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  The objective of this dissertation is to develop a new acoustic speech units on 
modelling of the Thai onset units.  The concept of onset and rhyme units is applied to Thai 
continuous speech recognition.  Thai syllables are acoustically analysed and found that a 
syllable is composed of a pair of onset and rhyme units.  The onset unit incorporates 
transitional period existed between releasing consonant and its adjacent vowel.  The rhyme 
unit covers both vowel and arresting consonant.  The transitional period has unique 
acoustic characteristics depending on releasing consonant and vowel which is crucial in 
recognition of the consonant. 

  Two acoustic models of the onset-rhyme unit are introduced in this dissertation—
Phonotactic Onset-Rhyme Models (PORMs) and Contextual Onset-Rhyme Models 
(CORMs).  The PORMs consider the same releasing consonant in different context as 
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CHAPTER  1 

Introduction 
 

Speech can be considered as the most natural way of human communication and interaction.  
Humans utilize speech as a communication medium since they were born.  As for the human-
machine interaction, a conventional method is a keyboard input and screen output as seen in 
most computer systems.  This way of interaction is both inconvenient and inefficient for 
anyone with less typing skills or people with disabilities.  Then, speech input provides an 
alternative means of human-machine interaction as user-friendly interface which is more 
natural to human users, less intimidating than a keyboard, and thus requires much less 
operating skills. 

Researches in speech processing are progressing considerably during the past decades up 
to the present.  In the past four decades, research in speech recognition has been 
considerably progressed since the earliest attempts in the 1950s. (Rabiner and Juang, 1993; 
Zue, et al., 1995)  An interdisciplinary research on speech recognition effectively utilizes 
knowledge from many sources such as linguistics, psychology, computer science, and 
engineering.  Applications of automatic speech recognition and speech synthesis are 
incorporated into many tasks such as voice dialing in mobile phones, voice-activated controls, 
banking, security systems, air traffic information retrieval, weather information retrieval, etc. 
(Rabiner and Juang, 1993; Zue, et al., 1995) 

Spoken language processing as well as computing technology play a major role in rapid 
advances of spoken language system technology.  Several successful speech recognition 
prototypes have been proposed based on underlying word model (Lee, 1989; Rabiner and 
Juang, 1993).  This word model or word-based approach has already compensated for the 
coarticulatory effect in the model by treating each utterance as a whole.  However, these 
particular systems have reached their limitations on the number of words in the vocabulary to 
be modeled individually which training data could not be shared between words.  Then, a 
concept of subword model has been proposed to use a smaller number of units which 
construct a word or a syllable as a recognition unit, that is, a phonemic unit or a phoneme 
(Lee and Hon, 1988, 1989; Lee, 1989, 1990; Lee, Hon, and Reddy, 1990; Lee et al., 1990; 
Rabiner and Juang, 1993). 

1.1 Speech Recognition Framework 

In recognition of an unknown utterance, each utterance is assumed to comprise a sequence 
of structured and lingistically meaningful words (Juang and Furui, 2000).  Bayes’ decision 
theory have been applied in decoding of a sequence of words as shown in Eq. (1.1). 

 ( ) ( ) ( )
( )XP

WXPWP
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From Eq. (1.1), the sentence or the word sequence W is a result of maximum a posteriori on 
probability of a word sequence W given a possible acoustic realization X in which each word 
exists in the vocabulary V.  The X is an acoustic realization of a sequence of words W.  The 
P(X|W) is related to probabilistic realization of the word sequence.  The P(W) defines the 
probabilistic relationship that exists among words when they appear in sequence (Lee, 1989; 
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Huang, Acero, and Hon, 2001; Juang and Furui, 2000).  The P(X) is probability of acoustic 
realization sequence X.  Applying Bayes’ theory, the P(W) and the P(X|W) are referred to 
language model and acoustic model respectively. 

In recognition of continuous speech, various kinds of speech units have been used to handle 
coarticulatory effects existed in continuous utterances.  The complexity of a recognition 
system is directly related to a number of speech units.  Examples of speech units are ranging 
from words, syllables, phones, etc., where issues in both high acoustic resolution and low 
estimation reliability, or consistency and trainability, must be considered.  Various kinds of 
speech units currently used in most continuous speech recognition systems are described in 
the next section. 

1.2 Selection of Speech Units 

Selection of speech units is one of the most important issue in designing and developing a 
continuous speech recognizer.  Particular speech segments have been used as the basic 
modelling unit for a continuous speech recognizer which determine the acoustic resolution 
and estimation reliability of the basic model.  Then, the tradeoff between high acoustic 
resolution and low estimation reliability, or detailed models and limited training data, have to 
be compromised between the two issues (Lee, 1990; Juang and Furui, 2000).  Currently, 
there are many speech units utilized in speech recognition systems, for examples, word, 
phone, etc.  Summary of evaluation on these speech units is shown in Table 1.1.  The details 
of each speech units are described in this section. 

A. Word Model 

Word models assimilate phonological variations on within-word contextual effects or 
coarticulatory effects.  Word models are the most natural speech units since a continuous 
speech recognition system considers a sentence as a sequence of words.  Many samples of 
each word are needed to reliably estimate a word model.  Acoustic data of a word are solely 
used for training of that particular word and is unable to be shared among words.  Then, for a 
large-vocabulary speech recognition system, it is very difficult to collect acoustic data for 
every new word to be reliably estimated.  Moreover, in a continuous speech, there are 
coarticulatory effects between each word or at word boundaries in which the word models are 
not be able to model. 

B. Context-Independent Phones—Monophone Models 

In order to share models across words, common subword models have been used, the 
phonetic models.  Phonetically, the smallest subword units are phonemes or monophones.  

Table 1.1    Evaluation of previously proposed units of speech to large 
vocabulary recognition (Lee, 1990) 

Units Consistency Trainability 

Word model Yes No 

Phone model No Yes 

Multi-phone model Yes Difficult 

Transition model Yes Difficult 

Word-dependent phone model Yes Through Sharing 

Context-dependent phone model Yes Through Sharing 
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The sequence of monophone models make up a single word.  There are only about 50 
phones in English and about 57 phones in Thai, then, the monophone models are sufficiently 
trained with just a few hundred sentences.  However, the monophone models assume that 
any monophones in different context have similar characteristics, in other words, context-
independent.  But, in practical, a monophone is strongly affected by its immediate adjacent 
monophones.  Hence, the monophone models is overgeneralize where the word models lack 
generality (Lee, 1990). 

C. Context-Dependent Phones—Diphones and Triphones 

Modelling of context-dependent phones is to model phone-in-context which is referred to the 
immediate left and/or right neighbouring phones.  A left-context dependent phone is 
dependent on the left context while a right-context dependent phone is dependent on the right 
context.  Both of the left-context dependent phones and the right-context dependent phones 
are the diphones.  A triphone considers both the left and right neighbouring phones. 

A model of diphone consists of transitional parts of a phone pair : consonant-vowel (CV), 
vowel-consonant (VC), consonant-consonant (CC), and vowel-vowel (VV).  This unit also 
includes the steady state parts of vowels, nasals, and fricatives (Rosenberg, 1988; Lee, 
Rabiner, Pieraccini, and Wilpon, 1990).  The diphone is a context-dependent model which 
covers a great deal of phonological variations and contextual effects within the unit and less 

Table 1.2    Number of grammatically occurred Thai diphone units 

Thai diphone 
(right context-dependent only) Combinations Number of Units 

consonant preceding vowel C + V 33 x 24  =  792 

vowel preceding consonant V + C 24 x 33  =  792 

silence preceding consonant sil + C 1 x 33  =  33 

consonant preceding silence C + sil 8 x 1  =  8 

vowel preceding silence V + sil 24 x 1  =  24 

silence sil 1 

Total diphone units in Thai  1,650 

 

Table 1.3    Number of grammatically occurred Thai triphone units 

Thai Triphones Combinations Number of Units 

consonant – vowel + consonant C – V + C 33x24x33  =  26,136 

consonant – vowel + silence C – V + sil 33x24x1  =     792 

vowel – consonant + vowel V – C + V 24x33x24  =  19,008 

vowel – consonant + consonant V – C + C 24x8x33  =  6,336 

silence – consonant + vowel sil – C + V 1x33x24  =     792 

vowel – consonant + silence V – C + sil 24x8x1  =    192 

consonant – consonant + vowel C – C + V 8x33x24  =  6,336 

silence sil 1 

Total triphone units in Thai  59,593 
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variable than phones.  In English, there are combinations of 46x45 = 2,070 diphone units to 
cover all words in English (Rabiner and Juang, 1993).  Phonotactically, there are 1,650 left 
diphone units, 1,650 right diphone units and 59,593 triphone units grammatically existed in 
Thai as shown in Table 1.2 and Table 1.3. 

A model of triphone is a phone-sized model that considers both left and right neighbouring 
phones, that is, left-and-right context-dependent phone (Lee, Hon, and Reddy, 1990).  The 
triphone covers the most important coarticulatory effects and is much more sensitive than 
phone modeling.  The numbers of triphone units are listed in Table 1.3.  Due to a large 
number of triphone units, they are very difficult to train using a limited number of training data. 

Analysis of syllable structures are shown in Table 1.4.  Possible combinations of syllables are 
described in both English and Thai.  Therefore, the triphones are more practical to English 
than Thai due to the complexity of syllable structure in English which contains many clusters.  
In Thai, a triphone model is equivalent to word model in syllable structure aspect which is not 
considered as a subword model.  Phonologically speaking, for the Thai syllable, this model 
does not provide any difference over a word model in recognition.  The phonological structure 
of the Thai syllable is shown in Figure 1.2 (Luksaneeyanawin, 1993).  However, application of 
onset-rhyme models in English might cause a large number of both onset and rhyme units.  
This is resulted from a large number of clusters in English as shown Table 1.4 in which 
combinations of English syllables are more complicated than Thai. 

SYLLABLE

ONSET RHYME

NUCLEUS CODA
 

Figure 1.1    Syllable parts. 
 

S   =   c(c)V(V)(C)
T

 

Figure 1.2    Thai syllable structure 
(Luksaneeyanawin, 1993). 

Table 1.4    English and Thai syllable structure combinations. 

 Structure Number of Combinations 

C0-4 V C0-3 20 

English 

  V     Ci1V    Ci1Ci2V 
  VCf1    Ci1VCf1    Ci1Ci2VCf1 

  VCf1Cf2    Ci1VCf1Cf2   Ci1Ci2VCf1Cf2 
  VCf1Cf2Cf3   Ci1VCf1Cf2Cf3   Ci1Ci2VCf1Cf2Cf3 
 
  Ci1Ci2Ci3V     Ci1Ci2Ci3Ci4V 
  Ci1Ci2Ci3VCf1    Ci1Ci2Ci3Ci4VCf1 

  Ci1Ci2Ci3VCf1Cf2    Ci1Ci2Ci3Ci4VCf1Cf2 

  Ci1Ci2Ci3VCf1Cf2Cf3   Ci1Ci2Ci3Ci4VCf1Cf2Cf3 

C0-2 V C0-1 6 
Thai    V    Ci1V    Ci1Ci2V 

   VCf1   Ci1VCf1    Ci1Ci2VCf1 
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D. Subphonetic Models 

There are a number of subphonetic models proposed and applied in many continuous speech 
recognition systems.  In 1987, IBM first proposed the “fenones” as front-end based 
subphonetic units (Bahl, et al., 1993).  The “shared-distribution models” was proposed and 
applied to the SPHINX II recognizer which was later developed to be the “senonic” models 
(Huang, et al., 1991; Hwang and Huang, 1992; Hwang, 1993).  The shared-distribution 
models provide generalized triphones which acoustically similar triphones are grouped 
together into a single model in order to reduce the number of models.  However, there are 
some limitations in this method that lead to over-generalization.  Then, the subphonetic 
model, the senone, was proposed to avoid over-generalization by grouping at the subphonetic 
level. 

 

Figure 1.3    Acoustic speech units: word, syllable, demisyllable, and onset-rhyme. 
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E. Syllable Model 

Syllable models have been employed in a syllable-based large-vocabulary continuous speech 
recognition system (Ganapathiraju, et al., 2001).  Syllable models have provided efficient 
modelling of long-term temporal dependencies.  The efficient modelling is resulted from 
longer duration of the syllable models than phones and triphons.  The triphones cover a very 
short span of a single phone, which is difficult to cover spectral and temporal dependencies.  
In contrast, there are many advantages of a syllable over the phone-based acoustic units.  
First, acoustical characteristic of a syllable does relate to articulation and human perception 
since a syllable is perceptually defined.  Second, a syllable acoustic unit provides compact 
representation of an utterance.  Third, coarticulation has been integrated within a syllable 
acoustic unit thus makes the unit acoustically stable.  Moreover, a syllable has longer duration 
than other units, which simultaneously combined and utilized both temporal and spectral 
variations.  Ganapathiraju, et al. (2001) applied the syllable models to a large-vocabulary 
continuous speech recognition system which exceeded the performance of a comparable 
triphone system in both complexity and word error rate.  The SWITCHBOARD (SWB) corpus 
was utilized in training and testing of the systems.  The SWB corpus consists of 70,000 words 
with 9,023 distinct syllables.  Using the standard SWB evaluation set, the syllable models 
gave out only 1% reduction in word error rate over the word-internal triphone system 
(Ganapathiraju, et al., 2001). 

F. Demisyllable Models 

The demisyllable is a half syllable unit divided at the center of the syllable nucleus. Splitting 
the syllable within the vowel creates an initial demisyllable and a final demisyllable (Jennings, 
Westaway, and Curtis, 1997). These units can be used as concatenating segments in speech 
synthesizer having the advantage of holding the articulatory information between the 
phonemes. Furthermore, a few rules were required for smoothing the concatenating segment 
due to the voicing effect of vowel. This advantage of handling coarticulation of demisyllable in 
speech synthesis has led to using this unit in speech recognition (Fujimura, Macchi, and 
Lovins, 1977; Fujimura and Lovins, 1978; Saravari and Satoshi, 1983; Saravari and Satoshi, 
1984; Yoshida, Watanabe, and Koga, 1989; Plannerer and Ruske, 1992). Additionally, The 
number of demisyllable units is much smaller than word, syllable, and triphone units. 

However, the demisyllable models divide a syllable at the middle of syllable into two 
segments.  This separation results in loss of prosodic information stored within the whole 
syllable. 

G. Initial and Final Models of Chinese 

According to the Mandarin syllable structure, every syllable is a morpheme which has its own 
meaning, and each syllable is an open syllabic structure ending with vowel or nasal /n/ or /ng/ 
(Lee, 1997).  Therefore, an initial followed by a final is used as the basic acoustic unit in the 
Mandarin speech recognition.  The initial comprises the initial consonant of the syllable while 
the final consists of the vowel or diphthong part but including possible medial or nasal ending 
(Lee et al., 1993).  A set of 22 initials and 38 finals forms the number of 408 phonologically 
allowed different base syllables of Mandarin Chinese disregarding tone.  In addition, 
Cantonese is one of the most popular Chinese spoken languages. Similar to Mandarin, it is a 
bi-syllabic language with multiple tones.  Cantonese consists of 20 initials (including null 
initial) and 53 finals which compose the whole 595 syllables set disregarding tone (Fu, Lee, 
and Clubb, 1996).  Because the initial parts are usually very short compared to final parts in 
base syllables and any important difference among the initial parts of different syllables can 
be easily influenced by irrelevant differences among the final parts of the syllables during the 
recognition process, these produce a confusing set of initials (Wang et al., 1997; Lee, 1997).  
Therefore, a set of context-dependent initial models expanded from context-independent 
initial models had been proposed to overcome those problems.  The error rate was 
dramatically reduced by using context-dependent initial models (Wang et al., 1997). 
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1.3 Onset-Rhyme Acoustic Models 

From the previously used speech units, there exists some major disadvantages in applying to 
the Thai continuous speech recognition system.  Considering all of the phone-based models, 
the models are inefficient in modelling of long-term temporal dependencies.  Also, there are a 
large number of diphone and triphone models with a non-zero probability of occurrence.  As a 
result, the triphone models are inefficient decompositional units and poorly trained 
(Ganapathiraju, et al., 2001).  The number of diphone and triphone models in Thai are listed 
in Table 1.2 and 1.3.  Hence, a larger acoustic unit, a syllable, is a feasible unit for 
representation of utterances.  However, there are a large amount of syllable unit required to 
cover the whole language.  About the demisyllable models, a syllable is divided in the middle 
of a syllable segment.  Prosodic information resides within a syllable segment are lost by the 
segmentation.  Therefore, a new model of acoustic speech unit is proposed, the onset-rhyme 
models. 

The onset and rhyme are phonological units as shown in Figure 1.1.  A syllable consists of an 
onset and a rhyme units.  A rhyme unit, which carries prosody, contains nucleus and coda of 
a syllable.  The Thai syllable structure is composed of releasing consonant (c, cc), vowel (V, 
VV), arresting consonant (C), and tone (T) as depicted in Figure 1.2.  Considering the Thai 
syllable structure, the Thai syllable onset covers releasing consonant while the rhyme covers 
vowel and arresting consonant respectively.  The proposed acoustic speech unit, the onset-
rhyme models, then make use of the onset and rhyme units as described.  Various speech 
units are illustrated in Figure 1.3 compared to the onset-rhyme models.  There are some 

Table 1.5    Numbers of the Thai onset units 

 Combinations Units 

Theoretical Onset c(33) 33 

Contextual Onset c(33) x V(9) 297 

Phonotactic Onset c(33) x V(24) 792 

 

Table 1.6    Numbers of the Thai rhyme units 

 Combinations Units 

1. Sonorant ending rhyme units 
a. Open syllable rhymes 
b. Short rhyme units with sonorant ending 

Inadmissible co-occurrences: 
Round vowel units preceding labialized sonorant 
Front vowel units preceding palatalized sonorant 

 
V(9) + VV(3) 

(V(9) + VV(3)) x C(5) 
 

(V(3) + VV(1)) x C(1) 
(V(3) + VV(1)) x C(1) 

 
12 
60 

 
-4* 
-4* 

c. Long rhyme units with sonorant ending 
Inadmissible co-occurrences: 

Round vowel unit preceding labialized sonorant 
Front vowel unit preceding palatalized sonorant 

(V(9) + VV(3)) x C(5) 
 

(V(3) + VV(1)) x C(1) 
(V(3) + VV(1)) x C(1) 

60 
 

-4* 
-4* 

2. Obstruent ending rhyme units 
a. Short rhyme units with obstruent ending 
b. Long rhyme units with obstruent ending 

 
(V(9) + VV(3)) x C(4) 
(V(9) + VV(3)) x C(3) 

 
48 
36 

Total numbers of Thai rhyme units  200 

*  These rhyme units do not occur grammatically.  They are excluded from the sets. 
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advantages of the onset-rhyme models over other previously proposed speech units.  Based 
on the Thai syllable structure, major advantages of the onset-rhyme models are described as 
follows. 

Firstly, the onset-rhyme models preserve the essential prosodic information within the whole 
single rhyme unit.  Those previously used speech units do not take this into account such as 
phones and demisyllables.  Then, dividing a syllable into demisyllable units are not practical in 
modelling of acoustic speech units.  The onset unit contains a releasing consonant with its 
transitional period towards its neighbouring vowel nucleus.  The rhyme unit covers the whole 
vowel segment and an arresting consonant.  Consequently, the models capture coarticulatory 
effects over a syllable within the models. 

Secondly, the models are consistent in which the same models have similar characteristics 
across different speech instances.  Thirdly, the onset-rhyme models cover a finite set of 
speech units, which represent all potential speech units of the language.  Theoretically, the 
maximum number of onset-rhyme models are 992 units composed of 792 phonotactic onset 
units and 200 rhyme units as shown in Table 1.5 and 1.6.  Whereas, the diphones and 
triphones have 1,650 and 59,593 units respectively.  Thus, this finite number of units makes 
the onset-rhyme models sufficiently trained with only a small set of sentences. 

Moreover, the onset-rhyme models are context-dependent where phonotactics or 
phonological rules are embedded into the models in forming syllables.  The onset unit is right 
context-dependent on its adjacent rhyme unit.  Whereas, the rhyme unit is left context-
dependent on its preceding onset unit.  As a result, the onset-rhyme models are context-
dependent by nature, which helps reduce complexity of language modelling. 

There are many difference between the onset-rhyme models and the initial-final model.  
Firstly, the initial-final models are context-independent where as the onset-rhyme models are 
context-dependent by nature.  Secondly, the initial-final do not model releasing consonant in 
every possible syllable context.  This issue has made the initial-final models context-
independent.  Thirdly, the initial-final models do not have internal and external junctures which 
constitute a pair of initial and final by tying both models together. 

1.4 Objectives of the Dissertation 

The objective of this dissertation is described as follows. 

1. To develop an appropriate speech unit for modeling of Thai syllable onsets. 

2. To model acoustic characteristic of Thai syllable onsets. 

3. To provide basic acoustic knowledge for Thai continuous speech recognition. 

1.5 Scope of the Dissertation 

The scope of this dissertation is described as follows. 

1. Acoustic-phonetic analysis of the Thai releasing consonants and Thai vowels in 
syllable onsets. 

2. Collect sets of Thai continuous speech of a single speaker in “Stressed Dictation 
Style or Reading Style” for training and testing of the onset units. 

3. Construct acoustic models of the Thai releasing consonants using the onset units. 

4. Recognition of Thai releasing consonants using the onset units of the onset-rhyme 
models on a speaker-dependent Thai continuous speech recognition system. 
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1.6 Key Words 

The key words of this dissertation are shown as follows. 

� ACOUSTIC MODELLING 

� ONSET AND RHYME 

� SPEECH ANALYSIS 

� THAI CONTINUOUS SPEECH RECOGNITION 

1.7 The Expected Prospects 

1. To acquire a knowledge base of the acoustic characteristics of Thai speech units. 

2. To acquire a knowledge base of the acoustic features extracted from continuous 
speech waveform. 

3. To provide basic acoustic-phonetic knowledge for Thai continuous speech 
recognition. 

1.8 Research Procedures 

1. Feasibility study and literature reviewing of relevant researches in both the same field 
and others. 

2. Study acoustic properties of Thai syllable onsets in continuous speech for each 
consonants from recorded continuous utterances. 

