก็ได้ นำเสนอสมการความดันลด คือ

$$h_{s} = h_{w} + A' \frac{v_{s}}{v} C'$$
(2-37)

ทฤษฎีต่างๆ ได้ถูกพัฒนาอย่างต่อเนื่องจนกระทั่ง ช่วงต้นทศวรรษที่ 50 Durand และคณะ (1952) ได้ทดลองเพื่อศึกษาการไหลของมลสายในท่อและได้นำเสนอผลงานโดยพัฒนาสมการเอมไพริกัล (Empirical Equation) จากการทดลอง สำหรับทำนายความดันลดของการไหลแบบสองวัฏภาค ภายในท่อ และยังได้นำเสนอสมการสำหรับทำนายความเร็ววิกฤต ในรูปของความสัมพันธ์ต่อไปนี้

$$V_{\rm C} = F_{\rm L} \sqrt{2gD(s-1)}$$
 (2-38)

โดยที่ F_L เป็นฟังก์ชันของขนาดอนุภาคและความเข้มข้น และในช่วงเวลาขณะเดียวกันนั้น Newitt (1955) ทำการศึกษาการไหลของมลสายในท่อ โดยตั้งข้อสังเกตว่า กรณีอนุภาคของแข็งมีขนาดโต และอัตราการไหลค่อนข้างช้า ประมาณ น้อยกว่า 17 เท่าของ Setting Velocity ความดันลด สามารถคำนวณได้ด้วยสมการต่อไปนี้

$$\frac{h_{s} - h_{w}}{h_{w}C_{v}} = 66 \ (s-1)gDN^{2}$$
(2-39)

ต่อมา Wasp และคณะ (1963) ได้ปรับปรุงวิธีการคำนวณความดันลด และได้พัฒนาสมการจน กระทั่งสามารถนำไปออกแบบประยุกต์ระบบท่อขนถ่ายมลสายในเชิงการค้า และต่อมา Zandi และ Govatos (1967) นำเสนอพารามิเตอร์ ที่สามารถใช้เป็นดัชนี ในการจำแนกประเภทของมล สาย และต่อมา Hanks (1978) พัฒนากระบวนการทำนายแฟกเตอร์ความเสียดทานในกรณีการ ใหลแบบโฮโมจีเนียสของของไหลที่มีรีโอโลยี่แบบนอนนิวโตเนียน

2.4.1 ความเร็ววิกฤต (Critical Velocity)

ความหมายหรือคำจำกัดความของความเร็ววิกฤตมีสองความหมาย ความหมาย แรก คือ เป็นขนาดความเร็วการไหลในท่ออ้างอิงค่าหนึ่ง ซึ่งถ้าของไหลมีความเร็วการไหลต่ำกว่า ความเร็วอ้างอิงค่านี้ อนุภาคของแข็งจะเริ่มตกตะกอน และอีกความหมายหนึ่งก็คือ ขนาด ความเร็วของการไหลของมลสายที่เหมาะสมที่สุดที่ทำให้เกิดความดันลดที่น้อยที่สุดที่ความเข้มข้น ของมลสายคงที่ ในปฏิบัติการขนถ่ายมลสายทางระบบท่อ จำเป็นต้องขนถ่ายที่ความเร็ววิกฤต เพราะถ้าขนถ่ายที่ความเร็วต่ำกว่านี้ อนุภาคของแข็งที่ตกตะกอนทำให้พื้นที่หน้าตัดท่อลดลงและ กีดขวางเส้นทางการไหลและผิวด้านบนของอนุภาคที่ตกตะกอนจะมีความหยาบมากกว่าผิวของ ท่อ ด้วยเหตุผลที่กล่าวมาทำให้ความดันลดมีค่าสูง และอาจรุนแรงจนถึงขั้นทำให้ระบบท่ออุดตัน ได้ แต่ถ้าขนถ่ายที่ความเร็วสูงกว่านี้ ก็จะเกิดการสิ้นเปลืองพลังงานมากเกินไป ดังนั้น การคำนวณ ความเร็ววิกฤตจึงเป็นเรื่องที่สำคัญมาก ทั้งในมุมมองทางด้านวิศวกรรมและทางด้านเศรษฐศาสตร์

2.4.2 ความดันลดของการใหลในท่อแบบสองวัฏภาค

เมื่อพิจารณารูปภาพที่ 2.5 ถึง 2.7 ซึ่งแสดงความสัมพันธ์ระหว่างความดันลด และความเร็วเฉลี่ยของมลสายขณะไหลในท่อที่ความเข้มข้นของมลสายต่างๆ กัน ในท่อขนาด 3 นิ้ว 6 นิ้ว และ 9 นิ้วตามลำดับ จากรูปภาพสามารถสังเกตได้ว่า ความดันลดอยู่ในรูปของฟุตน้ำต่อ ฟุตของความยาวท่อ และที่ความเร็วการไหลเดียวกันพบว่าความดันลดของมลสายมีค่ามากกว่า ของน้ำบริสุทธิ และมากขึ้นตามปริมาณความเข้มข้นของมลสายที่เพิ่มขึ้น จากรูปภาพที่ 2.8 พบ ว่าความดันลดส่วนเกิน (*h*_s- *h*_w) อันเนื่องมาจากอนุภาคของแข็งที่แขวนลอยในมลสาย จะมีขนาด ลดลงเมื่อความเร็วการไหลมีค่ามากขึ้น

ถ้านำความดันลดส่วนเกิน (*h*_s- *h_w*) มาหารด้วยความเข้มข้น ผลลัพธ์ที่ได้คือ ชุด ของเส้นโค้งจะเหลือเพียงเส้นเดียวดังแสดงในรูปภาพที่ 2.9 และในทำนองเดียวกัน ในรูปภาพที่ 2.8 แสดงความสัมพันธ์ระหว่างความดันลดส่วนเกิน (*h*_s- *h_w*) และความเร็วการไหลของมลสาย โดยกำหนดให้มลสายคงมีความเข้มข้นคงที่ พบว่าความดันลดขึ้นกับเทอม *V*²/gD และที่ความดัน ลดคงที่ขนาดความเร็วการไหลของมลสายจะขึ้นอยู่กับขนาดท่อ และชุดของเส้นโค้งที่ขนาดท่อ ต่างๆ กันจะมีลักษณะคล้ายกัน

ในการหาความสัมพันธ์ระหว่างค่าพารามิเตอร์ต่างๆ ได้แก่ ความดันลดส่วนเกิน (*h_s- h_w*) ความเข้มข้น (C_v) และความเร็วการไหลของมลสาย (V) ตามที่แสดงในรูปภาพที่ 2.10 นั้น เป็นความสัมพันธ์ของท่อหนึ่งขนาดเท่านั้น อย่างไรก็ตามความสัมพันธ์ของท่อขนาดอื่นๆ ก็ สามารถหาได้ โดยการพรอตเทอม $\frac{h_s - h_w}{h_w C_v}$ และเทอม $\frac{v}{(gD)^{0.5}}$ ดังแสดงในรูปภาพที่ 2.11

รูปภาพที่ 2.5 แสดงความสัมพันธ์ระหว่างความดันลด และความเร็วการไหลของมลสายในท่อ 3 นิ้ว ที่ความเข้มข้นต่างๆ รูปภาพที่ 2.6 แสดงความสัมพันธ์ระหว่างความดันลด และความเร็วการไหลของมลสายในท่อ 6 นิ้ว ที่ความเข้มข้นต่างๆ

รูปภาพที่ 2.8 แสดงความสัมพันธ์ระหว่างความดันลด ส่วนเกินเทียบกับน้ำในท่อขนาด 9 นิ้ว ที่ความเข้มข้นต่างๆ

2.9 แผนภาพแสดงความสัมพันธ์ระหว่างความดันลดส่วนเกินต่อหนึ่งหน่วยความเข้มข้นของ มลสายในท่อขนาด 9 นิ้ว

2.10 แผนภาพแสดงความสัมพันธ์ระหว่างความดันลดส่วนเกินของมลสายในท่อขนาดต่างๆ ที่
 ความเข้มข้น 15 %

2.4.3 สมการเอมไพริกัลของ Durand

Durand และคณะ (1952) นำเสนอผลงานการทดลองศึกษาค้นคว้าเกี่ยวกับการ ใหลของมลสายในท่อ และเป็นมลสายที่ประกอบไปด้วย ทราย กรวด และ น้ำ โดย Durand และ คณะ (1952) ทำการศึกษาผลกระทบของขนาดอนุภาคที่มีต่อความดันลด พบว่าความดันลดแปร ผันตรงกับขนาดอนุภาค ในการศึกษา Durand ได้นำข้อมูลทดสอบ 310 ข้อมูลมาพรอตกราฟหา ความสัมพันธ์ระหว่างเทอม (*h_s* - *h_w*)/*h_w*.*C_v* และเทอม *V*²*C_p*^{1/2}/(*gD*) พบว่า ข้อมูลทดสอบทั้ง 310 ข้อมูลเกาะกลุ่มเส้นโค้งเส้นหนึ่งดังแสดงในรูปภาพที่ 2.12 และจากความสัมพันธ์ดังกล่าว เป็นที่มาของสมการเอมไพริกัล ดังต่อไปนี้

$$\frac{h_{s} - h_{w}}{h_{w}C_{V}} = 176 \left\{ \left(\frac{\sqrt{gD}}{V} \right)^{3} \left(\frac{1}{\sqrt{C_{D}}} \right) \right\}^{-1.5}$$
(2-40)

ในช่วงเวลาเดียวกัน Worster (1953) ได้ทำการศึกษาการไหลของมลสายที่ประกอบด้วย ถ่านหิน และน้ำโดยอนุภาคของถ่านหินมีขนาดใหญ่กว่ากรวดและทราย และได้นำผลงานคือสมการซึ่งมีรูป แบบคล้ายกันกับสมการของ Durand (1952) ดังนี้

$$\frac{h_s - h_w}{h_w C_V} = 120 \left(\frac{\sqrt{gD}}{V} \cdot \sqrt{\frac{\rho_s - \rho_L}{\rho_L}}\right)^3$$
(2-41)

จากสมการ (2-41) สามารถสังเกตได้ว่า ความสัมพันธ์ของกลุ่มตัวแปรได้รวมความหนาแน่นของ อนุภาคเข้าไว้ในสมการด้วย แต่ไม่มีพารามิเตอร์ที่เกี่ยวข้องกับขนาดของอนุภาคอยู่ในสมการ

เมื่อย้อนกลับมาพิจารณาสมการของ Durand และคณะ (1952) ได้มีการปรับปรุง แก้ไขสมการเพื่อให้สามารถใช้งานได้กว้างขวางยิ่งขึ้นไม่เพียงแต่เฉพาะมลสายประเภทกรวดและ ทรายที่มีความถ่วงจำเพาะ 2.65 เท่านั้น โดยการเพิ่มเทอมความถ่วงจำเพาะเข้าไว้ในสมการ เหมือนสมการ Worster และสามารถจัดรูปแบบสมการใหม่ ได้ดังนี้

$$\frac{h_{s} - h_{w}}{h_{w}C_{V}} = 81 \left(\frac{gD(\rho_{s} - \rho_{L})}{V^{2}\sqrt{C_{D}}\rho_{L}}\right)^{1.5}$$
(2-42)

แต่โดยทั่วไป ในการขนถ่ายของแข็งมักจะขนถ่ายด้วยกำลังน้ำ ดังนั้น สมการจึงลดรูปเป็น

$$\frac{h_s - h_w}{h_w C_V} = 81 \left(\frac{gD(S - 1)}{V^2 \sqrt{C_D}} \right)^{1.5}$$
(2-43)

h_s คือ ความดันลดของมลสาย มีหน่วยเป็น เมตร (ฟุต) น้ำต่อเมตร (ฟุต)ท่อ

2.11 แผนภาพแสดงความสัมพันธ์ระหว่างความดันลดส่วนเกินต่อหนึ่งหน่วยของมลสายในท่อ ขนาดต่างๆ

2.12 แผนภาพแสดงความสัมพันธ์ของกลุ่มตัวแปรต่างๆ ในการทดลองของ Durand และ คณะ

h _w	คือ	ความดันลดของน้ำ มีหน่วยเป็น เมตร (ฟุต) น้ำต่อเมตร (ฟุต)ท่อ									
S	คือ	ความถ่วงจำเพาะของอนุภาค									
C _v	คือ	ความเข้มข้นเชิงปริม	ความเข้มข้นเชิงปริมาตรของอนุภาคในมลสาย								
ข้อมูลห	าดสอบ	310 ข้อมูลตามรูปภา	พที่ 2.10 มีช่วง	าขอบเขตดัง	<u>3-</u> 1.e						
ขนาดท	่าอ		25	-	550	มม					
ขนาดข	ขนาดของอนุภาค 0.1 - 25 มะ										
ความเ	ความเข้มข้นเชิงปริมาตร 1 - 35 %										

2.4.4 สมการเอมไพริกัลของ Zandi และ Govatos

Zandi และ Govatos (1967) ได้รวบรวมข้อมูลการทดลองการไหลของมลสายใน ท่ออย่างกว้างขวาง โดยมีข้อมูลทั้งที่ถูกนำเสนออย่างเป็นทางการและข้อมูลที่ได้จากการทดสอบ อย่างไม่เป็นทางการ และปรับปรุงข้อมูลเหล่านี้ให้อยู่ในมาตรฐานและหน่วยเดียวกัน หลังจากนั้น ได้นำข้อมูลมาทดสอบเปรียบเทียบกับสมการชั้นนำที่ได้รับการยอมรับในขณะนั้น และได้แก้ไขดัด แปลงสมการเดิมเพื่อให้ทำนายความดันลดได้แม่นยำยิ่งขึ้น นอกจากนี้ยังได้นำเสนอ สมการ สำหรับใช้จำแนกประเภทของมลสาย

Zandi และ Govatos (1967) ไม่เพียงนำเสนอสมการคำนวณความดันลด แต่ยัง ได้ทำการทดสอบขอบเขตหรือข้อจำกัดการนำไปใช้ของสมการ Durand (1952) ด้วยการใช้ คอมพิวเตอร์รวบรวมข้อมูลกว่า 1452 ข้อมูล ครอบคลุมขอบเขตตัวแปรอย่างกว้างขวาง โดยทำ การแยกข้อมูลของระบบที่มีการไหลแบบแยกชั้น (Flow with Sliding Bed) ออกจากฐานข้อมูล หลังจากนั้นจึงทำการทดสอบ Zandi และ Govatos (1967) พบว่าสมการ Durand (1952) สามารถทำนายความดันลดของระบบที่มีการไหลแบบเฮทเทอร์โรจีเนียสได้แม่นยำยิ่งขึ้น และได้ เสนอ I-Number ซึ่งเป็นกลุ่มตัวแปรไร้มิติคล้ายกันกับ เรย์โนลด์นัมเบอร์ เป็นเกณฑ์ในการคัดแยก ข้อมูล โดยมีรูปสมการเป็นดังนี้

$$N_{l} = \frac{V^{2} \sqrt{C_{D}}}{C_{V} D g(s - 1)}$$
(2-44)

ข้อมูลทดสอบที่มีค่า I-Number น้อยกว่า 40 จะถูกคัดออกและจัดให้เป็นการไหลแบบแยกชั้น ซึ่ง ในการศึกษาครั้งนี้ข้อมูลจำนวน 462 ข้อมูล ได้ถูกคัดแยกออกจากข้อมูลทดสอบ และถ้านำสม การ Durand (1952) มาทำนายความดันลดในช่วงขอบเขตนี้ พบว่ามีความคลาดเคลื่อนสูง นอก จากนี้ Zandi และ Govatos (1967) ยังพบข้อสังเกตว่า ข้อมูลระหว่างเทอม $rac{h_s - h_w}{h_w C_V}$ และ $V^2 C_D^{-1/2}/gD(s-1)$ ที่พรอตบน กราฟ LOG-LOG สามารถแทนด้วยสมการความสัมพันธ์เชิงเส้น 2 สมการ และในการที่จะเลือกใช้ความสัมพันธ์ใดนั้น ขึ้นอยู่กับเทอม $V^2 C_D^{-1/2}/gD(s-1)$ ดังนี้

กรณีเทอม
$$\frac{gD(s-1)}{V^2\sqrt{C_D}}$$
 < 0.1
 $\frac{h_s - h_w}{h_w C_V} = 6.3 \left(\frac{gD(S-1)}{V^2\sqrt{C_D}}\right)^{0.354}$ (2-45)
กรณีเทอม $\frac{gD(s-1)}{V^2\sqrt{C_D}}$ > 0.1
 $\frac{h_s - h_w}{h_w C_V} = 280 \left(\frac{gD(S-1)}{V^2\sqrt{C_D}}\right)^{1.93}$ (2-46)

íอมูลทดสอบ 1452 ข้อมูล มีช่วงขอบเขตดังนี้								
ขนาดเส้นผ่านศูนย์กลางท่ <mark>อ</mark>	20	-	600	มม.				
ขนาดของอนุภาค	0.074	-	50	มม.				
ความเข้มข้นเชิงปริมาตร	1	-	50	%				

สมการความสัมพันธ์ในรูปตัวแปร่ไร้มิติหรือ I-Number ของ Zandi และ Govatos (1967) ถือได้ว่าประสบผลสำเร็จในเชิงเป็นตัวดัชนีที่สามารถชี้บ่งได้ว่าระบบท่อขนถ่ายมลสายมี การไหลแบบแยกชั้นหรือการไหลแบบเฮทเทอร์โรจีเนียส และสมการเอมไพริกัล 2 สมการที่ได้เสนอ มานั้น มุ่งหวังเพื่อทำนายความดันลดของระบบที่มีการไหลแบบเฮทเทอร์โรจีเนียส และยังพบว่า สมการมีความยืดหยุ่นสูงหรือขอบเขตตัวแปรกว้างขวางกว่าสมการของ Durand (1952) เนื่องจาก ข้อมูลทดสอบที่มากกว่า แต่การที่ Zandi (1967) ออกมากล่าวว่าสมการความดันลดของ Durand (1952) ไม่สามารถทำนายระบบที่มีการไหลแบบแยกชั้นได้นั้น ขัดแย้งกับข้อมูลทดสอบของ Durand (1952) ซึ่งเป็นที่มาของสมการต้นแบบ จากรูปภาพที่ 12 ซึ่งมีข้อมูลทดสอบจำนวนหนึ่งมี การไหลแบบแยกชั้น

2.4.5 สมการเอมไพริกัลของ Turian และ Oroskar

สมการเอมไพริกัลของ Turian และ Oroskar ถูกนำเสนอใน ปี ค.ศ. 1980 สำหรับ ใช้ทำนายความเร็ววิกฤตของการไหลของมลสายในท่อ ตัวสมการมีพื้นฐานมาจากการวิเคราะห์ สมดุลเชิงพลังงานระหว่างแรงโน้มถ่วงของอนุภาคที่แขวนลอยในมลสายและ Eddy force อันเนื่อง มาจากการไหลแบบปั่นป่วน จากการทดสอบพบว่ามีประสิทธิภาพสูงกว่าสมการอื่นที่มีอยู่ในขณะ นั้น อย่างไรก็ตาม ข้อมูลที่นำมาทดสอบครอบคลุมเฉพาะท่อขนาดเล็กและอนุภาคขนาดเล็กเท่า นั้น ในการวิเคราะห์ Turian และ Oroskar (1980) เริ่มต้นด้วยการคำนวณความเร็วบั้นปลายและ drag coefficient โดยวิธีการทั่วไปเริ่มจาก drag force ด้วยสมการต่อไปนี้

$$F_{\rm D} = C_{\rm D}(\rho_{\rm w} V_{\rm s}^{2}/2) \pi d^{2}/4$$
 (2-47)

 V_{s} คือความเร็วบั้นปลายที่คำนึงถึงความเข้มข้นหรือ Hindered Settling Velocity ซึ่งคำนวณได้ จาก $V_{s} = V_{t}(1 - C_{v})^{2}$ ในขณะที่พลังงานต่ออนุภาคที่มาจากแรงเอ็ดดิ เพื่อพยุงอนุภาคให้อยู่นิ่ง คือ

$$(E_D)_1 = F_D I_e$$

ดังนั้น $(E_D)_1 = C_D (\rho_w V_s^2/2) \pi d^2 I_e/4$ (2-48)

้สุดท้ายได้สมการใช้ทำนายความเร็ววิกฤต ดังแสดงในสมการต่อไปนี้

$$V_{\rm C} = 1.85 {\rm Cv}^{0.1536} (1-{\rm Cv})^{0.3564} ({\rm D/d_p})^{0.378} {\rm Re_p}^{0.09} [{\rm gd_p}({\rm s-1})]^{0.5} {\rm X}^{0.3}$$
(2-49)

โดยที่ Re_p =
$$D\rho_w [gd_p(S-1)^{0.5} / \mu]$$

$$X = \frac{2}{\sqrt{\pi}} \left[\frac{2}{\sqrt{\pi}} \gamma \exp\left(\frac{-4\gamma^2}{\pi}\right) + \int_{\gamma}^{\infty} \exp\left(\frac{-4\gamma^2}{\pi}\right) d\gamma \right]$$
(2-50)

$$S_{s} = \frac{\rho_{s}}{\rho_{w}}$$
(2-51)

$$\gamma = \frac{v_s}{v_c}$$
(2-52)

จากชุดสมการ (2-49) ถึง (2-52) ได้ชี้บ่งเป็นนัยว่า การทำนายความเร็ววิกฤต (V_c) นี้จำเป็นต้อง คำนวณแบบวนซ้ำ อย่างไรก็ตามในภาวะปกติ กรณี V_s/V_c < 0.5 เทอม X จะมีค่าอยู่ระหว่าง 0.9 ถึง 1.0 ดังนั้นเทอม X^{0.3} จะมีค่าเข้าใกล้ 1 และความแม่นยำอยู่ในเกณฑ์ที่ยอมรับได้ <u>ขอบเขตข้อมูลตัวแปรที่ Turian และ Oroskar (1980) ทำการศึกษา</u>

ขนาดเส้นผ่านศูนย์กลางท่อ	12.5	-	1541	มม.
ความหนาแน่นของอนุภาค	1300	-	5245	กก./เมตร ³
ขนาดของอนุภาค	0.074	-	2.04	มม.
ความเข้มข้นเชิงปริมาตร	1	-	42	%
ความหนาแน่นของของไหล	900	-	1350	กก./เมตร ³
ความหนืดของของไหล	0.00047	-	0.0380	กก./ม-วินาที

2.4.6 สมการเอมไพริกัลของ Gillies และ Shook

สมการเอมไพริกัลของ Gillies และ Shook (1991) สำหรับใช้ทำนายความเร็ว วิกฤต ตัวสมการมีพื้นฐานทางด้านทฤษฎีมาจากรูปแบบสมดุลของแรงระหว่างชั้น ซึ่งสามารถ อธิบายปรากฏการณ์การตกตะกอนของอนุภาคได้ การได้มาซึ่งสมการเริ่มต้นที่

$$d\sigma_n/dy = (\rho_s - \rho_2)g(C_2 - C_1)$$
 (2-53)

ความเค้นเฉือน
$$au_{23} = 0.5(
ho_s -
ho_2)$$
gd(cos $eta_3 - \coseta_2)$ (2-54)

แต่ τ₂₃ สามารถแสดงในรูปแฟกเตอร์ความเสียดทาน

$$\tau_{23} = f_{23} V^2 \rho_m / 2$$
 (2-55)

เมื่อแทน V ด้วย V_c

 $V_{c}^{2} = (\rho_{s} - \rho_{2})(1 - \cos\beta_{2})(C_{2} - C_{1})$ gDtan $\phi/f_{23}\rho_{m}$ (2-56)

ถึงแม้ว่าจะได้สมการคำนวณความเร็ววิกฤต แต่ก็มีพารามิเตอร์ที่ไม่ทราบค่ามากมาย ดังนั้นเพื่อ ลดความยุ่งยากในการคำนวณ จึงจำเป็นต้องมีข้อสมมติฐาน สุดท้ายได้สมการแสดงในเทอมของ F ซึ่ง Durand และคณะ (1952) เคยนำมาใช้ก่อนหน้านี้

$$V_{c} = F[gD(\rho_{s} - \rho_{w}) / \rho_{w}]^{0.5}$$
(2-57)

โดยที่

$$= \exp(0.51 - 0.0073 C_{D} - 12.5K_{4})$$
(2-58)

$$K_4 = (K_3 - 0.14)^2$$
 (2-59)

$$K_{3} = \frac{\mu_{w}^{2/3}}{\rho_{w}^{2/3} g^{1/3} d_{p}}$$
(2-60)

สมการเอมไพริกัลของ Gillies และ Shook (1991) ครอบคลุมข้อมูลการทดลองที่มีขนาดเส้นผ่าน ศูนย์กลางท่อและขนาดของอนุภาคใหญ่กว่าสมการของ Turian และ Oroska (1980) ดังราย ละเอียดต่อไปนี้

ขนาดเส้นผ่านศูนย์กลางท่อ	50	-	500	มม.
ความหนาแน่นของอนุภาค	1300	-	5245	กก./เมตร ³
ขนาดของอนุภาค	0.1	-	50	มม.
ความเข้มข้นเชิงปริมาตร	1	-	44	%
ความหนาแน่นของของไหล	993	-	1005	กก./เมตร ³
ความหนืดของของไหล	0.0009	-	0.0013	กก./ม-วินาที

บทที่ 3 การออกแบบขั้นตอนคำนวณและการพัฒนาโปรแกรม

3.1 ขอบเขตข้อมูลและระบบหน่วย

ตัวโปรแกรมการคำนวณการไหลแบบสองวัฏภาคในระบบท่อแนวระดับ พัฒนา มาจากโมเดลที่เป็นสมการเอมไพริกัล ซึ่งเป็นสมการความสัมพันธ์ของกลุ่มตัวแปรโดยมีพื้นฐานมา จากบันทึกข้อมูลที่ได้จากการทดลองในห้องปฏิบัติการหรือจากโครงการนำร่อง มลสายที่ทำการ ทดลองประกอบด้วย ทราย กรวด ถ่านหิน สินแร่ และน้ำ และการทดลองของนักวิจัยแต่ละคณะ จะมีขอบเขตของข้อมูลการทดลองแตกต่างกันไป และโดยทั่วไป ระบบหน่วยที่มักนิยมใช้เป็นมาตร ฐานในการคำนวณ คือ ระบบเมตริกและระบบอังกฤษ ดังแสดงตามตารางต่อไปนี้ ตารางที่ 3.1 แสดงขอบเขตตัวแปรในการพัฒนาโปรแกรม และตารางที่ 3.2 เป็นตารางแสดงการแปลงหน่วย ตารางที่ 3.1 แสดงขอบเขตข้อมูลพื้นฐานการพัฒนาโปรแกรมคำนวณการไหลในท่อแบบสองวัฏ ภาค

ตัวแปร ค่าคงที่ และพา <mark>รามิเตอร์</mark>	<u>ขอบเ</u> ขตข้อมูล	าในหน่วยเมตริก
	ค่าต่ำสุด	ค่าสูงสุด
ประเภทของมลสาย	ตกตะกอนได้	ตกตะกอนได้
ขนาดเส้นผ่าศูนย์กลางอนุภาค (mm)	0.074	50
ความถ่วงจำเพาะของอนุภาค	1.30	5.245
Sphericity Shape Factor	0.65	1
ความหนาแน่นของของใหล (kg/ m³)	800	1350
ความหนืดของของไหล (kg/ (m -s))	0.0005	0.038
ขนาดเส้นผ่านศูนย์กลางท่อ (m)	0.012	0.60
ความขรุขระของผนังท่อ (m)	0.00004572	0.00004572
ความเข้มข้นเชิงปริมาตร (%)	1	50

ตารางที่ 3.2 ตารางแสดงการแปลงหน่วยของตัวแปรและพารามิเตอร์ที่จำเป็นสำหรับโปรแกรม คำนวณการไหลในท่อแบบสองวัฏภาค

รายการ	ต้องการเปลี่ยน หน่วยจาก	เป็น	คูณด้วย
พื้นที่ภาคตัดขวางท่อ (A)	ft ²	m²	0.0929
ขนาดเส้นผ่าศูนย์กลางท่อ (D)	ft	m	0.3048
ความยาวท่อ (L)	ft	m	0.3048
ความขรุขระของผนังท่อ (E)	ft	m	0.3048
ขนาดของอนุภาค (d _p)	ft	m	0.3048
ความถ่วงจำเพาะอนุภ <mark>า</mark> ค (s)		-	-
ความเข้มข้นเชิงปริมาตร (C _v)		-	-
ความหนาแน่นของไหล (ρ)	lbm/(ft-s)	kg/m ³	1.4882
ความหนืดของของไหล (µ)	lbm/ft ³	kg/(m.s)	0.001
ความเร่งจากแรงโน้มถ่วง (g)	ft/s ²	m/s ²	0.3048
อัตราการไหลเชิงปริมาตร (Q)	ft ³ /s	m³/s	0.02832
ความเร็วการไหลในท่อ (V)	ft/s	m/s	0.3048
ความดันลด (h)	ft water/ft pipe	m water/m pipe	1
อัตราการสิ้นเปลืองพลังงานต่อ หน่วย (SEC)	Btu/(lbm-mile)	kW/(ton-km)	1021.532
อุณหภูมิ (T)	deg °F	deg °C	(T-32)/1.8

