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CHAPTER 1

Introduction

Speech can be considered as the most natural way of human communication and interaction.
Humans utilize speech as a communication medium since they were born. As for the human-
machine interaction, a conventional method is a keyboard input and screen output as seen in
most computer systems. This way of interaction is both inconvenient and inefficient for
anyone with less typing skills or people with disabilities. Then, speech input provides an
alternative means of human-machine interaction as user-friendly interface which is more
natural to human users, less intimidating than a keyboard, and thus requires much less
operating skills.

Researches in speech processing are progressing considerably during the past decades up
to the present. In the past four decades, research in speech recognition has been
considerably progressed since the earliest attempts in the 1950s. (Rabiner and Juang, 1993;
Zue, et al., 1995) An interdisciplinary research on speech recognition effectively utilizes
knowledge from many sources such as linguistics, psychology, computer science, and
engineering.  Applications of automatic speech recognition and speech synthesis are
incorporated into many tasks such as voice dialing in mobile phones, voice-activated controls,
banking, security systems, air traffic information retrieval, weather information retrieval, etc.
(Rabiner and Juang, 1993; Zue, et al., 1995)

Spoken language processing as well as computing technology play a major role in rapid
advances of spoken language system technology. Several successful speech recognition
prototypes have been proposed based on underlying word model (Lee, 1989; Rabiner and
Juang, 1993). This word model or word-based approach has already compensated for the
coarticulatory effect in the model by treating each utterance as a whole. However, these
particular systems have reached their limitations on the number of words in the vocabulary to
be modeled individually which training data could not be shared between words. Then, a
concept of subword model has been proposed to use a smaller number of units which
construct a word or a syllable as a recognition unit, that is, a phonemic unit or a phoneme
(Lee and Hon, 1988, 1989; Lee, 1989, 1990; Lee, Hon, and Reddy, 1990; Lee et al., 1990;
Rabiner and Juang, 1993).

1.1  Speech Recognition Framework

In recognition of an unknown utterance, each utterance is assumed to comprise a sequence
of structured. and lingistically meaningful words (Juang and Furui, 2000). Bayes’ decision
theory have been applied in decoding of a sequence of words as shown in Eq. (1.1).

PW )P\ X\W
W = arg‘rvnax P(W|X) = argv?lax % ............................. (1.1)

where X = (xl,xz,...,xT) and W= w,wy,...,wy; W, eV

From Eq. (1.1), the sentence or the word sequence W is a result of maximum a posteriori on
probability of a word sequence W given a possible acoustic realization X in which each word
exists in the vocabulary V. The X is an acoustic realization of a sequence of words W. The
P(X|W) is related to probabilistic realization of the word sequence. The P(W) defines the
probabilistic relationship that exists among words when they appear in sequence (Lee, 1989;



Huang, Acero, and Hon, 2001; Juang and Furui, 2000). The P(X) is probability of acoustic
realization sequence X. Applying Bayes’ theory, the P(W) and the P(X|W) are referred to
language model and acoustic model respectively.

In recognition of continuous speech, various kinds of speech units have been used to handle
coarticulatory effects existed in continuous utterances. The complexity of a recognition
system is directly related to a number of speech units. Examples of speech units are ranging
from words, syllables, phones, etc., where issues in both high acoustic resolution and low
estimation reliability, or consistency and trainability, must be considered. Various kinds of
speech units currently used in most continuous speech recognition systems are described in
the next section.

1.2  Selection of Speech Units

Selection of speech units is one of the most important issue in designing and developing a
continuous speech recognizer. Particular speech segments have been used as the basic
modelling unit for a continuous speech recognizer which determine the acoustic resolution
and estimation reliability of the basic model. Then, the tradeoff between high acoustic
resolution and low estimation reliability, or detailed models and limited training data, have to
be compromised between the two issues (Lee, 1990; Juang and Furui, 2000). Currently,
there are many speech units utilized in speech recognition systems, for examples, word,
phone, etc. Summary of evaluation on these speech units is shown in Table 1.1. The details
of each speech units are described in this section.

A. Word Model

Word models assimilate phonological variations on within-word contextual effects or
coarticulatory effects. Word models are the most natural speech units since a continuous
speech recognition system considers a sentence as a sequence of words. Many samples of
each word are needed to reliably estimate a word model. Acoustic data of a word are solely
used for training of that particular word and is unable to be shared among words. Then, for a
large-vocabulary speech recognition system, it is very difficult to collect acoustic data for
every new word to be reliably estimated. Moreover, in a continuous speech, there are
coarticulatory effects between each word or at word boundaries in which the word models are
not be able to model.

B. Context-Independent Phones—Monophone Models

In order to share models across words, common subword models have been used, the
phonetic models. Phonetically, the smallest subword units are phonemes or monophones.

Table 1.1 Evaluation of previously proposed units of speech to large
vocabulary recognition (Lee, 1990)

Units Consistency Trainability
Word model Yes No
Phone model No Yes
Multi-phone model Yes Difficult
Transition model Yes Difficult
Word-dependent phone model Yes Through Sharing

Context-dependent phone model Yes Through Sharing




The sequence of monophone models make up a single word. There are only about 50
phones in English and about 57 phones in Thai, then, the monophone models are sufficiently
trained with just a few hundred sentences. However, the monophone models assume that
any monophones in different context have similar characteristics, in other words, context-
independent. But, in practical, a monophone is strongly affected by its immediate adjacent
monophones. Hence, the monophone models is overgeneralize where the word models lack
generality (Lee, 1990).

C. Context-Dependent Phones—Diphones and Triphones

Modelling of context-dependent phones is to model phone-in-context which is referred to the
immediate left and/or right neighbouring phones. A left-context dependent phone is
dependent on the left context while a right-context dependent phone is dependent on the right
context. Both of the left-context dependent phones and the right-context dependent phones
are the diphones. A triphone considers both the left and right neighbouring phones.

A model of diphone consists of transitional parts of a phone pair : consonant-vowel (CV),
vowel-consonant (VC), consonant-consonant (CC), and vowel-vowel (VV). This unit also
includes the steady state parts of vowels, nasals, and fricatives (Rosenberg, 1988; Lee,
Rabiner, Pieraccini, and Wilpon, 1990). The diphone is a context-dependent model which
covers a great deal of phonological variations and contextual effects within the unit and less

Table 1.2 Number of grammatically occurred Thai diphone units

(right cor-:-tlzailt:ilz:;l::gent anly) Combinations Number of Units
consonant preceding vowel C+V 33x24 = 792
vowel preceding consonant V+C 24 x33 = 792
silence preceding consonant sil+C 1x33 = 33
consonant preceding silence C +sil 8x1 =28
vowel preceding silence V + sil 24x1 = 24
silence sil 1
Total diphone units in Thai 1,650
Table 1.3 Number of grammatically occurred Thai triphone units

Thai Triphones Combinations Number of Units
consonant — vowel + consonant C-V+C 33x24x33 = 26,136
consonant —vowel + silence C-V +sil 33x24x1 = 792
vowel — consonant + vowel V-C+V 24x33x24 = 19,008
vowel — consonant + consonant V-C+C 24x8x33 = 6,336
silence — consonant + vowel sil—C+V 1x33x24 = 792
vowel — consonant + silence V—C +sil 24x8x1 = 192
consonant — consonant + vowel C-C+V 8x33x24 = 6,336
silence sil 1

Total triphone units in Thai 59,593
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Figure 1.1 Syllable parts. Figure 1.2 Thai syllable structure
(Luksaneeyanawin, 1993).

variable than phones. In English, there are combinations of 46x45 = 2,070 diphone units to
cover all words in English (Rabiner and Juang, 1993). Phonotactically, there are 1,650 left
diphone units, 1,650 right diphone units and 59,593 triphone units grammatically existed in
Thai as shown in Table 1.2 and Table 1.3.

A model of triphone is a phone-sized model that considers both left and right neighbouring
phones, that is, left-and-right context-dependent phone (Lee, Hon, and Reddy, 1990). The
triphone covers the most important coarticulatory effects and is much more sensitive than
phone modeling. The numbers of triphone units are listed in Table 1.3. Due to a large
number of triphone units, they are very difficult to train using a limited number of training data.

Analysis of syllable structures are shown in Table 1.4. Possible combinations of syllables are
described in both English and Thai. Therefore, the triphones are more practical to English
than Thai due to the complexity of syllable structure in English which contains many clusters.
In Thai, a triphone model is equivalent to word model in syllable structure aspect which is not
considered as a subword model. Phonologically speaking, for the Thai syllable, this model
does not provide any difference over a word model in recognition. The phonological structure
of the Thai syllable is shown in Figure 1.2 (Luksaneeyanawin, 1993). However, application of
onset-rhyme models in English might cause a large number of both onset and rhyme units.
This is resulted from a large number of clusters in English as shown Table 1.4 in which
combinations of English syllables are more complicated than Thai.

Table 1.4 English and Thai syllable structure combinations.

Structure Number of Combinations
Cous V Cos 20
\ CiV CinCV
VCr Ci1VCx Ci1CiVCry
) VCyCr, CitVCxCp, Ci1CiVCi1Crp
English VCyC,Crs Ci1VCxCiCrs Ci1CiVC1CroCr3
CiiCiCisV Ci1CiCisCiV
Ci1CCisVCr Ci1Ci2.CisCiVCry
Ci1CCi3VCiCry Ci1C2.Ci3CiuVCi Cy
Ci1CiCisVCCrCrs Ci1C2CisCiuVCCroCis
Co2 V Co 6
Thai \% CiV CiiCV

VCr CiiVCs Ci1CVCy




D. Subphonetic Models

There are a number of subphonetic models proposed and applied in many continuous speech
recognition systems. In 1987, IBM first proposed the “fenones” as front-end based
subphonetic units (Bahl, et al., 1993). The “shared-distribution models” was proposed and
applied to the SPHINX Il recognizer which was later developed to be the “senonic” models
(Huang, et al., 1991; Hwang and Huang, 1992; Hwang, 1993). The shared-distribution
models provide generalized triphones which acoustically similar triphones are grouped
together into a single model in order to reduce the number of models. However, there are
some limitations in this method that lead to over-generalization. Then, the subphonetic
model, the senone, was proposed to avoid over-generalization by grouping at the subphonetic
level.
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Figure 1.3 Acoustic speech units: word, syllable, demisyllable, and onset-rhyme.



E. Syllable Model

Syllable models have been employed in a syllable-based large-vocabulary continuous speech
recognition system (Ganapathiraju, et al., 2001). Syllable models have provided efficient
modelling of long-term temporal dependencies. The efficient modelling is resulted from
longer duration of the syllable models than phones and triphons. The triphones cover a very
short span of a single phone, which is difficult to cover spectral and temporal dependencies.
In contrast, there are many advantages of a syllable over the phone-based acoustic units.
First, acoustical characteristic of a syllable does relate to articulation and human perception
since a syllable is perceptually defined. Second, a syllable acoustic unit provides compact
representation of an utterance. Third, coarticulation has been integrated within a syllable
acoustic unit thus makes the unit acoustically stable. Moreover, a syllable has longer duration
than other units, which simultaneously combined and utilized both temporal and spectral
variations. Ganapathiraju, et al. (2001) applied the syllable models to a large-vocabulary
continuous speech recognition system which exceeded the performance of a comparable
triphone system in both complexity and word error rate. The SWITCHBOARD (SWB) corpus
was utilized in training and testing of the systems. The SWB corpus consists of 70,000 words
with 9,023 distinct syllables. Using the standard SWB evaluation set, the syllable models
gave out only 1% reduction in word error rate over the word-internal triphone system
(Ganapathiraju, et al., 2001).

F. Demisyllable Models

The demisyllable is a half syllable unit divided at the center of the syllable nucleus. Splitting
the syllable within the vowel creates an initial demisyllable and a final demisyllable (Jennings,
Westaway, and Curtis, 1997). These units can be used as concatenating segments in speech
synthesizer having the advantage of holding the articulatory information between the
phonemes. Furthermore, a few rules were required for smoothing the concatenating segment
due to the voicing effect of vowel. This advantage of handling coarticulation of demisyllable in
speech synthesis has led to using this unit in speech recognition (Fujimura, Macchi, and
Lovins, 1977; Fujimura and Lovins, 1978; Saravari and Satoshi, 1983; Saravari and Satoshi,
1984; Yoshida, Watanabe, and Koga, 1989; Plannerer and Ruske, 1992). Additionally, The
number of demisyllable units is much smaller than word, syllable, and triphone units.

However, the demisyllable models divide a syllable at the middle of syllable into two
segments. This separation results-in-loss of prosodic-information stored within the whole
syllable.

G. Initial and Final Models of Chinese

According to the Mandarin syllable structure, every syllable is a morpheme which has its own
meaning, and each syllable is an open syllabic structure ending with vowel or nasal /n/ or /ng/
(Lee, 1997). Therefore, an initial followed by a final is'used as the basic acoustic unit in the
Mandarin speech recognition. The initial comprises the initial consonant of the syllable while
the final consists of the vowel or diphthong part but including possible medial or nasal ending
(Lee et al., 1993). A set of 22 initials and 38 finals forms the number of 408 phonologically
allowed different base syllables of Mandarin Chinese disregarding tone.. In addition,
Cantonese is one of the most popular Chinese spoken languages. Similar to Mandarin, it is a
bi-syllabic language with multiple tones. Cantonese consists of 20 initials (including null
initial) and 53 finals which compose the whole 595 syllables set disregarding tone (Fu, Lee,
and Clubb, 1996). Because the initial parts are usually very short compared to final parts in
base syllables and any important difference among the initial parts of different syllables can
be easily influenced by irrelevant differences among the final parts of the syllables during the
recognition process, these produce a confusing set of initials (Wang et al., 1997; Lee, 1997).
Therefore, a set of context-dependent initial models expanded from context-independent
initial models had been proposed to overcome those problems. The error rate was
dramatically reduced by using context-dependent initial models (Wang et al., 1997).



Table 1.5 Numbers of the Thai onset units

Combinations Units
Theoretical Onset c(33) 33
Contextual Onset c(33) x V(9) 297
Phonotactic Onset c(33) x V(24) 792

Table 1.6 Numbers of the Thai rhyme units

Combinations Units
1. Sonorant ending rhyme units
a. Open syllable rhymes V(9) + VV(3) 12
b. Short rhyme units with sonorant ending (V(9) + VV(3)) x C(5) 60
Inadmissible co-occurrences:
Round vowel units preceding labialized sonorant (V(3) + VV(1)) x C(1) -4*
Front vowel units preceding palatalized sonorant (V(3) + VV(1)) x C(1) -4*
c. Long rhyme units with sonorant ending (V(9) + VV(3)) x C(5) 60
Inadmissible co-occurrences:
Round vowel unit preceding labialized sonorant (V(3) + V(1)) x C(1) -4*
Front vowel unit preceding palatalized sonorant (V(3) + V(1)) x C(1) -4*
2. Obstruent ending rhyme units
a. Short rhyme units with obstruent ending (V(9) + VV(3)) x C(4) 48
b. Long rhyme units with obstruent ending (V(9) + VV(3)) x C(3) 36
Total numbers of Thai rhyme units 200

* These rhyme units do not occur grammatically. They are excluded from the sets.

1.3 Onset-Rhyme Acoustic Models

From the previously used speech units, there exists some major disadvantages in applying to
the Thai continuous speech recognition system. Considering all of the phone-based models,
the models are inefficient in'modelling of long-term temporal dependencies. Also, there are a
large number of diphone-and triphone models with a,non-zero probability of occurrence. As a
result, the triphone models are inefficient decompositional units and poorly trained
(Ganapathiraju, et al., 2001). The number of diphone and triphone models in Thai are listed
in Table 1.2 and 1.3. Hence, a larger acoustic unit, a syllable, is-a feasible unit for
representation of utterances.. However, there are a large amount of syllable unit required to
cover the whole language. About the demisyllable models, a syllable is divided in the middle
of a syllable segment. Prosodic information resides within a syllable segment are lost by the
segmentation. Therefore, a new model of acoustic speech unit is proposed, the onset-rhyme
models.

The onset and rhyme are phonological units as shown in Figure 1.1. A syllable consists of an
onset and a rhyme units. A rhyme unit, which carries prosody, contains nucleus and coda of
a syllable. The Thai syllable structure is composed of releasing consonant (c, cc), vowel (V,
VV), arresting consonant (C), and tone (T) as depicted in Figure 1.2. Considering the Thai
syllable structure, the Thai syllable onset covers releasing consonant while the rhyme covers
vowel and arresting consonant respectively. The proposed acoustic speech unit, the onset-
rhyme models, then make use of the onset and rhyme units as described. Various speech
units are illustrated in Figure 1.3 compared to the onset-rhyme models. There are some



advantages of the onset-rhyme models over other previously proposed speech units. Based
on the Thai syllable structure, major advantages of the onset-rhyme models are described as
follows.

Firstly, the onset-rhyme models preserve the essential prosodic information within the whole
single rhyme unit. Those previously used speech units do not take this into account such as
phones and demisyllables. Then, dividing a syllable into demisyllable units are not practical in
modelling of acoustic speech units. The onset unit contains a releasing consonant with its
transitional period towards its neighbouring vowel nucleus. The rhyme unit covers the whole
vowel segment and an arresting consonant. Consequently, the models capture coarticulatory
effects over a syllable within the models.

Secondly, the models are consistent in which the same models have similar characteristics
across different speech instances. Thirdly, the onset-rhyme models cover a finite set of
speech units, which represent all potential speech units of the language. Theoretically, the
maximum number of onset-rhyme models are 992 units composed of 792 phonotactic onset
units and 200 rhyme units as shown in Table 1.5 and 1.6. Whereas, the diphones and
triphones have 1,650 and 59,593 units respectively. Thus, this finite number of units makes
the onset-rhyme models sufficiently trained with only a small set of sentences.

Moreover, the onset-rhyme models are context-dependent where phonotactics or
phonological rules are embedded into the models in forming syllables. The onset unit is right
context-dependent on its adjacent rhyme unit. Whereas, the rhyme unit is left context-
dependent on its preceding onset unit. As a result, the onset-rhyme models are context-
dependent by nature, which helps reduce complexity of language modelling.

There are many difference between the onset-rhyme models and the initial-final model.
Firstly, the initial-final models are context-independent where as the onset-rhyme models are
context-dependent by nature. Secondly, the initial-final do not model releasing consonant in
every possible syllable context. This issue has made the initial-final models context-
independent. Thirdly, the initial-final models do not have internal and external junctures which
constitute a pair of initial and final by tying both models together.

1.4 Objectives of the Dissertation

The objective of this dissertation is described as follows.

1. To develop an appropriate speech unit for modeling of Thai syllable onsets.
2. To model acoustic characteristic of Thai syllable onsets.

3. To provide basic acoustic knowledge for Thai continuous speech recognition.

1.5 -~ Scope of the Dissertation

The scope of this dissertation is described as follows.
1. Acoustic-phonetic analysis of the Thai releasing consonants and Thai vowels in
syllable onsets.

2. Collect sets of Thai continuous speech of a single speaker in “Stressed Dictation
Style or Reading Style” for training and testing of the onset units.

Construct acoustic models of the Thai releasing consonants using the onset units.

Recognition of Thai releasing consonants using the onset units of the onset-rhyme
models on a speaker-dependent Thai continuous speech recognition system.



1.6

Key Words

The key words of this dissertation are shown as follows.

1.7

1.8

1.9

N o o &

10.
11.

ACOUSTIC MODELLING

ONSET AND RHYME

SPEECH ANALYSIS

THAI CONTINUOUS SPEECH RECOGNITION

The Expected Prospects

To acquire a knowledge base of the acoustic characteristics of Thai speech units.

To acquire a knowledge base of the acoustic features extracted from continuous
speech waveform.

To provide basic acoustic-phonetic knowledge for Thai continuous speech
recognition.