3. Analysis and classification of each consonants from acoustic characteristics of their 
syllable onsets. 

4. Design sets of Thai sentences or dialogs for recording of Thai continuous speech. 

5. Record continuous speech corpus from one speaker. 

6. Manual labelling of recorded utterances in training databases. 

7. Set up a speaker-dependent Thai continuous speech recognition system for training 
and testing of the models. 

8. Training a recognition system using the recorded utterances of a single speaker. 

9. Testing and evaluation of the recognition system and its reliability. 

10. Analysis of all research results in various aspects. 

11. Summarize research results to meet the objectives of this research. 

1.9 Summary and Dissertation Outline 

The onset-rhyme acoustic models are proposed in this dissertation for Thai continuous 
speech recognition.  This dissertation provides basic research on acoustic modelling of Thai 
segmentals for continuous speech recognition.  This research will focus only at the onset unit 
of the onset-rhyme models.  The onset units cover the whole transitional stage between 
releasing consonant and vowel nucleus.  The transition stage provide crucial acoustic cues 
for identifying the releasing consonant.  Thus, the onset unit provide improved models of 
releasing consonants especially for the releasing stops.  Details of the onset-rhyme models 
will be thoroughly described later in this dissertation. 
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In the next chapter, acoustic analysis of Thai utterances are described in details to provide 
basic acoustic knowledge of Thai language.  In Chapter 3, the proposed onset-rhyme models 
are described in details on acoustic modelling for the Thai continuous speech recognition 
system using the hidden Markov models.  The philosophy and methodologies of creating and 
using the onset-rhyme models are elaborated in this chapter.  Experimental results and 
discussions are in Chapter 4 with comparison between the phone models and the onset-
rhyme models.  Finally, Chapter 5 concludes all the experiments and the brief concept of the 
onset-rhyme models.  Contributions and future works on acoustic modelling are also 
discussed in Chapter 5. 

 

 

 



CHAPTER  2 

The Acoustic Analysis of Thai Utterances 
 

In the previous chapter, various types of acoustic speech units were briefly described 
including the onset-rhyme models.  In this chapter, acoustic-phonetic analyses are conducted 
on Thai utterances.  The acoustic-phonetic analysis provides both basic acoustic knowledge 
and phonological understanding of the Thai utterances.  The analysis begins from syllable 
structure of Thai language through its segmental components. 

2.1 The Acoustic-Phonetic Analysis 

The acoustic-phonetic analysis of speech is the study of acoustic and phonetic properties of 
speech and their relations.  A number of parameters are used in analysing speech waveform, 
for example, fundamental frequency, formant frequency, amplitude, etc.  These parameters 
have been used to examine speech segments of a speech waveform in order to see temporal 
changes in utterance.  Four acoustic parameters used in acoustic-phonetic analysis are 
fundamental frequency, formant frequencies, amplitude or intensity, and duration. (Flanagan, 
1972; Furui, 2001; Rabiner and Juang, 1993)  The four acoustic parameters are employed in 
psycho-acoustic analysis of human perception comforming to the assumption that human 
speech perception is based on these parameters. 

The details on acoustic studies of Thai language are described in the following section.  
Specific details of each acoustic parameters, fundamental frequency, formant frequencies, 
amplitude or intensity, and duration, will be depicted with their application in phoneme 
recognition. 

2.1.1 Acoustic Parameters Analysis 

In speech recognition by machine, an acoustic-phonetic approach is one of the recognition 
methods that have been successfully applied besides the pattern recognition and the artificial 
intelligence approaches (Rabiner and Juang, 1993).  In the acoustic-phonetic approach, the 
machine attempts to decode the speech signal in a sequential manner based on the observed 
acoustic features of the signal and the known relations between acoustic features and 
phonetic symbols.  This approach has been in-depth studied for more than four decades.  
This method is based on the theory of acoustic phonetics which postulates that finite and 
distinctive phonetic units exist in spoken language.  The phonetic units are characterized by 
its spectrum over time, however, the coarticulation of sounds are highly variable within 
speakers and neighboring phonetic units.  The segmentation and labeling procedure in this 
approach involves segmenting speech signal into discrete regions corresponding to one 
phonetic unit with specific acoustic properties.  One or more phonetic labels are attached to 
each segmented region according to their phonetic properties.  Then, the sequence of 
phonetic labels is determined to be a valid recognized word or string of words. 

Four acoustic parameters, fundamental frequency, formant frequencies, amplitude or 
intensity, and duration, are employed as acoustic features for acoustic-phonetic speech 
recognition.  These acoustic cues are essential features for both human perception and 
computer speech recognition.  Basic concept of each acoustic parameters and also analysis 
details on these parameters has been stated in this section as follows. 
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2.1.2 Relations between Fundamental Frequency and Formant Frequencies 

Both fundamental frequency and formant frequencies are defined from the production level, 
the fundamental frequency from the periodicity of vocal fold vibrations and the formant 
frequencies from the vocal tract resonance frequencies (Fant, 1968).  The human vocal 
mechanism is shown in Figure 2.2.  The periodicity is a basic property of a vocal cord sound 
source expressed by the duration T0 of a complex voice period or by the inverse value of the 
voice fundamental frequency F0 as follows (Fant, 1960). 

 00 1 TF = .............................................................. (2.1) 

A voice source is also characterized by its spectrum envelope S(f) which is a specification of 
the amplitudes of the source harmonics as a function of their frequency.  The source 
spectrum envelope identifies personal characteristics of the speakers which varies with voice 
register, fundamental pitch, and voice intensity (Fant, 1960).  In Figure 2.1, a simplified 
source-filter decomposition of the spectrum of a two-formant voiced sound is illustrated.  The 
waveform of the periodic airflow through the glottis is transformed into a harmonic spectrum 
S(f) which multiplied by the filter characteristics T(f) of vocal transmission provides the 
spectrum P(f) of the radiated vowel which is specified by its waveform. 

The speech production mechanism is analytically decomposed into the source and filter 
components, referred to Figure 2.1.  The glottis represents a high impedance termination of 
the vocal tract in which the voice source is defined by the pulsating airflow through the glottis, 
that is, the saw-toothed periodic time function as shown in Figure 2.1.  The transfer functions 
are introduced by multiplying the amplitude of each harmonic |S(f)| of the source spectrum by 
the value of gain factor |T(f)| of the filter function at the frequency f as show in Eq. (2.2).  The 
phase of each harmonic is the sum of the phase of the corresponding source harmonic and 
the phase of the filter function as shown in Eq. (2.3) as follows. 

 ( ) ( ) ( )fTfSfP = ...................................................... (2.2) 

 ( ) ( ) ( )fTfSfP ∠+∠=∠ ..................................................... (2.3) 

The spectral peaks of the sound spectrum |P(f)| are called formants.  In Figure 2.1, each 
resonance has its counterpart in a frequency region of relatively effective transmission 

 

Figure 2.1    Simplified Source-Filter Decomposition of the spectrum of 
a two-formant voiced sound (Fant, 1960) 
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through the vocal tract.  This selective property of |T(f)| is independent of the source and 
frequency location at maximum |T(f)| is the resonance frequency which is corresponded to 
maximum |P(f)| in spectrum of the complete sound.  Formants are labeled, F1, F2, …, and so 
on, in the order of occurrence in the frequency scale.  These notations refer to the 
frequencies of the corresponding vocal tract resonance or the frequencies of the formants.  In 
the analysis of voiced sound, the filter function is independent of the source in a first order 
approximation.  The formant peak coincides with the frequency of a harmonic.  The formant 
frequencies are changed as a result of an articulatory change affecting the dimensions of the 
various parts of the vocal tract cavity system, that is, the filter function. 

2.1.3 Fundamental Frequency 

A fundamental frequency (F0) or pitch is a frequency of vocal cords vibration during speech 
production.  A periodic speech wave has a fundamental frequency match to a vocal cord 
vibration which occurs in a voiced segment of an utterance, that is, a vowel.  A fundamental 
frequency has been used for voiced-unvoiced classification.  A vowel segment could be 
extract from a speech waveform using pitch period as shown in Figure 2.5.  Fundamental 

 

Figure 2.2    A Simple Discrete-Time Model for Speech Production (Vuuren, 1998) 

 

Figure 2.3    Human Vocal Mechanism (Rabiner and Juang, 1993) 
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frequency analysis or pitch extraction has the objective to indicate the epoch of each glottal 
puff and the measurement of interval between adjacent pulses (Flanagan, 1972).  A pitch 
extraction or pitch estimation is to obtain the period of the glottal excitation waveform that is 
the result of the periodic opening and closure of the vocal cords in the glottis while air is 
forced through from the lungs and result in a train of alternating high and low pressure pulses 
in the vocal tracts (Vuuren, 1998).  Only voiced sounds have periodic opening and closure, on 
the contrary, the air passes through the glottis unrestricted in unvoiced sounds. 

In Figure 2.2, the glottal excitation waveform is generated in the same way as generating a 
voiced sound.  These sequences are modified by vocal tract and other speech organs.  The 
output speech signal is modeled as the convolution of the excitation signal with the impulse 
response of a filter describing the vocal tract and other speech organs.  The pitch information 
of voiced speech is represented as quasi-periodic signal in time domain.  The excitation or the 
vocal cords results in long periods and the resonant cavity of the vocal tract shape results in 
short periods (Vuuren, 1998).  For automatic pitch extraction, properties of the cepstrum have 
been utilized to reveal signal periodicity.  The cepstrum is the Fourier transform of the 
logarithm of the amplitude spectrum of a signal.  Then, the resulting independent variable, 
which is reciprocal frequency, or time, is called "quefrency" (Flanagan, 1972). 

The cepstrum is defined as the inverse Fourier Transform of the short-time logarithmic 
amplitude spectrum.  The cepstrum analysis is illustrated in Figure 2.4.  The quefrency, the 
independent parameter for the cepstrum, is the time domain parameter results from the 
inverse transform of the frequency domain function (Furui, 2001).  Let x(t) is the voiced 
speech, which is the response of the vocal tract articulation equivalent filter driven by a 

Discrete
Fourier

Transform
Logarithm Inverse

DFT

Voiced
Speech

s(n)

Cepstrum

c(n)
 

Figure 2.4    Cepstrum Analysis (Furui, 1989; Deller, Proakis, Hansen, 1993) 

 

Figure 2.5    Spectrum and Cepstrum Analysis of Voiced and 
Unvoiced Speech Sounds (Flanagan, 1972) 
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pseudoperiodic source g(t).  Then, x(t) could be given by the convolution of g(t) and the vocal 
tract impulse response h(t) as follows. 

 ( ) ( ) ( )∫ ττ−τ=
t

dthgtx
0

..................................................... (2.4) 

 ( ) ( ) ( )ωω=ω HGX ........................................................ (2.5) 

Where X(w), G(w), and H(w) are the Fourier transform of x(t), g(t), and h(t) respectively.  By 
taking logarithm and inverse Fourier transform, the cepstrum c(t) is as follows. 

 

Figure 2.6    Short-time Spectra and Cepstra for male voice (Furui, 2001) 



 

 

16

 ( ) ( ) ( )ω+ω=ω HGX  log log log ............................................. (2.6) 

 ( ) ( ) ( ) ( )ωℑ+ωℑ=ωℑ=τ −−− HGXc  log log log 111 ............................... (2.7) 

From the right side of Eq. (2.7), the first term represents the spectral fine structure or the 
periodic pattern and the second term represents the spectral envelope or the global pattern 
along the frequency axis.  The fundamental period of the source g(t) could be extracted from 

 

Figure 2.7    Cepstrum Analysis of Continuous Speech (Flanagan, 1972) 
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the peak at the high-quefrency region, that is, the first term which indicates the formation of 
the peak in the high-quefrency region (Furui, 2001).  When the cepstrum value is computed 
by the discrete Fourier transform (DFT), the equation is shown as follows. 

 ( ) ( ) 10     , log 1 1

0

2 −≤≤= ∑
−

=

π NnekX
N

nc
N

k

Nknj ................................... (2.8) 

In Figure 2.5 and 2.6, a voiced and unvoiced speech segment are analysed using spectrum 
and cepstrum analysis.  In voiced speech, the sharp peak occurs in the cepstra plot which 
correspond to the period of the pitch.  Unlike voiced speech, unvoiced speech cepstra has no 
peak which results in no fundamental frequency in that speech segment and will be classified 
as unvoiced.  In Figure 2.6 and 2.7, the example of short-time spectra and cepstra on the left 
and the right respectively of male utterance in the word "razor".  During the voiced speech or 
the vowel segment, a sharp peak occurs in quefrency domain of the corresponding cepstra in 
the period.  The sharp peak disappears in the unvoiced speech portion.  The existence of a 
peak during voiced speech segment of a cepstra could be used for voiced-unvoiced 
classification of speech.  The fundamental frequency is computed directly from the location of 
the peak which is the reciprocal of the period.  The pitch period tracking is shown in Figure 
2.7 and 2.8.  The fundamental frequencies of each speech segment in continuous speech are 
varied over time during speech production. 

 

Figure 2.8    Formant Analysis and Synthesis of Speech (Flanagan, 1972) 
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The fundamental frequency has been employed as an acoustic cue in many speech 
recognition research works.  The fundamental frequency has been used to distinguish male 
and female speakers.  Since temporal variation in fundamental frequency indicates the mean 
and standard deviation for females voices are roughly twice those for male voices (Furui, 
2001). 

For Thai language, the fundamental frequency plays an important role in tone recognition.  
Thai language has five tones, the mid /0/, the low /1/, the falling /2/, the high /3/, and the rising 
/4/, as shown in Figure 2.10.  There are a number of studies in Thai tone recognition, for 
example, Potisuk and Harper (1995) and Thubthong (1995).  Thubthong (1995) utilized the 
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Figure 2.9    Formant Tracking and F0 Estimation of the word /zaa0 caa0/ 
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acoustic-phonetic features, F0 direction and F0 height in tone phoneme recognition.  Potisuk 
and Harper (1995) applied the analysis-synthesis method based on an extension to the 
Fujisaki model. 

2.1.4 Formant Frequencies 

Formant frequencies or formants is the resonance frequency of the vocal tract tube in which 
depend upon the shape and dimension of the vocal tract.  The shape of the vocal tract is 
characterized by a set of formant frequencies.  Different sounds are formed by varying the 
shape of the vocal tract.  Then, the spectral properties of the speech signal vary with time as 
the vocal tract shape varies (Rabiner and Schafer, 1978).  Formant frequencies are the 
dominant frequency components which characterize the phonemes corresponding to the 
resonant frequency components of the vocal tract (Furui, 2001). 

Resonances of the vocal tract are called formants and their frequencies called formant 
frequencies (Denes and Pinson, 1963).  The vocal tract is an air-filled tube that acts as a 
resonator and has certain natural frequencies of vibration.  The vocal resonator emphasize 
the harmonics of the vocal cord wave at a number of different frequencies and the spectrum 
of the speech wave will have a peak for each of the natural frequencies of the vocal tract.  
The value of the natural frequencies of the vocal tract is determined by its shape (Denes and 
Pinson, 1963).  Every vocal tract configuration has unique set of characteristic formant 
frequencies.  The lowest formant frequency is called the first formant (F1).  The next highest 
frequency is called the second formant (F2) and so on. 

The formant frequencies are estimated from the spectrum of each speech segment using the 
Fourier transform.  Tracking of the formant frequencies in each speech segment is called 
formant tracking as shown in Figure 2.7, 2.8, and 2.9.  The tracked formants reveal a time-
varying property of the vocal tract during speech production which is essential for phoneme 
recognition.  The tracked formants correspond to the frequency peak spectrogram. 

The formant frequencies have been utilized as an acoustic cues for phoneme recognition.  
The first (F1), second (F2), and third formant (F3) have been used to identify vowel 
phonemes.  For Thai language, formant frequencies and formant transition have been used in 
vowel and consonantal phonemes recognition (Trongdee, 1987; Tarnsakun, 1988; 
Thubthong, 1995).  Trongdee (1987) employed the first, second, and third formant transition 
to classify stop consonants.  Tarnsakun (1988) utilized first and second formant transition in 
both pre-consonantal and post-consonantal transition to classify non-stop consonants.  
Thubthong (1995) used pre-consonantal second formant transition with other acoustic 
features for consonantal phonemes classification. 

2.1.5 Amplitude or Intensity 

An amplitude of a speech wave is a peak of a speech waveform.  In other words, an 
amplitude is a maximum displacement of vibration of a mass which is displaced from its rest 
position and moving back and forth between two positions that mark the extreme limits of its 
motion (Denes and Pinson, 1963).  Human perceives sound intensity rather than amplitude of 
speech wave.  The intensity of the sound wave is a power transmitted along the wave through 
an area of one square centimeter orthogonal to the direction of the sound wave which is the 
energy available over a small area at the point of measurement (Denes and Pinson, 1963).  A 
sound intensity is measured in watts per square centimeter or in the decibel scale.  In speech 
recognition, an absolute acoustic energy contour could be computed directly from a speech 
wave using the following relation as shown in Eq. (2.9).  In Eq. (2.9), E(m) is an absolute 
energy value of the mth frame, s(n) is an amplitude of the nth sample, N is the total samples, 

 ( ) ( )∑
−
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nsmE ............................................................. (9) 
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An intensity is one of the acoustic cues that is used to classify Thai consonants (Trongdee, 
1987; Tarnsakun, 1988; Thuthong, 1995).  Both th acoustic energy and the intensity of each 
formant frequency have been used in the classification process.  Trongdee (1987) employed 
intensity of first (F1) and second (F2) formants to categorize Thai non-stop consonants with 
different manner of articulation.  The nasals have low second formant intensity while both trill 
and lateral has high first and second formant intensity. 

Tarnsakun (1988) used intensity to classify the ten Thai stop consonants in both manners and 
places of articulation.  Intensities of different pace of articulation of the stop consonants in 
releasing phase are ranging from labial, alveolar, alveolar-palatal, and velar.  The intensity of 
aspirated stops is higher than unaspirated stops, same as voiced stops and voiceless stops.  
The intervocalic non-stop consonants have the highest intensity compared to final and initial 
respectively (Luksaneeyanawin, 1993). 

2.1.6 Duration 

Duration is one of the four acoustic cues that have been used in Thai phoneme classification 
in both vowels and consonants. (Trongdee, 1987; Tarnsakun, 1988; Thubthong, 1995)   In 
Thai vowel phonemes classification, vowel duration is computed from a period of the 
fundamental frequency or a pitch period of that vowel to classify into short or long vowel as 
shown in Table 2.1.  In Thai consonantal phonemes classification, a duration of marginal 
sound was employed to categorize each phoneme with the same manner of articulation into 
appropriate place of articulation as shown in Table 2.2.  Trongdee (1987) applied duration to 
classify non-stop consonants in which duration of each consonant are varied in different 
structural context, initial, intervocalic, and final. 

Tarnsakul (1988) employed duration of three phases of stop consonants, shutting, closure, 
and releasing, to classify each stop consonants in both manners and places of articulation as 
shown in Table 1.  Voiceless stops have longer duration than the voiced stops and the 
voiceless aspirated stops have longer duration than the voiceless unaspirated stops.  The 
voiceless plosives, initial consonants /p-, t-, k-/, have longer duration distinctively from the 
voiceless non-plosives, final consonants /-p, -t, -k/.  Thubthong (1995) used a noise duration 
and burst duration as acoustic parameters to determine the consonants /c/ and /p/ 
respectively from others. 
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Figure 2.10    Five Thai Tones (Luksaneeyanawin, 1993; Thubthong, 1996) 
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2.2 Examples of Acoustic Parameters Computation 

The absolute energy contour, the fundamental frequency analysis, and the formant tracking of 
Thai speech /zaa0 caa0/ are shown in Figure 2.9 respectively.  The computation of these 
parameters are shown in this section. 

Thai language is a tonal language in which its syllable structure is associated with tones.  The 
syllable structure of Thai language comprises initial consonant (C) or initial consonant cluster 
(CC), vowel in monophthong (V) or diphthong (VV), final consonant (C), and tones (T) as 
shown in Figure 1.2.  In Thai language, there are 18 monophthongs in short and long pairs 
with 6 diphthongs in the Thai vowel inventory as shown in Table 2.1.  There are 21 
consonantal phonemes composed of 11 stops and 10 non-stops as shown in Table 2.2 
(Luksaneeyanawin, 1993).  Five Thai tones are mid, low, falling, high, and rising respectively 
as shown in Figure 2.10. 

There are various researches on acoustic of Thai segmental units such as Trongdee (1987), 
Tarnsakun (1988), Leelasiriwong (1991), and Sriraksa (1995).  Trongdee (1987) studied the 
acoustic characteristics of ten Thai non-stop consonants within context of three different 
vowels, /ii/, /aa/, and /uu/ and also within different structural contexts, initial, intervocalic, and 
final consonant.  Five different classes of consonants, nasals, fricatives, trill, lateral, and 
approximant, were studied.  The other ten Thai stop consonants in three classes, voiceless 
unaspirated stops, voiceless aspirated stops, and voiced stops, were studied by Tarnsakun 
(1988) using the same phonetic context scheme as in Trongdee (1987).  These two studies 
thoroughly explored the acoustic characteristics of Thai consonantal phonemes by 
spectrographic analysis using acoustic parameters, i.e., formant frequencies, formant 
transition, intensity, duration, etc. 

In Figure 2.5 to 2.7, an analysis of a voiced speech segment results in cepstrum and 
spectrum envelope using the cepstral analysis and discrete Fourier transform have been 
shown respectively.  The cepstrum could be computed using the Eq. (2.4) to (2.8) together 
with the Figure 2.6 and 2.7 respectively in the previous section.  The linear predictive coding 
(LPC) and the discrete Fourier transform as shown in the Eq. (2.11) have been utilized in 
spectrum envelope computation.  Then, a peak-picking algorithm are employed to pick the 
spectral peak in the envelope corresponding to formant peaks. 

In Figure 2.9, the upper figure is a speech waveform of a word /zaa0 caa0/ recorded using 
11.025 KHz sampling frequency, in other words, 11,025 samples in one second.  The lower 
figure is the computed absolute energy, fundamental frequency using cepstral analysis, and 
fundamental frequency using AMDF analysis as shown in Figure 2.9.  The absolute energy 
value is computed from each 256-sample speech segment using the Eq. (2.10) in the 
previous section.  Also, the fundamental frequency is computed using the cepstral analysis as 
shown in the previous section and the next section. 