3.2 ส่วนของตัวโปรแกรม

ในส่วนของการพัฒนาโปรแกรม ผู้ศึกษาวิจัยเลือกใช้ภาษาวิสชวล เบสิคบนระบบ ปฏิบัติการวินโดวส์สำหรับการพัฒนาโปรแกรมเพื่อคำนวณความดันลดของระบบท่อขนถ่ายมล สาย ทั้งนี้เป็นเพราะ ภาษาวิสชวล เบสิค บนระบบปฏิบัติการวินโดวส์ เป็นโปรแกรมภาษาเชิงวัตถุ ที่ทำงานแบบตามเหตุการณ์ที่เกิดขึ้น และที่สำคัญโปรแกรมที่พัฒนาโดยภาษาวิสชวล เบสิค บน วินโดวส์นั้นมีลักษณะภาษาที่คล้ายคลึงภาษาอังกฤษที่เราใช้กันอยู่ทุกวันนี้ ดังนั้นจึงเป็นการง่าย ต่อการทำความเข้าใจต่อตัวโปรแกรม หลักการเขียนโปรแกรมด้วย ภาษาวิสชวล เบสิคบนวินโดวส์ นั้น มีลักษณะเป็นโปรแกรมย่อยหรือฟังก์ชัน ซึ่งจะทำงานต่อเมื่อมีเหตุการณ์มากระตุ้น ตัวอย่าง เช่น การคลิกเมาส์ การเลือกปุ่มคำสั่ง หรือมีการเปลี่ยนแปลงในรายละเอียดของ Content หรือถูก เรียกจากรูทีน อื่นๆ เป็นต้น

ตัวโปรแกรมคำนวณการไหลแบบสองวัฏภาคในท่อแนวระดับ ถูกออกแบบให้เป็น สองหน้าต่าง คือหน้าต่างรับชุดข้อมูลของตัวแปรอิสระ และหน้าต่างแสดงผลการคำนวณ

3.2.1 หน้าต่างรับชุดข้อมูลของตัวแปรอิสระ

ข้อมูลเกี่ยวกับสมบัติกายภาพของของแข็งและน้ำหรือของไหลอื่นๆ รวมถึงสภาวะ การไหลและคุณสมบัติของท่อจะถูกป้อนเข้าสู่ตัวโปรแกรมเพื่อทำการคำนวณที่หน้าต่างนี้ ดังแสดง ในรูปภาพที่ 3.1 ภายในหน้าต่างจะถูกออกแบบให้มีกล่องรับข้อมูล (Text Box) ซึ่งผู้ใช้โปรแกรมจะ ต้องกรอกข้อมูลให้ครบถ้วนทุกกล่อง

3.2.2 หน้าต่างแสดงผลการคำนวณ

ภายในหน้าต่างแสดงผลการคำนวณ จะถูกออกแบบให้มีกล่องแสดงผลการ คำนวณ ทั้งส่วนที่จำเป็นต่อการออกแบบระบบท่อ และส่วนที่เป็นพารามิเตอร์สำหรับใช้ตรวจสอบ ความถูกต้องของโปรแกรมระหว่างการคำนวณ ตัวอย่างหน้าต่างแสดงผลการคำนวณ แสดงในรูป ภาพที่ 3.2

SINPUT BASIC DATA PROPERTIES

_ 8 ×

NPUT DA	IA	Metric C English						
Date :	01 Jan 2003	PARTICLE SOLID PROPERTIES						
Project Name :	Coal Slurry Cross Country Pipeline	PARTICLE DENSITY	2890	kg/m3				
he Client :	EGAT	PARTICLE DIAMETER	0.000101	m				
he Contractor :	NKK Corporation	PARTICLE FRACTION	1					
lob Number :	NC-3189	SPHERICITY	1					
Run No. :	001	LIQUID PROPERTIES						
rawing Ref. No. :	DG-M-3189-L-001	LIQUID DENSITY	998	1				
Prepared By :	Mr. Chao T.	LIQUID VISCOSITY	0.00098	kg/m3				
		PIPE PROPERTIES						
		PIPE DIAMETER	0.0509	m				
		PIPE WALL ROUGHNESS	0.00004572	m				
		FLOW PROPERTIES	 A second s					
		INPUT OPERATING VELOCITY	1.829	m/s				
		VOLUME SOLID FRACTION	0.29					
		CALCULATION	CLEAR	BACK				
		ทยบรกา	5					

รูปภาพที่ 3.1 แสดงหน้าต่างรับข้อมูลโปรแกรม

🛋 Calculation Resul	t			_ 8 >
		CALCULATION RES	ULTS	
Date :	01 Jan 2003	PARTICLE REYNOLDS NUMBER, Rep	1.295477	
Project Name :	Coal Slurry Cross Country Pipeline	DRAG COEFFICIENT,CD	21.63492	
Client Name :	EGAT			mla
The Contractor :	NKK Corporation	TERMINAL VELOCITI, VI	1.259517E-02	III7 2
Job No. :	NC-3189	OPERATING VELOCITY, Vop	1.829	m/s
Run No. :	001	CRITICAL OPERATING VELOCITY, Vc	1.234858	m/s
Drawing Ref. No. :	DG-M-3189-L-001		F	
Prepared By :	Mr. Chao T.	FRICTION FACTOR, IT	2.199998E+02	
		PRESSURE LOSS OF WATER	7.369412E-02	m water/m
		PIPE SIZE, Dp	.0509	m id
		VOLUME SOLID CONCENTRATION, CV	.29	
		TOTAL SLURRY PRESSURE LOSS, hs	9.967025E-02	m water/m
		SOLID TRANSPORTATION RATE, Rst	11.23343	tons/hr
		SPECIFIC ENERGY CONSUMPTION, SEC	.324068	kw-hr/ton-kr
		BACK GRAPH		EXIT
	2219	124/614 22222		

รูปภาพที่ 3.2 หน้าต่างแสดงผลการคำนวณของโปรแกรม

3.3 แบบแผนและขั้นตอนการพัฒนาโปรแกรม

ในการพัฒนาโปรแกรมสำหรับช่วยคำนวณออกแบบระบบท่อขนถ่ายมลสาย ได้ ทำการพัฒนาเป็นสองโปรแกรม คือ โปรแกรมการคำนวณความดันลด และโปรแกรมการออกแบบ เชิงออปติมัม ทั้งสองโปรแกรมมีขอบเขตเงื่อนไขการใช้งานแตกต่างกัน ดังนั้น ในการเลือกใช้ โปรแกรมจึงขึ้นอยู่กับความต้องการหรือวัตถุประสงค์ของวิศวกรผู้ออกแบบว่าต้องการชุดผลลัพธ์ เป็นเช่นใด

ในกรณีผู้ใช้โปรแกรมต้องการทราบขนาดความดันลดของระบบท่อที่มีอยู่แล้ว ที่ สภาวะต่างๆ โปรแกรมคำนวณความดันลดสามารถตอบสนองความต้องการของผู้ใช้ได้ดี โดยที่ ต้องทราบค่าชุดตัวแปรอิสระทั้งหมด ได้แก่

- ขนาดเส้นผ่านศูนย์กลางท่อ (D)
- ความหยาบของผนังท่อ (E)
- ขนาดของอนุภาค (d_p)
- ความหนาแน่นของอนุภาค ($ho_{\rm s}$)
- ความเข้มข้นเชิงปริมาตรของอนุภาคในมลสาย (C_v)
- Sphericity Shape Factor (\$)
- ความหนาแน่นของน้ำ (ρ_w)
- ความหนืดของน้ำ (μ_w)
- ความเร็วการไหล (V_{op})

ในกรณีที่ต้องการทราบผลกระทบของตัวแปรใดตัวแปรหนึ่งที่มีต่อความดันลด สามารถทำได้เพียง แค่เปลี่ยนแปลงค่าชุดตัวแปรที่ต้องการทราบเท่านั้น ก็จะได้ชุดผลลัพธ์ของความดันลดออกมา นอกจากความดันลดแล้ว โปรแกรมยังคำนวณค่าตัวแปรกระบวนการอื่นๆออกมาด้วย คือ ความเร็วการไหลวิกฤต อัตราการขนถ่ายของแข็ง มีหน่วยเป็น tons/hr และอัตราการสิ้นเปลือง พลังงาน มีหน่วยเป็น kW-hr/ton-km

ส่วนกรณีที่เป็นโครงการใหม่ และทราบแต่เพียงว่าต้องการขนถ่ายของแข็งใน อัตราคงที่ค่าหนึ่ง ในหน่วย เมตริกตันต่อชั่วโมง โปรแกรมการคำนวณออกแบบเชิงออปติมัมจะถูก นำมาใช้แทนโปรแกรมความดันลด เพียงแต่ป้อนชุดตัวแปรอิสระที่เป็นสมบัติกายภาพของของแข็ง และของไหล ได้แก่

- ขนาดของอนุภาค (d_p)
- ความหนาแน่นของอนุภาค ($ho_{
 m s}$)
- Sphericity Shape Factor (ϕ)

- ความหนาแน่นของน้ำ (**ρ**_)

ความหนืดของน้ำ (น...)

- อัตราการขนถ่ายของแข็ง (R_{..})

หลังจากป้อนข้อมูลแล้วเสร็จ โปรแกรมจะทำการคำนวณหาค่า ขนาดเส้นผ่าศูนย์ กลางท่อที่เหมาะสมที่สุด และความเข้มข้นเชิงปริมาตรที่เหมาะสมที่สุด โดยมีเงื่อนไข คือ อัตรา การสิ้นเปลืองพลังงานในการขนถ่ายต่อหน่วยจะต้องน้อยที่สุด เนื่องจากความดันลดขึ้นอยู่กับค่า ของสองตัวแปรนี้ ดังนั้น การคำนวณจึงเป็นในลักษณะวงจร (loop) ด้วยการผันแปรค่าขนาดเส้น ผ่าศูนย์กลางท่อและความเข้มข้นเชิงปริมาตรของอนุภาคในมลสาย คำนวณจนกระทั่ง ครบถ้วน ตามขอบเขตที่กำหนดไว้

ในบางกรณีวิศวกรผู้ออกแบบอาจใช้ทั้งสองโปรแกรมช่วยในการออกแบบหรือใช้ ตรวจสอบความถูกต้องซึ่งกันและกันก็สามารถทำได้

3.3.1 ขั้นตอนการออกแบบโปรแกรมคำนวณความดันลด

้โปรแกรมการคำนวณความดันลด ถือได้ว่าเป็นพื้นฐานการออกแบบระบบท่อทั่ว ไป โปรแกรมนี้นอกจากจะทำนายความดันลดแล้ว ยังสามารถทำนายค่าความเร็ววิกฤต เพื่อเป็น ข้อมูลอ้างอิงสำหรับช่วยวิเคราะห์รูปแบบการไหล ตามขั้นตอนต่อไปนี้

1) ป้อนข้อมูลชุดตัวแปรอิสระซึ่งเป็นสมบัติกายภาพพื้นฐานของระบบที่หน้าต่างรับข้อมูล ได้แก่ ขนาดท่อ (D) ความหนาแน่นของอนุภาคของแข็ง (ρ ู) ขนาดของอนุภาค (d_p) สัดส่วนของขนาด ของอนุภาค (x,) Sphericity Shape Factor (**φ**) ความหนาแน่นของน้ำ (**ρ**_w) ความหนืดของน้ำ $(\mu_{_{\rm W}})$ ความเร็วการไหลของมลสาย (V $_{_{
m OP}})$ ความเข้มข้นของมลสาย (C $_{_{
m V}})$

2) คำนวณค่า Drag Coefficient โดยเริ่มจากการคำนวณหาค่าความเร็วบั้นปลายของอนุภาคแต่ ละขนาดด้วยการสมมติให้อนุภาคมีการเคลื่อนที่ในช่วง Stoke's Law

 $gd^2(\rho - \rho)$

สมเ

สมการ
$$V_t = K_1 \frac{8 \mu_p (P_s - P_w)}{18 \mu_w}$$

โดยที่ $K_1 = (0.843) log \left(\frac{\phi}{0.065}\right)$

3) น้ำค่า V, ในขั้นตอนที่ (2) มาคำนวณและตรวจสอบค่า Particle Reynolds Number

$$\begin{aligned} &\mathsf{Re}_{\mathsf{p}} &= \frac{\rho_{w} v_{t} d_{p}}{\mu_{w}} & \mathsf{inatin} & \mathsf{Re}_{\mathsf{p}} < 1 & \mathsf{inatin} \\ &\mathsf{C}_{\mathsf{Di}} &= \frac{24}{\mathsf{Re}_{p}} & \mathsf{kasinnsenulationalistic} \\ \end{aligned}$$

4) จากขั้นตอนที่ (3) ถ้า Re_p มีค่ามากกว่า 1 ให้คำนวณค่าความเร็วบั้นปลายของอนุภาคแต่ละ ขนาดซ้ำโดยสมมติให้อนุภาคมีการเคลื่อนที่ในช่วง Intermediate Region ด้วยสมการ

$$V_{t} = 0.153 \text{ K}_{1} \left(\frac{gd_{p}^{-1.6} (\rho_{s} - \rho_{w})}{\mu_{w}^{0.6} \rho_{w}^{0.4}} \right)^{0.7}$$
$$K_{1} = (0.843) \log \left(\frac{\phi}{0.065} \right)$$

5) นำค่า V, ที่ได้ในขั้นตอนที่ (4) มาคำนวณและตรวจสอบ Particle Reynolds Number

$$Re_{p} = \frac{\rho_{w}V_{t}d_{p}}{\mu_{w}} \quad \text{ແລະຄ້າ } 1 < Re_{p} < 1000 \quad \text{ແล້ว}$$
$$C_{Di} = \frac{24}{Re_{p}} (1 + 0.14 \text{ Re}_{p}^{0.7})$$

หลังการคำนวณแล้วเสร็จ ข้ามไปที่ขั้นตอน (7)

โดยที่

6) จากขั้นตอนที่ (5) ถ้า Re_p มีค่ามากกว่า 1000 แสดงว่าอนุภาคแต่ละขนาดมีการเคลื่อนที่ใน ช่วง Newton's Law Region ค่า C_p จะไม่เป็นฟังก์ชันของ Re_p อีกต่อไป แต่จะขึ้นอยู่กับ sphericity shape factor เพียงอย่างเดียว ด้วยสมการ

 $C_{Di} = 5.32 - 4.88 \phi$

7) คำนวณค่า C_D ของอนุภาคจนกระทั่งครบทุกขนาด หลังจากนั้น จึงคำนวณค่าเฉลี่ยของ C_D และ d_D

$$C_{D} = \sum X_{i}.C_{Di}$$
$$d_{p} = \sum X_{i}.d_{pi}$$

8) คำนวณค่าความเร็ววิกฤต (V_c) แต่ก่อนที่จะคำนวณ ต้องทำการตรวจสอบค่าขอบเขตของ
 ความเข้มข้นและขนาดท่อที่รับเข้ามา เพื่อที่จะเลือกใช้สมการภายใต้ขอบเขตที่เหมาะสม
 กรณีที่ชุดตัวแปรอิสระมีค่า C_v ≤ 42 % และ D ≤ 6 นิ้ว
 ให้คำนวณความเร็ววิกฤตด้วยชุดสมการเอมไพริกัลของ Turian และ Oroska (1980)

$$\operatorname{Re}_{p} = \mathsf{D}\boldsymbol{\rho}_{w} \left[gd_{p}(S-1)^{0.5} / \boldsymbol{\mu}_{w} \right]$$

$$X = \frac{2}{\sqrt{\pi}} \left[\frac{2}{\sqrt{\pi}} \gamma \exp\left(\frac{-4\gamma^2}{\pi}\right) + \int_{\gamma}^{\infty} \exp\left(\frac{-4\gamma^2}{\pi}\right) d\gamma \right]$$

γ = v_s/v_c
 V_s = V_t(1-C_v)² หลังการคำนวณแล้วเสร็จข้ามไปที่ขั้นตอน (11)
 9) กรณีค่าขอบเขตของความเข้มข้น C_v ≤ 44 % และขนาดท่อมีค่าระหว่าง 6" < D ≤ 20"
 ให้คำนวณค่าความเร็ววิกฤต V_c ด้วยสมการเอมไพริกัลของ Gillies's และ Shook (1991) หลัง
 การคำนวณแล้วเสร็จให้ข้ามไปที่ขั้นตอน (11)

$$V_{c} = F[gD(\rho_{s} - \rho_{w}) / \rho_{w}]^{0.5}$$
 โดยที่

$$F = exp(0.51 - 0.0073 C_{D} - 12.5K_{4})$$

$$K_{4} = (K_{3} - 0.14)^{2}$$

$$K_{3} = \frac{\mu_{w}^{2/3}}{\rho_{w}^{2/3}g^{1/3}d_{p}}$$

10) กรณีค่าความเข้มข้นและขนาดท่ออยู่นอกขอบเขตที่กล่าวมาทั้งสองกรณีแต่ไม่เกินขอบเขตต่อ ไปนี้

C_v ≤ 50 % และหรือ ขนาดท่อ, D ≤ 24" ให้คำนวณค่าความเร็ววิกฤต V_c ด้วยสมการเอมไพริกัลของ Zandi (1967)

 $V_{c} = \left(40 \ gDC_{v} \left(S - 1 \right) / \sqrt{C_{D}} \right)^{0.5}$

คำนวณค่าแฟกเตอร์ความเสียดทานของของไหลขับเคลื่อน ซึ่งส่วนใหญ่มักจะใช้ น้ำ เป็นของ
 ใหลขับเคลื่อน ด้วยสมการของ Colebrook-White's Equation

$$\frac{1}{\sqrt{f}} = -2 \log \left[\frac{\varepsilon}{3.71D} + \frac{2.51}{\text{Re }\sqrt{f}} \right]$$
 โดยที่
Re = $\rho_w V_{op} D / \mu_w$

คำนวณค่าความดันลดต่อเมตรของของไหลในที่นี้คือน้ำบริสุทธิไหลในท่อด้วยความเร็วเท่ากับ
 ความเร็วของมลสายไหลในท่อ

$$h_{w} = \frac{fV_{op}^{2}}{2gD}$$

13) ในกรณี ค่า V_{op} ≤ 17*V_s จะคำนวณความดันลดของระบบท่อขนถ่ายมลสายด้วยสมการ ของ Newitt และคณะ (1955)

$$h_{s} = h_{w} + (66) h_{w}C_{v} (S-1) gD/V_{OP}^{2}$$

14) ในกรณีคำนวณความเร็ววิกฤตด้วยสมการเอมไพริกัลของ Turian (1980) และของ Gillies's(1991) จะคำนวณความดันลดของระบบท่อขนถ่ายมลสายด้วยสมการของ Durand (1952)

$$h_{s} = h_{w} + (81)h_{w}C_{v}\left(\frac{(S-1)gD}{V_{op}^{2}\sqrt{C_{D}}}\right)^{1.5}$$

หลังการคำนวณแล้วเสร็จให้ข้ามไปที่ขั้นตอน (16)

15) ในกรณีคำนวณความเร็ววิกฤตด้วยสมการเอมไพริกัลของ Zandi (1967) จะคำนวณความดัน ลดของระบบท่อขนถ่ายมลสายด้วยสมการของ Durand (1952) ที่ถูกแก้ไขดัดแปลงโดย Zandi (1967) แต่เนื่องจาก สมการที่ถูกแก้ไขดัดแปลงมี 2 สมการ และวิธีการใช้สามารถทำได้โดยตรวจ สอบเงื่อนไข ดังนี้

ถ้ากรณี $\frac{(S-1)gDc_v}{V_{op}^2\sqrt{cd}} < 0.1$ แล้วให้คำนวณความดันลดด้วยสมการต่อไปนี้

$$h_{s} = h_{w} + (6.3) h_{w}C_{v} \left(\frac{(S-1)gD}{V_{op}^{2} \sqrt{C_{D}}} \right)^{0.354}$$

แต่ถ้าไม่ใช่ให้คำนวณความดันลดด้วยสมการต่อไปนี้

$$h_{s} = h_{w} + (280) h_{w}C_{v} \left(\frac{(S-1)gD}{V_{op}^{2}\sqrt{C_{D}}}\right)^{1.93}$$

 กำนวณอัตราการสิ้นเปลืองพลังงานในการขนถ่ายต่อหนึ่งหน่วยระยะทางและต่อหนึ่งหน่วยน้ำ หนักของของแข็ง Specific Energy Consumption

$$SEC = \frac{2.725 h_s}{SC_v}$$

17) ผลการกำนวณจะถูกแสดงที่หน้าต่างแสดงผล ดังรายการต่อไปนี้

-อัตราการขนถ่ายอนุภาคของแข็ง (R_{sτ}) -อัตราการสิ้นเปลืองพลังงานต่อหน่วย (SEC) -ความดันลดของระบบท่อ (h_s) -ความเร็วปฏิบัติการวิกฤต (V_c)

3.3.2 ขั้นตอนการออกแบบโปรแกรมการคำนวณออกแบบเชิงออปติมัม เงื่อนไขขั้นตอนการคำนวณออกแบบเชิงออปติมัม จะคำนึงถึงการสูญเสียพลัง

งานในการขนถ่ายของแข็งต่อหน่วยที่น้อยที่สุดเป็นเงื่อนไขบังคับสำคัญ ตามขั้นตอนต่อไปนี้ 1) รับค่าชุดข้อมูลตัวแปรอิสระซึ่งเป็นสมบัติกายภาพพื้นฐานของระบบที่หน้าต่างรับข้อมูล ได้แก่ ความหนาแน่นของอนุภาคของแข็ง (ρ_s) ขนาดของอนุภาค (d_p) การกระจายขนาดของอนุภาค (x_i) Sphericity shape factor (**φ**) ความหนาแน่นของน้ำ(ρ_w) ความหนืดของน้ำ(μ_w) อัตราการขนถ่าย ของของแข็ง (R_{st})

2) คำนวณค่า Drag Coefficient โดยเริ่มจากการคำนวณหาค่าความเร็วบั้นปลายของอนุภาคแต่ ละขนาดด้วยการสมมติให้อนุภาคมีการเคลื่อนที่ในช่วง Stoke's Law

สมการ
$$V_t = K_1 \frac{g d_p^2 (\rho_s - \rho_w)}{18 \mu_w}$$

โดยที่
$$K_1 = (0.843) \log \left(\frac{\phi}{0.065}\right)$$

โดยที่

3) นำค่า V, ที่ได้ในขั้นตอนที่ (2) มาคำนวณและตรวจสอบ Particle Reynolds Number

$$Re_{p} = \frac{\rho_{w}V_{t}d_{p}}{\mu_{w}}$$
 และถ้า $Re_{p} < 1$ แล้ว

$$C_{Di} = \frac{24}{Re_{p}}$$
 หลังการคำนวณแล้วเสร็จให้ข้ามไปที่ขั้นตอนที่ (9)

4) จากขั้นตอนที่ (3) ถ้าค่า Re_p มีค่ามากกว่า 1 ให้คำนวณค่าความเร็วบั้นปลายของอนุภาคแต่ ละขนาดซ้ำโดยสมมติให้อนุภาคมีการเคลื่อนที่ในช่วง Intermediate Region ด้วยสมการ

$$V_{t} = 0.153 \, K_{1} \left(\frac{g d_{p}^{-1.6} (\rho_{s} - \rho_{w})}{\mu_{w}^{0.6} \rho_{w}^{0.4}} \right)^{0.71}$$
$$K_{1} = (0.843) \, \log \left(\frac{\phi}{0.065} \right)$$

5) นำค่า V, ที่ได้ในขั้นตอนที่ (4) มาคำนวณและตรวจสอบ Particle Reynolds Number

$$Re_{p} = \frac{\rho_{w}V_{t}d_{p}}{\mu_{w}} \quad \text{และถ้า } 1 < Re_{p} < 1000 \quad \text{แล้ว}$$
$$C_{Di} = \frac{24}{Re_{p}} (1 + 0.14 \text{ Re}_{p}^{0.7}) \text{ หลังการคำนวณแล้วเสร็จข้ามไปที่ขั้นตอน (8)}$$

6) จากขั้นตอนที่ (5) ถ้า Re_p มีค่ามากกว่า 1000 แสดงว่าอนุภาคแต่ละขนาดมีการเคลื่อนที่ใน ช่วง Newton's Law Region ค่า C_{Di} จะไม่เป็นฟังก์ชันของ Re_p อีกต่อไป แต่จะขึ้นอยู่กับ Sphericity shape factor เพียงอย่างเดียว ด้วยสมการ

$$C_{Di} = 5.32 - 4.88 \phi$$

7) คำนวณค่า C_{_D} ของอนุภาคจนกระทั่งครบทุกขนาด หลังจากนั้น จึงคำนวณค่าเฉลี่ยของ C_{_D} และ d_{_p}

$$C_{D} = \sum X_{i} C_{Di}$$
$$d_{p} = \sum X_{i} d_{pi}$$

8) เริ่มขั้นตอนการคำนวณออกแบบเชิงออปติมัม ด้วยการรับค่าเริ่มต้น C_v คือค่าความเข้มข้นของ
 มลสาย และค่า D คือขนาดเส้นผ่านศูนย์กลางท่อ เนื่องจากความดันลดของมลสายที่ไหลในท่อขึ้น
 อยู่กับทั้ง C_v และ D โดยกำหนดให้มีค่าอยู่ภายใต้ขอบเขต C_v ≤ 50 % และ D ≤ 24"
 คำนวณอัตราการไหลเชิงปริมาตรของมลสายด้วยสมการ

$$Q_s = \frac{R_{sT}}{\rho_s C_v}$$
 was $Q_s = \frac{\pi D^2}{4} V_{OP}$

ดังนั้น $V_{OP} = 4Q_s/\pi D^2$

9) ตรวจสอบขนาดท่อ ถ้า D ≤ 6" คำนวณค่าความเร็ววิกฤต (V_c) ด้วยสมการเอมไพริกัล ของ Turian และคณะ (1980)

$$V_{c} = 1.85C_{v}^{0.1536}(1-C_{v})^{0.3564}(D/d_{p})^{0.378}Re_{p}^{0.09}[gd_{p}(s-1)]^{0.5} X^{0.3}$$
 โดยที่

$$Re_{p} = D\rho_{w}[gd_{p}(S-1)^{0.5} / \mu_{w}]$$

$$X = \frac{2}{\sqrt{\pi}} \left[\frac{2}{\sqrt{\pi}} \gamma \exp\left(\frac{-4\gamma^{2}}{\pi}\right) + \int_{\gamma}^{\infty} \exp\left(\frac{-4\gamma^{2}}{\pi}\right) d\gamma \right]$$

$$\gamma = \frac{\nu_{s}}{\nu_{c}}$$
หลังจากนั้น ให้ข้ามไปที่ขั้นตอน (12)

10) กรณีขนาดท่ออยู่ในช่วง 6" < D ≤ 20" ให้คำนวณหาค่าความเร็ววิกฤต (V_c) ด้วยสม การเอมไพริกัลของ Gillies's และ Shook (1991) และข้ามไปที่ขั้นตอน (12)

$$V_{c} = F [gD (\rho_{s} - \rho_{w}) / \rho_{w}]^{0.5}$$
 โดยที่
F = exp (0.51 - 0.0073 C_D - 12.5K₄)
K₄ = (K₃ - 0.14)²
K₃ = $\frac{\mu_{w}^{2/3}}{\rho_{w}^{2/3}g^{1/3}d_{p}}$

11) กรณีขนาดท่อมีค่าอยู่ในช่วง 20" < D ≤ 24" ให้คำนวณค่าความเร็ววิกฤต (V_c) ด้วย
 สมการเอมไพริกัลของ Zandi และ Govatos (1967)

$$V_{\rm C} = \left(40 \ gDC_{\rm v} \left(S - 1 \right) / \sqrt{C_D} \right)^{0.5}$$

12) ตรวจสอบเงื่อนไข ถ้า V_{op} < V_c ให้กลับไปรับค่าตัวแปรชุดต่อไปในขั้นตอนที่ 8
13) คำนวณแฟกเตอร์ความเสียดทาน ด้วยสมการของ Colebrook-White's Equation

$$\frac{1}{\sqrt{f}} = -2 \log \left[\frac{\varepsilon}{3.71D} + \frac{2.51}{\text{Re }\sqrt{f}} \right]$$