Research Procedures

Feasibility study and literature reviewing of relevant researches in both the same field
and others.

Study acoustic properties of Thai syllable onsets in continuous speech for each
consonants from recorded continuous utterances.

Analysis and classification of each consonants from acoustic characteristics of their
syllable onsets.

Design sets of Thai sentences or dialogs for recording of Thai continuous speech.
Record continuous speech corpus from one speaker.
Manual labelling of recorded utterances in training databases.

Set up a speaker-dependent Thai continuous speech recognition system for training
and testing of the models.

Training a recognition system using the recorded utterances of a single speaker.
Testing and evaluation of the recognition 'system and its reliability.
Analysis of all research results in various aspects.

Summarize research results to meet the objectives of this research.

Summary and Dissertation Outline

The onset-rhyme acoustic models are proposed in this dissertation for Thai continuous
speech recognition. This dissertation provides basic research on acoustic modelling of Thai
segmentals for continuous speech recognition. This research will focus only at the onset unit
of the onset-rhyme models. The onset units cover the whole transitional stage between
releasing consonant and vowel nucleus. The transition stage provide crucial acoustic cues
for identifying the releasing consonant. Thus, the onset unit provide improved models of
releasing consonants especially for the releasing stops. Details of the onset-rhyme models
will be thoroughly described later in this dissertation.
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In the next chapter, acoustic analysis of Thai utterances are described in details to provide
basic acoustic knowledge of Thai language. In Chapter 3, the proposed onset-rhyme models
are described in details on acoustic modelling for the Thai continuous speech recognition
system using the hidden Markov models. The philosophy and methodologies of creating and
using the onset-rhyme models are elaborated in this chapter. Experimental results and
discussions are in Chapter 4 with comparison between the phone models and the onset-
rhyme models. Finally, Chapter 5 concludes all the experiments and the brief concept of the
onset-rhyme models. Contributions and future works on acoustic modelling are also
discussed in Chapter 5.



CHAPTER 2

The Acoustic Analysis of Thai Utterances

In the previous chapter, various types of acoustic speech units were briefly described
including the onset-rhyme models. In this chapter, acoustic-phonetic analyses are conducted
on Thai utterances. The acoustic-phonetic analysis provides both basic acoustic knowledge
and phonological understanding of the Thai utterances. The analysis begins from syllable
structure of Thai language through its segmental components.

2.1 The Acoustic-Phonetic Analysis

The acoustic-phonetic analysis of speech is the study of acoustic and phonetic properties of
speech and their relations. A number of parameters are used in analysing speech waveform,
for example, fundamental frequency, formant frequency, amplitude, etc. These parameters
have been used to examine speech segments of a speech waveform in order to see temporal
changes in utterance. Four acoustic parameters used in acoustic-phonetic analysis are
fundamental frequency, formant frequencies, amplitude or intensity, and duration. (Flanagan,
1972; Furui, 2001; Rabiner and Juang, 1993) The four acoustic parameters are employed in
psycho-acoustic analysis of human perception comforming to the assumption that human
speech perception is based on these parameters.

The details on acoustic studies of Thai language are described in the following section.
Specific details of each acoustic parameters, fundamental frequency, formant frequencies,
amplitude or intensity, and duration, will be depicted with their application in phoneme
recognition.

2.1.1 Acoustic Parameters Analysis

In speech recognition by machine, an acoustic-phonetic approach is one of the recognition
methods that have been successfully applied besides the pattern recognition and the artificial
intelligence approaches (Rabiner and Juang, 1993). In the acoustic-phonetic approach, the
machine attempts to decode the speech signal in a sequential manner based on the observed
acoustic features of the signal and.the known relations between acoustic features and
phonetic symbols. This. approach has been. in-depth-studied for-more than four decades.
This method is based on the theory of acoustic phonetics which postulates that finite and
distinctive phonetic units exist in spoken language. The phonetic units are characterized by
its spectrum over time, however, the:coarticulation -of sounds are highly variable within
speakers: and neighboring phonetic units.. The segmentation and labeling procedure in this
approach involves segmenting speech. signal into discrete regions corresponding to one
phonetic unit with specific acoustic properties. One or more phonetic labels are attached to
each segmented region according to their phonetic properties. Then, the sequence of
phonetic labels is determined to be a valid recognized word or string of words.

Four acoustic parameters, fundamental frequency, formant frequencies, amplitude or
intensity, and duration, are employed as acoustic features for acoustic-phonetic speech
recognition. These acoustic cues are essential features for both human perception and
computer speech recognition. Basic concept of each acoustic parameters and also analysis
details on these parameters has been stated in this section as follows.
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21.2 Relations between Fundamental Frequency and Formant Frequencies

Both fundamental frequency and formant frequencies are defined from the production level,
the fundamental frequency from the periodicity of vocal fold vibrations and the formant
frequencies from the vocal tract resonance frequencies (Fant, 1968). The human vocal
mechanism is shown in Figure 2.2. The periodicity is a basic property of a vocal cord sound
source expressed by the duration T, of a complex voice period or by the inverse value of the
voice fundamental frequency F, as follows (Fant, 1960).

A voice source is also characterized by its spectrum envelope S(f) which is a specification of
the amplitudes of the source harmonics as a function of their frequency. The source
spectrum envelope identifies personal characteristics of the speakers which varies with voice
register, fundamental pitch, and voice intensity (Fant, 1960). In Figure 2.1, a simplified
source-filter decomposition of the spectrum of a two-formant voiced sound is illustrated. The
waveform of the periodic airflow through the glottis is transformed into a harmonic spectrum
S¢H) which multiplied by the filter characteristics 7(f) of vocal transmission provides the
spectrum P(f) of the radiated vowel which is specified by its waveform.

The speech production mechanism is analytically decomposed into the source and filter
components, referred to Figure 2.1. The glottis represents a high impedance termination of
the vocal tract in which the voice source is defined by the pulsating airflow through the glottis,
that is, the saw-toothed periodic time function as shown in Figure 2.1. The transfer functions
are introduced by multiplying the amplitude of each harmonic |S(f)| of the source spectrum by
the value of gain factor |7(f)| of the filter function at the frequency f as show in Eq. (2.2). The
phase of each harmonic is the sum of the phase of the corresponding source harmonic and
the phase of the filter function as shown in Eq. (2.3) as follows.

e N 2 1A (2.2)

AP(/') = 4S(f)+4T(f) ..................................................... (2.3)

The spectral peaks of the sound spectrum |P(f)| are called formants. In Figure 2.1, each
resonance has its counterpart in a frequency region of relatively effective transmission

VOCAL CORD PULSES RADIATED WAVE
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Figure 2.1 Simplified Source-Filter Decomposition of the spectrum of
a two-formant voiced sound (Fant, 1960)
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Figure 2.3 Human Vocal Mechanism (Rabiner and Juang, 1993)

through the vocal tract. This selective property of |T(f)| is independent of the source and
frequency location at maximum |T(f)| is the resonance frequency which is corresponded to
maximum |P(f)| in spectrum of the complete sound. Formants are labeled, F1, F2, ..., and so
on, in the order of occurrence in the: frequency scale. ' These notations refer to the
frequencies of the corresponding vocal tract resonance or the frequencies of the formants. In
the analysis of voiced sound, the filter function is independent of the source in a first order
approximation. The formant peak coincides with the frequency of a harmonic. The formant
frequencies are changed as a result of an articulatory change affecting the dimensions of the
various parts of the vocal tract cavity system, that is, the filter function.

2.1.3 Fundamental Frequency

A fundamental frequency (FO) or pitch is a frequency of vocal cords vibration during speech
production. A periodic speech wave has a fundamental frequency match to a vocal cord
vibration which occurs in a voiced segment of an utterance, that is, a vowel. A fundamental
frequency has been used for voiced-unvoiced classification. A vowel segment could be
extract from a speech waveform using pitch period as shown in Figure 2.5. Fundamental
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Figure 2.4 Cepstrum Analysis (Furui, 1989; Deller, Proakis, Hansen, 1993)
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Figure 2.5 Spectrum and Cepstrum Analysis of Voiced and
Unvoiced Speech Sounds (Flanagan, 1972)

frequency analysis or pitch extraction has the objective to indicate the epoch of each glottal
puff and the measurement of interval between adjacent pulses (Flanagan, 1972). A pitch
extraction or pitch estimation is to obtain the period of the glottal excitation waveform that is
the result of the periodic opening and closure of the vocal cords in the glottis while air is
forced through from the lungs and result in a train of alternating high and low pressure pulses
in the vocal tracts (Vuuren, 1998). Only voiced sounds have periodic opening and closure, on
the contrary, the air passes through the glottis unrestricted in unvoiced sounds.

In Figure 2.2, the glottal excitation waveform is generated in the same way as generating a
voiced sound. These sequences are modified by vocal tract and other speech organs. The
output speech signal is modeled as the convolution of the excitation signal with the impulse
response of a filter describing the vocal tract and other speech organs. ‘The pitch information
of voiced speech is represented as quasi-periodic signalin time domain. The excitation or the
vocal cords results in long periods and the resonant cavity of the vocal tract shape results in
short periods (Vuuren, 1998). For automatic pitch extraction, properties of the cepstrum have
been utilized to reveal signal periodicity. The cepstrum is the Fourier transform of the
logarithm of the amplitude spectrum of a signal. Then, the resulting independent variable,
which is reciprocal frequency, or time, is called "quefrency" (Flanagan, 1972).

The cepstrum is defined as the inverse Fourier Transform of the short-time logarithmic
amplitude spectrum. The cepstrum analysis is illustrated in Figure 2.4. The quefrency, the
independent parameter for the cepstrum, is the time domain parameter results from the
inverse transform of the frequency domain function (Furui, 2001). Let x(?) is the voiced
speech, which is the response of the vocal tract articulation equivalent filter driven by a
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pseudoperiodic source g(z). Then, x(¢) could be given by the convolution of g(z) and the vocal
tract impulse response /(1) as follows.

Where X(w), G(w), and H(w) are the Fourier transform of x(?), g(¢), and A(t) respectively. By
taking logarithm and inverse Fourier transform, the cepstrum c(z) is as follows.
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Figure 2.6 Short-time Spectra and Cepstra for male voice (Furui, 2001)
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log |X(m] =log |G(m] +log |H(m1 ............................................. (2.6)
c(t)=3"log |X((n] =3 log |G(o)] +3 7' log |H(co] ............................... (2.7)

From the right side of Eq. (2.7), the first term represents the spectral fine structure or the
periodic pattern and the second term represents the spectral envelope or the global pattern
along the frequency axis. The fundamental period of the source g(z) could be extracted from
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02 4 6 B1012 4161820 O i 2 a 4
TIME IN MSEC FREQUENCY IN KCPS

Figure 2.7 Cepstrum Analysis of Continuous Speech (Flanagan, 1972)



17

WE WERE AwaY A YEAR AGO. LRR

1:':’_" TT I TTI T ITTITT g
PITCH PERIOD o, — N, A
(MSEC X m_ 3 :g_ _,..--"_ '.--"‘-\../"'. .__..
(a) Y T S S A AR A
O 200 400 600 BOO 10001200 Mm
TIME (MSEC)

rnTrrrrrrrriing

F,__...-'-\.-ﬂ"_‘--:-\__,--\,!"“\--
®) 52’ o s o v o

TIME (MSEC)

ORIGIMAL

] T 1 i
O 200 400 GO0 A00 1000 1200 1400
TIME ( MSEC )

AUTOMATIC
FHEWE?’[Y AMALYSIS AMD
(KEPS ) SYNTHESIS
(d)

200 400 800 BOOD 1000 12001400
TIME (MSEC)

(c)

Figure 2.8 Formant Analysis and Synthesis of Speech (Flanagan, 1972)

the peak at the high-quefrency region, that is, the first term which indicates the formation of
the peak in the high-quefrency region (Furui, 2001). When-the cepstrum value is computed
by the discrete Fourier transform (DFT), the equation is shown as follows.

N-1
c(n)= % > logX (ke ™ N, O N =T .o (2.8)

In Figure 2.5 and 2.6, a voiced and unvoiced speech segment are analysed using spectrum
and cepstrum analysis. " In voiced speech, the sharp peak occurs in the cepstra plot which
correspond to the period of the pitch. Unlike voiced speech, unvoiced speech cepstra has no
peak which results in no fundamental frequency in that speech segment and will be classified
as unvoiced. In Figure 2.6 and 2.7, the example of short-time spectra and cepstra on the left
and the right respectively of male utterance in the word "razor". During the voiced speech or
the vowel segment, a sharp peak occurs in quefrency domain of the corresponding cepstra in
the period. The sharp peak disappears in the unvoiced speech portion. The existence of a
peak during voiced speech segment of a cepstra could be used for voiced-unvoiced
classification of speech. The fundamental frequency is computed directly from the location of
the peak which is the reciprocal of the period. The pitch period tracking is shown in Figure
2.7 and 2.8. The fundamental frequencies of each speech segment in continuous speech are
varied over time during speech production.
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The fundamental frequency has been employed as an acoustic cue in many speech
recognition research works. The fundamental frequency has been used to distinguish male
and female speakers. Since temporal variation in fundamental frequency indicates the mean
and standard deviation for females voices are roughly twice those for male voices (Furui,
2001).

For Thai language, the fundamental frequency plays an important role in tone recognition.
Thai language has five tones, the mid /0/, the low /1/, the falling /2/, the high /3/, and the rising
/4/, as shown in Figure 2.10. There are a number of studies in Thai tone recognition, for
example, Potisuk and Harper (1995) and Thubthong (1995). Thubthong (1995) utilized the
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Formant Tracking and FO Estimation of the word /zaa0 caa0/



19

acoustic-phonetic features, FO direction and FO height in tone phoneme recognition. Potisuk
and Harper (1995) applied the analysis-synthesis method based on an extension to the
Fujisaki model.

2.1.4 Formant Frequencies

Formant frequencies or formants is the resonance frequency of the vocal tract tube in which
depend upon the shape and dimension of the vocal tract. The shape of the vocal tract is
characterized by a set of formant frequencies. Different sounds are formed by varying the
shape of the vocal tract. Then, the spectral properties of the speech signal vary with time as
the vocal tract shape varies (Rabiner and Schafer, 1978). Formant frequencies are the
dominant frequency components which characterize the phonemes corresponding to the
resonant frequency components of the vocal tract (Furui, 2001).

Resonances of the vocal tract are called formants and their frequencies called formant
frequencies (Denes and Pinson, 1963). The vocal tract is an air-filled tube that acts as a
resonator and has certain natural frequencies of vibration. The vocal resonator emphasize
the harmonics of the vocal cord wave at a number of different frequencies and the spectrum
of the speech wave will have a peak for each of the natural frequencies of the vocal tract.
The value of the natural frequencies of the vocal tract is determined by its shape (Denes and
Pinson, 1963). Every vocal tract configuration has unique set of characteristic formant
frequencies. The lowest formant frequency is called the first formant (F1). The next highest
frequency is called the second formant (F2) and so on.

The formant frequencies are estimated from the spectrum of each speech segment using the
Fourier transform. Tracking of the formant frequencies in each speech segment is called
formant tracking as shown in Figure 2.7, 2.8, and 2.9. The tracked formants reveal a time-
varying property of the vocal tract during speech production which is essential for phoneme
recognition. The tracked formants correspond to the frequency peak spectrogram.

The formant frequencies have been utilized as an acoustic cues for phoneme recognition.
The first (F1), second (F2), and third formant (F3) have been used to identify vowel
phonemes. For Thai language, formant frequencies and formant transition have been used in
vowel and consonantal phonemes recognition (Trongdee, 1987; Tarnsakun, 1988;
Thubthong, 1995). Trongdee (1987) employed the first, second, and third formant transition
to classify stop consonants. Tarnsakun (1988) utilized first and second formant transition in
both pre-consonantal and post-consonantal transition to classify non-stop consonants.
Thubthong (1995) used pre-consonantal second formant transition with other acoustic
features for consonantal phonemes classification.

21.5 Amplitude or Intensity

An amplitude of a speech wave is a peak of a speech waveform. In other words, an
amplitude is a maximum displacement of vibration of a mass which is displaced from its rest
position and-moving back and forth between two positions that mark the extreme limits of its
motion (Denes and Pinson, 1963). Human perceives sound intensity rather than amplitude of
speech wave. The intensity of the sound wave'is a power transmitted along the wave through
an area of one square centimeter orthogonal to the direction of the sound wave which is the
energy available over a small area at the point of measurement (Denes and Pinson, 1963). A
sound intensity is measured in watts per square centimeter or in the decibel scale. In speech
recognition, an absolute acoustic energy contour could be computed directly from a speech
wave using the following relation as shown in Eqg. (2.9). In Eq. (2.9), E(m) is an absolute
energy value of the m" frame, s(n) is an amplitude of the n" sample, N is the total samples,
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An intensity is one of the acoustic cues that is used to classify Thai consonants (Trongdee,
1987; Tarnsakun, 1988; Thuthong, 1995). Both th acoustic energy and the intensity of each
formant frequency have been used in the classification process. Trongdee (1987) employed
intensity of first (F1) and second (F2) formants to categorize Thai non-stop consonants with
different manner of articulation. The nasals have low second formant intensity while both trill
and lateral has high first and second formant intensity.

Tarnsakun (1988) used intensity to classify the ten Thai stop consonants in both manners and
places of articulation. Intensities of different pace of articulation of the stop consonants in
releasing phase are ranging from labial, alveolar, alveolar-palatal, and velar. The intensity of
aspirated stops is higher than unaspirated stops, same as voiced stops and voiceless stops.
The intervocalic non-stop consonants have the highest intensity compared to final and initial
respectively (Luksaneeyanawin, 1993).

2.1.6 Duration

Duration is one of the four acoustic cues that have been used in Thai phoneme classification
in both vowels and consonants. (Trongdee, 1987; Tarnsakun, 1988; Thubthong, 1995) In
Thai vowel phonemes classification, vowel duration is computed from a period of the
fundamental frequency or a pitch period of that vowel to classify into short or long vowel as
shown in Table 2.1. 'In Thai consonantal phonemes classification, a duration of marginal
sound was employed to categorize each phoneme with the same manner of articulation into
appropriate place of articulation as shown in Table 2.2. Trongdee (1987) applied duration to
classify non-stop consonants in which duration of each consonant are varied in different
structural context, initial, intervocalic, and final.

Tarnsakul (1988) employed duration of three phases of stop consonants, shutting, closure,
and releasing, to classify each stop consonants in both manners and places of articulation as
shown in Table 1. Voiceless stops have longer duration than the voiced stops and the
voiceless aspirated stops have longer duration than the voiceless unaspirated stops. The
voiceless plosives, initial consonants /p-, t-, k-/, have longer duration distinctively from the
voiceless non-plosives, final consonants /-p, -t, -k/. Thubthong (1995) used a noise duration
and burst duration as acoustic parameters to determine the consonants /c/ and /p/
respectively from others.

190+ Falling

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Duration (%)

Figure 2.10 Five Thai Tones (Luksaneeyanawin, 1993; Thubthong, 1996)
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2.2 Examples of Acoustic Parameters Computation

The absolute energy contour, the fundamental frequency analysis, and the formant tracking of
Thai speech /zaa0 caaO/ are shown in Figure 2.9 respectively. The computation of these
parameters are shown in this section.

Thai language is a tonal language in which its syllable structure is associated with tones. The
syllable structure of Thai language comprises initial consonant (C) or initial consonant cluster
(CC), vowel in monophthong (V) or diphthong (VV), final consonant (C), and tones (T) as
shown in Figure 1.2. In Thai language, there are 18 monophthongs in short and long pairs
with 6 diphthongs in the Thai vowel inventory as shown in Table 2.1. There are 21
consonantal phonemes composed of 11 stops and 10 non-stops as shown in Table 2.2
(Luksaneeyanawin, 1993). Five Thai tones are mid, low, falling, high, and rising respectively
as shown in Figure 2.10.