2.2.1 Fundamental Frequency Estimation and Tracking 

On pitch or fundamental frequency estimation, the cepstral analysis has been employed to 
separate two convolutionally related properties by transforming the relationship into 
summation as depicted the previous section and in Figure 2.5.  The high quefrency elements 
are selected to estimate the fundamental frequency of each speech segment.  The discrete 
Fourier transform and the cepstral analysis of the speech segment is shown in Eq. (2.10) and 
Eq. (2.11) respectively where N is the number of analysis samples. 
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The result of cepstral analysis on voiced speech segment is shown in Figure 2.5 to 2.7.  A 
voice speech segment is selected from the vowel /aa/ of the word /zaa0 caa0/.  In Figure 2.5 
to 2.7, there is an explicit peak in the cepstrum plot.  The period of the peak in the quefrency 
domain is correspond to the fundamental period of the glottal excitation.  The fundamental 
frequency value (F0) could be computed using the following equation where Fs is the 
sampling frequency and L is the period of the cepstral peak in its quefrency domain. 

 
L
F

F s=0 ............................................................ (2.12) 

For example, the cepstral peak period is at 103 points in the quefrency domain and the 
speech sampling frequency is 11,025 Hz, then, the fundamental frequency value computed 

Table 2.1    Thai vowel system 

  Vowel Advancement 

  Front Central Back 

High /i, ii/ /v, vv/ /u, uu/ 

Mid /e, ee/ /q, qq/ /o, oo/ 
Vo

w
el

 
H

ei
gh

t 
Low /x, xx/ /a, aa/ /@, @@/ 

 Diphthongs /ia, iia/ /va, vva/ /ua, uua/ 
 
 

Table 2.2    Thai consonants arranged by places of articulation 

   Places of Articulation 

   Labial Alveolar Palatal Velar Glottal 

Voiceless Unaspirated /p/ /t/ /c/ /k/ /z/ 

Voiceless Aspirated /ph/ /th/ /ch/ /kh/  

St
op

s 

Voiced /b/ /d/    

Nasal /m/ /n/  /ng/  

Fricative /f/ /s/   /h/ 

Trill  /r/    

Lateral  /l/    M
an

ne
rs

 o
f A

rti
cu

la
tio

n 

N
on

-s
to

ps
 

Approximant /w/  /j/   
 
 

Table 2.3    Thai consonant clusters 

 c1 

c2 p t k ph th kh 

r /pr/ /tr/ /kr/ /phr/ /thr/ /khr/ 

l /pl/  /kl/ /phl/  /khl/ 

w   /kw/   /khw/ 
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using the equation 12 results in 11025/103 = 107.039 Hz.  For pitch period tracking, the 
previous procedure is repeated on entire speech segments to obtain the tracking of the pitch 
as shown in Figure 2.9. 

2.2.2 Formant Frequencies Tracking 

On formant frequencies estimation, a spectrum envelope of a speech segment is tracked to 
find a spectral peak as shown in Figure 2.7 using simple peak-picking analysis.  The lowest 
spectral peak is picked and marked as the first formant or F1.  The following picked spectral 
peaks are marked respectively as the second (F2), the third (F3), the fourth formant (F4), and 
so on. 

In order to obtain a spectrum envelope of the power spectrum of each speech segment, the 
linear predictive coding (LPC) coefficients have been analysed on the speech segment using 
the Levinson-Durbin recursive algorithm (Rabiner and Juang, 1993; Deller, Proakis, and 
Hansen, 1993; Furui, 2001).  The obtained LPC coefficients, a0, a1,…, ak, …, ap ,are 
coefficients of the all-pole filter with the form as follows where p is the number of coefficients 
of the LPC order. 
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The spectrum envelope could be obtained by taking discrete Fourier transform to evaluate 
H(ejw).  The spectrum envelope of a voiced speech segment is computed using 12-order LPC 
coefficients. 

2.2.3 Intensity and Duration 

The intensity has been employed not only in speech segmentation but also in discrimination 
of aspirated and unaspirated consonants.  The unaspirated /c/ in /zaa0 caa0/ as shown in 
Figure 2.9 has acoustic silence during vowel-consonantal transition.  Unlike the unaspirated 
/c/, the aspirated /ch/ in /zaa0 chaa0/ produces instantaneous burst due to aspiration during 
vowel-consonantal transition which occurs explicitly in the energy contour. 

The duration are also utilized in discrimination of aspirated and unaspirated consonants 
besides of the intensity.  From the pitch tracking of the word /zaa0 caa0/ compared to the 
word /zaa0 chaa0/, the duration of the vowel-consonantal transition of the aspirated /ch/ is 
longer than the unaspirated /c/.  This is because of longer duration in releasing phase of an 
aspirated consonant compared to an unaspirated consonant.  From analysis, the duration in 
vowel-consonantal transition of /c/ and /ch/ are 81.28 ms and 104.49 ms respectively which 
could be computed directly from the pitch contour. 

2.3 Acoustic-Phonetic Analysis on Thai Utterances 

The acoustic-phonetic analysis of speech is the study of acoustic and phonetic properties of 
speech and their relations.  A number of parameters are used in analyzing speech waveform, 
for example, fundamental frequency, formant frequency, amplitude, etc.  These parameters 
have been used to examine speech segments of a speech waveform in order to see temporal 
changes in utterance.  Four acoustic parameters used in acoustic-phonetic analysis are 
fundamental frequency, formant frequencies, amplitude or intensity, and duration. (Flanagan, 
1972; Furui, 2001; Rabiner and Juang, 1993)  The four acoustic parameters have been 
employed in psycho-acoustic analysis of human perception comforming to the assumption 
that human speech perception is based on these parameters. 
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The details on acoustic studies of Thai language are described in this section.  Specific 
details of each acoustic parameters, fundamental frequency, formant frequencies, amplitude 
or intensity, and duration, are depicted with their applications in phoneme recognition. 

2.3.1 The Thai Syllables 

Phonologically speaking, a syllable is composed of onset and rhyme units where the rhyme 
comprises nucleus and coda as illustrated in Figure 1.1 and 1.2 in the previous chapter.  In 
Thai syllable, the onset is a releasing consonant (c, cc) while the rhyme contains both vowel 
and an arresting consonant, (V, V:, VV, VC, V:C, VVC).  In acoustic-phonetic analysis, a 
syllable comprises a nucleus and its marginal sounds.  A nucleus of a syllable is vowel (V, V:, 
VV) in Thai syllable structure.  Marginal sounds are a releasing consonant, (c, cc), as left 
marginal sound and an arresting consonant (C) as right marginal sound of the nucleus 
respectively. 

The Thai language has simple syllable structure as depicted in Figure 2.1 and 2.2.  In 
comparison to the English syllable structure, the Thai syllable structure has only a small 
amount of syllable combinations while the English syllables are much longer with plenty of 
clusters as shown in Table 1.4 in Chapter 1.  In Table 1.4, the English syllables have much 
more consonant clusters in both releasing and arrest consonants than the Thai syllables.  In 
consequence, the diphone and triphone models are more practical to the English and the Thai 
syllable systems as speech units for recognition.  This is resulted from complexity of syllable 
structure in English which contains many clusters.  In Thai, a triphone model is equivalent to 
word model in syllable structure aspect which is not considered as a subword model.  
Phonologically speaking, for the Thai syllable, this model does not provide any difference over 
a word model in recognition.  The phonological structure of the Thai syllable is shown in 
Figure 1.2 (Luksaneeyanawin, 1993).  However, application of onset-rhyme models in English 
might cause a large number of both onset and rhyme units.  This is resulted from a large 
number of clusters in English as shown Table 1.4 in which combinations of English syllables 
are more complicated than Thai. 

2.3.2 The Syllable Nucleus—Vowels 

An acoustic-phonetic analysis was thoroughly conducted on the Thai vowel system.  The Thai 
vowel system consists of 18 monophthongs in short and long pairs along with 6 diphthongs in 
short and long pairs as shown in Table 2.1 (Luksaneeyanawin, 1993).  In Table 2.1, the Thai 
vowels are grouped together according to their acoustic characteristics into front, central and 
back vowel groups by vowel advancement.  Also, the Thai vowels are grouped by vowel 
height into high, mid, low vowel groups. 

Articulatorily, these acoustic characteristics are directly related to a speech articulator or a 
speech production organ, in this case, tongue.  The vowel height is height of tongue in high 
position close to palatal producing small opening cavity, then, mid and low have larger 
opening respectively.  The vowel advancement is position of tonge where front position is 
close to alveolar producing larger cavity volume, then central and back have smaller cavity 
volume respectively.  This can be illustrated by the human vocal mechanism with human 
speech production organs as shown in Figure 2.3. 

Acoustically, the vowel advancement is represented by the second formant frequency (F2) of 
a vowel.  The vowel height is represented by the first formant frequency (F1) of a vowel.  
Consequently, the Thai vowel distribution in F2 and F1 plane is shown in Figure 2.11 
(Ahkuputra, et al., 2000).  In Figure 2.11, normal distribution contour of each Thai 
monophthong are illustrated in grouping by vowel advancement into front, central, and back 
with their normal distribution.  Ahkuputra, et al. (2000) conducted acoustic analysis and 
classification of individual Thai monophthong using Bayesian classifier.  Three classification 
schemes were proposed, namely, classification by vowel height, classification by vowel 
advancement, and classification by combined vowel height and vowel advancement 
respectively.  The results show the use of acoustic-phonetic features, F1 and F2, in vowel 
identification with high accuracy.  In Figure 2.12, three dimensional distribution of Thai vowels 
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are depicted using F1, F2, and F3.  The third formant (F3) represent vowel rounding or the 
degree of roundness in lip opening. 

The Thai vowel system has complete combination of both places and manners of articulation 
as shown in Table 2.1.  The vowels can be grouped by places of articulation using vowel 
advancement into front, central, and back vowel groups.  Also, they can be grouped by 

 

Figure 2.11    Thai vowel distribution on linear F2 and F1 plane 

 

Figure 2.12    Distribution of the Thai high vowels /ii,vv,uu/ on linear F2, F1, and F3 planes 
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manners of articulation using vowel height into high, mid, and low vowel groups.  From 
acoustic-phonetic analysis, the first formant (F1) represents vowel height and the second 
formant (F2) represents vowel advancement.  Then, the high vowel group has the highest F1 
value than the mid and low respectively.  The front vowel group has the highest F2 value than 
the central and back respectively.  These relation are shown in the vowel distribution in Figure 
2.11, 2.12, and 2.13. 

Each of the Thai vowel are acoustically analysed to explore its acoustic characteristics.  
Spectrographic information of each vowel are illustrated in Figure 2.13 from the acoustic 
analysis.  In Figure 2.13, each Thai vowel shows its unique acoustic-phonetic characteristics 
in the formants.  The front vowels have the highest second formant (F2) followed by central 
and back vowels respectively.  The low vowels have the highest first formant (F1) followed by 
mid and high vowels respectively.  These characteristics correspond to the vowel distribution 
as depicted in Figure 2.11 and 2.12.  The vowel triangle, /ii/, /uu/, /aa/, show distinct 
characteristics between each other.  The vowel triangle is the common set of vowels existed 
in every language in the world.  Then, the vowel triangle are used in analysis of marginal 
sounds later in the next section. 

2.3.3 Marginal Sounds of the Syllable—Consonants 

Acoustically, marginal sounds are attached along both sides of the syllable nucleus.  
Considering the Thai syllable structure, the left marginal sound is a releasing consonant (cc) 
and the right marginal sound is an arresting consonant (C) relative to the nucleus as depicted 
in Figure 1.1 and 1.2 in Chapter 1.  In consequence, from acoustic analysis, the transitional 
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Figure 2.13    Spectrographic Illustration of the Thai vowel system from acoustic analysis 
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period existed between marginal sounds and nucleus has provided crucial acoustic 
information.  These essential acoustic cues have been utilized in identification of consonants. 

The Thai consonant system is shown in Table 2.2 and 2.3 arranged by places of articulation.  
There are 33 consonants composed of 21 consonants and 12 consonant clusters. in Thai as 
shown in Table 2.2 and 2.3.  All of the 33 consonants are releasing consonant but only 8 
consonants, /p, t, k, m, n, ng, w, j/, are both releasing and arresting consonants. 

Examples of releasing and arresting consonants are shown in Figure 2.14 to 2.16.  In Figure 
2.14, spectrographic information of the words /paa0/, /taa0/, and /kaa0/ are illustrated.  The 
releasing consonant of each word has different manner of articulation but the same place of 
articulation.  The transition period between releasing consonant and its vowel nucleus clearly 
differs according to the locus of each consonant.  Thus, the transition period contains crucial 
acoustic cues in identification of releasing consonant 

In Figure 2.15, spectrographic information of the words /pii0/, /paa0/, and /puu0/ are shown.  
Each word has the same releasing consonant but with different vowel context.  The figure 
illustrates variation in context.  The transition period of each word is changed according to the 
vowel context.  However, formant transition of each vowel is moving towards the same locus 
of the releasing consonant  In Figure 2.16, spectrographic information of the words /paa0/, 
/phaa0/, and /baa0/ are shown.  Each word has releasing consonant with different manners of 
articulation.  The /p/ and /ph/ are unaspirated and aspirated voiceless stops respectively.  The 
/b/ is voiced stop.  Each of the three stops occur in the same vowel context. 

In Figure 2.17, spectrographic information of the words /sii4/, /saa4/, and /suu4/ are shown.  
The /s/ is a fricative but occurs in different vowel context.  In Figure 2.18, spectrographic 
information of the words /kok1/, /kot1/, and /kop1/ are shown.  Each word has different 
arresting stop consonants, /-k/, /-t/, and /-p/ respectively. 

2.4 Summary 

In this chapter, Thai utterances are acoustically analysed which provide basic knowledge and 
understanding of Thai utterances.  Acoustic-phonetic analysis are thoroughly conducted on 
Thai utterances.  Characteristics of the vowels and marginal sounds are explored in the 
analyses.  The outcome of vowel analysis not only provide solid acoustical background of 
Thai utterance but also provide acoustic cues for classification of Thai vowels.  Details about 
classification of Thai vowels was written in full article as described in Appendix B 

The results of analysis on Thai utterances provide basic acoustic knowledge and 
understanding of their characteristics.  This also provide solid background for modelling of the 
onset-rhyme models.  Acoustic modelling of the onset-rhyme models is described in details in 
the following chapter. 
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Figure 2.14    Spectograms of the words /paa0/, /taa0/, /kaa0/ 

Fr
eq

ue
nc

y 
(F

FT
 In

de
x)

 

Time (Frame)

Fr
eq

ue
nc

y 
(F

FT
 In

de
x)

 
Fr

eq
ue

nc
y 

(F
FT

 In
de

x)
 

Time (Frame)

Time (Frame)



 

 

29

 

 

Figure 2.15    Spectograms of the words /pii0/, /paa0/, /puu0/ 
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Figure 2.16    Spectograms of the words /paa0/, /phaa0/, /baa0/ 
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Figure 2.17    Spectograms of the words /sii0/, /saa0/, /suu0/ 
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Figure 2.18    Spectograms of the words /kok1/, /kot1/, /kop1/ 
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CHAPTER  3 

The Onset-Rhyme Acoustic Models 
 

In the previous chapter, acoustic-phonetic analysis on had been conducted Thai continuous 
speech.  The Thai vowels and consonants were acoustically analysed to explore their 
acoustic characteristics.  The outcome of vowel analysis not only provide solid acoustical 
background of Thai utterance but also provide acoustic cues for modelling of speech units.  
Using the acoustic knowledge and understanding, the onset and rhyme units are acoustically 
modelled as basic recognition units.  Concept and details of the onset-rhyme models are 
explained in this chapter. 

3.1 Concept of the Onset-Rhyme Acoustic Models 

From phonological point of view, a syllable is composed of an onset and a rhyme where the 
rhyme comprises nucleus, and coda as illustrated in Figure 1.1 in Chapter 1.  The Thai 
language has simple syllable structure as shown in Figure 1.2 where c is releasing 
consonant, C is arresting consonant, V is vowel, and T is tone.  Hence, the onset covers 
releasing consonant segment of a syllable and the rhyme covers the rests.  The nucleus and 
the coda of a rhyme represents vowel segment (VV) and arresting consonant (C) of a 
syllable. 

In acoustic modelling, an onset unit consists of a releasing consonant and its transition 
towards the adjacent vowel nucleus.  The onset unit then provides combinations based on 
both releasing consonant-vowel (cV) and consonant cluster-vowel (ccV) of the Thai syllable.  
Thus, the onset unit combines crucial acoustic cues, existed in the transitional period, for 
recognition of the releasing consonant particularly for stop consonants.  In other words, the 
onset unit effectively handles the intra-word coarticulatory effects by the model itself that 
makes the model context-dependent. 

On the other unit, a rhyme unit contains the whole vowel segment and an arresting 
consonant.  Like its unit counterpart, the rhyme unit provides combinations based on both 
monophthong-consonant (VC) and diphthong-consonant (VVC) of the Thai syllable.  Hence, 
the rhyme unit captures the transitional period between vowel and arresting consonant which 
makes the unit context-dependent like its counterpart.  Physical model of the onset-rhyme 
model is depicted in Figure 1.3 along with other subword units.  In Figure 1.3 and 3.1, 
phonetic transcriptions of the word /khrvvang2 mvv0/ have been illustrated where the onset 
unit covers the whole consonant clusters with transitional period and the rhyme unit spans 
across entire vowel and arresting consonant. 

In selection of subword unit, two major criteria must be taken into account for good subword 
units, consistency and trainability (Lee, 1990), in other words, acoustic resolution and 
estimation reliability (Juang and Furui, 2000).  Good subword units should be consistent and 
trainable, however, previously used subword units in most large-vocabulary speech 
recognition systems do not meet both criteria as summarized in Table 1.1 in Chapter 1. 

From evaluation of previous subword units, phones are not consistent because different 
samples of the same phone are not always characteristically similar.  A phone is strongly 
affected by its left and right neighbouring phones.  But phone are widely used because they 
could be sufficiently trained with just a few hundred sentences.  Context-dependent phones or 
triphones are consistent than phones because triphones model coarticulatory effects in both 
left and right neighbouring phones.  However, triphone models are not easily trainable 
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because there are a large number of triphone models even in limited training data.  Currently, 
training of triphone models with limited training data has only been done through some 
techniques, sharing, deleted interpolation, interpolated with context-independent, or 
generalized triphones, for instance. 

Considering the onset-rhyme models, the models are consistent throughout their entire set 
since the same onset-rhyme models have similar characteristics across different instances.  
On trainability criterion, since there are a limited number of onset-rhyme models, the models 
are sufficiently trained with only small set of training sentences.  Hence, the onset-rhyme 
models have met both criteria of consistency and trainability considerations which are major 
advantanges over other subword units. 

The concept of onsets and rhymes was first proposed by Luksaneeyanawin (1992) applied to 
the Thai speech synthesis system.  The subsyllable onset-rhyme models, therefore, have 
been applied to Thai continuous speech recognition system for several reasons.  First, there 
are only about 26,928 grammatically generated distinct admissible syllables in Thai. 
(Luksaneeyanawin, 1993)  Thai language has 9 monophthongs and 6 diphthongs in short and 
long pairs, 21 consonants, and 12 consonant clusters as shown in Table 2.1, 2.2, and 2.3 
respectively.  Among the 21 initial consonants, only 8 consonants, /p, t, k, m, n, ng, j, w/, can 

 

Figure 3.1    Fixed duration and variable duration overlaps of the onset-rhyme models 
of the word /khrvvang2 mvv0/ 
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be both releasing and arresting consonants.  Then, a number of onset-rhyme models are 
finite number as shown in Table 1.4 and 1.5.  These finite number of onset-rhyme models 
have represented all potential speech units of the Thai language.  Practically, a number of 
onset-rhyme units should be less since there are some units that do not grammatically exist 
or have very few occurrences. 

Secondly, the Thai language has simple syllable structure as illustrated in Figure 1.2 in which 
the onset-rhyme are simply applied.  The whole Thai syllable set can be recognized in pairs of 
onset and rhyme models.  Thus, the recognizer models input syllables by concatenation of 
onset and rhyme pairs. 

Thirdly, the onset-rhyme models are context-dependent beginning from level of acoustic 
model up to level of language model.  Each of the onset unit contains releasing consonant 
and its transitional period towards the following vowel.  Then, the same releasing consonant 
followed by different vowel context is individually modelled as a single onset unit.  Unlike the 
phone models, the onset units capture a consonant cluster as a single arresting consonant 
while the phone models consider as a sequence of consonants.  The rhyme units contain the 
whole vowel and arresting consonant.  Like the onset unit, the same vowel followed by 
different arresting consonant is separately modelled as a single rhyme unit.  Hence, a 
releasing consonant is right context-dependent on its immediate following vowel in an onset 
unit.  Also, an arresting consonant is left context-dependent on its preceding vowel in a rhyme 
unit.  This is a major point of difference to the triphones where a triphone is actually a phone 
within different context as illustrated in Figure 3.2. 

In Figure 3.2, physical segments are illustrated on phones, diphones, triphones, and onset-
rhyme units.  A speech waveform is described as segments of phones.  Using the diphones 
and triphones, their physical segments are similar to the phones but are logically described 
according to the context.  For example, the /aa/ phone in the syllable /phaa/ has similar 
characteristics to the diphone /ph-aa/.  But the diphone /ph-aa/ is logically defined to have /ph/ 
as its left context.  Using the onset-rhyme models, each syllable is modelled by a pair of onset 
and rhyme units.  For instance, the syllable /khaaw/ is modelled as /khaa/ and /aa_w/. 
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Moreover, the onset-rhyme models also incorporate language modelling into the model at the 
syllable level.  An onset-rhyme model comprises a pair of onset model and rhyme model 
which makes up a syllable as depicted in Figure 2.5.  An onset model is then right context-
dependent on the following rhyme and a rhyme is left context-dependent on the preceding 
onset.  Consequently, a sequence of onset and rhyme pairs makes up a sequence of 
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syllables, sequence of words, and the whole sentence respectively.  These bottom-up 
approach indicates that language modelling is directly embedded into the onset-rhyme 
models. 