Re = $\rho_w V_{op} D / \mu_w$

14) คำนวณความดันลดของของไหลหรือน้ำบริสุทธิซึ่งไหลในท่อที่ความเร็วเท่ากับความเร็วของมล สายไหลในท่อ

$$h_{\rm W} = \frac{fV_{op}^2}{2gD}$$

15) ในกรณีคำนวณความเร็ววิกฤตด้วยสมการเอมไพริกัลของ Turian (1980) และของ Gillies's
 (1991) จะคำนวณความดันลดของระบบท่อขนถ่ายมลสายด้วยสมการของ Durand (1952)

$$h_{s} = h_{w} + (81)h_{w}C_{v} \left(\frac{(S-1)gD}{V_{op}^{2}\sqrt{C_{D}}}\right)^{1.5}$$

หลังการคำนวณแล้วเสร็จให้ข้ามไปที่ขั้นตอน (16)

 16) ในกรณีคำนวณความเร็ววิกฤตด้วยสมการเอมไพริกัลของ Zandi (1967) จะคำนวณความ ดันลดของระบบท่อขนถ่ายมลสายด้วยสมการของ Durand (1952) ที่ถูกแก้ไขดัดแปลงโดย Zandi (1967) แต่เนื่องจาก สมการที่ถูกแก้ไขดัดแปลงมี 2 สมการ จึงต้องทำการตรวจสอบเงื่อน ไขเสียก่อน ดังนี้

ถ้ากรณี
$$\frac{(S-1)gDc_{\nu}}{V_{op}^2\sqrt{C_D}} < 0.1$$
 แล้วให้คำนวณความดันลดด้วยสมการนี้
$$h_{\rm S} = h_{\rm w} + (6.3)h_{\rm w}C_{\rm v} \left(\frac{(S-1)gD}{V_{\rm w}^2\sqrt{C_D}}\right)^{0.354}$$

แต่ถ้าไม่ใช่ให้คำนวณความดันลดด้วยสมการต่อไปนี้

$$h_{s} = h_{w} + (280)h_{w}C_{v}\left(\frac{(S-1)gD}{V_{op}^{2}\sqrt{C_{D}}}\right)^{1.93}$$

17) คำนวณอัตราการสิ้นเปลืองพลังงานในการขนถ่ายต่อหนึ่งหน่วย Specific Energy Consumption

$$SEC = \frac{2.725 h_s}{SC_v}$$

18) ทำการเปรียบเทียบระหว่างค่า SEC และ SEC_{min} ทุกรอบการคำนวณ เพื่อเก็บค่า SEC_{min} ไว้
19) ทำการตรวจสอบขอบเขตของตัวแปรอิสระ C_v ถ้า C_v < 50 % และ D < 24" ให้กลับไปที่
ขั้นตอน (8) เพื่อรับค่า C_v และ D ชุดต่อไป แต่ถ้าคำนวณจน C_v > 50 % และ D > 24" ให้
แสดงผลค่าตัวแปรที่ให้ค่า Minimum Specific Energy Consumption คือ
-ขนาดเส้นผ่าศูนย์กลางท่อที่เหมาะสม (D_{opt})
-ความเร็วปฏิบัติการ (V_{opt})
-ความเร็ววิกฤต (V_c)
-ความดันลดของระบบท่อ (h_{s.min})

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

บทที่ 4 การทดสอบโปรแกรมและตัวอย่างการใช้โปรแกรม

หลังจากการพัฒนาโปรแกรมแล้วเสร็จ ขั้นตอนต่อไปที่สำคัญก็คือ การทดสอบ ความถูกต้อง (Accuracy) ของโปรแกรม ด้วยการนำโปรแกรมไปทดสอบกับข้อมูลอ้างอิงหรือข้อ มูลจริงที่ได้ถูกบันทึกไว้จากการทดลองในห้องปฏิบัติการหรือโครงการนำร่องก่อนหน้านี้ ซึ่งข้อมูล ส่วนใหญ่ได้ทำการทดสอบด้วยท่อขนาดเล็ก และมีน้ำเป็นของไหลส่งกำลัง พารามิเตอร์ที่จะทำ การทดสอบความถูกต้องของโปรแกรมก็คือ การคำนวณค่าความเร็ววิกฤต ค่าความดันลด และ อัตราการสิ้นเปลืองพลังงานในการขนถ่ายต่อหน่วย ตามลำดับ

4.1 ผลการทดสอบโปรแกรม

ในการตรวจสอบความน่าเชื่อถือหรือความถูกต้องของโปรแกรมได้รับการพัฒนา แล้วเสร็จ สามารถทดสอบได้กับข้อมูลอ้างอิงหรือค่าสังเกตซึ่งได้มาจากบันทึกผลการทดลองของ งานวิจัยของคณะอื่น โดยที่ชุดค่าตัวแปรอิสระและพารามิเตอร์ต่างๆ ที่จะป้อนเข้าสู่โปรแกรมจะ เป็นชุดเดียวกันกับข้อมูลอ้างอิง การทดสอบความถูกต้องแม่นยำของโปรแกรมจะทำการแยกการ ทดสอบออกเป็น 3 การทดสอบด้วยกัน คือ การทดสอบค่าความเร็ววิกฤตตามตารางที่ 4.1-4.11 การทดสอบค่าความดันลดตามตารางที่ 4.12-4.22 และการทดสอบอัตราการสิ้นเปลืองพลังงาน ในการขนถ่ายต่อหน่วย ตามตารางที่ 4.23

4.1.1 การทดสอบโปรแกรมคำนวณความเร็ววิกฤต

โปรแกรมคำนวณความเร็ววิกฤตที่ได้รับการพัฒนาแล้วเสร็จ สามารถทดสอบ ความถูกต้องของโปรแกรม โดยวิธีการป้อนข้อมูลชุดแปรอิสระที่นำมาจากข้อมูลอ้างอิง และนำผล ที่ได้จากการคำนวณมาเปรียบเทียบกัน ซึ่งผลการทดสอบได้แสดงตามตารางที่ 4.1-4.11 ตารางที่ 4.1 ตารางแสดงการเปรียบเทียบค่าความเร็ววิกฤตของมลสาย Silica sand ความหนาแน่น 2890 kg/m³ และน้ำ ในท่อขนาดต่างๆ

ลำดับ		ชุดตัวแปร	วอิสระ	200	ค่า V _c	ค่า V _c ที่	คำนวณ	ค่าเบี่ยงเบ	น (DEV.)
ข้อมูล	C _v	d _p	D	ϕ	อ้างอิง	ทรงกลม	SHAPE	ทรงกลม	SHAPE
ทดสอบ	%	m	m		m/s	m/s	m/s	%	%
1	1.0	0.00025	0.0267	0.95	0.4572	0.7125	0.7125	55.84	55.84
2	1.0	0.00025	0.1397	0.95	0.7925	1.5466	1.5466	95.16	95.16
3	5.0	0.00044	0.1499	0.95	2.4689	2.2163	2.2163	-10.23	-10.23
4	10.0	0.00044	0.1499	0.95	2.6518	2.4183	2.4183	-8.80	-8.80
5	15.0	0.00044	0.1499	0.95	2.7127	2.5218	2.5218	-7.04	-7.04

ตารางต่อเนื่อง

ลำดับ		ชุดตัวแปร	วอิสระ		ค่า V _c	ค่า V _c ที่	คำนวณ	ค่าเบี่ยงเบน (DEV.)		
ข้อมูล	C _v	d _p	D	ϕ	อ้างอิง	ทรงกลม	SHAPE	ทรงกลม	SHAPE	
ทดสอบ	%	m	m		m/s	m/s	m/s	%	%	
6	2.5	0.00204	0.1499	0.95	2.1946	2.3321	2.3320	6.27	6.26	
7	5.0	0.00204	0.1499	0.95	2.4079	2.3321	2.3320	-3.15	-3.15	
8	7.5	0.00204	0.1499	0.95	2.5298	2.3321	2.3320	-7.82	-7.82	
9	10.0	0.00204	0.1499	0.95	2.6213	2.3321	2.3320	-11.03	-11.04	
10	5.0	0.00023	0.1080	0.95	1.8318	1.7058	1.7057	-6.88	-6.89	
11	10.0	0.00023	0.1080	0.95	1.9355	1.8612	1.8612	-3.84	-3.84	
12	15.0	0.00023	0.1080	0.95	2.0757	1.9408	1.9408	-6.50	-6.50	
13	20.0	0.00023	0.1080	0.95	2.3531	1.9852	1.9852	-15.63	-15.63	
14	25.0	0.00023	0.1080	0.95	2.4384	2.0077	2.0077	-17.66	-17.66	
15	5.0	0.000585	0.1080	0.95	1.9934	1.9964	1.9964	0.15	0.15	
16	10.0	0.000585	0.1080	0.95	2.1184	2.1783	2.1783	2.83	2.83	
17	15.0	0.000585	0.1080	0.95	2.2189	2.2715	2.2715	2.37	2.37	
18	20.0	0.0005 <mark>8</mark> 5	0.1080	0.95	2.9627	2.3234	2.3234	-21.58	-21.58	
19	25.0	0.000585	0.1080	0.95	3.0023	2.3498	2.3497	-21.73	-21.74	
20	5.0	0.001150	0.1080	0.95	2.5207	2.2318	2.2318	-11.46	-11.46	
21	10.0	0.001150	0.1080	0.95	2.3165	2.4351	2.4351	5.12	5.12	
22	15.0	0.001150	0.1080	0.95	2.6731	2.5393	2.5393	-5.01	-5.01	
23	1.0	0.000680	0.0127	0.95	0.4877	0.5951	0.5951	22.03	22.03	
24	2.0	0.000680	0.0127	0.95	0.5486	0.6596	0.6596	20.22	20.22	
25	3.0	0.000680	0.0127	0.95	0.6096	0.6994	0.6994	14.73	14.73	
26	4.0	0.00068	0.0127	0.95	0.6401	0.7283	0.7283	13.78	13.78	
27	5.0	0.00068	0.0127	0.95	0.6706	0.7509	0.7509	11.98	11.98	
28	6.0	0.00068	0.0127	0.95	0.6888	0.7693	0.7693	11.68	11.68	
29	7.0	0.00068	0.0127	0.95	0.7102	0.7847	0.7847	10.49	10.49	
30	8.0	0.00068	0.0127	0.95	0.7315	0.7979	0.7979	9.07	9.07	
q										

สมบัติกายภาพของน้ำที่อุณหภูมิ 21 ^oC น้ำมีความหนาแน่น 998 kg/m³ และความหนืด 0.00098 kg/m-s (ข้อมูล1-9 จาก Durand R., " The Hydraulic Transportation of Coal and Other Materials in pipes", 1952) (ข้อมูล 10-22 จาก Sinclair C.G., "The Limit –Deposit Velocity of Heterogeneous suspensions",1962) (ข้อมูล 23-30 จาก Yotsukura N.," Some effect of Bentonite Suspensions on Sand Transport in 4" Pipe", 1961)

ลำดับ		ชุดตัวแปร	วอิสระ		ค่า V _c	ค่า V _c ที่ค้	านวณ	ค่าเบี่ยงเบ	น (DEV.)
ข้อมูล	C _v	d _p	D	ϕ	อ้างอิง	ทรงกลม	SHAPE	ทรงกลม	SHAPE
ทดสอบ	%	m	m		m/s	m/s	m/s	%	%
1	5	0.00226	0.0127	0.95	0.4572	0.7125	0.7125	55.84	55.84
2	6	0.00226	0.0127	0.95	0.7925	1.5466	1.5466	95.16	95.16
3	7	0.00226	0.0127	0.95	2.4689	2.2163	2.2163	-10.23	-10.23
4	8	0.00226	0.0127	0.95	2.6518	2.4183	2.4183	-8.80	-8.80
5	10	0.00226	0.0127	0.95	0.3109	0.2905	0.2904	-6.56	-6.59
6	11	0.00226	0.0127	0.95	0.3048	0.2905	0.2904	-4.69	-4.72
7	12	0.00226	0.0127	0.95	0.2438	0.2905	0.2904	19.14	19.09
8	15	0.002205	0.0127	0. <mark>95</mark>	0.2896	0.2908	0.2907	0.43	0.39
9	5	0.002205	0.0254	0.95	0.3505	0.4114	0.4112	17.37	17.31
10	6	0.002205	0.0254	0.95	0.3658	0.4114	0.4112	12.48	12.42
11	7	0.002205	0.0254	0.95	0.3780	0.4114	0.4112	8.85	8.80
12	8	0.002205	0.0254	0.95	0.3901	0.4114	0.4112	5.45	5.40
13	10	0.0022 <mark>05</mark>	0.0254	0.95	0.4145	0.4114	0.4112	-0.75	-0.80
14	12	0.002205	0.0254	0.95	0.4481	0.4114	0.4112	-8.18	-8.23

ตารางที่ 4.2 ตารางแสดงการเปรียบเทียบค่าความเร็ววิกฤตของมลสาย ความหนาแน่น 1350 kg/m³ และน้ำใน ท่อขนาดต่างๆ

ตารางที่ 4.3 ตารางแสดงการเปรียบเทียบค่าความเร็ววิกฤตของมลสายของ Coal ความหนาแน่น 1410 kg/m³

ลำดับ		ชุดตัวแบ	ไรอิสระ		ค่า V _c	ค่า V _c ที่ผ	ำนวณ	ค่าเบี่ยงเข	่มน (DEV.)
ข้อมูล	C _v	d _p	D	φ	อ้างอิง	ทรงกลม	SHAPE	ทรงกลม	SHAPE
ทดสอบ	%	b m l l	m		m/s	o m/s	m/s	%	%
1	5	0.00140	0.025	0.95	0.640	0.5068	0.5068	-20.81	-20.81
2	5	0.00150	0.012	0.95	0.457	0.3636	0.3636	-20.44	-20.44
3 9	10	0.00140	0.025	0.95	0.800	0.5529	0.5529	-30.89	-30.89
4	10	0.00150	0.012	0.95	0.597	0.3967	0.3967	-33.55	-33.55
5	15	0.00140	0.025	0.95	0.912	0.5766	0.5766	-36.78	-36.78
6	15	0.00150	0.012	0.95	0.445	0.4137	0.4137	-7.03	-7.03

(ข้อมูลจาก Novak, Study of the correlation of sediment motion in pipe flow, Hydrotransport 2,1972)

ลำดับ		ชุดตัวแบ	ไรอิสระ		ค่า V _c	ค่า V _c ที่คำนวณ		ค่าเบี่ยงเบน (DEV.)	
ข้อมูล	C _v	d _p	D	ϕ	อ้างอิง	ทรงกลม	SHAPE	ทรงกลม	SHAPE
ทดสอบ	%	m	m		m/s	m/s	m/s	%	%
1	5	0.00127	0.075	0.95	1.405	0.9285	0.9285	-33.91	-33.91
2	5	0.02540	0.150	0.95	1.965	1.1249	1.1128	-42.75	-43.37
3	10	0.00127	0.075	0.95	1.650	1.0131	1.0131	-38.60	-38.60
4	10	0.02540	0.150	0.95	2.420	1.1249	1.1128	-53.52	-54.02
5	15 0.00127 0.075 0.95		0.95	1.895	1.0565	1.0565	-44.25	-44.25	

ตารางที่ 4.4 ตารางแสดงการเปรียบเทียบค่าความเร็ววิกฤตของมลสาย Coal ความหนาแน่น 1500 kg/m³

(ข้อมูลจาก Novak, Study of the correlation of sediment motion in pipe flow, Hydrotransport 2,1972)

ตารางที่ 4.5 ตารางแสดงการเปรียบเทียบค่าความเร็ววิกฤตของมลสาย Iron Ore ความหนาแน่น 5245 kg/m³ และ Kerosene ในท่อขนาดต่างๆ ที่อุณหภูมิ 21 ^oC Kerosene มีความหนาแน่น 820 kg/m³ และความหนืด 0.00271 kg/m-s

ลำดับ		ชุด <mark>ตัวแบ</mark>	lรอิสระ	a.0)7	ค่า V _c	ค่า V _c ที่คำนวณ		ค่าเบี่ยงเบน (DEV.)	
ข้อมูล	C _v	d _p	D	φ	อ้างอิง	ทรงกลม	SHAPE	ทรงกลม	SHAPE
ทดสอบ	%	m	m	1100	m/s	m/s	m/s	%	%
1	1	0.000138	0.0191	0.9	1.2192	0.8884	0.8884	-27.13	-27.16
2	2	0.000138	0.0191 0.9		1.3868	0.9846	0.9846	-29.00	-29.03
3	4	0.000138	0.0191	0.9	1.4935	1.0872	1.0872	-27.21	-27.23
4	5	0.000138	0.0191	0.9	1.5392	1.1209	1.1209	-27.18	-27.20
5	6	0.000138	0.0191	0.9	1.5392	1.1484	1.1484	-25.39	-25.41
6	7	0.000138	0.0191	0.9	1.5392	1.1714	1.1714	-23.90	-23.92
7	8	0.000138	0.0191	0.9	1.5392	1.1911	1.1911	-22.62	-22.64
8	10	0.000138	0.0191	0.9	1.5240	1.2230	1.2230	-19.75	-19.77
9	12	0.000138	0.0191	0.9	1.4935	1.2477	1.2477	-16.46	-16.48
10	14	0.000138	0.0191	0.9	1.4691	1.2672	1.2672	-13.75	-13.77
11 9	16	0.000138	0.0191	0.9	1.4326	1.2827	1.2827	-10.46	-10.48
12	18	0.000138	0.0191	0.9	1.4021	1.2949	1.2949	-7.64	-7.67

(ข้อมูลจาก Sinclair C.G., "The Limit –Deposit Velocity of Heterogeneous suspensions",1962)

ลำดับ		ชุดตัวแร	ปรอิสระ		ค่ำ V _c	ค่า V _c ที่ผ	ำนวณ	ค่าเบี่ยงเบน (DEV.)	
ข้อมูล	C _v	d _p	D	ϕ	อ้างอิง	ทรงกลม	SHAPE	ทรงกลม	SHAPE
ทดสอบ	%	m	m		m/s	m/s	m/s	%	%
1	10	0.00053	0.300	0.95	4.2200	3.2061	3.2061	-24.03	-24.03
2	15	0.00053	0.300	0.95	4.1000	3.3433	3.3433	-18.46	-18.46
3	5	0.00083	0.050	0.95	1.5400	1.3692	1.3692	-11.09	-11.09
4	10	0.00083	0.050	0.95	1.7100	1.4939	1.4939	-12.64	-12.64
5	15	0.00083	0.050	0.95	1.9200	1.5578	1.5578	-18.86	-18.86
6	2.8	0.00023	0.042	0.95	0.9845	0.9393	0.9393	-4.59	-4.59
7	4.9	0.00053	0.042	0.95	0.8291	1.1676	1.1676	40.83	40.83
8	6.5	0.00010	0.042	0.95	0.8169	0.9174	0.9174	12.31	12.31
9	6.7	0.00053	0.042	0.95	0.8352	1.2180	1.2180	45.84	45.84
10	7.2	0.00023	0.042	0.95	0.8047	1.0682	1.0682	32.75	32.75
11	7.2	0.00023	0.042	0.95	1.0333	1.0682	1.0682	3.38	3.38
12	6.5	0.00010	0.042	0.95	0. <mark>816</mark> 9	0.9174	0.9174	12.31	12.31
13	9.6	0.00010	0.042	0.95	0.6431	0.9624	0.9624	49.64	49.64
14	9.6	0.00010	0.042	0.95	0.6431	0.9624	0.9624	49.64	49.64
15	15.3	0.00010	0.061	0.95	0.8870	1.2029	1.2029	35.62	35.62
16	31.6	0.00010	0.110	0.95	0.9845	1.6419	1.6419	66.77	66.77
17	12.2	0.00023	0.084	0.95	0.9662	1.5708	1.5708	62.57	62.57
18	12.8	0.00023	0.061	0.95	0.9022	1.3590	1.3590	50.63	50.63
19	12.8	0.00023	0.061	0.95	0.9296	1.3590	1.3590	46.19	46.19
20	33.3	0.00023	0.110	0.95	1.2924	1.8852	1.8852	45.87	45.87
			<u>م</u> ٧		C				

ตารางที่ 4.6 ตารางแสดงการเปรียบเทียบค่าความเร็ววิกฤตของมลสาย Sand ความหนาแน่น 2650 kg/m³ และ น้ำ ในท่อขนาดต่างๆ

สมบัติกายภาพของน้ำที่ 21 °C ความหนาแน่น = 998 kg/m³ และความหนืด = 0.00098 kg/m-s (ข้อมูลจาก P. Novak, C. Nalluni, A study into the correlation of sediment motion in pipe flow, Hydrotransport 2,1972)

ลำดับ		ชุดตัวแข	ปรอิสระ		ค่า V _c	ค่า V _c ที่คำนวณ		ค่าเบี่ยงเบน (DEV.)	
ข้อมูล	C _v	d _p	D	ϕ	อ้างอิง	ทรงกลม	SHAPE	ทรงกลม	SHAPE
ทดสอบ	%	m	m		m/s	m/s	m/s	%	%
1	23.7	0.00025	0.0522	0.95	1.372	1.3467	1.3467	-1.82	-1.82
2	12.2	0.00025	0.0522	0.95	1.189	1.2785	1.2785	7.55	7.55
3	23.9	0.00025	0.1076	0.95	1.707	1.8893	1.8893	10.69	10.69
4	11.6	0.00025	0.1076	0.95	1.707	1.7835	1.7835	4.49	4.49
5	22.8	0.00025	0.1585	0.95	2.225	2.2603	2.2603	1.58	1.58
6	17.0	0.00025	0.1585	<mark>0.9</mark> 5	2.225	2.2172	2.2172	-0.35	-0.35
7	11.4	0.00025	0.1585	0.95	2.195	2.1343	2.1343	-2.61	-2.61
8	28.2	0.00025	0.2085	0.95	2.347	2.8950	2.8936	23.35	23.29
9	22.8	0.00025	0.2085	0.95	2.377	2.8950	2.8936	21.77	21.71
10	17.7	0.00025	0.2085	0.95	2.408	2.8950	2.8936	20.23	20.17
11	35.0	0.00025	0.2631	0.95	2.652	3.2521	3.2505	22.64	22.58
12	23.2	0.00025	0.2631	0.95	2.682	3.2521	3.2505	21.25	21.19
13	17.6	0.0 <mark>0025</mark>	0.2631	0.95	2.682	3.2521	3.2505	21.25	21.19
14	11.6	0.0002 <mark>5</mark>	0.2631	0.95	2.652	3.2521	3.2505	22.64	22.58
15	28.1	0.00025	0.3150	0.95	2.804	3.5584	3.5567	26.90	26.84

ตารางที่ 4.7 ตารางแสดงการเปรียบเทียบค่าความเร็ววิกฤตของมลสาย Sand ความหนาแน่น 2658 kg/m³

สมบัติกายภาพของน้ำที่อุณหภูมิ 21 ^oC น้ำมีความหนาแน่น 998 kg/m³ และความหนืด 0.00098 kg/m-s (ข้อ มูลจาก Series On Bulk Material Handling, Edward J. Wasp, Solid-Liquid Flow Slurry Pipeline Transport, 1977)

ตารางที่ 4.8 ตารางแสดงการเปรียบเทียบค่าความเร็ววิกฤตของมลสายสินแร่ความหนาแน่น 2670 kg/m³ และ น้ำ ในท่อ 8 นิ้ว

ลำดับ	1	ชุดตัวแร	ปรอิสระ	л Р	ค่า V _c	ค่า V _c ที่ผ	จำนวณ	ค่าเบี่ยงเบน (DEV.)	
ข้อมูล	C,	d _p D Ø		อ้างอิง	ทรงกลม	SHAPE	ทรงกลม	SHAPE	
ทดสอบ	%	m	m	5* 0 0	m/s	m/s	m/s	%	%
1	8.55	0.000074	0.2027	0.9	2.10	1.67	1.67	-20.59	-20.59
2	13.78	0.000074	0.2027	0.9	1.83	1.76	1.76	-3.76	-3.76
3	19.95	0.000074	0.2027	0.9	1.58	1.81	1.81	14.20	14.20

สมบัติกายภาพของน้ำที่อุณหภูมิ 21 ^oC น้ำมีความหนาแน่น 998 kg/m³ และความหนืด 0.00098 kg/m-s (ข้อมูลจาก F.L. Smith, B.S., Pilot Plant Experiences with Pipelines Carrying Mineral Slurries, Hydrotransport 1,1970)

ลำดับ		ชุดตัวแร	ปรอิสระ		ค่ำ V _c	ค่า V _c ที่คำนวณ		ค่าเบี่ยงเบน (DEV.)	
ข้อมูล	C _v	d _p	D	ϕ	อ้างอิง	ทรงกลม	SHAPE	ทรงกลม	SHAPE
ทดสอบ	%	m	m		m/s	m/s	m/s	%	%
1	18.65	0.00015	0.1541	0.9	2.62	2.17	2.17	-17.22	-17.22
2	21.98	0.00015	0.1541	0.9	2.56	2.20	2.20	-14.07	-14.07
3	25.61	0.00015	0.1541	0.9	2.53	2.21	2.21	-12.64	-12.64
4	29.61	0.00015	0.1541	0.9	2.35	2.22	2.22	-5.41	-5.41
5	34.04	0.00015	0.1541	0.9	1.98	2.21	2.21	11.55	11.55

ตารางที่ 4.9 ตารางแสดงการเปรียบเทียบค่าความเร็ววิกฤตของมลสายสินแร่ความหนาแน่น 2900 kg/m³ และ น้ำ ในท่อขนาด 6 นิ้ว

ตารางที่ 4.10 ตารางแสดงการเปรียบเทียบค่าความเร็ววิกฤตของมลสายสินแร่ความหนาแน่น 2280 kg/m³ และ น้ำ ในท่อขนาด 8" นิ้ว

ลำดับ		ซุดตัวแข	ปรอิสระ	500 A	ค่า V _c	ค่า V _c ที่ค	ำนวณ	ค่าเบี่ยงเบน (DEV.)	
ข้อมูล	C _v	d _p	D Ø		อ้างอิง	ทรงกลม	SHAPE	ทรงกลม	SHAPE
ทดสอบ	%	m	m	3231	m/s	m/s	m/s	%	%
1	12.72	0.000841	0.2027	0.75	2.13	2.26	2.26	5.92	5.92
2	15.80	0.0008 <mark>4</mark> 1	0.2027	0.75	2.38	2.31	2.31	-2.84	-2.84
3	25.59	0.000841	0.2027	0.75	2.71	2.38	2.38	-12.27	-12.27
4	28.77	0.000841	0.2027	0.75	2.74	2.39	2.39	-12.88	-12.88

ตารางที่ 4.11 ตารางแสดงการเปรียบเทียบค่าความเร็ววิกฤตของมลสายสินแร่ความหนาแน่น 2870 kg/m³ (2750 kg/m³ สำหรับ หัวข้อ 4) และน้ำ ในท่อขนาด 8" นิ้ว

ลำดับ		ช <mark>ุดตัวแ</mark> ร	ปรอิสระ		ค่า V _c	ค่า V _c ที่ผ	ำนวณ	ค่าเบี่ยงเบน (DEV.)	
ข้อมูล	C _v	d _p	D	ϕ	อ้างอิง	ทรงกลม	SHAPE	ทรงกลม	SHAPE
ทดสอบ	%	m	m	9/19	m/s	m/s	m/s	%	%
1	15.78	0.000074	0.2027	0.75	2.13	2.26	2.26	5.92	5.92
2	20.78	0.000074	0.2027	0.75	2.38	2.31	2.31	-2.84	-2.84
3	16.40	0.00007	0.2027	0.75	2.71	2.38	2.38	-12.27	-12.27
4 9	16.40	0.00007	0.2027	0.75	1.16	2.01	2.01	73.54	73.54

สมบัติกายภาพของน้ำที่อุณหภูมิ 21 ^oC น้ำมีความหนาแน่น 998 kg/m³ และความหนืด 0.00098 kg/m-s (ข้อมูลจาก F.L. Smith, B.S., Pilot Plant Experiences with Pipelines Carrying Mineral Slurries, Hydrotransport 1,1970)

4.1.2 การทดสอบโปรแกรมคำนวณความดันลด

โปรแกรมคำนวณความดันลดที่ได้รับการพัฒนาแล้วเสร็จ สามารถทดสอบความ ถูกต้องของโปรแกรม โดยวิธีการป้อนข้อมูลชุดแปรอิสระที่นำมาจากข้อมูลอ้างอิง และนำผลที่ได้ จากการคำนวณมาเปรียบเทียบกับข้อมูลอ้างอิง ซึ่งผลการทดสอบได้แสดงตามตารางที่ 4.12-4.22