There are various researches on acoustic of Thai segmental units such as Trongdee (1987),
Tarnsakun (1988), Leelasiriwong (1991), and Sriraksa (1995). Trongdee (1987) studied the
acoustic characteristics of ten Thai non-stop consonants within context of three different
vowels, /ii/, /aa/, and /uu/ and also within different structural contexts, initial, intervocalic, and
final consonant. Five different classes of consonants, nasals, fricatives, trill, lateral, and
approximant, were studied. The other ten Thai stop consonants in three classes, voiceless
unaspirated stops, voiceless aspirated stops, and voiced stops, were studied by Tarnsakun
(1988) using the same phonetic context scheme as in Trongdee (1987). These two studies
thoroughly explored the acoustic characteristics of Thai consonantal phonemes by
spectrographic analysis using acoustic parameters, i.e., formant frequencies, formant
transition, intensity, duration, etc.

In Figure 2.5 to 2.7, an analysis of a voiced speech segment results in cepstrum and
spectrum envelope using the cepstral analysis and discrete Fourier transform have been
shown respectively. The cepstrum could be computed using the Eq. (2.4) to (2.8) together
with the Figure 2.6 and 2.7 respectively in the previous section. The linear predictive coding
(LPC) and the discrete Fourier transform as shown in the Eq. (2.11) have been utilized in
spectrum envelope computation. Then, a peak-picking algorithm are employed to pick the
spectral peak in the envelope corresponding to formant peaks.

In Figure 2.9, the upper figure is a speech waveform of a word /zaa0 caa0/ recorded using
11.025 KHz sampling frequency, in other words, 11,025 samples in one second. The lower
figure is the computed absolute energy, fundamental frequency using cepstral analysis, and
fundamental frequency using AMDF analysis as shown in Figure 2.9. The absolute energy
value is computed from each 256-sample speech segment using the Eq. (2.10) in the
previous section. Also, the fundamental frequency is computed using the cepstral analysis as
shown in the previous section and the next section.

2.21 Fundamental Frequency Estimation and Tracking

On pitch or fundamental frequency estimation, the cepstral analysis has been employed to
separate two convolutionally related properties by transforming the relationship into
summation as depicted the previous section and in Figure 2.5. The high quefrency elements
are selected to estimate the fundamental frequency of each speech segment. The discrete
Fourier transform and the cepstral analysis of the speech segment is shown in Eq. (2.10) and
Eq. (2.11) respectively where N is the number of analysis samples.

N-1
DFT : X(0)=—— S (), 0= 20T oo (2.10)
2nN =
1 N_l .
Cepstrum : c(n)= ~ log| X (k)e>™ ™, 0<n <N =T .o (2.11)
k=0
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Table 2.1 Thai vowel system

Vowel Advancement

Front Central Back
o High 1i, i/ v, wi u, uu/
o C
(>% 2 Mid le, eel /q, qq/ /o, oo/
T
Low Ix, xx/ /a, aal @, @@/
Diphthongs fia, iia/ /va, vva/ /ua, uua/

Table 2.2 Thai consonants arranged by places of articulation

Places of Articulation

Labial Alveolar Palatal Velar Glottal

Voiceless Unaspirated Ip/ ik /cl /k/ 1z/

n
S &  Voiceless Aspirated Iph/ Ith/ Ich/ /kh/
= w
3 Voiced /bl /dl
Q
z Nasal /m/ In/ Ing/
5 g Fricative i Is/ I
s 2
c @ Trill Ir/
T 5
= =z Lateral N

Approximant Iwi/ ljl

Table 2.3 Thai consonant clusters

C1
Co p t k ph th kh
r lpr/ [tr/ /kr/ /phr/  /thr/ /khr/
I Ipl/ /Kl /phl/ /khl/
w Ikw/ /khw/

The result of cepstral analysis on voiced speech segment is shown in Figure 2.5 to 2.7. A
voice speech segment is selected from the vowel /aa/ of the word /zaa0 caa0/. In Figure 2.5
to 2.7, there is an explicit peak in the cepstrum plot. The period of the peak in the quefrency
domain is correspond to the fundamental period of the glottal excitation. The fundamental
frequency value (FO) could be computed using the following equation where Fs is the
sampling frequency and L is the period of the cepstral peak in its quefrency domain.

For example, the cepstral peak period is at 103 points in the quefrency domain and the
speech sampling frequency is 11,025 Hz, then, the fundamental frequency value computed
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using the equation 12 results in 11025/103 = 107.039 Hz. For pitch period tracking, the
previous procedure is repeated on entire speech segments to obtain the tracking of the pitch
as shown in Figure 2.9.

2.2.2 Formant Frequencies Tracking

On formant frequencies estimation, a spectrum envelope of a speech segment is tracked to
find a spectral peak as shown in Figure 2.7 using simple peak-picking analysis. The lowest
spectral peak is picked and marked as the first formant or F1. The following picked spectral
peaks are marked respectively as the second (F2), the third (F3), the fourth formant (F4), and
SO on.

In order to obtain a spectrum envelope of the power spectrum of each speech segment, the
linear predictive coding (LPC) coefficients have been analysed on the speech segment using
the Levinson-Durbin recursive algorithm (Rabiner and Juang, 1993; Deller, Proakis, and
Hansen, 1993; Furui, 2001). The obtained LPC coefficients, ao, ai,..., a, ..., ap, .are
coefficients of the all-pole filter with the form as follows where p is the number of coefficients
of the LPC order.

The spectrum envelope could be obtained by taking discrete Fourier transform to evaluate
H(e"). The spectrum envelope of a voiced speech segment is computed using 12-order LPC
coefficients.

2.2.3 Intensity and Duration

The intensity has been employed not only in speech segmentation but also in discrimination
of aspirated and unaspirated consonants. The unaspirated /c/ in /zaa0 caa0/ as shown in
Figure 2.9 has acoustic silence during vowel-consonantal transition. Unlike the unaspirated
/cl, the aspirated /ch/ in /zaa0 chaal/ produces instantaneous burst due to aspiration during
vowel-consonantal transition which occurs explicitly in the energy contour.

The duration are also utilized in discrimination of aspirated and unaspirated consonants
besides of the intensity. From the pitch tracking of the word /zaa0 caaO/ compared to the
word /zaa0 chaaO/, the duration of the vowel-consonantal transition of the aspirated /ch/ is
longer than the unaspirated/c/. This.is because of longer duration in releasing phase of an
aspirated consonant-compared to an-unaspirated. consonant. -From analysis, the duration in
vowel-consonantal transition of /c/ and /ch/ are 81.28 ms and 104.49 ms respectively which
could be computed directly from the pitch contour.

2.3 Acoustic-Phonetic Analysis on Thai Utterances

The acoustic-phonetic analysis of speech is the study of acoustic and phonetic properties of
speech and their relations. A number of parameters are used in analyzing speech waveform,
for example, fundamental frequency, formant frequency, amplitude, etc. These parameters
have been used to examine speech segments of a speech waveform in order to see temporal
changes in utterance. Four acoustic parameters used in acoustic-phonetic analysis are
fundamental frequency, formant frequencies, amplitude or intensity, and duration. (Flanagan,
1972; Furui, 2001; Rabiner and Juang, 1993) The four acoustic parameters have been
employed in psycho-acoustic analysis of human perception comforming to the assumption
that human speech perception is based on these parameters.
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The details on acoustic studies of Thai language are described in this section. Specific
details of each acoustic parameters, fundamental frequency, formant frequencies, amplitude
or intensity, and duration, are depicted with their applications in phoneme recognition.

2.3.1 The Thai Syllables

Phonologically speaking, a syllable is composed of onset and rhyme units where the rhyme
comprises nucleus and coda as illustrated in Figure 1.1 and 1.2 in the previous chapter. In
Thai syllable, the onset is a releasing consonant (c, cc) while the rhyme contains both vowel
and an arresting consonant, (V, V:, VV, VC, V:C, VVC). In acoustic-phonetic analysis, a
syllable comprises a nucleus and its marginal sounds. A nucleus of a syllable is vowel (V, V:,
VV) in Thai syllable structure. Marginal sounds are a releasing consonant, (c, cc), as left
marginal sound and an arresting consonant (C) as right marginal sound of the nucleus
respectively.

The Thai language has simple syllable structure as depicted in Figure 2.1 and 2.2. In
comparison to the English syllable structure, the Thai syllable structure has only a small
amount of syllable combinations while the English syllables are much longer with plenty of
clusters as shown in Table 1.4 in Chapter 1. In Table 1.4, the English syllables have much
more consonant clusters in both releasing and arrest consonants than the Thai syllables. In
consequence, the diphone and triphone models are more practical to the English and the Thai
syllable systems as speech units for recognition. This is resulted from complexity of syllable
structure in English which contains many clusters. In Thai, a triphone model is equivalent to
word model in syllable structure aspect which is not considered as a subword model.
Phonologically speaking, for the Thai syllable, this model does not provide any difference over
a word model in recognition. The phonological structure of the Thai syllable is shown in
Figure 1.2 (Luksaneeyanawin, 1993). However, application of onset-rhyme models in English
might cause a large number of both onset and rhyme units. This is resulted from a large
number of clusters in English as shown Table 1.4 in which combinations of English syllables
are more complicated than Thai.

2.3.2 The Syllable Nucleus—Vowels

An acoustic-phonetic analysis was thoroughly conducted on the Thai vowel system. The Thai
vowel system consists of 18 monophthongs in short and long pairs along with 6 diphthongs in
short and long pairs as shown in Table 2.1 (Luksaneeyanawin, 1993). In Table 2.1, the Thai
vowels are grouped together according to their acoustic characteristics into front, central and
back vowel groups by vowel advancement. Also, the Thai vowels are grouped by vowel
height into high, mid, low vowel groups.

Articulatorily, these acoustic characteristics are directly related to a speech articulator or a
speech production organ, in this case, tongue. The vowel height-is height of tongue in high
position close to palatal producing small opening cavity, then, mid and low have larger
opening respectively. The vowel advancement is position of tonge where front position is
close to alveolar producing larger cavity volume, then central and back have smaller cavity
volume respectively. This can be illustrated by the human vocal mechanism with human
speech production organs as shown in Figure 2.3.

Acoustically, the vowel advancement is represented by the second formant frequency (F2) of
a vowel. The vowel height is represented by the first formant frequency (F1) of a vowel.
Consequently, the Thai vowel distribution in F2 and F1 plane is shown in Figure 2.11
(Ahkuputra, et al., 2000). In Figure 2.11, normal distribution contour of each Thai
monophthong are illustrated in grouping by vowel advancement into front, central, and back
with their normal distribution. Ahkuputra, et al. (2000) conducted acoustic analysis and
classification of individual Thai monophthong using Bayesian classifier. Three classification
schemes were proposed, namely, classification by vowel height, classification by vowel
advancement, and classification by combined vowel height and vowel advancement
respectively. The results show the use of acoustic-phonetic features, F1 and F2, in vowel
identification with high accuracy. In Figure 2.12, three dimensional distribution of Thai vowels
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Thai Vowels System
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Figure 2.12 Distribution of the Thai high vowels /ii,vv,uu/ on linear F2, F1, and F3 planes

are depicted using F1, F2, and F3. The third formant (F3) represent vowel rounding or the
degree of roundness in lip opening.

The Thai vowel system has complete combination of both places and manners of articulation
as shown in Table 2.1. The vowels can be grouped by places of articulation using vowel
advancement into front, central, and back vowel groups. Also, they can be grouped by
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Figure 2.13 Spectrographic lllustration of the Thai vowel system from acoustic analysis

manners of articulation using vowel height into high, mid, and low vowel groups. From
acoustic-phonetic analysis, the first formant (F1) represents vowel height and the second
formant (F2) represents vowel advancement. Then, the high vowel group has the highest F1
value than the mid and low respectively. The front vowel group has the highest F2 value than
the central and back respectively. These relation are shown in the vowel distribution in Figure
2.11,2.12, and 2.13.

Each of the Thai vowel are acoustically analysed to-explore its-acoustic characteristics.
Spectrographic. information of each vowel are illustrated in Figure 2.13 from the acoustic
analysis. In Figure 2.13, each Thai vowel shows its unique acoustic-phonetic characteristics
in the formants. The front vowels have the highest second formant (F2) followed by central
and back vowels respectively. The low vowels have the highest first formant (F1) followed by
mid and high vowels respectively. These characteristics correspond to the vowel distribution
as depicted in Figure 2.11 and 2.12. The vowel triangle, /ii/, /uu/, /aa/, show distinct
characteristics between each other. The vowel triangle is the common set of vowels existed
in every language in the world. Then, the vowel triangle are used in analysis of marginal
sounds later in the next section.

2.3.3 Marginal Sounds of the Syllable—Consonants

Acoustically, marginal sounds are attached along both sides of the syllable nucleus.
Considering the Thai syllable structure, the left marginal sound is a releasing consonant (cc)
and the right marginal sound is an arresting consonant (C) relative to the nucleus as depicted
in Figure 1.1 and 1.2 in Chapter 1. In consequence, from acoustic analysis, the transitional
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period existed between marginal sounds and nucleus has provided crucial acoustic
information. These essential acoustic cues have been utilized in identification of consonants.

The Thai consonant system is shown in Table 2.2 and 2.3 arranged by places of articulation.
There are 33 consonants composed of 21 consonants and 12 consonant clusters. in Thai as
shown in Table 2.2 and 2.3. All of the 33 consonants are releasing consonant but only 8
consonants, /p, t, k, m, n, ng, w, j/, are both releasing and arresting consonants.

Examples of releasing and arresting consonants are shown in Figure 2.14 to 2.16. In Figure
2.14, spectrographic information of the words /paa0/, /taa0/, and /kaa0/ are illustrated. The
releasing consonant of each word has different manner of articulation but the same place of
articulation. The transition period between releasing consonant and its vowel nucleus clearly
differs according to the locus of each consonant. Thus, the transition period contains crucial
acoustic cues in identification of releasing consonant

In Figure 2.15, spectrographic information of the words /pii0/, /paa0/, and /puuQ/ are shown.
Each word has the same releasing consonant but with different vowel context. The figure
illustrates variation in context. The transition period of each word is changed according to the
vowel context. However, formant transition of each vowel is moving towards the same locus
of the releasing consonant In Figure 2.16, spectrographic information of the words /paa0/,
/phaa0/, and /baa0/ are shown. Each word has releasing consonant with different manners of
articulation. The /p/ and /ph/ are unaspirated and aspirated voiceless stops respectively. The
/bl is voiced stop. Each of the three stops occur in the same vowel context.

In Figure 2.17, spectrographic information of the words /sii4/, /saa4/, and /suu4/ are shown.
The /s/ is a fricative but occurs in different vowel context. In Figure 2.18, spectrographic
information of the words /kok1/, /kot1/, and /kop1/ are shown. Each word has different
arresting stop consonants, /-k/, /-t/, and /-p/ respectively.

24 Summary

In this chapter, Thai utterances are acoustically analysed which provide basic knowledge and
understanding of Thai utterances. Acoustic-phonetic analysis are thoroughly conducted on
Thai utterances. Characteristics of the vowels and marginal sounds are explored in the
analyses. The outcome of vowel analysis not only provide solid acoustical background of
Thai utterance but also provide acoustic cues for classification of Thai vowels. Details about
classification of Thai vowels was written in full article as described in Appendix B

The results of analysis on. Thai utterances provide basic acoustic knowledge and
understanding of their characteristics. This also provide solid background for modelling of the
onset-rhyme models. Acoustic modelling of the onset-rhyme models is described in details in
the following chapter.
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Figure 2.15 Spectograms of the words /pii0/, /paa0/, /puu0/
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CHAPTER 3

The Onset-Rhyme Acoustic Models

In the previous chapter, acoustic-phonetic analysis on had been conducted Thai continuous
speech. The Thai vowels and consonants were acoustically analysed to explore their
acoustic characteristics. The outcome of vowel analysis not only provide solid acoustical
background of Thai utterance but also provide acoustic cues for modelling of speech units.
Using the acoustic knowledge and understanding, the onset and rhyme units are acoustically
modelled as basic recognition units. Concept and details of the onset-rhyme models are
explained in this chapter.

3.1 Concept of the Onset-Rhyme Acoustic Models

From phonological point of view, a syllable is composed of an onset and a rhyme where the
rhyme comprises nucleus, and coda as illustrated in Figure 1.1 in Chapter 1. The Thai
language has simple syllable structure as shown in Figure 1.2 where c is releasing
consonant, C is arresting consonant, V is vowel, and T is tone. Hence, the onset covers
releasing consonant segment of a syllable and the rhyme covers the rests. The nucleus and
the coda of a rhyme represents vowel segment (VV) and arresting consonant (C) of a
syllable.

In acoustic modelling, an onset unit consists of a releasing consonant and its transition
towards the adjacent vowel nucleus. The onset unit then provides combinations based on
both releasing consonant-vowel (¢V) and consonant cluster-vowel (ccV) of the Thai syllable.
Thus, the onset unit combines crucial acoustic cues, existed in the transitional period, for
recognition of the releasing consonant particularly for stop consonants. In other words, the
onset unit effectively handles the intra-word coarticulatory effects by the model itself that
makes the model context-dependent.

On the other unit, a rhyme unit contains the whole vowel segment and an arresting
consonant. Like its unit counterpart, the rhyme unit provides combinations based on both
monophthong-consonant (VC) and diphthong-consonant (VVC) of the Thai syllable. Hence,
the rhyme unit captures the transitional period between vowel and arresting consonant which
makes the unit context-dependent like ‘its counterpart.. Physical model of the onset-rhyme
model is depicted in Figure 1.3 along with other subword units. In Figure 1.3 and 3.1,
phonetic transcriptions of the word /khrvvang2 mvv0/ have been illustrated where the onset
unit covers the whole consonant clusters with transitional period and the rhyme unit spans
across entire vowel and arresting consonant.

In selection of subword unit, two major criteria must be taken into account for good subword
units, consistency and trainability (Lee, 1990), in other words, acoustic resolution and
estimation reliability (Juang and Furui, 2000). Good subword units should be consistent and
trainable, however, previously used subword units in most large-vocabulary speech
recognition systems do not meet both criteria as summarized in Table 1.1 in Chapter 1.

From evaluation of previous subword units, phones are not consistent because different
samples of the same phone are not always characteristically similar. A phone is strongly
affected by its left and right neighbouring phones. But phone are widely used because they
could be sufficiently trained with just a few hundred sentences. Context-dependent phones or
triphones are consistent than phones because triphones model coarticulatory effects in both
left and right neighbouring phones. However, triphone models are not easily trainable
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Figure 3.1 Fixed duration and variable duration overlaps of the onset-rhyme models
of the word /khrvvang2 mvv0/

because there are a large number of triphone models‘even in limited training data. Currently,
training of triphone models with limited training data has only been done through some
techniques, sharing, deleted interpolation, interpolated with - context-independent, or
generalized triphones, for instance.

Considering the onset-rhyme models, the models are consistent throughout their entire set
since the same onset-rhyme models have similar characteristics across different instances.
On trainability criterion, since there are a limited number of onset-rhyme models, the models
are sufficiently trained with only small set of training sentences. Hence, the onset-rhyme
models have met both criteria of consistency and trainability considerations which are major
advantanges over other subword units.

The concept of onsets and rhymes was first proposed by Luksaneeyanawin (1992) applied to
the Thai speech synthesis system. The subsyllable onset-rhyme models, therefore, have
been applied to Thai continuous speech recognition system for several reasons. First, there
are only about 26,928 grammatically generated distinct admissible syllables in Thai.
(Luksaneeyanawin, 1993) Thai language has 9 monophthongs and 6 diphthongs in short and
long pairs, 21 consonants, and 12 consonant clusters as shown in Table 2.1, 2.2, and 2.3
respectively. Among the 21 initial consonants, only 8 consonants, /p, t, k, m, n, ng, j, w/, can
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be both releasing and arresting consonants. Then, a number of onset-rhyme models are
finite number as shown in Table 1.4 and 1.5. These finite number of onset-rhyme models
have represented all potential speech units of the Thai language. Practically, a number of
onset-rhyme units should be less since there are some units that do not grammatically exist
or have very few occurrences.

