สมาชิกปกติและสมบัติบีคิวของกึ่งกรุปการแปลงและริงของการแปลงเชิงเส้น

ISBN 974-14-2046-3
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

REGULAR ELEMENTS AND THE $\mathcal{B} \mathcal{Q}$-PROPERTY OF TRANSFORMATION SEMIGROUPS AND RINGS OF LINEAR TRANSFORMATIONS

Thesis Title

By	Miss Sansanee Nenthein
Field of Study	Mathematics
Thesis Advisor	Professor Yupaporn Kemprasit, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

(Professor Piamsak Menasveta, Ph.D.)

THESIS COMMITTEE

(Associate Professor Patanee Udomkavanich, Ph.D.)

(Professor Yupaporn Kemprasit, Ph.D.)

(Assistant Professor Imchit Termwuttipong, Ph.D.)
0

(Assistant Professor Amorn Wasanawichit, Ph.D.)

(Associate Professor Somporn Sutinuntopas, Ph.D.)

ศันสนีย์ เณรเทียน : สมาชิกปกติและสมบัติบีคิวของกึ่งกรุปการแปลงและริงของการแปลงเชิงเส้น (REGULAR ELEMENTS AND THE BQ-PROPERTY OF TRANSFORMATION SEMIGROUPS AND RINGS OF LINEAR TRANSFORMATIONS) อ.ที่ปรึกษา : ศ. ตร. ยุพาภรณ์ เข็มประสิทิิ์, 64 หน้า ISBN 974-14-2046-3

เราเรียกสมาชิก x ของกึ่งกรุป [ริง] A ว่าเป็นสมาชิกปกติ ถ้ามีสมาชิก y ของ A ซึ่ง $x=x y x$ และเรียก A ว่ากึ่ง กรุปปกติ [ริงปกติ (แบบวอนนอยแมน)] ถ้าทุกๆ สมาชิกของ A เป็นสมาชิกปกติ ควอซีไอดีลของกึ่งกรุป [ริง] A คือกึ่ง กรุปย่อย [ริงย่อย] Q ของ A ซึ่ง $A Q \cap Q A \subseteq Q$ และไบไอดีลของ A คือกึ่งกรุปย่อย [ริงย่อย] B ของ A ซึ่ง $B A B$ $\subseteq B$ ทบทวนว่าสำหรับเซตย่อยไม่ว่าง X และ Y ของริง $A \quad X Y$ แทนเซตของผลบวกจำกัดทั้งหมดในรูปแบบ $\sum x_{i} y_{i}$ เมื่อ $x_{i} \in X$ และ $y_{i} \in Y$ เรากล่าวว่ากึ่งกรูปหรือริงมีสมบัติบีคิว ถ้าควอซีไอดีลและไบไอดืลของกึ่งกรุปหรือริงนี้เป็นสิ่ง เดียวกัน เป็นที่รู้กันแล้วว่ากึ่งกรุปปกติและริงปกติมีสมบัติบีคิว

สำหรับเซตไม่ว่าง X ให้ $T(X)$ แทนกึ่งกรุปการแปลงเต็มบน X และสำหรับ $\varnothing \neq Y \subseteq X$ ให้ $T(X, Y)$ และ $\bar{T}(X, Y)$ เป็นกึ่งกรุปข่อยของ $T(X)$ ที่กำหนตโดย

$$
T(X, Y)=\{\alpha \in T(X) \mid \operatorname{ran} \alpha \subseteq Y\} \text { และ } \bar{T}(X, Y)=\{\alpha \in T(X) \mid Y \alpha \subseteq Y\}
$$

ไซมอนส์และมากิลล์แนะนำและศึกษา $T(X, Y)$ และ $\bar{T}(X, Y)$ ในปี 1975 และ 1966 ตามลำดับ
ถ้า V เป็นปริภูมิเวกเตอร์บนฟิลต์ F ให้ $L_{F}(V)$ เป็นเซตของการแปลงเชิงเส้น $\alpha: V \rightarrow V$ ทั้งหมด สำหรับ ปริภูมิย่อย W ของ V นิยาม $L_{F}(V, W)$ และ $\widehat{L}_{F}(V, W)$ ในทำนองเดียวกันดังนี้

$$
L_{F}(V, W)=\left\{\alpha \in L_{F}(V) \mid \operatorname{ran} \alpha \subseteq W\right\} \text { และ } \bar{L}_{F}(V, W)=\left\{\alpha \in L_{F}(V) \mid W \alpha \subseteq W\right\}
$$

และนอกจากนี้เราจะพิจารณา

$$
K_{F}(V, W)=\left\{\alpha \in L_{F}(V) \mid W \subseteq \operatorname{ker} \alpha\right\}
$$

ดังนั้น $L_{F}(V, W), \bar{L}_{F}(V, W)$ และ $K_{F}(V, W)$ เป็นกึ่งกรุปย่อยของ $\left(L_{F}(V), \circ\right)$ และริงย่อยของ $\left(L_{F}(V),+, \circ\right)$ โดยที่ - และ + เป็นการประกอบและการบวกปกติของการแปลงเชิงเส้น ตามลำดับ

การวิจัยนี้ประกอบด้วยส่วนหสักสองส่วน ในส่วนเรกเรนให้เงื่อนไขที่จำเป็นและเพียงพอสำหรับสมาชิกของกี่ง กรุปเหล่านี้ที่จะเป็นสมาชิพปกติ สิ่งที่ตามมาเราให้ลักษณะที่จะบอกว่าเมื่อใดกึ่งกรุปเหล่านี้เป็นกึ่งกรุปปกติ ในส่วนที่สอง เราให้เงื่อนไขที่จำเป็นและเพียงพอสำหรับกึ่งกรุปและริงเหล่านี้ที่จะมีสมิบัติบีคิว

งอนไขที่จำเป็นและเพียงพอสำหรับกึ่งกรูปและริงเหล่านี้ที่จะมีสมบัติบีคิว

ภาควิชา ...คณิตศาสตร์...
สาขาวิชา ...คณิตศาสตร์...
ปีการศึกษา2549......

\# \# 4673830223 : MAJOR MATHEMATICS
KEY WORD: REGULAR ELEMENTS / THE BQ-PROPERTY / TRANSFORMATION SEMIGROUPS / RINGS OF LINEAR TRANSFORMATIONS

SANSANEE NENTHEIN : REGULAR ELEMENTS AND THE BQ-PROPERTY OF TRANSFORMATION SEMIGROUPS AND RINGS OF LINEAR TRANSFORMATIONS. THESIS ADVISOR : PROF. YUPAPORN KEMPRASIT, Ph.D. 64 pp. ISBN 974-14-2046-3.

An element x of a semigroup [ring] A is said to regular if there is an element y of A such that $x=x y x$, and A is called a regular semigroup [(Von Neumann) regular ring] if every element of A is regular. A quasi-ideal of a semigroup [ring] A is a subsemigroup [subring] Q of A such that $A Q \cap Q A \subseteq Q$, and a bi-ideal of A is a subsemigroup [subring] B of A such that $B A B \subseteq B$. Recall that for nonempty subsets X and Y of a ring $A, X Y$ denotes the set of all finite sums of the form $\sum x_{i} y_{i}$ where $x_{i} \in X$ and $y_{i} \in Y$. We say that a semigroup or a ring has the $B Q$-property if its quasiideals and bi-ideals coincide. It is known that every regular semigroup and every regular ring has the $B Q$-property.

For a nonempty set X, let $T(X)$ denote the full transformation semigroup on X, and for $\varnothing \neq$ $Y \subseteq X$, let $T(X, Y)$ and $\bar{T}(X, Y)$ be the subsemigroups of $T(X)$ defined by

$$
T(X, Y)=\{\alpha \in T(X) \mid \operatorname{ran} \alpha \subseteq Y\} \text { and } \bar{T}(X, Y)=\{\alpha \in T(X) \mid Y \alpha \subseteq Y\}
$$

Symons and Magill introduced and studied $T(X, Y)$ and $T(X, Y)$ in 1975 and 1966, respectively. If V is a vector space over a field F, let $L_{F}(V)$ be the set of all linear transformations $\alpha: V \rightarrow V$. For a subspace W of V define $L_{F}(V, W)$ and $\bar{L}_{F}(V, W)$ analogously as follows :

$$
L_{F}(V, W)=\left\{\alpha \in L_{F}(V) \mid \operatorname{ran} \alpha \subseteq W\right\} \text { and } \bar{L}_{F}(V, W)=\left\{\alpha \in L_{F}(V) \mid W \alpha \subseteq W\right\}
$$ and we also consider

$$
K_{F}(V, W)=\left\{\alpha \in L_{F}(V) \mid W \subseteq \operatorname{ker} \alpha\right\}
$$

Then $L_{F}(V, W), \bar{L}_{F}(V, W)$ and $K_{F}(V, W)$ are subsemigroups of $\left(L_{F}(V), \circ\right)$ and subrings of $\left(L_{F}(V),+\right.$, \circ) where \circ and + are the composition and asual addition of linear transformations, respectively.

This research consists of two major parts. In the first part, we give necessary and sufficient conditions for the elements of these semigroups to be regular. As a consequence, characterizations determining when these semigroups are regular are given. In the second part, we provide necessary and sufficient conditions for these semigroups and rings to have the $B Q$-property.

ACKNOWLEDGEMENTS

I am very grateful to Professor Dr. Yupaporn Kemprasit, my thesis supervisor, for her valuable suggestions, helpfulness and encouragement throughout the preparation of this dissertation. I am also thankful to my thesis committe and all the lecturers during my study.

I acknowledge the 2-year support and 3-year support of the Ministry Development Staff Project Scholarship for my M.Sc. and Ph.D. programs, respectively.

Finally, I wish to express my gratitude to my beloved parents for their encouragement throughout my study.

CONTENTS

page

ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH v
ACKNOWLEDGEMENTS vi
INTRODUCTION 1
CHAPTER
I PRELIMINARIES 5
II REGULAR ELEMENTS OF SEMIGROUPS OF TRANSFORMATIONS OF SETS 14
III REGULAR ELEMENTS OF SEMIGROUPS OF LINEAR TRANSFORMATIONS 24
IV THE $\mathcal{B Q}$-PROPERTY OF SEMIGROUPS OF TRANSFORMATIONS OF SETS 37
V THE $\mathcal{B Q}$-PROPERTY OF SEMIGROUPS OF LINEAR TRANSFORMATIONS 43
VI THE $\mathcal{B Q}$-PROPERTY OF RINGS OF LINEAR TRANSFORMATIONS 49
REFERENCES 62
VITA สถาษนวดยปรการ 64
คqมค

INTRODUCTION

In both semigroups and rings, quasi-ideals are a generalization of one-sided ideals and bi-ideals generalize quasi-ideals. The notion of quasi-ideal was introduced by Steinfeld ([19], [18]) in 1953 and 1956 for rings and semigroups, respectively. The notion of bi-ideal for semigroups was introduced in 1952 by Good and Hughes [4] while the notion of bi-ideal for rings was given much later. It was introduced by Lajos and Szász [14] in 1971.

Kapp [9] used $\mathcal{B Q}$ to denote the class of all semigroups whose bi-ideals and quasi-ideals coincide and Mielke [16] called a semigroup in the class $\mathcal{B Q}$ a $\mathcal{B Q}$ semigroup. The following semigroups were known to be in the class $\mathcal{B Q}$: regular semigroups (Lajos [13]), left [right] simple semigroups (Kapp [9]) and left [right] 0 -simple semigroups (Kapp [9]). In fact, Calais [2] proved that a semigroup S belongs to $\mathcal{B Q}$ if and only if the bi-ideal and the quasi-ideal of S generated by any $x, y \in S$ are identical.

This research deals with both semigroups and rings whose their bi-ideals and quasi-ideals are identical. Then we shall say that a semigroup or a ring has the $\mathcal{B Q}$-property if its bi-ideals and quasi-ideals coincide, or equivalently, its bi-ideals are quasi-ideals. In fact, from [10], we have that every (Von Neumann) regular ring has the $\mathcal{B Q}$-property. Hence we deduce that in both semigroups and rings, the regularity implies the $\mathcal{B} \mathcal{Q}$-property. However, the converse is not generally true. By the definition, a ring $(R,+, \cdot)$ is regular if and only if (R, v) is a regular semigroup. However, this is not true for the $\mathcal{B} \mathcal{Q}$-property. It is not difficult to see that for aring $(R,+, \cdot)$, if the semigroup (R, \cdot) has the $\mathcal{B Q}$-property, then the ring $(R,+, \cdot)$ has the $\mathcal{B Q}$-property. The converse is not true in general. This can be seen in this work.

Some transformation semigroups having the $\mathcal{B Q}$-property have been studied in [11]. In [12] and [17], the authors characterized when their target semigroups of
linear tranformations have the $\mathcal{B Q}$-property.
We denote by $T(X)$ the full transformation semigroup on a nonempty set X. It is well-known that $T(X)$ is a regular semigroup. For a nonempty subset Y of X, let

$$
\begin{aligned}
& T(X, Y)=\{\alpha \in T(X) \mid \text { ran } \alpha \subseteq Y\}, \\
& \bar{T}(X, Y)=\{\alpha \in T(X) \mid Y \alpha \subseteq Y\}
\end{aligned}
$$

Then $T(X, Y) \subseteq \bar{T}(X, Y)$ and both are subsemigroups of $T(X)$. The semigroup $T(X, Y)$ was introduced and studied by Symons [21] in 1975 while Magill [15] introduced and studied the semigroup $\bar{T}(X, Y)$ in 1966.

The semigroup, under composition, of all linear transformations from a vector space V over a field F into itself is denoted by $L_{F}(V)$. It is also known that $L_{F}(V)$ is a regular semigroup. For a subspace W of $V, L_{F}(V, W)$ and $\bar{L}_{F}(V, W)$ are defined analogously, that is,

$$
\begin{aligned}
& L_{F}(V, W)=\left\{\alpha \in L_{F}(V) \mid \text { ran } \alpha \subseteq W\right\}, \\
& \bar{L}_{F}(V, W)=\left\{\alpha \in L_{F}(V) \mid W \alpha \subseteq W\right\} .
\end{aligned}
$$

The semigroup $L_{F}(V, W)$ motivates us to consider the subsemigroup

$$
\bar{K}_{F}(V, W)=\left\{\alpha \in L_{F}(V) \mid W \subseteq \overline{\operatorname{ker}} \alpha\right\}
$$

of $L_{F}(V)$. In fact, $\left(L_{F}(V), \pm, \circ\right)$ is a ring where + and \circ are the usual addition and composition of linear transformations and $\left(L_{F}^{O}(V),+, 0\right)$ has ${\underset{L}{F}}_{F}(V, W), \bar{L}_{F}(V, W)$ and $K_{F}(V, W)$ as subrings. Observe that the semigroups $L_{F}(V), L_{F}(V, W), \bar{L}_{F}(V, W)$ and $K_{F}(V, W)$ mean $\left(L_{F}(V), \sigma\right),\left(L_{F}(V, W), \odot\right),\left(\overline{L_{F}}(V, W), 0\right)$ and $\left(K_{F}(V, W), o\right)$, respectively.

In this research, we determine the regular elements of all the semigroups defined above and characterize when these semigroups are regular and when they have the $\mathcal{B Q}$-property. Moreover, we give characterizations determining when the ring $\left(L_{F}(V, W),+, \circ\right),\left(\bar{L}_{F}(V, W),+, \circ\right)$ and $\left(K_{F}(V, W),+, \circ\right)$ have the $\mathcal{B} \mathcal{Q}$-property.

This research is organized as follows :
Chapter I contains definitions and quoted results which will be used for this research. For better understanding, some examples are also provided.

In Chapter II, we give necessary and sufficient conditions for the elements of the semigroups $T(X, Y)$ and $\bar{T}(X, Y)$ to be regular. In addition, the numbers of regular elements of $T(X, Y)$ and $\bar{T}(X, Y)$ are counted in terms of the Stirling number of the second kind when X is finite.

In Chapter III, necessary and sufficient conditions for the elements of the semigroups $L_{F}(V, W), \bar{L}_{F}(V, W)$ and $K_{F}(V, W)$ to be regular are provided. The conditions for the regularity of the elements of $L_{F}(V, W)$ and $\bar{L}_{F}(V, W)$ are the same as those for $T(X, Y)$ and $\bar{T}(X, Y)$ in Chapter II. We also apply the characterizations of the regular elements of $L_{F}(V, W)$ and $K_{F}(V, W)$ to determine the regular elements of some matrix semigroups over F.

Chapter IV deals with the $\mathcal{B Q}$-property of the semigroups $T(X, Y)$ and $\bar{T}(X, Y)$. It is shown that $T(X, Y)$ always has the $\mathcal{B Q}$-property. The semigroup $\bar{T}(X, Y)$ has the $\mathcal{B Q}$-property if and only if $Y=X,|Y|=1$ or $|X| \leq 3$. Calais's theorem mentioned previously is useful for this work.

In Chapter V , we have similarly that the semigroups $L_{F}(V, W)$ and $K_{F}(V, W)$ always have the $\mathcal{B} \mathcal{Q}$-property. However, it is shown that $\bar{L}_{F}(V, W)$ has the $\mathcal{B} \mathcal{Q}$ property if and only if one of the following conditions holds.
(i) $W=V$.
(ii) $W=\{0\}$.

(iii) $F=\mathbb{Z}_{2}, \operatorname{dim}_{F} W=1$ and $\operatorname{dim}_{F} V=2$.

Calais's theorem is also referred for this characterization.
We are concerned with the $\mathcal{B Q}$-property of the rings $\left(L_{F}(V, W),+, \circ\right),\left(K_{F}(V, W)\right.$, $+, \circ)$ and $\left(\bar{L}_{F}(V, W),+, \circ\right)$ in the last chapter. We have that the rings $\left(L_{F}(V, W)\right.$, $+, \circ)$ and $\left(K_{F}(V, W),+, \circ\right)$ have the $\mathcal{B Q}$-property since the semigroups $\left(L_{F}(V, W), \circ\right)$ and $\left(K_{F}(V, W), \circ\right)$ have the $\mathcal{B} \mathcal{Q}$-property. The conditions for the $\operatorname{ring}\left(\bar{L}_{F}(V, W),+, \circ\right)$
to have the $\mathcal{B Q}$-property are much wider than those for the semigroup $\left(\bar{L}_{F}(V, W), \circ\right)$. It is shown that the ring $\left(\bar{L}_{F}(V, W),+, \circ\right)$ has the $\mathcal{B Q}$-property if and only if one of the following conditions holds.
(i) $W=V$.
(ii) $W=\{0\}$.
(iii) $F=\mathbb{Z}_{p}$ for some prime p and $\operatorname{dim}_{F} W=1$.
(iv) $F=\mathbb{Z}_{p}$ for some prime p and $\operatorname{dim}_{F}(V / W)=1$.

CHAPTER I

PRELIMINARIES

Let \mathbb{N}, \mathbb{Z} and \mathbb{R} denote respectively the set of natural numbers (positive intergers), the set of integers and the set of real numbers. For $n \in \mathbb{N}, \mathbb{Z}_{n}$ denotes the set of integers modulo n.

For $n, r \in \mathbb{N}$ with $n \geq r$, the number of partitions $\{1, \ldots, n\}$ into r blocks is denoted by $S(n, r)$ and is called a Stirling number of the second kind. It is known that

$$
S(n, r)=\frac{1}{r!} \sum_{i=0}^{r}(-1)^{i}\binom{r}{i}(r-i)^{n}
$$

([1], page 12). Hence the number of maps from $\{1,2, \ldots, n\}$ onto $\{1,2, \ldots, r\}$ is $S(n, r) r!$.

The cardinality of a set X is denoted by $|X|$.
For a semigroup S, let $S^{1}=S$ if S has an identity, otherwise, let S^{1} be the semigroup S with an identity 1 adjoined.

An element a of a semigroup S is said to be regular if $a=a x a$ for some $x \in S$, and S is called a regular semigroup if every element of S is regular. The set of all regular elements of a semigroup S is denoted by Reg (S). Regular elements of a $\operatorname{ring} R=(R,+, \cdot)$ are regular elements of (R, \cdot), and we call R a (Von Neumann) regular ring if every element of R is regulan. The set of allregular elements of the ring R is also denoted by $\operatorname{Reg}(R)$.

In this research, the value of a map α at x in the domain of α is denoted by $x \alpha$ and the range of α is denoted by ran α.

For a nonempty set X, let $T(X)$ be the full transformation semigroup on X, that is, the semigroup, under composition, of all mappings from X into itself.

It is known that $T(X)$ is a regular semigroup ([6], page 4). The kernel of $\alpha \in$ $T(X)$, $\operatorname{ker} \alpha$, is the equivalence relation $\alpha \circ \alpha^{-1}$ on X, that is,

$$
\operatorname{ker} \alpha=\{(x, y) \in X \times X \mid x \alpha=y \alpha\}
$$

Then x ker $\alpha=(x \alpha) \alpha^{-1}$ for all $x \in X$, in particular, if $x \in \operatorname{ran} \alpha, x \alpha^{-1}$ is a ker $\alpha-$ class. Also, the mapping $x \operatorname{ker} \alpha \mapsto x \alpha$ is a bijection of $X / \operatorname{ker} \alpha$ onto ran α. Hence for any $\alpha \in T(X)$, the set of equivalence classes of ker α and $\operatorname{ran} \alpha$ have the same cardinality.

For a vector space V over a field F, let $L_{F}(V)$ denote the semigroup, under composition, of all linear transformations from V into itself. Denote by $M_{n}(F)$ the multiplicative semigroup of all $n \times n$ matrices over a field F. We have that $\left(L_{F}(V),+, \circ\right)$ is a ring where + and \circ are the usual addition and composition of linear transformations, respectively. It is well-known that $M_{n}(F) \cong L_{F}(V)$ if $\operatorname{dim}_{F}(V)=n\left([8]\right.$, page 330), and $L_{F}(V)$ is a regular semigroup ([7], page 63). Hence $M_{n}(F)$ is a regular semigroup. Recall that for $\alpha \in L_{F}(V)$,

$$
\operatorname{ker} \alpha=\{v \in V \mid v \alpha=0\} .
$$

The entry of $A \in M_{n}(F)$ in the $i^{\underline{\underline{t}}}$ row and $j^{\underline{t h}}$ column will be denoted by $A_{i j}$.
A quasi-ideal of a semigroup S is a subsemigroup Q of S such that $S Q \cap Q S$ $\subseteq Q$, and a bi-ideal of S is a subsemigroup B of S such that $B S B \subseteq B$.