Considering the language model P(W) from Eq. (3.1), the probability of a sequence of N 
words W is stated in Eq. (3.2).  Then, probability of the unigram language model, in which 
each word independently occurs, could be expressed in Eq. (3.2) where N is the number of 
words.  Each word contains a sequence of M syllables, thus, probability of a word Wt is then 
expressed in Eq. (3.3).  Each syllable is modelled as a concatenation of the subsyllable 
onset-rhyme models. 

Since the onset-rhyme model always occurs in a pair of the onset model and the rhyme 
model, then, a rhyme model depends on its preceding onset.  Consequently, the onset unit is 
only followed by its corresponding rhyme unit as directed in the model network depicted in 
Figure 3.5 and 3.6.  The rhyme unit conditionally depends on its preceding onset, then, the 
probability of a rhyme unit is described as conditional probability P(Rj|Oj).  Hence, the 
probability of a syllable comprises an onset probability P(Oj) and a rhyme conditional 
probability P(Rj|Oj) as stated in Eq. (3.5).  The P(Oj), P(Oj|Rj-1), and P(Rj|Oj)  In addition, the 
onset-rhyme models have covered a finite set of speech units that represents all potential 
speech units of the language comparing to other context-dependent models.  As a result, the 
limited numbers of onset-rhyme models could be sufficiently trained with only a small set of 
sentences.  The models also guarantee that every unit, existed in the language, is modelled.  
The numbers of onset-rhyme models are shown in Table 1.4 for the onset units and Table 1.5 
for the rhyme units. 

Finally, the onset-rhyme models have revealed thus provided significant acoustic cues for 
tone recognition, that is, a syllable boundary as depicted in Figure 3.3.  Location of syllable 
boundaries could be accurately obtained over a pair of onset and rhyme models, that is, at 
the beginning in front of an onset model and after a rhyme model.  Then, tonal information of 
a syllable is properly extracted and recognised over the whole syllable segment.  This is also 
another major advantages of the onset-rhyme models over other subword models. 
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Figure 3.2    Physical speech segments of phones, diphone, triphones, 
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Figure 3.3    Comparison on all speech units : phones, diphones, triphones, 
syllable, demisyllable, initial-final, and onset-rhyme units. 
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(a)  /p/ in the word /paak1/ 

 

(b)  /t/ in the word /taaj0/ 

 

(c)  /c/ in the word /cik1/
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(d)  /k/ in the word /kaj1/ 

 

(e)  /z/ in the word /zoong1/ 

Figure 3.4    Spectrographic illustration of the Thai voiceless unaspirated stop consonants 
/p, t, c, k, z/ in various syllables. 
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(a)  /ph/ in the word /phvng2/ 

 

(b)  /th/ in the word /thung4/ 
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(c)  /ch/ in the word /chan4/ 

 

(d)  /kh/ in the word /khaaw2/ 

Figure 3.5    Spectrographic illustration of the Thai voiceless aspirated stop consonants 
/ph, th, ch, kh/ 
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(a)  /b/ in the word /bon0/ 

 

(b)  /d/ in the word /dek1/ 

Figure 3.6    Spectrographic illustration of the Thai voiced stop consonants /b, d/ 
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(a)  /m/ in the word /maa0/ 

 

(b)  /n/ in the word /nii3/ 

 

(c)  /ng/ in the word /ngaan0/ 
 

Figure 3.7    Spectrographic illustration of the Thai nasals /m, n, ng/
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(a)  /f/ in the word /faak1/ 

 

(b)  /s/ in the word /saan4/ 

 

(c)  /h/ in the word /haj2/ 
 

Figure 3.8    Spectrographic illustration of the Thai fricative /f, s, h/
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(a)  /r/ in the word /raan3/ 

 

(b)  /l/ in the word /lung0/ 

Figure 3.9    Spectrographic illustration of the Thai trill /r/ and lateral /l/
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(a)  /w/ in the word /wat3/ 

 

(b)  /j/ in the word /jaam0/ 

Figure 3.10    Spectrographic illustration of the Thai approximants /w, j/
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Figure 3.11    Network of the phonotactic onset HMMs and rhyme HMMs in forming syllables 
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3.2 Modelling of the Onset-Rhyme Acoustic Models 

From the acoustic-phonetic analysis of Thai syllables, each of the Thai releasing consonant is 
analysed with the results as illustrated in Figure 3.4 to 3.10.  Figure 3.4 illustrates acoustic 
characteristics of the voiceless unaspirated stops /p, t, c, k, z/.  In Figure 3.5, acoustic 
characteristics of the voiceless aspirated stops /ph, th, ch, kh/ are illustrated.  Figure 3.6 
shows acoustic characteristics of the voiced stops /b, d/.  The set of non-stops are shown in 
Figure 3.7 to 3.10.  Figure 3.7 shows acoustic characteristics of the nasals /m, n, ng/.  In 
Figure 3.8, acoustic characteristics are illustrated on the fricatives /f, s, h/.  Figure 3.9 
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Figure 3.12    Network of the contextual onset HMMs and rhyme HMMs in forming syllables
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illustrates acoustic characteristics of the trill /r/ and the lateral /l/.  In Figure 3.10, acoustic 
characteristics of the approximants /w, j/ are depicted. 

In Figure 3.4 to 3.10, each of the Thai releasing consonant shows its unique acoustic 
characteristics.  Transitional period between a releasing consonant and its adjacent vowel 
contains some acoustic cues in characterizing the releasing consonant.  For example, the 
formant transitions of a vowel in the transitional period are specific to each consonant.  The 
formant movement of a vowel is moving towards the locus of each consonant as illustrated in 
Figure 2.14 to 2.18 in Chapter 2 and in Figure 3.4 to 3.10.  The onset units cover the whole 
segment of a releasing consonant and its transitional period toward the adjacent vowel.  
Hence, these acoustic cues are collected within the onset units during modelling. 

In modelling of the onset-rhyme models, a number of possible combinations of the model is 
shown in Table 1.4 and 1.5 in Chapter 1.  From analysis of the Thai syllables as illustrated in 
Figure 3.4 to 3.10, two types of the onset-rhyme models are proposed other than the 
theoretical onset-rhyme models, that is, the contextual onset-rhyme models, and the 
phonotactic onset-rhyme models.  Details of each type are described as follows. 

3.2.1 Types of the Onset-Rhyme Models 

A. Theoretical Onset-Rhyme Models 

The theoretical onset-rhyme models are basic one-to-one mapping of onset and rhyme units 
to each segment of the Thai syllable.  The onset units are context-independent phone models 
of all releasing consonants.  The rhyme units covers both vowel and arresting consonant.  
Therefore, both onset and rhyme units are not context-dependent in this theoretical models.  
The classical onset-rhyme models are then context-independent models.  This dissertation 
does not include this models in analysis and recognition. 

B. Phonotactic Onset-Rhyme Models (PORMs) 

From the acoustic analysis, transitional period exists between a releasing consonant and 
adjacent vowel nucleus in a syllable.  The transitional period provides crucial acoustic cues in 
determining the releasing consonant in a syllable.  Therefore, an onset unit covers a releasing 
consonant and the transitional period towards its adjacent vowel nucleus.  A rhyme unit 
covers the whole vowel segment and the releasing consonant.  Then, the onset units have 
partially overlapped over the vowel segment of the rhyme units.  In consequence, the onset 
units have combined crucial acoustic cues, existed in the transitional period, for recognition of 
the releasing consonants. 

The phonotactic onset-rhyme models are proposed in this reseach.  The onset units of the 
phonotactic onset-rhyme models are extended to cover all possible combinations as depicted 
in Figure 3.12.  For example, the /p_i/, which is the /p/ in /i/ context, must be followed by its 
corresponding rhyme models with the same context, that is, /i_p, i_t, …, i_j/.  Consequently, 
the onset units are thoroughly modelled according to their neighbouring context of the rhyme 
models.  In Figure 3.12, the network configuration of the onset and rhyme pairs are illustrated.  
The onset units are shown in 5-state HMMs and the rhyme units are shown in 8-state HMMs.  
The number of HMM states for both units are described in the following section.  The PORMs 
network illustrates complete combinations of the onset and rhyme units in every possible 
context.  For examples, an onset unit is /p_i/ and a rhyme unit is /i_p/ as shown at the bottom 
of the figure.  The /p_i/ is the releasing stop /p/ with transitional period in the /i/ vowel.  The 
/p_i/ must be followed by the rhyme units in same /i/ vowel context as shown in the network.  
Similar to the CORMs network, each connection between the onset and the rhyme units 
represents conditional probabilities P(Oj|Rj-1), and P(Rj|Oj) as stated in Eq. (3.5).  These 
conditional probabilities are determined from pronunciation dictionaries during building the 
word network. 
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C. Contextual Onset-Rhyme Models (CORMs) 

In order to reduce the number of onset unit in the PORMs, the contextual onset-rhyme 
models are introduced in this research.  The results of acoustic analysis on Thai syllable show 
similar pattern of formant transitions in some cases.  These formant patterns are similar in 
both short and long vowel context with the same releasing consonant.  The examples of these 
patterns are shown in Figure 2.14 to 2.18 and Figure 3.4 to 3.10.  Hence, the onset units can 
be greatly reduced by combining similar onset units with short-long vowel pairs on the same 
releasing consonant. 

The onset units are always tied with their corresponding rhyme models with the same context 
included in the whole transitional period.  For instance, the /pii/, which is the /p/ in /i,ii,iia/ 
context, must be followed by its corresponding rhyme units with the same context, that is, 
/i_p, i_t, …, iia_j/.  The network of contextual onset-rhyme hidden Markov acoustic model is 
shown in Figure 3.11.  In Figure 3.11, the network configuration of the onset and rhyme pairs 
are illustrated.  The onset units are shown in 5-state HMMs and the rhyme units are shown in 
8-state HMMs. The number of HMM states for both units are described in the following 
section.  For examples, an onset unit is /khw@@/ and a rhyme unit is /@@_j/ as shown at 
the bottom of the figure.  The network shows connections between the onset and rhyme pairs 
in which the rhyme units must follow the onset units.  The CORMs network illustrates sharing 
of an onset unit with similar rhyme of the same short-long vowel pairs.  Each connection 
between the onset and the rhyme units represents conditional probabilities P(Oj|Rj-1), and 
P(Rj|Oj) as stated in Eq. (3.5).  These conditional probabilities are determined from 
pronunciation dictionaries during building the word network.  Hence, the contextual onset-
rhyme models effectively handle the intra-word and intra-syllable coarticulatory effects by the 
model themselves that also make the model context-dependent. 

3.2.2 Onset Unit Overlapping Schemes 

In both of the contextual and phonotactic onset-rhyme models, the onset units have been 
extended to include transitional period over the vowel segment.  As a result, there are two 
proposed schemes in determining duration of the overlap, that is, the fixed duration overlap 
and the variable duration overlap.  These two schemes have been utilized in acoustic 
modelling of the onset-rhyme models.  The overlapping of the onset units over the vowel 
segment show explicit modelling of transitional period.  Hence, both of the onset models and 
rhyme models have provided overlapped segment models in acoustic modelling. 

A. Fixed Duration Overlap 

From acoustic analysis on Thai syllables, the transitional period occurs in a very short 
duration at the beginning of vowel segment.  From speech unit statistics, the minimum length 
of a short vowel is 30 ms determined from the whole speech corpus.  Therefore, the length of 
overlap should not longer than 30 ms to cover the transitional period.  Otherwise, the whole 
vowel segment will be included in some short vowels.  In fixed duration overlap, length of the 
overlap is predefined at either 10 ms, 20 ms, or 30 ms into the vowel segment of a rhyme 
unit.  Example of the 20-ms fixed duration overlap is depicted in Figure 3.1. 

B. Variable Duration Overlap 

From acoustic analysis on Thai syllables, duration of the transitional period is proportional to 
length of the vowel segment.  The formant transitions in short vowels tend to move faster than 
in long vowels.  The faster movement makes their duration shorter.  Unlike the fixed duration 
overlap, length of the overlap is varied in percentage of the vowel duration in the variable 
duration overlap.  The length is computed at 5%, 10%, 15%, 20%, and 25% of the vowel 
duration.  Example of the 25% variable duration overlap is depicted in Figure 3.1. 
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3.3 Task of the Thai Speech Corpus 

Since there are no available Thai continuous speech corpus, a new Thai continuous speech 
corpus was created for building a Thai continuous speech recognition system.  The task 
domain of the corpus is based on some Aesop’s fables in Thai.  The dictation or reading style 
is applied throughout the corpus.  Thai text data are first collected by typing the Thai text into 
a computer in plain text.  Secondly, the Thai text data are parsed into words and transcribed 
into phonetic transcriptions.  Moreover, the transcribed text are modified by adding new words 
or new sentences to increase number of occurrences of each onset-rhyme model.  The 
procedures are then repeated until there are sufficient samples of each onset-rhyme model 
for creating hidden Markov models.  The Thai text corpus is then used in recording of speech 
corpus. 

3.3.1 Criteria in Building a Thai Continuous Speech Corpus 

In this dissertation, speaking style is controlled to the dictation or reading style.  The text data 
were then collected from a series of Aesop’s Fables in Thai for story-telling.  The text were 
selected not to contain any foreign words.  A total of seven Aesop’s Fables were used and 
analysed on distribution and amount of onset and rhyme units.  The set contains over a 
hundred sentences.  In order to create an initial HMM for each onset and rhyme unit, a 
number of training samples must be sufficient.  Therefore, lists of Thai words that share the 
same onset units were created.  These words were then used in composing sets of sentences 
to fulfill as much samples as possible on each onset unit. 

These sentences were frequently analysed on statistics of each onset and rhyme units.  The 
final sets contain a total of 400 sentences.  These sentences are composed of distinct 384 
onset units and 144 rhyme units.  The pronunciation dictionary contains the total of 2,250 Thai 
words collected from these sentences.  The set of 2,250 words is composed of 1,650 distinct 
syllables.  These syllables contain combinations of both onset units and rhyme units in 
various context. 

3.3.2 Recording of Thai Utterances 

Sets of Thai sentences from the Thai text corpus were analysed and used in recording of 
each Thai sentence.  Recording was taken place in the quiet laboratory environment.  The 
resolution of 16-bit at 16 kHz sampling frequency were used in recording of each Thai 
sentence.  Two microphones are used in recording simultaneously into separate left and right 
stereo channels.  Such recording method gives out two utterances in one utter.  This way of 
recording will give out two samples of each utterance at the same time.  All of the recorded 
utterances were recorded in stressed dictation style or reading style.  The total of 625 Thai 
sentences were recorded which contain more then 5 hours of continuous utterances.  The 
625 sentences are composed of 557 sentences for training and the other 68 sentences for 
testing.  The speech corpus contains continuous utterances of a single male speaker. 

3.3.3 Labelling of the Recorded Thai Utterances 

All of the recorded utterances were then hand-labelled by their phonetic transcriptions of each 
sentence.  Labelling was done manually by the “Speech Labeller” labelling program created 
by the Thai speech processing research group at the Digital Signal Processing Research 
Laboratory.  In labelling, understanding about acoustic characteristic of Thai continuous 
speech is very essential in determining the location and boundary of each phone within a 
sentence.  Labelling of all speech were mostly done by the author and some by members of 
the Thai speech processing research group.  Three output labels are created in phones, in 
contextual onset-rhyme models, and in phonotactic onset-rhyme models.  Format of the 
output labels are conforming to the Hidden Markov Toolkit (HTK) format (Young, et al., 2000). 
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3.4 The Thai Continuous Speech Recognition System 

In building a Thai continuous speech recognition system, the hidden Markov model toolkit 
(HTK) is utilized (Young, et al., 2000).  The toolkit provides a variety of tools for speech 
processing, feature extraction, training, and recognition.  Pronunciation dictionaries of each 
word were generated based on the Thai text corpus.  The pronunciation dictionaries contain 
one-to-one mapping of each word into a sequence of recognition units, in this case, phone 
units, contextual onset-rhyme units, and phonotactic onset-rhyme units respectively. 

3.4.1 Speech Signal Processing and Feature Extraction 

All the utterances were recorded at 16 kHz sampling frequency and 16-bit resolution.  The 
recorded utterances are preemphasized using the first-order filter with a coefficient of 0.97 
(Rabiner and Juang, 1993; Lee, 1989; Lee, et al., 1990; Juang and Furui, 2000; Furui, 2001).  
The preemphasized speech data are then blocked into 25-ms frame at every 5 ms with the 
Hamming window applied. 

Acoustic features of speech signals are extracted from the preprocessed speech.  The Mel-
frequency cepstral coefficients (MFCC) are employed as acoustic features representing the 
speech signal (Lee, 1989; Lee, et al., 1990; Juang and Furui, 2000; Furui, 2001).  The MFCC 
are utilized in many continuous speech recognition (CSR) systems (Lee, 1989; Lee, et al., 
1990; Juang and Furui, 2000; Furui, 2001; Huang, Acero, and Hon, 2001), which are then 
served as standard basic feature for a CSR system (Furui, 2001; Huang, Acero, and Hon, 
2001).  The MFCC are then employed in this research to provide the same standard 
configuration as other CSR systems.  The 24-order speech feature vectors are computed 
from every speech frame which composed of 12-order MFCC feature vector and their 12-
order time derivatives. 

3.4.2 Acoustic Modelling of Speech Units 

In building the Thai continuous speech recognition systems, three systems were set up using 
three different acoustic models in each system.  The three acoustic models are phone 
models, contextual onset-rhyme models, and phonotactic onset-rhyme models.  The phone-
based system is a baseline system for comparison to the other two onset-rhyme models.  
Details of the three recognition systems are described in this section. 

In determining the length of onset-rhyme hidden Markov models (HMMs), the model length is 
based on the length of a phone HMM.  In the experiments, the phone HMMs were set at 3 
active states with other two free connecting states at the beginning and the end of models.  
These states are illustrated in Figure 3.13.  The active states are shown in dark circle with 
self-loop.  For the onset-rhyme HMMs, the onset HMMs has 5 active states and the rhyme 
HMMs has 8 active states with two mixtures per state, which is called “m2s5s8” configuration.  
These onset-rhyme HMMs also have free connecting states, one at the beginning and one at 
the end of each model like the phone HMMs.  In the experiments, the length of onset-rhyme 
HMMs are varied to see the effects of variable model length.  Hence, another experiments 
use 4 active states in the onset HMMs and 6 active states in the rhyme HMMs with three 
mixtures per state, which is called “m3s4s6” configuration accordingly.  The experiments were 
also set up by different overlap schemes, fixed and variable duration overlaps.  Details of 
these experiments will be described in the next chapter. 

In Figure 3.13, the phone HMMs along with the onset and rhyme HMMs are illustrated in the 
figure.  These HMMs are used in recognition of continuous speech, which is treated as 
concatenation of speech units.  In Figure 3.14, the bottom-up approach is depicted in 
recognition of the phrase /khiian4 tuua0 leek2/ using the onset-rhyme models.  For example, 
the onset HMM “kh_iia” is time-aligned and matched to the speech.  A set of rhyme HMM in 
the same “iia” context are match synchoronously and resulted in the rhyme HMM “iia_n”.  
Then, a pair of onset unit “kh_iia” and rhyme unit “iia_n” are formed as a syllable “khiian”.This 
recognition process is then repeated to the entire speech.  The pairs of onset and rhyme units 
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make up syllables, words, and the whole sentence, respectively.  This is the bottom-up 
approach utilized in continuous speech recognition beginning from the smallest segmental 
units upto the whole sentence. 

Modelling of the three acoustic models, phone models, contextual onset-rhyme models 
(CORMs), and phonotactic onset-rhyme models (PORMs), are described in details as follows.  
Both of the onset-rhyme models are introduced in this dissertation for modelling of the onset 
units. 

A. Thai Phone Models 

In modelling acoustic units using phone models, there are 54 phone models which are 
composed of 18 monophthongs, 3 diphthongs, 21 consonants, 11 consonant clusters and one 
silence model.  A diphthong is considered as a single-unit model.  Also, only the three long-
vowel diphthong are modelled, /iia, vva, uua/, resulted from much higher number of 
occurance.  Each phone model is modelled using a 3-state left-right hidden Markov model 
with three gaussian mixtures for each output probability density function.  Initial phone models 
have been created and reestimated using labelled utterances.  Then, embedded training have 
been applied to reestimate the trained phone models using unlabelled utterances.  The list of 
Thai phone models is shown in Table 2.1, 2.2, and 2.3. 

a_wkh_a

ONSET HMM RHYME HMM

kh

PHONE HMM

 
 

Figure 3.13    HMMs of phone, onset unit, and rhyme unit. 
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Figure 3.14    The bottom-up approach using the onset-rhyme models 

on an example phrase /khiian4 tuua0 leek2/ or “เขียนตัวเลข”. 
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B. Thai Contextual Onset-Rhyme Models (CORMs) 

From analysis of Thai syllable structure, there are a total of 497 contextual onset-rhyme 
models which are composed of 297 onset units and 200 rhyme units.  Due to limited data, 
only a partial set of 363 onset-rhyme models are modelled which contain 218 onset models 
and 144 rhyme models in this research.  Since there are limited training data, the 363 onset-
models are analysed from text corpus which are specially created for recording and training of 
the onset-rhyme model.  The speech corpus contains substantial amount of samples 
sufficient for initialization and training of each model. 

In training of the onset-rhyme models, labelled phonetic transcription of each utterance were 
generated in the CORMs format.  An onset unit contains transitional period between a 
releasing consonant and its adjacent vowel.  This resulted in overlapping of an onset unit over 
the vowel segment of the following rhyme unit.  Consequently, two types of overlap are 
utilized, fixed duration overlap and variable duration overlap, as stated in the previous 
chapter.  Using fixed duration overlap, the length of overlap are preset at either 10ms, 15ms, 
20ms, or 30ms respectively.  Using variable duration overlap, the length of overlap are 
determined as percentage of the vowel duration at either 10%, 15%, 20%, or 25% 
respectively.  Then, the labelled onset-rhyme transcription are generated according to types 
and values of overlap. 

In acoustic modelling, the left-right hidden Markov models (HMMs) are used with different 
number of states between the onset HMMs and the rhyme HMMs.  An onset unit and a rhyme 
unit are modelled by 5-state and 8-state HMMs respectively.  Both of the HMMs utilize two 
Gaussian mixtures for each output probability density function.  The left-right HMMs are used 

Grammar Task ModelWord
Dictionary

Speech Unit
Inventories

Feature
Analysis

Unit
Matching
System

Lexical
Decoding

Syntactic
Analysis

Semantic
Analysis

Speech
Recognized
Utterance

Speech Units
Modeling

Word-Level Modeling
Sentence-Level Modeling or

Language Modeling
 

Figure 3.15    The general concept of a continuous speech recognition system. 
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Figure 3.16    Example of a word lattice network. 
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at 5 states for an onset unit and 8 states for a rhyme units.  Both of the onset and rhyme 
hidden Markov models use two Gaussian mixtures for each output probability density 
function.  The initial onset-rhyme models were created and reestimated using labelled 
utterances.  After labelled training, the trained acoustic models were reestimated using 
unlabelled utterances by embedded training.  From analysis of the Thai text corpus, 
distribution of the contextual onset-rhyme models are shown in Table A1.2.  In Table A1.2, 
statistics of each model are listed that was designed to have sufficient number of occurrences 
of each model. 

C. Thai Phonotactic Onset-Rhyme Models (PORMs) 

In analysis of the models, the Thai phonotactic onset-rhyme models have 992 onset-rhyme 
models that contain 792 phonotactic onset units and 200 rhyme units.  The phonotactic onset-
rhyme models have more extensive context-dependent onset units than the contextual onset-
rhyme models as shown in Table 1.5 in Chaper 1.  This model considers a releasing 
consonant in different vowel context as separate models.  The network of phonotactic onset-
rhyme models is shown in Figure 3.12 which shows complete combinations between the 
onset and the rhyme models. 

Due to limited training data, only 528 onset-rhyme units were created and modelled.  The 528 
onset-rhyme units contain 384 onset units and 144 rhyme units.  Like the contextual onset-
rhyme models, the labelled phonetic transcriptions are generated in phonotactic onset-rhyme 
models.  A list of all 528 phonotactic onset-rhyme units are shown in Table A1.3 in the 
Appendix A.  In Table A1.3, all 528 phonotactic onset-rhyme models are shown along with 
their distributions.  The Thai text corpus was designed to accommodate all the models with 
sufficient samples for creating initial models. 

3.4.3 Architecture of the Recognition System 

The architecture of the recognition system is shown in Figure 3.15, where a general 
conceptual model of a continuous speech recognition system is illustrated.  In Figure 3.17, 
training of speech units is depicted, using both labelled and unlabelled training data.  In 
Figure 3.18, recognition procedure is illustrated.  During recognition, there are no language 
models or any grammars applied in the decoding process.  This means that any words can 
follow any other words with optional silence as illustrated in Figure 3.16.  The unigram model 
or no grammar means each word has uniform probability of occurance.  The word probability 
of a unigram model is shown in Eq. (3.2) in Section 3.1.  These system configurations are 
described in the HTK manual (Young, et al., 2000). 

3.5 Summary 

The concept of the onset-rhyme models are described in details along with advantages over 
other acoustic modelling of the models.  Three types of the onset-rhyme models are 
introduced, namely, theoretical onset-rhyme models, contextual onset-rhyme models, and 
phonotactic onset-rhyme models.  The onset-rhyme models comprise an onset unit and a 
rhyme unit.  The onset unit contains transitional period into the adjacent vowel nucleus, which 
overlaps into the rhyme unit.  In modelling of the onset unit, two types of overlap schemes are 
proposed, the fixed duration overlap and the variable duration overlap. 

In this chapter, modelling of the onset and rhyme units is explained using the hidden Markov 
models (HMMs).  The bottom-up approach used in recognition is illustrated using the onset 
and rhyme units.  This approach describes how a pair of onset and rhyme units forms a 
syllable, words, and sentence, respectively.  The lattice networks of onset and rhyme HMMs 
are depicted in both contextual and phonotactic onset-rhyme models. 
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Operating environments of the recognition system are described in details in this chapter.  
The task domain of the corpus was based on Aesop’s fables and other reading-style 
sentences.  All of the recorded utterances were in reading style or dictation style.  Utterance 
of a male speaker were recorded for both training and testing. 

Moreover, details of the recognition system is described with acoustic modelling of phones 
and both onset-rhyme models.  Only a partial set of onset-rhyme models were built and 
utilized in recognition system due to limited training data available.  Only 363 models out of 
497 contextual onset-rhyme models were selected based on the text corpus.  Also, only 528 
model out of 992 phonotactic onset-rhyme models were chosen from the text corpus.  These 
onset-rhyme models comprise a set of 2,250 Thai words in the pronunciation dictionary.  
There are 1,650 distinct syllables within the set of 2,250 Thai words.  These words were 
collected from the text corpus used in recording, training, and testing.  Although only partial 
set of onset-rhyme models were utilized, this could be used in implementation of a small, 
task-specific Thai continuous speech recognition system.  This kind of small system is much 
easier to optimize to have very high recognition accuracy. 
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Figure 3.17    Hidden Markov model training process (adapted from Young et al. (2001)). 
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Figure 3.18    Hidden Markov model recognition process (adapted from Young et al. (2001)).



CHAPTER  4 

Experimental Results and Discussions 
 

In this chapter, results are collected from series of experiments.  The forced alignment and 
recognition are employed in evaluation of the acoustic models.  These acoustic models are 
phone models, contextual onset-rhyme models, and phonotactic onset-rhyme models.  
Results from both evaluation methods are compared among the three acoustic models.  
Result analysis and discussions are given in this chapter. 

4.1 Evaluation of Acoustic Models using Forced Alignment 

In evaluation of acoustic models, forced alignment are employed in order to determine 
precision of model boundaries.  The forced alignment procedure performs recognition based 
on a provided word-level transcription of a particular utterance.  The word lattice network is 
then constructed based on the given transcription of word sequence.  Pronunciation 
dictionaries provide description of a word by its composition of acoustic units.  For examples, 
the word "D@@K1 MAAJ3", or flower, is composed of the phones /d @@ k m aa j/ or the 
contextual onset-rhyme models /d@@ @@_k maa aa_j/.  Therefore, each word in the lattice 
network is expanded based on acoustic unit composition in the pronunciation dictionary and 
aligned over a proper location on the utterance.  The alignment is done using the trained 
hidden Markov model of each acoustic unit by matching against the most probable speech 
segments.  The procedure is then repeated sequentially on every word in the network.  
Output of the forced alignment procedure provides time alignment or model boundary 
information of each acoustic unit on the expanded word lattice network. 

In evaluation of acoustic units, the hand-labelled phonetic transcriptions are utilized as 
reference time alignment.  Shifting in syllable boundaries is then computed on each test 
sentences by comparing to the reference syllable boundaries in both syllable starting and 
syllable ending.  Boundary shifting values are collected and statistically analysed on all 
acoustic units--phones, contextual onset-rhyme models, and phonotactic onset-rhyme 
models.  The statistical analysis results are shown in Table 4.1 on phone models, in Table 4.2 
on contextual onset-rhyme models, and in Table 4.3 on phonotactic onset-rhyme models 
respectively. 

4.1.1 Results and Evaluation of Forced Alignment 

Forced alignment results are illustrated in Figure D1.1 to D1.32 in the Appendix D on each 
test sentences.  The figures show hand-labelled time alignment using phone sequence of a 
test sentence along with the alignment results using the phones, the contextual onset-rhyme 
models (CORMs), and the phonotactic onset-rhyme models (PORMs).  The hand-labelled 
phonetic transcriptions shown in the figures are used as reference boundary alignment. 

Syllable boundaries of each syllable are compared against the hand-labelled syllable 
boundaries of a particular utterance.  Syllable boundary positions from hand-labelled 
transcriptions are employed as reference points on evaluation of forced alignment.  The 
forced alignment results give out positions of syllable boundaries according to the predefined 
word transcriptions of a particular utterance.  Deviations of syllable boundaries are computed 
on each corresponding syllable between hand-labelled and forced alignment results.  
Statistical analyses on amount of deviations or shifts are shown in Table 4.1 using the phone 
models, Table 4.2 using the contextual onset-rhyme models, and Table 4.3 using the 
phonotactic onset-rhyme models, respectively. 
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4.1.2 Discussions 

In Table 4.1, the phone models show mean boundary shift at 33.56 ms on beginning and at 
65.13 ms on syllable ending.  In Table 4.2, the statistical analyses on contextual onset-rhyme 
models (CORMs) are shown on both fixed and variable duration overlap.  The 20% variable 
duration overlap gives out the lowest mean boundary shift at 14.15 ms on beginning and at 
32.31 ms on syllable ending.  All cases of the CORMs have shown better alignment than the 
phone models.  The mean of syllable shifts in starting and ending for the CORMs are 57.84% 
and 50.39%, respectively, lower than the phones.  Like the CORMs, results of the statistical 
analyses on the phonotactic onset-rhyme models (PORMs) also show better alignment than 
the phones as stated in Table 4.3.  The 20% variable duration overlap gives out the lowest 
mean boundary deviation at 15.32 ms on beginning and at 34.41 ms on ending of syllable.  
The mean deviation of syllable starting and ending for the PORMs are 54.35% and 47.17% 
respectively better than the phones.  The CORMs and PORMs give out comparable results in 
both cases as shown in Table 4.2 and Table 4.3, respectively.  Both cases also illustrate 
much lower standard deviation (S.D.) in syllable boundary shift than the phones. 

Moreover, both cases of fixed and variable duration overlap provide similar results in syllable 
boundary shifts on forced alignment.  From Figure D1.1 to D1.32, the forced alignment results 
are depicted with all speech units comparing to the hand-labelled data, the phones, the 
CORMs, and the PORMs.  Both of the subsyllable onset-rhyme models show better time 
alignment than the phones and also have many advantages described as follows. 

The onset units show much more precise time alignment than the phones in almost every 
cases.  In the case of an arresting nasal followed by the same releasing nasal, the onset unit 
performs much more accurate than the phones in boundary alignment between the two 
adjacent syllables such as /t@@n nang/ as shown in Figure D1.9.  This is also existed in the 
case of two consecutive approximants, /j, w/, as arresting and releasing consonants between 
the two syllables such as /lqqj jaang/.  Boundary shifting in onset units mostly occurs with the 
releasing voiced stops, /b, d/, especially after an open syllable or an arresting non-stops.  
These shifts are resulted from acoustic characteristics of the two voiced stops themselves.  
The voiced stops /b/ and /d/ have voicing or periodic characteristics similar to vowels and 
non-stops.  There are continuity in spectrum and in fundamental frequency of the voiced 
stops to the preceding vowel in an open syllable or the preceding arresting non-stops.  Thus, 
these lead to more difficult in locating syllable beginning boundary than in other consonants.  
Examples of this case are illustrated in Figure D1.19 at the syllable /muu baan/, in Figure 
D1.20 at the syllable /ngaan d@@k maaj/, and in Figure D1.21 at the syllable /kaan buk ruk/ 
and /chaaj dxxn/. 

In the figures, overlapping of the onset unit into the adjacent rhyme unit are clearly depicted 
with a longer duration of the onset unit.  The phone models give out higher average boundary 
shift because of their context independence especially in both releasing and arresting stops.  
Acoustically speaking, each phone is effected by its neighbouring phones resulted from 
coarticulation and contextual effects.  Thus, assuming that the same phone is similar across 
different context leads to an inefficient modellng of utterances.  This is resulted in an 
inaccurate time alignment especially the consonants that can be both releasing and arresting. 

 

Table 4.1    Statistical analysis results on shifting in syllable boundaries using phone 
models in forced alignment 

 Shift in syllable beginning (ms) Shift in syllable ending (ms) Model 
Configuration  Min Max Mean S.D. Min Max Mean S.D. 

m3s5  0 860 33.557 70.632 0 725 65.133 95.867 
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Table 4.2    Statistical analysis results on shifting in syllable boundaries using contextual 
onset-rhyme models in forced alignment 

 Shift in syllable beginning (ms) Shift in syllable ending (ms) Model 
Config 

Overlap 
Type  Min Max Mean S.D. Min Max Mean S.D. 

m3s6s8 10ms  0 335 15.066 24.892 0 410 34.519 44.812 

m3s6s8 20ms  0 340 16.368 25.707 0 555 40.365 51.464 

m3s6s8 30ms  0 340 14.925 24.809 0 555 35.008 47.242 

m2s7s10 10ms  0 330 17.156 27.124 0 540 44.013 53.186 

m2s7s10 20ms  0 335 16.012 25.076 0 540 43.192 53.274 

m2s7s10 30ms  0 335 17.040 26.867 0 555 44.212 52.714 

m3s6s8 25pct  0 340 17.007 28.130 0 225 37.960 41.995 

m2s6s10 05pct  0 330 16.202 27.885 0 225 35.920 41.229 

m2s6s10 10pct  0 335 16.153 27.067 0 225 36.882 41.464 

m2s7s10 15pct  0 300 15.680 25.911 0 560 37.313 48.358 

m2s7s10 20pct  0 305 14.146 25.127 0 495 32.305 43.446 

m2s7s10 25pct  0 335 15.207 26.678 0 420 35.133 43.470 

 

Table 4.3   Statistical analysis results on shifting in syllable boundaries using phonotactic 
onset-rhyme models in forced alignment 

 Shift in syllable beginning (ms) Shift in syllable ending (ms) Model 
Config 

Overlap 
Type  Min Max Mean S.D. Min Max Mean S.D. 

m3s6s8 10ms  0 335 17.960 27.519 0 540 43.483 53.650 

m3s6s8 20ms  0 340 17.247 26.819 0 260 42.836 49.355 

m3s6s8 30ms  0 340 17.222 27.942 0 540 44.842 55.813 

m2s7s10 10ms  0 330 17.529 27.524 0 555 44.303 52.543 

m2s7s10 20ms  0 335 17.040 27.072 0 410 44.478 51.897 

m2s7s10 30ms  0 335 16.849 26.624 0 540 43.682 53.960 

m3s6s8 25pct  0 340 16.161 26.579 0 215 32.313 38.105 

m2s6s10 05pct  0 335 17.371 27.900 0 220 38.018 41.769 

m2s6s10 10pct  0 340 17.164 27.800 0 220 38.300 41.692 

m2s7s10 15pct  0 335 16.352 27.466 0 420 37.512 44.774 

m2s7s10 20pct  0 335 15.323 25.927 0 215 34.411 40.331 

m2s7s10 25pct  0 335 15.879 26.760 0 230 36.816 42.935 
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In summary, both of the onset-rhyme models provide accurate thus precise time alignment of 
syllable boundaries.  The onset-rhyme models efficiently reduce boundary shift at more than 
50% compared to the phone models.  Therefore, accurate syllable boundary information also 
help improving tone recognition by providing precise location of a syllable. 

4.2 Evaluation of Acoustic Models by Recognition 

In evaluation of acoustic models, the onset-rhyme models are applied to the Thai continuous 
speech recognition.  Then, analysis on the recognition results are conducted in order to 
explore any improvement in word error rate.  The acoustic models, phone models, contextual 
onset-rhyme models, and phonotactic onset-rhyme models, were used in the recognition.  
The word error rate is an index, which describes an amount of incorrectly recognized words.  
Confusion matrices of each speech unit, phone and onset units, show accuracy of speech 
units in forming a word or a syllable.  In evaluation of speech units, the resulting speech unit 
sequences are compared against correct speech unit sequence of each sentence. 

The onset-rhyme models utilise overlapping between an onset unit and a rhyme unit within a 
syllable.  The overlapping of an onset unit covers transitional stage between a releasing 
consonant and its adjacent vowel, which is the nucleus of a syllable.  In determining an 
amount overlap, two overlapping methodologies are proposed, fixed duration overlap and 
variable duration overlap.  The fixed duration overlap uses a set predefined length of overlap 
at 10 ms, 20 ms, or 30 ms into the adjacent rhyme unit.  On the contrary, the variable duration 
overlap varies a length of overlap to 5%, 10%, 15%, 20%, or 25% over duration of the 
adjacent vowel.  Therefore, both contextual and phonotactic onset-rhyme models were 
utilized in a series of experiments covering the fixed and variable duration overlaps.  The 
recognition results of these experiments are illustrated in Table 4.4 to 4.8. 

In the fixed duration overlap, the set of predefined length was selected based on length of 
vowel.  Length of speech units are collected and statistically analysed from the speech 
corpus.  The results showed only 30 ms on minimum length of a short vowel.  Therefore, the 
overlap duration may include some parts of a coda if longer than 30 ms.  As stated in the 
Section 3.2.2 in Chapter 3, the fixed duration is then set to be less than 30 ms at 10 ms, 20, 
or 30 ms, respectively. 

In order to find an appropriate hidden Markov model configurations, two sets of experiments 
were set up.  In the first experiment, hidden Markov model configurations are set to 4 states 
for an onset unit and 6 states for a rhyme unit with three mixtures per state.  In the second 
experiment, a longer hidden Markov model configurations are set to 5 states for an onset unit 
and 8 states for a rhyme unit with two mixtures per state.  Then, these two HMM 
configurations are called “m3 s4 s6” and “m2 s5 s8”, respectively, throughout this dissertation. 

4.2.1 Evaluation of Recognition Results 

This section contains details about all the recognition result of all the acoustic models.  The 
acoustic models used in the experiments are phone models, contextual onset-rhyme models 
(CORMs), and phonotactic onset-rhyme models (PORMs).  Evaluation details of recognition 
results are shown in this section on each acoustic models.  Each HMM configuration is used 
in series of experiments on fixed and variable duration overlap.  In the “m3s4s6” case, there 
are only 20% and 25% overlap because many models of both onset and rhyme units could 
not be created as shown in Table 4.6 and 4.8.  This is due to shorter duration in lower overlap 
percentage which do not provide substantial amount of data for training.  The concept of 
selection an amount of overlap is stated in Section 3.2.2 in Chapter 3 on both fixed and 
variable duration overlap. 
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A. Phone Models 

Recognition result of the phone model is shown in Table 4.4.  The result shows accuracy at 
62.88% or at 37.12% word error rate using the phone models on the 68 test sentences.  
Recognized phone sequence of each test sentence are evaluated with their correct phonetic 
transcriptions.  Evaluation results are then analysed based on three types of recognition 
errors—insertion error, deletion error, and substitution error. 

Table 4.9 illustrates three insertion errors with examples, insertion errors on vowel phonemes, 
on initial consonants, and on initial nasals.  In cases of insertion errors, insertion of another 
vowel phonemes results in two subsequent vowel phonemes as shown in the first case of 
Table 4.9.  Besides vowel, insertion of another consonants also occurs which resulted in two 
subsequent arresting and releasing consonants as shown in the second case of Table 4.9.  
Moreover, these are also insertion of a voiced stop follows by a releasing nasals which results 
in two subsequent arresting and releasing consonants as shown in the third case of Table 
4.9. 

Two different deletion errors are shown in Table 4.10 with examples, deletion errors on 
arresting stops, and, on two adjacent nasals.  Both cases of deletion error result from different 
causes.  Deletion of an arresting consonant is caused by phone modelling which considers 
both initial and final stops identical.  In the case of two adjacent non-stops, there are treated 
as single non-stop which results from continuity of the two consonants with no explicit word 
boundary or syllable boundary.  Table 4.11 shows five substitution errors with examples, 
substitution errors between short and long vowels, between voiced stop and nasal, within a 
group of voiceless stops, within a group of nasals, and on consonant clusters.  First, short and 
long vowel pairs are incorrectly recognised between their counterparts, for example, the word 
/kan0/ is recognised as /kaan0/ as shown in the first case of Table 4.11.  Secondly, some 
initial nasals are incorrectly recognized as voiced stops such as /ma3 naaw0/ is recognised 
as /baan laaw/.  There are also some recognition errors within the same group of voiceless 
unaspirated stops or nasals.  Moreover, some consonant clusters are incorrectly recognised 
as shown in the last case of Table 4.11. 

The evaluation of each test sentences is shown in the Appendix C.  From the results, many 
kinds of errors are found in both confusion matrix and sentence evaluation.  From the 
confusion matrix, various kinds of recognition errors exist as follows.  Firstly, recognition error 
exists between a pair of short and long vowels such as /i/-/ii/ and /a/-/aa/.  There are also 
some vowel pairs that are misrecognized between each other such as /e/-/ee/, /@/-/@@/, /u/-
/uu/, and /o/-/oo/.  Secondly, most recognition errors exist within the same group of phones 
such as stops, etc.  In a group of stops, the /c/ stop is incorrectly recognized as /t/ or /k/; the 
/t/ is incorrectly recognized as /p/, /t/, or /c/; and the /th/ is incorrecly recognized as /t/, /kh/, 
/ph/, /ch/.  This kind of error indicates incorrect recognition within the same manner but 
different places of articulation.  There are also incorrect recognition to different manner of 
articulations such as /k/ to /kh/, /p/ to /th/, and /th/ to /t/.  In a group of non-stops, there are 
recognition errors within the same group such as in the /m, n, ng/ group of the same manners 
but different places of articulation.  Thirdly, some of the consonant clusters are incorrectly 

Table 4.4    Best word error rate achieved using 
different acoustic models 

Acoustic Units Word Error Rate (%) 

Phone model 37.12 

Contextual onset-rhyme models
at 15% overlap 16.518 

Phonotactic onset-rhyme 
models at 20% overlap 13.529 
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recognized such as /khr, kr/ into /r/ and /pr/ into /r/.  Additionally, a voiced stop /b/ is 
incorrectly recognized as /d/ and the nasal /n/. 

B. Contextual Onset-Rhyme Models (CORMs) 

The model network is illustrated in Figure 3.11 in Chapter 3.  The network is used in creating 
sequence of onset models and rhyme models to form syllables, words, and a sentence 
respectively.  An example of the onset-rhyme model alignment from recognition is depicted in 
the Appendix D.  Recognition results using the onset-rhyme models is shown in Table 4.5 to 
4.8.  The result shows unit accuracy at 83.482% or at 16.518% error rate.  The onset-rhyme 
models reduce error rate up to 55.50% compared to the phone model.  Recognized 
sequences of each test sentence are evaluated with their correct onset-rhyme transcriptions.  
Evaluation results are then analysed on three types of recognition errors—insertion error, 
deletion error, and substitution error.  There are no deletion errors occurred using the onset-
rhyme models.  These errors will be discussed later in the next section. 

In Table 4.12 and 4.13, various types of onset recognition errors are shown with examples 
from the recognition results in the Appendix C.  Firstly, an onset with releasing voiceless 
unaspirated stop is incorrectly recognized to aspirated stop in the same place of articulation.  
Secondly, an onset with releasing voiceless stop is incorrectly recognized to another 
voiceless stop with the same manners.  Thirdly, an error occurs within a group of voiced stop 
/b, d/ and also between a group of nasals /m, n, ng/.  Moreover, a consonant cluster is 
misrecognized into either its aspirated-unaspirated pair of stops or its secondary clusters /r, l, 
w/.  Additionally, there are very few occurrence on removal of an onset unit in the case of 
diphthongs, which are only found in contextual onset-rhyme models. 

Table 4.5    Average word error rate of onset-rhyme models using fixed-duration overlap 
on different state sizes. 

m3 s4 s6 (1) m2 s5 s8 (2) 
Acoustic Units 

10 ms 20 ms 30 ms 10 ms 20 ms 30 ms 

Contextual onset-rhyme 
models 35.394 35.113 34.957 27.572 27.591 27.785 

Phonotactic onset-rhyme 
models 37.946 37.190 36.675 27.019 26.213 25.427 

Remarks : (1) – 4-state onset HMM and 6-state rhyme HMM at 3 mixtures per state.
   (2) – 5-state onset HMM and 8-state rhyme HMM at 2 mixtures per state. 

 

Table 4.6    Average word error rate of onset-rhyme models using variable-duration overlap 
on different state sizes. 

m3 s4 s6 m2 s5 s8 
Acoustic Units 

20% 25% 5% 10% 15% 20% 25% 

Contextual 
onset-rhyme models 20.080 20.487 17.623 17.411 16.518 16.770 16.790 

Phonotactic 
onset-rhyme models - 18.100 17.226 16.431 13.985 13.529 14.334 

Remarks : (1) – 4-state onset HMM and 6-state rhyme HMM at 3 mixtures per state.
   (2) – 5-state onset HMM and 8-state rhyme HMM at 2 mixtures per state. 
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In Table C2.1 to C2.32 in the Appendix C, the recognition results of each test sentence are 
shown in sequences of contextual onset-rhyme models.  Recognized sequence of each test 
sentence (REC) is then evaluated by comparing to their correct transcription (LAB).  The 
results of evaluation show many recognition errors as summarized in Table 4.12 and 4.13.  
Coarticulatory effects are major cause of these recognition errors.  For example, adjacent 
syllables within the word /ma3 naaw0/ in the “testsentence01_016a_vis” was incorrectly 
recognized as /maa a_n zaa aa_w/ instead of /maa a naa aa_w/.  The releasing nasal /n/ was 
treated as arresting nasal in the rhyme of its preceding syllable.  In addition, many diphthongs 
were incorrectly recognized by insertion of a syllable such as /khrvvang2/ was recognized to 
/rvv vv daa a_ng/ instead of /khrvv vvang/, which shown in the “testsentence01_004b_vis”. 

(1) Fixed-duration overlap 

The recognition results of the contextual onset-rhyme models using fixed-duration overlap are 
shown in Table 4.5.  In Table 4.5, recognition results of the two experiments are shown where 
each experiment conducts three different overlap length at 10 ms, 20 ms, or 30 ms. 

From the results in Table 4.5, the 10-ms overlap of m2s5s8 configuration shows better result 
at 27.572% word error rate than any other configurations.  All cases of the m2s5s8 
configuration show significant decreasing in word error rate compared to the m3s4s6 
configuration.  The reduction in word error rate is resulted from a longer HMM states in 
modelling of both onset and rhyme units. 

(2) Variable-duration overlap 

In Table 4.6, recognition results of the contextual onset-rhyme models using variable-duration 
overlap are shown.  Two experimental results of m3s4s6 and m2s5s8 configurations are 

Table 4.7    Average error rate of the onset units using fixed-duration overlap. 

m3 s4 s6 (1) m2 s5 s8 (2) 
Acoustic Units 

10 ms 20 ms 30 ms 10 ms 20 ms 30 ms 

Contextual onset-rhyme 
models 24.601 24.115 23.862 17.992 17.871 18.492

Phonotactic onset-rhyme 
models 34.769 34.259 33.690 23.993 23.357 22.608

Remarks : (1) – 4-state onset HMM and 6-state rhyme HMM at 3 mixtures per state.
   (2) – 5-state onset HMM and 8-state rhyme HMM at 2 mixtures per state. 

 

Table 4.8    Average error rate of the onset units using variable-duration overlap. 

m3 s4 s6 (1) m2 s5 s8 (2) 
Acoustic Units 

20% 25% 5% 10% 15% 20% 25% 

Contextual 
onset-rhyme models 12.941 13.732 11.567 11.264 10.523 10.833 10.387

Phonotactic 
onset-rhyme models - 16.129 14.811 14.211 12.140 11.753 13.074

Remarks : (1) – 4-state onset HMM and 6-state rhyme HMM at 3 mixtures per state.
   (2) – 5-state onset HMM and 8-state rhyme HMM at 2 mixtures per state. 
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shown in Table 4.6.  In Table 4.6, the recognition result lower than 20% overlap in the 
m3s4s6 configuration is not available because of very short duration of each speech segment 
and limited training data.  Creating an initial HMM model using three mixtures per state 
requires substantial amount of data and duration of each speech segment must be sufficient 
for training. 

Comparing both m3s4s6 and m2s5s8 configurations, the second configuration shows 
significantly better results as shown in Table 4.6.  Increasing percentage of overlap effects 
only small reduction in word error rates as shown in Table 4.6.  However, there are significant 
decreasing in word error rates using m2s5s8 compared m3s4s6 configuration as shown in 
Table 4.6.  The reduction in word error rate not only resulted from a longer HMM states but 
also from amount of acoustic information captured from the transition period. 

C. Phonotactic Onset-Rhyme Models 

The model network illustrated in Figure 3.12 in Chapter 3 is employed in generating 
sequences of phonotactic onset and rhyme units.  The generated sequences of phonotactic 
onset and rhyme units form to be syllables, words, and sentence respectively.  Recognition 
results using the phonotactic onset-rhyme models is shown in Table 4.5 to 4.8.  The best 
recognition result is at 13.529% word error rate.  The phonotactic onset-rhyme models reduce 
word error rate up to 63.553% compared to the phone models or up to 18.095% compared to 
the contextual onset-rhyme models. 

In Table 4.12 and 4.13, many kinds of recognition errors are summarised with some 
examples from the recognition results in Table C3.1 to C3.32 in the Appendix C.  Considering 
only the onset unit, voiceless stops are incorrectly recognized within their group of the same 
places of articulation, i.e., /k_@@/ to /kh_@@/.  They are also misrecognized to other stops 
with the same manners of articulation, i.e., /ph_aa/ to /kh_aa/.  There are some errors on 
voiced stops /b, d/, which are incorrectly recognized not only with their counterparts but also 
with nasals.  Moreover, recognition of consonant clusters are also substituted with their 
secondary consonants, /r, w/, for example, /khr/ to /r/, and, /khw/ to /w/.  In addition, there are 
few insertions occurred in some diphthongs such as /th_uua uua/ is recognized to /th_uu 
uu_k w_aa aa/ in some results as shown in Table 4.13. 

The recognition results using phonotactic onset-rhyme models are shown in Table C3.1 to 
C3.32 in the Appendix C.  Output of the result are shown in sequences of phonotactic onset 
and rhyme units on each test sentence.  The results (REC) are then evaluated with the 
correct transcription (LAB) of each sentence.  The outputs of evaluation show word error rate 
and confusion matrices using the phonotactic onset and rhyme units.  The word error rates 
are shown in Table 4.5 to 4.8 on the entire experiments.  These experiments are conducted 
based on two types of overlap, that is, the fixed-duration and variable-duration overlap.  Also, 
the experiments are conducted on two different configurations of hidden Markov models, 
m3s4s6 and m2s5s8, as previously described at the beginning of this section. 

(1) Fixed-duration overlap 

In Table 4.5, recognition results of the phonotactic onset-rhyme models are shown using the 
fixed-duration overlap.  The results are grouped by configurations of hidden Markov models.  
The best recognition results is at 25.427% word error rate using 30-ms overlap.  The word 
error rates are significantly decreased comparing between the m3s4s6 and m2s5s8 
configurations.  At each overlap, the word error rates are reduced by 28.796% at 10-ms, by 
29.516% at 20-ms, and by 30.669% at 30-ms overlap, respectively.  These percentage of 
reduction illustrated major improvements as much as 30% using longer hidden Markov model 
states in both onset and rhyme units. 
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(2) Variable-duration overlap 

In Table 4.6, recognition results using variable-duration overlap are shown.  The 
configurations of m3s4s6 and m2s5s8 are shown.  From both results, the best word error rate 
achieved is at 13.529% using 20% overlap.  Like the fixed-duration overlap, the word error 
rate is significantly reduced using longer state in m2s5s8 than in m3s4s6.  The word error rate 
is reduced by 20.807% using 25% overlap. 

4.3 Discussions 

Eventhough only utterances of a single speaker were used in training and recognition, higher 
recognition results were achieved with major improvements over the phones.  From Table 
4.4, comparison of recognition results between the phones and the onset-rhyme models has 
shown a large amount of reduction in error rate at 55.76% over the phones without any extra 
techniques or grammars.  The onset-rhyme models always occur in pairs of the onset unit 
and the rhyme unit which makes up syllables, words, and sentence, respectively. 

Comparing between the phones and both onset-rhyme models, the phones are more 
errornous than the onset-rhyme models.  The evaluation results of the phones have a large 
number of substitution errors and insertion errors.  Substitution errors of the phones are 
mostly occurred between short vowels and long vowels, initial stop consonants, and 
consonant clusters. 

Recognized sequences of the onset-rhyme models compared to sequences of the phones 
illustrate some major point of improvements as shown in Table 4.9 to Table 4.13.  Firstly, 
sequences of the phones are difficult to distinguish between releasing consonants and 
arresting consonants while this is not the case with the onset-rhyme models.  Secondly, 
deletion of an arresting stop frequently occurs in the phones but not occur in the onset-rhyme 
models.  Thirdly, syllables or even words could be simply determined from sequences of the 
onset and rhyme pairs as illustrated in Table 4.15 and Table 4.16 for contextual and 
phonotactic onset-rhyme models, respectively. 

Also, there are some common errors between the phones and the onset-rhyme models.  For 
instance, some short and long vowels are incorrectly recognized as shown in Table 4.12 for 
the phones and in Table 4.13 for the onset-rhyme models.  Additionally, an open syllable was 
incorrectly recognized to have obstruent ending or arresting consonant which is a releasing 
consonant of the following syllable.  Examples of this error are shown in Table 4.12 for the 
phones and in Table 4.13 for the onset-rhyme models.  Moreover, a sonorant-ending syllable 
with similar arresting and following initial consonant is incorrectly recognized as an open 
syllable.  Examples of this error are shown in Table 4.12 for the phones and in Table 4.13 for 
the onset-rhyme models. 

In comparison, the theoretical onset-rhyme models were not employed in recognition.  This is 
due to context independency of the models.  The theoretical onset-rhyme models are context 
independent models.  The onset units are the similar to the context-independent phone 
models.  In addition, the onset units do not include the transitional period between releasing 
consonant and neighbouring vowels. 

4.3.1 Phone Models 

The phones have many errors of insertion, deletion, and substitution compared the phones to 
the two onset-rhyme models.  There are plenty of insertion error on releasing consonants.  
These insertions result in ambiguities to be either arresting consonant of the prior syllable or 
releasing consonant of the following syllable.  These insertions mostly occur in an open 
syllable within a word.  There are also two repeated vowels in the recognized phone 
sequences as shown in Table 4.9, which do not exist in the onset-rhyme sequences. 
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The phones also show deletion of arresting stops in many recognition sequences as shown in 
Table 4.10.  The absence of arresting stops is one of the major disadvantages.  This type of 
error is resulted from acoustic characteristic of the Thai arresting stops themselves, which 
differ from other languages.  Moreover, the phones could not recognize any two consecutive 
nasals or approximants, which occur as arresting and releasing consonants respectively.  
Examples of these error are shown in Table 4.10 such as the word /naam3 nak1/. 

Besides the above errors, the phones have substitution errors between short and long 
vowels, between voiced stops and nasals, and between nasals.  Examples of these errors are 
shown in Table 4.11.  Considering the resulting phone sequences, the phones do not provide 
any information in forming syllables or words.  The resulting phone boundaries or time 
alignment of each phone does not have any relation between each phone.  This is also 
another major disadvantages of the phones. 

4.3.2 Contextual Onset-Rhyme Models (CORMs) 

Comparing to the phones, the contextual onset-rhyme models (CORMs) do not have any 
deletion errors on any arresting stops.  These errors are substitution errors in the CORMs.  
For examples, the words /phaan0 naj0/ is composed of the phones /ph aa n n a j/ and the 
CORMs /phaa aa_n n_a a_j/.  The system recognises the words as /ph aa n a j/ in phones 
where the arresting nasal /n/ was deleted.  Using the CORMs, the words were recognised as 
/phaa aa n_a a_j/ in which the rhyme /aa_n/ was substitued by /aa/. 

The CORMs performs recognition much better than the phones in many ways.  Firstly, there 
are very few errors on the onset units, which contain releasing consonant and its transition.  
In many cases, the phones are unable to point out whether the consonant is releasing or 
arresting.  For example, considering the evaluation results “testsentences01_002a_vis” in 
Table C1.1 for the phones and in Table C2.1 for the contextual, there are plenty of insertion 
errors in the phone sequence while the contextual have none.  The recognized CORMs 
sequences illustrate pairs of onset and rhyme units that make up a syllable as shown in Table 
C2.1 in the Appendix C.  These onset-rhyme pairs give out syllable boundary information, 
which is the most valuable information for tone recognition. 

Comparing to the phonotactic onset-rhyme models (PORMs), the contextual onset-rhyme 
models give out about 22% higher word error rate than the PORMs as shown in Table 4.4.  In 
Table 4.5 and Table 4.6, the CORMs provide higher word error rate in every cases than the 
PORMs.  However, in Table 4.7 and Table 4.8, the error rate of the onset units in the CORMs 
are lower than in the PORMs on both fixed and variable duration overlap.  The error rate of 
the CORMs onset units are 20.953% lower than the PORMs in fixed-duration overlap and 
11.623% lower in the variable-duration overlap.  The lower onset error rates are resulted from 
more compact models of each onset unit.  The CORMs have much lower number of onset 
units than the PORMs. 

4.3.3 Phonotactic Onset-Rhyme Models (PORMs) 

Comparing to the phones, the phonotactic onset-rhyme models (PORMs) have many 
advantages over the phones like their counterparts, the CORMs.  For examples, comparing 
the evaluation results of the “testsentences01_006b_vis” in Table C1.1 for the phones and 
Table C3.1 in the Appendix C for the PROMs, the phones show many insertion and deletion 
errors.  The recognized PORMs sequence combines syllable boundary information within 
each onset-rhyme pair.  On the other hand, sequences of the phones do not provide any 
acoustic information as illustrated in Fig. D1.6 in the Appendix D for time alignment of the 
“testsentences01_006b_vis”. 

Comparing recognition errors to the CORMs, the PORMs do not have errors on removal of 
releasing consonants like the CORMs.  The PORMs provides better word error rate at 
18.095% lower than the CORMs as shown in Table 4.4.  In Table 4.5 and Table 4.6, the 
PORMs give out lower word error rate than the CORMs in every cases.  However, error rates 
of the onset units using the PORMs are higher than the CORMs in every cases of both fixed 
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and variable duration overlap as shown in Table 4.7 and Table 4.8.  These are resulted from 
a large number of onset units in the PORMs than the CORMs.  The higher amount of onset 
units in the PORMs makes the model network more complex than the CORMs. 

4.4 Summary 

In this chaper, all the results of both forced alignment and recognition are described and 
analysed in details.  Evaluation of the onset-rhyme models are conducted in the aspects of 
forced alignment and recognition.  The forced alignment evaluates precision of model 
boundaries.  On the other hand, the recognition evaluates accuracy of the models in 
modelling speech segments.  Both of the contextual and phonotactic onset-rhyme models 
outperform the phone models in both forced alignment and recognition.  The contextual and 
phonotactic onset units illustrate better alignment and recognition of releasing consonant.  
The onset units of both onset-rhyme models show significant improvement in recognition of 
every kinds of releasing consonants. 
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Table 4.9    Various types of insertion error using phone models 

Insertion errors on vowel phonemes 
 LAB:          sil p    a w m aa j kh @@ ng ph uu k    @@ k aa n r aa j kh vv     c a p ph uu   kh a  w 
 REC: sil t xx sil p aa a w m aa j kh @@ ng ph uu k kh @@ k aa n r aa j kh vv sil c a t ph uu k kh aa w 

 LAB: sil p    a w m aa j     kh @@ ng     ph uu k    @@     k aa n r aa j kh vv     c a p    ph uu     kh a 
 REC: sil t aa a w m a  j t e kh @@ ng t o ph uu k kh @@ k @ k aa n r aa j kh vv sil c a p aa ph uu k u kh aa w 

Insertion errors on releasing consonants 
 LAB:          sil p    a w m aa j kh @@ ng ph uu k    @@ k aa n r aa j kh vv     c a p ph uu   kh a  w 
 REC: sil t xx sil p aa a w m aa j kh @@ ng ph uu k kh @@ k aa n r aa j kh vv sil c a t ph uu k kh aa w 

Insertion errors on releasing nasals 
 LAB: p a j s a j     phr i k          b ii p m a n   aa w     k  i n p e n z aa h aa      n kl aa ng w a n sil 
 REC: p a j s a j sil phr i k j xx sil b ii p b a n d aa w a t th i n t e n z aa h aa z vv t kl aa ng w a n sil 
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Table 4.10    Various types of deletion error using phone models 

Deletion error of a releasing stop 
 LAB: sil r oo ng r iia n t a  ng j uu th aa m kl aa ng m xx k m aa j     r i m m xx n aa m
 REC: sil r oo ng r iia n t aa ng j uu th aa m kl aa ng m xx   m aa j sil r i m m xx d aa m 

 LAB: sil kh    a w d oo n m ii t k oo n b aa t th ii kh aa ng k xx m k o n c o n l vva t s aa t t @@ n n a  ng
 REC: sil kh @@ k u d oo n m ii   k o  n b aa t th ii kh aa ng k xx m k o n t o n l vva   s aa k t @@   n aa ng 

 LAB: sil j  i ng s aa w w aa ng c xx k a  n      th a  t p a j c aa k th aa t l x     kr a ch a w d @@ k m aa j
 REC: sil th i ng s aa w w aa n  k xx k aa n t xx th aa t p a j c aa   t  aa t l x sil kr a ch a w b @@   m aa j 

 LAB: p a j s a j phr i k          b ii p m a  n   aa w k i n  p e n z aa h aa n      kl aa ng w a  n sil
 REC: p a j s a j phr i k j xx sil d ii   b aa n l aa w c i ng t e n z aa h aa n v ng kl aa ng w aa n sil 

Deletion error two adjacent nasals—arresting followed by releasing nasals 
 LAB: sil kh    a w d oo n m ii t k oo n b aa t th ii kh aa ng k xx m k o n c o n l vva t s aa t t @@ n n a  ng
 REC: sil kh @@ k u d oo n m ii   k o  n b aa t th ii kh aa ng k xx m k o n t o n l vva   s aa k t @@   n aa ng 

 LAB: l aa   s a      t      p aa     l qq j j aa ng t xx k   t @ ng p a    k a  n n a j      p aa sil
 REC: l aa k s a t aa t p aa p aa sil l qq j j aa ng t xx sil t @ ng t aa t k aa   n a j p aa p aa sil 

 LAB: khr vva ng b i n     j u t th a  m ng aa n      phr @@ m k a  n     m vva n aa m m a n m o  t sil
 REC: khr vva ng b i n sil j u t th aa m ng aa n t xx phr @@ m k aa n sil m vva n aa   m a n m @@ t sil  

 LAB: j o k      n aa m n a k     t @@ n     k qq t phl qq ng m a j     d aa j j aa ng j xx   p  j o  n sil
 REC: j o k @@ k n aa m   a t sil t @@ n v k k qq t phl qq ng m a j sil d aa   j aa ng j xx t aa j oo n sil  
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Table 4.11    Various types of substitution error using phone models 

Substitution errors over short and long vowels 
LAB: khr vva ng b i n     j u t th a m ng aa n     phr @@ m     k a  n     m vva      n aa m m a  n m o  t     sil 
REC: khr vva ng b i n sil j u t th a m ng aa n t x phr @  m vva k aa n sil m vva z aa n aa   m aa n m @@ t k @ sil 

Substitution errors between voiced stop and nasal 
 LAB: p a j s a j phr i k          b ii p m a  n   aa w k i n  p e n z aa h aa n      kl aa ng w a  n sil 
 REC: p a j s a j phr i k j xx sil d ii   b aa n l aa w c i ng t e n z aa h aa n v ng kl aa ng w aa n sil  

 LAB: p a j s a j     phr i k          b ii p m a n   aa w     k  i n p e n z aa h aa      n kl aa ng w a n sil 
 REC: p a j s a j sil phr i k j xx sil b ii p b a n d aa w a t th i n t e n z aa h aa z vv t kl aa ng w a n sil 

Substitution errors within a group of voiceless unaspirated stops 
 LAB: p a j s a j phr i k          b ii p m a  n   aa w k i n  p e n z aa h aa n      kl aa ng w a  n sil 
 REC: p a j s a j phr i k j xx sil d ii   b aa n l aa w c i ng t e n z aa h aa n v ng kl aa ng w aa n sil  

Substitution errors within a group of nasals 
 LAB: sil j  i ng s aa w w aa ng c xx k a  n      th a  t p a j c aa k th aa t l x     kr a ch a w d @@ k m aa j 
 REC: sil th i ng s aa w w aa n  k xx k aa n t xx th aa t p a j c aa   t  aa t l x sil kr a ch a w b @@   m aa j 

Substitution errors on consonant clusters 
 LAB: sil kh o n r aa j b u k       r u   k   kh a w     khr @@ p   khr @@ ng s aa n kh ee m ii 
 REC: sil kh o n r aa j b u k phl u r uua sil kh a w k @ phr @  b @ r   @@ ng s aa m kh ee m ii 
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Table 4.12    Substitution errors on the onset units using the contextual and phonotactic onset-rhyme models. 

Onset substitution errors on voiceless stops with the same places of articulation 
 LAB:         sil p_a a_w m_aa aa_j kh_@@ @@_ng     ph_uu uu     k_@@  @@           k_aa aa_n r_aa aa_j 
 REC: sil sil sil p_a a_w m_aa aa_j kh_@@ @@_ng sil ph_uu uu sil kh_@@ @@ z_@@ @@_k k_aa aa_n r_aa aa_j sil 

 LAB: sil kh_a a_w d_oo oo_n m_ii    ii_t k_oo oo_n b_aa aa_t th_ii ii kh_aa aa_ng     k_xx xx_m 
 REC: sil kh_a a_w d_oo oo_n m_ii ii sil  kh_o o_n  b_aa aa_t th_ii ii kh_aa aa_ng sil k_xx xx_m sil 

Onset substitution errors on voiceless stops with the same manners of articulation 
 LAB: sil khaa a_w paa a_k thoo o_ng laa  aa_j phaa aa   khaa aa_w maa aa sii ii khaa     aa_w waa a_j 
 REC: sil khaa a_w paa a_k khoo o_ng klaa aa_j phaa aa_k khaa a_w  maa aa sii ii khaa a_w sil  waa a_j 

 LAB: thii ii paa aa_k thaa aa_ng khaa a_w baa aa_n sil 
 REC: thii ii taa a_k  thaa aa_ng khaa a_w baa aa_n sil 

 LAB:     sil kh_a a_w s_vv vv     ph_aa aa_n n_a a_j r_aa aa kh_aa aa s_aa aa_m     ph_a a_n b_aa aa_t sil 
 REC: sil sil kh_a a_w s_vv vv sil kh_aa aa   n_a a_j r_aa aa kh_aa aa s_aa aa_m sil ph_a a_n b_aa aa_t sil 

 LAB: ph_xx xx_n               k_aa aa_n     p_@ @_ng k_a a_n h_ee ee_t     r_aa aa_j     n_a a_j 
 REC: th_xx xx   th_v v_ng sil k_aa aa_n sil p_@ @_ng k_a a_n h_ee ee_t sil r_aa aa_j sil n_a a_j sil 

Onset substitution errors on consonant clusters 
 LAB:     sil kh_o o_n r_aa aa_j b_u u_k r_u  u_k     kh_a a_w     khr_@@ @@_p     khr_@@ @@_ng 
 REC: sil sil kh_o o_n r_aa aa_j j_u u_k r_uu uu  sil kh_a a_w sil phr_@@ @@_p sil r_@@   @@_ng 

 LAB: pr_a a m_o o_ng     khw_aa aa_ng             pr_a  a        ph_ee ee  n_ii ii     p_a a_n h_aa aa 
 REC: pr_a a m_o o_ng sil kw_aa  aa    sil sil sil pr_aa aa_t sil ph_e  e_n n_ii ii sil p_a a_n h_aa aa sil 

 LAB:     foo o_n     k@@ @@ too o_k     proo      oo_j praa aa_j loo o_ng maa aa ph@@ @@   dii ii     sil 
 REC: sil foo o_n sil k@@ @@ too o_k sil proo oo_t sil  raa  aa_j loo o_ng maa aa ph@@ @@_n dii ii sil sil 
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Table 4.12    Substitution errors on the onset units using the contextual and phonotactic onset-rhyme models. 

Onset substitution errors within a group of voiced stops 
 LAB: z_ii ii_k     kh_o o_n     p_a a_j s_a a_j     phr_i i_k     b_ii ii_p m_a a   n_aa aa_w 
 REC: d_ii ii   sil kh_o o_n sil p_a a_j s_a a_j sil phr_i i_k sil d_ii ii   b_a a_n d_aa aa   kh_a a_w sil 

Onset substitution errors between releasing voiced stop and nasal 
 LAB: sil m_aa aa_j     r_i i_m m_xx xx n_aa aa_m     kl_aa aa_ng m_vva vva_ng ch_iia iia_ng m_a a_j sil 
 REC: sil m_aa aa_j sil r_i i_m m_xx xx d_aa aa_m sil kl_aa aa_ng m_vva vva_ng ch_iia iia_ng m_a a_j sil 

 LAB: s_aa aa   m_aa aa_t   h_aa aa n_uua uua_j ng_aa aa_n     ph_uu uu r_a a_p     ph_i i_t ch_@@ @@_p sil 
 REC: s_aa aa_p m_aa aa sil h_aa aa d_uua uua_j ng_aa aa_n sil ph_uu uu r_a a_p sil ph_i i_t ch_@@ @@_p sil 

 LAB: khii i_ng     haa  aa     khoo o_n kee e_ng         hoo o_k     ngqq q_n         cee e_t sil 
 REC: khii i_ng sil thaa aa sil khoo o_n kee e_ng sil sil hoo o_k sil naa  a_n sil sil cee e_t sil 

 LAB: z_ii ii_k     kh_o o_n     p_a a_j s_a a_j     phr_i i_k     b_ii ii_p m_a a   n_aa aa_w 
 REC: d_ii ii   sil kh_o o_n sil p_a a_j s_a a_j sil phr_i i_k sil d_ii ii   b_a a_n d_aa aa   kh_a a_w sil 

 LAB:     paa a_j saa a_j     phrii i_k     bii ii_p maa a   naa aa_w kii i_n     pee e_n 
 REC: sil paa a_j saa a_j sil phrii i_k sil bii ii_p maa a_n zaa aa_w kii i_n sil pee e_n 

Removal of releasing consonant in the onset unit 
 LAB: khaa a_w praa a kuu uua_t joo o_k naa aa_m naa a_k     t@@ @@_n     kqq qq_t phlqq qq_ng maa a_j 
 REC: khaa a_w praa a uu  uua_t joo o_k naa aa_m naa a_k sil t@@ @@_n sil kqq qq_t phlqq qq_ng maa a_j sil 

 LAB: sil thaa a_ng dee e_k chaa aa_j lxx x dee e_k jii i_ng     daa aa_j pee e_n tuu uua thxx xx_n kh@@ @@_ng 
 REC: sil thaa a_ng dee e_k chaa aa_j lxx x dee e_k jii i_ng sil daa aa_j pee e_n uu  uua thxx xx   kh@@ @@_p 

 LAB: kluu uua maa a lxx xx_ng saa aa_p     cvv v_ng thaa a_m faa a_j maa a_j svv        vva 
 REC: uu   uua maa a lxx xx_ng saa aa_p sil cvv v_ng thaa a_m faa a_j maa a_j svv vv daa a_p 

 

 



 

 

CHAPTER  5 

Conclusions 

 

This dissertation presents acoustic modelling techniques for the onset units in the onset-
rhyme models.  The proposed onset-rhyme models and onset overlapping techniques are 
summarized in this chapter.  Conclusions on the research are summarized including the 
experimental results.  Contributions of this dissertation are given in this chapter along with 
future research directions on acoustic modelling of the onset-rhyme models. 

5.1 Conclusions of the Dissertation 

In this dissertation, the novel onset-rhyme acoustic models are proposed and applied to Thai 
language.  The two proposed onset-rhyme models are contextual and phonotactic onset-
rhyme models.  The primary focus of this dissertation is at the onset unit of the onset-rhyme 
models.  Therefore, both the contextual and the phonotactic onset-rhyme models have 
different characteristic of the onset units but share the same rhyme units.  The onset-rhyme 
models are composed of pairs of an onset unit and a rhyme unit.  The models contain 
overlapped segments of the onset unit over the rhyme unit.  This overlapped segment models 
is one major advantage of this model, which provide better modelling of a releasing 
consonant for the onset units. 

Phonologically, a syllable comprises an onset and a rhyme segment.  The rhyme segment 
comprises nucleus and coda of a syllable.  Considering the Thai syllable structure, an onset 
segment covers a releasing consonant of a syllable while the rhyme segment covers a vowel 
and an arresting consonant.  Acoustically, the vowel is a nucleus of a syllable that covers 
most of the whole syllable segment.  Whereas, the consonants are considered as marginal 
sounds attached to both left and right sides of the nucleus, in this case, releasing and 
arresting consonants. 

From the acoustic-phonetic analysis on Thai syllables, transitional period between a nucleus 
and its marginal sounds contains some encoded acoustic and articulatory information.  The 
formant transitions are varied according to consonant and vowel context.  However, each of 
the releasing consonant has specific acoustic characteristic that provide predictable formant 
transitions across different vowel context.  These informations provide crucial acoustic cues in 
determining releasing consonants.  Hence, modelling of an onset unit includes the transitional 
period between a releasing consonant and its adjacent vowel. 

Comparing to the initial-final models, there are many difference between the onset-rhyme 
models and the initial-final models.  Firstly, the initial-final models are context-independent 
where as the onset-rhyme models are context-dependent by nature.  Secondly, the initial-final 
do not model releasing consonant in every possible syllable context.  This issue has made the 
initial-final models context-independent.  Thirdly, the initial-final models do not have internal 
and external junctures which constitute a pair of initial and final by tying both models together. 

Two onset-rhyme models are introduced in this dissertation—the contextual and phonotactic 
onset-rhyme models.  The two models have different modelling of the onset units.  The 
phonotactic onset-rhyme models (PORMs) consider every different releasing consonant and 
vowel context as a separate onset unit.  The onset units of this models provide complete 
combinations of releasing consonants in every vowel context.  There are a total of 992 
PORMs grammatically existed, which comprises 792 onset units and 200 rhyme units. 
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Similarly, the contextual onset-rhyme models (CORMs) combine some onset units with the 
same short and long vowel pairs as a single onset unit.  From acoustic analysis, formant 
transitions in the transitional period have similar characteristics in both short and long vowel 
pairs with the same releasing consonant.  Therefore, combining the onset units with similar 
vowel context help reduce the models to 479 CORMs, which composed of 297 onset units 
and 200 rhyme units.  Both of the PORMs and CORMs share the same rhyme units.  The 
rhyme units are complete grammatically existed combinations of vowels and arresting 
consonants in Thai. 

The hidden Markov models (HMMs) are employed in modelling the onset-rhyme acoustic 
models.  The left-right topologies with no skipping state are selected in modelling using the 
hidden Markov models.  The number of Markov states in each model are varied according to 
their characteristics.  The phone models use three Markov states in each model.  Based on 
the phone models, the onset units are set to use five Markov states, which covers the whole 
phone of a releasing consonant with its transitional period.  The rhyme units are set to use 
eight Markov states, which covers the whole phones of both vowel and arresting consonant.  
In the experiments, the number of HMMs states of the onset and rhyme units are varied in 
two configurations; 5-state onset with 8-state rhyme units and 4-state onset with 6-state 
rhyme units. 

The onset units cover an arresting consonant and transitional period of its adjacent vowel.  
Then, the onset units overlap into the vowel segment of the rhyme units.  In modelling of the 
onset units, two schemes are proposed in determining an amount of overlap, the fixed and 
variable duration overlap.  The fixed duration overlap provides predefined length of overlap at 
10ms, 20ms, or 30ms into the rhyme units.  The variable duration overlap provides varying 
overlap length according to duration of adjacent vowel.  The overlap length is set at 5%, 10%, 
15%, 20%, or 25% of the vowel duration.  A series of experiments were conducted on all 
overlap schemes to see the effects of overlap length. 

The best error rate for the onset units is 10.387% using the CORMs at 25% overlap and 5-
state onset HMMs.  Using the PORMs, the onset unit error rate is at 11.753% at 20% overlap 
and 5-state onset HMMs.  On the entire onset-rhyme models, the best word error rate (WER) 
is at 13.529% using the PORMs at 20% overlap with 5-state onset and 8-state rhyme HMMs.  
The CORMs provide 16.518% word error rate at 15% overlap with 5-state onset and 8-state 
rhyme HMMs.  The phone models give out only 37.12% word error rate.  The PORMs reduce 
word error rate up to 55.76% over the phone models.  From experimental results, the variable 
duration overlap offers significantly better error rates over the fixed duration overlap in all 
cases.  Moreover, the longer Markov states also provides better accuracy in every case. 

The onset-rhyme models prove themselves to provide better modelling of speech than the 
conventional phone models.  The onset-rhyme models incorporate language modelling into 
the models through the pairs of onset and rhyme units.  Then, the models are context-
dependent where phonotactics are embedded into the models in forming a syllable.  The 
models are consistent in which the same models have similar characteristics across different 
speech instances.  The models cover a finite set of speech units, which represent all potential 
speech units of the language.  The models also capture coarticulatory effects over the entire 
syllable.  The effects are handled by overlapping over the transitional period in an onset unit 
and by covering the whole nucleus and coda in a rhyme unit.  These characteristics of the 
onset-rhyme models provide better acoustic modelling of speech than other models. 

Although only partial set of onset-rhyme models were utilized, this is possible in 
implementation of a small, task-specific Thai continuous speech recognition system.  This 
kind of small system is much easier to optimize to have very high recognition accuracy. 

In selection of speech units for recognition, two criteria were used—consistency and 
trainability (Lee, 1990).  In this dissertation, three new criteria are introduced, that is, 
economy, workability, and practicality.  Various speech units are then compared based on 
these five criteria.  Results of comparison are summarized in Table 5.1 in application to the 
Thai continuous speech recognition.  Details about each criterion is shown as follows. 
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� Consistency—the consistency criterion concerns about acoustic resolution of a 
speech unit in which the same unit is consistent in every speech instance. 

� Trainability—the trainability criterion considers estimation reliability of each speech 
unit.  Estimation of each speech unit should be reliable with certain amount of data. 

� Economy—the models should have finite number of speech units which could be 
easily and reliably estimated. 

� Workability—the workability criterion considers ability of the speech units to use in 
different environments.  Also, the speech units should be speaker-independent. 

� Practicality—the practicality criterion concerns about applying the speech units into 
actual practice. 

Currently used speech units are analysed based on the above criteria including the onset-
rhyme models.  Summary of the speech units is shown in Table 5.1 based on the five criteria.  
The onset-rhyme models satisfy all the criteria of consistency, trainability, economy, 
workability, and practicality.  The onset-rhyme models are consistent in which the same onset 
and rhyme units are characteristically similar across different instances.  The models have 
finite set of speech units that could be trained with a small set of sentences.  The finite 
number of units satisfy both trainability and economy.  All the onset and rhyme units cover the 
whole potential speech unit in every context.  On the workability criterion, the onset-rhyme 
models could be used in various environments, i.e., clean and noisy.  On the practicality 
criterion, the onset-rhyme models could be easily applied to any tone languages resulted from 
the finite amount of speech units. 

Comparing to the other speech units, the onset-rhyme models provide some significant 
advantages over other acoustic models.  Firstly, the onset-rhyme models cover the whole 
potential speech units of the language.  Every combination of consonant-vowel context has 
been modelled.  Secondly, the onset-rhyme models are able to handle any new unknown 
syllables or words.  The context-dependent phone models, diphones and triphones, are 
unable to cope with new unseen triphones of new words.  For these reasons, the onset-rhyme 
models satisfy both criteria of workability and practicality as described. 
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Table 5.1    Evaluation of various acoustic speech units for Thai continuous speech recognition. 

Speech Units Consistency Trainability Economy Workability Practicality 

Word models Yes No No Poor Poor 

Phone models No Yes Yes Good Fair 

Multi-phone models Yes Difficult No Good Fair 

Transition models Yes Difficult No Fair Fair 

Word-dependent phone models Yes Through Sharing No Poor Fair 

Context-dependent phone models Yes Through Sharing No Fair Poor 

Initial-Final Models Final Models 
Only Yes Yes Fair Fair 

Onset-Rhyme Models Yes Yes Yes Very Good Very Good 
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5.2 Contributions of the Dissertation 

This is the summary of contributions made by the research in this dissertation.  These 
contributions are significant parts, which make up this dissertation.  All of the contributions are 
summarized as follows. 

A. The Onset-Rhyme Acoustic Models 

This dissertation conducted basic researches on acoustic models for Thai continuous speech 
recognition.   The two novel acoustic models are introduced in this dissertation—contextual 
and phonotactic onset-rhyme models.  The two models are utilized in Thai continuous speech 
recognition system.  The concept of onset and rhyme was applied to a Thai speech synthesis 
system in 1992 by Luksaneeyanawin (1992a).  In the two proposed models, the onset units 
cover transitional period between releasing consonant and adjacent vowel.  An amount of 
coverage over the transional stage could be determined by the two proposed methods—the 
fixed and variable duration overlap. 

B. The Contextual and Phonotactic Onset-Rhyme Models 

The most significant contribution of this dissertation is the introduction of the contextual and 
phonotactic onset-rhyme models.  This dissertation focuses only at the onset unit.  These two 
models have different characteristics of the onset units but share the same rhyme models.  
Both models have illustrated better modelling of speech than the phone models without 
applying any language modelling or any other techniques.  The advantages of the two models 
are described as follows. 

� The phonotactic onset-rhyme models provide complete modelling of the onset units in 
every possible context.  The onset units contain releasing consonant with transitional 
period toward its adjacent vowel.  Each releasing consonant is modelled in every 
vowel context existed in the language.  This kind of modelling has made the models 
context-dependent.  The model has 792 onset units, which are grammatically 
occurred in Thai language. 

� In the contextual onset-rhyme models, a releasing consonant within context of the 
same short-long vowel pairs share a single onset unit.  The sharing of onset units 
with similar context helps reduce the number of onset units.  This model has 279 
onset units, which are grammatically occurred in Thai language. 

� Every onset unit incorporates transitional period between a releasing consonant and 
its adjacent vowel nucleus of the same syllable. 

� The onset-rhyme models are overlapped segment models in which the onset units 
overlap into the rhyme units in modelling to include the transitional period into the 
onset units. 

� The onset-rhyme models are context-dependent speech units in which every 
releasing and arresting consonants are modelled in all possible vowel contexts. 

� The onset-rhyme models always occur in pairs of an onset unit and a rhyme unit, 
which make up syllables, words, and sentence respectively.  The phonotactic or 
phonological rules are embedded in each pair of onset and rhyme units, where 
language modelling is automatically integrated. 

� The onset and rhyme units in both models cover all potential speech units of the 
language, which are grammatically existed. 
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C. Fixed and Variable Duration Overlap Schemes for the Onset Units 

The onset units overlap into the rhyme units in both of the proposed contextual and 
phonotactic onset-rhyme models.  The overlap duration must be sufficient to cover the whole 
transitional period between a releasing consonant and its adjacent vowel.  Therefore, two 
techniques are introduced to determine duration of overlap into the rhyme unit—the fixed and 
variable duration overlap.  Details of the fixed and variable duration overlap are summarized 
as follows. 

� The fixed duration overlap provide constant length of overlap over the vowel segment 
of a rhyme unit at 10 ms, 20 ms, or 30 ms.  These figures are based on the minimum 
length of a vowel segment in a syllable.  The shortest vowel segment is about 30 ms 
long in the speech corpus.  Using longer duration beyond 30 ms might cover the 
whole vowel segment including a coda or even the whole syllable. 

� The variable duration overlap provide varied length depending on the length of vowel.  
The duration is at 5%, 10%, 15%, 20%, or 25% of the vowel length.  The concept of 
this technique is based on results of acoustic analysis on Thai syllables.  The length 
of transitional period is varied according to the length of a vowel nucleus. 

D. Acoustic Analysis on the Thai Continuous Speech 

Acoustic-phonetic analysis is the study of acoustical properties in relation to phonetic 
characteristics of sounds.  Acoustic-phonetic analysis on Thai continuous speech had been 
conducted prior to creating acoustic models.  A set of Thai continuous speech was 
extensively analysed and study on their acoustical properties.  Many acoustic knowledge was 
obtained from the analysis, which provide solid background for acoustic modelling.  The 
analyses were focused on the Thai syllables including the syllable nucleus and its marginal 
sounds. 

Results of the analysis provide understanding of Thai continuous speech.  Some experiments 
were also conducted including classification of the Thai monophthongs using acoustic-
phonetic features.  The result of this analysis and experiment was writtern in a technical 
article as located in the Appendix B of this dissertation. 

E. Thai Text Corpora and Thai Continuous Speech Corpora 

This dissertation provides sets of text corpus used in speech recording for training and 
testing.  The text corpus had been created and analysed to contain sufficient samples of each 
onset unit and rhyme unit available for training.  The text corpus was then used for recording 
of Thai continuous speech.  Procedures in preparing the Thai text corpus is described as 
follows. 

� The text corpus contains text from many sources including some Aesop’s fables.  
Most of the text are created by the author and his colleage. 

� The Thai text are transferred into a computer by typing and segmented into 
sentences.  Every sentence of Thai text is transcribed into phonetic transcriptions. 

� The transcribed phonetic transcriptions of each sentence are then analysed to 
compute statistical distribution of onset and rhyme units. 

� The whole process is repeated until there are sufficient samples of each unit. 

After text analysis, the completed text corpora are used in recording of Thai continuous 
speech on the sentence-by-sentence basis.  The speech were recorded in reading or 
dictation style.  The sets of recorded speech are manually labelled by their phonetic 
transcriptions.  The Thai speech corpora contain only utterances spoken by the author.  
Details of the Thai speech corpora are shown as follows. 
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� Labelled Corpus –– contains 553 sentences with manually labelled transcriptions. 

� Unlabelled Corpus –– contains 400 sentences with sentence transcriptions. 

� Test Corpus –– contains 32 sentences with sentence transcriptions. 

F. Speech Analysis Tools 

Many tools have been created for the research in Thai continuous speech recognition.  The 
tools include speech analysis tool, speech labelling tool, Thai text parser, speech unit analysis 
tool, for instance.  This dissertation contributes these tools for research in Thai continuous 
speech recognition in the future. 

� Speech analysis tool –– for analysing on acoustic properties of speech. 

� Speech labelling tool –– for labelling of continuous speech by their phonetic 
transcriptions 

� Thai text parser –– for conversion of Thai text into phonetic transcriptions 

� Speech unit analysis tool –– for analysing the amount of onset and rhyme units with 
their statistical distribution 

5.3 Future Research in Acoustic Modelling 

Eventhough high recognition accuracy was achieved using the onset-rhyme models, there are 
many issues that need some improvements. 

� This dissertation focuses only at the onset unit.  Extensive analysis and modelling of 
the rhyme unit is needed to complete the whole onset-rhyme models. 

� More text and speech corpora are needed to cover the whole onset and rhyme units 
since this dissertation covers only a partial set of both units.  This partial set of units 
are resulted from using only one speaker for both training and testing.  However, 
each onset and rhyme units has sufficient samples for creating and training a stable 
model. 

� Due to limited resources, only a single male speaker was used in training and testing.  
There are many issues on the use of only one speaker.  Firstly, verification of the 
proposed acoustic models could be conducted on a small-scale corpus and system.  
Then, speech data of a single speaker should be sufficient with certain amount of 
speech units.  Secondly, recording and labelling of utterances take a long time to 
complete and very labor-intensive.  Both text and speech corpora took over six 
months to complete in this dissertation.  Therefore, more speakers of both male and 
female are needed to sufficiently model and test the acoustic models in speaker-
independent environment. 

� Compares recognition performance of the onset-rhyme models to every available 
speech unit, i.e., diphones, triphones, demisyllable, initial-final, etc.  These 
experiments should be conducted on a large-scale basis. 
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APPENDIX  A 

The Thai Text Corpus 
 

The list of test sentences in Thai is collected in this chapter.  List of test sentences is shown in 
Table A1.1.  Other collection of the whole text corpus is too large to keep in this dissertation.  
Please contact the author if any one would like to see the whole corpus. 
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Table A1.1    List of Thai test sentences 
1. เขาปกธงลายผาขาวมาสีขาว  ไวที่ปากทางเขาบาน 
2. กวาที่ชายหนุมจะเอยปากพูดจากับหญิงสาว  ฝนก็ตกโปรยปรายลงมาพอดี 
3. คนรายบุกรุกเขาครอบครองสารเคมี  ที่เปนสวนประกอบของสิ่งเสพติด  ในจังหวัดเชียงราย 
4. เครื่องยนตทั้งสองเครื่องของเครื่องบิน  หยุดทํางานพรอมกันเมื่อน้ํามันหมด 
5. เปาหมายของผูกอการราย  คือจับผูเขาประกวดยกน้ําหนัก  ตอนเกิดเพลิงไหมไดอยางแยบยล 
6. โรงเรียนตั้งอยูทามกลางแมกไม  ริมแมน้ํากลางเมืองเชียงใหม 
7. ภายหลังการสอบสวน  ก็ยังไมสามารถหาหนวยงานผูรับผิดชอบ  ตอเหตุการณที่เกิดขึ้นได 
8. รานคาขายสินคาในราคายอมเยา  ไมเอาเปรียบผูซื้อ  และไมเก็งกําไรเกินสมควร 
9. เขาโดนมีดโกนบาดที่ขางแกมกนจนเลือดสาด  ตอนนั่งฟงเพลงอยูขางกองฟาง 
10. หญิงสาววางแจกันถัดไปจากถาดและกระเชาดอกไมขางกระโถน 
11. ชายผูนั้นเมื่อยลา  จึงละเลยปายหามลาสัตวปา  เลยยางแตกตองปะกันในปา 
12. เจาหนาที่ตํารวจ  รวมกันจัดแผนการณปองกันเหตุรายในชวงวันหยุด 
13. หญิงสาวเลาะชายกระโปรงที่ขาดออกทิ้งไป  เพราะไปเกี่ยวโดนลอรถจนขาด 
14. ตนเงาะ ตนถ่ัว ตนโพธิ์ และตนหลิว ตางก็เปนตนไมทั้งส้ิน 
15. ทั้งเด็กชายและเด็กหญิง ไดเปนตัวแทนของประเทศ เดินทางไปแขงขันในตางประเทศ 
16. ยามเดินมาซื้อยํากุงแหง  ใหยามอีกคนไปใสพริกบีบมะนาว  กินเปนอาหารกลางวัน 
17. หนิงเปนคนเกงละเอียดรอบคอบ แตกลัวแมลงสาบ จึงทําไฟไหมเส้ือผาฝายหมดทั้งตัว 
18. เขาเดาวา  เสือดาวเขามาทํารายคนในหมูบานเมื่อคืนนี้ 
19. ในตอนกลางวัน  กระแสลมพัดขาวของกระจุยกระจายไปทั่วทั้งหมูบาน 
20. จังหวัดเชียงใหมและจังหวัดเชียงราย  รวมกันจัดงานดอกไมเมืองหนาวในชวงปลายป 
21. ชัยเปนยามเจาหนาที่  ใชถาดใสยํากั้นไมใหมีการบุกรุกปาชายแดน 
22. นายพรานเลี้ยงนกอินทรีย  นกยูง  และนกเอี้ยงไวในปา 
23. กระดาน กระชอน เครื่องหมาย ถ่ัวเหลือง ดอกไม ทบทวน ดินเหนียว 
24. ทางหลวง น้ําตาล หมูหยอง ประมง ขวาง ประเพณี ปญหา โรงเรียน ลําดับ 
25. ลูกสาว หนาตาง ลูกชาย ไหวพริบ ลูกปด หมูบาน ลูกเหล็ก ขวด กํานัน 
26. หนึ่ง กลาวหา สอง กลาหาญ สาม ขาวโพด ส่ี ขิง หา คนเกง หก เงิน เจ็ด 
27. ฝากฝง ฝกขาวโพด ทาสชาย ขางแรม ภูเขาสีขาว เดาดวงดาว น้ําหอมนําเขาจากตางประเทศ 
28. ฝายชายเปนฝายไดชัย  ฝายหญิงมีไฝใสผาฝายติดไฟงาย  นั่งฟงอยูขางกองฟาง 
29. แมบาน ระเบียบ แมน้ํา ระเบียง ภาคอีสาน ลวดลาย ภาษาไทย สายลม 
30. เคล่ือนไหว ชองวาง ชาวบาน ตนเงาะ บิดงอ เชาบาน ตอนเชา 
31. เขาซื้อพานในราคาสามพันบาท 
32. เล็กเขียนตัวเลขไดอยางสวยงาม 
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Units Amount 
n_a 333 
m_a 247 
th_ii 235 
n_aa 229 
m_aa 225 
kh_a 213 
th_a 208 
p_a 199 
k_a 181 
c_a 172 
j_aa 165 
s_a 143 
l_x 125 

kh_o 123 
l_a 121 
h_a 118 

kh_aa 118 
kh_@@ 114 

w_a 114 
w_aa 113 
m_ii 110 
d_aa 109 
ch_aa 100 
k_aa 99 
j_uu 96 
p_e 92 
r_aa 92 
h_aa 91 
r_a 90 

k_@@ 89 
c_o 88 
kr_a 87 
c_aa 86 
ch_a 86 
s_aa 85 
t_aa 83 
l_aa 80 
t_xx 76 
l_o 75 
c_v 74 
n_ii 73 

th_aa 73 
t_uua 70 
ph_aa 69 
l_xx 64 
z_aa 63 

khw_aa 61 
t_a 61 

pr_a 58 
b_aa 55 
z_a 55 

s_@@ 54 
t_@@ 54 
ph_a 53 

ph_uu 53 
ph_vva 53 
kh_v 52 

r_@@ 51 
l_uu 49 
t_o 48 

th_uu 48 
j_a 47 

m_vva 47 
b_o 46 
d_a 46 

z_@@ 46 
r_vva 45 
b_a 44 
n_v 43 

p_aa 43 
t_@ 43 

n_@@ 42 
ng_aa 42 

s_o 42 
d_uu 41 

d_uua 40 
th_uua 40 
d_qq 39 
k_i 39 

s_iia 37 
l_e 36 
l_qq 35 
d_e 34 
d_ii 34 

phr_@ 34 
n_o 33 
th_u 33 
w_i 33 
th_v 32 
n_i 31 
f_a 30 

d_oo 29 
kl_aa 29 

m_@@ 29 
m_o 29 
ph_e 29 
ph_i 29 
s_ii 29 

s_uua 29 
ch_iia 28 

r_o 28 
s_vv 28 
kh_u 27 

pl_@@ 27 
r_uua 27 

th_iia 27 
z_iia 27 
b_iia 26 

ph_@@ 26 
pl_@ 26 
k_xx 25 
kh_ii 25 

kw_aa 25 
ph_xx 25 
r_iia 25 
s_u 25 
z_ii 25 

b_@@ 24 
ch_vva 24 

d_i 24 
l_@@ 24 
l_vva 24 
m_xx 24 
s_i 24 
j_i 23 
j_u 23 

ph_o 23 
r_uu 23 

s_vva 23 
th_@@ 23 

th_i 23 
h_e 22 
c_e 21 
j_@ 21 

khr_a 21 
m_vv 21 
ph_qq 21 
z_uua 21 

c_i 20 
f_aa 20 
j_oo 20 
l_u 20 
r_xx 20 
s_uu 20 
b_i 19 
b_u 19 

c_@@ 19 
j_o 19 
kl_a 19 
l_ee 19 

pr_iia 19 
tr_ii 19 
tr_o 19 
h_xx 18 
j_xx 18 

khl_a 18 
ph_iia 18 
z_ee 18 
h_@ 17 

Table A1.2    Statistics of the Thai onset units on their frequency. 
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k_e 17 
kh_x 17 
n_u 17 

n_vva 17 
n_xx 17 

phr_@@ 17 
r_ii 17 
r_u 17 
th_x 17 
f_o 16 
h_o 16 
l_oo 16 

pr_aa 16 
r_e 16 
t_u 16 

th_ee 16 
th_xx 16 
ch_o 15 
j_e 15 
j_vv 15 
k_o 15 

k_oo 15 
k_qq 15 
k_uua 15 

khl_@@ 15 
kl_uua 15 
s_xx 15 
z_vv 15 

ch_@@ 14 
ch_uua 14 
h_uua 14 
kh_iia 14 

kh_uua 14 
kh_vv 14 
khr_aa 14 

l_i 14 
l_uua 14 

ph_uua 14 
phl_qq 14 

r_i 14 
s_ee 14 

h_@@ 13 
j_vva 13 
k_@ 13 

kh_qq 13 
khl_u 13 

khr_uua 13 
m_e 13 
ph_x 13 
phr_i 13 
pl_aa 13 
pl_o 13 
pl_xx 13 
r_qq 13 
t_i 13 

th_qq 13 
w_ee 13 
b_xx 12 

c_ii 12 
ch_vv 12 
d_xx 12 

j_@@ 12 
k_u 12 

khl_vva 12 
ph_vv 12 
phl_aa 12 

s_e 12 
t_ii 12 

th_vv 12 
b_uu 11 
c_iia 11 

c_uua 11 
ch_qq 11 
d_@@ 11 
d_iia 11 
d_o 11 

k_vva 11 
kh_i 11 

kh_uu 11 
khw_a 11 
kr_uua 11 

l_vv 11 
n_iia 11 

ng_oo 11 
ng_q 11 
ng_u 11 

p_uua 11 
ph_ee 11 
t_oo 11 
z_@ 11 
z_i 11 

z_oo 11 
z_u 11 

b_oo 10 
c_qq 10 
ch_@ 10 
ch_ii 10 

d_vva 10 
h_i 10 
h_x 10 

k_ee 10 
kh_e 10 

khl_aa 10 
khl_oo 10 
khl_vv 10 
m_uu 10 
ng_a 10 
p_@ 10 
p_o 10 

ph_oo 10 
ph_u 10 
ph_v 10 
phl_u 10 

pr_@@ 10 
t_uu 10 
t_x 10 

z_qq 10 
c_oo 9 
ch_e 9 
h_oo 9 
k_iia 9 

khr_vva 9 
m_u 9 

m_uua 9 
n_@ 9 
p_ii 9 

phl_xx 9 
phr_aa 9 
pl_iia 9 
pr_@ 9 
r_@ 9 
s_oo 9 
s_v 9 
t_e 9 

tr_uua 9 
b.@ 8 

b_vva 8 
b_x 8 
ch_i 8 
d_vv 8 
f_v 8 
f_xx 8 
h_ee 8 
h_vva 8 

k_x 8 
kh_vva 8 
khl_ee 8 
khr_uu 8 

kl_i 8 
kr_o 8 
l_iia 8 
l_q 8 
l_v 8 

n_uua 8 
p_i 8 

ph_ii 8 
phl_ee 8 
phl_oo 8 
r_oo 8 
t_vv 8 
th_o 8 
th_q 8 
tr_iia 8 
w_@ 8 
w_o 8 
w_xx 8 
z_o 8 
c_@ 7 
c_u 7 
d_u 7 
f_uu 7 
h_ii 7 

h_uu 7 
k_ii 7 
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kh_ee 7 
kh_xx 7 

khr_@@ 7 
kl_@@ 7 

kl_u 7 
kr_x 7 
l_@ 7 

m_iia 7 
m_oo 7 
n_uu 7 
n_x 7 

ng_@ 7 
ng_qq 7 
p_iia 7 
p_vva 7 
phl_a 7 
phl_i 7 
phr_a 7 
r_vv 7 
s_@ 7 
t_iia 7 

th_oo 7 
tr_a 7 

tr_aa 7 
tr_uu 7 
b_ii 6 
c_q 6 

c_uu 6 
ch_oo 6 
j_ee 6 

khl_xx 6 
kr_@ 6 
m_i 6 

m_qq 6 
n_e 6 
n_qq 6 

ng_@@ 6 
ng_ee 6 
ng_o 6 
p_qq 6 
p_uu 6 
ph_@ 6 

pl_i 6 
pr_oo 6 

t_v 6 
w_e 6 
khl_ii 5 

phr_oo 5 
pl_ee 5 
r_v 5 

tr_xx 5 
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Units Amount 
a_j 911 
aa 668 
ii 543 
a 502 

a_n 376 
aa_j 332 
o_n 317 

aa_ng 315 
aa_n 285 

uu 252 
aa_m 244 
a_w 236 
a_ng 233 
a_m 225 

@@.ng 196 
e_n 186 
v_ng 151 
aa_k 140 
vva 139 
@@ 136 
uua 135 
a_p 131 

aa_w 129 
x 123 
xx 120 

@@.n 116 
a_k 115 

o_ng 107 
i_n 100 
i_ng 100 
uu_k 99 
aa_t 94 

@@.k 92 
o_t 91 

@.ng 87 
iia_ng 87 
uua_j 85 
o_k 84 
a_t 77 
@ 75 
vv 73 

vv_n 71 
xx_ng 71 

i_t 67 
qq_j 67 
u_k 64 
x_ng 64 

vva_ng 61 
iia_n 59 
o_m 58 

uua_n 58 

xx_w 57 
uua_t 56 
u_n 55 

@@.p 54 
iia_w 54 
v_n 52 
@_j 51 

@@.m 50 
xx_k 50 
qq_n 47 
e_k 46 

@@.j 45 
@@_t 45 

o_p 45 
oo_n 44 

u 44 
ee_t 43 
xx_n 42 
e_t 39 

oo_ng 38 
i 37 

u_t 36 
ii_p 35 
u_m 35 
iia_p 34 
oo 34 

u_ng 34 
qq 33 

oo_t 32 
vva_n 32 
e_p 31 
aa_p 29 

ee 29 
i_m 29 
x_n 29 
@.n 28 

ee_ng 28 
@.m 27 
i_w 27 
v_k 27 

uu_ng 24 
xx_p 24 
iia 23 

oo_j 23 
q 23 

uu_t 23 
vva_m 23 
iia_m 22 
oo_k 22 

uua_ng 22 
xx_m 22 
qq_t 21 

vva_p 21 
iia_t 20 

i_p 19 
ii_k 19 
ii_n 19 

qq_m 19 
qq_ng 18 
vv_t 18 

uua_m 17 
vva_k 17 
uua_k 16 
e_m 15 
e_ng 15 
i_k 15 
u_j 15 

vva_t 15 
ii_m 14 
qq_k 14 
ii_t 13 

ee_k 12 
oo_m 12 
oo_p 12 
uu_n 12 
v_p 12 
xx_t 12 
u_p 11 

vv_m 11 
vva_j 11 
e_w 10 

ee_m 10 
ee_w 10 
iia_k 10 
q_n 10 
uu_p 10 

uua_p 10 
ee_n 9 
ee_p 8 
x_w 6 

e 5 
o 5 
v 5 

 

 

Table A1.3    Statistics of the Thai rhyme units on their frequency. 
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Table A1.4    Statistics of the Thai tones in the 
speech corpus. 

/0/ 1051 33.6428% 

/1/ 684 21.8950% 

/2/ 697 22.3111% 

/3/ 419 13.4123% 

/4/ 273 8.7388% 
 

Table A1.5    Statistics of the Thai 
monophthongs in the speech corpus. 

/a/ 954 32.3609% 

/aa/ 628 21.3026% 

/@@/ 218 7.3948% 

/ii/ 186 6.3094% 

/i/ 156 5.2917% 

/v/ 127 4.3080% 

/o/ 125 4.2402% 

/xx/ 96 3.2564% 

/uu/ 92 3.1208% 

/u/ 63 2.1370% 

/e/ 63 2.1370% 

/oo/ 53 1.7978% 

/qq/ 46 1.5604% 

/@/ 41 1.3908% 

/x/ 30 1.0176% 

/vv/ 29 0.9837% 

/ee/ 28 0.9498% 

/q/ 13 0.4410% 
 

Table A1.6    Statistics of the Thai diphthongs 
in the speech corpus. 

/uua/ 80 45.4545% 

/vva/ 73 41.4773% 

/iia/ 23 13.0682% 

/ia/ 0 0.0000% 

/va/ 0 0.0000% 

/ua/ 0 0.0000% 
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Table A1.7    Statistics of the Thai releasing 
consonants in the speech corpus. 

/m-/ 311 10.4503% 

/n-/ 310 10.4167% 

/c-/ 218 7.3253% 

/k-/ 216 7.2581% 

/th-/ 196 6.5860% 

/t-/ 179 6.0148% 

/kh-/ 151 5.0739% 

/l-/ 148 4.9731% 

/s-/ 141 4.7379% 

/r-/ 135 4.5363% 

/d-/ 128 4.3011% 

/p-/ 127 4.2675% 

/h-/ 125 4.2003% 

/w-/ 120 4.0323% 

/j-/ 120 4.0323% 

/ph-/ 102 3.4274% 

/z-/ 92 3.0914% 

/ch-/ 64 2.1505% 

/b-/ 46 1.5457% 

/ng-/ 32 1.0753% 

/f-/ 15 0.5040% 

 

 

Table A1.8    Statistics of the Thai arresting 
consonants in the speech corpus. 

/-n/ 561 25.5000% 

/-j/ 446 20.2727% 

/-ng/ 427 19.4091% 

/-k/ 191 8.6818% 

/-m/ 181 8.2273% 

/-w/ 161 7.3182% 

/-t/ 128 5.8182% 

/-p/ 105 4.7727% 
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Table A1.9    Statistics of the Thai releasing 
consonant clusters in the speech corpus. 

/kr-/ 36 24.3243% 

/khw-/ 21 14.1892% 

/kl-/ 17 11.4865% 

/tr-/ 15 10.1351% 

/khr-/ 13 8.7838% 

/phr-/ 11 7.4324% 

/kw-/ 10 6.7568% 

/phl-/ 8 5.4054% 

/pl-/ 8 5.4054% 

/pr-/ 7 4.7297% 

/khl-/ 2 1.3514% 

/thr-/ 0 0.0000% 

/fr-/ 0 0.0000% 

/br-/ 0 0.0000% 

/dr-/ 0 0.0000% 
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A2 Unit Statistics on Test Sentences 

The 32 test sentences are composed of 180 phonotactic onset units and 99 rhyme units.  
Statistics of the phones in the test sentences are shown as follows. 

 

Table A2.1    Number of releasing consonants in the test sentences 

Phones Qty  Phones Qty  Phones Qty 

/kh-/ 46  /p-/ 27  /c-/ 19 

/m-/ 43  /t-/ 26  /f-/ 16 

/th-/ 37  /j-/ 26  /b-/ 15 

/n-/ 37  /r-/ 25  /h-/ 14 

/k-/ 35  /ch-/ 24  /w-/ 13 

/s-/ 35  /d-/ 23  /z-/ 9 

/l-/ 33  /ph-/ 21  /ng-/ 8 

 

Table A2.2    Number of arresting consonants in the test sentences 

Phones Qty  Phones Qty 

/-p/ 18  /-ng/ 99 

/-t/ 44  /-n/ 93 

/-k/ 34  /-w/ 38 

/-m/ 34  /-j/ 88 

 

Table A2.3    Number of consonant clusters in the test sentences 

Phones Qty  Phones Qty 

/pr/ 11  /khw/ 1 

/kr/ 8  /kw/ 1 

/kl/ 7  /thr/ 0 

/khr/ 6  /tr/ 0 

/phr/ 5  /fr/ 0 

/phl/ 2  /br/ 0 

/pl/ 1  /dr/ 0 

/khl/ 1    
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Table A2.4    Number of monophthongs in the test sentences 

Vowels Qty  Vowels Qty  Vowels Qty 

/aa/ 164  /uu/ 19  /qq/ 9 

/a/ 136  /xx/ 16  /@/ 9 

/@@/ 35  /e/ 14  /x/ 7 

/o/ 33  /oo/ 11  /vv/ 4 

/ii/ 23  /u/ 9  /v/ 4 

/i/ 23  /ee/ 9  /q/ 1 

 

 

Table A2.5    Number of diphthongs in the test sentences 

Diphtongs Qty  Diphtongs Qty 

/uua/ 21  /ia/ 0 

/iia/ 14  /va/ 0 

/vva/ 14  /ua/ 0 

 

 

Table A2.6    Number of tones in the test sentences 

Tones Qty 

/0/ 201 

/2/ 124 

/1/ 121 

/3/ 65 

/4/ 64 
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