Secondly, the Thai language has simple syllable structure as illustrated in Figure 1.2 in which
the onset-rhyme are simply applied. The whole Thai syllable set can be recognized in pairs of
onset and rhyme models. Thus, the recognizer models input syllables by concatenation of
onset and rhyme pairs.

Thirdly, the onset-rhyme models are context-dependent beginning from level of acoustic
model up to level of language model. Each of the onset unit contains releasing consonant
and its transitional period towards the following vowel. Then, the same releasing consonant
followed by different vowel context is individually modelled as a single onset unit. Unlike the
phone models, the onset units capture a consonant cluster as a single arresting consonant
while the phone models consider as a sequence of consonants. The rhyme units contain the
whole vowel and arresting consonant. Like the onset unit, the same vowel followed by
different arresting consonant is separately modelled as a single rhyme unit. Hence, a
releasing consonant is right context-dependent on its immediate following vowel in an onset
unit. Also, an arresting consonant is left context-dependent on its preceding vowel in a rhyme
unit. This is a major point of difference to the triphones where a triphone is actually a phone
within different context as illustrated in Figure 3.2.

In Figure 3.2, physical segments are illustrated on phones, diphones, triphones, and onset-
rhyme units. A speech waveform is described as segments of phones. Using the diphones
and triphones, their physical segments are similar to the phones but are logically described
according to the context. For example, the /aa/ phone in the syllable /phaa/ has similar
characteristics to the diphone /ph-aa/. But the diphone /ph-aa/ is logically defined to have /ph/
as its left context. Using the onset-rhyme models, each syllable is modelled by a pair of onset
and rhyme units. For instance, the syllable /khaaw/ is modelled as /khaa/ and /aa_w/.

PV) = P(Wyy Wy, ., Wy ) oo (3.1)

Pw) = QP(W,) = PZ)PI, Yo ce Py ) oo, (3.2)

PW,) = P(S,,S,,....8y) = P(S)P(Sy) P(Sy) cororrorrerrerererera. (3.3)

where Pls,) =1 PlORR;)0 2 CPOPIR IO, o (3.4)

then = P

0,)P(R|0,) lM_[ P (Oj|Rj—1 )P(Rj|0j)

=2

~

Moreover, the onset-rhyme models also incorporate language modelling into the model at the
syllable level. An onset-rhyme model comprises a pair of onset model and rhyme model
which makes up a syllable as depicted in Figure 2.5. An onset model is then right context-
dependent on the following rhyme and a rhyme is left context-dependent on the preceding
onset. Consequently, a sequence of onset and rhyme pairs makes up a sequence of
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Figure 3.2 Physical speech segments of phones, diphone, triphones,
and onset-rhyme units

syllables, sequence of words, and the whole sentence respectively. These bottom-up
approach indicates that language modelling is directly embedded into the onset-rhyme
models.

Considering the language model P(W) from Eq. (3.1), the probability of a sequence of N
words W is stated in Eq. (3.2). Then, probability of the unigram language model, in which
each word independently occurs, could be expressed in Eq. (3.2) where N is the number of
words. Each word contains a sequence of M syllables, thus, probability of a word W, is then
expressed in Eq. (3.3). Each syllable is modelled as a concatenation of the subsyllable
onset-rhyme models.

Since the onset-rhyme model always occurs in a pair of the onset model and the rhyme
model, then, a rhyme model depends on its preceding onset. Consequently, the onset unit is
only followed by its corresponding rhyme unit as directed in the model network depicted in
Figure 3.5 and 3.6. The rhyme unit conditionally depends on its preceding onset, then, the
probability of a rhyme unit is described as conditional probability P(R;O;). Hence, the
probability of a syllable comprises an onset probability P(O;) and a rhyme conditional
probability P(R;|O;) as stated in Eq.(3.5). The P(0;), P(OjR;.;), and P(R;|O;) In addition, the
onset-rhyme models have covered a finite set of speech units that represents all potential
speech units of the language comparing to other context-dependent models. As a result, the
limited numbers of onset-rhyme models could be sufficiently trained with only a small set of
sentences. The models also guarantee that every unit, existed in the language, is modelled.
The numbers of onset-rhyme models are shown in Table 1.4 for the onset units and Table 1.5
for the rhyme units.

Finally, the onset-rhyme models have revealed thus provided significant acoustic cues for
tone recognition, that is, a syllable boundary as depicted in Figure 3.3. Location of syllable
boundaries could be accurately obtained over a pair of onset and rhyme models, that is, at
the beginning in front of an onset model and after a rhyme model. Then, tonal information of
a syllable is properly extracted and recognised over the whole syllable segment. This is also
another major advantages of the onset-rhyme models over other subword models.
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Figure 3.11 Network of the phonotactic onset HMMs and rhyme HMMs in forming syllables
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RHYME HMMs

Figure 3.12 Network of the contextual onset HMMs and rhyme HMMs.in forming syllables

3.2 Modelling of the Onset-Rhyme Acoustic Models

From the acoustic-phonetic analysis of Thai syllables, each of the Thai releasing consonant is
analysed with the results as illustrated in Figure 3.4 to 3.10. Figure 3.4 illustrates acoustic
characteristics of the voiceless unaspirated stops /p, t, c, k, z/. In Figure 3.5, acoustic
characteristics of the voiceless aspirated stops /ph, th, ch, kh/ are illustrated. Figure 3.6
shows acoustic characteristics of the voiced stops /b, d/. The set of non-stops are shown in
Figure 3.7 to 3.10. Figure 3.7 shows acoustic characteristics of the nasals /m, n, ng/. In
Figure 3.8, acoustic characteristics are illustrated on the fricatives /f, s, h/. Figure 3.9
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illustrates acoustic characteristics of the ftrill /r/ and the lateral /I/. In Figure 3.10, acoustic
characteristics of the approximants /w, j/ are depicted.

In Figure 3.4 to 3.10, each of the Thai releasing consonant shows its unique acoustic
characteristics. Transitional period between a releasing consonant and its adjacent vowel
contains some acoustic cues in characterizing the releasing consonant. For example, the
formant transitions of a vowel in the transitional period are specific to each consonant. The
formant movement of a vowel is moving towards the locus of each consonant as illustrated in
Figure 2.14 to 2.18 in Chapter 2 and in Figure 3.4 to 3.10. The onset units cover the whole
segment of a releasing consonant and its transitional period toward the adjacent vowel.
Hence, these acoustic cues are collected within the onset units during modelling.

In modelling of the onset-rhyme models, a number of possible combinations of the model is
shown in Table 1.4 and 1.5 in Chapter 1. From analysis of the Thai syllables as illustrated in
Figure 3.4 to 3.10, two types of the onset-rhyme models are proposed other than the
theoretical onset-rhyme models, that is, the contextual onset-rhyme models, and the
phonotactic onset-rhyme models. Details of each type are described as follows.

3.21 Types of the Onset-Rhyme Models

A. Theoretical Onset-Rhyme Models

The theoretical onset-rhyme models are basic one-to-one mapping of onset and rhyme units
to each segment of the Thai syllable. The onset units are context-independent phone models
of all releasing consonants. The rhyme units covers both vowel and arresting consonant.
Therefore, both onset and rhyme units are not context-dependent in this theoretical models.
The classical onset-rhyme models are then context-independent models. This dissertation
does not include this models in analysis and recognition.

B. Phonotactic Onset-Rhyme Models (PORMSs)

From the acoustic analysis, transitional period exists between a releasing consonant and
adjacent vowel nucleus in a syllable. The transitional period provides crucial acoustic cues in
determining the releasing consonant in a syllable. Therefore, an onset unit covers a releasing
consonant and the transitional period towards its adjacent vowel nucleus. A rhyme unit
covers the whole vowel segment and the releasing consonant. Then, the onset units have
partially overlapped over the vowel segment of the rhyme units. In consequence, the onset
units have combined crucial acoustic cues, existed in the transitional period, for recognition of
the releasing consonants.

The phonotactic onset-rhyme models are proposed: in-this-reseach. The onset units of the
phonotactic onset-rhyme models are extended to cover all possible combinations as depicted
in Figure 3.12. For example, the /p_i/, which is the /p/in /i/ context, must be followed by its
corresponding rhyme models with the same context, that is, /i_p, i_t, ..., i_j/. Consequently,
the onset units are thoroughly modelled according to their neighbouring context of the rhyme
models. In Figure 3.12, the network configuration of the onset and rhyme pairs are illustrated.
The onset units are shown in 5-state HMMs and the rhyme units are shown in 8-state HMMs.
The number of HMM states for both units are described in the following section. The PORMs
network illustrates complete combinations of the onset and rhyme units in every possible
context. For examples, an onset unit is /p_i/ and a rhyme unit is /i_p/ as shown at the bottom
of the figure. The /p_i/ is the releasing stop /p/ with transitional period in the /i/ vowel. The
/p_i/ must be followed by the rhyme units in same /i/ vowel context as shown in the network.
Similar to the CORMs network, each connection between the onset and the rhyme units
represents conditional probabilities P(OjR;.;), and P(R;|O;) as stated in Eq. (3.5). These
conditional probabilities are determined from pronunciation dictionaries during building the
word network.
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C. Contextual Onset-Rhyme Models (CORMSs)

In order to reduce the number of onset unit in the PORMSs, the contextual onset-rhyme
models are introduced in this research. The results of acoustic analysis on Thai syllable show
similar pattern of formant transitions in some cases. These formant patterns are similar in
both short and long vowel context with the same releasing consonant. The examples of these
patterns are shown in Figure 2.14 to 2.18 and Figure 3.4 to 3.10. Hence, the onset units can
be greatly reduced by combining similar onset units with short-long vowel pairs on the same
releasing consonant.

The onset units are always tied with their corresponding rhyme models with the same context
included in the whole transitional period. For instance, the /pii/, which is the /p/ in /i,ii,iia/
context, must be followed by its corresponding rhyme units with the same context, that is,
fi_p,it, ..., iia_jl. The network of contextual onset-rhyme hidden Markov acoustic model is
shown in Figure 3.11. In Figure 3.11, the network configuration of the onset and rhyme pairs
are illustrated. The onset units are shown in 5-state HMMs and the rhyme units are shown in
8-state HMMs. The number of HMM states for both units are described in the following
section. For examples, an onset unit is /khw@@)/ and a rhyme unit is /@@_j/ as shown at
the bottom of the figure. The network shows connections between the onset and rhyme pairs
in which the rhyme units must follow the onset units. The CORMs network illustrates sharing
of an onset unit with similar rhyme of the same short-long vowel pairs. Each connection
between the onset and the rhyme units represents conditional probabilities P(Oj|R;.;), and
P(Rj|O;) as stated in Eq. (3.5). These conditional probabilities are determined from
pronunciation dictionaries during building the word network. Hence, the contextual onset-
rhyme models effectively handle the intra-word and intra-syllable coarticulatory effects by the
model themselves that also make the model context-dependent.

3.2.2 Onset Unit Overlapping Schemes

In both of the contextual and phonotactic onset-rhyme models, the onset units have been
extended to include transitional period over the vowel segment. As a result, there are two
proposed schemes in determining duration of the overlap, that is, the fixed duration overlap
and the variable duration overlap. These two schemes have been utilized in acoustic
modelling of the onset-rhyme models. The overlapping of the onset units over the vowel
segment show explicit modelling of transitional period. Hence, both of the onset models and
rhyme models have provided overlapped segment models. in acoustic modelling.

A. Fixed Duration Overlap

From acoustic analysis on_Thai syllables, the transitional period occurs in a very short
duration at the beginning of vowel segment. From speech unit statistics, the minimum length
of a short vowel is 30 ms determined from the whole speech corpus. Therefore, the length of
overlap should not longer than 30 ms to cover the transitional period. Otherwise, the whole
vowel segment will be included in some short vowels. In fixed duration overlap, length of the
overlap is predefined at either 10 ms, 20 ms, or 30 ms into the vowel segment of a rhyme
unit. Example of the 20-ms fixed duration overlap is depicted in Figure 3:1.

B. Variable Duration Overlap

From acoustic analysis on Thai syllables, duration of the transitional period is proportional to
length of the vowel segment. The formant transitions in short vowels tend to move faster than
in long vowels. The faster movement makes their duration shorter. Unlike the fixed duration
overlap, length of the overlap is varied in percentage of the vowel duration in the variable
duration overlap. The length is computed at 5%, 10%, 15%, 20%, and 25% of the vowel
duration. Example of the 25% variable duration overlap is depicted in Figure 3.1.
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3.3 Task of the Thai Speech Corpus

Since there are no available Thai continuous speech corpus, a new Thai continuous speech
corpus was created for building a Thai continuous speech recognition system. The task
domain of the corpus is based on some Aesop’s fables in Thai. The dictation or reading style
is applied throughout the corpus. Thai text data are first collected by typing the Thai text into
a computer in plain text. Secondly, the Thai text data are parsed into words and transcribed
into phonetic transcriptions. Moreover, the transcribed text are modified by adding new words
or new sentences to increase number of occurrences of each onset-rhyme model. The
procedures are then repeated until there are sufficient samples of each onset-rhyme model
for creating hidden Markov models. The Thai text corpus is then used in recording of speech
corpus.

3.3.1 Criteria in Building a Thai Continuous Speech Corpus

In this dissertation, speaking style is controlled to the dictation or reading style. The text data
were then collected from a series of Aesop’s Fables in Thai for story-telling. The text were
selected not to contain any foreign words. A total of seven Aesop’s Fables were used and
analysed on distribution and amount of onset and rhyme units. The set contains over a
hundred sentences. In order to create an initial HMIM for each onset and rhyme unit, a
number of training samples must be sufficient. Therefore, lists of Thai words that share the
same onset units were created. These words were then used in composing sets of sentences
to fulfill as much samples as possible on each onset unit.

These sentences were frequently analysed on statistics of each onset and rhyme units. The
final sets contain a total of 400 sentences. These sentences are composed of distinct 384
onset units and 144 rhyme units. The pronunciation dictionary contains the total of 2,250 Thai
words collected from these sentences. The set of 2,250 words is composed of 1,650 distinct
syllables. These syllables contain combinations of both onset units and rhyme units in
various context.

3.3.2 Recording of Thai Utterances

Sets of Thai sentences from the Thai text corpus were analysed and used in recording of
each Thai sentence. Recording was taken place in the quiet laboratory environment. The
resolution of 16-bit at 16 kHz sampling frequency were used in recording of each Thai
sentence. Two microphones are used in recording simultaneously into separate left and right
stereo channels. Such recording method gives out two utterances in one utter. This way of
recording will give out two samples of each utterance at the same time. All of the recorded
utterances were recorded in stressed dictation style or reading style. The total of 625 Thai
sentences were recorded which contain: more then 5 hours of continuous utterances. The
625 sentences are composed of 557 sentences for training and the other 68 sentences for
testing. The speech corpus contains continuous utterances of a single male speaker.

3.3.3" Labelling of the Recorded Thai Utterances

All of the recorded utterances were then hand-labelled by their phonetic transcriptions of each
sentence. Labelling was done manually by the “Speech Labeller” labelling program created
by the Thai speech processing research group at the Digital Signal Processing Research
Laboratory. In labelling, understanding about acoustic characteristic of Thai continuous
speech is very essential in determining the location and boundary of each phone within a
sentence. Labelling of all speech were mostly done by the author and some by members of
the Thai speech processing research group. Three output labels are created in phones, in
contextual onset-rhyme models, and in phonotactic onset-rhyme models. Format of the
output labels are conforming to the Hidden Markov Toolkit (HTK) format (Young, et al., 2000).
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3.4 The Thai Continuous Speech Recognition System

In building a Thai continuous speech recognition system, the hidden Markov model toolkit
(HTK) is utilized (Young, et al., 2000). The toolkit provides a variety of tools for speech
processing, feature extraction, training, and recognition. Pronunciation dictionaries of each
word were generated based on the Thai text corpus. The pronunciation dictionaries contain
one-to-one mapping of each word into a sequence of recognition units, in this case, phone
units, contextual onset-rhyme units, and phonotactic onset-rhyme units respectively.

3.41 Speech Signal Processing and Feature Extraction

All the utterances were recorded at 16 kHz sampling frequency and 16-bit resolution. The
recorded utterances are preemphasized using the first-order filter with a coefficient of 0.97
(Rabiner and Juang, 1993; Lee, 1989; Lee, et al., 1990; Juang and Furui, 2000; Furui, 2001).
The preemphasized speech data are then blocked into 25-ms frame at every 5 ms with the
Hamming window applied.

Acoustic features of speech signals are extracted from the preprocessed speech. The Mel-
frequency cepstral coefficients (MFCC) are employed as acoustic features representing the
speech signal (Lee, 1989; Lee, et al., 1990; Juang and Furui, 2000; Furui, 2001). The MFCC
are utilized in many continuous speech recognition (CSR) systems (Lee, 1989; Lee, et al.,
1990; Juang and Furui, 2000; Furui, 2001; Huang, Acero, and Hon, 2001), which are then
served as standard basic feature for a CSR system (Furui, 2001; Huang, Acero, and Hon,
2001). The MFCC are then employed in this research to provide the same standard
configuration as other CSR systems. The 24-order speech feature vectors are computed
from every speech frame which composed of 12-order MFCC feature vector and their 12-
order time derivatives.

3.4.2 Acoustic Modelling of Speech Units

In building the Thai continuous speech recognition systems, three systems were set up using
three different acoustic models in each system. The three acoustic models are phone
models, contextual onset-rhyme models, and phonotactic onset-rhyme models. The phone-
based system is a baseline system for comparison to the other two onset-rhyme models.
Details of the three recognition systems are described in this section.

In determining the length of onset-rhyme hidden Markov models (HMMs), the model length is
based on the length of a phone HMM. In the experiments, the phone HMMs were set at 3
active states with other two free connecting states at the beginning and the end of models.
These states are illustrated in Figure 3.13. The active states are shown in dark circle with
self-loop. For the onset-rhyme HMMs, the onset HMMs has 5 active states and the rhyme
HMMSs has 8 active states with two mixtures per state, which is called “m2s5s8” configuration.
These onset-rhyme HMMs also have free connecting states, one at the beginning and one at
the end of each model like the phone HMMs. In the experiments, the length of onset-rhyme
HMMs are varied to see the effects of variable model length. Hence, another experiments
use 4 active states in the onset HMMs and 6 active states in the rhyme HMMs with three
mixtures per state, which is called “m3s4s6” configuration accordingly. The experiments were
also set up by different overlap schemes, fixed and variable duration overlaps. Details of
these experiments will be described in the next chapter.

In Figure 3.13, the phone HMMs along with the onset and rhyme HMMs are illustrated in the
figure. These HMMs are used in recognition of continuous speech, which is treated as
concatenation of speech units. In Figure 3.14, the bottom-up approach is depicted in
recognition of the phrase /khiian4 tuuaO leek2/ using the onset-rhyme models. For example,
the onset HMM “kh_iia” is time-aligned and matched to the speech. A set of rhyme HMM in
the same “iia” context are match synchoronously and resulted in the rhyme HMM fiia_n”.
Then, a pair of onset unit “kh_iia” and rhyme unit “iia_n” are formed as a syllable “khiian”. This
recognition process is then repeated to the entire speech. The pairs of onset and rhyme units
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ONSET HMM RHYME HMM

Figure 3.13 HMMs of phone, onset unit, and rhyme unit.

make up syllables, words, and the whole sentence, respectively. This is the bottom-up
approach utilized in continuous speech recognition beginning from the smallest segmental
units upto the whole sentence.