For nonempty subsets X and Y of a ring $R, X Y$ denotes the set of all finite sums of the form $\sum_{0} x_{i} y_{i}$ where $x_{i} \in X$ and $y_{i} \in Y$. Also, for a nonempty subset X of a ring $R, \mathbb{Z} X$ denotes the set of all finite sums of the form $\sum k_{i} x_{i}$ where $k_{i} \in \mathbb{Z}$ and $x_{i} \in X$. Quasi-ideals and bi-ideals of rings are defined analogously. That is, a quasi-ideal of R is a subring Q of R such that $R Q \cap Q R \subseteq Q$, and a bi-ideal of R is a subring B of R such that $B R B \subseteq B$.

In both semigroups and rings, every left ideal and every right ideal is clearly a quasi-ideal and every quasi-ideal is a bi-ideal. The following example shows that the converse is not generally true.

Example 1.1. Let F be a field and $n \in \mathbb{N}$.
(1) For $k, l \in\{1,2, \ldots, n\}$, let $Q_{n}^{k l}(F)$ consist of all matrices $C \in M_{n}(F)$ such that

$$
C_{i j}=0 \quad \text { if } i \neq k \text { or } j \neq l .
$$

Then for $k, l \in\{1,2, \ldots, n\}, Q_{n}^{k l}(F)$ is a subsemigroup [subring] of the semigroup [ring] $M_{n}(F)$,

and

which imply that $M_{n}(F) Q_{n}^{k l}(F) \cap Q_{n}^{k l}(F) M_{n}(F)=Q_{n}^{k l}(F)$, so $Q_{n}^{k l}(F)$ is a quasiideal of the semigroup $[$ ring $] M_{n}(F) \cdot$. Moreover, if $n \ngtr_{Q} 1$, then for all $k, l \in$ $\{1,2, \ldots, n\}, Q_{n}^{k l}(F)$ is neither a left ideal nor a right ideal of the semigroup [ring] $M_{n}(F)$.
(2) For $n \geq 4$, let $S U_{n}(F)$ be the subsemigroup [subring] of the semigroup [ring] $M_{n}(F)$ consisting of all strictly upper triangular matrices over F. Let

$$
B=\left\{\left.\left[\begin{array}{ccccc}
0 & \ldots & 0 & x & 0 \\
0 & \ldots & 0 & 0 & y \\
0 & \ldots & 0 & 0 & 0 \\
\vdots & & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & 0 & 0
\end{array}\right] \right\rvert\, x, y \in F\right\}
$$

Then $B^{2}=\{0\}$, so B is a subsemigroup [subring] of the semigroup [ring] $S U_{n}(F)$.
Moreover, $B S U_{n}(F) B=\{0\} \subseteq B$. But

$$
\begin{aligned}
{\left[\begin{array}{cccc}
0 & \ldots & 0 & 1 \\
0 & \ldots & 0 & 0 \\
0 & \ldots & 0 & 0 \\
\vdots & & \vdots & \vdots \\
0 & \ldots & 0 & 0
\end{array}\right] } & =\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \ldots & 0
\end{array}\right]\left[\begin{array}{ccccc}
0 & \ldots & 0 & 1 & 0 \\
0 & \ldots & 0 & 0 & 1 \\
0 & \ldots & 0 & 0 & 0 \\
\vdots & & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccccc}
0 & \ldots & 0 & 1 & 0 \\
0 & \ldots & 0 & 0 & 1 \\
0 & \ldots & 0 & 0 & 0 \\
\vdots & & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & \ldots & 0 & 0 \\
\vdots & & \vdots & \vdots \\
0 & \ldots & 0 & 0 \\
0 & \ldots & 0 & 1 \\
0 & \ldots & 0 & 0
\end{array}\right]
\end{aligned}
$$

so B is a bi-ideal but not a quasi-ideal of the semigroup [ring] $S U_{n}(F)$.
Example 1.1 shows that quasi-ideals generalize left ideals and right ideals and bi-ideals generalize quasi-ideals.

For a subset A of a semigroup $S[\operatorname{ring} R]$, let $(A)_{q}$ and $(A)_{b}$ denote respectively the quasi-ideal and the bi-ideal of $S[R]$ generated by A, that is, $(A)_{q}$ is the intersection of all quasi-ideals of $S[R]$ containing A and $(A)_{b}$ is the intersection of all bi-ideals of $S[R]$ containing A (see [20], page 10 and 12). Observe that $(A)_{b} \subseteq(A)_{q}$ since every quasi-ideal is a bi-ideal.

Proposition 1.2. ([3], page 84-85) For a nonempty subset A of a semigroup S,
(i) $(A)_{q}=S^{1} A \cap A S^{1}$ and
(ii) $(A)_{b}=A S^{1} A \cup A$.

Proposition 1.3. ([22]) For a nonempty subset A of a ring R,

$$
(A)_{q}=\mathbb{Z} A+(R A \cap A R) .
$$

Proposition 1.4. ([14]) For a nonempty subset A of a ring R,

$$
(A)_{b}=\mathbb{Z} A+\mathbb{Z} \overline{A^{2}}+A R A
$$

In particular, if R has an identity, then $(A)_{b}=\mathbb{Z} A+A R A$.

Let $\mathcal{B Q}$ be the class of all semigroups whose bi-ideals and quasi-ideals coincide and an elements in $\mathcal{B Q}$ are called $\mathcal{B Q}$-semigroups. Important $\mathcal{B Q}$-semigroups are the following ones.

Proposition 1.5. ([13]) Every regular semigroup is a $\mathcal{B Q}$-semigroup.
Proposition 1.6. ([9]) Every left [right] simple semigroup and left [right] 0-simple semigroup is a $\mathcal{B Q}$-semigroup.

Recall that a semigroup S is left [right] simple if S has no proper left [right] ideal, and a semigroup S with zero 0 is called left [right] 0 -simple if $S^{2} \neq\{0\}$ and S has no proper nonzero left [right] ideal.

Some examples of $\mathcal{B} \mathcal{Q}$-semigroups which are neither regular nor left [right] simple are as follows.

Example 1.7. ([11]) Let X be an infinite set and $S(X)$ the subsemigroup of $T(X)$ defined by

$$
S(X)=\{\alpha \in T(X) \mid X \backslash \operatorname{ran} \alpha \text { is infinite }\} .
$$

Then $S(X)$ is a $\mathcal{B Q}$-semigroup but it is neither regular nor left [right] simple semigroup.

Example 1.8. ([12]) For an infinite dimensional vector space V over a field F, define the subsemigroup $S(V)$ of $L_{F}(V)$ by

$$
S(V)=\left\{\alpha \in L_{F}(V) \mid \alpha \text { is } 1-1 \text { and } \operatorname{dim}_{F}(V / \operatorname{ran} \alpha) \text { is infinite }\right\} .
$$

Then $S(V)$ is not regular and $S(V)$ is a $\mathcal{B Q}$-semigroup if and only if $\operatorname{dim}_{F}(V)=\mathcal{N}_{0}$.
In fact, $\mathcal{B Q}$-semigroups have been characterized by Calais [2] as follows:
Proposition 1.9. ([2]) A semigroup S is a $\mathcal{B Q}$-semigroup if and only if $(x, y)_{b}=$ $(x, y)_{q}$ for all $x, y \in S$.

A $\mathcal{B Q}$-ring is defined similarly to a $\mathcal{B Q}$-semigroup, that is, a $\mathcal{B Q}$-ring is a ring whose bi-ideals are quasi-ideals. Kapp [10] provided a sufficient condition for a bi-ideal of a ring R to be quasi-ideal of R as follows: If B is a bi-ideal of a ring R such that every element of B is regular in R, then B is a quasi-ideal of R. Then we have the following proposition as its direct consequence.

Proposition 1.10. Every regular ring is a $\mathcal{B Q}$-ring.
This research is concerned with both semigroups and rings whose bi-ideals and quasi-ideals coincide. Then we shall say that a semigroup or a ring has the $\mathcal{B Q}$ property if its quasi-ideals and bi-ideals are identical. Then every regular semigroup and every regular ring has the $\mathcal{B Q}$-property.

For a nonempty subset Y of a nonempty set X, let

$$
\begin{aligned}
& 616 \\
& T(X, Y)=\{\alpha \in T(X) \mid \text { ran } \alpha \subseteq Y\},
\end{aligned}
$$

Then $T(X, Y) \subseteq \bar{T}(X, Y)$ and both are subsemigroups of $T(X)$. Note that 1_{X}, the identity map on X, belongs to $\bar{T}(X, Y)$ and if $Y \neq X$, then $1_{X} \notin T(X, Y)$. The semigroup $T(X, Y)$ was introduced and studied by Symons [21] in 1975 while Magill [15] introduced and studied the semigroup $\bar{T}(X, Y)$ in 1966. Observe that these
two types of transformation semigroups are generalizations of full transformation semigroups.

We introduce the subsemigroups $L_{F}(V, W)$ and $\bar{L}_{F}(V, W)$ analogously where W is a subspace of V, that is,

$$
\begin{aligned}
& L_{F}(V, W)=\left\{\alpha \in L_{F}(V) \mid \text { ran } \alpha \subseteq W\right\}, \\
& \bar{L}_{F}(V, W)=\left\{\alpha \in L_{F}(V) \mid W \alpha \subseteq W\right\}
\end{aligned}
$$

Then $L_{F}(V, W) \subseteq \bar{L}_{F}(V, W)$. Clearly, 0 (the zero map on V) belongs to $L_{F}(V, W)$ and $\bar{L}_{F}(V, W)$, and $1_{V} \in \bar{L}_{F}(V, W)$ while $1_{V} \notin L_{F}(V, W)$ if $W \neq V$. We also consider the subsemigroup $K_{F}(V, W)$ of the semigroup $L_{F}(V)$ defined by

$$
K_{F}(V, W)=\left\{\alpha \in L_{F}(V) \mid W \subseteq \operatorname{ker} \alpha\right\}
$$

Hence

$$
K_{F}(V, W)=\left\{\alpha \in L_{F}(V) \mid W \alpha=\{0\}\right\} .
$$

Then $K_{F}(V, W) \subseteq \bar{L}_{F}(V, W)$. Notice that $0 \in K_{F}(V, W), L_{F}(V, V)=L_{F}(V)=$ $K_{F}(V,\{0\}), L_{F}(V,\{0\})=\{0\}=K_{F}(V, V)$ and $\bar{L}(V, V)=L_{F}(V)=\bar{L}(V,\{0\})$. Thus if $W=\{0\} \neq V$ or $W=V \neq\{0\}$, then $L_{F}(V, W) \neq K_{F}(V, W)$. Moreover, if $\{0\} \neq W \subsetneq V$, then $L_{F}(V, W)$ and $K_{F}(V, W)$ are not subsets of each other. To see this, assume that $\{0\} \neq W \subsetneq V$. Let B_{1} be a basis of W and B a basis of V containing B_{1}. Define $\alpha, \beta \in L_{F}(V)$ on B by bracket notation as follows:

Then $\operatorname{ran} \alpha=\left\langle\mathrm{B}_{1}\right\rangle=\operatorname{ker} \beta, \operatorname{kev} \alpha=\left\langle\mathrm{B} \backslash \mathrm{B}_{1}\right\rangle=\operatorname{ran} \beta$. Therefore we deduce that $\alpha \in L_{F}(V, W) \backslash K_{F}(V, W)$ and $\beta \in K_{F}(V, W) \backslash L_{F}(V, W)$. We can see that $L_{F}(V, W), \bar{L}_{F}(V, W)$ and $K_{F}(V, W)$ are subrings of the ring $\left(L_{F}(V),+, \circ\right)$ by the following facts:
for $\alpha, \beta \in L_{F}(V, W), \operatorname{ran}(\alpha+\beta)=V(\alpha+\beta) \subseteq V \alpha+V \beta \subseteq W+W=W$,

$$
\operatorname{ran}(-\alpha)=\operatorname{ran} \alpha \subseteq W,
$$

for $\alpha, \beta \in \bar{L}_{F}(V, W), W(\alpha+\beta) \subseteq W \alpha+W \beta \subseteq W+W=W$,

$$
W(-\alpha)=W \alpha \subseteq W
$$

and \quad for $\alpha, \beta \in K_{F}(V, W), W(\alpha+\beta) \subseteq W \alpha+W \beta \subseteq\{0\}+\{0\}=\{0\}$,

$$
W(-\alpha)=W \alpha=\{0\} .
$$

For $1 \leq k \leq n$, let $C_{n}(F, k)$ and $R_{n}(F, k)$ be the matrix semigroups defined by

$$
\begin{aligned}
& C_{n}(F, k)=\left\{A \in M_{n}(F) \mid A_{i j}=0 \text { for all } i, j \in\{1, \ldots, n\} \text { and } j>k\right\}, \\
& R_{n}(F, k)=\left\{A \in M_{n}(F) \mid A_{i j}=0 \text { for all } i, j \in\{1, \ldots, n\} \text { and } i>k\right\} .
\end{aligned}
$$

In other words, $C_{n}(F, k)$ consists of all matrices in $M_{n}(F)$ of the form

$$
\left[\begin{array}{cccccc}
a_{11} & \cdots & a_{1 k} & 0 & \cdots & 0 \\
a_{21} & \cdots & a_{2 k} & 0 & \cdots & 0 \\
\vdots & & \vdots & \vdots & & \vdots \\
a_{n 1} & \cdots & a_{n k} & 0 & \cdots & 0
\end{array}\right]
$$

and $R_{n}(F, k)$ consists of all matrices in $M_{n}(F)$ of the form

Observe that $R_{n}(F, n)=M_{n}(F)=C_{n}(F, n)$. It is clearly seen that if $t_{1}, \ldots, t_{k} \in$ $\{1, \ldots, n\}$ with $t_{1}<t_{2}<\cdots<t_{k}$, then S_{1} and S_{2} defined by

$$
\begin{aligned}
& S_{1}=\left\{A \in M_{n}(F) \mid A_{i j}=0 \text { for all } i, j \in\{1, \ldots, n\} \text { and } j \notin\left\{t_{1}, \ldots, t_{k}\right\}\right\}, \\
& S_{2}=\left\{A \in M_{n}(F) \mid A_{i j}=0 \text { for all } i, j \in\{1, \ldots, n\} \text { and } i \notin\left\{t_{1}, \ldots, t_{k}\right\}\right\}
\end{aligned}
$$

are subsemigroups of $M_{n}(F)$ which are clearly isomorphic to $C_{n}(F, k)$ and $R_{n}(F, k)$, respectively. Notice that $C_{n}(F, k)$ and $R_{n}(F, k)$ are also subrings of the ring $\left(M_{n}(F),+, \cdot\right)$ where + and \cdot are the usual addition and multiplication of matrices.

We recall the following basic facts of vector spaces and linear transformations which will be used.
(1) If $\alpha \in L_{F}(V), \mathrm{B}_{1}$ is a basis of ker α, B_{2} is a basis of ran α and for each $u \in \mathrm{~B}_{2}$, choose an element $u^{\prime} \in u \alpha^{-1}$, then $\mathrm{B}_{1} \cup\left\{u^{\prime} \mid u \in \mathrm{~B}_{2}\right\}$ is a basis of V.
(2) If U_{1} and U_{2} are subspaces of $V, \mathrm{~B}_{1}$ is a basis of the subspace $U_{1} \cap U_{2}$, $\mathrm{B}_{2} \subseteq U_{1} \backslash \mathrm{~B}_{1}$ and $\mathrm{B}_{3} \subseteq U_{2} \backslash \mathrm{~B}_{1}$ are such that $\mathrm{B}_{1} \cup \mathrm{~B}_{2}$ and $\mathrm{B}_{1} \cup \mathrm{~B}_{3}$ are bases of U_{1} and U_{2}, respectively, then $\mathrm{B}_{1} \cup \mathrm{~B}_{2} \cup \mathrm{~B}_{3}$ is a basis of the subspace $U_{1}+U_{2}$ of V. In particular, if $U_{1} \cap U_{2}=\{0\}$, then $\mathrm{B}_{2} \cup \mathrm{~B}_{3}$ is a basis of $U_{1}+U_{2}$.
(3) If W is a subspace of V such that $\operatorname{dim}_{F}(V / W)=1$ and B is a basis of W, then for every $u \in V \backslash W, \mathrm{~B} \cup\{u\}$ is a basis of V.
(4) If B_{1} is a basis of W and B is a basis of V containing B_{1}, then $\{v+W \mid v \in$ $\left.\mathrm{B} \backslash \mathrm{B}_{1}\right\}$ is the basis of the quotient space V / W and $v_{1}+W \neq v_{2}+W$ for all distinct $v_{1}, v_{2} \in \mathbf{B} \backslash \mathrm{~B}_{1}$. Hence $\operatorname{dim}_{F}(V / W)=\left|\mathrm{B} \backslash \mathrm{B}_{1}\right|$.

สถาบันวิทยบริการ

 จุฬาลงกรณ์มหาวิทยาลัย
CHAPTER II

REGULAR ELEMENTS OF SEMIGROUPS OF TRANSFORMATIONS OF SETS

In this chapter, the regular elements of the semigroups $T(X, Y)$ and $\bar{T}(X, Y)$ are characterized. Some remarkable relationships of $\operatorname{Reg}(T(X, Y))$ and $\operatorname{Reg}(\bar{T}(X, Y))$ are also given. In addition, $\operatorname{Reg}(T(X, Y))$ and $\operatorname{Reg}(\bar{T}(X, Y))$ are counted in terms of $|X|,|Y|$, and their Stirling numbers of the second kind when X is finite.

Throughout this chapter, X denotes a nonempty set and $\varnothing \neq Y \subseteq X$. First, we recall that

$$
\begin{aligned}
& T(X, Y)=\{\alpha \in T(X) \mid \text { ran } \alpha \subseteq Y\}, \\
& \bar{T}(X, Y)=\{\alpha \in T(X) \mid Y \alpha \subseteq Y\} .
\end{aligned}
$$

For $n, r \in \mathbb{N}$ with $n \geq r$, the number of all mappings from $\{1,2, \ldots, n\}$ onto $\{1,2, \ldots, r\}$ is $r!S(n, r)$ where

$$
S(n, r)=\frac{1}{r!} \sum_{i=0}^{r}(-1)^{i}\binom{r}{i}(r-i)^{n}
$$

(a Stirling number of the second kind).
Theorem 2.1. For $\alpha \in T(X, Y)$, the following statements are equivalent.
(i) $\quad \alpha \in \operatorname{Reg}(T(X, Y))$? \quad (6)
(ii) $\operatorname{ran} \alpha=Y \alpha$. 6 .
(iii) x ker $\alpha \cap Y \neq \varnothing$ for every $x \in X$.
(iv) $x \alpha^{-1} \cap Y \neq \varnothing$ for every $x \in \operatorname{ran} \alpha$.

Proof. (i) \Rightarrow (ii). Let $\beta \in T(X, Y)$ be such that $\alpha=\alpha \beta \alpha$. Then $X \alpha \beta \subseteq Y$, and so ran $\alpha=X \alpha=X \alpha \beta \alpha=(X \alpha \beta) \alpha \subseteq Y \alpha \subseteq X \alpha=$ ran α. Hence (ii) holds.
(ii) \Rightarrow (iii). For any $x \in X, x \alpha \in \operatorname{ran} \alpha=Y \alpha$, so $x \alpha=y \alpha$ for some $y \in Y$ which implies that $y \in(x \alpha) \alpha^{-1}=x$ ker α.
(iii) \Rightarrow (iv). This is trivial since for every $x \in \operatorname{ran} \alpha, x \alpha^{-1}$ is a ker α-class.
(iv) \Rightarrow (i). For each $x \in \operatorname{ran} \alpha$, choose an element $x^{\prime} \in x \alpha^{-1} \cap Y$. Then $x^{\prime} \alpha=x$ for every $x \in \operatorname{ran} \alpha$. Let a be a fixed element of Y. Define $\beta: X \rightarrow X$ by bracket notation as follows:

$$
\beta=\left[\begin{array}{cc}
x & X \backslash \operatorname{ran} \alpha \\
x^{\prime} & a
\end{array}\right]_{x \in \operatorname{ran} \alpha}
$$

that is, $x \beta=x^{\prime}$ for all $x \in \operatorname{ran} \alpha$ and $x \beta=a$ for all $x \in X \backslash \operatorname{ran} \alpha$. Then $\operatorname{ran} \beta \subseteq Y$ and for every $x \in X, x \alpha \beta \alpha=(x \alpha) \beta \alpha=(x \alpha)^{\prime} \alpha=x \alpha$. Hence $\beta \in T(X, Y)$ and $\alpha=\alpha \beta \alpha$.

As a consequence of Theorem 2.1, a necessary and sufficient condition for $T(X, Y)$ to be a regular semigroup can be given as follows:

Corollary 2.2. The semigroup $T(X, Y)$ is regular if and only if either $X=Y$ or $|Y|=1$.

Proof. Suppose that $Y \subsetneq X$ and $|Y|>1$. Let a and b be two distinct elements of Y. Define $\alpha: X \rightarrow X$ by

$$
\alpha=\left[\begin{array}{cc}
Y & X \backslash Y \\
a & b
\end{array}\right]
$$

Then ran $\alpha=\{a, b\} \subseteq Y$ and $b \alpha^{-1} \cap Y=(X \backslash Y) \cap Y=\varnothing$. Hence $\alpha \in T(X, Y)$ and by Theorem 2.1, α is not a regular element of $T(X, Y)$. This proves that if $T(X, Y)$ is a regular semigroup, then $Y=X$ or $|Y|=1$.

Since $T(X, Y) \neq T(X)$ if $Y=X$ and $|T(X, Y)|=1$ if $|Y|=1$, the converse holds.

Theorem 2.3. For $\alpha \in \bar{T}(X, Y)$, the following statements are equivalent.
(i) $\quad \alpha \in \operatorname{Reg}(\bar{T}(X, Y))$.
(ii) $\operatorname{ran} \alpha \cap Y=Y \alpha$.
(iii) xker $\alpha \cap Y \neq \varnothing$ for every $x \in X$ with $x \alpha \in Y$, that is, $x \in Y \alpha^{-1}$.
(iv) $x \alpha^{-1} \cap Y \neq \varnothing$ for every $x \in \operatorname{ran} \alpha \cap Y$.