ตารางที่ 4.12 ตารางแสดงการเปรียบเทียบค่าความดันลดของมลสายทรายและน้ำ ในท่อขนาด 6 และ 8 นิ้ว ที่ อุณหภูมิต่างๆ ความหนาแน่น 2650 kg/m³ แ<mark>ละ</mark> น้ำ ในท่อขนาดต่างๆ

		ชุดตัวแร	ปรอิสระ		ค่า V _c	ค่า h _s	ค่า h _s ที	1คำนวณ	ค่าเบี่ยงเบน (DEV.)	
ข้อมูล	C _v	dp	D	V _{op}		อ้างอิง	ทรงกลม	ϕ =0.95	ทรงกลม	ϕ = 0.95
ท.ส.	%	m	m	m/s	m/s	mw/mp	mw/mp	mw/mp	%	%
1	0.00	0.0003	0.1552	3.54	1	0.0731	0.0753		3.01	
2	0.00	0.0003	0.1552	3.05		0.0539	0.0559		3.71	
3	0.00	0.0003	0.1552	2.35	6	0.0354	0.0337		-4.80	
4	0.00	0.0003	0.1552	1.74		0.0186	0.0188		1.08	
5	28.86	0.0003	0.1552	3.05	2.36	0.0976	0.1204	0.1198	23.36	22.75
6	28.85	0.0003	0.1552	3.93	2.36	0.1174	0.1339	0.1344	14.05	14.48
7	28.85	0.0003	0.1552	2.99	2.36	0.0842	0.1199	0.1192	42.40	41.57
8	28.86	0.0003	0.15 <mark>5</mark> 2	2.41	2.36	0.0706	0.1215	0.1207	72.10	70.96
9	28.86	0.0003	0.1552	2.74	2.36	0.0774	0.1183	0.1176	52.84	51.94
10	28.85	0.0003	0.1552	3.26	2.36	0.0898	0.1221	0.1214	35.97	35.19
11	28.85	0.0003	0.1552	4.21	2.36	0.127	0.1426	0.1421	12.28	11.89
12	10.20	0.0003	0.1552	3.05	2.17	0.0633	0.0737	0.0734	16.43	15.96
13	10.21	0.0003	0.1552	4.21	2.17	0.1047	0.1108	0.1107	5.83	5.73
14	10.21	0.0003	0.1552	5.37	2.17	0.0789	0.1659	0.1616	110.27	104.82
15	10.21	0.0003	0.1552	2.99	2.17	0.0595	0.0719	0.0716	20.84	20.34
16	10.21	0.0003	0.1552	2.35	2.17	0.0436	0.0614	0.0611	40.83	40.14
17	0.00	0.0003	0.2036	3.72		0.0657	0.0644	0	-1.98	
18	0.00	0.0003	0.2036	2.99	<u>م</u>	0.0409	0.0418		2.20	
19	0.00	0.0003	0.2036	2.59		0.031	0.0315		1.61	
20	0.00	0.0003	0.2036	2.04		0.0198	0.0189		-4.55	
21	0.00	0.0003	0.2036	1.43		0.0112	0.0099		-11.79	
22	26.64	0.0003	0.2036	2.96	2.60	0.0682	0.1218	0.1210	78.59	77.42
23	26.64	0.0003	0.2036	2.62	2.60	0.0645	0.1029	0.1022	59.53	58.45
24	26.64	0.0003	0.2036	2.50	2.60	0.0571	0.1041	0.1034	82.31	81.09
25	26.64	0.0003	0.2036	3.11	2.60	0.0695	0.1005	0.0999	44.60	43.74
ตารางต่อเนื่อง

26	26.63	0.0003	0.2036	3.20	2.60	0.0636	0.1001	0.1003	57.39	57.70
27	26.63	0.0003	0.2036	3.35	2.60	0.0645	0.1026	0.1020	59.07	58.14
28	11.20	0.0003	0.2036	3.38	2.43	0.0608	0.0678	0.0676	11.51	11.18
29	11.20	0.0003	0.2036	3.14	2.43	0.0509	0.0642	0.0639	26.13	25.54
30	11.20	0.0003	0.2036	2.93	2.43	0.0459	0.0619	0.0616	34.86	34.20
31	11.20	0.0003	0.2036	2.62	2.43	0.0422	0.0587	0.0584	39.10	38.39
32	11.20	0.0003	0.2036	2.50	2.43	0.0384	0.0587	0.0583	52.86	51.82
33	4.40	0.0003	0.2036	3.35	2.16	0.0484	0.0523	0.0522	8.06	7.85
34	4.40	0.0003	0.20 <mark>36</mark>	3.38	2.16	0.0496	0.0530	0.0529	6.85	6.65
35	4.40	0.0003	0.2036	3.14	2 <mark>.1</mark> 6	0.0434	0.0481	0.0480	10.83	10.60
36	4.40	0.0003	0.2036	2.93	2.16	0.0397	0.0442	0.0441	11.34	11.08
37	4.40	0.0003	0.2036	2.62	2.16	0.0335	0.0392	0.0391	17.01	16.72
38	4.40	0.0003	0.2036	2.47	<mark>2.1</mark> 6	0.0322	0.0373	0.0372	15.84	15.53
39	4.40	0.0003	0.2036	2.29	2.16	0.0285	0.0353	0.0352	23.86	23.51
40	4.40	0.0003	0.2036	<mark>3.14</mark>	2.16	0.0459	0.0493	0.0492	7.41	7.19

สมบัติกายภาพของน้ำที่อุณหภูมิ 18-29 ^oC น้ำมีความหนาแน่น 996-998.5 kg/m³ และความหนืด 0.00082-0.00106 kg/m-s (ข้อมูลจาก R. Faddick, G. Pouska, Ultrasonic Velocity Meter, Hydrotransport 6,1979)

ตารางที่ 4.13 ตารางแสดงการเปรียบเทียบค่าความดันลดของมลสาย Sand ความหนาแน่น 2890 kg/m³ และ น้ำ ในท่อขนาดต่างๆ

		ชุดตัวแบ	ปรอิสระ		ค่า V _c	ค่า h _s	ค่า h _s ที	ี ่คำนวณ	ค่าเบี่ยงเบน (DEV.)	
ข้อมูล	C _v	d _p	D	V _{op}		อ้างอิง	ทรงกลม	ϕ =0.95	ทรงกลม	ϕ =0.95
ท.ส.	%	m	m	m/s	m/s	mw/mp	mw/mp	mw/mp	%	%
1	22	0.000101	0.0509	1.829	1.22	0.0983	0.0928	0.0926	-5.60	-5.80
2	22	0.000101	0.0509	2.438	1.22	0.1495	0.1417	0.1415	-5.22	-5.35
3	29	0.000101	0.0509	1.829	1.23	0.0995	0.0991	0.0982	-0.40	-1.31
4	29	0.000101	0.0509	2.438	1.23	0.1610	0.1463	0.1460	-9.13	-9.32
5	29	0.000101	0.0762	2.134	1.49	0.0974	0.0838	0.0835	-13.96	-14.27
6	39	0.000101	0.1015	1.829	1.69	0.0823	0.0731	0.0726	-11.18	-11.79
7	39	0.000101	0.1015	2.438	1.69	0.1231	0.0848	0.0844	-31.14	-31.46

สมบัติกายภาพของน้ำที่อุณหภูมิ 21 ^oC น้ำมีความหนาแน่น 998 kg/m³ และมีความหนืด 0.00098 kg/m-s (ข้อมูลจาก Irag Zandi and Govatos, Heterogeneous Flow of Solid in Pipeline, ASME, 1967)

		ชุดตัวแป	รอิสระ		ค่า V _c	ค่า h _s	ค่า h _s ที	ู 1คำนวณ	ค่าเบี่ยงเ	มน (DEV.)
ข้อมูล	C _v	d _{p,50}	D	V _{op}		อ้างอิง	ทรงกลม	ϕ = 0.9	ทรงกลม	ϕ = 0.9
ท.ส.	%	m	m	m/s	m/s	mw/mp	mw/mp	mw/mp	%	%
1	18.65	0.00015	0.1541	4.24	2.19	0.1163	0.1110	0.1105	-4.55	-4.98
2	18.65	0.00015	0.1541	3.72	2.19	0.0941	0.0919	0.0914	-2.33	-2.86
3	18.65	0.00015	0.1541	3.23	2.19	0.0755	0.0770	0.0765	2.05	1.39
4	18.65	0.00015	0.1 <mark>5</mark> 41	2.77	2.19	0.0652	0.0665	0.0659	1.92	1.01
5	18.65	0.00015	0.1541	2.59	2.19	0.0595	0.0634	0.0627	6.60	5.42
6	21.98	0.00015	0.1541	4.05	2.19	0.1110	0.1064	0.1059	-4.11	-4.56
7	21.98	0.00015	0.1541	3.63	2.19	0.0914	0.0922	0.0916	0.84	0.19
8	21.98	0.00015	0.1541	3.08	2.19	0.0741	0.0774	0.0767	4.42	3.48
9	21.98	0.00015	0.1541	2.83	2.19	0.0675	0.0721	0.0714	6.87	5.84
10	21.98	0.00015	0.1541	2.62	2.19	0.0621	0.0686	0.0679	10.40	9.27
11	25.61	0.00015	0.1541	3.96	2.19	0.1114	0.1063	0.1057	-4.58	-5.12
12	25.61	0.00015	0.1541	3.47	2.19	0.0914	0.0904	0.0897	-1.13	-1.89
13	25.61	0.00015	0.15 <mark>4</mark> 1	3.32	2.19	0.0857	0.0872	0.0865	1.80	0.98
14	25.61	0.00015	0. <mark>15</mark> 41	2.77	2.19	0.0701	0.0758	0.0750	8.09	6.95
15	25.61	0.00015	0.1541	2.65	2.19	0.0639	0.0743	0.0734	16.25	14.84
16	29.61	0.00015	0.1541	3.96	2.20	0.1127	0.1094	0.1088	-2.96	-3.49
17	29.61	0.00015	0.1541	3.51	2.20	0.0888	0.0956	0.0948	7.70	6.80
18	29.61	0.00015	0.1541	2.93	2.20	0.0679	0.0824	0.0815	21.34	20.02
19	29.61	0.00015	0.1541	2.71	2.20	0.0599	0.0802	0.0792	33.85	32.18
20	29.61	0.00015	0.1541	2.38	2.20	0.0470	0.0776	0.0765	64.94	62.60
21	34.04	0.00015	0.1541	3.66	2.20	0.1198	0.1051	0.1043	-12.30	-12.96
22	34.04	0.00015	0.1541	3.35	2.20	0.1056	0.0972	0.0963	-7.98	-8.84
23	34.04	0.00015	0.1541	2.90	2.20	0.0861	0.0874	0.0864	1.50	0.34
24	34.04	0.00015	0.1541	2.59	2.20	0.0719	0.0855	0.0843	18.91	17.24
25	34.04	0.00015	0.1541	2.01	2.20	0.0617	0.0871	0.0855	41.18	38.59
26	40.04	0.00015	0.1541	3.96	2.20	0.1522	0.1588	0.1584	4.31	4.05
27	40.04	0.00015	0.1541	3.35	2.20	0.1172	0.1220	0.1216	4.12	3.78
28	40.04	0.00015	0.1541	2.87	2.20	0.0883	0.1132	0.1110	28.17	25.67

ตารางที่ 4.14 ตารางแสดงการเปรียบเทียบค่าความดันลดของมลสายสินแร่ Taconite Milling ความหนาแน่น 2900 kg/m³ และ น้ำ ในท่อขนาด 6 นิ้ว

		ชุดตัวแป	รอิสระ		ค่า V _c	ค่า h _s	ค่า h _s ที	ู ที่คำนวณ	ค่าเบี่ยงเ	มน (DEV.)
ข้อมูล	C _v	d _{p,50}	D	V _{op}		อ้างอิง	ทรงกลม	ϕ = 0.9	ทรงกลม	ϕ = 0.9
ท.ส.	%	m	m	m/s	m/s	mw/mp	mw/mp	mw/mp	%	%
1	10.83	0.00015	0.1541	2.96	1.97	0.0941	0.0586	0.0583	-37.72	-38.04
2	10.83	0.00015	0.1541	2.44	1.97	0.0577	0.0467	0.0463	-19.06	-19.76
3	10.83	0.00015	0.1541	2.16	1.97	0.0444	0.0414	0.0410	-6.72	-7.62
4	10.83	0.00015	0.1541	1.74	1.97	0.0280	0.0373	0.0368	33.40	31.61
5	17.30	0.00015	0.1541	3.11	2.06	0.0968	0.0694	0.0689	-28.27	-28.79
6	17.30	0.00015	0.1541	2.74	2.06	0.0732	0.0604	0.0599	-17.52	-18.21
7	17.30	0.00015	0.1541	2.50	2.06	0.0577	0.0555	0.0549	-3.81	-4.85
8	24.05	0.00015	0.1541	3.05	2.10	0.0976	0.0746	0.0740	-23.60	-24.21
9	24.05	0.00015	0.1541	2.77	2.10	0.0790	0.0687	0.0680	-13.04	-13.93
10	24.05	0.00015	0.1541	2.47	2.10	0.0590	0.0642	0.0634	8.76	7.40
11	24.05	0.00015	0.1541	2.07	2.10	0.0453	0.0609	0.0600	34.52	32.53
12	32.12	0.00015	0.1541	2.90	2.11	0.0941	0.0948	0.0938	0.75	-0.31
13	32.12	0.00015	0.1541	2.77	2.11	0.0852	0.0777	0.0768	-8.82	-9.88
14	32.12	0.00015	0.1 <mark>5</mark> 41	2.44	2.11	0.0644	0.0741	0.0731	15.14	13.59
15	32.12	0.00015	0. <mark>1</mark> 541	2.13	2.11	0.0528	0.0733	0.0721	38.78	36.51
16	38.27	0.00015	0.1541	2.87	2.11	0.1012	0.0862	0.0852	-14.82	-15.81
17	38.27	0.00015	0.1541	2.74	2.11	0.0972	0.0842	0.0831	-13.37	-14.51
18	38.27	0.00015	0.1541	2.47	2.11	0.0741	0.0823	0.0811	11.03	9.42
19	38.27	0.00015	0.1541	2.19	2.11	0.0595	0.0819	0.0805	37.71	35.35
		5								

ตารางที่ 4.15 ตารางแสดงการเปรียบเทียบค่าความดันลดของมลสายสินแร่ Crude Anhydrite ความหนาแน่น 2740 kg/m³ และ น้ำ ในท่อขนาด 6 นิ้ว

		ชุดตัวแปร	อิสระ		ค่า V _c	ค่า h _s	ค่า h _s ที่	คำนวณ	ค่าเบี่ยงเ	บน (DEV.)
ข้อมูล	C _v	d _{p,50}	D	V _{op}		อ้างอิง	ทรงกลม	ϕ =0.9	ทรงกลม	\$\$ =0.9
ท.ส.	%	m	m	m/s	m/s	mw/mp	mw/mp	mw/mp	%	%
1	15.78	0.000074	0.1541	4.63	1.89	0.1221	0.1161	0.1160	-4.88	-4.96
2	15.78	0.000074	0.1541	3.32	1.89	0.0790	0.0639	0.0637	-19.12	-19.37
3	15.78	0.000074	0.15 <mark>41</mark>	2.99	1.89	0.0639	0.0536	0.0534	-16.14	-16.45
4	15.78	0.000074	0.1541	2.23	1.89	0.0407	0.0349	0.0346	-14.25	-14.99
5	15.78	0.000074	0.1541	1.80	1.89	0.0265	0.0270	0.0268	2.07	1.31
6	15.78	0.000074	0.1541	1.34	1.89	0.0164	0.0234	0.0230	42.88	40.44
7	20.78	0.000074	0.1541	3.47	1.93	0.1141	0.0767	0.0765	-32.76	-32.93
8	20.78	0.000074	0.1541	3.14	1.93	0.0746	0.0599	0.0597	-19.67	-19.94
9	20.78	0.000074	0.1541	2.50	1.93	0.0679	0.0422	0.0419	-37.86	-38.30
10	20.78	0.000074	0.1541	2.10	1.93	0.0448	0.0349	0.0346	-22.15	-22.82
11	20.78	0.000074	0.1541	1.77	1.93	0.0351	0.0303	0.0299	-13.58	-14.73
12	20.78	0.000074	0.1541	1.31	1.93	0.0200	0.0274	0.0269	37.19	34.68
13	20.78	0.000074	0. <mark>15</mark> 41	0.91	1.93	0.0108	0.0315	0.0307	192.07	184.65
14	33.36	0.000074	<mark>0.1</mark> 541	3.75	1.95	0.1438	0.0838	0.0835	-41.73	-41.93
15	33.36	0.000074	0.1541	3.14	1.95	0.0976	0.0639	0.0636	-34.56	-34.87
16	33.36	0.000074	0.1541	2.19	1.95	0.0608	0.0425	0.0420	-30.11	-30.93
17	33.36	0.000074	0.1541	1.92	1.95	0.0488	0.0390	0.0384	-20.12	-21.35
18	33.36	0.000074	0.1541	1.49	1.95	0.0327	0.0371	0.0364	13.57	11.43
19	33.36	0.000074	0.1541	1.25	1.95	0.0229	0.0387	0.0378	68.98	65.05
20	33.36	0.000074	0.1541	0.98	1.95	0.0161	0.0449	0.0438	179.46	172.61
			2	0		9				

ตารางที่ 4.16 ตารางแสดงการเปรียบเทียบค่าความดันลดของมลสายสินแร่ Calcuim-Phosphate ความหนา แน่น 2870 kg/m³ และ น้ำ ในท่อขนาด 6 นิ้ว

		ชุดตัวแปร	อิสระ		ค่า V _c	ค่า h _s	ค่า h _s ที่	คำนวณ	ค่าเบี่ยงเ	บน (DEV.)
ข้อมูล	C _v	d _{p,50}	D	V _{op}		อ้างอิง	ทรงกลม	\$\$\$ =0.9	ทรงกลม	\$\$\$ =0.9
ท.ส.	%	m	m	m/s	m/s	mw/mp	mw/mp	mw/mp	%	%
1	18.54	0.000074	0.1541	2.01	1.81	0.0267	0.0302	0.0300	13.22	12.47
2	18.54	0.000074	0.1541	1.71	1.81	0.0209	0.0256	0.0253	22.20	20.77
3	18.54	0.000074	0.15 <mark>41</mark>	1.49	1.81	0.0171	0.0234	0.0231	36.59	34.83
4	18.54	0.000074	0.1541	1.28	1.81	0.0168	0.0222	0.0218	31.97	29.60
5	18.54	0.000074	0.1541	1.01	1.81	0.0109	0.0225	0.0221	106.07	102.41
6	25.98	0.000074	0.1541	2.44	1.84	0.0462	0.0414	0.0411	-10.31	-10.96
7	25.98	0.000074	0.1541	2.01	1.84	0.0334	0.0333	0.0330	-0.36	-1.26
8	25.98	0.000074	0.1541	1.49	1.84	0.0194	0.0277	0.0272	43.14	40.56
9	25.98	0.000074	0.1541	1.10	1.84	0.0120	0.0281	0.0275	133.62	128.63
10	25.98	0.000074	0.1541	0.82	1.84	0.0067	0.0333	0.0324	393.60	380.26
11	25.98	0.000074	0.1541	0.52	1.84	0.0065	0.0512	0.0497	690.12	666.97
12	34.44	0.000074	0.15 <mark>4</mark> 1	2.32	1.84	0.0457	0.0504	0.0500	10.25	9.37
13	34.44	0.000074	0. <mark>15</mark> 41	2.13	1.84	0.0412	0.0386	0.0382	-6.38	-7.35
14	34.44	0.000074	<mark>0.15</mark> 41	1.86	1.84	0.0306	0.0349	0.0345	14.13	12.82
15	34.44	0.000074	0.1541	1.40	1.84	0.0191	0.0325	0.0319	69.90	66.76
16	34.44	0.000074	0.1541	0.52	1.84	0.0064	0.0673	0.0654	953.00	923.27
17	40.68	0.000074	0.1541	2.13	1.84	0.0524	0.0386	0.0382	-26.30	-27.06
18	40.68	0.000074	0.1541	1.98	1.84	0.0416	0.0364	0.0359	-12.47	-13.68
19	40.68	0.000074	0.1541	1.74	1.84	0.0342	0.0337	0.0329	-1.39	-3.73
20	40.68	0.000074	0.1541	1.52	1.84	0.0267	0.0321	0.0315	20.14	17.89
21	40.68	0.000074	0.1541	1.34	1.84	0.0210	0.0327	0.0320	55.43	52.11
22	40.68	0.000074	0.1541	1.04	1.84	0.0103	0.0359	0.0351	248.64	240.88
23	40.68	0.000074	0.1541	0.70	1.84	0.0064	0.0495	0.0482	669.15	648.95
24	44.95	0.000074	0.1541	1.86	2.41	0.0415	0.0432	0.0430	4.21	3.73
25	44.95	0.000074	0.1541	1.62	2.41	0.0344	0.0479	0.0466	39.08	35.30
26	44.95	0.000074	0.1541	1.37	2.41	0.0251	0.0557	0.0540	121.73	114.96
27	44.95	0.000074	0.1541	1.19	2.41	0.0193	0.0689	0.0666	256.87	244.95
28	44.95	0.000074	0.1541	0.82	2.41	0.0126	0.1313	0.1266	941.65	904.36
29	44.95	0.000074	0.1541	0.40	2.41	0.0113	0.5441	0.5239	4726.4	4547.19
สมบัติก	ายภาพข	องน้ำที่อุณหม	าูมิ 21 ⁰	C น้ำมี	ความหน	าแน่น 99	98 kg/m ³	และความห	นี้ด 0.000	98 kg/m-s

ตารางที่ 4.17 ตารางแสดงการเปรียบเทียบค่าความดันลดของมลสายสินแร่ Limestone ความหนาแน่น 2680 kg/m³ และ น้ำ ในท่อขนาด 6 นิ้ว

(ข้อมูลจาก F.L. Smith, B.S., Pilot Plant Experiences with Pipelines Carrying Mineral Slurries, Hydrotransport 1,1970)

		ชุดตัวแปร	อิสระ		ค่า V _c	ค่า h _s	ค่า h _s ที่	คำนวณ	ค่าเบี่ยงเ	ปน (DEV.)
ข้อมูล	C _v	d _{p,50}	D	V _{op}		อ้างอิง	ทรงกลม	ϕ =0.9	ทรงกลม	ϕ =0.9
ท.ส.	%	m	m	m/s	m/s	mw/mp	mw/mp	mw/mp	%	%
1	12.72	0.000841	0.1541	3.54	2.26	0.0790	0.1050	0.1045	32.91	32.27
2	12.72	0.000841	0.1541	2.90	2.26	0.0612	0.0916	0.0909	49.55	48.41
3	12.72	0.000841	0.15 <mark>41</mark>	2.53	2.26	0.0470	0.0899	0.0891	91.09	89.39
4	12.72	0.000841	0.1541	2.19	2.26	0.0313	0.0908	0.0899	190.18	187.31
5	18.77	0.000841	0.1541	4.24	2.31	0.1318	0.1405	0.1400	6.58	6.21
6	10.84	0.000841	0.1541	3.78	2.31	0.1079	0.1252	0.1245	16.08	15.44
7	10.84	0.000841	0.1541	3.29	2.31	0.0914	0.1096	0.1089	19.87	19.11
8	10.84	0.000841	0.1541	2.74	2.31	0.0635	0.1034	0.1034	62.91	62.91
9	10.84	0.000841	0.1541	2.53	2.31	0.0555	0.1032	0.1027	86.01	85.11
10	10.84	0.000841	0.1541	2.29	2.31	0.0475	0.1053	0.1043	121.73	119.62
11	25.59	0.000841	0.1541	3.84	2.38	0.1136	0.1552	0.1542	36.59	35.71
12	25.59	0.000841	0.1541	3.69	2.38	0.0963	0.1465	0.1455	52.11	51.07
13	25.59	0.000841	0. <mark>15</mark> 41	3.35	2.38	0.0888	0.1421	0.1410	60.08	58.84
14	25.59	0.000841	<mark>0.1</mark> 541	3.02	2.38	0.0826	0.1407	0.1395	70.43	68.98
15	25.59	0.000841	0.1541	2.65	2.38	0.0728	0.1439	0.1425	97.69	95.77
16	28.77	0.000841	0.1541	4.63	2.39	0.1682	0.1782	0.1773	5.94	5.40
17	28.77	0.000841	0.1541	4.42	2.39	0.1536	0.1713	0.1704	11.55	10.96
18	28.77	0.000841	0.1541	4.11	2.39	0.1403	0.1636	0.1626	16.65	15.93
19	28.77	0.000841	0.1541	3.72	2.39	0.1247	0.1562	0.1551	25.24	24.36
20	28.77	0.000841	0.1541	3.44	2.39	0.1114	0.1523	0.1510	36.71	35.54
21	28.77	0.000841	0.1541	2.93	2.39	0.0914	0.1505	0.1491	64.61	63.07
22	28.77	0.000841	0.1541	2.59	2.39	0.0839	0.1581	0.1564	88.47	86.45
		~ ~ ~ ~		<u> </u>				<u> </u>		

ตารางที่ 4.18 ตารางแสดงการเปรียบเทียบค่าความดันลดของมลสายสินแร่ Tailing from Borax Refining ความหนาแน่น 2280 kg/m³ และ น้ำ ในท่อขนาด 6 นิ้ว

		ชุดตัวแปร	อิสระ		ค่า V _c	ค่า h _s	ค่า h _s ที่	คำนวณ	ค่าเบี่ยงเ	ปน (DEV.)
ข้อมูล	C _v	d _{p,50}	D	V _{op}		อ้างอิง	ทรงกลม	\$\$\$ =0.9	ทรงกลม	ϕ =0.9
ท.ส.	%	m	m	m/s	m/s	mw/mp	mw/mp	mw/mp	%	%
1	8.55	0.000074	0.1541	2.96	1.67	0.0573	0.0494	0.0494	-13.72	-13.72
2	8.55	0.000074	0.1541	2.62	1.67	0.0457	0.0401	0.0400	-12.28	-12.50
3	8.55	0.000074	0.15 <mark>41</mark>	2.23	1.67	0.0379	0.0305	0.0304	-19.63	-19.89
4	8.55	0.000074	0.1541	1.74	1.67	0.0293	0.0212	0.0210	-27.63	-28.31
5	13.78	0.000074	0.1541	2.90	1.76	0.0577	0.0514	0.0513	-10.92	-11.09
6	13.78	0.000074	0.1541	2.62	1.76	0.0506	0.0417	0.0416	-17.58	-17.78
7	13.78	0.000074	0.1541	2.38	1.76	0.0389	0.0357	0.0356	-8.18	-8.44
8	13.78	0.000074	0.1541	1.86	1.76	0.0375	0.0255	0.0254	-32.09	-32.35
9	13.78	0.000074	0.1541	1.52	1.76	0.0242	0.0209	0.0207	-13.60	-14.42
10	19.95	0.000074	0.1541	2.44	1.81	0.0502	0.0392	0.0390	-21.84	-22.24
11	19.95	0.000074	0.1541	2.32	1.81	0.0555	0.0364	0.0362	-34.39	-34.75
12	19.95	0.000074	0.1541	2.19	1.81	0.0411	0.0340	0.0338	-17.36	-17.85
13	19.95	0.000074	0. <mark>15</mark> 41	1.86	1.81	0.0322	0.0283	0.0280	-12.05	-12.98
14	19.95	0.000074	<mark>0.15</mark> 41	1.58	1.81	0.0260	0.0249	0.0246	-4.10	-5.26
ตารางที	์ 4.20 ตา	รางแสดงค่าค	เวามดันล	ดของมล	เสาย Ce	ment Kile	Feed ควา	มหนาแน่น	2750 kg/	m ³ และ น้ำ

ตารางที่ 4.19 ตารางแสดงการเปรียบเทียบค่าความดันลดของมลสายสินแร่ Red Mud Slurry ความหนาแน่น 2670 kg/m³ และ น้ำ ในท่อ 6 นิ้ว ที่ 21 ^oC น้ำมีความหนาแน่น 998 kg/m³ และความหนืด 0.00098 kg/m-s