Modelling of the three acoustic models, phone models, contextual onset-rhyme models
(CORMSs), and phonotactic onset-rhyme models (PORMs), are described in details as follows.
Both of the onset-rhyme models are introduced in this dissertation for modelling of the onset
units.

A. Thai Phone Models

In modelling acoustic units using phone models, there are 54 phone models which are
composed of 18 monophthongs, 3 diphthongs, 21 consonants, 11 consonant clusters and one
silence model. A diphthong is considered as a single-unit model. Also, only the three long-
vowel diphthong are modelled, /iia, vva, uual/, resulted from much higher number of
occurance. Each phone model is modelled using a 3-state left-right hidden Markov model
with three gaussian mixtures for each output probability density function. Initial phone models
have been created and reestimated using labelled utterances. Then, embedded training have
been applied to reestimate the trained phone models using unlabelled utterances. The list of
Thai phone models is shown in Table 2.1, 2.2, and 2.3.

SENTENCE (“awa21a%)

/\

WORD (12igiw) WORD (6taa)
SYLLABLE (12iaiw) SYLLABLE (67) SYLLABLE (1a2)
ONSET RHYME ONSET RHYME ONSET RHYME
ONSET HMM RHYME HMM ONSET HMM RHYME HMM ONSET HMM RHYME HMM

Figure 3.14 The bottom-up approach using the onset-rhyme models
on an example phrase /khiian4 tuua0 leek2/ or “LiaualLa’.
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B. Thai Contextual Onset-Rhyme Models (CORMSs)

From analysis of Thai syllable structure, there are a total of 497 contextual onset-rhyme
models which are composed of 297 onset units and 200 rhyme units. Due to limited data,
only a partial set of 363 onset-rnyme models are modelled which contain 218 onset models
and 144 rhyme models in this research. Since there are limited training data, the 363 onset-
models are analysed from text corpus which are specially created for recording and training of
the onset-rhyme model. The speech corpus contains substantial amount of samples
sufficient for initialization and training of each model.

In training of the onset-rhyme models, labelled phonetic transcription of each utterance were
generated in the CORMs format. An onset unit contains transitional period between a
releasing consonant and its adjacent vowel. This resulted in overlapping of an onset unit over
the vowel segment of the following rhyme unit. Consequently, two types of overlap are
utilized, fixed duration overlap and variable duration overlap, as stated in the previous
chapter. Using fixed duration overlap, the length of overlap are preset at either 10ms, 15ms,
20ms, or 30ms respectively. Using variable duration overlap, the length of overlap are
determined as percentage of the vowel duration at either 10%, 15%, 20%, or 25%
respectively. Then, the labelled onset-rhyme transcription are generated according to types
and values of overlap.

In acoustic modelling, the left-right hidden Markov models (HMMs) are used with different
number of states between the onset HMMs and the rhyme HMMs. An onset unit and a rhyme
unit are modelled by 5-state and 8-state HMMs respectively. Both of the HMMs utilize two
Gaussian mixtures for each output probability density function. The left-right HMMs are used

?peech U_nit _W_ord Grammar Task Model
nventories Dictionary
D D D Recognized
Speech H Utterance
" Feature Unn_: N Lexical Syntactic Semantic
E( Analysis Matching Decoding Analysis Analysis
FJ( System F/ F, F{
Speech Units
Modeling
i Sentence-Level Modeling or
Word-Level Modeling Language Modeling

Figure 3.15 The general concept of a continuous speech recognition system.

nvng1

suun4

Figure 3.16 Example of a word lattice network.
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at 5 states for an onset unit and 8 states for a rhyme units. Both of the onset and rhyme
hidden Markov models use two Gaussian mixtures for each output probability density
function. The initial onset-rhyme models were created and reestimated using labelled
utterances. After labelled training, the trained acoustic models were reestimated using
unlabelled utterances by embedded training. From analysis of the Thai text corpus,
distribution of the contextual onset-rhyme models are shown in Table A1.2. In Table A1.2,
statistics of each model are listed that was designed to have sufficient number of occurrences
of each model.

C. Thai Phonotactic Onset-Rhyme Models (PORMs)

In analysis of the models, the Thai phonotactic onset-rhyme models have 992 onset-rhyme
models that contain 792 phonotactic onset units and 200 rhyme units. The phonotactic onset-
rhyme models have more extensive context-dependent onset units than the contextual onset-
rhyme models as shown in Table 1.5 in Chaper 1. This model considers a releasing
consonant in different vowel context as separate models. The network of phonotactic onset-
rhyme models is shown in Figure 3.12 which shows complete combinations between the
onset and the rhyme models.

Due to limited training data, only 528 onset-rhyme units were created and modelled. The 528
onset-rhyme units contain 384 onset units and 144 rhyme units. Like the contextual onset-
rhyme models, the labelled phonetic transcriptions are generated in phonotactic onset-rhyme
models. A list of all 528 phonotactic onset-rhyme units are shown in Table A1.3 in the
Appendix A. In Table A1.3, all 528 phonotactic onset-rhyme models are shown along with
their distributions. The Thai text corpus was designed to accommodate all the models with
sufficient samples for creating initial models.

3.4.3 Architecture of the Recognition System

The architecture of the recognition system is shown in Figure 3.15, where a general
conceptual model of a continuous speech recognition system is illustrated. In Figure 3.17,
training of speech units is depicted, using both labelled and unlabelled training data. In
Figure 3.18, recognition procedure is illustrated. During recognition, there are no language
models or any grammars applied in the decoding process. This means that any words can
follow any other words with optional silence as illustrated in Figure 3.16. The unigram model
or no grammar means each word has uniform probability of occurance. The word probability
of a unigram model is shown in Eq. (3.2) in Section 3.1. These system configurations are
described in the HTK manual (Young, et al., 2000).

3.5 Summary

The concept of the onset-rhyme models are described-in details along with advantages over
other-acoustic-modelling .of the models. : Three types of the onset-rhyme models are
introduced, namely, theoretical onset-rhyme models, contextual onset-rhyme models, and
phonotactic onset-rhyme models. The onset-rhyme models comprise an onset unit and a
rhyme unit. The onset unit contains transitional period into the adjacent vowel nucleus, which
overlaps into the rhyme unit. In modelling of the onset unit, two types of overlap schemes are
proposed, the fixed duration overlap and the variable duration overlap.

In this chapter, modelling of the onset and rhyme units is explained using the hidden Markov
models (HMMs). The bottom-up approach used in recognition is illustrated using the onset
and rhyme units. This approach describes how a pair of onset and rhyme units forms a
syllable, words, and sentence, respectively. The lattice networks of onset and rhyme HMMs
are depicted in both contextual and phonotactic onset-rhyme models.
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Operating environments of the recognition system are described in details in this chapter.
The task domain of the corpus was based on Aesop’s fables and other reading-style
sentences. All of the recorded utterances were in reading style or dictation style. Utterance
of a male speaker were recorded for both training and testing.

Moreover, details of the recognition system is described with acoustic modelling of phones
and both onset-rhyme models. Only a partial set of onset-rhyme models were built and
utilized in recognition system due to limited training data available. Only 363 models out of
497 contextual onset-rhyme models were selected based on the text corpus. Also, only 528
model out of 992 phonotactic onset-rhyme models were chosen from the text corpus. These
onset-rhyme models comprise a set of 2,250 Thai words in the pronunciation dictionary.
There are 1,650 distinct syllables within the set of 2,250 Thai words. These words were
collected from the text corpus used in recording, training, and testing. Although only partial
set of onset-rhyme models were utilized, this could be used in implementation of a small,
task-specific Thai continuous speech recognition system. This kind of small system is much
easier to optimize to have very high recognition accuracy.
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Figure 3.17 Hidden Markov model training process (adapted from Young et al. (2001)).
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CHAPTER 4

Experimental Results and Discussions

In this chapter, results are collected from series of experiments. The forced alignment and
recognition are employed in evaluation of the acoustic models. These acoustic models are
phone models, contextual onset-rhyme models, and phonotactic onset-rhyme models.
Results from both evaluation methods are compared among the three acoustic models.
Result analysis and discussions are given in this chapter.

4.1 Evaluation of Acoustic Models using Forced Alignment

In evaluation of acoustic models, forced alignment are employed in order to determine
precision of model boundaries. The forced alignment procedure performs recognition based
on a provided word-level transcription of a particular utterance. The word lattice network is
then constructed based on the given transcription of word sequence. Pronunciation
dictionaries provide description of a word by its composition of acoustic units. For examples,
the word "D@@K1 MAAJ3", or flower, is composed of the phones /d @@ k m aa j/ or the
contextual onset-rhyme models /d@@ @@_k maa aa_j/. Therefore, each word in the lattice
network is expanded based on acoustic unit composition in the pronunciation dictionary and
aligned over a proper location on the utterance. The alignment is done using the trained
hidden Markov model of each acoustic unit by matching against the most probable speech
segments. The procedure is then repeated sequentially on every word in the network.
Output of the forced alignment procedure provides time alignment or model boundary
information of each acoustic unit on the expanded word lattice network.

In evaluation of acoustic units, the hand-labelled phonetic transcriptions are utilized as
reference time alignment. Shifting in syllable boundaries is then computed on each test
sentences by comparing to the reference syllable boundaries in both syllable starting and
syllable ending. Boundary shifting values are collected and statistically analysed on all
acoustic units--phones, contextual onset-rhyme models, and phonotactic onset-rhyme
models. The statistical analysis results are shown in Table 4.1 on phone models, in Table 4.2
on contextual onset-rhyme models, and in Table 4.3 on phonotactic onset-rhyme models
respectively.

411 Results and Evaluation of Forced Alignment

Forced alignment results are illustrated in Figure D1.1:to D1.32 in the Appendix D on each
test sentences. The figures show hand-labelled time alignment using phone sequence of a
test sentence along with the alignment results using the phones, the contextual onset-rhyme
models- (CORMSs), and the phonotactic onset-rhyme models (PORMs). The hand-labelled
phonetic transcriptions shown in the figures are used as reference boundary alignment.

Syllable boundaries of each syllable are compared against the hand-labelled syllable
boundaries of a particular utterance. Syllable boundary positions from hand-labelled
transcriptions are employed as reference points on evaluation of forced alignment. The
forced alignment results give out positions of syllable boundaries according to the predefined
word transcriptions of a particular utterance. Deviations of syllable boundaries are computed
on each corresponding syllable between hand-labelled and forced alignment results.
Statistical analyses on amount of deviations or shifts are shown in Table 4.1 using the phone
models, Table 4.2 using the contextual onset-rhyme models, and Table 4.3 using the
phonotactic onset-rhyme models, respectively.
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Table 4.1 Statistical analysis results on shifting in syllable boundaries using phone
models in forced alignment

Model Shift in syllable beginning (ms) Shift in syllable ending (ms)
Configuration Min Max Mean S.D. Min Max Mean S.D.
m3s5 0 860 33.557 70.632 0 725 65.133 95.867

4.1.2 Discussions

In Table 4.1, the phone models show mean boundary shift at 33.56 ms on beginning and at
65.13 ms on syllable ending. In Table 4.2, the statistical analyses on contextual onset-rhyme
models (CORMSs) are shown on both fixed and variable duration overlap. The 20% variable
duration overlap gives out the lowest mean boundary shift at 14.15 ms on beginning and at
32.31 ms on syllable ending. All cases of the CORMs have shown better alignment than the
phone models. The mean of syllable shifts in starting and ending for the CORMs are 57.84%
and 50.39%, respectively, lower than the phones. Like the CORMSs, results of the statistical
analyses on the phonotactic onset-rhyme models (PORMSs) also show better alignment than
the phones as stated in Table 4.3. The 20% variable duration overlap gives out the lowest
mean boundary deviation at 15.32 ms on beginning and at 34.41 ms on ending of syllable.
The mean deviation of syllable starting and ending for the PORMSs are 54.35% and 47.17%
respectively better than the phones. The CORMs and PORMs give out comparable results in
both cases as shown in Table 4.2 and Table 4.3, respectively. Both cases also illustrate
much lower standard deviation (S.D.) in syllable boundary shift than the phones.

Moreover, both cases of fixed and variable duration overlap provide similar results in syllable
boundary shifts on forced alignment. From Figure D1.1 to D1.32, the forced alignment results
are depicted with all speech units comparing to the hand-labelled data, the phones, the
CORMSs, and the PORMs. Both of the subsyllable onset-rhyme models show better time
alignment than the phones and also have many advantages described as follows.

The onset units show much more precise time alignment than the phones in almost every
cases. In the case of an arresting nasal followed by the same releasing nasal, the onset unit
performs much more accurate than the phones in boundary alignment between the two
adjacent syllables such as /t{@@n nang/ as shown in Figure D1.9. This is also existed in the
case of two consecutive approximants, /j, w/, as arresting and releasing consonants between
the two syllables such as /Iqqj jaang/. Boundary shifting in onset units mostly occurs with the
releasing voiced stops, /b, d/, especially after an open syllable or an arresting non-stops.
These shifts are resulted from acoustic characteristics of the two voiced stops themselves.
The voiced stops /b/ and /d/ have wvoicing or periodic characteristics similar to vowels and
non-stops. There are continuity-in spectrum and in fundamental frequency of the voiced
stops to the preceding vowel in an open syllable or the preceding arresting non-stops. Thus,
these lead to more difficult in locating syllable beginning boundary than in other consonants.
Examples of this case are illustrated in Figure D1.19 at the syllable /muu baan/, in Figure
D1.20 at the syllable /ngaan d@@k maaj/, and in Figure D1.21 at the syllable /kaan buk ruk/
and /chaaj dxxn/.

In the figures, overlapping of the onset unit into the adjacent rhyme unit are clearly depicted
with a longer duration of the onset unit. The phone models give out higher average boundary
shift because of their context independence especially in both releasing and arresting stops.
Acoustically speaking, each phone is effected by its neighbouring phones resulted from
coarticulation and contextual effects. Thus, assuming that the same phone is similar across
different context leads to an inefficient modellng of utterances. This is resulted in an
inaccurate time alignment especially the consonants that can be both releasing and arresting.
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Table 4.2  Statistical analysis results on shifting in syllable boundaries using contextual
onset-rhyme models in forced alignment

Model Overlap  Shift in syllable beginning (ms) Shift in syllable ending (ms)

Config Type Min Max Mean S.D. Min Max Mean S.D.

m3s6s8 10ms 335 15.066 24.892 410 34.519 44.812

m3s6s8 20ms 340 16.368 25.707 555 40.365 51.464

m3s6s8 30ms 340 14.925 24.809 555 35.008 47.242

m2s7s10  10ms 330 17.156 27.124 540 44.013 53.186

m2s7s10  20ms 336 16.012 25.076 540 43.192 53.274

m2s7s10  30ms 335 17.040 26.867 555 44212 52.714

m3s6s8 25pct 340 17.007 28.130 225 37.960 41.995

m2s6s10  05pct 330 16.202 27.885 225 35920 41.229

m2s6s10  10pct 335 16.153 27.067 225 36.882 41.464

m2s7s10  15pct 300 15.680 25.911 560 37.313 48.358

m2s7s10  20pct 305 14.146 25.127 495 32.305 43.446

e O ' ON "o 'O OO O OO
O O 0O O 0o o o o oo oo

m2s7s10  25pct 335 15.207 26.678 420 35.133 43470

Table 4.3 Statistical analysis results on shifting in syllable boundaries using phonotactic
onset-rhyme models in forced alignment

Model Overlap  Shift in syllable beginning (ms) Shift in syllable ending (ms)

Config Type Min Max Mean S.D. Min Max Mean S.D.

m3s6s8 10ms 335. 17.960 27.519 540 43.483 53.650

m3s6s8 20ms 340 17.247 26.819 260 42.836 49.355

m3s6s8 30ms 340 17.222 27.942 540 44842 55.813

m2s7s10- ~10ms 330 117.529 27.524 55544303 52.543

m2s7s10°  20ms 335" 17.040 27.072 410 < 44478 51.897

m3s6s8 25pct 340 16.161 26.579 215 32.313 38.105

m2s6s10  05pct 336 17.371 27.900 220 38.018 41.769

m2s6s10  10pct 340 17.164 27.800 220 38.300 41.692

m2s7s10  15pct 335 16.352 27.466 420 37.512 44774

m2s7s10  20pct 3356 15.323 25.927 215 34.411 40.331

0
0
0
0
0
m2s7s10  30ms 0 335 16.849 26.624 540 43.682 53.960
0
0
0
0
0
0

O 0O 0O 0o OO0 0o oo oo o

m2s7s10  25pct 335 15.879 26.760 230 36.816 42.935
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In summary, both of the onset-rhyme models provide accurate thus precise time alignment of
syllable boundaries. The onset-rhyme models efficiently reduce boundary shift at more than
50% compared to the phone models. Therefore, accurate syllable boundary information also
help improving tone recognition by providing precise location of a syllable.

4.2 Evaluation of Acoustic Models by Recognition

In evaluation of acoustic models, the onset-rhyme models are applied to the Thai continuous
speech recognition. Then, analysis on the recognition results are conducted in order to
explore any improvement in word error rate. The acoustic models, phone models, contextual
onset-rhyme models, and phonotactic onset-rhyme models, were used in the recognition.
The word error rate is an index, which describes an amount of incorrectly recognized words.
Confusion matrices of each speech unit, phone and onset units, show accuracy of speech
units in forming a word or a syllable. In evaluation of speech units, the resulting speech unit
sequences are compared against correct speech unit sequence of each sentence.

The onset-rhyme models utilise overlapping between an onset unit and a rhyme unit within a
syllable. The overlapping of an onset unit covers transitional stage between a releasing
consonant and its adjacent vowel, which is the nucleus of a syllable. In determining an
amount overlap, two overlapping methodologies are proposed, fixed duration overlap and
variable duration overlap. The fixed duration overlap uses a set predefined length of overlap
at 10 ms, 20 ms, or 30 ms into the adjacent rhyme unit. On the contrary, the variable duration
overlap varies a length of overlap to 5%, 10%, 15%, 20%, or 25% over duration of the
adjacent vowel. Therefore, both contextual and phonotactic onset-rhyme models were
utilized in a series of experiments covering the fixed and variable duration overlaps. The
recognition results of these experiments are illustrated in Table 4.4 to 4.8.

In the fixed duration overlap, the set of predefined length was selected based on length of
vowel. Length of speech units are collected and statistically analysed from the speech
corpus. The results showed only 30 ms on minimum length of a short vowel. Therefore, the
overlap duration may include some parts of a coda if longer than 30 ms. As stated in the
Section 3.2.2 in Chapter 3, the fixed duration is then set to be less than 30 ms at 10 ms, 20,
or 30 ms, respectively.

In order to find an appropriate hidden Markov model configurations, two sets of experiments
were set up. In the first experiment, hidden Markov model configurations are set to 4 states
for an onset unit and 6 states for a rhyme unit with three mixtures per state. In the second
experiment, a longer hidden Markov model configurations are set to 5 states for an onset unit
and 8 states for a rhyme unit with two mixtures per state. Then, these two HMM
configurations are called “m3 s4 s6” and “m2 s5 s8”, respectively, throughout this dissertation.