Proof. (i) \Rightarrow (ii). Let $\beta \in \bar{T}(X, Y)$ be such that $\alpha=\alpha \beta \alpha$. Then $Y \alpha \subseteq X \alpha \cap Y=$ $\operatorname{ran} \alpha \cap Y$. If $x \in \operatorname{ran} \alpha \cap Y$, then $x \in Y$ and $x=a \alpha$ for some $a \in X$. Consequently, $x=a \alpha=a \alpha \beta \alpha=x \beta \alpha \in Y \beta \alpha \subseteq Y \alpha$. Hence (ii) holds.
(ii) \Rightarrow (iii). Let $x \in X$ be such that $x \alpha \in Y$. Then $x \alpha \in \operatorname{ran} \alpha \cap Y=Y \alpha$, so $x \alpha=y \alpha$ for some $y \in Y$. This implies that $y \in(x \alpha) \alpha^{-1}=x \operatorname{ker} \alpha$. Hence $y \in x \operatorname{ker} \alpha \cap Y$.
(iii) \Rightarrow (iv). If $x \in \operatorname{ran} \alpha \cap Y$, then $x=a \alpha$ for some $a \in X$, so $a \in x \alpha^{-1} \subseteq Y \alpha^{-1}$. By (iii), aker $\alpha \cap Y \neq \varnothing$. But aker $\alpha=(a \alpha) \alpha^{-1}=x \alpha^{-1}$, so $x \alpha^{-1} \cap Y \neq \varnothing$.
(iv) \Rightarrow (i). For each $x \in$ ran $\alpha \cap Y$, choose an element $x^{\prime} \in x \alpha^{-1} \cap Y$. Also, for $x \in \operatorname{ran} \alpha \backslash Y$, choose an element $\bar{x} \in x^{-1}$. Then $x^{\prime} \alpha=x$ for every $x \in \operatorname{ran} \alpha \cap Y$ and $\bar{x} \alpha=x$ for all $x \in \operatorname{ran} \alpha \backslash Y$. Let a be a fixed element of Y. Define $\beta: X \rightarrow X$ by

$$
\beta=\left[\begin{array}{cc}
x & t X<\operatorname{ran} \alpha \\
x^{\prime} & a
\end{array}\right]_{\substack{x \in \operatorname{ran} \alpha \cap Y \\
t \in \operatorname{ran} \alpha \backslash Y}} .
$$

Then $Y \beta \subseteq\left\{x^{\prime} \mid x \in \operatorname{ran} \alpha \cap Y\right\} \cup\{a\} \subseteq Y$ and for $x \in X$,

$$
x \alpha \beta \alpha=(x \alpha) \beta \alpha= \begin{cases}(x \alpha)^{\prime} \alpha=x \alpha & \text { if } x \alpha \in \operatorname{ran} \alpha \cap Y \\ \overline{(x \alpha)} \alpha=x \alpha & \text { if } x \alpha \in \operatorname{ran} \alpha \backslash Y .\end{cases}
$$

We also have the following corollary which characterizes when $\bar{T}(X, Y)$ is a

Corollary 2.4. The semigroup $\bar{T}(X, Y)$ is regular if and only if either $X=Y$ or $|Y|=1$.

Proof. Suppose that $Y \subsetneq X$ and $|Y|>1$. Let $a, b \in Y$ and α be as in the proof of Corollary 2.2. Then $Y \alpha=\{a\} \subseteq Y$, so $\alpha \in \bar{T}(X, Y)$. Since $b \in \operatorname{ran} \alpha \cap Y$
and $b \alpha^{-1} \cap Y=(X \backslash Y) \cap Y=\varnothing$, by Theorem 2.3, α is not a regular element of $\bar{T}(X, Y)$.

If $Y=X$, then $\bar{T}(X, Y)=T(X)$ which is regular. Next, assume that $Y=\{c\}$. Then $c \alpha=c$ for all $\alpha \in \bar{T}(X, Y)$. To show that $\bar{T}(X, Y)$ is regular, let $\alpha \in \bar{T}(X, Y)$. For each $x \in \operatorname{ran} \alpha \backslash\{c\}$, choose an element $x^{\prime} \in x \alpha^{-1}$. Then $x^{\prime} \alpha=x$ for all $x \in \operatorname{ran} \alpha \backslash\{c\}$. Let $c^{\prime}=c$ and define $\beta \in T(X)$ by

$$
\beta=\left[\begin{array}{cc}
x & X \\
x^{\prime} & c
\end{array}\right]_{x \in \operatorname{ran} \alpha}
$$

Then $Y \beta=\{c\} \beta=\left\{c^{\prime}\right\}=\{c\}=Y$ and for $x \in X, x \alpha \beta \alpha=(x \alpha)^{\prime} \alpha=x \alpha$. This proves that if $|Y|=1$, then $\bar{T}(X, Y)$ is a regular semigroup, as required.

The following result which is obtained from Theorem 2.1 and Theorem 2.3 shows that any nonregular element of $T(X, Y)$ cannot be regular in $\bar{T}(X, Y)$.

Corollary 2.5. $\operatorname{Reg}(\bar{T}(X, Y)) \subseteq \operatorname{Reg}(T(X, Y)) \cup(\bar{T}(X, Y) \backslash T(X, Y))$, or equivalently,

$$
T(X, Y) \backslash \operatorname{Reg}(T(X, Y)) \subseteq \bar{T}(X, Y) \backslash \operatorname{Reg}(\bar{T}(X, Y))
$$

Proof. Let $\alpha \in \operatorname{Reg}(\bar{T}(X, Y))$ and assume that $\alpha \in T(X, Y)$. Then ran $\alpha \cap$ $Y=Y \alpha$ by Theorem 2.3 and $\operatorname{ran} \alpha \subseteq Y$. These imply that $\operatorname{ran} \alpha=Y \alpha$, so $\alpha \in \operatorname{Reg}(T(X, Y))$ by Theorèm 2.1.

Next, the cardinalities of the regular elements in the semigroups $T(X, Y)$ and $\bar{T}(X, Y)$ are investigated when X is finite. First, we note that if $|X|=n$ and $|Y|=m$, then

$$
\begin{aligned}
|T(X)| & =n^{n}, \\
|T(X, Y)| & =m^{n}, \\
|\bar{T}(X, Y)| & =m^{m} \times n^{n-m} .
\end{aligned}
$$

Theorem 2.6. If $|X|=n$ and $|Y|=m$, then

$$
|\operatorname{Reg}(T(X, Y))|=\sum_{r=1}^{m}\binom{m}{r} r!S(m, r) r^{n-m} .
$$

Proof. Let $\varnothing \neq Y^{\prime} \subseteq Y$ and $\left|Y^{\prime}\right|=r$. Then the number of maps from Y onto Y^{\prime} is $r!S(m, r)$. Consequently, the number of maps α from X onto Y^{\prime} such that $Y \alpha=Y^{\prime}$ is $r!S(m, r) r^{n-m}$. Hence

$$
\left|\left\{\alpha \in T(X, Y) \mid \operatorname{ran} \alpha=Y^{\prime}=Y \alpha\right\}\right|=r!S(m, r) r^{n-m}
$$

But we have from Theorem $2.1((\mathrm{i}) \Leftrightarrow$ (ii)) that

$$
\left\{\alpha \in T(X, Y) \mid \operatorname{ran} \alpha=Y^{\prime}=Y \alpha\right\}=\left\{\alpha \in \operatorname{Reg}(T(X, Y)) \mid \operatorname{ran} \alpha=Y^{\prime}\right\}
$$

so

$$
\left|\left\{\alpha \in \operatorname{Reg}(T(X, Y)) \mid \operatorname{ran} \alpha=Y^{\prime}\right\}\right|=r!S(m, r) r^{n-m}
$$

This implies that for $1 \leq r \leq m$,

$$
\left|\left\{\alpha \in \operatorname{Reg}(T(X, Y))||\operatorname{ran} \alpha|=r\} \left\lvert\,=\binom{m}{r} r!S(m, r) r^{n-m} .\right.\right.\right.
$$

Therefore it follows that

Theorem 2.7.

Proof. Let $\varnothing \neq Y^{\prime} \subseteq Y$ and $\left|Y^{\prime}\right|=r$. Then the number of maps from Y onto Y^{\prime} is $r!S(m, r)$. Therefore it follows that the number of maps $\alpha: X \rightarrow X$ such that $Y \alpha=Y^{\prime}$ and ran $\alpha \cap Y=Y^{\prime}$ is $r!S(m, r)(n-m+r)^{n-m}$ since $\left|(X \backslash Y) \cup Y^{\prime}\right|=$ $|X \backslash Y|+\left|Y^{\prime}\right|=n-m+r$. Hence

$$
\left|\left\{\alpha \in \bar{T}(X, Y) \mid \operatorname{ran} \alpha \cap Y=Y^{\prime}=Y \alpha\right\}\right|=r!S(m, r)(n-m+r)^{n-m}
$$

We have from Theorem $2.3((\mathrm{i}) \Leftrightarrow(\mathrm{ii}))$ that
$\left\{\alpha \in \bar{T}(X, Y) \mid \operatorname{ran} \alpha \cap Y=Y^{\prime}=Y \alpha\right\}=\left\{\alpha \in \operatorname{Reg}(\bar{T}(X, Y)) \mid \operatorname{ran} \alpha \cap Y=Y^{\prime}\right\}$
which implies that

$$
\left|\left\{\alpha \in \operatorname{Reg}(\bar{T}(X, Y)) \mid \operatorname{ran} \alpha \cap Y=Y^{\prime}\right\}\right|=r!S(m, r)(n-m+r)^{n-m}
$$

Consequently, for $1 \leq r \leq m$,

$$
\left|\left\{\alpha \in \operatorname{Reg}(\bar{T}(X, Y))||\operatorname{ran} \alpha \cap Y|=r\} \left\lvert\,=\binom{m}{r} r!S(m, r)(n-m+r)^{n-m}\right.,\right.\right.
$$

whence

$$
|\operatorname{Reg}(\bar{T}(X, Y))|=\sum_{r=1}^{m}\binom{m}{r} r!S(m, r)(n-m+r)^{n-m}
$$

Example 2.8. Since $S(n, r)=\frac{1}{r!} \sum_{i=0}^{r}(-1)^{i}\binom{r}{i}(r-i)^{n}$, we have $S(3,1)=1, S(3,2)$ $=3$ and $S(3,3)=1$.
(1) Let $|X|=4$ and $|Y|=3$. By Theorem 2.6 and Theorem 2.7, we have respectively that

$$
\begin{aligned}
|\operatorname{Reg}(T(X, Y))| & =\sum_{r=1}^{3}\binom{3}{r} r!S(3, r) r \\
& =(3 \times 1!\times 1 \times 1)+(3 \times 2!\times 3 \times 2)+(1 \times 3!\times 1 \times 3) \\
& =3+36+18=57
\end{aligned}
$$

$$
|\operatorname{Reg}(\bar{T}(X, Y))|=\sum_{r=1}^{3}\binom{3}{r} r!S(3, r)(1+r) \curvearrowright \bigcap \curvearrowright \tilde{\delta}
$$

$$
\begin{aligned}
99 \wedge \cap) & =(3 \times 1!\times 1 \times 2)+(3 \times 2!\times 3 \times 3)+(1 \times 3!\times 1 \times 4) \\
& =6+54+24=84 .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& |T(X, Y) \backslash \operatorname{Reg}(T(X, Y))|=3^{4}-57=81-57=24 \\
& |\bar{T}(X, Y) \backslash \operatorname{Reg}(\bar{T}(X, Y))|=\left(3^{3} \times 4^{1}\right)-84=108-84=24,
\end{aligned}
$$

and so by Corollary $2.5, T(X, Y) \backslash \operatorname{Reg}(T(X, Y))=\bar{T}(X, Y) \backslash \operatorname{Reg}(\bar{T}(X, Y))$. Since $|\bar{T}(X, Y) \backslash T(X, Y)|=108-81=27$, we deduce that $\mid \operatorname{Reg}(T(X, Y)) \cup$ $(\bar{T}(X, Y) \backslash T(X, Y))|=57+27=84=|\operatorname{Reg}(\bar{T}(X, Y))|$, so by Corollary 2.5, we have that $\operatorname{Reg}(\bar{T}(X, Y))=\operatorname{Reg}(T(X, Y)) \cup(\bar{T}(X, Y) \backslash T(X, Y))$. Therefore every element in $\bar{T}(X, Y) \backslash T(X, Y)$ is regular in $\bar{T}(X, Y)$.
(2) Assume that $|X|=5$ and $|Y|=3$. Then

$$
\begin{aligned}
|\operatorname{Reg}(T(X, Y))| & =\sum_{r=1}^{3}\binom{3}{r} r!S(3, r) r^{2} \\
& =\left(3 \times 1!\times 1 \times 1^{2}\right)+\left(3 \times 2!\times 3 \times 2^{2}\right)+\left(1 \times 3!\times 1 \times 3^{2}\right) \\
& =3+72+54=129 \\
|\operatorname{Reg}(\bar{T}(X, Y))| & =\sum_{r=1}^{3}\binom{3}{r} r!S(3, r)(2+r)^{2} \\
& =\left(3 \times 1!\times 1 \times 3^{2}\right)+\left(3 \times 2!\times 3 \times 4^{2}\right)+\left(1 \times 3!\times 1 \times 5^{2}\right) \\
& =27+288+150=465
\end{aligned}
$$

Hence

It follows from Corollary 2.5 that $T(X, Y) \backslash \operatorname{Reg}(T(X, Y)) \subsetneq \bar{T}(X, Y) \backslash \operatorname{Reg}$ $(\bar{T}(X, Y))$ and $\operatorname{Reg}(\bar{T}(X, Y)) \subsetneq \operatorname{Reg}(T(X, Y)) \cup(\bar{T}(X, Y) \backslash T(X, Y))$. Since $\operatorname{Reg}(T(X, Y)) \subseteq \operatorname{Reg}(\bar{T}(X, Y))$, we deduce that there is an element of $\bar{T}(X, Y) \backslash$ $T(X, Y)$ which is not regular in $\bar{T}(X, Y)$.

From Example 2.8(1), it is natural to ask whether it is true that for a set X and $\varnothing \neq Y \subseteq X$, if $|X \backslash Y|=1$, then $\operatorname{Reg}(\bar{T}(X, Y))=\operatorname{Reg}(T(X, Y)) \cup$ $(\bar{T}(X, Y) \backslash T(X, Y))$. Also, does the converse hold if $Y \neq X$ and $|Y|>1$? The later question is motivated by Example 2.8(2). The following theorem shows that these are true in general. Note that by Corollary 2.2 and Corollary 2.4, if $X=Y$ or $|Y|=1$, then both $T(X, Y)$ and $\bar{T}(X, Y)$ are regular which implies that $\operatorname{Reg}(\bar{T}(X, Y))=\operatorname{Reg}(T(X, Y)) \cup(\bar{T}(X, Y)-T(X, Y))$.

Theorem 2.9. If $|X \backslash Y|=1$, then $\operatorname{Reg}(\bar{T}(X, Y))=\operatorname{Reg}(T(X, Y)) \cup(\bar{T}(X, Y) \backslash$ $T(X, Y)$), and the converse holds if $Y \subsetneq X$ and $|Y|>1$.

Proof. Assume that $X \backslash Y=\{c\}$ and let $\alpha \in \bar{T}(X, Y) \backslash T(X, Y)$ be given. Then $Y \alpha \subseteq Y$ and $X \alpha \nsubseteq Y$. But $X=Y \cup\{c\}$, so $c \alpha=c$. Hence ran $\alpha \cap Y=(Y \cup\{c\}) \alpha$ $\cap Y=(Y \alpha \cup\{c\}) \cap Y=Y \alpha \cap Y=Y \alpha$. By Theorem 2.3, $\alpha \in \operatorname{Reg}(\bar{T}(X, Y))$. Hence $\operatorname{Reg}(T(X, Y)) \cup(\bar{T}(X, Y) \backslash T(X, Y)) \subseteq \operatorname{Reg}(\bar{T}(X, Y))$. The reverse inclusion is obtained from Corollary 2.5.

Conversely, let $Y \subsetneq X$ and $|Y|>1$ and assume that $|X \backslash Y|>1$. Let $a, b \in X \backslash Y$ be distinct and c and d be distinct elements of Y. Define $\alpha: X \rightarrow X$ by

$$
\alpha=\left[\begin{array}{ccc}
a & b & X \backslash\{a, b\} \\
c & b & d
\end{array}\right]
$$

Since $Y \subseteq X \backslash\{a, b\}, Y \alpha \neq\{d\} \subseteq Y$ and $\operatorname{ran} \alpha=\{c, b, d\} \nsubseteq Y$, we have that $\alpha \in \bar{T}(X, Y) \backslash T(X, Y)$. Also, ran $\alpha \Re Y=\{c, d\} \neq\{d\}=\widetilde{Y} \alpha$. By Theorem 2.3, $\alpha \notin \operatorname{Reg}(\bar{T}(X, Y))$.

Hence the proof is complete. 6 bovå a
Remark 2.10. Let X be infinite. We shall give some remarks relating to the cardinalities of $\operatorname{Reg}(T(X, Y))$ and $\operatorname{Reg}(\bar{T}(X, Y))$. First, we note that if $|Y|=1$, then $|\operatorname{Reg}(T(X, Y))|=|T(X, Y)|=1$. The following three facts are provided.
(i) If $|Y|>1$, then $|\operatorname{Reg}(T(X, Y))| \geq 2^{|X|}$. To see this, let a and b be distinct
elements of Y. For any $A \in P(X \backslash\{a, b\})$ (the power set of $X \backslash\{a, b\})$, define $\alpha_{A}: X \rightarrow X$ by

$$
\alpha_{A}=\left[\begin{array}{cc}
A \cup\{a\} & X \backslash(A \cup\{a\}) \\
a & b
\end{array}\right] .
$$

Then $\operatorname{ran} \alpha_{A}=\{a, b\}=(\{a, b\}) \alpha_{A}=Y \alpha_{A}$ for every $A \in P(X \backslash\{a, b\})$, so $\left\{\alpha_{A} \mid A \in P(X \backslash\{a, b\})\right\} \subseteq \operatorname{Reg}(T(X, Y))$ by Theorem 2.1. Since for distinct $A, B \in P(X \backslash\{a, b\}), \alpha_{A} \neq \alpha_{B}$, it follows that $|P(X \backslash\{a, b\})| \leq|\operatorname{Reg}(T(X, Y))|$. However, $|X|=|X \backslash\{a, b\}|$, so $|P(X)|=|P(X \backslash\{a, b\})|$. Therefore it follows that

$$
|\operatorname{Reg}(T(X, Y))| \geq|P(X)|=2^{|X|}
$$

(ii) If $|Y|=|X|$, then $|\operatorname{Reg}(T(X, Y))|=|T(X)|$. To prove this, assume that $|Y|=|X|$. Then $|T(Y)|=|T(X)|$ through a map $\alpha \mapsto \varphi^{-1} \alpha \varphi$ where $\varphi: X \rightarrow Y$ is a bijection. For $\alpha \in T(Y)$, define a map $\alpha^{\prime}: X \rightarrow X$ by $\left.\alpha^{\prime}\right|_{Y}=\alpha$ and $(X \backslash Y) \alpha^{\prime} \subseteq$ ran α. Hence for every $\alpha \in T(Y), \alpha^{\prime} \in T(X, Y)$ and ran $\alpha^{\prime}=\operatorname{ran} \alpha=Y \alpha^{\prime}$, so $\alpha^{\prime} \in \operatorname{Reg}(T(X, Y))$ for all $\alpha \in T(Y)$ by Theorem 2.1. Moreover, $\alpha \mapsto \alpha^{\prime}$ is an injective map from $T(Y)$ into $\operatorname{Reg}(T(X, Y)$), so

$$
|T(X)| \geq|\operatorname{Reg}(T(X, Y))| \geq\left|\left\{\alpha^{\prime} \mid \alpha \in T(Y)\right\}\right|=|T(Y)|=|T(X)|
$$

and the required result is obtained.
(iii) $|\operatorname{Reg}(\bar{T}(X, Y))|=|T(X)|$. If $|Y|=|X|$, then by (ii), $|\operatorname{Reg}(T(X, Y))|=$ $|T(X)|$. Since $\operatorname{Reg}(T(X, Y)) \subseteq \operatorname{Reg}(\bar{T}(X, Y)) \subseteq \bar{T}(X, Y) \subseteq T(X)$, we have that $|\operatorname{Reg}(\bar{T}(X, Y))|=|T(X)|$ when $|Y|=|X|$. Next, assume that $|Y|<|X|$. Then $|X|=|X>Y|+|Y|=|X>Y|$ since X is infinite and $Q Y|<|X|$, and hence $|T(X \backslash Y)|=|T(X)|$. For $\alpha \in T(X \backslash Y)$, define a map $\bar{\alpha}: X \rightarrow X$ by $\left.\bar{\alpha}\right|_{X \backslash Y}=\alpha$ and $Y \bar{\alpha} \subseteq Y$. Thus for every $\alpha \in T(X \backslash Y), \bar{\alpha} \in \bar{T}(X, Y)$ and $\operatorname{ran} \bar{\alpha} \cap Y=(\operatorname{ran} \alpha \cup Y \bar{\alpha}) \cap Y=Y \bar{\alpha}$. It follows from Theorem 2.3 that $\{\bar{\alpha} \mid \alpha \in T(X \backslash Y)\} \subseteq \operatorname{Reg}(\bar{T}(X, Y))$. Since $\alpha \mapsto \bar{\alpha}$ is an injective map from
$T(X \backslash Y)$ into $\operatorname{Reg}(\bar{T}(X, Y))$, we have

$$
|T(X)| \geq|\operatorname{Reg}(\bar{T}(X, Y))| \geq|\{\bar{\alpha} \mid \alpha \in T(X \backslash Y)\}|=|T(X \backslash Y)|=|T(X)|,
$$ and thus $|\operatorname{Reg}(\bar{T}(X, Y))|=|T(X)|$.

CHAPTER III

REGULAR ELEMENTS OF SEMIGROUPS OF LINEAR TRANSFORMATIONS

In this chapter, we consider the subsemigroups $L_{F}(V, W)$ and $\bar{L}_{F}(V, W)$ of $L_{F}(V)$ analogous to the subsemigroups $T(X, Y)$ and $\bar{T}(X, Y)$ of $T(X)$, respectively. Also, the subsemigroup $K_{F}(V, W)$ of $L_{F}(V)$ is considered. The regular elements of these three semigroups are characterized. Such results for $L_{F}(V, W)$ and $K_{F}(V, W)$ are then applied to determine the regular elements of the matrix semigroups $C_{n}(F, k)$ and $R_{n}(F, k)$, respectively.