		ชุดตัวแปร	อิสระ		ค่า V _c	ค่า h _s	ค่า h _s ที่	คำนวณ	ค่าเบี่ยงเ	บน (DEV.)
ข้อมูล	C _v	d _{p,50}	D	V _{op}		อ้างอิง	ทรงกลม	\$\$\$ =0.9	ทรงกลม	\$\$\$ =0.9
ท.ส.	%	m	m	m/s	m/s	mw/mp	mw/mp	mw/mp	%	%
1	16.40	0.000074	0.2027	3.32	2.08	0.0612	0.0471	0.0470	-23.10	-23.26
2	16.40	0.000074	0.2027	2.59	2.08	0.0415	0.0324	0.0323	-21.93	-22.17
3	16.40	0.000074	0.2027	1.83	2.08	0.0254	0.0218	0.0215	-14.13	-15.31
4	16.40	0.000074	0.2027	1.71	2.08	0.0226	0.0215	0.0212	-4.83	-6.16
5	26.56	0.000074	0.2027	3.08	2.14	0.0697	0.0449	0.0447	-35.56	-35.85
6	26.56	0.000074	0.2027	2.53	2.14	0.0475	0.0352	0.0349	-25.88	-26.51
7	26.56	0.000074	0.2027	2.16	2.14	0.0372	0.0306	0.0302	-17.73	-18.80
8	26.56	0.000074	0.2027	1.86	2.14	0.0291	0.0280	0.0276	-3.83	-5.21
9	41.40	0.000074	0.2027	2.38	2.12	0.0564	0.0461	0.0459	-18.22	-18.57
10	41.40	0.000074	0.2027	2.16	2.12	0.0541	0.0398	0.0397	-26.50	-26.68
11	41.40	0.000074	0.2027	1.89	2.12	0.0470	0.0452	0.0440	-3.93	-6.48

าา 41.40 0.000074 0.2027 1.89 2.12 0.0470 0.0452 0.0440 -3.93 -6.48 มลสายในท่อ 8 นิ้ว (ข้อมูลจาก F.L. Smith, B.S., Pilot Plant Experiences with Pipelines Carrying Mineral Slurries, Hydrotransport 1,1970)

		ชุดตัวแปร	อิสระ		ค่า V _c	ค่า h _s	ค่า h _s ที่	คำนวณ	ค่าเบี่ยงเ	บน (DEV.)
ข้อมูล	C _v	$ ho_{s}$	D	V _{op}	-	อ้างอิง	ทรงกลม	ϕ =0.9	ทรงกลม	ϕ =0.9
ท.ส.	%	Kg/m3	m	m/s	m/s	mw/mp	mw/mp	mw/mp	%	%
1	10.83	2740	0.1541	1.40	2.36	0.0201	0.0167	0.0166	-16.76	-17.25
2	17.30	2740	0.1541	1.89	2.47	0.0353	0.0263	0.0261	-25.46	-26.03
3	17.30	2740	0.1541	1.13	2.47	0.0132	0.0186	0.0183	41.10	38.83
4	17.30	2740	0.1541	0.85	2.47	0.0087	0.0196	0.0192	124.16	119.59
5	24.05	2740	0.1541	1.49	2.52	0.0242	0.0239	0.0236	-1.38	-2.61
6	24.05	2740	0.1541	1.16	2.52	0.0150	0.0227	0.0223	50.87	48.21
7	24.05	2740	0.1541	0.64	2.52	0.0066	0.0318	0.0310	380.86	368.76
8	32.12	2740	0.1541	1.74	2.54	0.0375	0.0297	0.0293	-20.90	-21.97
9	32.12	2740	0.1541	1.52	2.54	0.0286	0.0279	0.0275	-2.39	-3.79
10	32.12	274 <mark>0</mark>	0.1541	1.07	2.54	0.0137	0.0285	0.0278	107.81	102.70
11	32.12	2740	0.1541	0.61	2.54	0.0079	0.0435	0.0423	453.72	438.45
12	38.27	2740	0.1541	1.86	2.52	0.0434	0.0334	0.0330	-23.05	-23.98
13	38.27	2740	0. <mark>15</mark> 41	1.49	2.52	0.0320	0.0306	0.0301	-4.51	-6.07
14	38.27	2740	0.1541	1.10	2.11	0.0212	0.0321	0.0314	51.62	48.32
15	38.27	2740	0.1541	0.85	2.11	0.0198	0.0380	0.0370	91.54	86.50
16	16.40	2750	0.2027	1.31	2.00	0.0160	0.0119	0.0118	-25.52	-26.15
17	16.40	2750	0.2027	1.16	2.00	0.0138	0.0112	0.0111	-18.86	-19.58
18	16.40	2750	0.2027	0.88	2.00	0.0095	0.0109	0.0107	15.30	13.18
19	26.56	2750	0.2027	1.46	2.06	0.0193	0.0157	0.0155	-18.68	-19.72
20	26.56	2750	0.2027	1.04	2.06	0.0127	0.0147	0.0144	15.81	13.44
ขนาดอ	นุภาคของ	1 Crude Anh	ydrite 🕼	ปอร์เซ็นเ	ต์	อนุภาคข	อง Crude .	Anhydrite	มม. เป	อร์เซ็นต์
		3.36		5.2			0.297			23.3
		2.38		1.9			0.149			15.7
		1.68		2.1			0.074		191	16.7
		0.841		8.6			0.044			26.5
ขนาดอ	นุภาคของ	l Cement kilı	n រេ	ปอร์เซ็นเ	ต์	ขนาดอนุ	ภาคของ C	ement kiln	มม. เป	อร์เซ็นต์
		0.297		1.2			0.074		2	0.0
		0.149		5.2			0.044		7	3.6

ตารางที่ 4.21 ตารางแสดงการเปรียบเทียบค่าความดันลดของมลสายสินแร่ Crude Anhydrite ความหนาแน่น 2740 kg/m³ และ Cement kiln ความหนาแน่น 2750 kg/m³ ในน้ำ ในท่อขนาด 6 และ 8 นิ้ว

		ชุดตัวแป ^ร	รอิสระ		h _s	SEC	ค่าที่คํ	านวณ	ค่าเบี่ยงเ	บน (DEV.)
ข้อมูล	C _v	R _{st}	D	V _{op}	อ้างอิง	อ้างอิง	h _s	SEC	h _s	SEC
ท.ส.	%	Tons/hr	m	m/s	mw/mp	Kw-hr	mw/mp	Kw-hr	%	%
1	16.424	27	0.1049	1.9	0.0424	0.2522	0.0332	0.2023	-21.77	-19.79
2	16.424	103	0.2066	1.9	0.0183	0.1107	0.0151	0.0919	-17.53	-16.98
3	16.424	165	0.2610	1.9	0.0140	0.0874	0.0117	0.0713	-16.43	-18.42
4	16.424	306	0.3560	1.9	0.0093	0.0562	0.0085	0.0517	-8.50	-8.01
5	16.424	505	0.4570	1.9	0.0069	0.0416	0.0067	0.0405	-2.62	-2.64
6	16.424	754	0.5590	1.9	0.0054	0.0324	0.0061	0.0373	13.81	15.12
7	16.424	1053	0.6600	1.9	0.0043	0.0261	0.0051	0.0311	18.06	19.16
8	22.995	37	0.1049	1.9	0.0511	0.2177	0.0335	0.1458	-34.49	-33.03
9	22.995	144	0.2066	1.9	0.0218	0.0942	0.0155	0.0672	-28.90	-28.66
10	22.995	231	0.2610	1.9	0.0164	0.0709	0.0121	0.0527	-26.22	-25.67
11	22.995	428	0.3560	1.9	0.0107	0.0463	0.0089	0.0388	-16.90	-16.20
12	22.995	707	0.4570	1.9	0.0079	0.0343	0.0071	0.0310	-10.47	-9.62
13	22.995	1056	0.5590	1.9	0.0062	0.0267	0.0068	0.0298	10.03	11.61
14	22.995	1474	0. <mark>66</mark> 00	1.9	0.0050	0.0215	0.0057	0.0250	14.46	16.28
15	30.847	50	0.1049	1.9	0.0598	0.1897	0.0339	0.1100	-43.30	-42.01
16	30.847	193	0.2066	1.9	0.0259	0.0835	0.0159	0.0516	-38.70	-38.20
17	30.847	309	0.2610	1.9	0.0188	0.0605	0.0126	0.0408	-32.98	-19.79
18	30.847	574	0.3560	1.9	0.0120	0.0387	0.0095	0.0310	-20.90	-19.90
19	30.847	948	0.4570	1.9	0.0087	0.0282	0.0077	0.0250	-11.90	-11.35
20	30.847	1416	0.5590	1.9	0.0068	0.0218	0.0077	0.0250	13.91	14.68
21	30.847	1977	0.6600	1.9	0.0054	0.0175	0.0065	0.0210	19.71	20.00

ตารางที่ 4.22 ตารางแสดงการเปรียบเทียบอัตราการสิ้นเปลืองพลังงานในการขนถ่ายมลสาย Gold Slime ความ หนาแน่น 2725 kg/m³ และ น้ำ ในท่อขนาดต่างๆ

สมบัติกายภาพของน้ำที่ 21 ^oC น้ำมีความหนาแน่น 998 kg/m³ และความหนืด 0.00098 kg/m-s

ขนาดอนุภาค	เปอร์เซ็นต์	ขนาดอนุภาค	เปอร์เซ็นด์	ขนาดอนุภาค	เปอร์เซ็นด์
0.001200	0.85	0.000303	0.61	0.000077	16.44
0.000855	0.13	0.000215	1.58	0.000054	8.89
0.000605	0.49	0.000153	8.16	0.000054	47.62
0.000428	0.49	0.000108	14.74		

(ข้อมูลจาก C.M. Sabbagha, Practical Experiences in Pumping Slurries at ERGO, Hydrotransport 8,1982)

	ମ୍ବୁଡା	ตั้งแปรจากร่	ข้อมูลอ้าง	อิง	SEC	ค่าที่คำ	านวณโดยโร	ปรแกรม	SEC	
ข้อมูล	C _v	R _{st}	D	V_{op}	Kw-hr	C _{vop}	D_{op}	V _{opt}	kw-hr	หมาย
ท.ส.	%	Tons/hr	m	m/s	ton-km	%	m	m/s	ton-km	เหตุ
1	16.424	27	0.1049	1.9	0.2522	48.99	0.100	0.7059	0.0265	
2	16.424	103	0.2066	1.9	0.1107	45.99	0.175	0.9440	0.0232	
3	16.424	165	0.2610	1.9	0.0874	49.99	0.200	1.0684	0.0233	
4	16.424	306	0.3560	1.9	0.0562	34.99	0.325	1.0725	0.0201	
5	16.424	505	0.4570	1.9	0.0416	33.99	0.425	1.0664	0.0191	
6	16.424	754	0.5590	1.9	0.0324	34.99	0.475	1.2391	0.0183	
7	16.424	1053	0.6600	1.9	0.0261	43.99	0.450	1.5328	0.0182	
8	22.995	37	0.1049	1.9	0.2177	41.99	0.125	0.7378	0.0303	
9	22.995	144	0.2066	1.9	0.0942	45.99	0.200	1.0119	0.0223	
10	22.995	231	0.2610	1.9	0.0709	31.99	0.325	0.8851	0.0212	
11	22.995	428	0.3560	1.9	0.0463	49.99	0.300	1.2337	0.0191	
12	22.995	707	0.4570	1.9	0.0343	34.99	0.475	1.1612	0.0184	
13	22.995	1056	0.5590	1.9	0.0267	43.99	0.450	1.5375	0.0182	
14	22.995	1474	0.6600	1.9	0.0215	47.99	0.500	1.5935	0.0171	
15	30.847	50	0.1049	1.9	0.1897	49.99	0.125	0.8315	0.0259	
16	30.847	193	0.2066	1.9	0.0835	45.99	0.225	1.0734	0.0216	
17	30.847	309	0.2610	1.9	0.0605	34.99	0.325	1.0855	0.0201	
18	30.847	574	0.3560	1.9	0.0387	34.99	0.425	1.1782	0.0188	
19	30.847	948	0.4570	1.9	0.0282	34.99	0.425	1.9457	0.0183	
20	30.847	1416	0.5590	1.9	0.0218	45.99	0.500	1.5979	0.0175	
21	30.847	1977	0.6600	1.9	0.0175	45.99	0.550	1.8435	0.0168	

ตารางที่ 4.23 ตารางแสดงอัตราการสิ้นเปลืองพลังงานในการขนถ่ายมลสาย Gold Slime ความหนาแน่น 2725 kg/m³ และ น้ำจากข้อมูลอ้างอิงเปรียบเทียบกับอัตราการสิ้นเปลืองพลังงานที่คำนวณโดยโปรแกรมออปติมัม ที่ อัตราการขนถ่าย (R_{st}) เท่ากัน ในท่อขนาดต่างๆ

สมบัติกายภาพของน้ำที่ 21 ^oC น้ำมีความหนาแน่น 998 kg/m³ และความหนืด 0.00098 kg/m-s

ขนาดอนุภาค	เปอร์เซ็นต์	ขนาดอนุภาค	เปอร์เซ็นด์	ขนาดอนุภาค	เปอร์เซ็นต์
0.001200	0.85	0.000303	0.61	0.000077	16.44
0.000855	0.13	0.000215	1.58	0.000054	8.89
0.000605	0.49	0.000153	8.16	0.000054	47.62
0.000428	0.49	0.000108	14.74		

(ข้อมูลจาก C.M. Sabbagha, Practical Experiences in Pumping Slurries at ERGO, Hydrotransport 8,1982)

4.2 การสรุปวิเคราะห์โปรแกรม

ในหัวข้อที่ผ่านมาเป็นการทดสอบความถูกต้องแม่นยำ (Accuracy) ของ โปรแกรมซึ่งข้อมูลอ้างอิงที่นำมาทดสอบกับโปรแกรมคำนวณค่าความเร็ววิกฤตของการไหลในท่อ ของมลสายเป็นท่อขนาด ½ - 12 นิ้ว และเมื่อนำผลการทดสอบมาทำการสรุปวิเคราะห์เพื่อหา เปอร์เซ็นต์ความเบี่ยงเบน (Deviation) พบว่าเป็นดังแสดงในตารางที่ 4.24

	ผลการทำนายด้วยโปร <mark>แกรม</mark>	จำนวนข้อมูล	<mark>เกีย</mark> บเป็น	เปอร์เซ็นต์สะสม	หมายเหตุ
		ทดสอบ	เปอร์เซ็นต์		
1	ค่าเบี่ยงเบน ≤ <u>+</u> 10 %	35	38.04	38.04	
2	<u>+</u> 10 % < ค่าเบี่ยงเบน ≤ <u>+</u> 20 %	31	33.70	71.74	
3	<u>+</u> 20 % < ค่าเบี่ยงเบน ≤ <u>+</u> 30 %	15	16.30	88.04	
4	ค่าเบี่ยงเบน > <u>+</u> 30%	11	11.96	100.00	
	จำนวนข้อมูลทดสอบทั้ <mark>งหมด</mark>	92	100.00		

a	19 F	S 1 0	<u>م</u>	ล ៴៴	ະ ຈ
ตารางท 4 24 แส	ดงการสราไวเคราะหผลการ	ทดสคาปปรแกรมทานว	ายความเรววกถต	ສເທຍາເກາເຈັດສະເວັດ	กางคง

เมื่อนำผลการทดสอบมาสร้างเป็นแผนภูมิแสดงความสัมพันธ์ระหว่างความเร็ว วิกฤตที่คำนวณด้วยโปรแกรมเทียบกับความเร็ววิกฤตจากข้อมูลอ้างอิง ตามรูปภาพที่ 4.1 ถึง 4.3 พบว่าโปรแกรมสามารถคำนวณความเร็ววิกฤตของมลสายที่มีน้ำเป็นส่วนประกอบหรือเป็นของ ไหลขับเคลื่อนได้ไกล้เคียงกว่ามลสายที่มีของไหลอื่นเป็นส่วนประกอบ และยังพบว่าโปรแกรม สามารถคำนวณค่าความเร็ววิกฤตของมลสายที่ไหลในท่อขนาดเล็กได้แม่นยำกว่ามลสายที่ไหลใน ท่อขนาดใหญ่

เนื่องจากชุดสมการที่นำมาพัฒนาเป็นโปรแกรมมีพื้นฐานเป็นสมการเอมไพริกัล ซึ่งเป็นสมการที่พัฒนามาจากข้อมูลการทดลอง และการทดลองส่วนมากมักจะทดลองในท่อขนาด เล็กและมีน้ำเป็นส่วนประกอบของมลสาย ซึ่งของไหลแต่ละประเภทมีสมบัติกายภาพ ได้แก่ความ หนาแน่น และความหนืดแตกต่างกัน ดังนั้นเมื่อนำโปรแกรมไปคำนวณค่าความเร็ววิกฤตของมล สายที่มีของไหลอื่นที่ไม่ไช่น้ำเป็นส่วนประกอบหลัก จึงมีความคลาดเคลื่อนมากกว่ามลสายที่มีน้ำ เป็นส่วนประกอบ

รูปภาพที่ 4.1 แผนภูมิแสดงความสัมพันธ์ระหว่างความเร็ววิกฤตที่ทำนายโดยโปรแกรมเปรียบเทียบกับข้อมูล อ้างอิง โดยมีน้ำเป็นของไหลขับเคลื่อน (แยกตามประเภทของอนุภาคของแข็ง)

รูปภาพที่ 4.2 แผนภูมิแสดงความสัมพันธ์ระหว่างความเร็ววิกฤตของมลสาย Iron Ore และ Kerosene ที่ทำนาย โดยโปรแกรมเปรียบเทียบกับข้อมูลอ้างอิง

ส่วนกรณีการทดสอบโปรแกรมการคำนวณค่าความดันลดของมลสายประเภท ต่างๆ ที่ไหลในท่อแนวระดับ ซึ่งข้อมูลทดสอบส่วนใหญ่เป็นท่อขนาด 6 – 8 นิ้ว และเมื่อนำผลการ ทดสอบมาทำการสรุปวิเคราะห์เพื่อหาเปอร์เซ็นต์ความเบี่ยงเบน (Deviation) พบว่า ผลการ คำนวณความดันลดด้วยโปรแกรม ส่วนใหญ่ให้ผลสอดคล้องกับข้อมูลอ้างอิง ดังแสดงในตารางที่ 4.25 และเมื่อคัดแยกข้อมูลทดสอบที่มีค่าความเร็วปฏิบัติการ (Operating Velocity) ต่ำกว่าค่า ความเร็ววิกฤต (Critical Velocity) ออกจากข้อมูลทดสอบ พบว่า โปรแกรมสามารถคำนวณค่า ความดันลดได้สอดคล้องกับข้อมูลอ้างอิงมากยิ่งขึ้น ดังแสดงในตารางที่ 4.26

-					
	ผลการทำนายด้วยโปรแกรม	จำนวนข้อมูล	เทียบเป็น	เปอร์เซ็นต์สะสม	หมายเหตุ
	เปรียบเทียบกับข้อมูลอ้างอิง	ทดสอบ	เปอร์เซ็นต์	มาวาย	
1	ค่าเบี่ยงเบน ≤ <u>+</u> 5 %	29	14.43	14.43	
2	<u>+</u> 5% < ค่าเบี่ยงเบน ≤ <u>+</u> 10%	19	9.45	23.88	
3	<u>+</u> 10 % < ค่าเบี่ยงเบน ≤ <u>+</u> 20 %	52	25.87	49.75	
4	<u>+</u> 20 % < ค่าเบี่ยงเบน ≤ <u>+</u> 40 %	49	24.38	74.13	
5	ค่าเบี่ยงเบน > <u>+</u> 40 %	52	25.87	100.00	
	จำนวนข้อมูลทดสอบทั้งหมด	201	100.00		

ตารางที่ 4.25 ตารางแสดงการสรุปวิเคราะห์ผลการทดสอบโปรแกรมคำนวณความดันลดเปรียบเทียบกับข้อมูล อ้างอิง

	ผลการทดสอบโปรแกรม	จำนวนข้อมูล	ว้อยละ	ร้อยละสะสม	หมายเหตุ
	เปรียบเทียบกับข้อมูลอ้างอิง				
1	ค่าเบี่ยงเบน ≤ <u>+</u> 5 %	26	18.06	18.06	
2	<u>+</u> 5% < ค่าเบี่ยงเบน ≤ <u>+</u> 10%	19	13.19	31.25	
3	<u>+</u> 10 % < ค่าเบี่ยงเบน ≤ <u>+</u> 20 %	44	30.56	61.81	
4	<u>+</u> 20 % < ค่าเบี่ยงเบน <mark>≤ <u>+</u>40 %</mark>	31	21.53	83.33	
5	ค่าเบี่ยงเบ <mark>น > <u>+</u>40%</mark>	24	16.67	100.00	
	จำนวนข้อมูลทดสอบทั้งหมด	144	100.00		

ตารางที่ 4.26 ตารางแสดงการสรุปวิเคราะห์ผลการทดสอบโปรแกรมทำนายความดันลดเปรียบเทียบกับข้อมูล อ้างอิง (กรณีตัดข้อมูลที่ Operating Velocity มีค่าต่ำกว่าค่าความเร็ววิกฤต (V_c) ออกจากชุดข้อมูลทดสอบ)

ในทำนองเดียวกันเมื่อนำผลการทดสอบมาสร้างแผนภูมิแสดงความสัมพันธ์ เปรียบเทียบระหว่างความดันลดที่คำนวณด้วยโปรแกรมและความดันลดจากข้อมูลอ้างอิง ตามรูป ภาพที่ 4.4 ถึง 4.8 พบว่า ค่าความดันลดจากการคำนวณมีแนวโน้มสูงกว่าค่าอ้างอิงเล็กน้อย (Over Estimate) และเมื่อนำค่า Sphericity Shape Factor ของอนุภาคมาใช้ประกอบการคำนวณ พบว่า โปรแกรมสามารถคำนวณค่าความดันลดได้สอดคล้องกับข้อมูลอ้างอิงมากยิ่งขึ้น ดังแสดง ในรูปภาพที่ 4.5 และยังพบว่าโปรแกรมสามารถทำนายค่าความดันลดของมลสายเจือจาง ได้สอด คล้องกับข้อมูลอ้างอิงมากกว่ากรณีมลสายที่มีความเข้มข้นสูง ดังแสดงในรูปภาพที่ 4.8

ด้วยเหตุที่ชุดสมการที่นำมาพัฒนาโปรแกรมเป็นสมการเอมไพริกัล ซึ่งเป็นสมการ ที่ได้รับการพัฒนามาจากข้อมูลการทดลอง และการทดลองส่วนมากมักจะทดลองในท่อขนาดเล็ก และจากแผนภาพ พบว่า ค่าความดันลดที่คำนวณด้วยโปรแกรมมีแนวโน้มสูงกว่าค่าอ้างอิงน่าจะมี สาเหตุมาจาก การคำนวณค่า Drag Coefficient ซึ่งสูตรหรือแผนภาพที่ใช้คำนวณ โดยทั่วไปมีไว้ สำหรับ อนุภาคที่เป็นทรงกลมเท่านั้น แต่ในความเป็นจริงในภาคอุตสาหกรรม อนุภาคไม่ได้เป็น ทรงกลม 100 เปอร์เซ็นต์ และยังมีรูปร่างแตกต่างกันไปขึ้นอยู่กับสมบัติกายภาพของอนุภาคนั้นๆ ส่งผลให้ค่าความเร็วบั้นปลาย (Particle Terminal Velocity) ของอนุภาคที่ได้จากการคำนวณมีค่า สูงเกินความเป็นจริง ทำให้ค่า Drag Coefficient มีค่าต่ำ ดังนั้น ความดันลดที่คำนวณด้วย โปรแกรมจึงมีค่าสูงกว่าเมื่อเทียบกับข้อมูลอ้างอิง แต่เมื่อนำค่า Sphericity Shape Factor ของ

รูปภาพที่ 4.4 แผนภูมิแสด<mark>งความสัมพันธ์ระหว่างควา</mark>มดันลดที่ทำนายโดยโปรแกรมเปรียบเทียบกับข้อมูลอ้าง อิง โดยมีน้ำเป็นของไหลขับเคลื่อน

รูปภาพที่ 4.5 แผนภูมิแสดงความสัมพันธ์ระหว่างความดันลดที่ทำนายโดยโปรแกรมเปรียบเทียบกับข้อมูลอ้าง อิง โดยมีน้ำเป็นของไหลขับเคลื่อน (คำนึงค่า Sphericity Shape Factor)

รูปภาพที่ 4.6 แผนภูมิแสดงความสัมพันธ์ระหว่างความดันลดที่ทำนายโดยโปรแกรมเปรียบเทียบกับข้อมูลอ้าง อิง โดยมีน้ำเป็นของไหลขับเคลื่อน (กรณีตัดข้อมูลทดสอบที่มี ค่า Operating Velocity ต่ำกว่า ค่า Critical Velocity ออกจากข้อมูลทดสอบ)

รูปภาพที่ 4.7 แผนภูมิแสดงความสัมพันธ์ระหว่างความดันลดที่ทำนายโดยโปรแกรมเปรียบเทียบกับข้อมูลอ้าง อิง โดยมีน้ำเป็นของไหลขับเคลื่อน (แยกตามขนาดท่อ)

รูปภาพที่ 4.8 แผนภูมิแสดงความสัมพันธ์ระหว่างความดันลดที่ทำนายโดยโปรแกรมเปรียบเทียบกับข้อมูลอ้าง อิง โดยมีน้ำเป็นของไหลขับเคลื่อน (แยกตามขนาดความเข้มข้นต่างๆ)

รูปภาพที่ 4.9 แสดงความสัมพันธ์ระหว่างอัตราการสิ้นเปลืองพลังงานในการขนถ่ายมลสายที่ทำนายโดย โปรแกรมเปรียบเทียบกับข้อมูลอ้างอิง โดยมีน้ำเป็นของไหลขับเคลื่อน อนุภาคมาใช้ประกอบการคำนวณ พบว่า ค่า Terminal Velocity มีค่าลดลง ส่งผลให้ค่า Drag Coefficient มีค่าสูงขึ้น ดังนั้น ความดันลดที่ได้จากการคำนวณด้วยโปรแกรม จึงมีค่าต่ำกว่า กรณี ที่สมมติว่า อนุภาคมีรูปร่างเป็นทรงกลม

กรณีการทดสอบโปรแกรมการคำนวณออกแบบเชิงออปติมัม จะแบ่งการทดสอบ ออกเป็นสองขั้นตอนคือ ขั้นตอนแรก เป็นการทดสอบอัตราการสิ้นเปลืองพลังงานในการขนถ่ายต่อ หน่วย โดยที่ชุดตัวแปรป้อนเข้า จะเป็นชุดเดียวกันกลับข้อมูลอ้างอิง ผลการทดสอบ พบว่า ให้ผล สอดคล้องกับข้อมูลอ้างอิง ดังแสดงในตารางที่ 4.22 และการทดสอบในขั้นตอนที่สอง โดย โปรแกรมจะคำนวณค่าพารามิเตอร์หรือตัวแปรสำหรับการออกแบบระบบท่อเชิงออปติมัม คือ ขนาดท่อที่เหมาะสม ความเข้มข้นของมลสายที่เหมาะสม และความเร็วการขนถ่ายที่เหมาะสม และเมื่อนำค่าพารามิเตอร์หรือตัวแปรดังกล่าวมาคำนวณหาค่าอัตราการสิ้นเปลืองพลังงานต่อ หน่วย พบว่า มีค่าต่ำกว่าค่าอัตราการสิ้นเปลืองพลังงานในการขนถ่ายต่อหน่วยของข้อมูลอ้างอิง ที่ อัตราการขนถ่ายเท่ากัน ดังแสดงในตารางที่ 4.23

4.3 ตัวอย่างการใช้โปร<mark>แ</mark>กรม

1. กรณี่ต้องการทราบความเร็ววิกฤตหรือความดันลดของระบบท่อ โดยมีข้อ มูลสมบัติกายภาพ และพารามิเตอร์ต่างๆ ดังต่อไปนี้

อนุภาคของแข็งขนาด 0.1 มม. 0.2 มม. 1.5 มม. คิดเป็นสัดส่วน 50 % 35% และ 15% ตาม ลำดับ โดยมี shape factor = 0.95 และความหนาแน่น 2650 กก./ ม³ ส่วนของไหลคือน้ำ ที่อุณ ภูมิ 21 ^oC น้ำมี ความหนาแน่น 998 กก./ ม³ และความหนืด 0.00098 กก./ ม.วินาที ไหลในท่อ ขนาดเส้นผ่าศูนย์กลาง 4 นิ้ว มีค่าความขรุขระของผนังท่อ 0.0004572 เมตร ที่ความเข้มข้น 18 % โดยของไหล ไหลที่ความเร็ว 3.2 ม./วินาที

เริ่มต้นด้วยการป้อนค่าข้อมูล ที่กล่าวมา ที่ช่อง Text Box ของหน้าต่างด้าน Input

Particle Size	0.0001,0.0002,0.0015	el m
Particle Size Distribution	0.50,0.35,0.15	
Particle Shape Factor	0.95	
Particle Density	2650	kg/m3
Liquid Density	998	kg/m3

เมื่อป้อนข้อมูลแล้วเสร็จ ให้คลิกที่ปุ่ม Command Button Calculation ผลการคำนวณจะแสดงใน หน้าต่าง แสดงผล ดังต่อไปนี้