4.2.1 Evaluation of Recognition Results

This ‘'section contains details about all the recognition result of all the acoustic models. The
acoustic models used in the experiments are phone models, contextual onset-rhyme models
(CORMSs), and phonotactic onset-rhyme models (PORMs). Evaluation details of recognition
results are shown in this section on each acoustic models. Each HMM configuration is used
in series of experiments on fixed and variable duration overlap. In the “m3s4s6” case, there
are only 20% and 25% overlap because many models of both onset and rhyme units could
not be created as shown in Table 4.6 and 4.8. This is due to shorter duration in lower overlap
percentage which do not provide substantial amount of data for training. The concept of
selection an amount of overlap is stated in Section 3.2.2 in Chapter 3 on both fixed and
variable duration overlap.
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Table 4.4 Best word error rate achieved using
different acoustic models

Acoustic Units Word Error Rate (%)
Phone model 37.12
Conti:xtual onset-rhyme models 16.518
at 15% overlap
Phonotactic onset-rhyme 13.529

models at 20% overlap

A. Phone Models

Recognition result of the phone model is shown in Table 4.4. The result shows accuracy at
62.88% or at 37.12% word error rate using the phone models on the 68 test sentences.
Recognized phone sequence of each test sentence are evaluated with their correct phonetic
transcriptions. Evaluation results are then analysed based on three types of recognition
errors—insertion error, deletion error, and substitution error.

Table 4.9 illustrates three insertion errors with examples, insertion errors on vowel phonemes,
on initial consonants, and on initial nasals. In cases of insertion errors, insertion of another
vowel phonemes results in two subsequent vowel phonemes as shown in the first case of
Table 4.9. Besides vowel, insertion of another consonants also occurs which resulted in two
subsequent arresting and releasing consonants as shown in the second case of Table 4.9.
Moreover, these are also insertion of a voiced stop follows by a releasing nasals which results
in two subsequent arresting and releasing consonants as shown in the third case of Table
4.9.

Two different deletion errors are shown in Table 4.10 with examples, deletion errors on
arresting stops, and, on two adjacent nasals. Both cases of deletion error result from different
causes. Deletion of an arresting consonant is caused by phone modelling which considers
both initial and final stops identical. In the case of two adjacent non-stops, there are treated
as single non-stop which results from continuity of the two consonants with no explicit word
boundary or syllable boundary. Table 4.11 shows five substitution errors with examples,
substitution errors between short and long vowels, between voiced stop and nasal, within a
group of voiceless stops, within a group of nasals, and on consonant clusters. First, short and
long vowel pairs are incorrectly recognised between their counterparts, for example, the word
/kan0/ is recognised as /kaan0/ as shown in the first-case of Table 4.11. Secondly, some
initial nasals are incorrectly recognized as voiced stops such-as /ma3 naaw0/ is recognised
as /baan laaw/.. There are also some recognition errors within the same group of voiceless
unaspirated stops or nasals. Moreover, some consonant clusters are incorrectly recognised
as shown in the last case of Table 4.11.

The evaluation of each test sentences is shown in the Appendix C. From the results, many
kinds of errors are found in both confusion matrix and sentence evaluation. From the
confusion matrix, various kinds of recognition errors exist as follows. Firstly, recognition error
exists between a pair of short and long vowels such as /i/-/ii/ and /a/-/aal. There are also
some vowel pairs that are misrecognized between each other such as /e/-/lee/, I@/-/@@/, /ul/-
/uu/, and /o/-/oo/. Secondly, most recognition errors exist within the same group of phones
such as stops, etc. In a group of stops, the /c/ stop is incorrectly recognized as /t/ or /k/; the
It/ is incorrectly recognized as /p/, /t/, or /c/; and the /th/ is incorrecly recognized as /t/, /kh/,
Iph/, Ich/.  This kind of error indicates incorrect recognition within the same manner but
different places of articulation. There are also incorrect recognition to different manner of
articulations such as /k/ to /kh/, /p/ to /th/, and /th/ to /t/. In a group of non-stops, there are
recognition errors within the same group such as in the /m, n, ng/ group of the same manners
but different places of articulation. Thirdly, some of the consonant clusters are incorrectly
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Table 4.5 Average word error rate of onset-rhyme models using fixed-duration overlap
on different state sizes.

_ _ m3 s4s6 " m2 s5s8 @
Acoustic Units

1M0ms 20ms 30ms 1M0ms 20ms 30ms

Contextual onset-rhyme

35.394 35.113 34.957 27.572 27.591 27.785
models

Phonotactic  onset-rhyme

37.946 37.190 36.675 27.019 26.213 25.427
models

Remarks : (1) — 4-state onset HMM and 6-state rhyme HMM at 3 mixtures per state.
(2) — 5-state onset HMM and 8-state rhyme HMM at 2 mixtures per state.

Table 4.6 Average word error rate of onset-rhyme models using variable-duration overlap
on different state sizes.

m3 s4 s6 m2 s5 s8
20% 25% 5% 10% 15% 20% 25%

Acoustic Units

Contextual

20.080 20.487 17.623 17.411 16.518 16.770 16.790
onset-rhyme models

Phonotactic
onset-rhyme models - 18.100 17.226 16.431 13.985 13.529 14.334

Remarks : (1) — 4-state onset HMM and 6-state rhyme HMM at 3 mixtures per state.
(2) — 5-state onset HMM and 8-state rhyme HMM at 2 mixtures per state.

recognized such as /khr, kr/ into /r/ and /pr/ into /r/. Additionally, a voiced stop /b/ is
incorrectly recognized as /d/ and the nasal /n/.

B. Contextual Onset-Rhyme Models (CORMs)

The model network is illustrated in Figure 3.11 in Chapter 3. The network is used in creating
sequence of onset models and rhyme models to form syllables, words, and a sentence
respectively. An example of the onset-rhyme model alignment from recognition is depicted in
the Appendix D. -Recognition results using the onset-rhyme models is shown in Table 4.5 to
4.8. The result shows unit accuracy at 83.482% or at 16.518% error rate. The onset-rhyme
models reduce error rate up to 55.50% compared to the phone model. Recognized
sequences of each test sentence are evaluated with their correct onset-rhyme transcriptions.
Evaluation results are then-analysed on-three types of recognition-errors—insertion error,
deletion error, and substitution error. There are no deletion errors occurred using the onset-
rhyme models. These errors will be discussed later in the next section.

In Table 4.12 and 4.13, various types of onset recognition errors are shown with examples
from the recognition results in the Appendix C. Firstly, an onset with releasing voiceless
unaspirated stop is incorrectly recognized to aspirated stop in the same place of articulation.
Secondly, an onset with releasing voiceless stop is incorrectly recognized to another
voiceless stop with the same manners. Thirdly, an error occurs within a group of voiced stop
/b, d/ and also between a group of nasals /m, n, ng/. Moreover, a consonant cluster is
misrecognized into either its aspirated-unaspirated pair of stops or its secondary clusters /r, |,
w/. Additionally, there are very few occurrence on removal of an onset unit in the case of
diphthongs, which are only found in contextual onset-rhyme models.
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Table 4.7 Average error rate of the onset units using fixed-duration overlap.

. . m3 s4 s6 " m2 s5s8 @
Acoustic Units

1M0ms 20ms 30ms 1M0ms 20ms 30ms

Contextual onset-rhyme

24.601 24.115 23.862 17.992 17.871 18.492
models

Phonotactic onset-rhyme

34.769 34.259 33.690 23.993 23.357 22.608
models

Remarks : (1) — 4-state onset HMM and 6-state rhyme HMM at 3 mixtures per state.
(2) — 5-state onset HMM and 8-state rhyme HMM at 2 mixtures per state.

Table 4.8 Average error rate of the onset units using variable-duration overlap.

m3 s4s6 m2 s5s8 @

20% 25% 5% 10% 15% 20% 25%

Acoustic Units

Contextual

12.941  13.732 11.567 11.264 10.523 10.833 10.387
onset-rhyme models

Phonotactic
onset-rhyme models - 16.129 14.811 14211 12.140 11.753 13.074

Remarks : (1) — 4-state onset HMM and 6-state rhyme HMM at 3 mixtures per state.
(2) — 5-state onset HMM and 8-state rhyme HMM at 2 mixtures per state.

In Table C2.1 to C2.32 in the Appendix C, the recognition results of each test sentence are
shown in sequences of contextual onset-rhyme models. Recognized sequence of each test
sentence (REC) is then evaluated by comparing to their correct transcription (LAB). The
results of evaluation show many recognition errors as summarized in Table 4.12 and 4.13.
Coarticulatory effects are major cause of these recognition errors. For example, adjacent
syllables within the word /ma3 naawO0/ in the “testsentence01_016a_vis” was incorrectly
recognized as /maa a_n zaa aa_w/ instead of /maa a naa aa_w/. The releasing nasal /n/ was
treated as arresting nasal in the rhyme of its preceding syllable. In addition, many diphthongs
were incorrectly recognized by insertion of a syllable such as /khrvvang2/ was recognized to
/rvv vv daa a_ng/ instead of /khrvv vvang/, which shown in the “testsentence01_004b_vis”.

(1) Eixed-duration overlap

The recognition results of the contextual onset-rhyme models using fixed-duration overlap are
shown in Table 4.5.. In:Table 4.5, recognition results of the two experiments are shown where
each experiment conducts three different overlap length at 10 ms, 20 ms, or 30 ms.

From the results in Table 4.5, the 10-ms overlap of m2s5s8 configuration shows better result
at 27.572% word error rate than any other configurations. All cases of the m2s5s8
configuration show significant decreasing in word error rate compared to the m3s4s6
configuration. The reduction in word error rate is resulted from a longer HMM states in
modelling of both onset and rhyme units.

(2) Variable-duration overlap

In Table 4.6, recognition results of the contextual onset-rhyme models using variable-duration
overlap are shown. Two experimental results of m3s4s6 and m2s5s8 configurations are
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shown in Table 4.6. In Table 4.6, the recognition result lower than 20% overlap in the
m3s4s6 configuration is not available because of very short duration of each speech segment
and limited training data. Creating an initial HMM model using three mixtures per state
requires substantial amount of data and duration of each speech segment must be sufficient
for training.

Comparing both m3s4s6 and m2s5s8 configurations, the second configuration shows
significantly better results as shown in Table 4.6. Increasing percentage of overlap effects
only small reduction in word error rates as shown in Table 4.6. However, there are significant
decreasing in word error rates using m2s5s8 compared m3s4s6 configuration as shown in
Table 4.6. The reduction in word error rate not only resulted from a longer HMM states but
also from amount of acoustic information captured from the transition period.

C. Phonotactic Onset-Rhyme Models

The model network illustrated in Figure 3.12 in Chapter 3 is employed in generating
sequences of phonotactic onset and rhyme units. The generated sequences of phonotactic
onset and rhyme units form to be syllables, words, and sentence respectively. Recognition
results using the phonotactic onset-rhyme models is shown in Table 4.5 to 4.8. The best
recognition result is at 13.529% word error rate. The phonotactic onset-rhyme models reduce
word error rate up to 63.553% compared to the phone models or up to 18.095% compared to
the contextual onset-rhyme models.

In Table 4.12 and 4.13, many kinds of recognition errors are summarised with some
examples from the recognition results in Table C3.1 to C3.32 in the Appendix C. Considering
only the onset unit, voiceless stops are incorrectly recognized within their group of the same
places of articulation, i.e., /k_ @@/ to /lkh_@@/. They are also misrecognized to other stops
with the same manners of articulation, i.e., /ph_aa/ to /kh_aa/. There are some errors on
voiced stops /b, d/, which are incorrectly recognized not only with their counterparts but also
with nasals. Moreover, recognition of consonant clusters are also substituted with their
secondary consonants, /r, w/, for example, /khr/ to /r/, and, /khw/ to /w/. In addition, there are
few insertions occurred in some diphthongs such as /th_uua uua/ is recognized to /th_uu
uu_k w_aa aa/ in some results as shown in Table 4.13.

The recognition results using phonotactic onset-rhyme models are shown in Table C3.1 to
C3.32 in the Appendix C. Output of the result are shown in sequences of phonotactic onset
and rhyme units on each test sentence. The results (REC) are then evaluated with the
correct transcription (LAB) of each sentence. The outputs of evaluation show word error rate
and confusion matrices using the phonotactic onset and rhyme units. The word error rates
are shown in Table 4.5 to 4.8 on the entire experiments. These experiments are conducted
based on two types of overlap, that is, the fixed-duration and variable-duration overlap. Also,
the experiments are.conducted on_two. different configurations of hidden Markov models,
m3s4s6 and m2s5s8, as previously described at the beginning of this section.

(1) Fixed-duration overlap

In Table 4.5, recognition results ‘of the phonotactic onset-rhyme models are shown using the
fixed-duration overlap. The results are grouped by configurations of hidden Markov models.
The best recognition results is at 25.427% word error rate using 30-ms overlap. The word
error rates are significantly decreased comparing between the m3s4s6 and m2s5s8
configurations. At each overlap, the word error rates are reduced by 28.796% at 10-ms, by
29.516% at 20-ms, and by 30.669% at 30-ms overlap, respectively. These percentage of
reduction illustrated major improvements as much as 30% using longer hidden Markov model
states in both onset and rhyme units.
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(2) Variable-duration overlap

In Table 4.6, recognition results using variable-duration overlap are shown. The
configurations of m3s4s6 and m2s5s8 are shown. From both results, the best word error rate
achieved is at 13.529% using 20% overlap. Like the fixed-duration overlap, the word error
rate is significantly reduced using longer state in m2s5s8 than in m3s4s6. The word error rate
is reduced by 20.807% using 25% overlap.

4.3 Discussions

Eventhough only utterances of a single speaker were used in training and recognition, higher
recognition results were achieved with major improvements over the phones. From Table
4.4, comparison of recognition results between the phones and the onset-rhyme models has
shown a large amount of reduction in error rate at 55.76% over the phones without any extra
techniques or grammars. The onset-rhyme models always occur in pairs of the onset unit
and the rhyme unit which makes up syllables, words, and sentence, respectively.

Comparing between the phones and both onset-rhyme models, the phones are more
errornous than the onset-rhyme models. The evaluation results of the phones have a large
number of substitution errors and insertion errors. Substitution errors of the phones are
mostly occurred between short vowels and long vowels, initial stop consonants, and
consonant clusters.

Recognized sequences of the onset-rhyme models compared to sequences of the phones
illustrate some major point of improvements as shown in Table 4.9 to Table 4.13. Firstly,
sequences of the phones are difficult to distinguish between releasing consonants and
arresting consonants while this is not the case with the onset-rhyme models. Secondly,
deletion of an arresting stop frequently occurs in the phones but not occur in the onset-rhyme
models. Thirdly, syllables or even words could be simply determined from sequences of the
onset and rhyme pairs as illustrated in Table 4.15 and Table 4.16 for contextual and
phonotactic onset-rhyme models, respectively.

Also, there are some common errors between the phones and the onset-rhyme models. For
instance, some short and long vowels are incorrectly recognized as shown in Table 4.12 for
the phones and in Table 4.13 for the onset-rhyme models. Additionally, an open syllable was
incorrectly recognized to have obstruent ending or arresting consonant which is a releasing
consonant of the following syllable. Examples of this error are shown in Table 4.12 for the
phones and in Table 4.13 for the onset-rhyme models. Moreover, a sonorant-ending syllable
with similar arresting and following initial consonant is incorrectly recognized as an open
syllable. Examples of this error are shown in Table 4.12 for the phones and in Table 4.13 for
the onset-rhyme models.

In comparison, the theoretical onset-rhyme models were not employed in recognition. This is
due to-context independency of the models. . The theoretical onset-rhyme -models are context
independent models. The onset units are the similar to the context-independent phone
models. In addition, the onset units do not include the transitional period between releasing
consonant and neighbouring vowels.

4.3.1 Phone Models

The phones have many errors of insertion, deletion, and substitution compared the phones to
the two onset-rhyme models. There are plenty of insertion error on releasing consonants.
These insertions result in ambiguities to be either arresting consonant of the prior syllable or
releasing consonant of the following syllable. These insertions mostly occur in an open
syllable within a word. There are also two repeated vowels in the recognized phone
sequences as shown in Table 4.9, which do not exist in the onset-rhyme sequences.
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The phones also show deletion of arresting stops in many recognition sequences as shown in
Table 4.10. The absence of arresting stops is one of the major disadvantages. This type of
error is resulted from acoustic characteristic of the Thai arresting stops themselves, which
differ from other languages. Moreover, the phones could not recognize any two consecutive
nasals or approximants, which occur as arresting and releasing consonants respectively.
Examples of these error are shown in Table 4.10 such as the word /naam3 nak1/.

Besides the above errors, the phones have substitution errors between short and long
vowels, between voiced stops and nasals, and between nasals. Examples of these errors are
shown in Table 4.11. Considering the resulting phone sequences, the phones do not provide
any information in forming syllables or words. The resulting phone boundaries or time
alignment of each phone does not have any relation between each phone. This is also
another major disadvantages of the phones.

4.3.2 Contextual Onset-Rhyme Models (CORMSs)

Comparing to the phones, the contextual onset-rhyme models (CORMs) do not have any
deletion errors on any arresting stops. These errors are substitution errors in the CORMs.
For examples, the words /phaan0 naj0/ is composed of the phones /ph aa n n a j/ and the
CORMs /phaa aa_n n_a a jl. The system recognises the words as /ph aa n a j/ in phones
where the arresting nasal /n/ was deleted. Using the CORMSs, the words were recognised as
/phaa aa n_a a_j/ in which the rhyme /aa_n/ was substitued by /aa/.

The CORMSs performs recognition much better than the phones in many ways. Firstly, there
are very few errors on the onset units, which contain releasing consonant and its transition.
In many cases, the phones are unable to point out whether the consonant is releasing or
arresting. For example, considering the evaluation results “testsentences01_002a_vis” in
Table C1.1 for the phones and in Table C2.1 for the contextual, there are plenty of insertion
errors in the phone sequence while the contextual have none. The recognized CORMs
sequences illustrate pairs of onset and rhyme units that make up a syllable as shown in Table
C2.1 in the Appendix C. These onset-rhyme pairs give out syllable boundary information,
which is the most valuable information for tone recognition.

Comparing to the phonotactic onset-rhyme models (PORMs), the contextual onset-rhyme
models give out about 22% higher word error rate than the PORMs as shown in Table 4.4. In
Table 4.5 and Table 4.6, the CORMs provide higher word- error rate in every cases than the
PORMs. However, in Table 4.7 and Table 4.8, the error rate of the onset units in the CORMs
are lower than in the PORMSs on both fixed and variable duration overlap. The error rate of
the CORMs onset units are 20.953% lower than the PORMs in fixed-duration overlap and
11.623% lower in the variable-duration overlap. The lower onset error rates are resulted from
more compact models of each onset unit. The CORMs have much lower number of onset
units than the PORMSs.

4.3.3 Phonotactic Onset-Rhyme Models (PORMs)

Comparing to the phones, the phonotactic onset-rnyme models (PORMs) have many
advantages over the phones like their counterparts, the CORMs. For examples, comparing
the evaluation results of the “testsentences01_006b_vis” in Table C1.1 for the phones and
Table C3.1 in the Appendix C for the PROMSs, the phones show many insertion and deletion
errors. The recognized PORMs sequence combines syllable boundary information within
each onset-rhyme pair. On the other hand, sequences of the phones do not provide any
acoustic information as illustrated in Fig. D1.6 in the Appendix D for time alignment of the
“testsentences01_006b_vis”.

Comparing recognition errors to the CORMs, the PORMs do not have errors on removal of
releasing consonants like the CORMs. The PORMs provides better word error rate at
18.095% lower than the CORMs as shown in Table 4.4. In Table 4.5 and Table 4.6, the
PORMSs give out lower word error rate than the CORMSs in every cases. However, error rates
of the onset units using the PORMs are higher than the CORMSs in every cases of both fixed



69

and variable duration overlap as shown in Table 4.7 and Table 4.8. These are resulted from
a large number of onset units in the PORMs than the CORMs. The higher amount of onset
units in the PORMs makes the model network more complex than the CORMSs.

44 Summary

In this chaper, all the results of both forced alignment and recognition are described and
analysed in details. Evaluation of the onset-rhyme models are conducted in the aspects of
forced alignment and recognition. The forced alignment evaluates precision of model
boundaries. On the other hand, the recognition evaluates accuracy of the models in
modelling speech segments. Both of the contextual and phonotactic onset-rhyme models
outperform the phone models in both forced alignment and recognition. The contextual and
phonotactic onset units illustrate better alignment and recognition of releasing consonant.
The onset units of both onset-rhyme models show significant improvement in recognition of
every kinds of releasing consonants.