First, we recall the semigroups $L_{F}(V, W), \bar{L}_{F}(V, W), K_{F}(V, W), C_{n}(F, k)$ and $R_{n}(F, k)$, where W is a subspace of a vector space V over a field $F, n, k \in \mathbb{N}$ and $k \leq n$, as follows:

$$
\begin{aligned}
& L_{F}(V, W)=\left\{\alpha \in L_{F}(V) \mid \text { ran } \alpha \subseteq W\right\}, \\
& \bar{L}_{F}(V, W)=\left\{\alpha \in L_{F}(V) \mid W \alpha \subseteq W\right\}, \\
& K_{F}(V, W)=\left\{\alpha \in L_{F}(V) \mid W \subseteq \text { ker } \alpha\right\}, \\
& C_{n}(F, k)=\left\{A \in M_{n}(F) \mid A_{i j}=0 \text { for all } i, j \in\{1, \ldots, n\} \text { and } j>k\right\}, \\
& R_{n}(F, k)=\left\{A \in M_{n}(F) \mid A_{i j}=0 \text { for all } i, j \in\{1, \ldots, n\} \text { and } i>k\right\} .
\end{aligned}
$$

In other words, $C_{n}(F, k)$ consists of all matrices in $M_{n}(F)$ of the form

$$
\left[\begin{array}{cccccc}
a_{11} & \cdots & a_{1 k} & 0 & \cdots & 0 \\
a_{21} & \cdots & a_{2 k} & 0 & \cdots & 0 \\
\vdots & & \vdots & \vdots & & \vdots \\
a_{n 1} & \cdots & a_{n k} & 0 & \cdots & 0
\end{array}\right]
$$

and $R_{n}(F, k)$ consists of all matrices in $M_{n}(F)$ of the form

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & & \vdots \\
a_{k 1} & a_{k 2} & \cdots & a_{k n} \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right] .
$$

Observe that $R_{n}(F, n)=M_{n}(F)=C_{n}(F, n)$.
Throughout this chapter, let W be a subspace of a vector space V over a field $F, n \in \mathbb{N}$ and $k \in\{1, \ldots, n\}$.

Theorem 3.1. For $\alpha \in L_{F}(V, W), \alpha \in \operatorname{Reg}\left(L_{F}(V, W)\right)$ if and only if $\operatorname{ran} \alpha=$ $W \alpha$.

Proof. If $\alpha=\alpha \beta \alpha$ for some $\beta \in L_{F}(V, W)$, then $W \alpha \subseteq V \alpha=V \alpha \beta \alpha=(V \alpha \beta) \alpha \subseteq$ $W \alpha$, so ran $\alpha=W \alpha$.

For the converse, assume that ran $\alpha=W \alpha$. Let B_{1} be a basis of ker α, B_{2} a basis of ran α and B_{3} a basis of V containing B_{2}. Since ran $\alpha=W \alpha$, for each element $u \in \mathrm{~B}_{2}$, there is an element $u^{\prime} \in W$ such that $u^{\prime} \alpha=u$. Then $\mathrm{B}_{1} \cup\left\{u^{\prime} \mid u \in \mathrm{~B}_{2}\right\}$ is a basis of V. Define $\bar{\beta} \in L_{F}(V)$ on the basis B_{3} of V by

Then $\operatorname{ran} \beta=\left\langle\left\{u^{\prime} \mid u \in \mathrm{~B}_{2}\right\}\right\rangle \subseteq W$, so $\beta \in L_{F}(V, W)$. Since $\mathrm{B}_{1} \alpha \beta \alpha=\{0\}=\mathrm{B}_{1} \alpha$ and $u^{\prime} \alpha \beta \alpha=u \beta \alpha=u^{\prime} \alpha$ for all $u \in B_{2}$, we have that $\alpha=\alpha \beta \alpha$. Hence α is a regular element of $L_{F}(V, W)$, as desired.

Corollary 3.2. The semigroup $L_{F}(V, W)$ is regular if and only if either $W=V$ or $W=\{0\}$.

Proof. Assume that $\{0\} \subsetneq W \subsetneq V$. Let B_{1} be a basis of W and B a basis of V containing B_{1}. Let $w \in \mathrm{~B}_{1}$ and define $\alpha \in L_{F}(V)$ by

$$
\alpha=\left[\begin{array}{cc}
\mathrm{B}_{1} & \mathrm{~B} \backslash \mathrm{~B}_{1} \\
0 & w
\end{array}\right] .
$$

Then $\operatorname{ran} \alpha=\langle w\rangle \subseteq W$ and $W \alpha=\left\langle\mathrm{B}_{1}\right\rangle \alpha=\{0\}$, thus ran $\alpha \neq W \alpha$. Hence $\alpha \in L_{F}(V, W)$ and by Theorem 3.1, α is not a regular element of $L_{F}(V, W)$.

Since $L_{F}(V, V)=L_{F}(V)$ and $L_{F}(V,\{0\})=\{0\}$, the converse holds.
Theorem 3.3. For $\alpha \in \bar{L}_{F}(V, W), \alpha \in \operatorname{Reg}\left(\bar{L}_{F}(V, W)\right)$ if and only if ran $\alpha \cap W=$ $W \alpha$.

Proof. Since $W \alpha \subseteq W$, we have $W \alpha \subseteq \operatorname{ran} \alpha \cap W$. Assume that $\alpha=\alpha \beta \alpha$ for some $\beta \in \bar{L}_{F}(V, W)$. If $v \in \operatorname{ran} \alpha \cap W$, then $v \in W$ and $v=u \alpha$ for some $u \in V$ which imply that

$$
v=u \alpha=u \alpha \beta \alpha=v \beta \alpha \in W \beta \alpha \subseteq W \alpha
$$

Hence ran $\alpha \cap W=W \alpha$.
Conversely, assume that ran $\alpha \cap W=W \alpha$. Let B_{1} be a basis of ran $\alpha \cap W$, $\mathrm{B}_{2} \subseteq \operatorname{ran} \alpha \backslash \mathrm{~B}_{1}$ and $\mathrm{B}_{3} \subseteq W \backslash \mathrm{~B}_{1}$ such that $\mathrm{B}_{1} \cup \mathrm{~B}_{2}$ and $\mathrm{B}_{1} \cup \mathrm{~B}_{3}$ are bases of ran α and W, respectively. Then $\mathrm{B}_{1} \cup \mathrm{~B}_{2} \cup \mathrm{~B}_{3}$ is a basis of ran $\alpha+W$. Let $\mathrm{B}_{4} \subseteq V \backslash\left(\mathrm{~B}_{1} \cup \mathrm{~B}_{2} \cup \mathrm{~B}_{3}\right)$ be such that $\mathrm{B}_{1} \cup \mathrm{~B}_{2} \cup \mathrm{~B}_{3} \cup \mathrm{~B}_{4}$ is a basis of V. Since $\mathrm{B}_{1} \subseteq \operatorname{ran} \alpha \cap W=W \alpha$, for each $\tau \in \mathrm{B}_{1}$, there is an element $u^{\prime} \in W$ such that $u^{\prime} \alpha=u$. Since $\mathrm{B}_{2} \subseteq$ ran α, for each $v \in \mathrm{~B}_{2}$, there is an element $\bar{v} \in v \alpha^{-1}$ such that $\bar{v} \alpha=v /$ Define $\beta \in L_{F}(V)$ on the basis $\mathrm{B}_{1} \cup \mathrm{~B}_{2} \cup \mathrm{~B}_{3} \cup \mathrm{~B}_{4}$ by $\ell \mid$
$\beta=\left[\begin{array}{ccc}u & v & \mathrm{~B}_{3} \cup \mathrm{~B}_{4} \\ u^{\prime} & \bar{v} & 0\end{array}\right]_{\substack{u \in \mathrm{~B}_{1} \\ v \in \mathrm{~B}_{2}}}$.

It follows that $W \beta=\left\langle\mathrm{B}_{1} \cup \mathrm{~B}_{3}\right\rangle \beta=\left\langle\left\{u^{\prime} \mid u \in \mathrm{~B}_{1}\right\}\right\rangle \subseteq W$, so $\beta \in \bar{L}_{F}(V, W)$. Let
B_{0} be a basis of ker α. Then $\mathrm{B}_{0} \cup\left\{u^{\prime} \mid u \in \mathrm{~B}_{1}\right\} \cup\left\{\bar{v} \mid v \in \mathrm{~B}_{2}\right\}$ is a basis of V. Since

$$
\begin{gathered}
\mathrm{B}_{0} \alpha \beta \alpha=\{0\}=\mathrm{B}_{0} \alpha, u^{\prime} \alpha \beta \alpha=u \beta \alpha=u^{\prime} \alpha \text { for all } u \in \mathrm{~B}_{1}, \\
\bar{v} \alpha \beta \alpha=v \beta \alpha=\bar{v} \alpha \text { for all } v \in \mathrm{~B}_{2},
\end{gathered}
$$

we have $\alpha=\alpha \beta \alpha$, so $\alpha \in \operatorname{Reg}\left(\bar{L}_{F}(V, W)\right)$, as desired.
Corollary 3.4. The semigroup $\bar{L}_{F}(V, W)$ is regular if and only if either $W=V$ or $W=\{0\}$.

Proof. Assume that $\{0\} \neq W \subsetneq V$. Let B_{1} be a basis of W and B a basis of V containing B_{1}. Then $\mathrm{B}_{1} \neq \varnothing \neq \mathrm{B} \backslash \mathrm{B}_{1}$. Let $w \in \mathrm{~B}_{1}$ and $u \in \mathrm{~B} \backslash \mathrm{~B}_{1}$. Define $\alpha \in L_{F}(V)$ by

$$
\alpha=\left[\begin{array}{ccc}
\bar{u} & \mathrm{~B} & \{u\} \\
\overline{\bar{w}} & 0
\end{array}\right] .
$$

Then $W \alpha=\left\langle\mathrm{B}_{1}\right\rangle \alpha \subseteq\langle\mathrm{B} \backslash\{u\}\rangle \alpha=\{0\}$, so $\alpha \in \bar{L}_{F}(V, W)$. Since ran $\alpha \cap W=$ $\langle w\rangle \neq\{0\}=W \alpha$, by Theorem 3.3, we deduce that α is not a regular element of $\bar{L}_{F}(V, W)$. Hence $\bar{L}_{F}(V, W)$ is not a regular semigroup.

Since $\bar{L}_{F}(V, V)=L_{F}(V)=\bar{L}_{F}(V,\{0\})$, the converse holds.
Theorem 3.5. For $\alpha \in K_{F}(V, W), \alpha \in \operatorname{Reg}\left(K_{F}(V, W)\right)$ if and only if ran $\alpha \cap W$ $=\{0\}$.

Proof. Assume that $\alpha=\alpha \beta \alpha$ for some $\beta \in K_{F}(V, W)$. If $v \in \operatorname{ran} \alpha \cap W$, then $v \in$ W and $v=u \alpha$ for some $u \in V$, and hence $v=u \alpha=u \alpha \beta \alpha=v \beta \alpha \in W \beta \alpha=\{0\}$.

Conversely, assume that ran $\alpha \cap W=\{0\}$. Let B_{1} be a basis of $\operatorname{ker} \alpha, \mathrm{B}_{2}$ a basis ofran α and B_{3} a basis of W. Since ran $\alpha \cap W=\{0\}$, we have that $B_{2} \cup B_{3}$ is a basis of $\operatorname{ran} \alpha+W$. Let B_{4} be a basis of V containing $\mathrm{B}_{2} \cup \mathrm{~B}_{3}$. For each element $u \in \mathrm{~B}_{2}$, let $u^{\prime} \in V$ be such that $u^{\prime} \alpha=u$. Then $\mathrm{B}_{1} \cup\left\{u^{\prime} \mid u \in \mathrm{~B}_{2}\right\}$ is a basis of V. Define $\beta \in L_{F}(V)$ by

$$
\beta=\left[\begin{array}{cc}
u & \mathrm{~B}_{4} \backslash \mathrm{~B}_{2} \\
u^{\prime} & 0
\end{array}\right]_{u \in \mathrm{~B}_{2}}
$$

Since $\mathrm{B}_{3} \subseteq \mathrm{~B}_{4} \backslash \mathrm{~B}_{2}$, it follows that $W \beta=\left\langle\mathrm{B}_{3}\right\rangle \beta=\{0\}$, so $\beta \in K_{F}(V, W)$.
Moreover, $\mathrm{B}_{1} \alpha \beta \alpha=\{0\}=\mathrm{B}_{1} \alpha$ and $u^{\prime} \alpha \beta \alpha=u \beta \alpha=u^{\prime} \alpha$ for all $u \in \mathrm{~B}_{2}$. Hence we have $\alpha=\alpha \beta \alpha$, so α is a regular element of $K_{F}(V, W)$.

Corollary 3.6. The semigroup $K_{F}(V, W)$ is regular if and only if either $W=V$ or $W=\{0\}$.

Proof. Assume that $\{0\} \subsetneq W \subsetneq V$. Let $\mathrm{B}_{1}, \mathrm{~B}, w, u$ and $\alpha \in L_{F}(V)$ be as in Corollary 3.4. Since $W \alpha=\{0\}$, we have $\alpha \in K_{F}(V, W)$. Also, ran $\alpha \cap W=$ $\langle w\rangle \cap W=\langle w\rangle \neq\{0\}$. By Theorem 3.5, α is not a regular element of $K_{F}(V, W)$.

The converse holds since $K_{F}(V, V)=\{0\}$ and $K_{F}(V,\{0\})=L_{F}(V)$.

To characterize the regular elements of $C_{n}(F, k)$ and $R_{n}(F, k)$ by Theorem 3.1 and Theorem 3.5, respectively, some lemmas are needed.

Let V^{*} and $V^{* *}$ be the dual space and the double dual space of V, respectively. For $A \subseteq V$, the annihilator of A is denoted by A^{0}, that is,

$$
A^{0}=\left\{f \in \bar{V}^{*} \mid f(v)=0 \text { for all } v \in A\right\}
$$

and let $A^{00}=\left(A^{0}\right)^{0}$, that is,

$$
A^{00}=\left\{T \in V^{* *} \mid T(f)=0 \text { for all } f \in A^{0}\right\} .
$$

For $\left(x_{1}, \ldots, x_{n}\right) \in F^{n}$, define $h_{\left(x_{1}, \ldots, x_{n}\right)}: F^{n} \rightarrow F$ by

$$
h_{\left(x_{1}, \ldots,,_{n}\right)}\left(t_{0}, \ldots, t_{n}\right)=t_{1} x_{1}+\cdots \not t_{n} x_{n} \text { for all }\left(t_{1}, \curvearrowright, t_{n}\right) \in F^{n}
$$

Then we have $\left.Q_{\left(F^{n}\right)^{*}}^{=}=\left\{h_{\left(x_{1}, \ldots, x_{n}\right)}^{0} 6 \log _{1}, \ldots, x_{n}\right) \in F^{n}\right\}$
([5], page 149). For $x \in F^{n}$, define $T_{x}:\left(F^{n}\right)^{*} \rightarrow F$ by

$$
T_{x}(f)=f(x) \text { for all } x \in F^{n} .
$$

Then

$$
\begin{align*}
& \left(F^{n}\right)^{* *}=\left\{T_{x} \mid x \in F^{n}\right\} \text { and } \\
& T_{x} \neq T_{y} \text { for all distinct } x, y \in F^{n} \tag{II}
\end{align*}
$$

([5], page 147). If U is a subspace of F^{n}, then

$$
\begin{equation*}
U^{00}=\left\{T_{u} \mid u \in U\right\} \tag{III}
\end{equation*}
$$

([5], page 148-149). Note that if A_{1} and A_{2} are subsets of F^{n} such that $A_{1} \subseteq A_{2}$, then $A_{1}^{0} \supseteq A_{2}^{0}$ and $A_{1}^{00} \subseteq A_{2}^{00}$.

Lemma 3.7. Let $\left(a_{11}, \ldots, a_{1 n}\right), \ldots,\left(a_{m 1}, \ldots, a_{m n}\right),\left(b_{1}, \ldots, b_{n}\right)$ be elements of F^{n}. Then the following two conditions are equivalent.
(i) $\left(b_{1}, \ldots, b_{n}\right) \in\left\langle\left(a_{11}, \ldots, a_{1 n}\right), \ldots,\left(a_{m 1}, \ldots, a_{m n}\right)\right\rangle$.
 then $b_{1} x_{1}+\cdots+b_{n} x_{n}=0$.

Proof. Let $U_{1}=\left\langle\left(a_{11}, \ldots, a_{1 n}\right), \ldots,\left(a_{m 1}, \ldots, a_{m n}\right)\right\rangle$ and $U_{2}=\left\langle\left(b_{1}, \ldots, b_{n}\right)\right\rangle$.
Assume that (i) holds. Then $U_{2} \subseteq U_{1}$ which implies that $U_{2}^{0} \supseteq U_{1}^{0}$. Let $\left(x_{1}, \ldots, x_{n}\right) \in F^{n}$ be such that $a_{i 1} x_{1}+\cdots+a_{i n} x_{n}=0$ for all $i \in\{1, \ldots, m\}$. Then

$$
h_{\left(x_{1}, \ldots, x_{n}\right)}\left(a_{i 1}, \ldots, a_{i n}\right)=0 \text { for all } i \in\{1, \ldots, m\} .
$$

It follows that $h_{\left(x_{1}, \ldots, x_{n}\right)} \in U_{1}^{0}$. But $U_{1}^{0} \subseteq U_{2}^{0}$, so $h_{\left(x_{1}, \ldots, x_{n}\right)}\left(b_{1}, \ldots, b_{n}\right)=0$, that is, $b_{1} x_{1}+\cdots+b_{n} x_{n}=0$. Hence (ii) holds.

To show that (ii) implies (i), assume that (ii) holds. Then we have that for every $\left(x_{1}, \ldots, x_{n}\right) \in F^{n}, h_{\left(x_{1}, \ldots, x_{n}\right)} \in\left\langle\left\{\left(a_{11}, \ldots, a_{1 n}\right), \ldots \curvearrowright\left(a_{m 1}, \ldots, a_{m n}\right)\right\}\right\rangle^{0}$ implies that $\left.h_{\left(x_{1}, \ldots, x_{n}\right)} \in\left\langle\left\{\left(b_{\mathrm{b}}, \cdot\right\}, b_{n}\right)\right\}\right\rangle^{0}$. It follows from (I) that $U_{1}^{0} \subseteq{\widetilde{U_{2}^{0}}}_{2}^{0}$. Then $U_{2}^{00} \subseteq U_{1}^{00}$. Hence by (III),

By (II), we deduce that $U_{2} \subseteq U_{1}$, so (i) holds.
For a matrix $A \in M_{n}(F)$, define $g_{A}: F^{n} \rightarrow F^{n}$ by

$$
X g_{A}=X A \text { for all } X \in F^{n}
$$

Clearly, $g_{A} \in L_{F}\left(F^{n}\right)$ for all $A \in M_{n}(F)$. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard basis of F^{n} over F. Therefore we have

$$
\begin{equation*}
e_{i} g_{A}=\left(A_{i 1}, \ldots, A_{i n}\right) \text { for all } i \in\{1, \ldots, n\} \text { and } A \in M_{n}(F) \tag{IV}
\end{equation*}
$$

Lemma 3.8. The mapping $\varphi: M_{n}(F) \rightarrow L_{F}\left(F^{n}\right)$ defined by $A \varphi=g_{A}$ for all $A \in M_{n}(F)$ is an isomorphism from $M_{n}(F)$ onto $L_{F}\left(F^{n}\right)$.

Proof. It is clear that φ is a homomorphism. It follows from (IV) that φ is 1-1. If $\alpha \in L_{F}\left(F^{n}\right)$, then define $A \in M_{n}(F)$ by

$$
\left(A_{i 1}, \ldots, A_{i n}\right)=e_{i} \alpha \text { for all } i \in\{1, \ldots, n\}
$$

Then by (IV), $e_{i} g_{A}=e_{i} \alpha$ for all $i \in\{1, \ldots, n\}$, and thus $A \varphi=g_{A}=\alpha$. Hence the lemma is proved.

Lemma 3.9. Let U_{1} and U_{2} be subspaces of F^{n} spanned by $\left\{e_{1}, \ldots, e_{k}\right\}$ and $\left\{e_{k+1}, \ldots, e_{n}\right\}$, respectively. Then
(i) $L_{F}\left(F^{n}, U_{1}\right)=\left\{g_{A} \mid A \in C_{n}(F, k)\right\}$ and
(ii) $K_{F}\left(F^{n}, U_{2}\right)=\left\{g_{A} \mid A \in R_{n}(F, k)\right\}$.