เมื่อต้องการทราบผลกระทบของตัวแปรอิสระตัวแปรใดๆ ที่มีต่อความดันลด สามารถทำได้เพียง แค่ คลิกที่ปุ่ม Command Button Back หน้าต่างแสดงผลจะเปลี่ยนไปเป็นหน้าต่างป้อนข้อมูล ซึ่ง จะปรากฏให้ผู้ใช้สามารถแก้ไขข้อมูลที่ต้องการทราบผลกระทบ โดยสามารถแก้ไขข้อมูลได้โดยตรง ที่ช่อง Text Box ตัวนั้นๆ หรือคลิกที่ปุ่ม Command Button Clear ข้อมูลทั้งหมดจะถูกลบทิ้ง

 กรณีต้องการออกแบบระบบท่อเชิงออปติมัม โดยมีข้อมูลสมบัติกายภาพ และพารามิเตอร์ต่างๆ ดังต่อไปนี้

ต้องการขนถ่ายอนุภาคของแข็งขนาด 0.1 มม. 0.2 มม. 1.5 มม. คิดเป็นสัดส่วน 50 % 35% และ 15% ตามลำดับ โดยมี shape factor = 0.95 และความหนาแน่น 2650 กก./ ม³ ในอัตรา 80 tons/hr ส่วนของไหลคือน้ำ ที่อุณภูมิ 21 ^oC น้ำมี ความหนาแน่น 998 กก./ ม³ และความหนืด 0.00098 กก./ ม.วินาที ไหลในท่อที่มีค่าความขรุขระของผนังท่อ 0.0004572 เมตร เริ่มต้นด้วยการป้อนค่าข้อมูล ที่กล่าวมา ที่ช่อง Text Box ของหน้าต่างด้าน Input

Particle Size	0.0001,0.0002,0.0015	m
Particle Size Distribution	0.50,0.35,0.15	
Particle Shape Factor	0.95	
Particle Density	2650	kg/m3
Liquid Density	998	kg/m3
Liquid Viscosity	0.00098	kg/m-s
Pipe Wall Roughness	0.00004572	m
Solid Transportation Rate	80	tons/hr
Calculation	Back	Clear

เมื่อป้อนข้อมูลแล้วเสร็จ ให้คลิกที่ปุ่ม Command Button Calculation ผลการคำนวณจะแสดงใน หน้าต่าง แสดงผล ดังต่อไปนี้

Operating Velocity	15.58	m/s
Critical Velocity	1.90	m/s

เมื่อต้องการเปลี่ยนแปลงค่าตัวแปรอิสระใดๆ ที่มีต่ออัตราการสูญเสียพลังงานอันเนื่องมาจากการ ไหล สามารถทำได้เพียงแค่ คลิกที่ปุ่ม Command Button Back หน้าต่างแสดงผลจะเปลี่ยนไป เป็นหน้าต่างป้อนข้อมูล ซึ่งจะปรากฏให้ผู้ใช้สามารถแก้ไขข้อมูลที่ต้องการทราบผลกระทบ โดย สามารถแก้ไขข้อมูลได้โดยตรงที่ช่อง Text Box ตัวนั้นๆ หรือคลิกที่ปุ่ม Command Button Clear ข้อมูลทั้งหมดจะถูกลบทิ้ง

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

บทที่ 5 สรุปผลการดำเนินงานและข้อเสนอแนะ

5.1 สรุปผลการดำเนินงาน

จากผลการดำเนินงาน ผู้ศึกษาได้นำทฤษฎีและสมการต่างๆ มาพัฒนาโปรแกรม ด้วยภาษาวิสชวลเบสิคสำหรับใช้คำนวณออกแบบระบบการขนถ่ายมลสาย (ของไหล 2 วัฏภาค คือ ของแข็ง-ของเหลว) ประเภทที่ตกตะกอนได้ ในระบบท่อแนวระดับ โดยโปรแกรมได้รับการ พัฒนาออกเป็นสองโปรแกรม คือ โปรแกรมการคำนวณความดันลด และโปรแกรมการคำนวณ ออกแบบเชิงออปติมัม โดยทั้งสองโปรแกรมได้นำสมการการทดลอง (Empirical Equation) ของ Turian และ Oroska (1980) สมการของ Shook และ Gillies (1991) และสมการของ Zandi และ Govatos (1967) สำหรับใช้คำนวณหาค่าความเร็วการไหลในท่อวิกฤต และนำสมการเอมไพริกัล ของ Durand และ Condolios (1952) สมการของ Newitt และคณะ (1956) และสมการของ Zandi และ Govatos (1967) สำหรับใช้คำนวณค่าความดันลดของการไหลในท่อของมลสาย ตาม ลำดับ และได้นำโปรแกรมที่ได้รับการพัฒนาแล้วเสร็จ มาทำการทดสอบ Accuracy ของโปรแกรม เทียบกับข้อมูลอ้างอิง ซึ่งเป็นข้อมูลจากการทดลองจริงโดยนักวิจัยคณะอื่น และผลการทดสอบ สามารถจำแนกได้เป็นหัวข้อดังต่อไปนี้

 การทดสอบโปรแกรมการคำนวณความเร็ววิกฤต โดยช่วงข้อมูลทดสอบเป็นท่อ ขนาด 1/2 – 12 นิ้ว ของมลสายที่ประกอบด้วย ทราย กรวด ถ่านหิน และสินแร่อื่นๆ โดยมีน้ำเป็น ของไหลขับเคลื่อน ที่อุณหภูมิคงที่ พบว่า 88.04 % ของข้อมูลทดสอบ โปรแกรมสามารถทำนาย ค่าความเร็ววิกฤตได้สอดคล้องกับข้อมูลอ้างอิงโดยมีค่าเบี่ยงเบนไปจากผลการทดลอง ±30 %

 2) การทดสอบโปรแกรมการคำนวณความดันลด ข้อมูลทดสอบส่วนใหญ่เป็นท่อ ขนาด 6 – 8 นิ้ว ของมลสายที่ประกอบด้วย ทราย กรวด ถ่านหินและสินแร่อื่นๆ โดยมีน้ำเป็นของ ใหลขับเคลื่อน ที่อุณหภูมิคงที่ พบว่า 74.13 % ของข้อมูลทดสอบ โปรแกรมสามารถทำนายค่า ความดันลดได้สอดคล้องกับข้อมูลอ้างอิงโดยมีค่าเบี่ยงเบนไปจากผลการทดลอง <u>+</u>40 %

 กรณีคัดแยกข้อมูลที่มีค่าความเร็วการไหลในท่อต่ำกว่าค่าความเร็ววิกฤตออก จากข้อมูลทดสอบในข้อ (2) พบว่าค่า Accuracy ของโปรแกรมคำนวณความดันลดมีแนวโน้มสูง ขึ้น คือ 83.33 % ของข้อมูลทดสอบ โปรแกรมสามารถทำนายค่าความดันลดได้สอดคล้องกับข้อ มูลอ้างอิงโดยมีค่าเบี่ยงเบนไปจากผลการทดลอง <u>+</u>40 %

 4) การทดสอบโปรแกรมการคำนวณออกแบบระบบท่อเชิงออปติมัม โดยช่วงข้อ มูลทดสอบเป็นท่อขนาด 4 – 24 นิ้ว พบว่า โปรแกรมสามารถทำนายค่าพารามิเตอร์ที่สำคัญ สำหรับการออกแบบ คือ ขนาดท่อที่เหมาะสม ความเข้มข้นของมลสายที่เหมาะสม และความเร็ว การไหลในท่อที่เหมาะสม ได้อย่างมีประสิทธิภาพ และเมื่อนำชุดค่าพารามิเตอร์ที่ทำนายด้วย โปรแกรมดังกล่าว มาคำนวณหาค่าอัตราการสิ้นเปลืองพลังงาน พบว่า อัตราการสิ้นเปลืองพลัง งานในการขนถ่ายต่อหน่วย มีค่าต่ำกว่าของข้อมูลอ้างอิงทุกค่าการทดสอบ ที่อัตราการขนถ่ายเท่า กัน

5.2 ข้อเสนอแนะ

 การนำโปรแกรมไปคำนวณความเร็ววิกฤตในช่วงขนาดท่อใหญ่กว่า 12 นิ้ว เป็นต้นไป ผู้ใช้จะต้องระมัดระวังเป็นพิเศษ เนื่องจากโปรแกรมยังไม่ได้รับการตรวจสอบค่าความ ถูกต้อง ดังนั้น ก่อนนำโปรแกรมไปใช้คำนวณ ควรทำการตรวจสอบโปรแกรมด้วยการทดสอบกับ ข้อมูลอ้างอิงเสียก่อน นอกจากนี้ การนำค่าความเร็ววิกฤตไปปฏิบัติงานจริง ควรพิจารณาค่าความ ปลอดภัยที่ 30 % หรือนำค่าความเร็ววิกฤตที่ได้จากการคำนวณบวกด้วย 0.3 เมตรต่อวินาที โดย เลือกค่าที่สูงกว่าเป็นหลัก ทั้งนี้เพื่อให้มั่นใจได้ว่า การไหลในท่อแนวระดับของมลสายจะไม่เกิดการ ตกตะกอน

ถึงแม้ว่าโปรแกรมความดันลด จะได้รับการตรวจสอบ Accuracy ของ
 โปรแกรมในช่วงขนาดท่อ 2 - 24 นิ้ว แต่ 90 % ของข้อมูลทดสอบเป็นท่อขนาด 6 - 8 นิ้ว ดังนั้น
 การนำโปรแกรมไปใช้ทำนายความดันลดนอกขอบเขตนี้ ผู้ใช้จะต้องระมัดระวังเช่นเดียวกัน เนื่อง
 จากข้อมูลสำหรับการตรวจสอบ Accuracy ของโปรแกรมยังน้อยเกินกว่าจะสรุปได้

3) กรณีความเร็วการใหลในท่อมีค่าน้อยกว่าความเร็ววิกฤต อนุภาคของแข็งจะ ตกตะกอนสะสมบริเวณท้องท่อ ทำให้ผิวบนของตะกอนมีความขรุขระมากกว่าผิวภายในท่อ ส่งผล ให้ค่าองค์ประกอบความเสียดทาน (Friction Factor) ซึ่งเป็นฟังก์ชันของขนาดความขรุขระของผิว ภายในท่อมีค่าสูง ดังนั้น ความดันลดจะมีค่าสูงกว่ากรณีปกติ นอกจากนี้ พื้นที่ภาคตัดขวางของท่อ บริเวณที่มีการสะสมของตะกอนจะลดลง ทำให้ความเร็วการไหลบริเวณนี้มีค่าสูง ส่งผลให้ความ ดันลดซึ่งเป็นฟังก์ชันของความเร็วยกกำลังสอง มีค่าสูงขึ้นไปอีก ดังนั้นจึงไม่แนะนำให้นำโปรแกรม ไปคำนวณความดันลดของมลสายในสภาวะนี้

4) ถึงแม้ว่าโปรแกรมสามารถทำนายชุดค่าพารามิเตอร์สำหรับใช้ออกแบบระบบ ท่อเชิงออปติมัม คือ ขนาดท่อที่เหมาะสม ความเข้มข้นที่เหมาะสม และความเร็วการขนถ่ายที่ เหมาะสม ซึ่งมีค่าอัตราการสิ้นเปลืองพลังงานในการขนถ่ายต่อหน่วยน้อยที่สุด แต่การนำค่าความ ดันลดซึ่งเป็นพารามิเตอร์ที่สำคัญสำหรับการเลือกขนาดของเครื่องสูบอัด (pump) จะต้อง ระมัดระวังและควรพิจารณาค่าความปลอดภัย (Safety Factor) ไว้ด้วย และควรนำชุดค่าพารา มิเตอร์ดังกล่าวมาตรวจสอบตัวเองด้วยโปรแกรมความดันลดอีกหนึ่งครั้งและทั้งสองค่าควรจะเท่า กัน หรือไกล้เคียงกัน

5) ตรวจสอบค่าสมบัติกายภาพต่างๆ ของของแข็ง ของน้ำ และของท่อ ให้ถูกต้อง แน่นอนก่อนที่จะป้อนเข้าสู่โปรแกรม โดยเฉพาะค่าที่มีผลต่อการคำนวณ ได้แก่ shape factor ขนาดของอนุภาค สัดส่วนการกระจายของขนาดของอนุภาค โดยเฉพาะอุณหภูมิของน้ำ ซึ่งเป็น ปัจจัยที่สำคัญมากเนื่องจากทั้งค่าความหนาแน่นและความหนืดของน้ำแปรผันตรงกับอุณหภูมิ

 6) เพื่อความสะดวกต่อการใช้งานและป้องกันข้อผิดพลาดที่อาจเกิดขึ้น ควรสร้าง ฐานข้อมูลบรรจุไว้ในโปรแกรม โดยเฉพาะค่าสมบัติกายภาพของน้ำ ที่อุณหภูมิต่างๆ ได้แก่ ความ หนาแน่น และความหนืด เป็นต้น

7) นำโปรแกรมไปทดสอบกับมลสายที่ประกอบด้วย อนุภาคของแข็ง และของ ใหลประเภทอื่น ได้แก่ เยื่อกระดาษ ดิน และโคลน ใน น้ำ หรือ หิน ในน้ำมัน เป็นต้น

 พัฒนาโปรแกรมเพื่อให้สามารถคำนวณออกแบบระบบท่อสำหรับขนถ่ายมล สาย กรณีที่อนุภาคของแข็งเป็นของผสมต่างชนิดกัน

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

รายการอ้างอิง

- Bain, A.G., Bonnington, S.T. <u>The Hydraulic Transport of Solid by Pipeline</u>. First Edition. Great Britain : Pergamom Press, 1970.
- Durand, R., and Condolios, E. Experimental Study of the Hydraulic Transport of Coal and Other Materials in Pipes. <u>Colloq. of National Coal Board</u> Paper IV (1952) : 39-52.
- Durand, R. <u>Basic Relationships of the transportation of Solids in Pipes Experimental</u> Reseach. Proc. International Assoc. for Hydraulic Research. Minneapolis, 1953.
- Edward, J. Wasp, John, P. Kenny, Ramesh, L. Gandhi. <u>Solid-Liquid Flow Slurry Pipeline</u> <u>Transportation</u>. First Edition. Germany : Trans Tech Publications, 1977.
- Faddick, R., Pouska, G. Ultrasonic Velocity Meter. <u>Hydrotransport</u> Vol. 6 Paper B4 (1979) : 113 -120.
- Gillies, R.G., and Shook, C.A. A Deposition Velocity Correlation for Water Slurries. <u>Can.</u> <u>J. Chem. Eng.</u> Vol. 69 (1991) : 1225-1227.
- Haas, D. B., Small, and Husband, W.H.W. <u>Study of the hydraulic properties of coarse</u> particles of metallurgical coals when transported in slurry form through pipelines of various diameters. Saskatchewan Research Council Report E76-13, 1978.
- Mohinder, L. Nayyar. <u>Piping Handbook.</u> Seventh Edition. United State of America : The McGraw-Hill, 1997.
- Nigel, P. Brown, Nigel, I. Heywood. <u>Design of Solid-Liquid System</u>. Great Britain : Elsevier Science Publishers, 1991.
- Novak, P., Nalluni, C. A study into the correlation of sediment motion in pipe flow. <u>Hydrotransport</u> Vol. 2 (1972) :
- Newitt, D.M. Hydraulic Conveying of Solid in Horizontal Pipes. <u>Trans. Inst. Chem. Eng.</u>, Vol. 33/2 (1955) : 93–110.
- Robert, H. Perry, and Don, W. Green. <u>Perry's Chemical Engineer Handbook</u>. Seventh Edition. Singapore : The McGraw-Hill, 2000.
- Shook, C.A., Roco, M.C. <u>Slurry Flow Principle and Practice</u>. United State of America : Butterworth-Heinemann, 1991.
- Smith, F.L., B.S. Pilot Plant Experiences with Pipelines Carrying Mineral Slurries.

Hydrotransport Vol.1 Paper A2 (1970) : 13-24.

- Sabbagha, C.M. Practical Experiences in Pumping Slurries at ERGO, <u>Hydrotransport</u> Vol. 8 Paper A1 (1982) : 1-9.
- Schriek, W. <u>Experimental studies on the hydraulic transport of coal</u>. Saskatchewan Research Council. Report V E73-17, 1973.
- Turian, R.M., and Oroskar, A.R. The Critical Velocity in Pipeline Flow of Slurry. <u>AIChE</u> <u>Journal</u> 26 (1980) : 550-558.
- Zandi, I. <u>Advances in Solid-Liquid Flow in Pipes and its Application</u>. Great Britain : Pergamom Press Ltd. First Edition, 1971.
- Zandi, I., and Govatos, G. Heterogeneous Flow of Solid in Pipeline. <u>Journal of the</u> <u>Hydraulics Division</u> ASCE 93 HY3 (1967) : 145-159.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

ภาคผนวก

ภาคผนวก ก

<u>ตารางแสดงคุณสมบัติท่อ</u>

ข้อมูลจากภาคผนวก ค ในหนังสือ วิศวกรรมระบบท่ออุตสาหกรรม แต่งโดย นาวาอากาศโท ตระการ ก้าวกสิกรรม พิมพ์ครั้งที่ 1 เดือน ธันวาคม พ.ศ. 2544 สำนักพิมพ์ บริษัท เอ็มแอนด์อี จำกัด

DN	PIPING CODES and	DIA	MENSIONS	WE	CHTS	· · · · ·		AC		Moment Section Redive of Centinuous Course						
(mm)	MANUFACTURERS'	0.D.	I.D. Wall	Empty	Water filled	External	Internal	Fiow	Metal	of Intertia	Modular	Gyretion	Sono	us spans	Code	Pressures
(NPS)	WEIGHTS	(៣៣)	(mm) (mm)	(ko/m)	(kg/m)	(mm²/mm)	(mm²/mm)	(mm²/mm)	(mm²/mm)	(10°mm)	(mm ⁴ OI)	(mmt)	(m)	(mm)	(MPa)	
													(1)			(HE 64)
10	SCH 40 STD API	17.15	12.52 2.311	.8434	.9666	53.86	39.34	123.2	107.7	3.035	.3540	5.308	3.52	5.42	12.1	40 1
.375	SCH 80 XS API	17.15	10.74 3.200	1.098	1.188	53.86	33.75	90.66	140.2	3.587	.4185	5.058	3.45	5.52	19.9	66.4
15	SCH 40 STD API	21.34	15.80 2.769	1.265	1.461	67.03	49.63	196.0	161.5	7.114	.6669	6.637	3.93	5.39	12.6	42.1
1.500	SCH 80 XS API	21.34	13.87 3.734	1.617	1.768	67.03	43.57	151.1	206.5	8.357	.7833	6.362	3.87	5.53	19.5	64.8
	SOH 160	21.34	11.79 4.775	1.945	2.054	67.03	37.03	109.1	248.4	9.225	.8648	6.094	3.77	5.43	27.5	91.6
	XXS API	21.34	6.401 7.468	2.548	2.580	67.03	20.11	32.18	325.4	10.09	.9458	5.569	3.52	4.94	52.1	174
20	SCH 40 STD API	26.67	20.93 2.870	1.680	2.024	83.79	65.75	344.0	214.6	15.42	1.156	8.475	4.39	5.17	9.14	30.5
.750	SCH 80 XS API	26.67 1	18.85 3.912	2,190	2.469	83.79	59.21	279.0	279.7	18.64	1.398	8.164	4.37	5.48	14.8	49.2
	SCH 160	26.67 1	15.54 5.563	2.888	3.078	83.79	48.84	189.8	368.9	21.97	1.647	7.717	4.25	5.48	24.5	81.7
	XXS API	26.67 1	11.02 7.823	3.627	3.722	83.79	34.63	95.44	463.2	24.11	1.806	7.215	4.05	5.16	39.8	133
25	SCH 40 STD API	33.40 2	26.64 3.378	2.495	3.052	104.9	83.71	557.6	318.6	36.35	2.177	10.68	4.91	5.08	8.77	29.2
1.00	SCH 80 XS API	33.40	24.31 4.547	3.227	3.691	104.9	76.37	464.1	412.1	43.96	2.632	10.33	4.91	5.43	13.8	45.9
	SCH 160	33.40 2	20.70 6.350	4.225	4.562	104.9	65.03	336.6	539.6	52.08	3.119	9.824	4.80	5.51	22.1	73.7
	XXS API	33.40 1	15.21 9.093	5.437	5.619	104.9	47.80	181.8	694.4	58.46	3,501	9.176	4.59	5.25	36.5	122
32	SCH 40 STD API	42.16 3	35.05 3.556	3.377	4.342	132.5	110.1	965.0	431.3	81.04	3.844	13.71	5.47	4.75	7.03	23.4
1.25	SCH BO XS API	42.16 3	32.46 4.851	4.453	5.280	132.5	102.0	827.6	568.7	100.6	4.774	13.30	5.52	5.26	11.3	37.7
	SCH 160	42.16 2	29.46 6.350	5.594	6.276	132.5	92.56	681.8	714.5	118.2	5.604	12.86	5.49	5.49	16.5	55.2
	XXS API	42.16 2	22.76 9.703	7.748	8.155	132.5	71.50	406.8	989.5	142.0	6.734	11.98	5.28	5.41	29.5	98.5
40	SCH 40 STD API	48.26 4	0.89 3.683	4.039	5.352	151.6	128.5	1313	515.8	129.0	5.346	15.81	5.81	4.54	6.46	21.5
1.50	SCH 80 XS API	48.26 3	38.10 5.080	5.3%	6.536	151.6	119.7	1140	689.1	162.8	6.748	15.37	5.90	5.14	10.5	34.9
	SCH 160	48.26 3	3.99 7.137	7.220	8.127	151.6	106.8	907.1	922.1	200.8	8.321	14.76	5.88	5.48	16.7	55.7
	XIS API	8.26 2	27.94 10.16	9.522	10.14	151.6	87.78	613.1	1216	236.4	9.795	13.94	5.71	5.47	26.8	89.4
50	SCH 40 STD API	60.32 5	52.50 3.912	5.428	7.593	189.5	164.9	2165	693.2	277.1	9.187	19.99	6.39	4.17	5.07	16.9
2.00	SUH BO XS API	60.32 4	9.25 5.537	7.463	9.368	189.5	154.7	1905	953.1	361.3	11.98	19.47	6.57	4.91	8.72	29.1
	API	60.32 4	7.62 6.350	8.431	10.21	189.5	149.6	1781	1077	397.5	13.18	19.21	6.60	5.14	10.6	35.4
	SCH 160	60.32 4	2.85 8.738	11.09	12.53	189.5	134.6	1442	1416	484.6	16.07	18.50	6.58	5.47	16.4	54.7
	xxs	60.32 3	98.18 11.07	13.42	14.56	189.5	119.9	1145	1713	545.8	18.10	17.85	6.48	5.52	22.5	75.0

Thru DN 250, wall thicknesses for SCH 405 and 5CH 805 stainless steel pipes are the same as for SCH 40 and SCH 80 carbon steel pipes

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

DN	PIPING CODES and	D	MENSIONS		WE	GHTS	ſ	ARE	AS		Moment	Section	Badiers of	Continuo	in Snape	Carla	Orana was
(mm)	MANUFACTURERS'	0.D.	I.D.	Walt	Empty	Water filled	External	Internal	Flow	Metai	of Intertia	Modulus	Gyration	Snan	San	Design	Auretino
(NPS)	WEIGHTS	(mm)	(നന)	(നന)	(ko/m)	(kg/m)	(mm²/mm)	(mm²/mm)	(mm²/mm)	(mm²/mm)	(10*mm)	(107mm)	ément)	(m)	(mm)	(MPa)	(MPa)
h	A	· · · · · · · · · · · · · · · · · · ·					1							1	<i>(,</i>	1 411 4	
	001 40 000 401	72.03	(1) 71		0. (00	44.30											
00	SON 40 SID API	/3.03	62./1	5.156	8,608	11.70	229.4	197.0	3089	1099	636.6	17.44	24.06	7.09	4.37	5.%	19.9
2.30	SON OU AS API	/3.03	39.00	7.010	11.38	14.12	229.4	185.4	2734	1454	800.9	21.94	23.47	7.24	4.99	9.43	31.4
1	SOH 160	73.03	53.98	9.525	14.88	17.17	229.4	169.6	2288	1900	979.3	26.82	22.70	7.26	5.39	14.4	48.0
	XXS API	73.03	44.98	14.02	20.35	21.94	229.4	141.3	1589	2599	1195	32.73	21.44	7.10	5.51	24.0	80.1
80	API	88.90	82.55	3.175	6.695	12.05	279.3	259.3	5352	855.1	786.5	17.69	30 33	7.04	7 67	1 04	4 44
3.00	API	88.90	80.98	3.962	8.279	13.43	279.3	254.4	51.50	1057	955.6	21.50	30.06	7 35	3 23	1 11	10.4
1	API	88.90	79.35	4.775	9,882	14.83	279.1	749.1	4945	1767	1120	25 20	29 79	7 57	3 71	/ 10	14.3
	SCH 40 STD API	88.90	77.93	5.486	11.26	16.03	279 3	744 8	4769	1439	1256	28.25	20 55	7.37	4.05	4.30	14.5
	APT	88.90	76 20	6 350	12 80	17 45	270 1	230 /	4560	14/.7	1/11	20.20	27.33	7.01	4.05	3.30	17.9
	APT	88.90	74 63	7 137	14 36	18 73	270 3	237.4	4374	1833	1544	34. 73	27.27	7.00	4.40	0.00	4.2
1	101 AN YS 401	88.90	73 66	7 630	15 24	10.50	270 3	224.4	4.961	10/4	1671	34.73	27.02	7.91	4.65	7.80	20.2
1 - 1	97H 160	88.90	66 65	11 13	21 28	26 77	270 3	201.4	34401	1710	1021	30.4/	20.00	7.94	4.78	8.61	28.7
	YVC ART	89.00	58.42	15 24	27.41	20.20	270.2	102 6	3407	2/10	2091	4/.19	21.10	8.02	5.30	14.2	47.5
	~~~~~			1.24	27.01	30.27	417.3	103.5	2000		4474	30.11	20.39	7.91	3.33	41.4	<i>n.</i> ,
100	API	114.3	108.0	3.175	8.679	17.83	359.1	339.1	91.52	1108	1712	29.96	39.30	7.53	2.08	.971	3.24
4	API	114.3	106.4	3.962	10.75	19.64	359.1	334.2	8687	1374	2093	36.62	39.04	7.93	2.60	1.84	6.14
	API	114.3	104.7	4.775	12.87	21.48	359.1	329.1	8618	1643	2468	43.19	38.76	8.24	3.06	2.75	9.17
	API	114.3	103.2	5.563	14.88	23.24	359.1	324.1	8361	1900	2816	49.27	38.49	8.46	3.45	3.64	12.1
	SCH 40 STD API	114.3	102.3	6.020	16.03	24.25	359.1	321.3	8213	2048	3010	52.68	38.34	8.56	3.66	4.16	13.9
	API	114.3	101.6	6.350	16.86	24.97	359.1	319.2	8107	2154	3148	55.08	38.23	8.63	3.79	4.54	15.1
	API	114.3	100.0	7.137	18.81	26.67	359.1	314.2	7858	2403	3465	60.62	37.97	8.76	4.08	5.45	18.2
	API	114.3	98.45	7.925	20.74	28.35	359.1	309.3	7612	2648	3767	65.91	37.71	8,86	4.33	6.37	21.2
	SCH 80 XS API	114.3	97.18	8.560	22.26	29,68	359.1	305.3	7417	2844	4000	69.99	37.51	8.92	4.50	7.12	23.7
	SCH 160 API	114.3	87.33	13.49	33.45	39.44	359.1	274.3	5989	4272	5524	96.65	35.96	9.09	5.29	13.2	44.0
	XXS API	114.3	80.06	17.12	40.92	45.96	359.1	251.5	5034	5227	6362	111.3	34.89	9.04	5.49	18.0	59.9
150	ADT	168 3	158 7	4 775	10 21	18 00	578 7	1.09 6	10797	24.52	8202	07 60	67 02	0.40			
6	ADT	168 3	157 1	5 541	22 24	11 44	\$29.7	490.0	10204	2433	0/01	7/.30	57.65	3.13	2.13	1.48	4.92
	ADT	168 1	155 4	4 350	75 20	44. 30	510.7	473.7	17370	2040	7421		57.30	9.52	2.40	2.07	6.90
	1100 (A) 1000	149 3	15/ 1	7 117	20.27	44.30	520.7	400.0	19009	3230	10603	120.0	7/.29	9.80	2.81	2.67	8.89
1	JUL W JU AFT	149.3	167.6	7.025	20.19	40.03	520.7	404.0	10039	3601	11/14	139.2	57.04	10.0	3.09	3.25	10.8
	API	168 1	150.4	0 730	31.20	49.21	528.7	4/5.9	10248	3992	12862	152.9	36.76	10.2	3.37	3.88	12.9
	TRA DY OR UTO	168 1	1/6 1	10 07	12 16	50 29	528.7	4/3.8	1/860	43/9	139/5	166.1	26.49	10.4	3.62	4.51	15.0
	901 00 A3 APT	148 3	120.7	10.97	42.40	19.20	520.7	439.7	1001/	5425	10855	200.3	55./5	10.7	4.18	6.28	20.9
1	SCH 140 APT	169.3	121 7	10 26	47.00	07.41	520.7	439.0	12222	0900	20649	245.4	54.68	10.9	4.76	8.96	29.9
	SULIDO AFI	160.3	134.6	10.20	79.00	01.02	520.7	413.9	13033	8607	24069	292.0	33.43	11.0	5.18	12.3	41.0
	~~~	100.3	144.4	4.35	/0.77	71.14	320.7	390.0	14151	10009	2/010	348.2	52.31	11.0	2.39	15.5	51.8
200	API	219.1	209.5	4.775	25.17	59.65	688.2	658.2	34479	3215	18464	168.6	75.79	9.77	1.58	.985	3.28
8	API	219.1	208.8	5.156	27.13	61.36	688.2	655.8	34229	3465	19833	181.1	75.65	9.98	1.73	1.20	4.01
	API	219.1	207.9	5.563	29.22	63.18	688.2	653.3	33963	3731	21277	194.2	75.51	10.2	1.89	1.44	4.79
	SCH 20 API	219.1	206.4	6.350	33.23	66.68	688.2	648.3	33451	4244	24026	219.3	75.24	10.5	2.18	1.89	6.31
	SCH 30 API	219.1	205.0	7.036	36.70	69.71	688.2	644.0	33007	4687	26369	240.7	75.01	10.8	2.41	2,29	7.64
	API	219.1	203.2	7.925	41.16	73.60	688.2	638.5	32437	5257	29338	267.8	74.71	11.1	2.70	2.81	9.38
	SCH 40 STD API	219.1	202.7	8.179	42.43	74.71	688.2	636.9	32275	5419	301.72	275.5	74.62	11.2	2.78	2.96	9.87
	API	219.1	201.6	8.738	45.21	77.13	688.2	633.3	31921	5774	31985	292.0	74.43	11.3	2.95	3,29	11.0
	API	219.1	200.0	9.525	49.10	80.52	688.2	628.4	31424	6271	34489	314.9	74.16	11.5	3.17	3.76	12.5
	SCH 60	219.1	198.5	10.31	52.96	83.89	688.2	623.4	30931	6763	36935	337.2	73.90	11.6	3.37	4.23	14.1
	API	219.1	196.8	11.13	56.91	87.33	688.2	618.3	30426	7268	39399	359.7	73.63	11.8	3.56	4.71	15.7
	SCH 80 XS API	219.1	193.7	12.70	64.47	93.93	688.2	608.4	29460	8234	44002	401.7	73.10	12.0	3.90	5.67	18.9
	SCH 100	219.1	188.9	15.09	75.71	103.7	688.2	593.4	28025	9669	50566	461.6	72.32	12.3	4.31	7.13	23.8
	SCH 120 API	219.1	182.5	18.26	90.21	116.4	688.2	573.5	26173	11521	58556	534.6	71.29	12.5	4.73	9,13	30.4
	SCH 140 API	219.1	177.8	20.62	100.7	125.5	688.2	558.7	24836	12859	63984	584.1	70.54	12.5	4.96	10.6	35.5
	XXS API	219.1	174.6	22.23	107.6	131.6	688.2	548.6	23950	13744	67423	615.5	70.04	12.6	5.08	11.7	38.9
	SCH 160	219.1	173.1	23.01	111.0	134.5	688.2	543.7	23520	14174	69048	630.4	69.79	12.6	5.14	12.2	40.7
																	~~]