Table 4.9 Various types of insertion error using phone models

Insertion errors on vowel phonemes

LAB: sil p awmaa j kh @@ ng ph uu k @@ k aa n r aa j kh vv c a p ph uu kh a w
REC: sil t xxXx sil p aa awm aa j kh @@ ng ph uu k kh @@ k aa n r aa j kh vv sil ¢ a t ph uu k kh aa w

LAB: sil p awmaa j kh @@ ng ph uu k @@ k aa n r aa j kh vv c ap ph uu kh a
REC: sil taaawma J tekh @ ng t ophuu k kh @@ k @ k aa n r aa j kh vv sil ¢ a p aa ph uu k u kh aa w

Insertion errors on releasing consonants

LAB: sil p a wm aa j kh @@ ng ph uu k @@ k aa n r aa j kh vv c a p ph uu kh a w
REC: sil t xx sil p aa a wm aa j kh @@ ng ph uu k kh @@ k aa n r aa j kh vv sil ¢ a t ph uu k kh aa w

Insertion errors on releasing nasals

J phr i k b iipman aa w k inpenzaah aa n kl aa ng w a n sil
j sil phr 1 k j xx sil b ii pbandaawatthintenzaahaaz vv t kl aa ng wan sil

LAB: p a j
J

s a
REC: p a s a

0.



Table 4.10 Various types of deletion error using phone models

Deletion error of a releasing stop

LAB:
REC:

LAB:
REC:
LAB:
REC:

LAB:
REC:

sil r oo ng r iia n t a ng j uu th aa m kl aa ng m xx k m aa jJj r i m m XX n aa m
sil r oo ng r idla n t aa ng j uu th aa m kl aa ng m xx maa j sil rimmxx d aa m

sil kh awdoonmiit koonbaat th i1 kh aa ng k xx m k onconlvvat s aa t t @@ nn a ng
sil kh @@ k u d co n m ii ko nbaat thii kh aa ng k xx mk on t on 1 vva s aa k t @@ n aa ng

sil j 1ing saawwaangcxx ka n th a tpagjcaakthaat lx kr achawd®@kmaa j
sil th i ng s aawwaan kxx kaan t xx th aa t p a j ¢ aa t aa t 1 x sil kr a ch a w b @@ m aa j

pajsajphr ik bii pma n aa w k in penzaa h aan kl aa ng w a n sil
pajsaijphrikijxxsil d ii baanlaawcecilngtenzaahaanvng kl aa ng w aa n sil

Deletion error two adjacent nasals—arresting followed by releasing nasals

LAB:
REC:

LAB:
REC:
LAB:
REC:

LAB:
REC:

sil kh awdoonmii t k oon b aa t th 11 kh aa ng k xx m k oncon l vva t s aa t t @ nn a ng
sil kh @@ k u d co nm ii k o nbaat th ii khaang kxxmkontonlvva s aa k t ee n aa ng

1l aa s a t p aa 1 gg j J aa ng t xx k t @ ng p a ka nnaij p aa sil
l aa ksataatpaapaasill gg j j aang t xx sil t @ ng t aa t k aa nagjpaapaa sil

khr vwva ng b 1 n j ut tha mng aa n phr @@ m k a n mvva naa mmamnmo t sil
khr vva ng b 1 n sil j u t th aa m ng aa' n t xx phr @@ m k-aa n sil m vva n aa mamnm @@ t sil

j ok naamnak t @@ n k gg t phl gg ng m a j d aa j j aa ng j xx p J o n sil
j ok @Ge knaam at sil £t @@ n v k k gg t phl ggngma j sil d aa j aang j xx t aa j oo n sil

L.



Table 4.11 Various types of substitution error using phone models

Substitution errors over short and long vowels

LAB: khr vva ng b i n Jut thamngaan phr @@ m ka n m vva naamma nmo ¢t sil
REC: khr vva ng b i n sil jut thamngaantxphr @ mvva k aa n sil m vva z aa n aa maa nm @@ t k @ sil

Substitution errors between voiced stop and nasal

LAB: pa j s a jphr i k b ii pma n aa w k in penzaa h aan kl aa ng w a n sil
REC: pajsajphr i k j xx sil d ii baanlaawcecingtenzaahaanvng kl aa ng w aa n sil

IAB: paj s aij phr 1 k bii pman aa w k inpenzaah aa n k1l aa ng w a n sil
REC: pa jsajsilphrik jxxsilbii pbandaawatthintenzaahaazvvtkl aangwan sil

Substitution errors within a group of voiceless unaspirated stops

LAB: paj s a jphr ik b ii pma n aa w k in pemnzaa h aa n kl aa ng w a n sil
REC: pajsajphr i k j xx sil d i1 baanlaawcecingtenzaahaanvng kl aa ng w aa n sil

Substitution errors within a group of nasals

LAB: sil j i ng s aawwaang o c XX ka n th a tpa
t pa

c aa k th aa t 1 x kr achawda@@@kmaa j
REC: sil th i ng s aawwaan k xx k aa n t xx th aa c

aa t aa t 1 x sil kr a ch a w b @@ m aa Jj

Substitution errors on consonant clusters

LAB: sil kh o n r aa j b u k r u k kh a w khr @@ p khr @@ ng s aa n kh ee m ii
REC: sil kh onr aa j bu k phl ur uua sil kh awk @phr @ b e@r @@ ng s aam kh eem 1ii

cl



Table 4.12 Substitution errors on the onset units using the contextual and phonotactic onset-rhyme models.

Onset substitution errors on voiceless stops with the same places of articulation

LAB:
REC:

LAB:
REC:

sil p_.a a_w m_aa aa_j kh_@@ @E_ng ph_uu uu k ee @@ k_aa aa_n r_aa aa_j
sil sil sil p_a a_w m_aa aa_j kh_@@ @Ee.ng sil ph_uu uu sil kh_@@ @@ z_@@ @@_k k_aa aa_n r_aa aa_j sil

sil kh . a aw doo oon mii ii_t koo oon b aa aa_t th_ii ii kh_aa aa_ng k_xx xx_m
sil kh_ a aw d oo oo_n m 11 ii sil kh o on Db_aa aa_t th_ii 11 kh_aa aa_ng sil k_xx xx_m sil

Onset substitution errors on voiceless stops with the same manners of articulation

LAB:
REC:

LAB:
REC:

LAB:
REC:

LAB:
REC:

sil khaa a_w paa a_k thoo o_ng laa aa_j phaa aa khaa aa_w maa aa sii 1ii khaa aa_w waa a_j
sil khaa a_w paa a_k kKhoo o_ng klaa aa_j phaa aa_k khaa a_w maa aa sii ii khaa a_w sil waa a_j

thii ii paa aa_k thaa aa_ng khaa a_w baa aa_n sil
thii 1ii taa a_k thaa aa_ng khaa a_w baa aa.n sil
sil kh_a a_w s_vv vv ph_aa aan n a a_j r_aa aa kh aa aa s_aa aa_m ph_a a_n b_aa aa_t sil

sil sil kh_a a_w s_vv vv sil kh _aa aa n_a a j r_aa aa kh_aa aa s_aa aa_m sil ph_a a_n b_aa aa_t sil

pPh xx xx n k_aa aa_n p.@ @ ng k a an h ee ee_t r_aa aa_]j n_a a_j
th xx xx th.v v_ng sil k_aa aa_n sil p_ @ @ ng k a an h ee ee_t sil r_ aa aa_j sil n_a a_j sil

Onset substitution errors on consonant clusters

LAB:
REC:

LAB:
REC:

LAB:
REC:

sil kh_o on r_aa aa_j b_u usk r_u u_k kh a aw khr @@ @@ _p khr @@ @@_ng
sil sil kh_o o_n r_aa aa_j j_uu_.k r uu uu sil kh a a.w sil phr @@ @@ p sil r @@ @@_ng
pr_a a m_o o_ng khw_aa aa_ng pr_a a ph_ee ee n_i1ii ii p_a a.n h _aa aa
pr_a a m_o o_ng sil kw_aa aa sil sil sil pr_aa aa_t sil ph.e e n n_ii ii sil p_a a_n h_aa aa sil
foo o_n k@@ @@ too o_k pProo 00._7j Ppraa aa j loo . o.ng maa aa phee @@ dii ii sil

sil foo o_n sil k@@ @@ too o_k sil proo oo_t sil raa aa_j loo o ng maa aa ph@@ @@_n dii ii sil sil

€.



Table 4.12 Substitution errors on the onset units using the contextual and phonotactic onset-rhyme models.

Onset substitution errors within a group of voiced stops

LAB:
REC:

z_ii dii_k kh_o o_n p.,a a_j s_.a a_j phr_i i_k b ii ii p ma a n_aa aa_w
d_ii ii sil kh_o o_n sil p_a a_j s_a a_j sil phr_1i i_k sil 4_ii ii b a an d aa aa kh a a_w sil

Onset substitution errors between releasing voiced stop and nasal

LAB:
REC:

LAB:
REC:

LAB:
REC:

LAB:
REC:

LAB:
REC:

sil m_aa aa_j r i im m XX XX n_aa aa.m kl aa aa_ng m_vva vva_ng ch_iia iia_.ng m_a a_j sil
sil m_aa aa_j sil r i i_m m xx xx d_aa aa_m sil kl_aa aa_ng m_vva vva_ng ch_iia iia_ ng m_a a_j sil

s_aa aa m aa aa_t h_aa aa n_uua uua_j ng aa aa_n ph_uu uu r_a a_p ph_i i_t ch_@@ @e_p sil
S_aa aa_p m_aa aa sil h_aa aa d_uua uua_j ng aa aa_n sil ph uu uu r_a a_p sil ph_i i_t ch_@@ @e_p sil

khii i_ng haa aa khoo o_n kee e _ng hoo o_k ngqqg g n cee e_t sil
khii i_ng sil thaa aa sil khoo o_n kee e_ng sil sil hoo o_k sil naa a n sil sil cee e_t sil
z_1ii dii_k kh_ o o_n p_a £F j,==—a—a— phr_i i_k b_ii ii_p ma a n_aa aa_w
d_ii ii sil kh_o o_n sil p_a a_j s_a a_j sil phr_i i k sil d_ii ii b aand aa aa kh a a_w sil

paa a_j saa a_j phrii 1i_k bii ii_p maa a naa aa w kii i n pee e_n

sil paa a_j saa a_j sil phrii i_k sil bii ii_p maa a_n zaa aa_w kii i_n sil pee e_n

Removal of releasing consonant in the onset unit

LAB:
REC:

LAB:
REC:

LAB:
REC:

khaa a_w praa a kuu uua_t joo o_k naa aa_m naa a_k t@@ @QE@_n kagg gg t phlgg gg ng maa a_j
khaa a_w praa a uu wuua_t joo o_k naa aa_m naa a_k sil t@@ @e@_n sil kgg gg_t phlgg gg ng maa a_j sil

sil thaa a_ng dee e_k chaa aa_j 1xx x dee e_k jii i_ng daa aa_j pee e_n tuu uua thxx xx_n kh@@ @E@_ng
sil thaa a_ng dee e_k chaa aa_j 1lxx x dee e_k jii i_ng sil daa aa_j pee e_n uu uua thxx xx khee @@_p

kluu uua maa a 1xx xX ng Ssaa aa_p cvv v.ng thaa a m faa a_j maa a_j svv vva
uu uua maa a lxx XX ng saa aa_p sil evv v.ng thaa a m-faa a_j maa a_j svv vv daa a_p

V.



CHAPTER 5

Conclusions

This dissertation presents acoustic modelling techniques for the onset units in the onset-
rhyme models. The proposed onset-rhyme models and onset overlapping techniques are
summarized in this chapter. Conclusions on the research are summarized including the
experimental results. Contributions of this dissertation are given in this chapter along with
future research directions on acoustic modelling of the onset-rhyme models.

5.1 Conclusions of the Dissertation

In this dissertation, the novel onset-rhyme acoustic models are proposed and applied to Thai
language. The two proposed onset-rhyme models are contextual and phonotactic onset-
rhyme models. The primary focus of this dissertation is at the onset unit of the onset-rhyme
models. Therefore, both the contextual and the phonotactic onset-rhyme models have
different characteristic of the onset units but share the same rhyme units. The onset-rhyme
models are composed of pairs of an onset unit and a rhyme unit. The models contain
overlapped segments of the onset unit over the rhyme unit. This overlapped segment models
is one major advantage of this model, which provide better modelling of a releasing
consonant for the onset units.

Phonologically, a syllable comprises an onset and a rhyme segment. The rhyme segment
comprises nucleus and coda of a syllable. Considering the Thai syllable structure, an onset
segment covers a releasing consonant of a syllable while the rhyme segment covers a vowel
and an arresting consonant. Acoustically, the vowel is a nucleus of a syllable that covers
most of the whole syllable segment. Whereas, the consonants are considered as marginal
sounds attached to both left and right sides of the nucleus, in this case, releasing and
arresting consonants.

From the acoustic-phonetic analysis on Thai syllables, transitional period between a nucleus
and its marginal sounds contains some encoded acoustic and articulatory information. The
formant transitions are varied according to consonant and vowel context. However, each of
the releasing consonant has specific-acoustic characteristic that provide predictable formant
transitions across different vowel context. These informations provide crucial acoustic cues in
determining releasing consonants. Hence, modelling of an onset unit includes the transitional
period between a releasing consonant and its adjacent vowel.

Comparing to the initial-final models, there are many difference between the onset-rhyme
models and the iinitial-final models." Firstly, the initial-final models are context-independent
where as the onset-rhyme models are context-dependent by nature. Secondly, the initial-final
do not model releasing consonant in every possible syllable context. This issue has made the
initial-final models context-independent. Thirdly, the initial-final models do not have internal
and external junctures which constitute a pair of initial and final by tying both models together.

Two onset-rhyme models are introduced in this dissertation—the contextual and phonotactic
onset-rhyme models. The two models have different modelling of the onset units. The
phonotactic onset-rhyme models (PORMSs) consider every different releasing consonant and
vowel context as a separate onset unit. The onset units of this models provide complete
combinations of releasing consonants in every vowel context. There are a total of 992
PORMs grammatically existed, which comprises 792 onset units and 200 rhyme units.
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Similarly, the contextual onset-rhyme models (CORMs) combine some onset units with the
same short and long vowel pairs as a single onset unit. From acoustic analysis, formant
transitions in the transitional period have similar characteristics in both short and long vowel
pairs with the same releasing consonant. Therefore, combining the onset units with similar
vowel context help reduce the models to 479 CORMs, which composed of 297 onset units
and 200 rhyme units. Both of the PORMs and CORMSs share the same rhyme units. The
rhyme units are complete grammatically existed combinations of vowels and arresting
consonants in Thai.

The hidden Markov models (HMMs) are employed in modelling the onset-rhyme acoustic
models. The left-right topologies with no skipping state are selected in modelling using the
hidden Markov models. The number of Markov states in each model are varied according to
their characteristics. The phone models use three Markov states in each model. Based on
the phone models, the onset units are set to use five Markov states, which covers the whole
phone of a releasing consonant with its transitional period. The rhyme units are set to use
eight Markov states, which covers the whole phones of both vowel and arresting consonant.
In the experiments, the number of HMMs states of the onset and rhyme units are varied in
two configurations; 5-state onset with 8-state rhyme units and 4-state onset with 6-state
rhyme units.

The onset units cover an arresting consonant and transitional period of its adjacent vowel.
Then, the onset units overlap into the vowel segment of the rhyme units. In modelling of the
onset units, two schemes are proposed in determining an amount of overlap, the fixed and
variable duration overlap. The fixed duration overlap provides predefined length of overlap at
10ms, 20ms, or 30ms into the rhyme units. The variable duration overlap provides varying
overlap length according to duration of adjacent vowel. The overlap length is set at 5%, 10%,
15%, 20%, or 25% of the vowel duration. A series of experiments were conducted on all
overlap schemes to see the effects of overlap length.

The best error rate for the onset units is 10.387% using the CORMs at 25% overlap and 5-
state onset HMMs. Using the PORMSs, the onset unit error rate is at 11.753% at 20% overlap
and 5-state onset HMMs. On the entire onset-rhyme models, the best word error rate (WER)
is at 13.529% using the PORMSs at 20% overlap with 5-state onset and 8-state rhyme HMMs.
The CORMSs provide 16.518% word error rate at 15% overlap with 5-state onset and 8-state
rhyme HMMs. The phone models give out only 37.12% word error rate. The PORMs reduce
word error rate up to 55.76% over the phone models. From experimental results, the variable
duration overlap offers significantly better error rates over the fixed duration overlap in all
cases. Moreover, the longer Markov states also provides better accuracy in every case.

The onset-rhyme models prove themselves to provide better modelling of speech than the
conventional phone models. The onset-rhyme models incorporate language modelling into
the models through the pairs of onset and rhyme ‘units. Then, the models are context-
dependent where phonotactics are'embedded into the models in forming a syllable. The
models are consistent in which the same models have similar characteristics across different
speech instances. The models cover a finite set of speech units, which represent all potential
speech units of the language. The models also capture coarticulatory effects over the entire
syllable. The effects are handled by overlapping over the transitional period in an onset unit
and by covering the whole nucleus and coda in a rhyme unit. ' These characteristics of the
onset-rhyme models provide better acoustic modelling of speech than other models.

Although only partial set of onset-rhyme models were utilized, this is possible in
implementation of a small, task-specific Thai continuous speech recognition system. This
kind of small system is much easier to optimize to have very high recognition accuracy.

In selection of speech units for recognition, two criteria were used—consistency and
trainability (Lee, 1990). In this dissertation, three new criteria are introduced, that is,
economy, workability, and practicality. Various speech units are then compared based on
these five criteria. Results of comparison are summarized in Table 5.1 in application to the
Thai continuous speech recognition. Details about each criterion is shown as follows.
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= Consistency—the consistency criterion concerns about acoustic resolution of a
speech unit in which the same unit is consistent in every speech instance.

= Trainability—the trainability criterion considers estimation reliability of each speech
unit. Estimation of each speech unit should be reliable with certain amount of data.

=  Economy—the models should have finite humber of speech units which could be
easily and reliably estimated.

=  Workability—the workability criterion considers ability of the speech units to use in
different environments. Also, the speech units should be speaker-independent.

= Practicality—the practicality criterion concerns about applying the speech units into
actual practice.

Currently used speech units are analysed based on the above criteria including the onset-
rhyme models. Summary of the speech units is shown in Table 5.1 based on the five criteria.
The onset-rhyme models satisfy all the criteria of consistency, trainability, economy,
workability, and practicality. The onset-rhyme models are consistent in which the same onset
and rhyme units are characteristically similar across different instances. The models have
finite set of speech units that could be trained with a small set of sentences. The finite
number of units satisfy both trainability and economy. All the onset and rhyme units cover the
whole potential speech unit in every context. On the workability criterion, the onset-rhyme
models could be used in various environments, i.e., clean and noisy. On the practicality
criterion, the onset-rhyme models could be easily applied to any tone languages resulted from
the finite amount of speech units.

Comparing to the other speech units, the onset-rhyme models provide some significant
advantages over other acoustic models. Firstly, the onset-rnyme models cover the whole
potential speech units of the language. Every combination of consonant-vowel context has
been modelled. Secondly, the onset-rhyme models are able to handle any new unknown
syllables or words. The context-dependent phone models, diphones and triphones, are
unable to cope with new unseen triphones of new words. For these reasons, the onset-rhyme
models satisfy both criteria of workability and practicality as described.



Table 5.1 Evaluation of various acoustic speech units for Thai continuous speech recognition.

Speech Units Consistency Trainability Economy Workability Practicality
Word models Yes No No Poor Poor
Phone models No Yes Yes Good Fair
Multi-phone models Yes Difficult No Good Fair
Transition models Yes Difficult No Fair Fair
Word-dependent phone models Yes Through Sharing No Poor Fair
Context-dependent phone models Yes Through Sharing No Fair Poor
Initial-Final Models Fi”a(')'\rfli’/dels Yes Yes Fair Fair
Onset-Rhyme Models Yes Yes Yes Very Good Very Good

8.
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5.2 Contributions of the Dissertation

This is the summary of contributions made by the research in this dissertation. These
contributions are significant parts, which make up this dissertation. All of the contributions are
summarized as follows.

A. The Onset-Rhyme Acoustic Models

This dissertation conducted basic researches on acoustic models for Thai continuous speech
recognition. The two novel acoustic models are introduced in this dissertation—contextual
and phonotactic onset-rhyme models. The two models are utilized in Thai continuous speech
recognition system. The concept of onset and rhyme was applied to a Thai speech synthesis
system in 1992 by Luksaneeyanawin (1992a). In the two proposed models, the onset units
cover transitional period between releasing consonant and adjacent vowel. An amount of
coverage over the transional stage could be determined by the two proposed methods—the
fixed and variable duration overlap.

B. The Contextual and Phonotactic Onset-Rhyme Models

The most significant contribution of this dissertation is the introduction of the contextual and
phonotactic onset-rhyme models. This dissertation focuses only at the onset unit. These two
models have different characteristics of the onset units but share the same rhyme models.
Both models have illustrated better modelling of speech than the phone models without
applying any language modelling or any other techniques. The advantages of the two models
are described as follows.

= The phonotactic onset-rhyme models provide complete modelling of the onset units in
every possible context. The onset units contain releasing consonant with transitional
period toward its adjacent vowel. Each releasing consonant is modelled in every
vowel context existed in the language. This kind of modelling has made the models
context-dependent. The model has 792 onset units, which are grammatically
occurred in Thai language.

= In the contextual onset-rhyme models, a releasing consonant within context of the
same short-long vowel pairs share a single onset unit. The sharing of onset units
with similar context helps reduce the number of onset units. This model has 279
onset units, which are grammatically occurred in Thai language.

= Every-onset unit incorporates transitional period between a releasing consonant and
its adjacent vowel nucleus of the same syllable.

= The onset-rhyme models are overlapped segment models in which the onset units
overlap into the rhyme units in modelling to include the transitional period into the
onset units.

= The onset-rhyme models are context-dependent speech units in which every
releasing and arresting consonants are modelled in all possible vowel contexts.

= The onset-rhyme models always occur in pairs of an onset unit and a rhyme unit,
which make up syllables, words, and sentence respectively. The phonotactic or
phonological rules are embedded in each pair of onset and rhyme units, where
language modelling is automatically integrated.

= The onset and rhyme units in both models cover all potential speech units of the
language, which are grammatically existed.
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C. Fixed and Variable Duration Overlap Schemes for the Onset Units

The onset units overlap into the rhyme units in both of the proposed contextual and
phonotactic onset-rhyme models. The overlap duration must be sufficient to cover the whole
transitional period between a releasing consonant and its adjacent vowel. Therefore, two
techniques are introduced to determine duration of overlap into the rhyme unit—the fixed and
variable duration overlap. Details of the fixed and variable duration overlap are summarized
as follows.

= The fixed duration overlap provide constant length of overlap over the vowel segment
of a rhyme unit at 10 ms, 20 ms, or 30 ms. These figures are based on the minimum
length of a vowel segment in a syllable. The shortest vowel segment is about 30 ms
long in the speech corpus. Using longer duration beyond 30 ms might cover the
whole vowel segment including a coda or even the whole syllable.

= The variable duration overlap provide varied length depending on the length of vowel.
The duration is at 5%, 10%, 15%, 20%, or 25% of the vowel length. The concept of
this technique is based on results of acoustic analysis on Thai syllables. The length
of transitional period is varied according to the length of a vowel nucleus.

D. Acoustic Analysis on the Thai Continuous Speech

Acoustic-phonetic analysis is the study of acoustical properties in relation to phonetic
characteristics of sounds. Acoustic-phonetic analysis on Thai continuous speech had been
conducted prior to creating acoustic models. A set of Thai continuous speech was
extensively analysed and study on their acoustical properties. Many acoustic knowledge was
obtained from the analysis, which provide solid background for acoustic modelling. The
analyses were focused on the Thai syllables including the syllable nucleus and its marginal
sounds.

Results of the analysis provide understanding of Thai continuous speech. Some experiments
were also conducted including classification of the Thai monophthongs using acoustic-
phonetic features. The result of this analysis and experiment was writtern in a technical
article as located in the Appendix B of this dissertation.

E. Thai Text Corpora and Thai Continuous Speech Corpora

This dissertation provides sets of text corpus used in speech recording for training and
testing. The text corpus had been created and analysed to contain sufficient samples of each
onset unit and rhyme unit available for training. The text corpus was then used for recording
of Thai continuous speech. Procedures in preparing the Thai text corpus is described as
follows.

= The text corpus contains text from many sources including some Aesop’s fables.
Most of the text are created by the author and his colleage.

= The Thai text are ftransferred into a computer by typing and segmented into
sentences. Every sentence of Thai text is transcribed into phonetic transcriptions.

= The transcribed phonetic transcriptions of each sentence are then analysed to
compute statistical distribution of onset and rhyme units.

= The whole process is repeated until there are sufficient samples of each unit.

After text analysis, the completed text corpora are used in recording of Thai continuous
speech on the sentence-by-sentence basis. The speech were recorded in reading or
dictation style. The sets of recorded speech are manually labelled by their phonetic
transcriptions. The Thai speech corpora contain only utterances spoken by the author.
Details of the Thai speech corpora are shown as follows.
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Labelled Corpus — contains 553 sentences with manually labelled transcriptions.

Unlabelled Corpus — contains 400 sentences with sentence transcriptions.

Test Corpus — contains 32 sentences with sentence transcriptions.

F. Speech Analysis Tools

Many tools have been created for the research in Thai continuous speech recognition. The
tools include speech analysis tool, speech labelling tool, Thai text parser, speech unit analysis
tool, for instance. This dissertation contributes these tools for research in Thai continuous
speech recognition in the future.

5.3

Speech analysis tool — for analysing on acoustic properties of speech.

Speech labelling tool — for labelling of continuous speech by their phonetic
transcriptions

Thai text parser — for conversion of Thai text into phonetic transcriptions

Speech unit analysis tool — for analysing the amount of onset and rhyme units with
their statistical distribution

Future Research in Acoustic Modelling

Eventhough high recognition accuracy was achieved using the onset-rhyme models, there are
many issues that need some improvements.

This dissertation focuses only at the onset unit. Extensive analysis and modelling of
the rhyme unit is needed to complete the whole onset-rhyme models.

More text and speech corpora are needed to cover the whole onset and rhyme units
since this dissertation covers only a partial set of both units. This partial set of units
are resulted from using only one speaker for both training and testing. However,
each onset and rhyme units has sufficient samples for creating and training a stable
model.

Due to limited resources, only a single male speaker was used in training and testing.
There are many issues on'the use of only one speaker. Firstly, verification of the
proposed acoustic models could be conducted-on a small-scale corpus and system.
Then, speech data of a single speaker should be sufficient with certain amount of
speech units. Secondly, recording and labelling of utterances take a long time to
complete and very labor-intensive. Both text and speech corpora took over six
months to complete in this dissertation. Therefore, more speakers of both male and
female are needed to sufficiently model and test the acoustic- models in speaker-
independent environment.

Compares recognition performance of the onset-rhyme models to every available
speech unit, i.e., diphones, triphones, demisyllable, initial-final, etc. @ These
experiments should be conducted on a large-scale basis.
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APPENDIX A

The Thai Text Corpus

The list of test sentences in Thai is collected in this chapter. List of test sentences is shown in
Table A1.1. Other collection of the whole text corpus is too large to keep in this dissertation.
Please contact the author if any one would like to see the whole corpus.
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Table A1.1 List of Thai test sentences
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Table A1.2 Statistics of the Thai onset units on their frequency.
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Units Amount
n a 333
m_a 247
th_ii 235
n_aa 229
m_aa 225
kh_a 213
th a 208
p a 199
k a 181
c a 172
j_aa 165
S a 143
| x 125
kh_o 123
| a 121
h a 118
kh_aa 118
kh @@ 114
w_a 114
w_aa 113
m_ii 110
d aa 109
ch_aa 100
k aa 99
j_uu 96
p e 92
r aa 92
h aa 91
ra 90
k @@ 89
co 88
kr a 87
C aa 86
ch a 86
S _aa 85
t aa 83
| aa 80
t xx 76
|l o 75
Cc Vv 74
n_ii 73
th_aa 73
t uua 70
ph aa 69
| xx 64
Z aa 63
khw_aa 61
t a 61
pr a 58
b aa 55
Z a 55

s @@ 54
t @@ 54
ph_a 53
ph_uu 53
ph_vva 53
kh_v 52
r @@ 51
| uu 49
t o 48
th_uu 48
j_a 47
m_vva 47
b o 46
d a 46
Z Q@ 46
r vva 45
b a 44
n v 43
aa 43

t @ 43
n Q@ 42
ng aa 42
S 0O 42
d uu 41
d uua 40
th _uua 40
d qq 39
K i 39
s iia 37
| e 36
| qq 35
de 34
d ii 34
phr @ 34
n o 33
th_u 33
Wi 33
th v 32
n_i 31
f a 30
d oo 29
kl aa 29
m @@ 29
m_o 29
ph e 29
ph_i 29
s i 29
S _uua 29
ch_iia 28
r o 28
S_VWV 28
kh u 27
pl_@@ 27
r uua 27

th_iia 27
z iia 27
b_iia 26
ph_@@ 26
pl @ 26
k xx 25
kh_ii 25
kw_aa 25
ph xx 25
r_iia 25
s u 25
Z i 25
b @@ 24
ch _vva 24
d i 24
| @@ 24
|_vva 24
m_Xx 24
S i 24
i 23
j_u 23
ph o 23
r uu 23
S _vva 23
th @@ 23
th i 23
h e 22
c e 21
| @ 21
khr_a 21
m_vv 21
ph_qq 21
Z_uua 21
C i 20

f aa 20
j_oo 20
| u 20

r xx 20
S uu 20
b i 19

b u 19
c Q@ 19
j_o 19
kl_a 19

| ee 19
pr_iia 19
tr_i 19
tr o 19
h xx 18
J_ XX 18
khl_a 18
ph_iia 18
z ee 18
h @ 17
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Z 99

c_00

ch e

h_oo

K iia

khr_vva

m u

m_uua

n_ @

p_ii

phl_xx

phr_aa

pl_iia

pr@

r @

S_00

S Vv

k e 17
kh_x 17
nu 17
n_vva 17
n_Xxx 17
phr @@ 17
rii 17

r u 17
th_x 17
fo 16

h o 16

| oo 16
pr_aa 16
re 16
tu 16
th_ee 16
th_xx 16
ch o 15
jie 15
jvv 15

k o 15

k oo 15
k _qq 15
k uua 15
kh_ @@ 15
kl_uua 15
S XX 15
Z W 15
ch_ @@ 14
ch_uua 14
h_uua 14
kh_iia 14
kh_uua 14
kh_vv 14
khr_aa 14
| 14

| uua 14
ph _uua 14
phl_qq 14
ri 14
s_ee 14
h @@ 13
j_vva 13
k @ 13
kh_qq 13
khl_u 13
khr uua 13
m_e 13
ph_x 13
phr_i 13
pl_aa 13
pl_o 13
pl_xx 13
r qq 13
ti 13
th_qq 13
w_ee 13
b xx 12

c_ii 12
ch_vv 12
d xx 12
@@ 12
k u 12
khl_vva 12
ph_vv 12
phl_aa 12
s e 12

t i 12
th_vv 12
b uu 11
c iia 11
Cc_uua 11
ch_qq 11
d @@ 11
d_iia i
do 11
k vva 11
kh_i 11
kh uu 11
khw_a 11
kr uua 11
| wv 11
n_iia 11
ng oo 11
ng q 11
ng u 11
p._uua 11
ph ee 11
t oo 11
zZ @ 11
Z i 11

Z 00 11
Z U 11
b oo 10
c qq 10
ch @ 10
ch_ii 10
d vva 10
h i 10

h x 10
k ee 10
kh_e 10
khl ‘aa 10
khl 0o 10
khl_vv 10
m_uu 10
ng_a 10
P_@ 10
p_o 10
ph_oo 10
ph_u 10
ph_v 10
phl_u 10
pr_@@ 10
t uu 10
t X 10
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kh_ee

kh_xx

khr @@

kK_@@

kl_u

kr x

m_iia

m_oo

n_uu

n_X
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ng_ee
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p_99

p_uu
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pl_ee

rv

tr_xx
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Table A1.3 Statistics of the Thai rhyme units on their frequency.

i p 19
ik 19
i n 19
qgq m 19
qg_ng 18
vv t 18
uua m 17
vva k 17
uua k 16
em 15
e ng 15
i k 15
U j 15
vva t 15
i m 14
qq_k 14
i t 13
ee k 12
00 m 12
00 _p 12
uu_n 12
vV p 12
xx_t 12
up 11
vv._m 11
vva j 11
e w 10
ee m 10
ee w 10
iia_k 10
qn 10
uu_p 10
uua p 10

ee n 9

ee p 8

X W 6

e 5

0 5

v 5

Units Amount
a_j 911
aa 668

ii 543
a 502
an 376
aa_j 332
on 317

aa_ng 315

aa_n 285
uu 252

aa_m 244

aw 236
a_ng 233
am 225
@@.ng 196
en 186

v_ng 151

aa_k 140
vva 139

@@ 136

uua 135
ap 131
aa_w 129
X 123
XX 120
@@.n 116
a_k 115

0 _ng 107

in 100
i_ng 100
uu_k 99
aa_t 94

@@.k 92

ot 91

@.ng 87

iia_ng 87

uua_j 85

o k 84

at 77

@ 75

vV 73

vv_n 71

XX_ng 71
it 67

qq_j 67

u_k 64
X_ng 64
vva_ng 61
iia_n 59
om 58
uua_n 58

XX_W 57
uua_t 56
un 55
@@.p 54
iia_w 54
v.n 52
@_j 51
@@.m 50
xx_k 50
qq._n 47
e k 46
@@, 45
Q@ t 45
op 45
00 n 44
u 44
ee t 43
XX_Nn 42
et 39
00 _ng 38
i 37

u t 36
i p 35
u.m 38
iia p 34
00 34
u_ng 34
qq 33
0o t 32
vva n 32
ep 31
aa p 29
€e 29
i m 29
X n 29
@.n 28
ee ng 28
@.m 27
i w 27
v_k 27
uu_ng 24
XX_p 24
iia 23
00 j 23
q 23
uu_t 23
vva_ m 23
iia_m 22
00 k 22
uua_ng 22
XX_m 22
qq_t 21
vva p 21
iia_t 20




Table A1.4 Statistics of the Thai tones in the
speech corpus.

10/ 1051 33.6428%
"/ 684 21.8950%
12/ 697 22.3111%
13/ 419 13.4123%
14/ 273 8.7388%
Table A1.5 Statistics of the Thai
monophthongs in the speech corpus.
lal 954 32.3609%
/aal 628 21.3026%
@/ 218 7.3948%
fiil 186 6.3094%
fil 156 5.2917%
W 127 4.3080%
lo/ 125 4.2402%
Ixx! 96 3.2564%
luu/ 92 3.1208%
lul 63 2.1370%
lel 63 2.1370%
oo/ 53 1.7978%
lqaf 46 1.5604%
@ 41 1.3908%
Ix! 30 1.0176%
v/ 29 0.9837%
leel 28 0.9498%
la/ 13 0.4410%

Table A1.6 = Statistics of the Thai diphthongs
in the speech corpus.

luua/ 80 45.4545%
/vval 73 41.4773%
fiia/ 23 13.0682%
fial 0 0.0000%
Ival 0 0.0000%

lual 0 0.0000%




Table A1.7  Statistics of the Thai releasing
consonants in the speech corpus.

Im-/ 311 10.4503%
In-1 310 10.4167%
Ic-/ 218 7.3253%
Ik 216 7.2581%
Jth-1 196 6.5860%
It-1 179 6.0148%
Ikh-/ 151 5.0739%
-/ 148 4.9731%
Is-/ 141 4.7379%
Ir-1 135 4.5363%
Id-/ 128 4.3011%
Ip-I 127 4.2675%
Ih-1 125 4.2003%
Iw-/ 120 4.0323%
i 120 4.0323%

Iph-/ 102 3.4274%
Iz 92 3.0914%

/ch-/ 64 2.1505%
Io-1 46 1.5457%

Ing-/ 32 1.0753%
If-1 15 0.5040%

Table A1.8 Statistics of the Thai arresting
consonants in the 'speech corpus.

/-n/ 561 25.5000%
I+l 446 20.2727%
I-ng/ 427 19.4091%
/-k/ 191 8.6818%

/-m/ 181 8.2273%

1-wif 161 7.3182%

-t 128 5.8182%

I-p/ 105 4.7727%




Table A1.9  Statistics of the Thai releasing

consonant clusters in the speech corpus.

kr-/ 36 24.3243%
/khw-/ 21 14.1892%
Ikl-/ 17 11.4865%
ftr-/ 15 10.1351%
/khr-/ 13 8.7838%
Iphr-/ 11 7.4324%
Tkw-/ 10 6.7568%
/phl-/ 8 5.4054%
Ipl-/ 8 5.4054%
/pr-/ " 4.7297%
/khl-/ 2 1.3514%
fthr-/ 0 0.0000%
Ifr-/ 0 0.0000%
/br-/ 0 0.0000%
/dr-/ 0 0.0000%
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A2 Unit Statistics on Test Sentences

The 32 test sentences are composed of 180 phonotactic onset units and 99 rhyme units.
Statistics of the phones in the test sentences are shown as follows.

Table A2.1 Number of releasing consonants in the test sentences

Phones Qty Phones Qty Phones Qty
Ikh-/ 46 Ip-/ 27 [c-/ 19
/m-/ 43 It/ 26 It 16
/th-/ 37 [j-1 2% £ /b-/ 15
/n-/ 37 Ir-/ 25 /h-/ 14
k-1 35 Ich-/ 24 Iw-/ 13
/s-/ 35 /d-/ 23 z-] 9

N-/ 33 /ph-/ 21 Ing-/ 8

Table A2.2 Number of arresting consonants in the test sentences

Phones Qty Phones Qty
I-pl 18 /-ng/ 99
-t/ 44 /-n/ 93
/-k/ 34 I-w/ 38

-m/ 34 I-jl 88

Table A2.3 Number of consonant clusters in the test sentences

Phones Qty Phones Qty
Ipr/ 11 /khw/ 1
[kr/ 8 [kw/ 1
Ikl 7 Ithr/ 0

/khr/ 6 ftr/ 0
/phr/ 5 [frl 0
/phl/ 2 /br/ 0
Ipl/ 1 /dr/ 0

/khl/ 1
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Table A2.4 Number of monophthongs in the test sentences

Vowels Qty Vowels Qty Vowels Qty
laal 164 fuu/ 19 Iqq/ 9
lal 136 Ixx/ 16 @/ 9
@/ 35 lel 14 IxI 7
lol 33 oo/ 11 Il 4
i/ 23 ul 9 Il 4
lil s, leel 9 lg/ 1

Table A2.5 Number of diphthongs in the test sentences

Diphtongs Qty Diphtongs Qty

/uua/ 21 lia/ 0
fiial 14 Ival 0
/vval 14 lual 0

Table A2.6 _Number of tones in the test sentences

Tones Qty
10/ 201
12/ 124
ni 121
13/ 65

14/ 64
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