Proof. We have from the definitions of U_{1} and U_{2} that

$$
U_{1}=\left\{\left(x_{1}, \ldots, x_{k}, 0, \ldots, 0\right) \mid x_{1}, \ldots, x_{k} \in F\right\}
$$

and

$$
U_{2}=\left\{\begin{array}{l}
\{(0, \ldots, 0)\}, \\
\left\{\left(0, \ldots, 0, x_{k+1}, \ldots, x_{n}\right) \mid x_{k+1}, \ldots, x_{n} \in F\right\}
\end{array} \text { if } k<n .\right.
$$

$$
\begin{aligned}
g_{A} \in L_{F}\left(F^{n}, U_{1}\right) & \Leftrightarrow \operatorname{ran} g_{A} \subseteq U_{1} \\
& \Leftrightarrow\left(A_{i 1}, \ldots, A_{i n}\right) \in U_{1} \text { for all } i \in\{1, \ldots, n\} \quad \text { from (IV) } \\
& \Leftrightarrow A_{i j}=0 \text { for all } i, j \in\{1, \ldots, n\} \text { with } j>k \\
& \Leftrightarrow A \in C_{n}(F, k) .
\end{aligned}
$$

Hence by Lemma 3.8, (i) holds.
(ii) If $k=n$, then $K_{F}\left(F^{n}, U_{2}\right)=L_{F}\left(F^{n}\right)$ and $R_{n}(F, k)=M_{n}(F)$, so (ii) holds by Lemma 3.8. Next, assume that $k<n$. Then for $A \in M_{n}(F)$,

$$
\begin{aligned}
g_{A} \in K_{F}\left(F^{n}, U_{2}\right) & \Leftrightarrow U_{2} \subseteq \operatorname{ker} g_{A} \\
& \Leftrightarrow U_{2} g_{A}=\{(0, \ldots, 0)\} \\
& \Leftrightarrow e_{i} g_{A}=(0, \ldots, 0) \text { for all } i \in\{k+1, \ldots, n\} \\
& \Leftrightarrow\left(A_{i 1}, \ldots, A_{i n}\right)=(0, \ldots, 0) \\
& \Leftrightarrow A \in R_{n}(F, k) .
\end{aligned}
$$

Hence (ii) holds by Lemma 3.8.
Theorem 3.10. For $A \in C_{n}(F, k), A$ is regular in $C_{n}(F, k)$ if and only if for any $x_{1}, \ldots, x_{k} \in F$,

$$
\begin{align*}
A_{i 1} x_{1}+\cdots+ & A_{i k} x_{k}=0 \text { for all } i \in\{1, \ldots, k\} \tag{1}\\
& \Rightarrow A_{i 1} x_{1}+\cdots+A_{i k} x_{k}=0 \text { for all } i \in\{k+1, \ldots, n\}
\end{align*}
$$

that is, for any $\left(x_{1}, \ldots, x_{k}\right) \in F^{k}$,

$$
\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 k} \\
\vdots & \ddots & \vdots \\
A_{k 1} & \cdots & A_{k k}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{k}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
A_{k+1,1} & \cdots & A_{k+1, k} \\
\vdots & \ddots & \vdots \\
A_{n 1} & \cdots & A_{n k}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{k}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right] .
$$

Proof. Let U be the subspace of F^{n} spanned by $\left\{\widetilde{e_{1}}, \AA, e_{k}\right\}$. Then by Lemma 3.8 and Lemma 3.9(i), $C_{n}(F, k) \cong L_{F}\left(F_{\circ}^{n}, U\right)$ through the mapping $A \mapsto g_{A}$.

Let $A \in C_{n}(F, k)$. Since $\widetilde{A_{i j}}=0$ for all $i, j \in\{1, \ldots, \cap, n\}$ with $j \geq k$, by (IV), we have 9

$$
\begin{align*}
& \operatorname{ran} g_{A}=\left\langle\left(A_{11}, \ldots, A_{1 k}, 0, \ldots, 0\right), \ldots,\left(A_{n 1}, \ldots, A_{n k}, 0, \ldots, 0\right)\right\rangle, \tag{2}\\
& U g_{A}=\left\langle\left(A_{11}, \ldots, A_{1 k}, 0, \ldots, 0\right), \ldots,\left(A_{k 1}, \ldots, A_{k k}, 0, \ldots, 0\right)\right\rangle .
\end{align*}
$$

Hence

$$
\begin{aligned}
& A \in \operatorname{Reg}\left(C_{n}(F, k)\right) \Leftrightarrow g_{A} \in \operatorname{Reg}\left(L_{F}\left(F^{n}, U\right)\right) \\
& \Leftrightarrow \operatorname{ran} g_{A}=U g_{A} \text { from Theorem 3.1 } \\
& \Leftrightarrow\left(A_{i 1}, \ldots, A_{i k}, 0, \ldots, 0\right) \\
& \in\left\langle\left(A_{11}, \ldots, A_{1 k}, 0, \ldots, 0\right), \ldots,\left(A_{k 1}, \ldots, A_{k k}, 0, \ldots, 0\right)\right\rangle \\
& \quad \text { for all } i \in\{k+1, \ldots, n\} \text { from }(2) \\
& \Leftrightarrow\left(A_{i 1}, \ldots, A_{i k}\right) \in\left\langle\left(A_{\left.\left.11, \ldots, A_{1 k}\right), \ldots,\left(A_{k 1}, \ldots, A_{k k}\right)\right\rangle \text { in } F^{k}} \quad \text { for all } i \in\{k+1, \ldots, n\}\right.\right.
\end{aligned}
$$

$$
\Leftrightarrow(1) \text { holds from Lemma 3.7. }
$$

Therefore the theorem is proved.

The following two corollaries are direct consequences of Theorem 3.10.

Corollary 3.11. If $A \in C_{n}(F, k)$ is of the form
then A is regular in $C_{n}(F, k)$.

We note here that if S° consists of all matrices $A \in M_{n}(\mathcal{F})$ of the form given in Corollary 3.11 , then S is a subsemigroup of $M_{n}(F)$ contained in $C_{n}(F, k)$ and $S \cong M_{k}(F)$. This implies that S is a regular subsemigroup of $C_{n}(F, k)$.

Corollary 3.12. Let $k<n$ and $A \in C_{n}(F, k)$ be of the form

$$
\left[\begin{array}{cccccc}
0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 0 \\
a_{k+1,1} & \cdots & a_{k+1, k} & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n k} & 0 & \cdots & 0
\end{array}\right] .
$$

Then A is regular in $C_{n}(F, k)$ if and only if A is a zero matrix.

Also, as a consequence of Theorem $3.12, C_{n}(F, k)$ is a regular semigroup only in the case that $k=n$, or equivalently, $C_{n}(F, k)=M_{n}(F)$.

Corollary 3.13. The semigroup $C_{n}(F, k)$ is a regular semigroup if and only if $k=n$.

Proof. Assume that $k<n$. Define $A \in M_{n}(F)$ by

Then $A \in C_{n}(F, k)$. Since $k<n$, by Corollary 3.12, A is not regular in $C_{n}(F, k)$.
since $C_{n}(F, n)=M_{n}(F)$, the converse holds. ひी?
Theorem 3.14. For $A \in R_{n}(\widetilde{F}, \overparen{\kappa})$, A is regular in $R_{n}(F, F)$ if and only if for any $x_{1}, \ldots, x_{k} \in F$,

$$
\begin{align*}
A_{1 j} x_{1}+\cdots+ & A_{k j} x_{k}=0 \text { for all } j \in\{1, \ldots, k\} \tag{1}\\
& \Rightarrow A_{1 j} x_{1}+\cdots+A_{k j} x_{k}=0 \text { for all } j \in\{k+1, \ldots, n\},
\end{align*}
$$

that is, for any $\left(x_{1}, \ldots, x_{k}\right) \in F^{k}$,

$$
\begin{gathered}
{\left[\begin{array}{lll}
x_{1} & \cdots & x_{k}
\end{array}\right]\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 k} \\
\vdots & \ddots & \vdots \\
A_{k 1} & \cdots & A_{k k}
\end{array}\right]=\left[\begin{array}{lll}
0 & \cdots & 0
\end{array}\right]} \\
\quad \Rightarrow\left[\begin{array}{lll}
x_{1} & \cdots & x_{k}
\end{array}\right]\left[\begin{array}{ccc}
A_{1, k+1} & \cdots & A_{1 n} \\
\vdots & \ddots & \vdots \\
A_{k, k+1} & \cdots & A_{k n}
\end{array}\right]=\left[\begin{array}{lll}
0 & \cdots & 0
\end{array}\right] .
\end{gathered}
$$

Proof. This is true if $k=n$ since $R_{n}(F, n)=M_{n}(F)$. Assume that $k<n$ and U is a subspace of F^{n} spanned by $\left\{e_{k+1}, \ldots, e_{n}\right\}$. By Lemma 3.8 and Lemma 3.9(ii), $R_{n}(F, k) \cong K_{F}\left(F^{n}, U\right)$ by $A \mapsto g_{A}$. Note that

$$
\begin{equation*}
U=\left\{\left(0, \ldots, 0, x_{k+1}, \ldots, x_{n}\right) \mid x_{k+1}, \ldots, x_{n} \in F\right\} . \tag{2}
\end{equation*}
$$

Let $A \in R_{n}(F, k)$. Then $A_{i j}=0$ for all $i, j \in\{1, \ldots, n\}$ with $i>k$ and

$$
\begin{aligned}
A \in \operatorname{Reg}\left(R_{n}(F, k)\right) & \Leftrightarrow g_{A} \in \operatorname{Reg}\left(K_{F}\left(F^{n}, U\right)\right) \\
& \Leftrightarrow \operatorname{ran} g_{A} \cap U=\{(0, \ldots, 0)\} \text { from Theorem 3.5, }
\end{aligned}
$$

Thus to prove the theorem, it suffices to show that ran $g_{A} \cap U=\{(0, \ldots, 0)\}$ if and only if (1) holds. First, assume that $\operatorname{ran} g_{A} \cap U=\{(0, \ldots, 0)\}$ and let $x_{1}, \ldots, x_{k} \in F$ be such that $A_{1 j} x_{1}+\cdots+A_{k j} x_{k}=0$ for all $j \in\{1, \ldots, k\}$. Then

$$
\begin{aligned}
& \left(x_{1}, \ldots, x_{k}, 0, \ldots, 0\right) g_{A}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(A_{11} x_{1}+\cdots+A_{k 1} x_{k}, \sigma, A_{1 n} x_{1}+\cdots+A_{k n} x_{k}\right) \\
& \text { จ9/(0,.6.0, } \left.A_{1, k+1} x_{1}+\ldots+A_{k, k+1} x_{k}, \ldots, A_{1 n} x_{1}+\ldots .0+A_{k n} x_{k}\right) \\
& \in \operatorname{ran} g_{A} \cap U=\{(0, \ldots, 0)\} \text { from (2). }
\end{aligned}
$$

This implies that $A_{1 j} x_{1}+\cdots+A_{k j} x_{k}=0$ for all $j \in\{k+1, \ldots, n\}$.
Conversely, assume that (1) holds. Let $\left(y_{1}, \ldots, y_{n}\right) \in \operatorname{ran} g_{A} \cap U$. Then $y_{j}=0$ for all $j \in\{1, \ldots, k\}$ by (2) and $\left(y_{1}, \ldots, y_{n}\right)=\left(a_{1}, \ldots, a_{n}\right) g_{A}$ for some
$\left(a_{1}, \ldots, a_{n}\right) \in F^{n}$. It follows that $A_{1 j} a_{1}+\cdots+A_{k j} a_{k}=y_{j}$ for all $j \in\{1, \ldots, n\}$. Then $A_{1 j} a_{1}+\cdots+A_{k j} a_{k}=0$ for all $j \in\{1, \ldots, k\}$. By (1), $A_{1 j} a_{1}+\cdots+A_{k j} a_{k}=0$ for all $j \in\{k+1, \ldots, n\}$. Thus $\left(y_{1}, \ldots, y_{n}\right)=(0, \ldots, 0)$. This shows that $\operatorname{ran} g_{A} \cap U=\{(0, \ldots, 0)\}$.

Therefore the proof is complete.

From Theorem 3.14, we clearly have the next two corollaries.

Corollary 3.15. If $A \in R_{n}(F, k)$ is of the form

then A is regular in $R_{n}(F, k)$.
Corollary 3.16. Let $k<n$ and $A \in R_{n}(F, k)$ be of the form

Then A is regular in $R_{n}(F, k)$ if and only if A is a zero matrix.
Corollary 3.17. The semigroup $R_{n}(F, k)$ is a regular semigroup if and only if $k=n$.

Proof. If $k<n$, then by Corollary 3.16,

$$
A=\left[\begin{array}{cccc}
0 & 0 & \cdots & 1 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & 0
\end{array}\right]
$$

is a nonregular element of $R_{n}(F, k)$.
If $k=n$, then $R_{n}(F, k)=M_{n}(F)$. Therefore the converse holds.

Remark 3.18. In our presentation, we applied Theorem 3.1 and Theorem 3.5 to obtain Theorem 3.10 and Theorem 3.14, respectively. In fact, Theorem 3.10 implies Theorem 3.14 and the converse is also true. It follows from the following facts:
(i) If the semigroups S_{1} and S_{2} are anti-isomorphic, that is, there is a bijection $\varphi: S_{1} \rightarrow S_{2}$ such that $(x y) \varphi=(y \varphi)(x \varphi)$ for all $x, y \in S_{1}$, it is clearly that $\operatorname{Reg}\left(S_{2}\right)=\left(\operatorname{Reg}\left(S_{1}\right)\right) \varphi$
(ii) The mapping $A \mapsto A^{t}$, the transpose of A, from $C_{n}(F, k)\left[R_{n}(F, k)\right]$ into $R_{n}(F, k)\left[C_{n}(F, k)\right]$ is clearly an anti-isomorphism.

Example 3.19. Consider the matrices A and B over \mathbb{R} defined by

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 2 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
3 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

If we consider $A \in C_{3}(\mathbb{R}, 2)$, then A is not a regular element of $C_{3}(\mathbb{R}, 2)$ by Theorem 3.10 since $A_{11}(1)+A_{12}(-1)=0=A_{21}(1)+A_{22}(-1)$ and $A_{31}(1)+A_{32}(-1)=-2 \neq$

0 . Consider B as an element of $C_{4}(\mathbb{R}, 3)$ and $R_{4}(\mathbb{R}, 2)$. By Corollary 3.11, $B \in$ $\operatorname{Reg}\left(C_{4}(\mathbb{R}, 3)\right)$. To show that $B \in \operatorname{Reg}\left(R_{4}(\mathbb{R}, 2)\right)$ by Theorem 3.14 , let $x_{1}, x_{2} \in \mathbb{R}$ be such that $B_{11} x_{1}+B_{21} x_{2}=0=B_{12} x_{1}+B_{22} x_{2}$. Then $3 x_{2}=0=x_{1}+2 x_{2}$ which implies that $x_{1}=x_{2}=0$, so $B_{13} x_{1}+B_{23} x_{2}=0=B_{14} x_{1}+B_{24} x_{2}$.

CHAPTER IV

THE $\mathcal{B Q}$-PROPERTY OF SEMIGROUPS OF TRANSFORMATIONS OF SETS

The $\mathcal{B Q}$-property of the semigroups of $T(X, Y)$ and $\bar{T}(X, Y)$ are considered in this chapter. The characterizations of $T(X, Y)$ and $\bar{T}(X, Y)$ to have the $\mathcal{B Q}$ property will provide some examples of $\mathcal{B Q}$-semigroups which are not regular.

Recall that the semigroups $T(X, Y)$ and $\bar{T}(X, Y)$, where Y is a nonempty subset of a set X, are defined as follows:

$$
\begin{aligned}
& T(X, Y)=\{\alpha \in T(X) \mid \operatorname{ran} \alpha \subseteq Y\}, \\
& \bar{T}(X, Y)=\{\alpha \in T(X) \mid Y \alpha \subseteq Y\}
\end{aligned}
$$

Throughout this chapter, let X be a nonempty set and $\varnothing \neq Y \subseteq X$.
We first show that the semigroup $T(X, Y)$ always has the $\mathcal{B Q}$-property.
Lemma 4.1. If B is a bi-ideal of a regular semigroup S, then B has the $\mathcal{B Q}$ property.

Proof. Since B is a bi-ideal of S, we have $B S B \subseteq B$, Let A be a bi-deal of B. Then $A B A \subseteq A$. To show that A is a quasi-ideal of B, let $x \in A B \cap B A$. Since S is regular, $x=x y x$ for some $y \in S$. These imply that

$$
x=x y x \in A B S B A \subseteq A B A \subseteq A .
$$

Hence $A B \cap B A \subseteq A$. This proves that every bi-ideal of B is a quasi-ideal of B.
Hence B has the $\mathcal{B Q}$-property.
Lemma 4.2. The semigroup $T(X, Y)$ is a left ideal of $T(X)$.

Proof. Since ran $(\beta \alpha) \subseteq \operatorname{ran} \alpha$ for all $\alpha, \beta \in T(X)$, it follows that $T(X) T(X, Y) \subseteq$ $T(X, Y)$. Hence $T(X, Y)$ is a left ideal of $T(X)$.

Theorem 4.3. The semigroup $T(X, Y)$ always has the $\mathcal{B Q}$-property.
Proof. Since $T(X, Y)$ is a left ideal of $T(X)$ by Lemma 4.2, $T(X, Y)$ is a bi-ideal of $T(X)$. But since $T(X)$ is a regular semigroup, by Lemma 4.1, $T(X, Y)$ has the $\mathcal{B} \mathcal{Q}$-property.

To characterize when $\bar{T}(X, Y)$ is a $\mathcal{B Q}$-semigroup, Proposition 1.2, Proposition 1.5, Proposition 1.9 and Corollary 2.4 and the following three lemmas are needed.

Lemma 4.4. Let S be a semigroup. If $\varnothing \neq A \subseteq \operatorname{Reg}(S)$, then $(A)_{b}=(A)_{q}$.
Proof. We know that $(A)_{b} \subseteq(A)_{q} \cdot$ Let $x \in(A)_{q}$. By Proposition 1.2(i), $x=s a=$ $b t$ for some $s, t \in S^{1}$ and $a, b \in A$. Since $a \in \operatorname{Reg}(S), a=a a^{\prime} a$ for some $a^{\prime} \in S$. Then

$$
x=s a=s a a^{\prime} a=b t a^{\prime} a \in A S A \subseteq(A)_{b}
$$

by Proposition 1.2(ii). Hence we have $(A)_{b}=(A)_{q}$, as desired.
Lemma 4.5. Let S be a semigroup, $\varnothing \neq A \subseteq S$ and $B \subseteq \operatorname{Reg}(S)$. If $(A)_{b}=(A)_{q}$, then $(A \cup B)_{b}=(A \cup B)_{q}$.

Proof. We first show that $S^{1} A \cap B S^{1}$ and $S^{1} B \cap A S^{1}$ are subsets of $(A \cup B)_{b}$. Let $x \in S^{1} A \cap B S^{1}$. Then $x=s a=b t$ for some $s, t \in S^{1}, a \in A$ and $b \in B$. Since $b \in \operatorname{Reg}(S), b=b b^{\prime} b$ for some $b^{\prime} \in S$. It follows that

$$
x=b t=b b^{\prime} b t=b b^{\prime} s a \in B S A \subseteq(A \cup B) S(A \cup B) \subseteq(A \cup B)_{b} .
$$

This shows that $S^{1} A \cap B S^{1} \subseteq(A \cup B)_{b}$. It can be shown similarly that $S^{1} B \cap A S^{1} \subseteq$ $(A \cup B)_{b}$? Consequently,

$$
\begin{aligned}
(A \cup B)_{q} & =S^{1}(A \cup B) \cap(A \cup B) S^{1} \\
& =\left(S^{1} A \cup S^{1} B\right) \cap\left(A S^{1} \cup B S^{1}\right) \\
& =\left(S^{1} A \cap A S^{1}\right) \cup\left(S^{1} A \cap B S^{1}\right) \cup\left(S^{1} B \cap A S^{1}\right) \cup\left(S^{1} B \cap B S^{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(A)_{q} \cup\left(S^{1} A \cap B S^{1}\right) \cup\left(S^{1} B \cap A S^{1}\right) \cup(B)_{q} \\
& =(A)_{b} \cup\left(S^{1} A \cap B S^{1}\right) \cup\left(S^{1} B \cap A S^{1}\right) \cup(B)_{b}
\end{aligned}
$$

from the assumption and Lemma 4.4

$$
\begin{aligned}
& \subseteq(A)_{b} \cup(A \cup B)_{b} \cup(A \cup B)_{b} \cup(B)_{b} \\
& =(A \cup B)_{b} .
\end{aligned}
$$

But $(A \cup B)_{b} \subseteq(A \cup B)_{q}$, so $(A \cup B)_{b}=(A \cup B)_{q}$.
Lemma 4.6. If $|X|=3$ and $|Y|=2$, then for all $\alpha, \beta \in \bar{T}(X, Y),(\alpha, \beta)_{b}=(\alpha, \beta)_{q}$ in $\bar{T}(X, Y)$.

Proof. For convenience, let X_{a} denote the constant map whose domain and range are X and $\{a\}$, respectively.

Assume that $X=\{a, b, c\}$ and $Y=\{a, b\}$. Clearly,

$$
\begin{gathered}
\bar{T}(X, Y)=\left\{1_{X}, X_{a}, X_{b},\left[\begin{array}{lll}
a & b & c \\
a & a & b
\end{array}\right],\left[\begin{array}{lll}
a & b & c \\
a & a & c
\end{array}\right],\left[\begin{array}{lll}
a & b & c \\
b & b & a
\end{array}\right],\left[\begin{array}{lll}
a & b & c \\
b & b & c
\end{array}\right]\right. \\
\left.\left[\begin{array}{lll}
a & b & c \\
a & b & a
\end{array}\right],\left[\begin{array}{lll}
a & b & c \\
a & b & b
\end{array}\right],\left[\begin{array}{lll}
a & b & c \\
b & a & a
\end{array}\right],\left[\begin{array}{lll}
a & b & c \\
b & a & b
\end{array}\right],\left[\begin{array}{lll}
a & b & c \\
b & a & c
\end{array}\right]\right\} .
\end{gathered}
$$

By Theorem 2.3((i) $\Leftrightarrow(i i))$,

Let

$$
\begin{aligned}
& \bar{T}(X, Y) \backslash \operatorname{Reg}(\bar{T}(X, Y))=\left\{\left[\begin{array}{lll}
a & b & c \\
a & a & b
\end{array}\right],\left[\begin{array}{lll}
a & b & c \\
b & b & a
\end{array}\right]\right\} .
\end{aligned}
$$

Note that $\lambda^{2}=X_{a}=\eta \lambda$ and $\eta^{2}=X_{b}=\lambda \eta$. To show that $(\alpha, \beta)_{b}=(\alpha, \beta)_{q}$ for all $\alpha, \beta \in \bar{T}(X, Y)$, by Lemma 4.5, it suffices to show that $(\lambda)_{b}=(\lambda)_{q},(\eta)_{b}=(\eta)_{q}$
and $(\lambda, \eta)_{b}=(\lambda, \eta)_{q}$. By direct multiplication, we have

$$
\begin{aligned}
& \bar{T}(X, Y) \lambda=\left\{\lambda, X_{a}\right\}, \lambda \bar{T}(X, Y)=\left\{\lambda, X_{a}, X_{b}, \eta\right\}, \lambda \bar{T}(X, Y) \lambda=\left\{X_{a}\right\}, \\
& \bar{T}(X, Y) \eta=\left\{\eta, X_{b}\right\}, \eta \bar{T}(X, Y)=\left\{\eta, X_{a}, X_{b}, \lambda\right\}, \eta \bar{T}(X, Y) \eta=\left\{X_{b}\right\}, \\
& \quad \lambda \bar{T}(X, Y) \eta=\left\{X_{b}\right\}, \eta \bar{T}(X, Y) \lambda=\left\{X_{a}\right\} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
(\lambda)_{b}= & \lambda \bar{T}(X, Y) \lambda \cup\{\lambda\}=\left\{X_{a}, \lambda\right\}=\bar{T}(X, Y) \lambda \cap \lambda \bar{T}(X, Y)=(\lambda)_{q} \\
(\eta)_{b}= & \eta \bar{T}(X, Y) \eta \cup\{\eta\}=\left\{X_{b}, \eta\right\}=\bar{T}(X, Y) \eta \cap \eta \bar{T}(X, Y)=(\eta)_{q}, \\
(\lambda, \eta)_{b} & =\{\lambda, \eta\} \bar{T}(X, Y)\{\lambda, \eta\} \cup\{\lambda, \eta\} \\
& =\lambda \bar{T}(X, Y) \lambda \cup \lambda \bar{T}(X, Y) \eta \cup \eta \bar{T}(X, Y) \lambda \cup \eta \bar{T}(X, Y) \eta \cup\{\lambda, \eta\} \\
& =\left\{X_{a}, X_{b}, \lambda, \eta\right\}, \\
(\lambda, \eta)_{q} & =\bar{T}(X, Y)\{\lambda, \eta\} \cap\{\lambda, \eta\} \bar{T}(X, Y) \\
& =(\bar{T}(X, Y) \lambda \cup \bar{T}(X, Y) \eta) \cap(\lambda \bar{T}(X, Y) \cup \eta \bar{T}(X, Y)) \\
& =\left\{\lambda, X_{a}, \eta, X_{b}\right\}
\end{aligned}
$$

Theorem 4.7. The semigroup $\bar{T}(X, Y)$ has the $\mathcal{B Q}$-property if and only if one of the following statements holds.
(i) $Y=X$.
(ii) $|Y|=1$.
(iii) $|X| \leq 3$.

Proof. Assume that (i), (ii) and (iii) are false. Then $X \subset Y \neq \varnothing,|Y|>1$ and $|X|>3$.

Case 1: $|Y|=2$. Let $Y=\{a, b\}$. Since $|X|>3,|X \backslash Y|>1$. Let $c \in X \backslash Y$.

Then $X \backslash\{a, b, c\} \neq \varnothing$. Define $\alpha, \beta, \gamma \in \bar{T}(X, Y)$ by

$$
\begin{gathered}
\alpha=\left[\begin{array}{cccc}
a & b & c & X \backslash\{a, b, c\} \\
b & b & a & c
\end{array}\right], \quad \beta=\left[\begin{array}{ll}
c & x \\
a & x
\end{array}\right]_{x \in X \backslash\{c\}}, \\
\gamma=\left[\begin{array}{lll}
a & b & X \backslash\{a, b\} \\
b & b & c
\end{array}\right] .
\end{gathered}
$$

Then

$$
a \alpha \beta=b=a \gamma \alpha, \quad b \alpha \beta=b=b \gamma \alpha, \quad c \alpha \beta=a=c \gamma \alpha
$$

and

$$
(X \backslash\{a, b, c\}) \alpha \beta=\{a\}=(X \backslash\{a, b, c\}) \gamma \alpha \neq(X \backslash\{a, b, c\}) \alpha
$$

so $\alpha \neq \alpha \beta=\gamma \alpha \in(\alpha)_{q}$ by Proposition 1.2(i). If $\alpha \beta \in(\alpha)_{b}$, then by Proposition 1.2 (ii), $\alpha \beta=\alpha \eta \alpha$ for some $\eta \in \bar{T}(X, Y)$. Hence we have

$$
a=c \alpha \beta=c \alpha \eta \alpha=(a \eta) \alpha .
$$

This implies that $a \eta=c$ which is contrary to $a \in Y$ and $c \in X \backslash Y$. Thus $(\alpha)_{b} \neq(\alpha)_{q}$, so by Proposition $1,9, \bar{T}(X, Y)$ does not have the $\mathcal{B} \mathcal{Q}$-property.

Case 2: $|Y|>2$. Let a, b, c be distinct elements of Y. Let $\alpha, \beta, \gamma \in \bar{T}(X, Y)$ be defined by

Then

$$
a \alpha \beta=a=a \gamma \alpha \neq a \alpha,(Y \backslash\{a\}) \alpha \beta=\{b\}=(Y \backslash\{a\}) \gamma \alpha
$$

and

$$
(X \backslash Y) \alpha \beta=\{c\}=(X \backslash Y) \gamma \alpha
$$

Thus $\alpha \neq \alpha \beta=\gamma \alpha \in(\alpha)_{q}$. If $\alpha \beta \in(\alpha)_{b}$, then $\alpha \beta=\alpha \eta \alpha$ for some $\eta \in \bar{T}(X, Y)$. Therefore we have that for every $x \in X \backslash Y$,

$$
c=x \alpha \beta=x \alpha \eta \alpha=(c \eta) \alpha
$$

which implies that $c \eta \in X \backslash Y$. It is a contradiction since $c \in Y$. Hence $(\alpha)_{b} \neq(\alpha)_{q}$, and so by Proposition 1.9, $\bar{T}(X, Y)$ does not have the $\mathcal{B Q}$-property.

If $Y=X$ or $|Y|=1$, then $\bar{T}(X, Y)$ is regular by Corollary 2.4 which implies by Proposition 1.5 that $\bar{T}(X, Y)$ has the $\mathcal{B Q}$-property. If $|X|=3$ and $|Y|=2$, then by Lemma 4.6 and Proposition 1.9, $\bar{T}(X, Y)$ has the $\mathcal{B} \mathcal{Q}$-property.

Hence the theorem is proved.
Two direct consequences of Propesition 1.5, Corollary 2.4, Theorem 4.7 and the proof of Lemma 4.6 are as follows:

Corollary 4.8. If $|X| \neq 3$, then the following statements are equivalent.
(i) $\bar{T}(X, Y)$ is a $\mathcal{B Q}$-semigroup.
(ii) $Y=X$ or $|Y|=1$.
(iii) $\bar{T}(X, Y)$ is a regular semigroup.

Corollary 4.9. The semigroup $\bar{T}(X, Y)$ is a nonregular $\mathcal{B Q}$-semigroup if and only if $|X|=3$ and $|Y|=2$. Hence for each set X with $|X|=3$, there are exactly 3 semigroups $\bar{T}(X, Y)$ which are nonregular $\mathcal{B Q}$-semigroups, and each of such $\bar{T}(X, Y)$ contains 12 elements.
Remark 4.10, (i) From Corollary 2.2 and Theorem 4.3, we have that for $|Y|>1$ and $Y \subsetneq X, T(X, Y)$ is a $\mathcal{B Q}$-semigroup but not a regular semigroup.
(ii) By Lemma 4.2, $T(X, Y)$ is a left ideal of $T(X)$. But for $\alpha \in T(X, Y)$ and $\beta \in \bar{T}(X, Y), X \alpha \beta \subseteq Y \beta \subseteq Y$, so $T(X, Y)$ is an ideal of $\bar{T}(X, Y)$. We have that $1_{X} \in \bar{T}(X, Y) \backslash T(X, Y)$ if $Y \neq X$. Hence if $Y \neq X$, then $\bar{T}(X, Y)$ is neither left nor right simple. Therefore we deduce from Corollary 4.9 that if $|X|=3$ and $|Y|=2$, then $\bar{T}(X, Y)$ is an example of $\mathcal{B Q}$-semigroup which is neither regular nor left [right] simple (see Proposition 1.5 and Proposition 1.6).

CHAPTER V

THE $\mathcal{B Q}$-PROPERTY OF SEMIGROUPS OF LINEAR TRANSFORMATIONS

In this chapter, the semigroups $L_{F}(V, W), \bar{L}_{F}(V, W)$ and $K_{F}(V, W)$ are studied. We have similarly to $T(X, Y)$ that $L_{F}(V, W)$ always has the $\mathcal{B Q}$-property. Moreover, $K_{F}(V, W)$ has also the $\mathcal{B Q}$-property. However, the characterization of $\bar{L}_{F}(V, W)$ to have the $\mathcal{B} \mathcal{Q}$-property also depends on the field F.

Throughout this chapter, let V be a vector space over a field F and W a subspace of V. Recall that

$$
\begin{aligned}
& L_{F}(V, W)=\left\{\alpha \in L_{F}(V) \mid \text { ran } \alpha \subseteq W\right\}, \\
& \bar{L}_{F}(V, W)=\left\{\alpha \in L_{F}(V) \mid W \alpha \subseteq W\right\}, \\
& K_{F}(V, W)=\left\{\alpha \in L_{F}(V) \mid W \subseteq \operatorname{ker} \alpha\right\} .
\end{aligned}
$$

By the same proof given for Lemma 4.2, we have

Lemma 5.1. The semigroup $L_{F}(V, W)$ is a left ideal of $L_{F}(V)$.
Lemma 5.2. The semigroup $K_{F}(V, W)$ is a rightideal of $L_{F}(V)$.
Proof. Since $W \subseteq \operatorname{ker} \alpha \subseteq \operatorname{ker} \alpha \beta$ for all $\alpha \in K_{F}(V, W)$ and $\beta \in L_{F}(V)$, it follows that $K_{F}^{0}(V, W) L_{F}(V) \subseteq K_{F}(V, W)$. Hence $K_{F}(V, W)$ is a right ideal of $L_{F}(V)$.

Hence Lemma 4.1, Lemma 5.1 and Lemma 5.2 yield the following results.
Theorem 5.3. The semigroup $L_{F}(V, W)$ always has the $\mathcal{B Q}$-property.

Theorem 5.4. The semigroup $K_{F}(V, W)$ always has the $\mathcal{B Q}$-property.

Let $n \in \mathbb{N},\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard basis of F^{n} over F, U_{1} and U_{2} subspaces of F^{n} spanned by $\left\{e_{1}, \ldots, e_{k}\right\}$ and $\left\{e_{k+1}, \ldots, e_{n}\right\}$, respectively. By Lemma 3.8 and Lemma 3.9, we have

$$
C_{n}(F, k) \cong L_{F}\left(F^{n}, U_{1}\right) \text { and } R_{n}(F, k) \cong K_{F}\left(F^{n}, U_{2}\right)
$$

where for $k \in \mathbb{N}$ and $k \leq n$,

$$
\begin{aligned}
& C_{n}(F, k)=\left\{A \in M_{n}(F) \mid A_{i j}=0 \text { for all } i, j \in\{1, \ldots, n\} \text { and } j>k\right\}, \\
& R_{n}(F, k)=\left\{A \in M_{n}(F) \mid A_{i j}=0 \text { for all } i, j \in\{1, \ldots, n\} \text { and } i>k\right\} .
\end{aligned}
$$

From these facts, Theorem 5.3 and Theorem 5.4, we obtain the following corollary.
Corollary 5.5. For $n, k \in \mathbb{N}$ with $k \leq n$, the semigroups $C_{n}(F, k)$ and $R_{n}(F, k)$ have the $\mathcal{B Q}$-property.

To prove the main theorem, the following lemma is also needed. Lemma 4.5 and Theorem 3.3 are used in the course of its proof.

Lemma 5.6. If $F=\mathbb{Z}_{2}, \operatorname{dim}_{F} V=2$ and $\operatorname{dim}_{F} W=1$, then for all $\alpha, \beta \in$ $\bar{L}_{F}(V, W),(\alpha, \beta)_{b}=(\alpha, \beta)_{q}$ in $\overline{L_{F}}(V, W)$.

Proof. Let $\{w\}$ be a basis of W and $\{w, u\}$ a basis of V. Since $F=\mathbb{Z}_{2}$, it follows that $W=\{0, w\}$ and $V=\{0, w, u, u+w\}$. Clearly, both $\{u, u+w\}$ and $\{w, u+w\}$ are also bases of V. Thus $\langle w\rangle \cap\langle u\rangle=\langle w\rangle \cap\langle u+w\rangle=\langle u\rangle \cap\langle u+w\rangle=\{0\}$. All the elements of $\bar{L}_{F}(V, W)$ defined on the basis $\{w, u\}$ of V can be given as follows:

By Theorem 3.3,

$$
\bar{L}_{F}(V, W) \backslash \operatorname{Reg}\left(\bar{L}_{F}(V, W)\right)=\left\{\left[\begin{array}{cc}
w & u \\
0 & w
\end{array}\right]\right\} .
$$

Let $\lambda=\left[\begin{array}{cc}w & u \\ 0 & w\end{array}\right]$. Note that $\lambda^{2}=0$. To prove the lemma, by Lemma 4.5, it suffices to show that $(\lambda)_{b}=(\lambda)_{q}$. By direct multiplication, we have

$$
\bar{L}_{F}(V, W) \lambda=\{0, \lambda\}, \lambda \bar{L}_{F}(V, W)=\{0, \lambda\}, \lambda \bar{L}_{F}(V, W) \lambda=\{0\} .
$$

Consequently,

$$
(\lambda)_{b}=\lambda \bar{L}_{F}(V, W) \lambda \cup\{\lambda\}=\{0, \lambda\}=\bar{L}_{F}(V, W) \lambda \cap \lambda \bar{L}_{F}(V, W)=(\lambda)_{q} .
$$

Theorem 5.7. The semigroup $\bar{L}_{F}(V, W)$ has the $\mathcal{B Q}$-property if and only if one of the following statements holds.
(i) $W=V$.
(ii) $W=\{0\}$.
(iii) $F=\mathbb{Z}_{2}, \operatorname{dim}_{F} V=2$ and $\operatorname{dim}_{F} W=1$.

Proof. Assume that (i), (ii) and (iii) are false. Then (1) $\{0\} \neq W \subsetneq V$ and (2) $F \neq \mathbb{Z}_{2}, \operatorname{dim}_{F} V>2$ or $\operatorname{dim}_{F} W>1$. Let B_{1} be a basis of W and B a basis of V containing B_{1}. Then $B_{1} \neq \varnothing$ and $B \backslash B_{1} \neq \varnothing$.

Case 1: $F \neq \mathbb{Z}_{2}$. Let $a \in F \backslash\{0,1\}, w \in \mathrm{~B}_{1}$ and $u \in \mathrm{~B} \backslash \mathrm{~B}_{1}$. Define $\alpha, \beta, \gamma \in$ $\bar{L}_{F}(V, W)$ by

$$
\alpha=\left[\begin{array}{cc}
u & \mathrm{~B} \backslash\{u\} \\
w & 0
\end{array}\right], \beta=\left[\begin{array}{cc}
w & \mathrm{~B} \\
\text { aw } \\
\mathrm{a} & \{w\} \\
0
\end{array}\right]\left[\begin{array}{c}
\mathrm{d} \\
\hline
\end{array}\right]=\left[\begin{array}{cc}
u & \mathrm{~B} \backslash\{u\} \\
a w & 0
\end{array}\right] .
$$

Since $a \neq 1$, we have $\alpha \beta \neq \alpha$. By Proposition 1.2(i), $\alpha \beta \in(\alpha)_{q}$. Suppose that $\alpha \beta \in(\alpha)_{b}$. By Proposition 1.2(ii), $\alpha \beta=\alpha \eta \alpha$ for some $\eta \in \bar{L}_{F}(V, W)$. Then

$$
a w=u \alpha \beta=u \alpha \eta \alpha=(w \eta) \alpha .
$$

But

$$
w \eta \in W \text { and } W \alpha=\left\langle\mathrm{B}_{1}\right\rangle \alpha \subseteq\langle\mathrm{B} \backslash\{u\}\rangle \alpha=\{0\},
$$

so $a w=0$ which is contrary to $a \neq 0$. Thus $(\alpha)_{q} \neq(\alpha)_{b}$, so $\bar{L}_{F}(V, W)$ does not have the $\mathcal{B Q}$-property by Proposition 1.9.

Case 2: $\operatorname{dim}_{F} W>1$. Then $\left|\mathbf{B}_{1}\right|>1$. Let $w_{1}, w_{2} \in \mathbf{B}_{1}$ be such that $w_{1} \neq w_{2}$ and $u \in \mathrm{~B} \backslash \mathrm{~B}_{1}$. Define $\alpha, \beta, \gamma \in \bar{L}_{F}(V, W)$ by

$$
\alpha=\left[\begin{array}{ccc}
w_{1} & u & \mathrm{~B} \backslash\left\{w_{1}, u\right\} \\
w_{2} & w_{1} & 0
\end{array}\right], \beta=\left[\begin{array}{cc}
w_{1} & \mathrm{~B} \backslash\left\{w_{1}\right\} \\
w_{1} & 0
\end{array}\right], \gamma=\left[\begin{array}{cc}
u & \mathrm{~B} \backslash\{u\} \\
u & 0
\end{array}\right] .
$$

Then we have

$$
\alpha \beta=\left[\begin{array}{cc}
u & \text { B } \backslash\{u\} \\
w_{1} & 0
\end{array}\right]=\gamma \alpha \neq \alpha
$$

so $\alpha \beta \in(\alpha)_{q}$. If $\alpha \beta \in(\alpha)_{b}$, then $\alpha \beta=\alpha \eta \alpha$ for some $\eta \in \bar{L}_{F}(V, W)$. Thus

$$
w_{1}=u \alpha \beta=u \alpha \eta \alpha=\left(w_{1} \eta\right) \alpha .
$$

Since $w_{1} \eta \in W=\left\langle\mathrm{B}_{1}\right\rangle$, we have

$$
w_{1} \eta=a w_{1}+v \text { for some } a \in F \text { and } v \in\left\langle\mathrm{~B}_{1} \backslash\left\{w_{1}\right\}\right\rangle .
$$

But $\mathrm{B}_{1} \backslash\left\{w_{1}\right\} \subseteq \mathrm{B} \backslash\left\{w_{1}, u\right\}$, so $v \alpha=0$. Consequently, $w_{1}=\left(a w_{1}+v\right) \alpha=a w_{2}$ which is contrary to the independence of w_{1} and w_{2}. By Proposition 1.9, $\bar{L}_{F}(V, W)$ does not have the $\mathcal{B Q}$-property.
Case $3: \operatorname{dim}_{F} V>2$ and $\operatorname{dim}_{F} W=1$. Then $\left|\mathrm{B}_{1}\right|=1$ and $\left|\mathrm{B} \backslash \mathrm{B}_{1}\right|>1$. Let $\mathrm{B}_{1}=\{w\}$ and $u_{1}, u_{2} \in \mathrm{~B} \backslash \mathrm{~B}_{1}$ be such that $u_{1} \neq u_{2}$. Let $\alpha, \beta, \gamma \in \bar{L}_{F}(V, W)$ be

$$
\alpha=\left[\begin{array}{ccc}
u_{1} & u_{2} & \mathrm{~B} \backslash\left\{u_{1}, u_{2}\right\} \\
w & u_{1} & 0
\end{array}\right], \beta=\left[\begin{array}{cc}
w & \mathrm{~B} \backslash\{w\} \\
w & 0
\end{array}\right], \gamma=\left[\begin{array}{cc}
u_{1} & \mathrm{~B} \backslash\left\{u_{1}\right\} \\
u_{1} & 0
\end{array}\right] .
$$

Then we have

$$
\alpha \beta=\left[\begin{array}{cc}
u_{1} & \mathrm{~B} \backslash\left\{u_{1}\right\} \\
w & 0
\end{array}\right]=\gamma \alpha \neq \alpha,
$$

so $\alpha \beta \in(\alpha)_{q}$. Suppose that $\alpha \beta \in(\alpha)_{b}$. It follows that $\alpha \beta=\alpha \eta \alpha$ for some $\eta \in \bar{L}_{F}(V, W)$. Thus

$$
w=u_{1} \alpha \beta=u_{1} \alpha \eta \alpha=(w \eta) \alpha .
$$

But

$$
w \eta \in W=\langle w\rangle \text { and } w \alpha=0,
$$

so $w=(w \eta) \alpha=0$, a contradiction. Hence $(\alpha)_{q} \neq(\alpha)_{b}$, so $\bar{L}_{F}(V, W)$ does not have the $\mathcal{B Q}$-property, as before.

For the converse, if (i) or (ii) holds, then $\bar{L}_{F}(V, W)=L_{F}(V)$ which has the $\mathcal{B} \mathcal{Q}$-property by Proposition 1.5. If (iii) holds, then $\bar{L}_{F}(V, W)$ has the $\mathcal{B Q}$-property by Proposition 1.9 and Lemma 5.6.

The following corollaries follow directly from Proposition 1.5, Corollary 3.4, Theorem 5.7 and the proof of Lemma 5.6.

Corollary 5.8. If $F \neq \mathbb{Z}_{2}, \operatorname{dim}_{F} V \neq 2$ or $\operatorname{dim}_{F} W \neq 1$, then the following statements are equivalent.
(i) $\bar{L}_{F}(V, W)$ is a $\mathcal{B Q}$-semigroup
(ii) $W=V$ or $W=\{0\}$.
(iii) $\bar{L}_{F}(V, W)$ is a regular semigroup.

Corollary 5.9. The semigroup $\bar{L}_{F}(V, W)$ is a nonregular $\mathcal{B Q}$-semigroup if and only if $F=\mathbb{Z}_{2}, \operatorname{dim}_{F} V=2$ and $\operatorname{dim}_{F} W=1$. Hence if $F=\mathbb{Z}_{2}$ and $\operatorname{dim}_{F} V=2$, there are exactly 3 semigroups $\bar{L}_{F}(W, W)$? which are nonregular $\mathcal{B Q}$-semigroups, and each of such $\bar{L}_{F}(V, W)$ contains 8 elements.

Remark 5.10. (i) By Corollary 3.2, Corollary 3.6, Theorem 5.3 and Theorem 5.4, we have that if $\{0\} \neq W \subsetneq V$, then $L_{F}(V, W)$ and $K_{F}(V, W)$ are $\mathcal{B} \mathcal{Q}$-semigroups which are not regular.
(ii) By Corollary 3.13, Corollary 3.17 and Corollary 5.5, we have that if $k<n$, then $C_{n}(F, k)$ and $R_{n}(F, k)$ are $\mathcal{B Q}$-semigroups which are not regular.
(iii) We also have that $L_{F}(V, W)$ is an ideal of $\bar{L}_{F}(V, W)$ (see Remark 4.10). Consequently, if $\{0\} \neq W \subsetneq V$, then $\bar{L}_{F}(V, W)$ is neither left nor right 0 -simple. Hence if $F=\mathbb{Z}_{2}, \operatorname{dim}_{F} V=2$ and $\operatorname{dim}_{F} W=1$, then $\bar{L}_{F}(V, W)$ is a $\mathcal{B Q}$-semigroup which is neither regular nor left [right] 0 -simple.

CHAPTER VI

THE $\mathcal{B Q}$-PROPERTY OF RINGS OF LINEAR TRANSFORMATIONS

We consider the rings $\left(L_{F}(V, W),+, \circ\right),\left(\bar{L}_{F}(V, W),+, \circ\right)$ and $\left(K_{F}(V, W),+, \circ\right)$ in this chapter. We characterize when they have the $\mathcal{B Q}$-property.

It is shown that for a ring $(R,+, \cdot)$, if (R, \cdot) is a $\mathcal{B Q}$-semigroup, then $(R,+, \cdot)$ is a $\mathcal{B Q}$-ring. However, the converse is not true in general. It is shown by the ring $\left(\bar{L}_{F}(V, W),+, \circ\right)$ for some V, W and F.

Throughout this chapter, V is a vector space over a field F and W is a subspace of V.

Since for nonempty subsets A, B of a ring $(R,+, \cdot)$, we have that
in the semigroup $(R),, A B=\{a b \mid a \in A$ and $b \in B\}$,
in the ring $(R,+, \cdot), A B=\left\{\sum_{i=1}^{k} a_{i} b_{i} \mid a_{i} \in A, b_{i} \in B\right.$ and $\left.k \in \mathbb{N}\right\}$,
the following lemma is immediately obtained.
Lemma 6.1. Let $(R, 4, \cdot)$ beca ring and $A \subseteq R$. Then: \sim
(i) If A is a bi-ideal [quasi-ideal] of the ring $(R,+, \cdot)$, then A is a bi-ideal [quasiideat of the semigroup $(R,-) \cdot 69190 \cap \cap 9 ? \cap)$
(ii) If A is a bi-ideal [quasi-ideal] of the semigroup (R, \cdot) and A is a subring of the $\operatorname{ring}(R,+, \cdot)$, then A is a bi-ideal [quasi-ideal] of the ring $(R,+, \cdot)$.

Note that this fact is also true for left ideals, right ideals and ideals.
The following result is obtained directly from Lemma 6.1.

Lemma 6.2. Let $(R,+, \cdot)$ be a ring. If (R, \cdot) is a $\mathcal{B Q}$-semigroup, then $(R,+, \cdot)$ is a $\mathcal{B Q} \mathcal{Q}$-ring.

Theorem 6.3. The ring $\left(L_{F}(V, W),+, \circ\right)$ always has the $\mathcal{B Q}$-property.

Proof. This follows directly from Theorem 5.3 and Lemma 6.2.
Theorem 6.4. The ring $\left(K_{F}(V, W),+, \circ\right)$ always has the $\mathcal{B} \mathcal{Q}$-property.

Proof. It follows from Theorem 5.4 and Lemma 6.2.
From Theorem 5.7, we have that the semigroup $\left(\bar{L}_{F}(V, W), \circ\right.$) has the $\mathcal{B Q}$ property if and only if (i) $W=V$, (ii) $W=\{0\}$ or (iii) $F=\mathbb{Z}_{2}, \operatorname{dim}_{F} W=$ 1 and $\operatorname{dim}_{F} V=2$. By Lemma 6.2, if one of (i), (ii) and (iii) hold, then the ring $\left(\bar{L}_{F}(V, W),+, \circ\right)$ has the $\mathcal{B Q}$-property. Our main result of this chapter is to show that the ring $\left(\bar{L}_{F}(V, W),+, \circ\right)$ has the $\mathcal{B Q}$-property if and only if one of the following statements holds.
(i) $W=V$.
(ii) $W=\{0\}$.
(iii) $F=\mathbb{Z}_{p}$ for some prime p and $\operatorname{dim}_{F} W=1$.
(iv) $F=\mathbb{Z}_{p}$ for some prime p and $\operatorname{dim}_{F}(V / W)=1$.

Hence we deduce that the converse of Lemma 6.2 need not be generally true.

Lemma 6.5. If B is a bi-ideal of a semigroup [ring] A, then $(B A \cap A B) \cap \operatorname{Reg}$

Proof. Let $x \in(B A \cap A B) \cap \operatorname{Reg}(A)$. Then $x=x y x$ for some $y \in A$. This implies

$$
x=x y x \in B A y A B \subseteq B A B \subseteq B .
$$

Lemma 6.6. If $\{0\} \neq W \subsetneq V$ and the ring $\left(\bar{L}_{F}(V, W),+, \circ\right)$ has the $\mathcal{B Q}$-property, then $F=\mathbb{Z}_{p}$ for some prime p.

Proof. Let B_{1} be a basis of W and B a basis of V containing B_{1}. By assumption, $\mathrm{B}_{1} \neq \varnothing$ and $\mathrm{B} \backslash \mathrm{B}_{1} \neq \varnothing$. Let $w \in \mathrm{~B}_{1}$ and $u \in \mathrm{~B} \backslash \mathrm{~B}_{1}$.

Assume that $F \neq \mathbb{Z}_{p}$ for any prime p. This implies that $\mathbb{Z} 1_{F} \subsetneq F$. Let $a \in F \backslash \mathbb{Z} 1_{F}$. Define $\alpha, \beta, \gamma \in L_{F}(V, W)$ by

$$
\alpha=\left[\begin{array}{cc}
u & \mathrm{~B} \backslash\{u\} \\
w & 0
\end{array}\right], \beta=\left[\begin{array}{cc}
w & \mathrm{~B} \backslash\{w\} \\
a w & 0
\end{array}\right], \gamma=\left[\begin{array}{cc}
u & \mathrm{~B} \backslash\{u\} \\
a u & 0
\end{array}\right] .
$$

Then

$$
\alpha \beta=\left[\begin{array}{cc}
u & \mathrm{~B} \backslash\{u\} \\
a w & 0
\end{array}\right]=\gamma \alpha \in \alpha \bar{L}_{F}(V, W) \cap \bar{L}_{F}(V, W) \alpha \subseteq(\alpha)_{q} .
$$

Suppose that $\alpha \beta \in(\alpha)_{b}$. Since $(\alpha)_{b}=\mathbb{Z} \alpha+\alpha \bar{L}_{F}(V, W) \alpha$, we have $\alpha \beta=n \alpha+\alpha \lambda \alpha$ for some $n \in \mathbb{Z}$ and $\lambda \in \bar{L}_{F}(V, W)$. Consequently,

$$
\begin{aligned}
a w=u(\alpha \beta) & =u(n \alpha+\alpha \lambda \alpha) \\
& =n w+(w \lambda) \alpha \\
& =n w+\theta \text { since } w \lambda \in W \text { and } W \alpha=\{0\} \\
& =n w .
\end{aligned}
$$

But $w \neq 0$, so $a=n 1_{F} \in \mathbb{Z} 1_{F}$ which is a contradiction. Hence $\alpha \beta \notin(\alpha)_{b}$. This proves that $\left(\bar{L}_{F}(V, W),+, \circ\right)$ does not have the $\mathcal{B} \mathcal{Q}$-property.

Therefore the lemma is proved.
Lemma 6.7. Assume that $\operatorname{dim}_{F} W=1$ and $W=\langle w\rangle$ and $\alpha \in K_{F}(V, W) \backslash$ $\operatorname{Reg}\left(\bar{L}_{F}(V, W)\right)$. Then the following statements hold.
(i) $w \in \operatorname{ker} \alpha \cap \operatorname{ran} \alpha$
(ii) Let B_{1} be a basis of ker α containing $w, \mathrm{~B}_{2}$ a basis of ran α containing w and for each $v \in \mathrm{~B}_{2}$, let $v^{\prime} \in v \alpha^{-1}$. If $\alpha_{1}, \alpha_{2} \in L_{F}(V)$ are defined on the basis $\mathrm{B}_{1} \cup\left\{v^{\prime} \mid v \in \mathrm{~B}_{2}\right\}$ of V by

$$
\alpha_{1}=\left[\begin{array}{ccc}
\mathrm{B}_{1} & w^{\prime} & v^{\prime} \\
0 & w & 0
\end{array}\right]_{v \in \mathrm{~B}_{2} \backslash\{w\}} \quad \text { and } \quad \alpha_{2}=\left[\begin{array}{ccc}
\mathrm{B}_{1} & w^{\prime} & v^{\prime} \\
0 & 0 & v
\end{array}\right]_{v \in \mathrm{~B}_{2} \backslash\{w\}}
$$

then

$$
\begin{gather*}
\alpha=\left[\begin{array}{ccc}
\mathrm{B}_{1} & w^{\prime} & v^{\prime} \\
0 & w & v
\end{array}\right]_{v \in \mathrm{~B}_{2} \backslash\{w\}}=\alpha_{1}+\alpha_{2}, \tag{1}\\
\alpha_{1} \in L_{F}(V, W) \cap K_{F}(V, W) \text { and } \alpha_{2} \in K_{F}(V, W) \cap\left(\alpha \bar{L}_{F}(V, W) \alpha\right) . \tag{2}
\end{gather*}
$$

Proof. First, we note that $W=F w$.
(i) Since $\alpha \in K_{F}(V, W), w \in \operatorname{ker} \alpha$. Since $\alpha \notin \operatorname{Reg}\left(\bar{L}_{F}(V, W)\right)$, by Theorem 3.3, $\operatorname{ran} \alpha \cap W \neq W \alpha=\{0\}$. But ran $\alpha \cap W$ is a subspace of W and $\operatorname{dim}_{F} W=1$, so $\operatorname{ran} \alpha \cap W=W=F w$. Thus $w \in \operatorname{ran} \alpha$.
(ii) Clearly, (1) holds, $\alpha_{1} \in L_{F}(V, W) \cap K_{F}(V, W)$ and $\alpha_{2} \in K_{F}(V, W)$. To prove (2), it remains to show that $\overline{\alpha_{2}} \in \alpha \bar{L}_{F}(V, W) \alpha$. Let B_{3} be a basis of V containing B_{2}. Define $\beta \in \bar{L}_{F}(V, W)$ by

$$
\beta=\left[\begin{array}{ccc}
w & v>\mathrm{B}_{3} \backslash \mathrm{~B}_{2} \\
0 & v^{\prime} & 0
\end{array}\right]_{v \in \mathrm{~B}_{2} \backslash\{w\}} .
$$

Then

$$
\begin{aligned}
& \qquad \mathrm{B}_{1} \alpha \beta \alpha=\{0\}=\mathrm{B}_{1} \alpha_{2}, w^{\prime} \alpha \beta \alpha=w \beta \alpha=\{0\}=w^{\prime} \alpha_{2}, \\
& \text { for every } v \in \mathrm{~B}_{2} \backslash\{w\}, v^{\prime} \alpha \beta \alpha=v \beta \alpha=v^{\prime} \alpha=v=v^{\prime} \alpha_{2}, \\
& \text { so we deduce that } \alpha_{2}=\alpha \beta \alpha \in \alpha \bar{L}_{F}(V, W) \alpha .
\end{aligned}
$$

Lemma 6.8. Assume that $F=\mathbb{Z}_{R}$ and $\operatorname{dim}_{F} W=1$. If B is a bi-ideal of $\left(\bar{L}_{F}(V, W),+, \circ\right)$ and $B \subseteq K_{F}(V, W)$, then

Proof. Let $w \in W \backslash\{0\}$. Then $W=\mathbb{Z}_{p} w$. Since $W \alpha \beta \subseteq W \beta=\{0\}$ for all $\alpha \in \bar{L}_{F}(V, W)$ and $\beta \in K_{F}(V, W)$, we have that $K_{F}(V, W)$ is a left ideal of $\left(\bar{L}_{F}(V, W),+, \circ\right)$. Hence by Lemma 5.2, $K_{F}(V, W)$ is an ideal of $\left(\bar{L}_{F}(V, W),+, \circ\right)$. Since $B K_{F}(V, W) \subseteq B+B K_{F}(V, W)$, it remains to show that $B\left(L_{F}(V, W) \backslash\right.$
$\left.K_{F}(V, W)\right) \subseteq B+B K_{F}(V, W)$. Let $\alpha \in B$ and $\beta \in L_{F}(V, W) \backslash K_{F}(V, W)$. Then $w \beta \in W \backslash\{0\}$, so $w \beta=k w$ for some $k \in \mathbb{Z}_{p} \backslash\{0\}$.

Case 1: $\alpha \in \operatorname{Reg}\left(\bar{L}_{F}(V, W)\right)$. Then $\alpha \in \alpha \bar{L}_{F}(V, W) \alpha$ and thus

$$
\begin{aligned}
\alpha \beta & \in B \bar{L}_{F}(V, W) B\left(L_{F}(V, W) \backslash K_{F}(V, W)\right) \\
& \subseteq B \bar{L}_{F}(V, W) K_{F}(V, W)\left(L_{F}(V, W) \backslash K_{F}(V, W)\right) \quad \text { since } B \subseteq K_{F}(V, W) \\
& \subseteq B K_{F}(V, W) \quad \text { since } K_{F}(V, W) \text { is an ideal of } \bar{L}_{F}(V, W) \\
& \subseteq B+B K_{F}(V, W) .
\end{aligned}
$$

Case 2 : $\alpha \notin \operatorname{Reg}\left(\bar{L}_{F}(V, W)\right)$. Since $\alpha \in B \subseteq K_{F}(V, W)$, we have $\alpha \in$ $K_{F}(V, W) \backslash \operatorname{Reg}\left(\bar{L}_{F}(V, W)\right)$. Define $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \alpha_{1}, \alpha_{2}$ and β as in the assumption and the proof of Lemma 6.7(ii). Then

$$
\alpha=\alpha_{1}+\alpha_{2}, \quad \alpha_{1} \in L_{F}(V, W) \cap K_{F}(V, W)
$$

and

$$
\alpha_{2} \in K_{F}(V, W) \cap\left(\alpha \bar{L}_{F}(V, W) \alpha\right) .
$$

Then we deduce that $\alpha_{2} \in B \bar{L}_{F}(V, W) B \subseteq B$, so $\alpha_{1}=\alpha-\alpha_{2} \in B$. Thus $k \alpha_{1} \in B$. Let $\beta^{\prime} \in L_{F}(V)$ be defined by

Then $\beta^{\prime} \in K_{F}\left(V, W^{\prime}\right)$. But since

$$
\beta^{\prime}=\left[\begin{array}{cc}
w & v \\
0 & v \beta
\end{array}\right]
$$

$$
w^{\prime}\left(k \alpha_{1}+\alpha_{2} \beta^{\prime}\right)=k w=w \beta=w^{\prime} \alpha \beta
$$

and for all $v \in \mathrm{~B}_{2} \backslash\{w\}, v^{\prime}\left(k \alpha_{1}+\alpha_{2} \beta^{\prime}\right)=v^{\prime} \alpha_{2} \beta^{\prime}=v \beta^{\prime}=v \beta=v^{\prime} \alpha \beta$,
it follows that $\alpha \beta=k \alpha_{1}+\alpha_{2} \beta^{\prime} \in B+B K_{F}(V, W)$.
Therefore the lemma is proved.

Lemma 6.9. If $F=\mathbb{Z}_{p}$ and $\operatorname{dim}_{F} W=1$, then the ring $\left(\bar{L}_{F}(V, W),+, \circ\right)$ has the $\mathcal{B Q}$-property.

Proof. Let $w \in W \backslash\{0\}$. Then $W=\mathbb{Z}_{p} w$. Let B be a bi-ideal of $\left(\bar{L}_{F}(V, W),+, \circ\right)$. Then $B \bar{L}_{F}(V, W) B \subseteq B$. To show that B is a quasi-ideal of $\left(\bar{L}_{F}(V, W),+, \circ\right)$, let $\alpha \in B \bar{L}_{F}(V, W) \cap \bar{L}_{F}(V, W) B$. If $\alpha \in \operatorname{Reg}\left(\bar{L}_{F}(V, W)\right)$, then by Lemma 6.5, $\alpha \in B$.

Next, assume that $\alpha \notin \operatorname{Reg}\left(\bar{L}_{F}(V, W)\right)$. Then $\operatorname{ran} \alpha \cap W \neq W \alpha$. Since $W \alpha \subseteq W$ and $\operatorname{dim}_{F} W=1$, it follows that $W \alpha=W$ or $W \alpha=\{0\}$. If $W \alpha=W$, then

$$
W \alpha=W \alpha \cap W \subseteq \operatorname{ran} \alpha \cap W=\operatorname{ran} \alpha \cap W \alpha=W \alpha,
$$

so we have ran $\alpha \cap W=W \alpha$, a contradiction. Thus $W \alpha=\{0\}$. Hence $\alpha \in$ $K_{F}(V, W) \backslash \operatorname{Reg}\left(\bar{L}_{F}(V, W)\right)$. Let $\mathrm{B}_{1}, \mathrm{~B}_{2}, \alpha_{1}$ and α_{2} be as in the assumption of Lemma 6.7(ii). Then by Lemma 6.7(ii),

$$
\alpha=\alpha_{1}+\alpha_{2}, \quad \alpha_{1} \in L_{F}(V, W) \cap K_{F}(V, W)
$$

and

$$
\alpha_{2} \in K_{F}(V, W) \cap\left(\alpha \bar{L}_{F}(V, W) \alpha\right)
$$

Since $\alpha \in B \bar{L}_{F}(V, W) \cap \bar{L}_{F}(V, W) B$ and $1_{V} \in \bar{L}_{F}(V, W)$, it follows that

$$
\begin{align*}
\alpha_{2} \in \alpha \bar{L}_{F}(V, W) \alpha & \subseteq B \bar{L}_{F}(V, W) \bar{L}_{F}(V, W) \bar{L}_{F}(V, W) B \\
& \text { ब } \tag{1}\\
& \overparen{B} \subseteq B \bar{L}_{F}(V, W) \cap \bar{L}_{F}(V, W) B .
\end{align*}
$$

Hence we have $\alpha_{1}=\alpha-\alpha_{2} \in B \bar{L}_{F}(V, W) \cap \bar{L}_{F}(V, W) B$. We claim that $\alpha_{1} \in B$.
Case 1 : There is $a \beta \in B$ such β that $w \beta \neq 0$. Since $W \beta \subseteq W \mathcal{Z} \mathbb{Z}_{p} w$, we have $w \beta=k w$ for some $k \in \mathbb{Z}_{p} \backslash\{0\}$. We have that

$$
\alpha_{1}=\left[\begin{array}{ccc}
\mathrm{B}_{1} & w^{\prime} & v^{\prime} \\
0 & w & 0
\end{array}\right]_{v \in \mathrm{~B}_{2} \backslash\{w\}}
$$

Then

$$
\alpha_{1} \beta=\left[\begin{array}{ccc}
\mathrm{B}_{1} & w^{\prime} & v^{\prime} \\
0 & k w & 0
\end{array}\right]_{v \in \mathrm{~B}_{2} \backslash\{w\}} .
$$

But $\alpha_{1} \in B \bar{L}_{F}(V, W)$, thus $\alpha_{1} \beta \in B \bar{L}_{F}(V, W) B \subseteq B$. Since $k \mathbb{Z}_{p}=\mathbb{Z}_{p}$, it follows that

$$
\alpha_{1} \in \mathbb{Z}_{p}\left[\begin{array}{ccc}
\mathrm{B}_{1} & w^{\prime} & v^{\prime} \\
0 & k w & 0
\end{array}\right]_{v \in \mathrm{~B}_{2} \backslash\{w\}} \subseteq B .
$$

Case 2: $w \beta=0$ for all $\beta \in B$. Then $B \subseteq K_{F}(V, W)$ and hence B is a biideal of the ring $\left(K_{F}(V, W),+, \circ\right)$. By Theorem $6.4,\left(K_{F}(V, W),+, \circ\right)$ is a $\mathcal{B Q}$ ring. It follows that B is a quasi-ideal of the ring $\left(K_{F}(V, W),+, \circ\right)$ and thus $B K_{F}(V, W) \cap K_{F}(V, W) B \subseteq B$. Since $L_{F}(V)$ is regular, $\alpha_{1} \in \alpha_{1} L_{F}(V) \alpha_{1}$. But $\alpha_{1} \in L_{F}(V, W) \cap K_{F}(V, W)$ and $L_{F}(V, W)$ and $K_{F}(V, W)$ are a left ideal and a right ideal of $L_{F}(V)$, respectively and $\alpha_{1} \in B \bar{L}_{F}(V, W) \cap \bar{L}_{F}(V, W) B$, so we have

$$
\begin{align*}
& \alpha_{1} \in \alpha_{1} L_{F}(V) \alpha_{1} \in B \bar{L}_{F}(V, W) L_{F}(V) L_{F}(V, W) \subseteq B L_{F}(V, W), \tag{2}\\
& \alpha_{1} \in \alpha_{1} L_{F}(V) \alpha_{1} \in K_{F}(V, W) L_{F}(V) \bar{L}_{F}(V, W) B \subseteq K_{F}(V, W) B . \tag{3}
\end{align*}
$$

Since $B \subseteq K_{F}(V, W)$, by Lemma 6.8, $B L_{F}(V, W) \subseteq B+B K_{F}(V, W)$. From (2), we have $\alpha_{1}=\gamma+\lambda$ for some $\gamma \in B$ and $\lambda \in B K_{F}(V, W)$. Thus

$$
\lambda=\alpha_{1}-\gamma
$$

Therefore we have $\lambda \in 9 B K_{F}(V, W) \cap \bar{L}_{F}(V, W) B$. Since $L_{F}(V)$ is regular, $\lambda \in$ $\lambda L_{F}(V) \lambda$. Thus

$$
\begin{aligned}
\lambda & \in \lambda L_{F}(V) \lambda \\
& \subseteq B K_{F}(V, W) L_{F}(V) \bar{L}_{F}(V, W) B \\
& \subseteq K_{F}(V, W) B \quad \text { since } K_{F}(V, W) \text { is a right ideal of }\left(L_{F}(V),+, \circ\right) .
\end{aligned}
$$

Consequently, $\lambda \in B K_{F}(V, W) \cap K_{F}(V, W) B \subseteq B$ since $K_{F}(V, W) \subseteq \bar{L}_{F}(V, W)$.
Thus $\alpha_{1}=\gamma+\lambda \in B+B \subseteq B$.
Hence $\alpha=\alpha_{1}+\alpha_{2} \in B+B \subseteq B$ by (1). This shows that $B \bar{L}_{F}(V, W) \cap$ $\bar{L}_{F}(V, W) B \subseteq B$, as required.

Therefore the proof is completed.

Lemma 6.10. Assume that $V=W+\langle u\rangle$ where $u \in V \backslash W$ and $\alpha \in \bar{L}_{F}(V, W) \backslash$ Reg $\left(\bar{L}_{F}(V, W)\right)$. Then the following statements hold.
(i) $u \alpha \in W \backslash W \alpha$.
(ii) $\operatorname{ker} \alpha \subseteq W$.
(iii) Let B_{1} be a basis of ker α, B_{2} a basis of $W \alpha$ and for each $w \in \mathrm{~B}_{2}$, let $w^{\prime} \in w \alpha^{-1} \cap W$, then $\mathrm{B}_{1} \cup\left\{w^{\prime} \mid w \in \mathrm{~B}_{2}\right\}$ is a basis of $W, \mathrm{~B}_{2} \cup\{u \alpha\}$ is a basis of ran α and $\mathrm{B}_{1} \cup\{u\} \cup\left\{w^{\prime} \mid w \in \mathrm{~B}_{2}\right\}$ is a basis of V.
(iv) If $\alpha_{1}, \alpha_{2} \in L_{F}(V)$ are defined on the basis $\mathrm{B}_{1} \cup\{u\} \cup\left\{w^{\prime} \mid w \in \mathrm{~B}_{2}\right\}$ of V by

$$
\alpha_{1}=\left[\begin{array}{ccc}
\mathrm{B}_{1} & u & w^{\prime} \\
0 & 0 & w
\end{array}\right]_{w \in \mathrm{~B}_{2}} \text { and } \alpha_{2}=\left[\begin{array}{ccc}
\mathrm{B}_{1} & u & w^{\prime} \\
0 & u \alpha & 0
\end{array}\right]_{w \in \mathrm{~B}_{2}},
$$

then

$\alpha_{1} \in \alpha \bar{L}_{F}(V, W) \alpha$ and $\alpha_{2} \in L_{F}(V, W) \cap K_{F}(V, W)$.
Proof. First, we note that by assumption, $V=W \widetilde{\mathrm{U}}(W+(F \backslash\{0\}) u)$.
(i) Since $\alpha \notin \operatorname{Reg}\left(\bar{L}_{F}(V, W)\right)$, by Theorem 3.3, ran $\alpha \cap W 0 \neq W \alpha$. Since $V=W a+\langle u\rangle$, it follows that $\widetilde{\operatorname{ran}} \alpha=F \alpha=W \alpha \cup(W A(F \backslash\{0\}) u) \alpha$. Hence
$W \alpha \neq \operatorname{ran} \alpha \cap W=(W \alpha \cup(W+(F \backslash\{0\}) u) \alpha) \cap W$
$=(W \alpha \cup(W \alpha+(F \backslash\{0\}) u \alpha)) \cap W$
$=W \alpha \cup((W \alpha+(F \backslash\{0\}) u \alpha) \cap W) \quad$ since $W \alpha \subseteq W$
which implies that $w \alpha+a(u \alpha) \in W \backslash W \alpha$ for some $w \in W$ and $a \in F \backslash\{0\}$. Consequently, $a(u \alpha) \in W \backslash W \alpha$ and thus $u \alpha \in W \backslash W \alpha$.
(ii) If $w \in W$ and $a \in F \backslash\{0\}$, then by (i),

$$
(w+a u) \alpha=w \alpha+a(u \alpha) \in W \backslash W \alpha .
$$

But $V=W \dot{\cup}(W+(F \backslash\{0\}) u)$, so we have $\operatorname{ker} \alpha \subseteq W$.
(iii) is clearly seen from (i) and (ii). Note that $\operatorname{ker} \alpha=\operatorname{ker}\left(\alpha_{\left.\right|_{W}}\right)$.
(iv) It is clear that

Since $W=\left\langle\mathrm{B}_{1} \cup\left\{w^{\prime} \mid w \in \mathrm{~B}_{2}\right\}\right\rangle$, by the definition of α_{2}, we have $\alpha_{2} \in L_{F}(V, W) \cap$ $K_{F}(V, W)$.

We note that $B_{2} \cup\{u \alpha\} \subseteq W \alpha \cap W \subseteq W$. Next, to show that $\alpha_{1} \in \alpha \bar{L}_{F}(V, W) \alpha$, let B_{3} be a basis of W containing $\mathrm{B}_{2} \cup\{u \alpha\}$. This implies that $\mathrm{B}_{3} \cup\{u\}$ is a basis of V. Define $\beta \in L_{F}(V)$ by

Then $\operatorname{ran} \beta \subseteq W$, so $\bar{\beta} \in \bar{L}_{F}(V, W)$. Since

$$
\begin{gathered}
\mathrm{B}_{1} \alpha \beta \alpha=\{0\}=\mathrm{B}_{1} \alpha_{1} \\
\mathrm{u} \alpha \beta \alpha=(u \alpha) \beta \alpha=0 \alpha=0=u \alpha_{1}, \\
\text { q } w^{\prime} \alpha \beta \alpha=w \beta \alpha=w^{\prime} \alpha=w=w^{\prime} \alpha_{1} \text { for all } w \in \mathrm{~B}_{2},
\end{gathered}
$$

we have $\alpha_{1}=\alpha \beta \alpha \in \alpha \bar{L}_{F}(V, W) \alpha$, as desired.
Lemma 6.11. If $F=\mathbb{Z}_{p}$ and $\operatorname{dim}_{F}(V / W)=1$, then the $\operatorname{ring}\left(\bar{L}_{F}(V, W),+, \circ\right)$ has the $\mathcal{B Q}$-property.

Proof. Let B be a bi-ideal of $\left(\bar{L}_{F}(V, W),+, \circ\right)$. Then $B \bar{L}_{F}(V, W) B \subseteq B$. To show that B is a quasi-ideal of $\left(\bar{L}_{F}(V, W),+, \circ\right)$, let $\alpha \in B \bar{L}_{F}(V, W) \cap \bar{L}_{F}(V, W) B$. If $\alpha \in \operatorname{Reg}\left(\bar{L}_{F}(V, W)\right)$, then by Lemma 6.5, $\alpha \in B$.

Next, assume that $\alpha \notin \operatorname{Reg}\left(\bar{L}_{F}(V, W)\right)$. Since $\operatorname{dim}_{F}(V / W)=1$, we have $V=W+\langle u\rangle$ for some $u \in V \backslash W$. By Lemma 6.10(i), $u \alpha \in W \backslash W \alpha$. Define $\mathrm{B}_{1}, \mathrm{~B}_{2}, \alpha_{1}$ and α_{2} be as in the assumption of Lemma 6.10 (iii) and (iv). Then

$$
\alpha=\alpha_{1}+\alpha_{2}, \quad \alpha_{1} \in \alpha \bar{L}_{F}(V, W) \alpha \text { and } \alpha_{2} \in L_{F}(V, W) \cap K_{F}(V, W)
$$

Thus

$$
\begin{array}{r}
\alpha_{1} \in \alpha \bar{L}_{F}(V, W) \alpha \subseteq B \bar{L}_{F}(V, W) \bar{L}_{F}(V, W) \bar{L}_{F}(V, W) B \\
\subseteq B \subseteq B \bar{L}_{F}(V, W) \cap \bar{L}_{F}(V, W) B
\end{array}
$$

which implies that

$$
\begin{equation*}
\alpha_{2}=\alpha-\alpha_{1} \in B \bar{L}_{F}(V, W) \cap \bar{L}_{F}(V, W) B \tag{1}
\end{equation*}
$$

Since $\alpha_{1} \in B$, to show that $\alpha \in B$, it suffices to show that $\alpha_{2} \in B$. Since $\alpha_{2} \in \bar{L}_{F}(V, W) B$ by (1), we have that

$$
\alpha_{2}=\sum_{k=1}^{n} \gamma_{k} \beta_{k} \text { for some } \gamma_{k} \in \bar{L}_{F}(V, W) \text { and } \beta_{k} \in B
$$

Without loss of generality, assume that $u \gamma_{1}, \ldots, u \gamma_{m} \in V \backslash W$ and $u \gamma_{m+1}, \ldots, u \gamma_{n}$ $\in W$. Then for $i \in\{1, \ldots, m\}$,

$$
\begin{equation*}
\overparen{v \gamma_{i}} \cong w_{i}+l_{i} u \text { for some } w_{i} \in W \text { and } \mathbb{T}_{i} \in \mathbb{Z}_{p} \nwarrow\{0\} \text {. } \tag{2}
\end{equation*}
$$

Let B_{4} be a basis of V containing $u \alpha$. For each $i \in\{1, \ldots, m\}$, let

$$
\lambda_{i}=\left[\begin{array}{cc}
u \alpha & \mathrm{~B}_{4} \backslash\{u \alpha\} \\
w_{i} & 0
\end{array}\right]
$$

and for each $j \in\{m+1, \ldots, n\}$, let

$$
\mu_{j}=\left[\begin{array}{cc}
u \alpha & \mathrm{~B}_{4} \backslash\{u \alpha\} \\
u \gamma_{j} & 0
\end{array}\right] .
$$

Then $\lambda_{i}, \mu_{j} \in \bar{L}_{F}(V, W)$ for all $i \in\{1, \ldots, m\}$ and $j \in\{m+1, \ldots, n\}$. From (1), we have

$$
\begin{equation*}
\alpha_{2} \lambda_{i} \beta_{i}, \alpha_{2} \mu_{j} \beta_{j} \in B \bar{L}_{F}(V, W) \bar{L}_{F}(V, W) B \subseteq B \tag{4}
\end{equation*}
$$

for all $i \in\{1, \ldots, m\}$ and $j \in\{m+1, \ldots, n\}$. By (3) and (4),

$$
\begin{equation*}
\theta=\sum_{i=1}^{m} l_{i} \beta_{i}+\sum_{i=1}^{m} \alpha_{2} \lambda_{i} \beta_{i}+\sum_{j=m+1}^{n} \alpha_{2} \mu_{j} \beta_{j} \in B \tag{5}
\end{equation*}
$$

We also have that

$$
\begin{align*}
u \theta & =\sum_{i=1}^{m} l_{i}\left(u \beta_{i}\right)+\sum_{i=1}^{m}\left(u \alpha_{2}\right) \lambda_{i} \beta_{i}+\sum_{j=m+1}^{n}\left(u \alpha_{2}\right) \mu_{j} \beta_{j} \\
& =\sum_{i=1}^{m} l_{i}\left(u \beta_{i}\right)+\sum_{i=1}^{m}(u \alpha) \lambda_{i} \beta_{i}+\sum_{j=m+1}^{n}(u \alpha) \mu_{j} \beta_{j} \quad \text { since } u \alpha_{2}=u \alpha \\
& =\sum_{i=1}^{m} l_{i}\left(u \beta_{i}\right)+\sum_{i=1}^{m} w_{i} \beta_{i}+\sum_{j=m+1}^{n}\left(u \gamma_{j}\right) \beta_{j} \\
& =\sum_{i=1}^{m}\left(l_{i} u+w_{i}\right) \beta_{i}+\sum_{j=m+1}^{n}\left(u \gamma_{j}\right) \beta_{j} \\
& =\sum_{i=1}^{m}\left(u \gamma_{i}\right) \beta_{i}+\sum_{j=m+1}^{n}\left(u \gamma_{j}\right) \beta_{j} \quad \text { from }(2) \\
& =u\left(\sum_{k=1}^{n} \gamma_{k} \beta_{k}\right)=u \alpha_{2}=u \alpha \tag{6}
\end{align*}
$$

Case 1: $\theta \in \operatorname{Reg}\left(\bar{L}_{F}(V, W)\right)$. Then ran $\theta \cap W=W \theta$. Since $u \theta=u \alpha \in \operatorname{ran} \theta \cap W$ by (6) and Lemma $6.10(\mathrm{i})$, there is an element $z \in W$ such that $z \theta=u \alpha$. Define $\eta \in \bar{L}_{F}(V, W)$ on the basis B_{4} of V by

$$
\eta=\left[\begin{array}{cc}
u \alpha & \mathrm{~B}_{4} \backslash\{u \alpha\} \\
z & 0
\end{array}\right] .
$$

Since

$$
\begin{aligned}
\alpha_{2} \eta \theta & =\left[\begin{array}{ccc}
\mathrm{B}_{1} & u & w^{\prime} \\
0 & u \alpha & 0
\end{array}\right]_{w \in \mathrm{~B}_{2}}\left[\begin{array}{cc}
u \alpha & \mathrm{~B}_{4} \backslash\{u \alpha\} \\
z & 0
\end{array}\right] \theta \\
& =\left[\begin{array}{ccc}
\mathrm{B}_{1} & u & w^{\prime} \\
0 & z & 0
\end{array}\right]_{w \in \mathrm{~B}_{2}} \theta \\
& =\left[\begin{array}{ccc}
\mathrm{B}_{1} & u & w^{\prime} \\
0 & z \theta & 0
\end{array}\right]_{w \in \mathrm{~B}_{2}}=\left[\begin{array}{ccc}
\mathrm{B}_{1} & u & w^{\prime} \\
0 & u \alpha & 0
\end{array}\right]_{w \in \mathrm{~B}_{2}}=\alpha_{2},
\end{aligned}
$$

it follows that $\alpha_{2}=\alpha_{2} \eta \theta \in B \bar{L}_{F}(V, W) \bar{L}_{F}(V, W) B \subseteq B$ by (1) and (5).
Case 2: $\theta \notin \operatorname{Reg}\left(\bar{L}_{F}(V, W)\right)$. By Lemma 6.10(iv), there are $\theta_{1} \in \theta \bar{L}_{F}(V, W) \theta, \theta_{2}$ $\in L_{F}(V, W) \cap K_{F}(V, W)$ with $u \theta_{2}=u \theta$ such that $\theta=\theta_{1}+\theta_{2}$. Since $\theta \in B$, we have $\theta_{1} \in B$ which implies that $\theta_{2}=\theta-\theta_{1} \in B$. But
$\left(\mathrm{B}_{1} \cup\left\{w^{\prime} \mid w \in \mathrm{~B}_{2}\right\}\right) \theta_{2} \subseteq W \theta_{2}$
$=\{0\}$ since $\theta_{2} \in K_{F}(V, W)$
$=\left(\mathrm{B}_{1} \cup\left\{w^{\prime} \mid w \in \mathrm{~B}_{2}\right\}\right) \alpha_{2} \quad$ by the definition of α_{2}
and $u \theta_{2}=u \theta=u \alpha_{2}$ by (6), so we deduce that $\alpha_{2}=\theta_{2} \in B$.
Hence the lemma is proved.

Theorem 6.12. The ring $\left(\bar{L}_{F}(V, W),+, \circ\right)$ has the $\mathcal{B Q}$-property if and only if one of the following statements holds. $ص$
(i) $W=V$.

(ii) $W=\{0\}$.
(iii) $F=\mathbb{Z}_{p}$ for some prime p and $\operatorname{dim}_{F} W=1$.
(iv) $F=\mathbb{Z}_{p}$ for some prime p and $\operatorname{dim}_{F}(V / W)=1$.

Proof. Assume that (i), (ii), (iii) and (iv) are false. Then $\{0\} \neq W \subsetneq V$ and (1) $F \neq \mathbb{Z}_{p}$ for all prime p or $(2) \operatorname{dim}_{F} W>1$ and $\operatorname{dim}_{F}(V / W)>1$. Let B_{1} be a basis of W and B a basis of V containing B_{1}. Then $\mathrm{B}_{1} \neq \varnothing$ and $\mathrm{B} \backslash \mathrm{B}_{1} \neq \varnothing$.

Case 1 : $F \neq \mathbb{Z}_{p}$ for all prime p. By Lemma 6.6, the $\operatorname{ring}\left(\bar{L}_{F}(V, W),+, \circ\right)$ does not have the $\mathcal{B Q}$-property.

Case 2 : $\operatorname{dim}_{F} W>1$ and $\operatorname{dim}_{F}(V / W)>1$. Then $\left|\mathrm{B}_{1}\right|>1$ and $\left|\mathrm{B} \backslash \mathrm{B}_{1}\right|>1$. Let $w_{1}, w_{2} \in \mathrm{~B}_{1}$ and $u_{1}, u_{2} \in \mathrm{~B} \backslash \mathrm{~B}_{1}$ be such that $w_{1} \neq w_{2}$ and $u_{1} \neq u_{2}$. Let $\alpha, \beta, \gamma \in \bar{L}_{F}(V, W)$ be defined by

$$
\alpha=\left[\begin{array}{lll}
u_{1} & u_{2} & v \\
w_{1} & w_{2} & 0
\end{array}\right]_{v \in \mathbf{B} \backslash\left\{u_{1}, u_{2}\right\}}, \beta=\left[\begin{array}{ll}
w_{2} & v \\
w_{1} & 0
\end{array}\right]_{v \in \mathbf{B} \backslash\left\{w_{2}\right\}}, \gamma=\left[\begin{array}{ll}
u_{2} & v \\
u_{1} & 0
\end{array}\right]_{v \in \mathbf{B} \backslash\left\{u_{2}\right\}} .
$$

Then we have

$$
\alpha \beta=\left[\begin{array}{ll}
u_{2} & v \\
w_{1} & 0
\end{array}\right]_{v \in B \backslash\left\{u_{2}\right\}}=\gamma \alpha \neq \alpha
$$

so $\alpha \beta \in \alpha \bar{L}_{F}(V, W) \cap \bar{L}_{F}(V, W) \alpha \subseteq(\alpha)_{q}$ by Proposition 1.3. Suppose that $\alpha \beta \in$ $(\alpha)_{b}$. By Proposition 1.4, $\alpha \beta=a \alpha+\alpha \eta \alpha$ for some $\eta \in \bar{L}_{F}(V, W)$ and $a \in F$. Thus

$$
w_{1}=u_{2} \alpha \beta=u_{2}(a \alpha+\alpha \eta \alpha)=a\left(u_{2} \alpha\right)+\left(u_{2} \alpha\right) \eta \alpha=a w_{2}+\left(w_{2} \eta\right) \alpha .
$$

But $w_{2} \eta \in W$ and $W \alpha=\{0\}$, so $\left(w_{2} \eta\right) \alpha=0$. Hence $w_{1}=a w_{2}$ which is contrary to the independence of w_{1} and w_{2}. Hence $(\alpha)_{q} \neq(\alpha)_{b}$, so the ring $\left(\bar{L}_{F}(V, W),+, \circ\right)$ does not have the $\mathcal{B Q}$-property.

For the converse, if (i) or (ii) holds, then $\bar{L}_{F}(V, W)=L_{F}(V)$ which has the $\mathcal{B Q}$ property. If (iii) or (iv) holds, then the ring $\left(\bar{L}_{F}(V, W),+, \circ\right)$ has the $\mathcal{B Q}$-property by Lemma 6.9 and Lemma 6.11, respectively.

Hence the theorem is proved $\mathrm{g}^{2} \mathrm{G}$) d ?
จุฬาลงกรณณมหาวิทยาลัย

REFERENCES

[1] Bóna, M. Combinatorics of Permutations, CRC Press, Boca Raton, 2004.
[2] Calais, J. Demi-groupes dans lesquels tout bi-idéal est un quasi-idéal. Symp. Semigroup, Smolenice, 1968.
[3] Clifford, A. H., and Preston, G. H. The Algebraic Theory of Semigroups, Vol. I Providence: Amer. Math. Soc., 1961.
[4] Good, R. A., and Hughes, D. R. Associated groups for semigroups. Bull. Amer. Math. Soc. 58 (1952): 624-625(Abstract).
[5] Herstein, I. N. Topics in Algebra, Xerox College Publishing, Massachusetts, 1964.
[6] Higgins, P. M. Techniques of Semigroup Theory, Oxford University Press, New York, 1992.
[7] Howie, J. M. Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995.
[8] Hungerford, T. W. Algebra, Springer-Verlag, New York, 1984.
[9] Kapp, K. M. On bi-ideals and quasi-ideals in semigroups. Publ. Math. Debrecen 16 (1969): 179-185.
[10] Kapp, K. M. Bi-ideals in associated rings and semigroups. Acta Sci. Math. 33 (1972): 307-314.
[11] Kemprasit, Y. Some transformation semigroups whose sets of bi-ideals and quasi-ideals coincide. Comm. Algebra 30 (2002): 4499-4506.
[12] Kemprasit Y., and Namnak, C. On semigroups of linear transformations whose abi-ideals are quasi-ideals. PU. M. A. 12 (2001) $2405-413$.
[13] Lajos, S. Generalized ideals in semigroups. Acta. Sci. Math. 20 (1961): 217-222.
[14] Lajos S., and Szász, F. Bi-ideals in associated rings. Acta. Sci. Math. 32 (1971): 185-198.
[15] Magill, K. D., Jr., Subsemigroups of $S(X)$. Math. Japon 11 (1966): 109-115.
[16] Mielke, B. M. A note on Green's relations in $\mathcal{B Q}$-semigroups. Czechoslovak Math. J. 22 (1972): 224-229.
[17] Namnak C., and Kemprasit, Y. Some $\mathcal{B Q}$-semigroups of linear transformations. Kyunpook Math. J. 43 (2003): 237-246.
[18] Steinfeld, O. On ideal-quotients and prime ideals. Acta. Math. Acad. Sci. Hung. 4 (1953): 289-298.
[19] Steinfeld, O. Über die Quasideale von Halbgruppen. Publ. Math. Debrecen 46 (1956): 262-275.
[20] Steinfeld, O. Quasi-ideals in Rings and Semigroups, Akadémiai Kiadó, Budapest, 1978.
[21] Symons, J. S. V. Some results concerning a transformation semigroup. J. Austral. Math. Soc. 19 (Series A)(1975): 413-425.
[22] Wilnert, H. J. On quasi-ideals in rings. Acta Math. Hung. 43 (1984): 85-99.

สถาบันวิทยบริการ

VITA

Name	$:$ Miss Sansanee Nenthein
Date of Birth	$: 19$ August 1978
Place of Birth	$:$ Chachoengsao, Thailand
Education	: B.Sc.(Mathematics), Chulalongkorn University, 2000
	M.Sc.(Mathematics), Chulalongkorn University, 2003
Scholarship	: The Ministry Development Staff Project Scholarship for the
Place of Work	Mepartment of Curriculum, Instruction and Educational Tech-
	nology, Faculty of Education, Chulalongkorn University