Thru DN 250, wall thicknesses for SCH 405 and SCH 805 stainless steel pipes are the same as for SCH 40 and SCH 80 carbon steel pipes

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

DN	DiDible coope and	ONAFACIONE		WEIGHTS AREAS				Moment Section Redire of Continuous Spans				Code Breesures				
(mm)	MANUFACTURERS'	0.0 10	GND BeW	Empty	Water filleri	External	internal	Filow	Metal	of Intertia	Modulus	Gyration	Soan	San	Design	Runnting
(NPS)	WEIGHTS	(mm) (m/	n) (mm)	(ko/m)	(ko/m)	(mm ² /mm)	innen ² /mm)	(mm²/mm)	imm ² /mm)	(10*mm)	(10 ² mm)	(mm)	(m)	(mm)	(MPa)	(MPa)
		(, (1 1.4			
					A. A.				1007	-		A/ A/				
250	API	2/3.1 265		31.51	86.04	857.8	827.8	24032	4025	36218	200.3	94.00	10.2	1.20	.6/2	2.24
10	AVI	2/3.1 262	./ 5.130	33.96	88.20	857.8	845.4	54217	4340	3659444	265.3	94.73	10.4	1.33	.847	Z.82
	API	2/3.1 261	.9 5.363	36.60	90.48	857.8	822.9	53662	46/4	41825	306.4	94.59	10./	1.46	1.03	3.45
	SCH ZO API	2/3.1 260	.3 6.350	41.66	94.89	857.8	81/.9	53236	5320	4/331	346.7	94.32	u. 1	1.71	1.40	4.66
	API	2/3.1 258	.9 7.087	46.36	99.00	857.8	813.3	52635	5921	52393	363.8	94.07	11.4	1.93	1.74	5.80
	SCH 30 API	273.1 257	.5 7.798	50.88	102.9	857.8	808.8	52058	6496	57198	419.0	93.82	11.7	Z.14	2.07	6.90
	API	2/3.1 255	.6 8.738	56.81	108.1	857.8	802.9	51301	7255	63428	404.0	93.50	12.0	2.41	2.51	8.37
	SCH 40 STD API	273.1 254	.5 9.271	60.16	111.0	857.8	799.6	50874	7683	66903	490.0	93.32	12.2	2.55	2.76	9.20
	API	273.1 250	.8 11.13	71.68	121.1	857.8	787.9	49402	9154	78647	576.1	92.69	12.7	3.00	3.64	12.1
	SCH 60 XS API	273.1 247	.7 12.70	81.33	129.5	857.8	778.0	48169	10388	88220	646.2	92.16	13.0	3.34	4.39	14.6
	SCH 80	2/3.1 242	.9 15.09	95.74	142.1	857.8	763.0	46329	1222/	1.005	/4/.5	91.36	13.3	3.78	3.35	18.5
1	SCH 100 API	273.1 236	.5 18.26	114.5	158.4	857.8	743.1	43938	14618	1.265	8/3.3	90.31	13.6	4.24	7.11	23.7
	SCH 120	2/3.1 230	.2 21.44	132.7	1/4.3	857.8	/23.1	41611	10940	1.465	969.4	89.28	13.8	4.60	8.71	29.0
	SON 140 XXS AP1	2/3.1 22	.2 23.40	154.7	193.5	657.8	090.2	36/95	19/04	1.565	11/1	00.02	14.0	4.94	10.7	35.8
-	SCH 160	2/3.1 21	.9 25.36	1/1.8	408.5	857.6	5/8.3	30010	21947	1.765	111/	8/.02	14.0	5.13	12.4	41.4
300		323.9 313	.5 5.156	40.42	117.6	1017	965.0	77209	5162	65558	404.9	112.7	10.8	1.06	.714	2,38
12	API	323.9 312	.7 5.563	43.55	120.4	1017	982.5	76809	5562	70458	435.1	112.5	11.0	1.18	.871	2.90
	SCH 20 API	323.9 311	.2 6.350	49.59	125.6	1017	977.5	76038	6334	79843	493.1	112.3	11.5	1.39	1.18	3.92
	API	323.9 309	.6 7.137	55.61	130.9	1017	972.6	75270	7102	89068	550.2	112.0	11.9	1.60	1.48	4.95
1	API	323.9 306	.0 7.925	61.59	136.1	1017	967.6	74506	7865	96192	606.4	111.7	12.3	1.81	1.79	5.97
	SCH 30 API	323.9 307	.1 8.382	65.05	139.1	1017	964.7	74064	8307	1.025	638.7	111.6	12.4	1.93	1.97	6.57
	API	323.9 300	.4 8.738	67.73	141.4	1017	962.5	73722	8650	1.1E5	663.5	111.5	12.6	2.02	2.11	7.04
	STD API	323.9 304	.8 9.525	73.65	146.6	1017	957.6	72966	9406	1.2E5	718.0	111.2	12.9	2.21	2.42	8.07
	SCH 40 API	323.9 303	.2 10.31	79.54	151.7	1017	952.6	72214	10158	1.2E5	771.7	110.9	13.1	2.39	2.73	9.11
	API	323.9 301	.6 11.13	85.58	157.0	1017	947.5	71442	10930	1.3E5	826,2	110.6	13.3	2.58	3.06	10.2
	XS API	323.9 29	.5 12.70	97.20	167.2	1017	937.6	69957	12414	1.5E5	929.4	110.1	13.7	2.90	3.69	12.3
1	SCH 60 API	323.9 29	.3 14.27	108.7	177.2	1017	927.7	68489	13883	1.755	1029	109.6	14.0	3.20	4.32	14.4
	API	323.9 293	.1 15.88	120.3	187.3	1017	917.7	67012	15360	1.8E5	1128	109.0	14.3	3.47	4.97	16.6
	SCH 80 API	323.9 28	.9 17.48	131.7	197.3	1017	907.6	65552	16820	2.0E5	1223	108.5	14.5	3.72	5.63	18.8
1	API	323.9 28	.8 19.05	142.8	207.0	1017	897.7	64130	18241	2.1E5	1313	108.0	14.6	3.93	6.28	20.9
	SCH 100	323.9 28	0 21.44	159.5	221.5	1017	882.7	62005	20367	2.3E5	1445	107.2	14.8	4.22	7.28	24.3
1	SCH 120 XXS API	323.9 27:	.1 25.40	186.5	245.0	1017	857.8	58556	23815	2.7E5	1649	105.9	15.1	4.60	8.96	29.9
	SCH 140 API	323.9 26	.7 28.58	207.6	263.4	1017	837.9	55865	26507	2.925	1801	104.9	15.2	4.84	10.3	34.4
1	SCH 160 API	323.9 25	.2 33.32	238.2	290.1	1017	808.0	51956	30416	3.325	2008	103.4	15.3	5.10	12.4	41.4
350	API	355.6 34	.9 5.334	45.96	139.4	1117	1084	93445	5870	90034	506.4	123.9	11.1	.980	.712	2.37
14	API	355.6 34	.5 5.563	47.90	141.1	1117	1082	93198	6117	93711	527.1	123.8	11.2	1.04	.793	2.64
1 -	SCH 10 API	355.6 34	.9 6.350	54.55	146.9	1117	1077	92347	6967	1.125	597.7	123.5	11.7	1.24	1.07	3.57
	API	355.6 34	.3 7.137	61.18	152.7	1117	1072	91501	7814	1.2E5	667.3	123.2	12.1	1.43	1.3	4.50
	SCH 20 API	355.6 33	.8 7.925	67.78	158.4	1117	1067	90659	8656	1.3E5	736.0	123.0	12.5	1.63	1.63	5.43
	API	355.6 33	.1 8.738	74.55	164.3	1117	1062	89793	9521	1.485	805.9	122.7	12.9	1.82	1.97	6.40
	SCH 30 STD API	355.6 33	.6 9.525	81.09	170.0	1117	1057	88959	10356	1.625	872.6	122.4	13.2	2.00	2.20	7.34
	SCH 40 API	355.6 33	.3 11.13	94.27	181.5	1117	1047	87275	12040	1.8E5	1005	121.9	13.7	2.35	2.78	9.26
	API	355.6 33	.8 11.91	100.7	187.2	1117	1042	86452	12862	1.9E5	1069	121.6	13.9	2.52	3.0	10.2
	XS API	355.6 33	.2 12.70	107.1	192.8	1117	1037	85634	13681	2.0E5	1132	121.3	14.1	2.67	3.3	5 11.2
	SCH 60	355.6 32	.4 15.09	126.4	209.6	1117	1022	83175	16140	2.3E5	1318	120.5	14.6	3.10	4.2	14.1
	API	355.6 32	.9 15.88	132.7	215.0	1117	1017	82372	16943	2.45	1378	120.2	14.7	3.23	1 4.5	15.1
	SCH 80 API	355.6 31	.5 19.05	157.7	236.9	1117	997.5	79173	20142	2.9E5	1609	119.2	15.1	3.70	5.7) 19.0
1	SCH 100 API	355.6 30	.9 23.83	194.4	268.9	1117	967.5	74482	24833	3.4E5	1932	117.6	15.6	4.25	7.5	25.0
	SCH 120	355.6 30	.0 27.79	224.1	294.8	1117	942.6	70698	28617	3.925	2178	116.3	15.8	4.59	9.0	30.1
1	SCH 140 API	355.6 29	.1 31.75	252.9	319.9	1117	917.7	67012	32303	4.3E5	2405	115.0	15.9	4.86	10.	5 35.4
	SCH 160	355.6 28	.2 35.71	281.0	344.4	1117	892.8	63425	35889	4.6E5	2614	113.8	16.0	5.07	12.	40.7

Thru DN 250, wall thicknesses for SCH 405 and SCH 805 stainless steel pipes are the same as for SCH 40 and SCH 80 carbon steel pipes

ิลสาบนวทยบวการ จุฬาลงกรณ์มหาวิทยาลัย

	DIDING CODES and	OWENSIONS	T	WENC	uTC		ADE	45		Moment	Section	Badius of	Continuo	e Casac	Code 5	
(mm)	MANUFACTURERS'	0.D. I.D.	Wali	Emoty ¥	Nater filled	External	internal	Flow	Metai	of Intertia	Modulus	Gynation	Span	Sac	Design	Bursting
(NPS)	WEIGHTS	(mm) (mm)	(mm)	(kg/m)	(kg/m)	(mm²/mm)	(mm²/mm)	(mm²/mm)	(mm²/mm)	(10*mm)	(10°mm)	(mm)	(m)	(mm)	(MPa)	(MPa)
						1				L						
600	APT	406.4 195.1	5.561	54.85	177-6	1277	1242	1.225	7005	1.475	692.5	141.7	11.5	.867	.693	2.11
16	SCH 10 APT	406.4 191.7	6.350	62.49	184.7	1277	1237	1.225	7981	1.625	785.9	141.5	12.0	1.04	.936	3.12
	API	406.4 392.1	7.137	70,10	190.9	1277	1232	1.225	8953	1.8E5	878.2	141.2	12.5	1.21	1.18	3.93
	SCH 20 API	406.4 390.6	7.925	77.68	197.5	1277	1227	1.2E5	9921	2.055	969.4	140.9	12.9	1.38	1.42	4.75
1	API	406.4 388.9	8.738	85.47	204.3	1277	1222	1.2E5	10916	2.2E5	1062	140.6	13.2	1.56	1.68	5.59
	SCH 30 STD API	406.4 387.4	9.525	92.99	210.8	1277	1217	1.225	11876	2.3E5	1151	140.4	13.6	1.72	1.92	6.41
1	API	406.4 384.1	11.13	108.2	224.1	1277	1207	1.2E5	13815	2.755	1329	139.8	14,1	2.05	2.43	8.09
		406.4 382.6	11.91	115.6	230.6	1277	1202	1.125	14764	2.9E5	1415	139.5	14.4	2.20	2.67	8.92
	SCH 40 XS API	406.4 381.0	12.70	123.0	237.0	1277	1197	1.1E5	15708	3.0E5	1499	139.3	14.6	2.35	2.92	9.75
	API	406.4 374.7	15.88	152.5	262.7	1277	1177	1.1E5	19477	3.725	1830	138.2	15.3	2.89	3.94	13.1
	SCH 60	406.4 373.1	16.66	159.7	269.1	1277	1172	1.1E5	20401	3.9E5	1910	1.37.9	15.5	3.02	4.19	14.0
	API	406.4 368.3	19.05	181.5	288.0	1277	1157	1.125	23182	4.4E5	2145	137.1	15.9	3.36	4.96	16.5
	SCH 80	406.4 363.5	21.44	203.0	306.8	1277	1142	1.025	25927	4.885	2371	136.3	16.1	3.66	5.74	19.1
	SCH 100	406.4 354.0	26.19	244.9	343.4	1277	1112	98437	31280	5./25	2/95	134.7	10.0	4,10	1.32	24.4
	SOH 120	406.4 344.5	30.90	285.9	3/9.1	12//	1062	93190	126162	7 225	3407	120.2	17.0	4.34	10.73	27.0
	SCH 140	406.4 333.3	30.33	332.3	419.0	1277	1022	82175	46867	7.005	3880	130.2	17.0	4.0/ 5.05	12.7	40.8
	SUN TOU	400.4 323.4	40.47	304.4	441.0	14/1	1022	81/5	40042	1.70	3000	1.00.12				
450	SCH 10 API	457.2 444.5	6.350	70.42	225.6	1436	1396	1.6E5	8994	2.3E5	999.9	159.4	12.2	.880	.832	2.77
18	API	457.2 442.9	7.137	79.02	233.1	1436	1391	1.5E5	10092	2.625	1118	159.1	12.7	1.03	1.05	3.49
	SCH 20 API	457.2 441.4	7.925	87.58	240.6	1436	1387	1.525	11185	2.8E5	1235	158.9	13.2	1.19	1.27	4.22
	API	457.2 439.7	8.738	96.39	248.3	1436	1381	1.585	12310	3.15	1354	158.6	13.6	1.35	1.49	4,97
	STD API	457.2 438.2	9.525	104.9	255.7	1436	13/6	1.525	13390	3.425	1409	158.5	13.9	1.50	1./1	2.04
	API	457.2 436.6	10.31	113.4	263.1	1436	13/2	1.365	144/8	3.625	1362	158.0	14.2	1.65	1.93	0.42
	SCH 30 API	457.2 434.9	11.13	122.1	270.7	14.30	1361	1.525	122791	4 115	1808	157 5	14.5	1.00	2.10	7.10
		457.2 433.4	11.91	130.5	2/0.0	1430	1357	1.525	17735	4.100	1010	157.2	14.0	2.09	2.3/	9.65
	AS API	437.2 431.0	14 27	155 5	200.8	1436	1367	1 485	19863	4.975	2133	156.7	15.5	2.00	1.04	10.1
		457 2 425.7	15 88	172 3	314 5	1436	1337	1 455	22010	5.455	2347	156.1	15.9	2.60	3.49	11.6
	601 60 APT	457 2 419.1	19.05	205.3	343.3	1436	1317	1.485	26222	6.325	2758	155.1	16.5	3.06	4.40	14.7
	SOL 00 APT	457.2 409.5	23.83	254.0	385.7	1436	1287	1.3E5	32438	7.625	3341	153.5	17.1	3.63	5.78	19.3
1	SOH 100	457.2 398.5	29.36	309.0	433.7	1436	1252	1.2E5	39466	9.1E5	3969	151.6	17.6	4.15	7.41	24.7
1	SCH 120	457.2 387.3	34.93	362.8	480.6	1436	1217	1.2E5	46332	1.026	4548	149.8	17.9	4.55	9.09	30.3
	SCH 140	457.2 377.9	39.67	407.5	519.6	1436	1187	1.125	52041	1.126	5006	148.3	18.0	4.81	10.5	35.1
	SCH 160	457.2 366.7	45.24	458.4	564.0	1436	1152	1.1E5	58547	1.3E6	5499	146.5	18.1	5.04	12.3	40.9
500	904 10 APT	508 0 495.3	6.350	78.36	271.0	1596	1556	1.955	10007	3.125	1240	177.4	12.4	.757	.748	2.49
20	API	508.0 493.7	7.137	87.94	279.4	1596	1551	1.955	11231	3.585	1387	177.1	12.9	.895	.943	3.14
-	API	508.0 492.2	7.925	97.48	287.7	1596	1546	1.9E5	12450	3.9E5	1533	176.8	13.4	1.03	1.14	3.79
	API	508.0 490.5	8.738	107.3	296.3	1596	1541	1.925	13705	4.3E5	1682	176.5	13.8	1.18	1.34	4.46
	SCH 20 STD API	508.0 489.0	9.525	116.8	304.6	1596	1536	1.9E5	14916	4.6E5	1825	176.3	14.2	1.32	1.54	5.12
	API	508.0 487.4	10.31	126.2	312.8	1596	1531	1.9E5	16124	5.025	1966	176.0	14.6	1.45	1.73	5.77
1	API	508.0 485.7	11.13	136.0	321.3	15%	1,526	1.9E5	17366	5.4E5	2111	175.7	14.9	1.59	1.94	6.45
1	API	508.0 484.2	11.91	145.4	329.5	15%	1521	1.8E5	18566	5.725	2250	175.4	15.2	1.73	2.13	7.11
	SCH 30 XS API	508.0 482.6	12.70	154.7	337.7	15%	1516	1.8E5	19762	6.1E5	2387	175.2	15.4	1.86	2.33	7.77
	SCH 40	508.0 477.8	15.09	182.9	362.3	1596	1501	1.8E5	23364	7.1E5	2796	174.4	16.1	2.23	2.93	9.78
	API	508.0 476.3	15.88	192.2	370.3	15%	1496	1.8E5	24544	7.4E5	2928	174.1	16.3	2.35	3.13	10.4
	SCH 60 API	508.0 466.8	20.62	247.3	418.4	1596	1466	1.725	31579	9.4E5	3698	172.5	17.3	2.99	4.35	14.5
	SCH 80	508.0 455.6	Z6.19	310.4	473.4	15%	1431	1.625	39639	1.226	4542	170.6	18.0	3.60	5.80	19.3
	SCH 100	508.0 442.9	32.54	380.5	534.6	1596	1391	1.565	48601	1.426	5432	168.5	18.5	4.14	1.49	25.0
	SOH 120	508.0 431.8	38.10	440.4	386.8	1596	1357	1.325	30245	1.050	6192	100./	18.8	4.51	0.79	30.0
1	SCH 140	508.0 419.1	44.45	506.9	044.8	15%	1317	1.463	04/32	1.820	0908	163.0	19.0	4.82	10.7	30.6
1	SCH 160	308.0 408.0	50.01	363.4	094.2	1286	1262	1,325	11928	1.960	/516	102.9	13.1	5.03	1 12.3	41.1

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

DN	DIDING CODES and	DHAS	NCIONS	WE	CHTS	r	AD	AC.		Mamont	Capitan	Dealise of	Continue		0.4	.
(mm)	MANUEACTUDEDC		10 14/64	Emphy	Minter filled	External	internal	Elour	Matal	Moment	Section	Nacius of	Communo	us spans	Code	Pressures
(mm)	MANUFACTURERS	0.0.	1.(J. 1982)	Employ (inclose)	water imeu	External	anternau	FILOW	MIGUN	of intertia	MOOUIUS	Gynation	spen	Seg	Design	Bursting
(141-2)	WEIGHTS	(m ⁻ m) (mm) (mm)	(KQ/III)	(KO/III)	(mm/mm)	(7007/1007)	(mm*/mm)	(mm/mm)	(10°mm)	(10°mm)	(mm)	(m)	(mm)	(MPa)	(MPa)
	T															
550	SCH 10 API	222.8 24	6.1 6.350	86.29	320.5	1756	1716	2.3E5	11021	4.225	1505	195.3	12.6	.658	.680	2.27
22	API	558.8 54	4.5 7.137	96.86	329.7	1756	1711	2.3E5	12370	4.725	1684	195.1	13.1	.781	.857	2.86
	API	558.8 54	3.0 7.925	107.4	338.9	1756	1706	2.3E5	13715	5.2E5	1862	194.8	13.6	.906	1.03	3.45
	APT	558.8 54	1.3 8.738	118.2	348.4	1756	1701	2.385	15099	5.725	2044	194.5	14.1	1.04	1 22	4 04
1	001 20 000 48T		0 8 0 525	130 7	267 6	1754	1404	3 375	141.74	4 195	2210	104. 3	14 8		1.20	
	SCH 20 SLD API		7.0 7.343	140.7		1/30	1030	2.363	10430	0.265	2217	174.4	14.5	1.10	1.39	4.00
	API	228-8 23	8.2 10.31	139.1	366.6	1756	1691	2.325	17770	6,7E5	2.392	194.0	14.8	1.29	1.57	5.24
1	API	558.8 53	6.5 11.13	149.9	376.0	1756	1686	2.325	19142	7.2E5	2570	193.7	15.2	1.42	1.76	5.86
	API	558.8 53	5.0 11.91	160.3	385.0	1756	1681	2.225	20467	7.7ES	2740	193.4	15.5	1.54	1.94	6.45
	SCH 30 XS API	558.8 53	3.4 12.70	170.6	394.1	1756	1676	2.225	21788	8.1E5	2909	193.1	15.8	1.66	2.12	7.05
	APT	558 8 52	0 7 19 05	252 0	465 0	1756	1636	2 185	32202	1 25%	4915	100.0	17.6	2 44	3 60	
	0 000	559 0 51	4 2 22 22	202 1	501.1	1754	1616	2 1 25	37/16	1.154	(82)	100.0	10.0	2	1.00	
1	SCH BU API	336.6 31	4.5 2.25	293.3	301.1	1/30	1010	2.125	37405	1.450	46.34	199.9	18.0	2.94	4.32	14.4
	SCH 80 API	558.8 50	1.7 28.58	372.7	570.3	1756	1576	2.025	47599	1.725	6004	187.7	18.8	3.58	5.82	19.4
	SCH 100 API	558.8 48	9.0 34.93	450.1	637.8	1756	1536	1.9E5	57480	2.0£6	7089	185.6	19.4	4.08	7.36	24.5
	SCH 120	558.8 47	6.3 41.27	525.4	703.6	1756	1496	1.8E5	67107	2.3E6	8092	183.6	19.7	4.47	8,92	29.7
	SCH 140	558.8 46	3.6 47.63	598.8	767.6	1756	1456	1.755	76481	2.5E6	9018	181.5	19.9	4.77	10.5	35.0
1	SOH 160	558.8 45	0.9 53.98	670.3	829.9	1756	1416	1.625	85602	2.855	9472	179.5	20.0	sm	17.1	10.4
 				0/010			4410					1//13	<u></u>		****	
600	SCH 10 API	609.6 59	6.9 6.350	94.23	374.1	1915	1875	2.825	12034	5.5E5	1796	213.3	12.7	.577	.623	2.08
24	API	609.6 59	5.3 7.137	105.8	384.1	1915	1870	2.8E5	13509	6.1E5	2011	213.0	13.3	.688	.785	2.62
	API	609.6 59	3.8 7.925	117.3	394.2	1915	1865	2.8E5	14960	6.8E5	2224	212.7	13.8	.801	.947	3.16
	API	609.6 59	2.1 8.738	129.1	404.5	1915	1860	2.8E5	16494	7.485	2443	212.5	14.3	.920	1.11	1.72
	SCH 20 STD APT	609.6 59	0.6 9 525	140.6	414 5	1915	1855	2 755	17956	8 115	2652	212.2	14.7	1 00	1 70	1. 76
	100.00 010 /411	600 6 50	0 0 10 21	152.0	424.5	1015	1850	3 786	10/15	0.200	2004		14.1		1.40	4.20
1	Nº1	009.0 30	7.0 10.31	1.52.0	424.5	1915	1030	2.765	17413	0.725	2000	211.9	12.1	1.15	1.44	4.80
1	API	609.6 38	7.3 II.IJ	163.8	434.1	1912	1845	2.10	2091/	9.425	3074	211.6	15.4	1.27	1.61	5.36
1	API	609.6 58	5.8 11.91	175.1	444.6	1915	1840	2.725	22368	9.9E5	3278	211.4	15.8	1.39	1.77	5.91
	XS API	609.6 58	4.2 12.70	186.5	454.5	1915	1835	2.7E5	23815	1.126	3481	211.1	16.1	1.50	1.94	6.46
1	SCH 30 API	609.6 58	1.1 14.27	209.0	474.2	1915	1825	2.725	26698	1.2E6	3883	210.5	16.6	1.72	2.27	7.56
	API	609.6 57	7.9 15.88	231.9	494.1	1915	1815	2.625	29611	1.326	4284	210.0	17.1	1.94	2.60	A.68
	SCH 40 API	609.6 57	4.6 17.48	254.5	513.9	1915	1805	2.625	32508	1.455	4678	209.4	17 5	2.15	2 96	
	APT	609 6 57	1 5 19 05	276 7	533 3	1015	1705	7 655	353/.3	1 506	5060	200 0	17.0	2.25	2 27	
	974.60	609 6 56	0 4 24 61	35/. 2	600.8	1015	1760	3 686	45222	1 054	6260	200.7	17.7	2.30	3.41	10.7
		600 6 K	2 7 20.01	110.7	(3(.3	1710	1700	2.30	45255	1.720	6023	207.0	10.9	2.90	4.40	14.9
	SUN BU	009.0 34	1.7 30.90	440.7	0/0.3	1912	1/21	2.485	36285	2.425	//51	204.9	19.7	3.56	5.84	19.5
	SCH 100	609.6 53	1.8 38.89	545.9	768.1	1915	1671	2.2E5	69723	2.9E6	9357	202.2	20.3	4.13	7.60	25.3
	SCH 120	609.6 51	7.6 46.02	638.1	848.4	1915	1626	2.1E5	81488	3.3E6	10685	199.9	20.6	4.52	9.21	30.7
	SOH 140	609.6 50	4.9 52.37	717.9	918.1	1915	1.586	2.0E5	91686	3.626	11778	197.9	20.8	4.79	10.7	35.6
	SCH 160	609.6 49	0.5 59.54	805.6	994.6	1915	1541	1.985	1.0E5	3.9E6	12916	195.6	20.9	5.02	12.4	41.2
660	101	40 1 4	7 7 6 260	102.2	124 2	20.75		-	4 2010	7.000						
630	API	000.4 04	1.1 0.330	102.2	431./	2075	2035	3.365	13048	1.0123	213	231.3	12.9	.510	.575	1.92
20	API	000.4 04	6.1 /.13/	114./	442.6	2075	2030	3.365	14648	7.8E5	2367	231.0	13.4	.610	.724	2.41
[SCH 10 API	660.4 64	4.6 7.925	127.2	453.5	2075	2025	3.3E5	16244	8.6E5	2618	230.7	14.0	.713	.874	2.91
	API	660.4 64	2.9 8.738	140.1	464.7	2075	2020	3.2E5	17888	9.5E5	2876	230.4	14.5	.822	1.03	3.43
	STD API	660.4 64	1.4 9.525	152.5	475.6	2075	2015	3.2E5	19477	1.005	3124	230.1	14.9	.928	1.18	3.93
1	API	660.4 63	9.8 10.31	164.9	486.4	2075	2010	3.2E5	21061	1.126	3370	229.9	15.3	1.03	1.33	4.43
	API	660.4 63	8.1 11.13	177.7	497.5	2075	2005	3.285	22693	1.286	36.77	229 6	15.7	1 15	1 48	4 95
	APT	660.4 43	6.6 11.91	190.0	508.3	2075	2000	3.285	24269	1,38%	3845	229 2	16.0	1 26	1 44	
	504 20 YS APT	660 4 63	5 0 12 70	202.3	519.0	2075	1005	3 986	250/2	1 4.96	1000	220.0	10.0	1.2	1.04	3.43
		440 4 43	1 9 14 27	276 0	540 /	2075	1005	2.185	20074	1.420	4100	447.0	10.3	1.30	1.79	2.42
1		000.4 03	1.7 14.1/	240.9		2075	1962	2.162	407/0	1.320	4582	448.5	10.9	1.57	2.09	6.97
	API	000.4 62	0.0 13.66	251.7	302.1	20/5	1975	3.1E	32144	1.725	5058	227.9	17.4	1.78	2.40	8.00
	API	660.4 62	z.3 19.05	300.5	604.7	2075	1955	3.015	38383	2.0E6	5982	226.9	18.3	2.17	3.02	10.1
700	177	711 7 40	8 5 6 360	110 1	602 2	777/	110/	2 825	1/041		3/ 5/	~~~~				
122		711 2 10	6.0 7 127	122.4	473.3	22.34	2174	2.022	14001	0./0	2430	149.Z	1.0	.433	.534	1.78
1 m	AP1	/11.2 09	1.13/	0.641	305.1	44	2189	3.663	18/01	9.623	2/51	248.9	13.6	.545	.672	2.24
	SOLIO API	/11.2 69	5.4 7.925	137.1	516.5	2234	2185	3.8E5	17509	1.126	3045	248.7	14.1	.639	.811	2.70
	API	711.2 69	3.7 8.738	151.0	529.0	2234	2179	3.8E5	19283	1.226	3345	248.4	14.6	.738	.954	3.18
	STD API	711.2 69	2.2 9.525	164.4	540.7	2234	2174	3.8E5	20997	1.3E6	3635	248.1	15.1	.836	1.09	3.65

ิลถาบนวทยบรการ จุฬาลงกรณ์มหาวิทยาลัย

	a 13 17 2201 11 11 1 10 11 10 11		ব
อุณหภูม	ความหนด	คุณหภูม	ความหนด
องศาเซลเซียส	กก./ม-วินาที	องศาเซลเซียส	กก./ม-วินาที
1	0.00173	28	0.00084
2	0.00167	29	0.00082
3	0.00162	30	0.00080
4	0.00157	31	0.00078
5	0.00152	32	0.00077
6	0.00147	33	0.00075
7	0.00143	34	0.00074
8	0.00139	35	0.00072
9	0.00135	36	0.00071
10	0.00131	37	0.00069
11	0.00127	38	0.00068
12	0.00124	39	0.00067
13	0.00120	40	0.00066
14	0.00117	41	0.00064
15	0.00114	42	0.00063
16	0.00111	43	0.00062
17	0.00108	44	0.00061
18	0.00106	45	0.00060
19	0.00103	46	0.00059
20	0.00100	47	0.00058
21	0.00098	48	0.00057
22	0.00096	49	0.00056
23	0.00094	50	0.00055
24	0.00091	51	0.00054
25	0.00089	52	0.00053
26	0.00087	53	0.00052
27	0.00085	54	0.00051

ภาคเ	งนวก ข	
-	<u>ب</u>	

<u>ตารางแสดงความหนืดของน้ำ (หน่วยเมตริก)</u>

อุณหภูมิ	ความหนืด	อุณหภูมิ	ความหนืด
องศาเซลเซียส	ปอนด์/ฟุต-วินาที	องศาเซลเซียส	ปอนด์/ฟุต-วินาที
1	0.0011632	28	0.0005617
2	0.0011246	29	0.0005497
3	0.0010881	30	0.0005381
4	0.0010534	31	0.0005268
5	0.0010206	32	0.0005160
6	0.0009894	33	0.0005055
7	0.0009597	34	0.0004953
8	0.0009314	35	0.0004855
9	0.0009044	36	0.0004760
10	0.0008787	37	0.0004668
11	0.0008542	38	0.0004578
12	0.0008307	39	0.0004492
13	0.0008083	40	0.0004408
14	0.0007868	41	0.0004326
15	0.0007662	42	0.0004247
16	0.0007465	43	0.0004171
17	0.0007276	44	0.0004096
18	0.0007094	45	0.0004024
19	0.0006920	46	0.0003954
20	0.0006752	47	0.0003885
21	0.0006591	48	0.0003819
22	0.0006436	49	0.0003755
23	0.0006287	50	0.0003692
24	0.0006143	51	0.0003631
25	0.0006004	52	0.0003571
26	0.0005870	53	0.0003514
27	0.0005742	54	0.0003457

<u>ตารางแสดงความหนืดของน้ำ (หน่วยอังกฤษ)</u>

<u>ตารางแสดงความหนืดของของไหล</u>

PHYSICAL AND CHEMICAL DATA

Viscosities of Liquids: Coordinates for Use with Fig. 2-33	

Liquid	<u>X</u>	Y	Liquid	x	Y
Acetaldebyde	15.2	48	From 113	13.5	11.4
Acetic acid, 100%	12.1	14.9	Choond 100%	12.9	11.4
Acetic acid, 70%	9.5	17.0	Clocerol 50%	5 U	10.6
Acetic anhydride	12.7	12.5	Hentane	14.1	84
Acetone, 100%	14.5	7.2	Hexane	14.7	7.0
Acctone, 35%	7.9	15.0	Hydrochloric acid, 31.5%	13.0	16.6
Acetonitrile	14,4	7.4	Todobenzene	12.8	15.9
Acrylic acid	12.3	13.9	Isobutyl alcohol	7.1	18.0
Allyt alcohol	10.2	14.3	fsobutyric acid	12.2	14.4
Allyt bronnoe	14.4	9.5	Isopropyl alcohol	8.2	16.0
Ammonia 100%	19.0	90	Isopropyi broinide	14.1	9.2
Amunonia 269	10.1	13.9	from the field	13.9	7.1
Amyl acetate	11.8	12.5	Kararano	10.7	11.2
Annyl alcohol	7.5	18.4	Linsond oil row	75	10.9
Aniline	8.1	18.7	Mercury	1.0	16.4
Anisole	12.3	13.5	Methanol, 100%	19.4	10.5
Arsenic trichloride	13.9	14.5	Methanol, 90%	12.3	11.8
Benzene	12.5	10.9	Methanol, 40%	7.8	15.5
Brine, CaCl ₃ , 25%	6.6	15.9	Methyl acetate	14.2	8.2
Brine, NaCl, 25%	10.2	16.6	Methyl acrylate	13.0	9.5
Brinning	14.2	13.2	Methyl i-butyrate	12.3	9.7
Bash Lagadata	10.0	15.9	Methyl n-butyrate	13.2	10.3
Botyl acretate	115	11.0	Methyl chloride	15.0	3.8
Butyl alcohol	5.6	12.0	Mathal Gamma	1.1.9	8.6
Butyric acid	12.1	15.3	Methyl iodida	14.2	6.2
Carbon dioxide	11.6	0.3	Methyl propiouste	11.0	9.0
Carbon disulfide	16.1	7.5	Methyl propyl ketone	14.3	9.0
Carbon tetrachloride	12.7	13.1	Methyl sulfice	15.3	64
Chlorobenzene	12.3	12.4	Napthalene	7.9	18.1
Chlorolorm	14.4	10.2	Nitric acid, 95%	12.8	13.5
Chlorosullonic acid	11.2	18,1	Nitric acid, 60%	10.8	17.0
Chlorotolucite, ortho	13.0	13.3	Nitrobenzene	10,6	16.2
Chambolume and	1-5-5	12.5	Nitrogen dioxide	12.9	8.6
Crossed mota	(1.)	12.5	Nitrotoluene	11.0	17.0
Cyclohexanol	29	20.5	Octane	13.7	10.0
Cyclohexane	9.8	12.9	Pentachloraethana	0.0	21.1
Dibromomethase	12.7	15.8	Pentane	10.9	5.9
Dichloroethane	13.2	12.2	Phenol	69	20.5
Dichloromethane	14.6	8.9	Phosphorus tribromide	13.8	16.7
Diethyl ketone	13.5	9.2	Phosphorus trichloride	16.2	10.9
Diethyloxaiate	11.0	16.4	Propionic acid	12.8	13.5
Distance giveor	5.0	24.7	Propyl acetate	13.1	10.3
Dingond athur	12.0	15.3	Propyl alcohol	9.1	16.5
Dimensidevalate	10.2	5.6	Propyl bromide	14.5	9.6
Ethyl acetate	43.7	11.1	Propyl chłonek	14,4	7.5
Ethylacrylate	12.7	10.1	Providente	13.1 j	9.7
Ethyl alcohol, 100%	10,5	13.5	Sorlino	14 1	11.0
Ethyl alcohol, 95%	9.8	14.3	Sodium hydroxide, 50%	3.9	95.5
Ethyl alcohol, 40%	6.5	16,6	Stamic chloride	13.5	12.5
Ethyl benzene	13.2	11.5	Succinonitrile	10.1	20.8
Lifet bronick	14.5	8.1	Sulfur dioxide	15.2	7.1
2-Eabyl Duryl acrylate Kale L.A.found	14.2	14.0	Suffurie acid, 110%	7.2	27.4
Edit Chonge	14.2	6.0	Suffurie acid, 100%	5.0	25.1
Ethyl formate	14.9		Sulfuric acid, 95%	7.0	24.5
2-Ethyl hexyl acrylate	9.0		Suffice Laboration	10.2	21.3
Ethyl iorlide	14.7	10.3	Totenddoroathaus	15.2	12.4
Ethyl propionate	13.2	9.9	Thiostene	13.2	10.7
Ethyl propyl ether	14.9	-7.0	Titaniun tetrachloride	1.1.1	1.0
Ealeyl sulfide	13.8	8,9	tomene	13.7	10.4
Ethylene bromide	- 11.9	- 15.7	Trichloroethylene	14.8	10.5
Ethylene chloride	12.7	12.2	Triethylene glycol	4.7	24.8
Fanylene given	6.0	23.6	Turpentine	11.5	14,9
Flaandracene	14.1	8.7	Vinyl acetate	14,0	8,5
Formic acid	10.7 1	10.4	V HAVE CORRECTAC	0 43.4	12.0
Freon-H	14.4	9.0	Volume dethas	10.2	13.0
From-12	16.8	- 5.6	Xylene, nieta	13.0	12.1
Freon-21	15.7	7.5	Xylene, para	13.9	10.0
Freom-22	17.2	6 15 15 A Sh			••••••
· ···· ·· ······ · ···················	Construction Construction of the	construction of the second sec		a see the second commence and a	

รูปภาพแสดงความหนืดของของไหล ที่ 1 atm

× . .
อุณหภูมิ	ความหนาแน่น	อุณหภูมิ	ความหนาแน่น	
องศาเซลเซียส	กก./ม.3	องศาเซลเซียส	กก./ม.3	
1	1000.2216	28	996.2261	
2	1000.2064	29	995.9452	
3	1000.1804	30	995.6555	
4	1000.1435	31	995.3572	
5	1000.0959	32	995.0503	
6	1000.0377	33	994.7349	
7	999.9689	34	994.4111	
8	999.8896	35	994.0790	
9	999.8000	36	993.7387	
10	999.7000	37	993.3901	
11	999.5898	38	993.0335	
12	999.4694	39	992.6689	
13	999.3389	40	992.2963	
14	999.1984	41	991.9159	
15	999.0480	42	991.5277	
16	998.8878	43	991.1319	
17	998.7178	44	990.7284	
18	998.5381	45	990.3174	
19	998.3488	46	989.8989	
20	998.1500	47	989.4731	
21	997.9417	48	989.0400	
22	997.7241	49	988.5996	
23	997.4972	50	988.1522	
24	997.2611	51	987.6976	
25	997.0158	52	987.2361	
26	996.7615	53	986.7678	
27	996.4983	54	986.2926	

ภาคผนวก ค

<u>ตารางแสดงความหนาแน่นของน้ำ (หน่วยเมตริก)</u>

		I	
อุณหภูมิ	ความหนาแน่น	อุณหภูมิ	ความหนาแน่น
องศาเซลเซียส	ปอนด์/ฟุต3	องศาเซลเซียส	ปอนด์/ฟุต3
1	62.4418	28	62.1924
2	62.4409	29	62.1748
3	62.4392	30	62.1568
4	62.4369	31	62.1381
5	62.4340	32	62.1190
6	62.4303	33	62.0993
7	62.4260	34	62.0791
8	62.4211	35	62.0583
9	62.4155	36	62.0371
10	62.4092	37	62.0153
11	62.4024	38	61.9931
12	62.3948	39	61.9703
13	62.3867	40	61.9470
14	62.3779	41	61.9233
15	62.3685	42	61.8991
16	62.3585	43	61.8744
17	62.3479	44	61.8492
18	62.3367	45	61.8235
19	62.3249	46	61.7974
20	62.3125	47	61.7708
21	62.2995	48	61.7438
22	62.2859	49	61.7163
23	62.2717	50	61.6883
24	62.2570	51	61.6600
25	62.2417	52	61.6312
26	62.2258	53	61.6019
27	62.2094	54	61.5722

<u>ตารางแสดงความหนาแน่นของน้ำ (หน่วยอังกฤษ)</u>

ภาคผนวก ง

<u>โปรแกรมการคำนวณ (Source Code)</u>

Option Explicit

Public Rst As Single, D As Single, hl As Single, sec As Single Public Cv As Single, Vop As Single, Vc As Single, Vt As Single Public Rep As Single, CD As Single, ff As Single, hs As Single

Private Sub Command1_Click()

Form3.Visible = True

Form3.Text13.Text = Form2.Text9.Text

Form3.Text14.Text = Form2.Text10.Text

Form3.Text15.Text = Form2.Text11.Text

Form3.Text16.Text = Form2.Text12.Text

Form3.Text17.Text = Form2.Text13.Text

Form3.Text18.Text = Form2.Text14.Text

Form3.Text19.Text = Form2.Text15.Text

Form3.Text20.Text = Form2.Text16.Text

Dim dps As Single, sgp As Single, denl As Single, vil As Single, Re As Single Dim A As Single, Vs As Single, B As Single, f As Single, denf As Single Dim Vip As Single, Repp As Single, K1 As Single, K2 As Single, eps As Single Dim C As Single, w As Single, E As Single, fff As Single, dens As Single Dim K3 As Single, K4 As Single, K5 As Single, sph As Single, g As Single Dim dt() As String, xt() As String, dd(1 To 12) As String, xx(1 To 12) As String Dim cdd(1 To 12) As Single, dpss As Single, dpsavg As Single, dpst As String Dim xtext As String, i As Integer, j As Integer, m As Integer, n As Integer Dim sum_x As Single, z As Integer, k As Integer, xr As String, dr As String 'Dim CD As Single

'dps : particle size diameter	'dens : particle specific gravity
'sph: sphericity shape factor	'Rst : solid transportation rate
'denl : liquid density	'vil : liquid viscosity
'D : pipe size diameter	'eps : pipe wall roughness

'Cv : volume solid fraction	'Vip : input operating velocity
Vop: selected operating velocity	Vc : criticle(min) operating velocity
'Vt : particle terminal velocity	'Rep: particle Reynolds number
'Re : flow Reynolds number	'CD : drag coefficient
'ff : friction factor	'hs : slurry pressure loss
'hl : carrier fluid head-loss	'sec : specific energy consumption
'Input Basic Properties Data	'dps = Val(Text2.Text)

dpst = Text2.Text + ","	xtext = Text18.Text + ","
dens = Val(Text1.Text)	denl = Val(Text4.Text)
vil = Val(Text5.Text)	D = Val(Text7.Text)
Vip = Val(Text3.Text)	Cv = Val(Text6.Text)
eps = Val(Text8.Text)	sph = Val(Text17.Text)
'Calculation of Drag Coefficient	

```
i = 0
```

```
dr = ""
```

```
Do While dt(i) <> ""
```

```
j = i + 1
```

dd(j) = dt(i)

dr = dr + dd(j)

```
i = i + 1
```

Loop

xt = Split(xtext, ",", -1, vbTextCompare) m = 0

dt = Split(dpst, ",", -1, vbTextCompare)

```
xr = ""
```

```
Do While xt(m) <> ""
```

```
n = m + 1xx(n) = xt(m)
```

xr = xr + xx(n)

```
m = m + 1
Loop
If i = m Then
  If j = n Then
     sum_x = 0
     For k = 1 To n
sum_x = sum_x + Val(xx(k))
     Next k
  End If
End If
If sum_x = 1 Then
If Option1.Value = True Then
g = 9.81
Else
g = 32.2
End If
For z = 1 To n
dpss = Val(dd(z))
K1 = 0.843 * 0.43398 * Log(sph / 0.065)
Vt = K1 * g * dpss ^ 2 * (dens - denl) / 18 / vil
  Rep = denl * Vt * dpss / vil
  If Rep <= 1 Then
  cdd(z) = 24 / Rep
  Else
     K3 = 5.32 - 4.88 * sph
     Vt = (4 * g * dpss * (dens - denl) / 3 / K3 / denl) ^ 0.5
     Rep = denl * Vt * dpss / vil
     If Rep >= 1000 Then
     cdd(z) = 5.32 - 4.88 * sph
```

```
Else
```

```
K2 = 0.843 * 0.43398 * Log(sph / 0.065)
     Vt = 0.153 * K2 * (g * dpss ^ 1.6 * (dens - denl) / vil ^ 0.6 / denl ^ 0.4) ^ 0.714
     Rep = denl * Vt * dpss / vil
     If (\text{Rep} < 1000) And (\text{Rep} > 1) Then
     cdd(z) = (24 / Rep) * (1 + 0.14 * Rep ^ 0.7)
     End If
     End If
End If
Next z
dpsavg = 0
CD = 0
For j = 1 To n
  CD = CD + (Val(xx(j)) * cdd(j))
  dpsavg = dpsavg + (Val(dd(j)) * Val(xx(j)))
  dps = dpsavg
Next j
End If
'PRESSURE LOSS CALCULATION PORTION
'Calculation of Criticle Operating Velocity
If (Cv <= 0.42) And (D <= 0.1541) And dps <= 0.002 Then
Repp = D * denl * ((g * dps * (dens / denl - 1)) ^ 0.5) / vil
'Hindered effect
Vs = Vt * (1 - Cv) ^ 2
C = (g * dps * (dens / denl - 1)) ^ 0.5
Vc = 1.85 * Cv ^ 0.1536 * (1 - Cv) ^ 0.3564 * (D / dps) ^ 0.378 * (Repp ^ 0.09) * C
w = Vs / Vc
Else
  If (Cv <= 0.44) And (D <= 0.5) And dps < 0.05 Then
  K4 = (vil / denl) ^ (2 / 3) / g ^ (1 / 3) / dps
  K5 = (K4 - 0.14)^{2}
```

```
f = Exp(0.51 - 0.0073 * CD - 12.5 * K5)
  Vc = f * (g * D * (dens / denl - 1)) ^ 0.5
  Else
  Vc = (40 * g * D * Cv * (dens / denl - 1) / CD ^ 0.5) ^ 0.5
  End If
End If
'Calculation Flow Reynolds Number
Vop = Vip
Re = denl * Vop * D / vil
'Calculation of Friction Factor
For fff = 0.008 To 0.1 Step 0.0001
A = -2 * 0.43429448190328 * Log(eps / (3.71 * D) + 2.51 / (Re * (fff ^ 0.5)))
B = 1 / (fff ^ 0.5)
If Abs((A - B)) < 0.001 Then
ff = fff
End If
Next fff
'Calculation of carrier fluid head-loss
hl = ff * (Vop ^ 2) / 2 / D / g
'Calculation of Slurry Headloss
If Vip <= 17 * Vt Then
hs = hI + hI * Cv * 66 * g * (dens / denI - 1) * D / (Vop ^ 2)
Else
If (Cv <= 0.35) And (D <= 0.5) Then
hs = hI + hI * Cv * 81 * (g * (dens / denI - 1) * D / (Vop ^ 2) / (CD ^ 0.5)) ^ 1.5
Else
  If g * D * (dens / denl - 1) / (Vop ^ 2) / (CD ^ 0.5) < 0.1 Then
  hs = hI + hI * Cv * 6.3 * (g * (dens / denI - 1) * D / (Vop ^{2}) / (CD ^{0} 0.5)) ^{0.354}
  Else
  hs = hI + hI * Cv * 280 * (g * (dens / denI - 1) * D / (Vop ^ 2) / (CD ^ 0.5)) ^ 1.93
```

```
End If
End If
End If
Rst = 22 * (D ^ 2) * Vop * Cv * dens * 3600 / 28 / 1000
sec = 2725 * hs / dens / Cv
'End If
```

OPTIMUM DESIGN CALCULATION PORTION

SECmin = 100

For Cv = 0.01 To 0.5 Step 0.001

Qs = 1000 * Rst / (3600 * dens * Cv)

For D = 0.025 To 0.6 Step 0.025

 $Vop = 4 * 7 * Qs / (22 * (D ^ 2))$

'Calculation of Criticle Operating Velocity

If (Cv <= 0.42) And (D <= 0.1541) And dps <= 0.002 Then

Repp = $D * denl * ((g * dps * (dens / denl - 1)) ^ 0.5) / vil$

 $C = (g * dps * (dens / denl - 1))^{0.5}$

Vc = 1.85 * Cv ^ 0.1536 * (1 - Cv) ^ 0.3564 * (D / dps) ^ 0.378 * (Repp ^ 0.09) * C

'Else

```
If (Cv <= 0.44) And (D <= 0.5) And dps < 0.05 Then

K4 = (vil / denl) ^ (2 / 3) / g ^ (1 / 3) / dps

K5 = (K4 - 0.14) ^ 2

f = Exp(0.51 - 0.0073 * CD - 12.5 * K5)

Vc = f * (g * D * (dens / denl - 1)) ^ 0.5

Else

Vc = (40 * g * D * Cv * (dens / denl - 1) / CD ^ 0.5) ^ 0.5

End If

If Vop > Vc Then

'Calculation Flow Reynolds Number

Re = denl * Vop * D / vil
```

'Calculation of Friction Factor

```
For fff = 0.008 To 0.1 Step 0.0001
```

```
A = -2 * 0.43429448190328 * Log(eps / (3.71 * D) + 2.51 / (Re * (fff ^ 0.5)))
```

 $B = 1 / (fff ^ 0.5)$

If Abs((A - B)) < 0.001 Then

ff = fff

End If

Next fff

'Calculation of carrier fluid head-loss

 $hl = ff * (Vop ^ 2) / 2 / D / g$

'Calculation of Slurry Headloss

If (Cv <= 0.35) And (D <= 0.550) Then

```
hs = hl + hl * Cv * 81 * (g * (dens / denl - 1) * D / (Vop ^ 2) / (CD ^ 0.5)) ^ 1.5
```

Else

```
If g * D * (dens / denl - 1) / (Vop ^ 2) / (CD ^ 0.5) < 0.1 Then
```

 $hs = hI + hI * Cv * 6.3 * (g * (dens / denI - 1) * D / (Vop ^ 2) / (CD ^ 0.5)) ^ 0.354$

Else

```
hs = hI + hI * Cv * 280 * (g * (dens / denI - 1) * D / (Vop ^ 2) / (CD ^ 0.5)) ^ 1.93
```

End If

End If

```
sec = 2725 * hs / dens / Cv
```

```
If sec < SECmin Then
```

SECmin = sec

```
Dop = D
```

Cvop = Cv

Vopt = Vop

End If

End If

End If

Next D

Next Cv

Form3.Text1.Text = Str(Rep)	Form3.Text2.Text = Str(CD)		
Form3.Text3.Text = Str(Vt)	Form3.Text4.Text = Str(Vop)		
Form3.Text5.Text = Str(Vc)	Form3.Text6.Text = Str(ff)		
Form3.Text7.Text = Str(hl)	Form3.Text8.Text = Str(D)		
Form3.Text9.Text = Str(Cv)	Form3.Text10.Text = Str(hs)		
Form3.Text11.Text = Str(Rst)	Form3.Text12.Text = Str(sec)		
End Sub			
Private Sub Command2_Click()			
Unload Form2			
End Sub			
Private Sub Option1_Click() 'Metric Unit			
Label3.Caption = "kg/m3"	Label5.Caption = "m"		
Label10.Caption = "kg/m3"	Label12.Caption = "kg/m-sec"		
Label18.Caption = "m"	Label19.Caption = "m"		
Label16.Caption = "m/s"	Form3.Label19.Caption = "m/s"		
Form3.Label10.Caption = "m/s	s" Form3.Label22.Caption = "m/s"		
Form3.Label15.Caption = "m water/m" Form3.Label11.Caption = "m"			
Form3.Label13.Caption = "m water/m" Form3.Label18.Caption = "tons/hr"			
Form3.Label14.Caption = "Kw-hr/ton-km"			
End Sub			

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

ประวัติผู้เขียนวิทยานิพนธ์

นายเซาว์ ไตรทิพย์ชาติสกุล เกิดวันที่ 12 เมษายน พ.ศ. 2510 ที่จังหวัด กำแพงเพชร สำเร็จการศึกษาปริญญาวิศวกรรมศาสตร์บัณฑิต สาขาวิศวกรรมเหมืองแร่และ ปิโตรเลียม จากจุฬาลงกรณ์มหาวิทยาลัย เมื่อปี พ.ศ. 2535 หลังจากสำเร็จการศึกษาได้เข้าทำงาน ที่ บริษัท เอ็นเคเค วิศวกรรม ประเทศไทย จำกัด ในตำแหน่ง วิศวกรประจำสำนักงาน มีหน้าที่ เป็น ผู้ช่วยวิศวกรอาวุโส ทำงานทางด้านวิศวกรรมของระบบท่อขนถ่ายของไหล ได้แก่ น้ำ น้ำมัน และ ก๊าซธรรมชาติ ต่อมา ในปี พ.ศ. 2542 ได้เข้าศึกษาต่อปริญญาโท ที่ภาควิชาวิศวกรรมเคมี จุฬา ลงกรณ์มหาวิทยาลัย และปัจจุบัน ทำงาน ในตำแหน่ง วิศวกรโครงการ บริษัท เอ็นเคเค วิศวกรรม ประเทศไทย จำกัด มีหน้าที่ ประเมินราคาโครงการ จัดซื้อ จัดจ้าง ทำสัญญา รวมถึงงานทางด้าน วิศวกรรมทั่วไป

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย