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INTRODUCTION

In both semigroups and rings, quasi-ideals are a generalization of one-sided ide-

als and bi-ideals generalize quasi-ideals. The notion of quasi-ideal was introduced

by Steinfeld ([19], [18]) in 1953 and 1956 for rings and semigroups, respectively.

The notion of bi-ideal for semigroups was introduced in 1952 by Good and Hughes

[4] while the notion of bi-ideal for rings was given much later. It was introduced

by Lajos and Szász [14] in 1971.

Kapp [9] used BQ to denote the class of all semigroups whose bi-ideals and

quasi-ideals coincide and Mielke [16] called a semigroup in the class BQ a BQ-

semigroup. The following semigroups were known to be in the class BQ : regular

semigroups (Lajos [13]), left [right] simple semigroups (Kapp [9]) and left [right]

0-simple semigroups (Kapp [9]). In fact, Calais [2] proved that a semigroup S

belongs to BQ if and only if the bi-ideal and the quasi-ideal of S generated by any

x, y ∈ S are identical.

This research deals with both semigroups and rings whose their bi-ideals and

quasi-ideals are identical. Then we shall say that a semigroup or a ring has the

BQ-property if its bi-ideals and quasi-ideals coincide, or equivalently, its bi-ideals

are quasi-ideals. In fact, from [10], we have that every (Von Neumann) regular

ring has the BQ-property. Hence we deduce that in both semigroups and rings,

the regularity implies the BQ-property. However, the converse is not generally

true. By the definition, a ring (R, +, ·) is regular if and only if (R, ·) is a regular

semigroup. However, this is not true for the BQ-property. It is not difficult to see

that for a ring (R, +, ·), if the semigroup (R, ·) has the BQ-property, then the ring

(R, +, ·) has the BQ-property. The converse is not true in general. This can be

seen in this work.

Some transformation semigroups having the BQ-property have been studied in

[11]. In [12] and [17], the authors characterized when their target semigroups of
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linear tranformations have the BQ-property.

We denote by T (X) the full transformation semigroup on a nonempty set X.

It is well-known that T (X) is a regular semigroup. For a nonempty subset Y of

X, let

T (X, Y ) = {α ∈ T (X) | ran α ⊆ Y },

T (X, Y ) = {α ∈ T (X) | Y α ⊆ Y }.

Then T (X,Y ) ⊆ T (X, Y ) and both are subsemigroups of T (X). The semigroup

T (X, Y ) was introduced and studied by Symons [21] in 1975 while Magill [15]

introduced and studied the semigroup T (X, Y ) in 1966.

The semigroup, under composition, of all linear transformations from a vector

space V over a field F into itself is denoted by LF (V ). It is also known that

LF (V ) is a regular semigroup. For a subspace W of V , LF (V, W ) and LF (V, W )

are defined analogously, that is,

LF (V, W ) = {α ∈ LF (V ) | ran α ⊆ W},

LF (V, W ) = {α ∈ LF (V ) | Wα ⊆ W}.

The semigroup LF (V, W ) motivates us to consider the subsemigroup

KF (V, W ) = {α ∈ LF (V ) | W ⊆ ker α}

of LF (V ). In fact, (LF (V ), +, ◦) is a ring where + and ◦ are the usual addition and

composition of linear transformations and (LF (V ), +, ◦) has LF (V, W ), LF (V, W )

and KF (V, W ) as subrings. Observe that the semigroups LF (V ), LF (V, W ), LF (V, W )

and KF (V, W ) mean (LF (V ), ◦), (LF (V, W ), ◦), (LF (V, W ), ◦) and (KF (V, W ), ◦),

respectively.

In this research, we determine the regular elements of all the semigroups defined

above and characterize when these semigroups are regular and when they have

the BQ-property. Moreover, we give characterizations determining when the ring

(LF (V, W ), +, ◦), (LF (V, W ), +, ◦) and (KF (V, W ), +, ◦) have the BQ-property.
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This research is organized as follows :

Chapter I contains definitions and quoted results which will be used for this

research. For better understanding, some examples are also provided.

In Chapter II, we give necessary and sufficient conditions for the elements of

the semigroups T (X, Y ) and T (X, Y ) to be regular. In addition, the numbers

of regular elements of T (X, Y ) and T (X, Y ) are counted in terms of the Stirling

number of the second kind when X is finite.

In Chapter III, necessary and sufficient conditions for the elements of the semi-

groups LF (V, W ), LF (V, W ) and KF (V, W ) to be regular are provided. The con-

ditions for the regularity of the elements of LF (V, W ) and LF (V, W ) are the same

as those for T (X, Y ) and T (X,Y ) in Chapter II. We also apply the characteriza-

tions of the regular elements of LF (V, W ) and KF (V, W ) to determine the regular

elements of some matrix semigroups over F .

Chapter IV deals with the BQ-property of the semigroups T (X, Y ) and T (X, Y ).

It is shown that T (X, Y ) always has the BQ-property. The semigroup T (X, Y )

has the BQ-property if and only if Y = X, |Y | = 1 or |X| ≤ 3. Calais’s theorem

mentioned previously is useful for this work.

In Chapter V, we have similarly that the semigroups LF (V, W ) and KF (V, W )

always have the BQ-property. However, it is shown that LF (V, W ) has the BQ-

property if and only if one of the following conditions holds.

(i) W = V .

(ii) W = {0}.

(iii) F = Z2, dimF W = 1 and dimF V = 2.

Calais’s theorem is also referred for this characterization.

We are concerned with the BQ-property of the rings (LF (V, W ), +, ◦), (KF (V, W ),

+, ◦) and (LF (V, W ), +, ◦) in the last chapter. We have that the rings (LF (V, W ),

+, ◦) and (KF (V, W ), +, ◦) have the BQ-property since the semigroups (LF (V, W ), ◦)

and (KF (V, W ), ◦) have the BQ-property. The conditions for the ring (LF (V, W ), +, ◦)
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to have the BQ-property are much wider than those for the semigroup (LF (V, W ), ◦).

It is shown that the ring (LF (V, W ), +, ◦) has the BQ-property if and only if one

of the following conditions holds.

(i) W = V .

(ii) W = {0}.

(iii) F = Zp for some prime p and dimF W = 1.

(iv) F = Zp for some prime p and dimF (V/W ) = 1.



CHAPTER I

PRELIMINARIES

Let N, Z and R denote respectively the set of natural numbers (positive in-

tergers), the set of integers and the set of real numbers. For n ∈ N, Zn denotes

the set of integers modulo n.

For n, r ∈ N with n ≥ r, the number of partitions {1, . . . , n} into r blocks is

denoted by S(n, r) and is called a Stirling number of the second kind. It is known

that

S(n, r) =
1

r!

r∑
i=0

(−1)i

(
r

i

)
(r − i)n

([1], page 12). Hence the number of maps from {1, 2, . . . , n} onto {1, 2, . . . , r} is

S(n, r)r!.

The cardinality of a set X is denoted by |X|.

For a semigroup S, let S1 = S if S has an identity, otherwise, let S1 be the

semigroup S with an identity 1 adjoined.

An element a of a semigroup S is said to be regular if a = axa for some x ∈ S,

and S is called a regular semigroup if every element of S is regular. The set of all

regular elements of a semigroup S is denoted by Reg (S). Regular elements of a

ring R = (R, +, ·) are regular elements of (R, ·), and we call R a (Von Neumann)

regular ring if every element of R is regular. The set of all regular elements of the

ring R is also denoted by Reg (R).

In this research, the value of a map α at x in the domain of α is denoted by

xα and the range of α is denoted by ran α.

For a nonempty set X, let T (X) be the full transformation semigroup on X,

that is, the semigroup, under composition, of all mappings from X into itself.
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It is known that T (X) is a regular semigroup ([6], page 4). The kernel of α ∈

T (X), ker α, is the equivalence relation α ◦ α−1 on X, that is,

ker α = {(x, y) ∈ X ×X | xα = yα}.

Then xker α = (xα)α−1 for all x ∈ X, in particular, if x ∈ ran α, xα−1 is a ker α-

class. Also, the mapping xker α 7→ xα is a bijection of X/ker α onto ran α. Hence

for any α ∈ T (X), the set of equivalence classes of ker α and ran α have the same

cardinality.

For a vector space V over a field F , let LF (V ) denote the semigroup, under

composition, of all linear transformations from V into itself. Denote by Mn(F )

the multiplicative semigroup of all n × n matrices over a field F . We have that

(LF (V ), +, ◦) is a ring where + and ◦ are the usual addition and composition

of linear transformations, respectively. It is well-known that Mn(F ) ∼= LF (V ) if

dimF (V ) = n ([8], page 330), and LF (V ) is a regular semigroup ([7], page 63).

Hence Mn(F ) is a regular semigroup. Recall that for α ∈ LF (V ),

ker α = {v ∈ V | vα = 0}.

The entry of A ∈ Mn(F ) in the ith row and jth column will be denoted by Aij.

A quasi-ideal of a semigroup S is a subsemigroup Q of S such that SQ ∩ QS

⊆ Q, and a bi-ideal of S is a subsemigroup B of S such that BSB ⊆ B.

For nonempty subsets X and Y of a ring R, XY denotes the set of all finite

sums of the form
∑

xiyi where xi ∈ X and yi ∈ Y . Also, for a nonempty subset X

of a ring R, ZX denotes the set of all finite sums of the form
∑

kixi where ki ∈ Z

and xi ∈ X. Quasi-ideals and bi-ideals of rings are defined analogously. That is, a

quasi-ideal of R is a subring Q of R such that RQ ∩QR ⊆ Q, and a bi-ideal of R

is a subring B of R such that BRB ⊆ B.

In both semigroups and rings, every left ideal and every right ideal is clearly a

quasi-ideal and every quasi-ideal is a bi-ideal. The following example shows that

the converse is not generally true.
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Example 1.1. Let F be a field and n ∈ N.

(1) For k, l ∈ {1, 2, . . . , n}, let Qkl
n (F ) consist of all matrices C ∈ Mn(F ) such that

Cij = 0 if i 6= k or j 6= l.

Then for k, l ∈ {1, 2, . . . , n}, Qkl
n (F ) is a subsemigroup [subring] of the semigroup

[ring] Mn(F ),

l

↓

Mn(F )Qkl
n (F ) =




0 . . . 0 x1 0 . . . 0

0 . . . 0 x2 0 . . . 0
...

...
...

...
...

0 . . . 0 xn 0 . . . 0


∣∣∣∣∣ x1, x2, . . . , xn ∈ F


and

Qkl
n (F )Mn(F ) =



k →



0 0 . . . 0
...

...
...

0 0 . . . 0

x1 x2 . . . xn

0 0 . . . 0
...

...
...

0 0 . . . 0



∣∣∣∣∣ x1, x2, . . . , xn ∈ F


which imply that Mn(F )Qkl

n (F ) ∩ Qkl
n (F )Mn(F ) = Qkl

n (F ), so Qkl
n (F ) is a quasi-

ideal of the semigroup [ring] Mn(F ). Moreover, if n > 1, then for all k, l ∈

{1, 2, . . . , n}, Qkl
n (F ) is neither a left ideal nor a right ideal of the semigroup [ring]

Mn(F ).

(2) For n ≥ 4, let SUn(F ) be the subsemigroup [subring] of the semigroup [ring]

Mn(F ) consisting of all strictly upper triangular matrices over F . Let



8

B =





0 . . . 0 x 0

0 . . . 0 0 y

0 . . . 0 0 0
...

...
...

...

0 . . . 0 0 0


∣∣∣∣∣ x, y ∈ F


.

Then B2 = {0}, so B is a subsemigroup [subring] of the semigroup [ring] SUn(F ).

Moreover, BSUn(F )B = {0} ⊆ B. But

0 . . . 0 1

0 . . . 0 0

0 . . . 0 0
...

...
...

0 . . . 0 0


=



0 1 0 . . . 0

0 0 0 . . . 0

0 0 0 . . . 0
...

...
...

...

0 0 0 . . . 0





0 . . . 0 1 0

0 . . . 0 0 1

0 . . . 0 0 0
...

...
...

...

0 . . . 0 0 0



=



0 . . . 0 1 0

0 . . . 0 0 1

0 . . . 0 0 0
...

...
...

...

0 . . . 0 0 0





0 . . . 0 0
...

...
...

0 . . . 0 0

0 . . . 0 1

0 . . . 0 0


∈ (SUn(F )B ∩BSUn(F )) rB,

so B is a bi-ideal but not a quasi-ideal of the semigroup [ring] SUn(F ).

Example 1.1 shows that quasi-ideals generalize left ideals and right ideals and

bi-ideals generalize quasi-ideals.

For a subset A of a semigroup S [ring R], let (A)q and (A)b denote respectively

the quasi-ideal and the bi-ideal of S [R] generated by A, that is, (A)q is the

intersection of all quasi-ideals of S [R] containing A and (A)b is the intersection

of all bi-ideals of S [R] containing A (see [20], page 10 and 12). Observe that

(A)b ⊆ (A)q since every quasi-ideal is a bi-ideal.
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Proposition 1.2. ([3], page 84-85) For a nonempty subset A of a semigroup S,

(i) (A)q = S1A ∩ AS1 and

(ii) (A)b = AS1A ∪ A.

Proposition 1.3. ([22]) For a nonempty subset A of a ring R,

(A)q = ZA + (RA ∩ AR).

Proposition 1.4. ([14]) For a nonempty subset A of a ring R,

(A)b = ZA + ZA2 + ARA.

In particular, if R has an identity, then (A)b = ZA + ARA.

Let BQ be the class of all semigroups whose bi-ideals and quasi-ideals coincide

and an elements in BQ are called BQ-semigroups. Important BQ-semigroups are

the following ones.

Proposition 1.5. ([13]) Every regular semigroup is a BQ-semigroup.

Proposition 1.6. ([9]) Every left [right] simple semigroup and left [right] 0-simple

semigroup is a BQ-semigroup.

Recall that a semigroup S is left [right ] simple if S has no proper left [right] ideal,

and a semigroup S with zero 0 is called left [right ] 0-simple if S2 6= {0} and S has

no proper nonzero left [right] ideal.

Some examples of BQ-semigroups which are neither regular nor left [right]

simple are as follows.

Example 1.7. ([11]) Let X be an infinite set and S(X) the subsemigroup of T (X)

defined by

S(X) = {α ∈ T (X) | X r ran α is infinite}.

Then S(X) is a BQ-semigroup but it is neither regular nor left [right] simple

semigroup.
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Example 1.8. ([12]) For an infinite dimensional vector space V over a field F ,

define the subsemigroup S(V ) of LF (V ) by

S(V ) = {α ∈ LF (V ) | α is 1-1 and dimF (V/ran α) is infinite}.

Then S(V ) is not regular and S(V ) is a BQ-semigroup if and only if dimF (V ) = N0.

In fact, BQ-semigroups have been characterized by Calais [2] as follows:

Proposition 1.9. ([2]) A semigroup S is a BQ-semigroup if and only if (x, y)b =

(x, y)q for all x, y ∈ S.

A BQ-ring is defined similarly to a BQ-semigroup, that is, a BQ-ring is a ring

whose bi-ideals are quasi-ideals. Kapp [10] provided a sufficient condition for a

bi-ideal of a ring R to be a quasi-ideal of R as follows: If B is a bi-ideal of a ring

R such that every element of B is regular in R, then B is a quasi-ideal of R. Then

we have the following proposition as its direct consequence.

Proposition 1.10. Every regular ring is a BQ-ring.

This research is concerned with both semigroups and rings whose bi-ideals and

quasi-ideals coincide. Then we shall say that a semigroup or a ring has the BQ-

property if its quasi-ideals and bi-ideals are identical. Then every regular semigroup

and every regular ring has the BQ-property.

For a nonempty subset Y of a nonempty set X, let

T (X, Y ) = {α ∈ T (X) | ran α ⊆ Y },

T (X, Y ) = {α ∈ T (X) | Y α ⊆ Y }.

Then T (X, Y ) ⊆ T (X, Y ) and both are subsemigroups of T (X). Note that 1X , the

identity map on X, belongs to T (X, Y ) and if Y 6= X, then 1X /∈ T (X,Y ). The

semigroup T (X,Y ) was introduced and studied by Symons [21] in 1975 while Magill

[15] introduced and studied the semigroup T (X, Y ) in 1966. Observe that these
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two types of transformation semigroups are generalizations of full transformation

semigroups.

We introduce the subsemigroups LF (V, W ) and LF (V, W ) analogously where

W is a subspace of V , that is,

LF (V, W ) = {α ∈ LF (V ) | ran α ⊆ W},

LF (V, W ) = {α ∈ LF (V ) | Wα ⊆ W}.

Then LF (V, W ) ⊆ LF (V, W ). Clearly, 0 (the zero map on V ) belongs to LF (V, W )

and LF (V, W ), and 1V ∈ LF (V, W ) while 1V /∈ LF (V, W ) if W 6= V . We also

consider the subsemigroup KF (V, W ) of the semigroup LF (V ) defined by

KF (V, W ) = {α ∈ LF (V ) | W ⊆ ker α}.

Hence

KF (V, W ) = {α ∈ LF (V ) | Wα = {0}}.

Then KF (V, W ) ⊆ LF (V, W ). Notice that 0 ∈ KF (V, W ), LF (V, V ) = LF (V ) =

KF (V, {0}), LF (V, {0}) = {0} = KF (V, V ) and L(V, V ) = LF (V ) = L(V, {0}).

Thus if W = {0} 6= V or W = V 6= {0}, then LF (V, W ) 6= KF (V, W ). Moreover,

if {0} 6= W ( V , then LF (V, W ) and KF (V, W ) are not subsets of each other. To

see this, assume that {0} 6= W ( V . Let B1 be a basis of W and B a basis of V

containing B1. Define α, β ∈ LF (V ) on B by bracket notation as follows:

α =

v B r B1

v 0


v ∈ B1

, β =

B1 v

0 v


v ∈ BrB1

.

Then ran α = 〈B1〉 = ker β, ker α = 〈B r B1〉 = ran β. Therefore we deduce that

α ∈ LF (V, W ) r KF (V, W ) and β ∈ KF (V, W ) r LF (V, W ). We can see that

LF (V, W ), LF (V, W ) and KF (V, W ) are subrings of the ring (LF (V ), +, ◦) by the

following facts:
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for α, β ∈ LF (V, W ), ran (α + β) = V (α + β) ⊆ V α + V β ⊆ W + W = W,

ran (−α) = ran α ⊆ W,

for α, β ∈ LF (V, W ), W (α + β) ⊆ Wα + Wβ ⊆ W + W = W,

W (−α) = Wα ⊆ W,

and for α, β ∈ KF (V, W ), W (α + β) ⊆ Wα + Wβ ⊆ {0}+ {0} = {0},

W (−α) = Wα = {0}.

For 1 ≤ k ≤ n, let Cn(F, k) and Rn(F, k) be the matrix semigroups defined by

Cn(F, k) = {A ∈ Mn(F ) | Aij = 0 for all i, j ∈ {1, . . . , n} and j > k},

Rn(F, k) = {A ∈ Mn(F ) | Aij = 0 for all i, j ∈ {1, . . . , n} and i > k}.

In other words, Cn(F, k) consists of all matrices in Mn(F ) of the form
a11 · · · a1k 0 · · · 0

a21 · · · a2k 0 · · · 0
...

...
...

...

an1 · · · ank 0 · · · 0


and Rn(F, k) consists of all matrices in Mn(F ) of the form

a11 a12 · · · a1n

...
...

...

ak1 ak2 · · · akn

0 0 · · · 0
...

...
...

0 0 · · · 0


.

Observe that Rn(F, n) = Mn(F ) = Cn(F, n). It is clearly seen that if t1, . . . , tk ∈

{1, . . . , n} with t1 < t2 < · · · < tk, then S1 and S2 defined by

S1 = {A ∈ Mn(F ) | Aij = 0 for all i, j ∈ {1, . . . , n} and j /∈ {t1, . . . , tk}},

S2 = {A ∈ Mn(F ) | Aij = 0 for all i, j ∈ {1, . . . , n} and i /∈ {t1, . . . , tk}}
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are subsemigroups of Mn(F ) which are clearly isomorphic to Cn(F, k) and Rn(F, k),

respectively. Notice that Cn(F, k) and Rn(F, k) are also subrings of the ring

(Mn(F ), +, ·) where + and · are the usual addition and multiplication of matrices.

We recall the following basic facts of vector spaces and linear transformations

which will be used.

(1) If α ∈ LF (V ), B1 is a basis of ker α, B2 is a basis of ran α and for each u ∈ B2,

choose an element u′ ∈ uα−1, then B1 ∪ {u′ | u ∈ B2} is a basis of V .

(2) If U1 and U2 are subspaces of V , B1 is a basis of the subspace U1 ∩ U2,

B2 ⊆ U1 rB1 and B3 ⊆ U2 rB1 are such that B1∪B2 and B1∪B3 are bases of

U1 and U2, respectively, then B1 ∪B2 ∪B3 is a basis of the subspace U1 + U2

of V . In particular, if U1 ∩ U2 = {0}, then B2 ∪ B3 is a basis of U1 + U2.

(3) If W is a subspace of V such that dimF (V/W ) = 1 and B is a basis of W ,

then for every u ∈ V rW , B ∪ {u} is a basis of V .

(4) If B1 is a basis of W and B is a basis of V containing B1, then {v + W | v ∈

BrB1} is the basis of the quotient space V/W and v1 + W 6= v2 + W for all

distinct v1, v2 ∈ BrB1. Hence dimF (V/W ) = |BrB1|.



CHAPTER II

REGULAR ELEMENTS OF SEMIGROUPS OF

TRANSFORMATIONS OF SETS

In this chapter, the regular elements of the semigroups T (X, Y ) and T (X, Y ) are

characterized. Some remarkable relationships of Reg (T (X, Y )) and Reg (T (X,Y ))

are also given. In addition, Reg (T (X, Y )) and Reg (T (X, Y )) are counted in terms

of |X|, |Y |, and their Stirling numbers of the second kind when X is finite.

Throughout this chapter, X denotes a nonempty set and ∅ 6= Y ⊆ X. First,

we recall that

T (X, Y ) = {α ∈ T (X) | ran α ⊆ Y },

T (X, Y ) = {α ∈ T (X) | Y α ⊆ Y }.

For n, r ∈ N with n ≥ r, the number of all mappings from {1, 2, . . . , n} onto

{1, 2, . . . , r} is r!S(n, r) where

S(n, r) =
1

r!

r∑
i=0

(−1)i

(
r

i

)
(r − i)n

(a Stirling number of the second kind).

Theorem 2.1. For α ∈ T (X,Y ), the following statements are equivalent.

(i) α ∈ Reg (T (X, Y )).

(ii) ran α = Y α.

(iii) xker α ∩ Y 6= ∅ for every x ∈ X.

(iv) xα−1 ∩ Y 6= ∅ for every x ∈ ran α.

Proof. (i) ⇒ (ii). Let β ∈ T (X, Y ) be such that α = αβα. Then Xαβ ⊆ Y , and

so ran α = Xα = Xαβα = (Xαβ)α ⊆ Y α ⊆ Xα = ran α. Hence (ii) holds.
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(ii) ⇒ (iii). For any x ∈ X, xα ∈ ran α = Y α, so xα = yα for some y ∈ Y

which implies that y ∈ (xα)α−1 = xker α.

(iii) ⇒ (iv). This is trivial since for every x ∈ ran α, xα−1 is a ker α-class.

(iv) ⇒ (i). For each x ∈ ran α, choose an element x′ ∈ xα−1∩Y . Then x′α = x

for every x ∈ ran α. Let a be a fixed element of Y . Define β : X → X by bracket

notation as follows:

β =

x X r ran α

x′ a


x ∈ ran α

,

that is, xβ = x′ for all x ∈ ran α and xβ = a for all x ∈ Xrran α. Then ran β ⊆ Y

and for every x ∈ X, xαβα = (xα)βα = (xα)′α = xα. Hence β ∈ T (X, Y ) and

α = αβα.

As a consequence of Theorem 2.1, a necessary and sufficient condition for

T (X, Y ) to be a regular semigroup can be given as follows:

Corollary 2.2. The semigroup T (X, Y ) is regular if and only if either X = Y or

|Y | = 1.

Proof. Suppose that Y ( X and |Y | > 1. Let a and b be two distinct elements of

Y . Define α : X → X by

α =

Y X r Y

a b

 .

Then ran α = {a, b} ⊆ Y and bα−1 ∩ Y = (X r Y ) ∩ Y = ∅. Hence α ∈ T (X, Y )

and by Theorem 2.1, α is not a regular element of T (X, Y ). This proves that if

T (X, Y ) is a regular semigroup, then Y = X or |Y | = 1.

Since T (X,Y ) = T (X) if Y = X and |T (X, Y )| = 1 if |Y | = 1, the converse

holds.

Theorem 2.3. For α ∈ T (X, Y ), the following statements are equivalent.

(i) α ∈ Reg (T (X, Y )).

(ii) ran α ∩ Y = Y α.
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(iii) xker α ∩ Y 6= ∅ for every x ∈ X with xα ∈ Y , that is, x ∈ Y α−1.

(iv) xα−1 ∩ Y 6= ∅ for every x ∈ ran α ∩ Y .

Proof. (i) ⇒ (ii). Let β ∈ T (X, Y ) be such that α = αβα. Then Y α ⊆ Xα∩ Y =

ran α∩Y . If x ∈ ran α∩Y , then x ∈ Y and x = aα for some a ∈ X. Consequently,

x = aα = aαβα = xβα ∈ Y βα ⊆ Y α. Hence (ii) holds.

(ii) ⇒ (iii). Let x ∈ X be such that xα ∈ Y . Then xα ∈ ran α ∩ Y = Y α,

so xα = yα for some y ∈ Y . This implies that y ∈ (xα)α−1 = xker α. Hence

y ∈ xker α ∩ Y .

(iii)⇒ (iv). If x ∈ ran α∩Y , then x = aα for some a ∈ X, so a ∈ xα−1 ⊆ Y α−1.

By (iii), aker α ∩ Y 6= ∅. But aker α = (aα)α−1 = xα−1, so xα−1 ∩ Y 6= ∅.

(iv) ⇒ (i). For each x ∈ ran α∩Y , choose an element x′ ∈ xα−1 ∩Y . Also, for

x ∈ ran αrY , choose an element x ∈ xα−1. Then x′α = x for every x ∈ ran α∩Y

and xα = x for all x ∈ ran αrY . Let a be a fixed element of Y . Define β : X → X

by

β =

x t X r ran α

x′ t a


x ∈ ran α∩Y
t ∈ ran αrY

.

Then Y β ⊆ {x′ | x ∈ ran α ∩ Y } ∪ {a} ⊆ Y and for x ∈ X,

xαβα = (xα)βα =

(xα)′α = xα if xα ∈ ran α ∩ Y

(xα)α = xα if xα ∈ ran α r Y.

Hence β ∈ T (X, Y ) and α = αβα.

We also have the following corollary which characterizes when T (X,Y ) is a

regular semigroup.

Corollary 2.4. The semigroup T (X, Y ) is regular if and only if either X = Y or

|Y | = 1.

Proof. Suppose that Y ( X and |Y | > 1. Let a, b ∈ Y and α be as in the proof

of Corollary 2.2. Then Y α = {a} ⊆ Y , so α ∈ T (X, Y ). Since b ∈ ran α ∩ Y
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and bα−1 ∩ Y = (X r Y ) ∩ Y = ∅, by Theorem 2.3, α is not a regular element of

T (X, Y ).

If Y = X, then T (X, Y ) = T (X) which is regular. Next, assume that Y = {c}.

Then cα = c for all α ∈ T (X, Y ). To show that T (X, Y ) is regular, let α ∈ T (X, Y ).

For each x ∈ ran α r {c}, choose an element x′ ∈ xα−1. Then x′α = x for all

x ∈ ran α r {c}. Let c′ = c and define β ∈ T (X) by

β =

x X r ran α

x′ c


x ∈ ran α

.

Then Y β = {c}β = {c′} = {c} = Y and for x ∈ X, xαβα = (xα)′α = xα. This

proves that if |Y | = 1, then T (X, Y ) is a regular semigroup, as required.

The following result which is obtained from Theorem 2.1 and Theorem 2.3

shows that any nonregular element of T (X, Y ) cannot be regular in T (X, Y ).

Corollary 2.5. Reg (T (X, Y )) ⊆ Reg (T (X, Y )) ∪ (T (X, Y ) r T (X, Y )),

or equivalently,

T (X, Y ) r Reg (T (X,Y )) ⊆ T (X,Y ) r Reg (T (X, Y )).

Proof. Let α ∈ Reg (T (X, Y )) and assume that α ∈ T (X, Y ). Then ran α ∩

Y = Y α by Theorem 2.3 and ran α ⊆ Y . These imply that ran α = Y α, so

α ∈ Reg (T (X,Y )) by Theorem 2.1.

Next, the cardinalities of the regular elements in the semigroups T (X,Y ) and

T (X, Y ) are investigated when X is finite. First, we note that if |X| = n and

|Y | = m, then

|T (X)| = nn,

|T (X, Y )| = mn,

|T (X, Y )| = mm × nn−m.
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Theorem 2.6. If |X| = n and |Y | = m, then

|Reg (T (X, Y ))| =
m∑

r=1

(
m

r

)
r!S(m, r)rn−m.

Proof. Let ∅ 6= Y ′ ⊆ Y and |Y ′| = r. Then the number of maps from Y onto

Y ′ is r!S(m, r). Consequently, the number of maps α from X onto Y ′ such that

Y α = Y ′ is r!S(m, r)rn−m. Hence

|{α ∈ T (X, Y ) | ran α = Y ′ = Y α}| = r!S(m, r)rn−m.

But we have from Theorem 2.1((i) ⇔ (ii)) that

{α ∈ T (X, Y ) | ran α = Y ′ = Y α} = {α ∈ Reg (T (X, Y )) | ran α = Y ′},

so

|{α ∈ Reg (T (X, Y )) | ran α = Y ′}| = r!S(m, r)rn−m.

This implies that for 1 ≤ r ≤ m,

|{α ∈ Reg (T (X, Y )) | |ran α| = r}| =
(

m

r

)
r!S(m, r)rn−m.

Therefore it follows that

|Reg (T (X, Y ))| =
m∑

r=1

(
m

r

)
r!S(m, r)rn−m,

as desired.

Theorem 2.7. If |X| = n and |Y | = m, then

|Reg (T (X, Y ))| =
m∑

r=1

(
m

r

)
r!S(m, r)(n−m + r)n−m.

Proof. Let ∅ 6= Y ′ ⊆ Y and |Y ′| = r. Then the number of maps from Y onto Y ′

is r!S(m, r). Therefore it follows that the number of maps α : X → X such that

Y α = Y ′ and ran α ∩ Y = Y ′ is r!S(m, r)(n −m + r)n−m since |(XrY ) ∪ Y ′| =

|XrY |+ |Y ′| = n−m + r. Hence

|{α ∈ T (X, Y ) | ran α ∩ Y = Y ′ = Y α}| = r!S(m, r)(n−m + r)n−m.
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We have from Theorem 2.3((i) ⇔ (ii)) that

{α ∈ T (X, Y ) | ran α ∩ Y = Y ′ = Y α} = {α ∈ Reg (T (X, Y )) | ran α ∩ Y = Y ′}

which implies that

|{α ∈ Reg (T (X, Y )) | ran α ∩ Y = Y ′}| = r!S(m, r)(n−m + r)n−m.

Consequently, for 1 ≤ r ≤ m,

|{α ∈ Reg (T (X, Y )) | |ran α ∩ Y | = r}| =
(

m

r

)
r!S(m, r)(n−m + r)n−m,

whence

|Reg (T (X, Y ))| =
m∑

r=1

(
m

r

)
r!S(m, r)(n−m + r)n−m.

Example 2.8. Since S(n, r) =
1

r!

r∑
i=0

(−1)i

(
r

i

)
(r − i)n, we have S(3, 1) = 1, S(3, 2)

= 3 and S(3, 3) = 1.

(1) Let |X| = 4 and |Y | = 3. By Theorem 2.6 and Theorem 2.7, we have respec-

tively that

|Reg (T (X, Y ))| =
3∑

r=1

(
3

r

)
r!S(3, r)r

= (3× 1!× 1× 1) + (3× 2!× 3× 2) + (1× 3!× 1× 3)

= 3 + 36 + 18 = 57,

|Reg (T (X, Y ))| =
3∑

r=1

(
3

r

)
r!S(3, r)(1 + r)

= (3× 1!× 1× 2) + (3× 2!× 3× 3) + (1× 3!× 1× 4)

= 6 + 54 + 24 = 84.

Hence

|T (X, Y ) r Reg (T (X,Y ))| = 34 − 57 = 81− 57 = 24,

|T (X, Y ) r Reg (T (X, Y ))| = (33 × 41)− 84 = 108− 84 = 24,
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and so by Corollary 2.5, T (X, Y ) r Reg (T (X, Y )) = T (X, Y ) r Reg (T (X, Y )).

Since |T (X, Y ) r T (X, Y )| = 108 − 81 = 27, we deduce that |Reg (T (X, Y )) ∪

(T (X,Y ) r T (X, Y ))| = 57 + 27 = 84 = |Reg (T (X,Y ))|, so by Corollary 2.5,

we have that Reg (T (X, Y )) = Reg (T (X, Y )) ∪ (T (X, Y ) r T (X, Y )). Therefore

every element in T (X, Y ) r T (X,Y ) is regular in T (X, Y ).

(2) Assume that |X| = 5 and |Y | = 3. Then

|Reg (T (X,Y ))| =
3∑

r=1

(
3

r

)
r!S(3, r)r2

= (3× 1!× 1× 12) + (3× 2!× 3× 22) + (1× 3!× 1× 32)

= 3 + 72 + 54 = 129,

|Reg (T (X,Y ))| =
3∑

r=1

(
3

r

)
r!S(3, r)(2 + r)2

= (3× 1!× 1× 32) + (3× 2!× 3× 42) + (1× 3!× 1× 52)

= 27 + 288 + 150 = 465.

Hence

|T (X,Y ) r Reg (T (X, Y ))| = 35 − 129

= 243− 129 = 114,

|T (X, Y ) r Reg (T (X, Y ))| = (33 × 52)− 465

= 675− 465 = 210,

|T (X, Y ) r T (X, Y )| = 675− 243 = 432,

|Reg (T (X, Y )) ∪ (T (X, Y )rT (X, Y ))| = 129 + (675− 243)

= 129 + 432 = 561.

It follows from Corollary 2.5 that T (X,Y ) r Reg (T (X, Y )) ( T (X, Y ) r Reg

(T (X,Y )) and Reg (T (X, Y )) ( Reg (T (X, Y )) ∪ (T (X, Y ) r T (X, Y )). Since

Reg (T (X,Y )) ⊆ Reg (T (X, Y )), we deduce that there is an element of T (X, Y )r

T (X, Y ) which is not regular in T (X, Y ).



21

From Example 2.8(1), it is natural to ask whether it is true that for a set

X and ∅ 6= Y ⊆ X, if |X r Y | = 1, then Reg (T (X, Y )) = Reg (T (X, Y )) ∪

(T (X,Y ) r T (X,Y )). Also, does the converse hold if Y 6= X and |Y | > 1?

The later question is motivated by Example 2.8(2). The following theorem shows

that these are true in general. Note that by Corollary 2.2 and Corollary 2.4, if

X = Y or |Y | = 1, then both T (X, Y ) and T (X, Y ) are regular which implies that

Reg (T (X, Y )) = Reg (T (X, Y )) ∪ (T (X, Y ) r T (X, Y )).

Theorem 2.9. If |X rY | = 1, then Reg (T (X, Y )) = Reg (T (X,Y ))∪ (T (X, Y )r

T (X, Y )), and the converse holds if Y ( X and |Y | > 1.

Proof. Assume that X r Y = {c} and let α ∈ T (X, Y ) r T (X, Y ) be given. Then

Y α ⊆ Y and Xα * Y . But X = Y ∪{c}, so cα = c. Hence ran α∩Y = (Y ∪{c})α

∩Y = (Y α∪{c})∩Y = Y α∩Y = Y α. By Theorem 2.3, α ∈ Reg (T (X, Y )). Hence

Reg (T (X, Y )) ∪ (T (X, Y ) r T (X, Y )) ⊆ Reg (T (X, Y )). The reverse inclusion is

obtained from Corollary 2.5.

Conversely, let Y ( X and |Y | > 1 and assume that |X r Y | > 1. Let

a, b ∈ X r Y be distinct and c and d be distinct elements of Y . Define α : X → X

by

α =

a b X r {a, b}

c b d

 .

Since Y ⊆ X r {a, b}, Y α = {d} ⊆ Y and ran α = {c, b, d} * Y , we have that

α ∈ T (X,Y ) r T (X, Y ). Also, ran α ∩ Y = {c, d} 6= {d} = Y α. By Theorem 2.3,

α /∈ Reg (T (X,Y )).

Hence the proof is complete.

Remark 2.10. Let X be infinite. We shall give some remarks relating to the

cardinalities of Reg (T (X, Y )) and Reg (T (X, Y )). First, we note that if |Y | = 1,

then |Reg (T (X,Y ))| = |T (X, Y )| = 1. The following three facts are provided.

(i) If |Y | > 1, then |Reg (T (X,Y ))| ≥ 2|X|. To see this, let a and b be distinct
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elements of Y . For any A ∈ P (X r {a, b}) (the power set of X r {a, b}), define

αA : X → X by

αA =

A ∪ {a} X r (A ∪ {a})

a b

 .

Then ran αA = {a, b} = ({a, b})αA = Y αA for every A ∈ P (X r {a, b}), so

{αA | A ∈ P (X r {a, b})} ⊆ Reg (T (X, Y )) by Theorem 2.1. Since for distinct

A, B ∈ P (X r {a, b}), αA 6= αB, it follows that |P (X r {a, b})| ≤ |Reg (T (X, Y ))|.

However, |X| = |X r {a, b}|, so |P (X)| = |P (X r {a, b})|. Therefore it follows

that

|Reg (T (X, Y ))| ≥ |P (X)| = 2|X|.

(ii) If |Y | = |X|, then |Reg (T (X, Y ))| = |T (X)|. To prove this, assume that

|Y | = |X|. Then |T (Y )| = |T (X)| through a map α 7→ ϕ−1αϕ where ϕ : X → Y is

a bijection. For α ∈ T (Y ), define a map α′ : X → X by α′|Y = α and (X rY )α′ ⊆

ran α. Hence for every α ∈ T (Y ), α′ ∈ T (X, Y ) and ran α′ = ran α = Y α′, so

α′ ∈ Reg (T (X,Y )) for all α ∈ T (Y ) by Theorem 2.1. Moreover, α 7→ α′ is an

injective map from T (Y ) into Reg (T (X, Y )), so

|T (X)| ≥ |Reg (T (X, Y ))| ≥ |{α′ | α ∈ T (Y )}| = |T (Y )| = |T (X)|,

and the required result is obtained.

(iii) |Reg (T (X, Y ))| = |T (X)|. If |Y | = |X|, then by (ii), |Reg (T (X, Y ))| =

|T (X)|. Since Reg (T (X, Y )) ⊆ Reg (T (X, Y )) ⊆ T (X,Y ) ⊆ T (X), we have

that |Reg (T (X, Y ))| = |T (X)| when |Y | = |X|. Next, assume that |Y | < |X|.

Then |X| = |X r Y | + |Y | = |X r Y | since X is infinite and |Y | < |X|, and

hence |T (X r Y )| = |T (X)|. For α ∈ T (X r Y ), define a map α : X → X

by α|XrY = α and Y α ⊆ Y . Thus for every α ∈ T (X r Y ), α ∈ T (X, Y ) and

ran α ∩ Y = (ran α ∪ Y α) ∩ Y = Y α. It follows from Theorem 2.3 that

{α | α ∈ T (X r Y )} ⊆ Reg (T (X, Y )). Since α 7→ α is an injective map from
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T (X r Y ) into Reg (T (X, Y )), we have

|T (X)| ≥ |Reg (T (X, Y ))| ≥ |{α | α ∈ T (X r Y )}| = |T (X r Y )| = |T (X)|,

and thus |Reg (T (X, Y ))| = |T (X)|.



CHAPTER III

REGULAR ELEMENTS OF SEMIGROUPS OF LINEAR

TRANSFORMATIONS

In this chapter, we consider the subsemigroups LF (V, W ) and LF (V, W ) of

LF (V ) analogous to the subsemigroups T (X, Y ) and T (X,Y ) of T (X), respec-

tively. Also, the subsemigroup KF (V, W ) of LF (V ) is considered. The regular

elements of these three semigroups are characterized. Such results for LF (V, W )

and KF (V, W ) are then applied to determine the regular elements of the matrix

semigroups Cn(F, k) and Rn(F, k), respectively.

First, we recall the semigroups LF (V, W ), LF (V, W ), KF (V, W ), Cn(F, k) and

Rn(F, k), where W is a subspace of a vector space V over a field F , n, k ∈ N and

k ≤ n, as follows:

LF (V, W ) = {α ∈ LF (V ) | ran α ⊆ W},

LF (V, W ) = {α ∈ LF (V ) | Wα ⊆ W},

KF (V, W ) = {α ∈ LF (V ) | W ⊆ ker α},

Cn(F, k) = {A ∈ Mn(F ) | Aij = 0 for all i, j ∈ {1, . . . , n} and j > k},

Rn(F, k) = {A ∈ Mn(F ) | Aij = 0 for all i, j ∈ {1, . . . , n} and i > k}.

In other words, Cn(F, k) consists of all matrices in Mn(F ) of the form
a11 · · · a1k 0 · · · 0

a21 · · · a2k 0 · · · 0
...

...
...

...

an1 · · · ank 0 · · · 0
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and Rn(F, k) consists of all matrices in Mn(F ) of the form

a11 a12 · · · a1n

...
...

...

ak1 ak2 · · · akn

0 0 · · · 0
...

...
...

0 0 · · · 0


.

Observe that Rn(F, n) = Mn(F ) = Cn(F, n).

Throughout this chapter, let W be a subspace of a vector space V over a field

F , n ∈ N and k ∈ {1, . . . , n}.

Theorem 3.1. For α ∈ LF (V, W ), α ∈ Reg (LF (V, W )) if and only if ran α =

Wα.

Proof. If α = αβα for some β ∈ LF (V, W ), then Wα ⊆ V α = V αβα = (V αβ)α ⊆

Wα, so ran α = Wα.

For the converse, assume that ran α = Wα. Let B1 be a basis of ker α, B2 a basis

of ran α and B3 a basis of V containing B2. Since ran α = Wα, for each element

u ∈ B2, there is an element u′ ∈ W such that u′α = u. Then B1 ∪ {u′ | u ∈ B2} is

a basis of V . Define β ∈ LF (V ) on the basis B3 of V by

β =

u B3 r B2

u′ 0


u∈B2

.

Then ran β = 〈{u′ | u ∈ B2}〉 ⊆ W , so β ∈ LF (V, W ). Since B1αβα = {0} = B1α

and u′αβα = uβα = u′α for all u ∈ B2, we have that α = αβα. Hence α is a

regular element of LF (V, W ), as desired.

Corollary 3.2. The semigroup LF (V, W ) is regular if and only if either W = V

or W = {0}.
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Proof. Assume that {0} ( W ( V . Let B1 be a basis of W and B a basis of V

containing B1. Let w ∈ B1 and define α ∈ LF (V ) by

α =

B1 B r B1

0 w

 .

Then ran α = 〈w〉 ⊆ W and Wα = 〈B1〉α = {0}, thus ran α 6= Wα. Hence

α ∈ LF (V, W ) and by Theorem 3.1, α is not a regular element of LF (V, W ).

Since LF (V, V ) = LF (V ) and LF (V, {0}) = {0}, the converse holds.

Theorem 3.3. For α ∈ LF (V, W ), α ∈ Reg (LF (V, W )) if and only if ran α∩W =

Wα.

Proof. Since Wα ⊆ W , we have Wα ⊆ ran α ∩ W . Assume that α = αβα for

some β ∈ LF (V, W ). If v ∈ ran α ∩W , then v ∈ W and v = uα for some u ∈ V

which imply that

v = uα = uαβα = vβα ∈ Wβα ⊆ Wα.

Hence ran α ∩W = Wα.

Conversely, assume that ran α ∩ W = Wα. Let B1 be a basis of ran α ∩ W ,

B2 ⊆ ran α r B1 and B3 ⊆ W r B1 such that B1 ∪ B2 and B1 ∪ B3 are bases

of ran α and W , respectively. Then B1 ∪ B2 ∪ B3 is a basis of ran α + W . Let

B4 ⊆ V r (B1 ∪ B2 ∪ B3) be such that B1 ∪ B2 ∪ B3 ∪ B4 is a basis of V . Since

B1 ⊆ ran α ∩ W = Wα, for each u ∈ B1, there is an element u′ ∈ W such that

u′α = u. Since B2 ⊆ ran α, for each v ∈ B2, there is an element v ∈ vα−1 such

that vα = v. Define β ∈ LF (V ) on the basis B1 ∪ B2 ∪ B3 ∪ B4 by

β =

u v B3 ∪ B4

u′ v 0


u∈B1
v∈B2

.

It follows that Wβ = 〈B1 ∪ B3〉 β = 〈{u′ | u ∈ B1}〉 ⊆ W , so β ∈ LF (V, W ). Let
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B0 be a basis of ker α. Then B0∪{u′ | u ∈ B1}∪{v | v ∈ B2} is a basis of V . Since

B0αβα = {0} = B0α, u′αβα = uβα = u′α for all u ∈ B1,

vαβα = vβα = vα for all v ∈ B2,

we have α = αβα, so α ∈ Reg (LF (V, W )), as desired.

Corollary 3.4. The semigroup LF (V, W ) is regular if and only if either W = V

or W = {0}.

Proof. Assume that {0} 6= W ( V . Let B1 be a basis of W and B a basis of V

containing B1. Then B1 6= ∅ 6= B r B1. Let w ∈ B1 and u ∈ B r B1. Define

α ∈ LF (V ) by

α =

u B r {u}

w 0

 .

Then Wα = 〈B1〉α ⊆ 〈B r {u}〉α = {0}, so α ∈ LF (V, W ). Since ran α ∩W =

〈w〉 6= {0} = Wα, by Theorem 3.3, we deduce that α is not a regular element of

LF (V, W ). Hence LF (V, W ) is not a regular semigroup.

Since LF (V, V ) = LF (V ) = LF (V, {0}), the converse holds.

Theorem 3.5. For α ∈ KF (V, W ), α ∈ Reg (KF (V, W )) if and only if ran α ∩W

= {0}.

Proof. Assume that α = αβα for some β ∈ KF (V, W ). If v ∈ ran α∩W , then v ∈

W and v = uα for some u ∈ V , and hence v = uα = uαβα = vβα ∈ Wβα = {0}.

This shows that ran α ∩W = {0}.

Conversely, assume that ran α ∩ W = {0}. Let B1 be a basis of ker α, B2 a

basis of ran α and B3 a basis of W . Since ran α∩W = {0}, we have that B2∪B3 is

a basis of ran α + W . Let B4 be a basis of V containing B2 ∪B3. For each element

u ∈ B2, let u′ ∈ V be such that u′α = u. Then B1 ∪ {u′ | u ∈ B2} is a basis of V .

Define β ∈ LF (V ) by

β =

u B4 r B2

u′ 0


u∈B2

.
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Since B3 ⊆ B4 r B2, it follows that Wβ = 〈B3〉 β = {0}, so β ∈ KF (V, W ).

Moreover, B1αβα = {0} = B1α and u′αβα = uβα = u′α for all u ∈ B2. Hence we

have α = αβα, so α is a regular element of KF (V, W ).

Corollary 3.6. The semigroup KF (V, W ) is regular if and only if either W = V

or W = {0}.

Proof. Assume that {0} ( W ( V . Let B1, B, w, u and α ∈ LF (V ) be as in

Corollary 3.4. Since Wα = {0}, we have α ∈ KF (V, W ). Also, ran α ∩ W =

〈w〉 ∩W = 〈w〉 6= {0}. By Theorem 3.5, α is not a regular element of KF (V, W ).

The converse holds since KF (V, V ) = {0} and KF (V, {0}) = LF (V ).

To characterize the regular elements of Cn(F, k) and Rn(F, k) by Theorem 3.1

and Theorem 3.5, respectively, some lemmas are needed.

Let V ∗ and V ∗∗ be the dual space and the double dual space of V , respectively.

For A ⊆ V , the annihilator of A is denoted by A0, that is,

A0 = {f ∈ V ∗ | f(v) = 0 for all v ∈ A}

and let A00 = (A0)0, that is,

A00 = {T ∈ V ∗∗ | T (f) = 0 for all f ∈ A0}.

For (x1, . . . , xn) ∈ F n, define h(x1,...,xn) : F n → F by

h(x1,...,xn)(t1, . . . , tn) = t1x1 + · · ·+ tnxn for all (t1, . . . , tn) ∈ F n.

Then we have

(F n)∗ =
{
h(x1,...,xn) | (x1, . . . , xn) ∈ F n

}
(I)

([5], page 149). For x ∈ F n, define Tx : (F n)∗ → F by

Tx(f) = f(x) for all x ∈ F n.

Then
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(F n)∗∗ = {Tx | x ∈ F n} and

Tx 6= Ty for all distinct x, y ∈ F n (II)

([5], page 147). If U is a subspace of F n, then

U00 = {Tu | u ∈ U} (III)

([5], page 148–149). Note that if A1 and A2 are subsets of F n such that A1 ⊆ A2,

then A0
1 ⊇ A0

2 and A00
1 ⊆ A00

2 .

Lemma 3.7. Let (a11, . . . , a1n), . . . , (am1, . . . , amn), (b1, . . . , bn) be elements of F n.

Then the following two conditions are equivalent.

(i) (b1, . . . , bn) ∈ 〈(a11, . . . , a1n), . . . , (am1, . . . , amn)〉.

(ii) For every (x1, . . . , xn) ∈ F n, ai1x1 + · · ·+ ainxn = 0 for all i ∈ {1, . . . ,m},

then b1x1 + · · ·+ bnxn = 0.

Proof. Let U1 = 〈(a11, . . . , a1n), . . . , (am1, . . . , amn)〉 and U2 = 〈(b1, . . . , bn)〉.

Assume that (i) holds. Then U2 ⊆ U1 which implies that U0
2 ⊇ U0

1 . Let

(x1, . . . , xn) ∈ F n be such that ai1x1 + · · ·+ ainxn = 0 for all i ∈ {1, . . . ,m}. Then

h(x1,...,xn)(ai1, . . . , ain) = 0 for all i ∈ {1, . . . ,m}.

It follows that h(x1,...,xn) ∈ U0
1 . But U0

1 ⊆ U0
2 , so h(x1,...,xn)(b1, . . . , bn) = 0, that is,

b1x1 + · · ·+ bnxn = 0. Hence (ii) holds.

To show that (ii) implies (i), assume that (ii) holds. Then we have that for every

(x1, . . . , xn) ∈ F n, h(x1,...,xn) ∈ 〈{(a11, . . . , a1n), . . . , (am1, . . . , amn)}〉0 implies that

h(x1,...,xn) ∈ 〈{(b1, . . . , bn)}〉0. It follows from (I) that U0
1 ⊆ U0

2 . Then U00
2 ⊆ U00

1 .

Hence by (III),

{Tx | x ∈ U2} = U00
2 ⊆ U00

1 = {Tx | x ∈ U1}.

By (II), we deduce that U2 ⊆ U1, so (i) holds.

For a matrix A ∈ Mn(F ), define gA : F n → F n by

XgA = XA for all X ∈ F n.
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Clearly, gA ∈ LF (F n) for all A ∈ Mn(F ). Let {e1, . . . , en} be the standard basis of

F n over F . Therefore we have

eigA = (Ai1, . . . , Ain) for all i ∈ {1, . . . , n} and A ∈ Mn(F ). (IV)

Lemma 3.8. The mapping ϕ : Mn(F ) → LF (F n) defined by Aϕ = gA for all

A ∈ Mn(F ) is an isomorphism from Mn(F ) onto LF (F n).

Proof. It is clear that ϕ is a homomorphism. It follows from (IV) that ϕ is 1-1. If

α ∈ LF (F n), then define A ∈ Mn(F ) by

(Ai1, . . . , Ain) = eiα for all i ∈ {1, . . . , n}.

Then by (IV), eigA = eiα for all i ∈ {1, . . . , n}, and thus Aϕ = gA = α. Hence the

lemma is proved.

Lemma 3.9. Let U1 and U2 be subspaces of F n spanned by {e1, . . . , ek} and

{ek+1, . . . , en}, respectively. Then

(i) LF (F n, U1) = {gA | A ∈ Cn(F, k)} and

(ii) KF (F n, U2) = {gA | A ∈ Rn(F, k)}.

Proof. We have from the definitions of U1 and U2 that

U1 = {(x1, . . . , xk, 0, . . . , 0) | x1, . . . , xk ∈ F}

and

U2 =

{(0, . . . , 0)} if k = n,

{(0, . . . , 0, xk+1, . . . , xn) | xk+1, . . . , xn ∈ F} if k < n.

(i) For A ∈ Mn(F ),

gA ∈ LF (F n, U1) ⇔ ran gA ⊆ U1

⇔ (Ai1, . . . , Ain) ∈ U1 for all i ∈ {1, . . . , n} from (IV)

⇔ Aij = 0 for all i, j ∈ {1, . . . , n} with j > k

⇔ A ∈ Cn(F, k).
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Hence by Lemma 3.8, (i) holds.

(ii) If k = n, then KF (F n, U2) = LF (F n) and Rn(F, k) = Mn(F ), so (ii) holds

by Lemma 3.8. Next, assume that k < n. Then for A ∈ Mn(F ),

gA ∈ KF (F n, U2) ⇔ U2 ⊆ ker gA

⇔ U2gA = {(0, . . . , 0)}

⇔ eigA = (0, . . . , 0) for all i ∈ {k + 1, . . . , n}

⇔ (Ai1, . . . , Ain) = (0, . . . , 0)

for all i ∈ {k + 1, . . . , n} from (IV)

⇔ A ∈ Rn(F, k).

Hence (ii) holds by Lemma 3.8.

Theorem 3.10. For A ∈ Cn(F, k), A is regular in Cn(F, k) if and only if for any

x1, . . . , xk ∈ F ,

Ai1x1 + · · ·+ Aikxk = 0 for all i ∈ {1, . . . , k}

⇒ Ai1x1 + · · ·+ Aikxk = 0 for all i ∈ {k + 1, . . . , n},
(1)

that is, for any (x1, . . . , xk) ∈ F k,
A11 · · · A1k

...
. . .

...

Ak1 · · · Akk




x1

...

xk

 =


0
...

0

 ⇒


Ak+1,1 · · · Ak+1,k

...
. . .

...

An1 · · · Ank




x1

...

xk

 =


0
...

0

 .

Proof. Let U be the subspace of F n spanned by {e1, . . . , ek}. Then by Lemma 3.8

and Lemma 3.9(i), Cn(F, k) ∼= LF (F n, U) through the mapping A 7→ gA.

Let A ∈ Cn(F, k). Since Aij = 0 for all i, j ∈ {1, . . . , n} with j > k, by (IV),

we have

ran gA = 〈(A11, . . . , A1k, 0, . . . , 0), . . . , (An1, . . . , Ank, 0, . . . , 0)〉 ,

UgA = 〈(A11, . . . , A1k, 0, . . . , 0), . . . , (Ak1, . . . , Akk, 0, . . . , 0)〉 .
(2)
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Hence

A ∈ Reg (Cn(F, k)) ⇔ gA ∈ Reg (LF (F n, U))

⇔ ran gA = UgA from Theorem 3.1

⇔ (Ai1, . . . , Aik, 0, . . . , 0)

∈ 〈(A11, . . . , A1k, 0, . . . , 0), . . . , (Ak1, . . . , Akk, 0, . . . , 0)〉

for all i ∈ {k + 1, . . . , n} from (2)

⇔ (Ai1, . . . , Aik) ∈ 〈(A11, . . . , A1k), . . . , (Ak1, . . . , Akk)〉 in F k

for all i ∈ {k + 1, . . . , n}

⇔ (1) holds from Lemma 3.7.

Therefore the theorem is proved.

The following two corollaries are direct consequences of Theorem 3.10.

Corollary 3.11. If A ∈ Cn(F, k) is of the form

a11 · · · a1k 0 · · · 0
...

. . .
...

...
. . .

...

ak1 · · · akk 0 · · · 0

0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 0


,

then A is regular in Cn(F, k).

We note here that if S consists of all matrices A ∈ Mn(F ) of the form given in

Corollary 3.11, then S is a subsemigroup of Mn(F ) contained in Cn(F, k) and

S ∼= Mk(F ). This implies that S is a regular subsemigroup of Cn(F, k).
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Corollary 3.12. Let k < n and A ∈ Cn(F, k) be of the form

0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 0

ak+1,1 · · · ak+1,k 0 · · · 0
...

. . .
...

...
. . .

...

an1 · · · ank 0 · · · 0


.

Then A is regular in Cn(F, k) if and only if A is a zero matrix.

Also, as a consequence of Theorem 3.12, Cn(F, k) is a regular semigroup only

in the case that k = n, or equivalently, Cn(F, k) = Mn(F ).

Corollary 3.13. The semigroup Cn(F, k) is a regular semigroup if and only if

k = n.

Proof. Assume that k < n. Define A ∈ Mn(F ) by

A =


0 0 · · · 0
...

...
. . . 0

0 0 · · · 0

1 0 · · · 0

 .

Then A ∈ Cn(F, k). Since k < n, by Corollary 3.12, A is not regular in Cn(F, k).

Since Cn(F, n) = Mn(F ), the converse holds.

Theorem 3.14. For A ∈ Rn(F, k), A is regular in Rn(F, k) if and only if for any

x1, . . . , xk ∈ F ,

A1jx1 + · · ·+ Akjxk = 0 for all j ∈ {1, . . . , k}

⇒ A1jx1 + · · ·+ Akjxk = 0 for all j ∈ {k + 1, . . . , n},
(1)



34

that is, for any (x1, . . . , xk) ∈ F k,

[
x1 · · · xk

] 
A11 · · · A1k

...
. . .

...

Ak1 · · · Akk

 =
[
0 · · · 0

]

⇒
[
x1 · · · xk

] 
A1,k+1 · · · A1n

...
. . .

...

Ak,k+1 · · · Akn

 =
[
0 · · · 0

]
.

Proof. This is true if k = n since Rn(F, n) = Mn(F ). Assume that k < n and U

is a subspace of F n spanned by {ek+1, . . . , en}. By Lemma 3.8 and Lemma 3.9(ii),

Rn(F, k) ∼= KF (F n, U) by A 7→ gA. Note that

U = {(0, . . . , 0, xk+1, . . . , xn) | xk+1, . . . , xn ∈ F}. (2)

Let A ∈ Rn(F, k). Then Aij = 0 for all i, j ∈ {1, . . . , n} with i > k and

A ∈ Reg (Rn(F, k)) ⇔ gA ∈ Reg (KF (F n, U))

⇔ ran gA ∩ U = {(0, . . . , 0)} from Theorem 3.5,

Thus to prove the theorem, it suffices to show that ran gA ∩ U = {(0, . . . , 0)}

if and only if (1) holds. First, assume that ran gA ∩ U = {(0, . . . , 0)} and let

x1, . . . , xk ∈ F be such that A1jx1 + · · ·+ Akjxk = 0 for all j ∈ {1, . . . , k}. Then

(x1, . . . , xk, 0, . . . , 0)gA

= (x1, . . . , xk, 0, . . . , 0)A

= (A11x1 + · · ·+ Ak1xk, . . . , A1nx1 + · · ·+ Aknxk)

= (0, . . . , 0, A1,k+1x1 + · · ·+ Ak,k+1xk, . . . , A1nx1 + · · ·+ Aknxk)

∈ ran gA ∩ U = {(0, . . . , 0)} from (2).

This implies that A1jx1 + · · ·+ Akjxk = 0 for all j ∈ {k + 1, . . . , n}.

Conversely, assume that (1) holds. Let (y1, . . . , yn) ∈ ran gA ∩ U . Then

yj = 0 for all j ∈ {1, . . . , k} by (2) and (y1, . . . , yn) = (a1, . . . , an)gA for some
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(a1, . . . , an) ∈ F n. It follows that A1ja1 + · · · + Akjak = yj for all j ∈ {1, . . . , n}.

Then A1ja1 + · · ·+Akjak = 0 for all j ∈ {1, . . . , k}. By (1), A1ja1 + · · ·+Akjak = 0

for all j ∈ {k + 1, . . . , n}. Thus (y1, . . . , yn) = (0, . . . , 0). This shows that

ran gA ∩ U = {(0, . . . , 0)}.

Therefore the proof is complete.

From Theorem 3.14, we clearly have the next two corollaries.

Corollary 3.15. If A ∈ Rn(F, k) is of the form

a11 · · · a1k 0 · · · 0
...

. . .
...

...
. . .

...

ak1 · · · akk 0 · · · 0

0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 0


,

then A is regular in Rn(F, k).

Corollary 3.16. Let k < n and A ∈ Rn(F, k) be of the form

0 · · · 0 a1,k+1 · · · a1,n

...
. . .

...
...

. . .
...

0 · · · 0 ak,k+1 · · · akn

0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 0


.

Then A is regular in Rn(F, k) if and only if A is a zero matrix.

Corollary 3.17. The semigroup Rn(F, k) is a regular semigroup if and only if

k = n.
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Proof. If k < n, then by Corollary 3.16,

A =


0 0 · · · 1

0 0 · · · 0
...

...
. . . 0

0 0 · · · 0


is a nonregular element of Rn(F, k).

If k = n, then Rn(F, k) = Mn(F ). Therefore the converse holds.

Remark 3.18. In our presentation, we applied Theorem 3.1 and Theorem 3.5

to obtain Theorem 3.10 and Theorem 3.14, respectively. In fact, Theorem 3.10

implies Theorem 3.14 and the converse is also true. It follows from the following

facts:

(i) If the semigroups S1 and S2 are anti-isomorphic, that is, there is a bijection

ϕ : S1 → S2 such that (xy)ϕ = (yϕ)(xϕ) for all x, y ∈ S1, it is clearly that

Reg (S2) = (Reg (S1)) ϕ.

(ii) The mapping A 7→ At, the transpose of A, from Cn(F, k) [Rn(F, k)] into

Rn(F, k) [Cn(F, k)] is clearly an anti-isomorphism.

Example 3.19. Consider the matrices A and B over R defined by

A =


1 1 0

0 0 0

0 2 0

 and B =


0 1 1 0

3 2 1 0

0 0 0 0

0 0 0 0

 .

If we consider A ∈ C3(R, 2), then A is not a regular element of C3(R, 2) by Theorem

3.10 since A11(1)+A12(−1) = 0 = A21(1)+A22(−1) and A31(1)+A32(−1) = −2 6=

0. Consider B as an element of C4(R, 3) and R4(R, 2). By Corollary 3.11, B ∈

Reg (C4(R, 3)). To show that B ∈ Reg (R4(R, 2)) by Theorem 3.14, let x1, x2 ∈ R

be such that B11x1 + B21x2 = 0 = B12x1 + B22x2. Then 3x2 = 0 = x1 + 2x2 which

implies that x1 = x2 = 0, so B13x1 + B23x2 = 0 = B14x1 + B24x2.



CHAPTER IV

THE BQ-PROPERTY OF SEMIGROUPS OF

TRANSFORMATIONS OF SETS

The BQ-property of the semigroups of T (X, Y ) and T (X, Y ) are considered

in this chapter. The characterizations of T (X, Y ) and T (X,Y ) to have the BQ-

property will provide some examples of BQ-semigroups which are not regular.

Recall that the semigroups T (X, Y ) and T (X, Y ), where Y is a nonempty

subset of a set X, are defined as follows:

T (X, Y ) = {α ∈ T (X) | ran α ⊆ Y },

T (X, Y ) = {α ∈ T (X) | Y α ⊆ Y }.

Throughout this chapter, let X be a nonempty set and ∅ 6= Y ⊆ X.

We first show that the semigroup T (X, Y ) always has the BQ-property.

Lemma 4.1. If B is a bi-ideal of a regular semigroup S, then B has the BQ-

property.

Proof. Since B is a bi-ideal of S, we have BSB ⊆ B. Let A be a bi-deal of B.

Then ABA ⊆ A. To show that A is a quasi-ideal of B, let x ∈ AB ∩BA. Since S

is regular, x = xyx for some y ∈ S. These imply that

x = xyx ∈ ABSBA ⊆ ABA ⊆ A.

Hence AB ∩ BA ⊆ A. This proves that every bi-ideal of B is a quasi-ideal of B.

Hence B has the BQ-property.

Lemma 4.2. The semigroup T (X, Y ) is a left ideal of T (X).
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Proof. Since ran (βα) ⊆ ran α for all α, β ∈ T (X), it follows that T (X)T (X,Y ) ⊆

T (X, Y ). Hence T (X, Y ) is a left ideal of T (X).

Theorem 4.3. The semigroup T (X, Y ) always has the BQ-property.

Proof. Since T (X, Y ) is a left ideal of T (X) by Lemma 4.2, T (X, Y ) is a bi-ideal

of T (X). But since T (X) is a regular semigroup, by Lemma 4.1, T (X, Y ) has the

BQ-property.

To characterize when T (X, Y ) is a BQ-semigroup, Proposition 1.2, Proposition

1.5, Proposition 1.9 and Corollary 2.4 and the following three lemmas are needed.

Lemma 4.4. Let S be a semigroup. If ∅ 6= A ⊆ Reg (S), then (A)b = (A)q.

Proof. We know that (A)b ⊆ (A)q. Let x ∈ (A)q. By Proposition 1.2(i), x = sa =

bt for some s, t ∈ S1 and a, b ∈ A. Since a ∈ Reg (S), a = aa′a for some a′ ∈ S.

Then

x = sa = saa′a = bta′a ∈ ASA ⊆ (A)b

by Proposition 1.2(ii). Hence we have (A)b = (A)q, as desired.

Lemma 4.5. Let S be a semigroup, ∅ 6= A ⊆ S and B ⊆ Reg (S). If (A)b = (A)q,

then (A ∪B)b = (A ∪B)q.

Proof. We first show that S1A∩BS1 and S1B ∩AS1 are subsets of (A∪B)b. Let

x ∈ S1A ∩ BS1. Then x = sa = bt for some s, t ∈ S1, a ∈ A and b ∈ B. Since

b ∈ Reg (S), b = bb′b for some b′ ∈ S. It follows that

x = bt = bb′bt = bb′sa ∈ BSA ⊆ (A ∪B)S(A ∪B) ⊆ (A ∪B)b.

This shows that S1A∩BS1 ⊆ (A∪B)b. It can be shown similarly that S1B∩AS1 ⊆

(A ∪B)b. Consequently,

(A ∪B)q = S1(A ∪B) ∩ (A ∪B)S1

= (S1A ∪ S1B) ∩ (AS1 ∪BS1)

= (S1A ∩ AS1) ∪ (S1A ∩BS1) ∪ (S1B ∩ AS1) ∪ (S1B ∩BS1)
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= (A)q ∪ (S1A ∩BS1) ∪ (S1B ∩ AS1) ∪ (B)q

= (A)b ∪ (S1A ∩BS1) ∪ (S1B ∩ AS1) ∪ (B)b

from the assumption and Lemma 4.4

⊆ (A)b ∪ (A ∪B)b ∪ (A ∪B)b ∪ (B)b

= (A ∪B)b.

But (A ∪B)b ⊆ (A ∪B)q, so (A ∪B)b = (A ∪B)q.

Lemma 4.6. If |X| = 3 and |Y | = 2, then for all α, β ∈ T (X, Y ), (α, β)b = (α, β)q

in T (X,Y ).

Proof. For convenience, let Xa denote the constant map whose domain and range

are X and {a}, respectively.

Assume that X = {a, b, c} and Y = {a, b}. Clearly,

T (X,Y ) =
{

1X , Xa, Xb,

a b c

a a b

 ,

a b c

a a c

 ,

a b c

b b a

 ,

a b c

b b c

 ,

a b c

a b a

 ,

a b c

a b b

 ,

a b c

b a a

 ,

a b c

b a b

 ,

a b c

b a c

}
.

By Theorem 2.3((i)⇔ (ii)),

T (X, Y ) r Reg (T (X, Y )) =
{a b c

a a b

 ,

a b c

b b a

}
.

Let

λ =

a b c

a a b

 and η =

a b c

b b a

 .

Note that λ2 = Xa = ηλ and η2 = Xb = λη. To show that (α, β)b = (α, β)q for

all α, β ∈ T (X, Y ), by Lemma 4.5, it suffices to show that (λ)b = (λ)q, (η)b = (η)q
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and (λ, η)b = (λ, η)q. By direct multiplication, we have

T (X, Y )λ = {λ, Xa}, λT (X, Y ) = {λ, Xa, Xb, η}, λT (X, Y )λ = {Xa},

T (X, Y )η = {η, Xb}, ηT (X, Y ) = {η, Xa, Xb, λ}, ηT (X, Y )η = {Xb},

λT (X, Y )η = {Xb}, ηT (X, Y )λ = {Xa}.

Hence

(λ)b = λT (X, Y )λ ∪ {λ} = {Xa, λ} = T (X, Y )λ ∩ λT (X, Y ) = (λ)q,

(η)b = ηT (X, Y )η ∪ {η} = {Xb, η} = T (X,Y )η ∩ ηT (X,Y ) = (η)q,

(λ, η)b = {λ, η}T (X,Y ){λ, η} ∪ {λ, η}

= λT (X,Y )λ ∪ λT (X,Y )η ∪ ηT (X,Y )λ ∪ ηT (X, Y )η ∪ {λ, η}

= {Xa, Xb, λ, η},

(λ, η)q = T (X, Y ){λ, η} ∩ {λ, η}T (X, Y )

= (T (X, Y )λ ∪ T (X, Y )η) ∩ (λT (X,Y ) ∪ ηT (X, Y ))

= {λ, Xa, η,Xb} = (λ, η)b.

Theorem 4.7. The semigroup T (X, Y ) has the BQ-property if and only if one of

the following statements holds.

(i) Y = X.

(ii) |Y | = 1.

(iii) |X| ≤ 3.

Proof. Assume that (i), (ii) and (iii) are false. Then X r Y 6= ∅, |Y | > 1 and

|X| > 3.

Case 1 : |Y | = 2. Let Y = {a, b}. Since |X| > 3, |X r Y | > 1. Let c ∈ X r Y .
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Then X r {a, b, c} 6= ∅. Define α, β, γ ∈ T (X, Y ) by

α =

a b c X r {a, b, c}

b b a c

 , β =

c x

a x


x∈Xr{c}

,

γ =

a b X r {a, b}

b b c

 .

Then

aαβ = b = aγα, bαβ = b = bγα, cαβ = a = cγα

and

(X r {a, b, c})αβ = {a} = (X r {a, b, c})γα 6= (X r {a, b, c})α,

so α 6= αβ = γα ∈ (α)q by Proposition 1.2(i). If αβ ∈ (α)b, then by Proposition

1.2(ii), αβ = αηα for some η ∈ T (X, Y ). Hence we have

a = cαβ = cαηα = (aη)α.

This implies that aη = c which is contrary to a ∈ Y and c ∈ X r Y . Thus

(α)b 6= (α)q, so by Proposition 1.9, T (X, Y ) does not have the BQ-property.

Case 2 : |Y | > 2. Let a, b, c be distinct elements of Y . Let α, β, γ ∈ T (X, Y ) be

defined by

α =

a Y r {a} X r Y

b a c

 , β =

a b x

b a x


x∈Xr{a,b}

,

γ =

a Y r {a} x

c a x


x∈XrY

.

Then

aαβ = a = aγα 6= aα, (Y r {a})αβ = {b} = (Y r {a})γα

and

(X r Y )αβ = {c} = (X r Y )γα.
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Thus α 6= αβ = γα ∈ (α)q. If αβ ∈ (α)b, then αβ = αηα for some η ∈ T (X, Y ).

Therefore we have that for every x ∈ X r Y ,

c = xαβ = xαηα = (cη)α

which implies that cη ∈ XrY . It is a contradiction since c ∈ Y . Hence (α)b 6= (α)q,

and so by Proposition 1.9, T (X, Y ) does not have the BQ-property.

If Y = X or |Y | = 1, then T (X,Y ) is regular by Corollary 2.4 which implies

by Proposition 1.5 that T (X, Y ) has the BQ-property. If |X| = 3 and |Y | = 2,

then by Lemma 4.6 and Proposition 1.9, T (X, Y ) has the BQ-property.

Hence the theorem is proved.

Two direct consequences of Proposition 1.5, Corollary 2.4, Theorem 4.7 and

the proof of Lemma 4.6 are as follows :

Corollary 4.8. If |X| 6= 3, then the following statements are equivalent.

(i) T (X,Y ) is a BQ-semigroup.

(ii) Y = X or |Y | = 1.

(iii) T (X, Y ) is a regular semigroup.

Corollary 4.9. The semigroup T (X,Y ) is a nonregular BQ-semigroup if and only

if |X| = 3 and |Y | = 2. Hence for each set X with |X| = 3, there are exactly 3 semi-

groups T (X, Y ) which are nonregular BQ-semigroups, and each of such T (X, Y )

contains 12 elements.

Remark 4.10. (i) From Corollary 2.2 and Theorem 4.3, we have that for |Y | > 1

and Y ( X, T (X, Y ) is a BQ-semigroup but not a regular semigroup.

(ii) By Lemma 4.2, T (X,Y ) is a left ideal of T (X). But for α ∈ T (X,Y ) and

β ∈ T (X, Y ), Xαβ ⊆ Y β ⊆ Y , so T (X, Y ) is an ideal of T (X, Y ). We have that

1X ∈ T (X, Y ) r T (X,Y ) if Y 6= X. Hence if Y 6= X, then T (X, Y ) is neither

left nor right simple. Therefore we deduce from Corollary 4.9 that if |X| = 3 and

|Y | = 2, then T (X,Y ) is an example of BQ-semigroup which is neither regular nor

left [right] simple (see Proposition 1.5 and Proposition 1.6).



CHAPTER V

THE BQ-PROPERTY OF SEMIGROUPS OF LINEAR

TRANSFORMATIONS

In this chapter, the semigroups LF (V, W ), LF (V, W ) and KF (V, W ) are stud-

ied. We have similarly to T (X, Y ) that LF (V, W ) always has the BQ-property.

Moreover, KF (V, W ) has also the BQ-property. However, the characterization of

LF (V, W ) to have the BQ-property also depends on the field F .

Throughout this chapter, let V be a vector space over a field F and W a

subspace of V . Recall that

LF (V, W ) = {α ∈ LF (V ) | ran α ⊆ W},

LF (V, W ) = {α ∈ LF (V ) | Wα ⊆ W},

KF (V, W ) = {α ∈ LF (V ) | W ⊆ ker α}.

By the same proof given for Lemma 4.2, we have

Lemma 5.1. The semigroup LF (V, W ) is a left ideal of LF (V ).

Lemma 5.2. The semigroup KF (V, W ) is a right ideal of LF (V ).

Proof. Since W ⊆ ker α ⊆ ker αβ for all α ∈ KF (V, W ) and β ∈ LF (V ), it follows

that KF (V, W )LF (V ) ⊆ KF (V, W ). Hence KF (V, W ) is a right ideal of LF (V ).

Hence Lemma 4.1, Lemma 5.1 and Lemma 5.2 yield the following results.

Theorem 5.3. The semigroup LF (V, W ) always has the BQ-property.

Theorem 5.4. The semigroup KF (V, W ) always has the BQ-property.
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Let n ∈ N, {e1, . . . , en} be the standard basis of F n over F , U1 and U2 subspaces

of F n spanned by {e1, . . . , ek} and {ek+1, . . . , en}, respectively. By Lemma 3.8 and

Lemma 3.9, we have

Cn(F, k) ∼= LF (F n, U1) and Rn(F, k) ∼= KF (F n, U2)

where for k ∈ N and k ≤ n,

Cn(F, k) = {A ∈ Mn(F ) | Aij = 0 for all i, j ∈ {1, . . . , n} and j > k},

Rn(F, k) = {A ∈ Mn(F ) | Aij = 0 for all i, j ∈ {1, . . . , n} and i > k}.

From these facts, Theorem 5.3 and Theorem 5.4, we obtain the following corollary.

Corollary 5.5. For n, k ∈ N with k ≤ n, the semigroups Cn(F, k) and Rn(F, k)

have the BQ-property.

To prove the main theorem, the following lemma is also needed. Lemma 4.5

and Theorem 3.3 are used in the course of its proof.

Lemma 5.6. If F = Z2, dimF V = 2 and dimF W = 1, then for all α, β ∈

LF (V, W ), (α, β)b = (α, β)q in LF (V, W ).

Proof. Let {w} be a basis of W and {w, u} a basis of V . Since F = Z2, it follows

that W = {0, w} and V = {0, w, u, u+w}. Clearly, both {u, u+w} and {w, u+w}

are also bases of V . Thus 〈w〉 ∩ 〈u〉 = 〈w〉 ∩ 〈u + w〉 = 〈u〉 ∩ 〈u + w〉 = {0}. All

the elements of LF (V, W ) defined on the basis {w, u} of V can be given as follows:

LF (V, W ) =
{

0, 1V ,

w u

0 w

 ,

w u

0 u

 ,

w u

0 w + u

 ,

w u

w 0

 ,

w u

w w

 ,

w u

w w + u

}
By Theorem 3.3,

LF (V, W ) r Reg (LF (V, W )) =
{w u

0 w

}
.
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Let λ =

w u

0 w

. Note that λ2 = 0. To prove the lemma, by Lemma 4.5, it suffices

to show that (λ)b = (λ)q. By direct multiplication, we have

LF (V, W )λ = {0, λ}, λLF (V, W ) = {0, λ}, λLF (V, W )λ = {0}.

Consequently,

(λ)b = λLF (V, W )λ ∪ {λ} = {0, λ} = LF (V, W )λ ∩ λLF (V, W ) = (λ)q.

Theorem 5.7. The semigroup LF (V, W ) has the BQ-property if and only if one

of the following statements holds.

(i) W = V .

(ii) W = {0}.

(iii) F = Z2, dimF V = 2 and dimF W = 1.

Proof. Assume that (i), (ii) and (iii) are false. Then (1) {0} 6= W ( V and (2)

F 6= Z2, dimF V > 2 or dimF W > 1. Let B1 be a basis of W and B a basis of V

containing B1. Then B1 6= ∅ and B r B1 6= ∅.

Case 1 : F 6= Z2. Let a ∈ F r {0, 1}, w ∈ B1 and u ∈ B r B1. Define α, β, γ ∈

LF (V, W ) by

α =

u B r {u}

w 0

 , β =

 w B r {w}

aw 0

 , γ =

 u B r {u}

au 0

 .

Then we have

αβ =

 u B r {u}

aw 0

 = γα.

Since a 6= 1, we have αβ 6= α. By Proposition 1.2(i), αβ ∈ (α)q. Suppose that

αβ ∈ (α)b. By Proposition 1.2(ii), αβ = αηα for some η ∈ LF (V, W ). Then

aw = uαβ = uαηα = (wη)α.
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But

wη ∈ W and Wα = 〈B1〉α ⊆ 〈B r {u}〉α = {0},

so aw = 0 which is contrary to a 6= 0. Thus (α)q 6= (α)b, so LF (V, W ) does not

have the BQ-property by Proposition 1.9.

Case 2 : dimF W > 1. Then |B1| > 1. Let w1, w2 ∈ B1 be such that w1 6= w2 and

u ∈ B r B1. Define α, β, γ ∈ LF (V, W ) by

α =

w1 u B r {w1, u}

w2 w1 0

 , β =

w1 B r {w1}

w1 0

 , γ =

u B r {u}

u 0

 .

Then we have

αβ =

 u B r {u}

w1 0

 = γα 6= α,

so αβ ∈ (α)q. If αβ ∈ (α)b, then αβ = αηα for some η ∈ LF (V, W ). Thus

w1 = uαβ = uαηα = (w1η)α.

Since w1η ∈ W = 〈B1〉, we have

w1η = aw1 + v for some a ∈ F and v ∈ 〈B1 r {w1}〉 .

But B1 r {w1} ⊆ B r {w1, u}, so vα = 0. Consequently, w1 = (aw1 + v)α = aw2

which is contrary to the independence of w1 and w2. By Proposition 1.9, LF (V, W )

does not have the BQ-property.

Case 3 : dimF V > 2 and dimF W = 1. Then |B1| = 1 and |B r B1| > 1. Let

B1 = {w} and u1, u2 ∈ B r B1 be such that u1 6= u2. Let α, β, γ ∈ LF (V, W ) be

defined by

α =

u1 u2 B r {u1, u2}

w u1 0

 , β =

w B r {w}

w 0

 , γ =

u1 B r {u1}

u1 0

 .

Then we have

αβ =

u1 B r {u1}

w 0

 = γα 6= α,
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so αβ ∈ (α)q. Suppose that αβ ∈ (α)b. It follows that αβ = αηα for some

η ∈ LF (V, W ). Thus

w = u1αβ = u1αηα = (wη)α.

But

wη ∈ W = 〈w〉 and wα = 0,

so w = (wη)α = 0, a contradiction. Hence (α)q 6= (α)b, so LF (V, W ) does not have

the BQ-property, as before.

For the converse, if (i) or (ii) holds, then LF (V, W ) = LF (V ) which has the

BQ-property by Proposition 1.5. If (iii) holds, then LF (V, W ) has the BQ-property

by Proposition 1.9 and Lemma 5.6.

The following corollaries follow directly from Proposition 1.5, Corollary 3.4,

Theorem 5.7 and the proof of Lemma 5.6.

Corollary 5.8. If F 6= Z2, dimF V 6= 2 or dimF W 6= 1, then the following

statements are equivalent.

(i) LF (V, W ) is a BQ-semigroup.

(ii) W = V or W = {0}.

(iii) LF (V, W ) is a regular semigroup.

Corollary 5.9. The semigroup LF (V, W ) is a nonregular BQ-semigroup if and

only if F = Z2, dimF V = 2 and dimF W = 1. Hence if F = Z2 and dimF V = 2,

there are exactly 3 semigroups LF (V, W ) which are nonregular BQ-semigroups,

and each of such LF (V, W ) contains 8 elements.

Remark 5.10. (i) By Corollary 3.2, Corollary 3.6, Theorem 5.3 and Theorem 5.4,

we have that if {0} 6= W ( V , then LF (V, W ) and KF (V, W ) are BQ-semigroups

which are not regular.

(ii) By Corollary 3.13, Corollary 3.17 and Corollary 5.5, we have that if k < n,

then Cn(F, k) and Rn(F, k) are BQ-semigroups which are not regular.
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(iii) We also have that LF (V, W ) is an ideal of LF (V, W ) (see Remark 4.10).

Consequently, if {0} 6= W ( V , then LF (V, W ) is neither left nor right 0-simple.

Hence if F = Z2, dimF V = 2 and dimF W = 1, then LF (V, W ) is a BQ-semigroup

which is neither regular nor left [right] 0-simple.



CHAPTER VI

THE BQ-PROPERTY OF RINGS OF LINEAR

TRANSFORMATIONS

We consider the rings (LF (V, W ), +, ◦), (LF (V, W ), +, ◦) and (KF (V, W ), +, ◦)

in this chapter. We characterize when they have the BQ-property.

It is shown that for a ring (R, +, ·), if (R, ·) is a BQ-semigroup, then (R, +, ·)

is a BQ-ring. However, the converse is not true in general. It is shown by the ring

(LF (V, W ), +, ◦) for some V, W and F .

Throughout this chapter, V is a vector space over a field F and W is a subspace

of V .

Since for nonempty subsets A, B of a ring (R, +, ·), we have that

in the semigroup (R, ·), AB = {ab | a ∈ A and b ∈ B},

in the ring (R, +, ·), AB =

{
k∑

i=1

aibi

∣∣∣ ai ∈ A, bi ∈ B and k ∈ N

}
,

the following lemma is immediately obtained.

Lemma 6.1. Let (R, +, ·) be a ring and A ⊆ R. Then :

(i) If A is a bi-ideal [quasi-ideal] of the ring (R, +, ·), then A is a bi-ideal [quasi-

ideal] of the semigroup (R, ·).

(ii) If A is a bi-ideal [quasi-ideal] of the semigroup (R, ·) and A is a subring of the

ring (R, +, ·), then A is a bi-ideal [quasi-ideal] of the ring (R, +, ·).

Note that this fact is also true for left ideals, right ideals and ideals.

The following result is obtained directly from Lemma 6.1.
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Lemma 6.2. Let (R, +, ·) be a ring. If (R, ·) is a BQ-semigroup, then (R, +, ·) is

a BQ-ring.

Theorem 6.3. The ring (LF (V, W ), +, ◦) always has the BQ-property.

Proof. This follows directly from Theorem 5.3 and Lemma 6.2.

Theorem 6.4. The ring (KF (V, W ), +, ◦) always has the BQ-property.

Proof. It follows from Theorem 5.4 and Lemma 6.2.

From Theorem 5.7, we have that the semigroup (LF (V, W ), ◦) has the BQ-

property if and only if (i) W = V , (ii) W = {0} or (iii) F = Z2, dimF W =

1 and dimF V = 2. By Lemma 6.2, if one of (i), (ii) and (iii) hold, then the

ring (LF (V, W ), +, ◦) has the BQ-property. Our main result of this chapter is to

show that the ring (LF (V, W ), +, ◦) has the BQ-property if and only if one of the

following statements holds.

(i) W = V .

(ii) W = {0}.

(iii) F = Zp for some prime p and dimF W = 1.

(iv) F = Zp for some prime p and dimF (V/W ) = 1.

Hence we deduce that the converse of Lemma 6.2 need not be generally true.

Lemma 6.5. If B is a bi-ideal of a semigroup [ring] A, then (BA ∩ AB) ∩ Reg

(A) ⊆ B.

Proof. Let x ∈ (BA∩AB)∩Reg (A). Then x = xyx for some y ∈ A. This implies

that

x = xyx ∈ BAyAB ⊆ BAB ⊆ B.

Lemma 6.6. If {0} 6= W ( V and the ring (LF (V, W ), +, ◦) has the BQ-property,

then F = Zp for some prime p.



51

Proof. Let B1 be a basis of W and B a basis of V containing B1. By assumption,

B1 6= ∅ and B r B1 6= ∅. Let w ∈ B1 and u ∈ B r B1.

Assume that F 6= Zp for any prime p. This implies that Z1F ( F . Let

a ∈ F r Z1F . Define α, β, γ ∈ LF (V, W ) by

α =

u B r {u}

w 0

 , β =

 w B r {w}

aw 0

 , γ =

 u B r {u}

au 0

 .

Then

αβ =

 u B r {u}

aw 0

 = γα ∈ αLF (V, W ) ∩ LF (V, W )α ⊆ (α)q.

Suppose that αβ ∈ (α)b. Since (α)b = Zα+αLF (V, W )α, we have αβ = nα+αλα

for some n ∈ Z and λ ∈ LF (V, W ). Consequently,

aw = u(αβ) = u(nα + αλα)

= nw + (wλ)α

= nw + 0 since wλ ∈ W and Wα = {0}

= nw.

But w 6= 0, so a = n1F ∈ Z1F which is a contradiction. Hence αβ /∈ (α)b. This

proves that (LF (V, W ), +, ◦) does not have the BQ-property.

Therefore the lemma is proved.

Lemma 6.7. Assume that dimF W = 1 and W = 〈w〉 and α ∈ KF (V, W )r

Reg (LF (V, W )). Then the following statements hold.

(i) w ∈ ker α ∩ ran α.

(ii) Let B1 be a basis of ker α containing w, B2 a basis of ran α containing w

and for each v ∈ B2, let v′ ∈ vα−1. If α1, α2 ∈ LF (V ) are defined on the basis

B1 ∪ {v′ | v ∈ B2} of V by

α1 =

B1 w′ v′

0 w 0


v∈B2r{w}

and α2 =

B1 w′ v′

0 0 v


v∈B2r{w}

,



52

then

α =

B1 w′ v′

0 w v


v∈B2r{w}

= α1 + α2, (1)

α1 ∈ LF (V, W ) ∩KF (V, W ) and α2 ∈ KF (V, W ) ∩ (αLF (V, W )α). (2)

Proof. First, we note that W = Fw.

(i) Since α ∈ KF (V, W ), w ∈ ker α. Since α /∈ Reg (LF (V, W )), by Theorem

3.3, ran α∩W 6= Wα = {0}. But ran α∩W is a subspace of W and dimF W = 1,

so ran α ∩W = W = Fw. Thus w ∈ ran α.

(ii) Clearly, (1) holds, α1 ∈ LF (V, W ) ∩ KF (V, W ) and α2 ∈ KF (V, W ). To

prove (2), it remains to show that α2 ∈ αLF (V, W )α. Let B3 be a basis of V

containing B2. Define β ∈ LF (V, W ) by

β =

w v B3rB2

0 v′ 0


v∈B2r{w}

.

Then

B1αβα = {0} = B1α2, w′αβα = wβα = {0} = w′α2,

for every v ∈ B2r{w}, v′αβα = vβα = v′α = v = v′α2,

so we deduce that α2 = αβα ∈ αLF (V, W )α.

Lemma 6.8. Assume that F = Zp and dimF W = 1. If B is a bi-ideal of

(LF (V, W ), +, ◦) and B ⊆ KF (V, W ), then

BLF (V, W ) ⊆ B + BKF (V, W ).

Proof. Let w ∈ Wr{0}. Then W = Zpw. Since Wαβ ⊆ Wβ = {0} for all

α ∈ LF (V, W ) and β ∈ KF (V, W ), we have that KF (V, W ) is a left ideal of

(LF (V, W ), +, ◦). Hence by Lemma 5.2, KF (V, W ) is an ideal of (LF (V, W ), +, ◦).

Since BKF (V, W ) ⊆ B + BKF (V, W ), it remains to show that B(LF (V, W )r
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KF (V, W )) ⊆ B + BKF (V, W ). Let α ∈ B and β ∈ LF (V, W )r KF (V, W ). Then

wβ ∈ Wr{0}, so wβ = kw for some k ∈ Zpr{0}.

Case 1 : α ∈ Reg (LF (V, W )). Then α ∈ αLF (V, W )α and thus

αβ ∈ BLF (V, W )B(LF (V, W )rKF (V, W ))

⊆ BLF (V, W )KF (V, W )(LF (V, W )rKF (V, W )) since B ⊆ KF (V, W )

⊆ BKF (V, W ) since KF (V, W ) is an ideal of LF (V, W )

and LF (V, W ) ⊆ LF (V, W )

⊆ B + BKF (V, W ).

Case 2 : α /∈ Reg (LF (V, W )). Since α ∈ B ⊆ KF (V, W ), we have α ∈

KF (V, W )rReg (LF (V, W )). Define B1, B2, B3, α1, α2 and β as in the assump-

tion and the proof of Lemma 6.7(ii). Then

α = α1 + α2, α1 ∈ LF (V, W ) ∩KF (V, W )

and

α2 ∈ KF (V, W ) ∩ (αLF (V, W )α).

Then we deduce that α2 ∈ BLF (V, W )B ⊆ B, so α1 = α−α2 ∈ B. Thus kα1 ∈ B.

Let β′ ∈ LF (V ) be defined by

β′ =

w v

0 vβ


v∈B3r{w}

.

Then β′ ∈ KF (V, W ). But since

B1(kα1 + α2β
′) = {0} = B1(αβ),

w′(kα1 + α2β
′) = kw = wβ = w′αβ

and for all v ∈ B2r{w}, v′(kα1 + α2β
′) = v′α2β

′ = vβ′ = vβ = v′αβ,

it follows that αβ = kα1 + α2β
′ ∈ B + BKF (V, W ).

Therefore the lemma is proved.
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Lemma 6.9. If F = Zp and dimF W = 1, then the ring (LF (V, W ), +, ◦) has the

BQ-property.

Proof. Let w ∈ Wr{0}. Then W = Zpw. Let B be a bi-ideal of (LF (V, W ), +, ◦).

Then BLF (V, W )B ⊆ B. To show that B is a quasi-ideal of (LF (V, W ), +, ◦),

let α ∈ BLF (V, W ) ∩ LF (V, W )B. If α ∈ Reg (LF (V, W )), then by Lemma 6.5,

α ∈ B.

Next, assume that α /∈ Reg (LF (V, W )). Then ran α ∩ W 6= Wα. Since

Wα ⊆ W and dimF W = 1, it follows that Wα = W or Wα = {0}. If Wα = W ,

then

Wα = Wα ∩W ⊆ ran α ∩W = ran α ∩Wα = Wα,

so we have ran α ∩ W = Wα, a contradiction. Thus Wα = {0}. Hence α ∈

KF (V, W )rReg (LF (V, W )). Let B1, B2, α1 and α2 be as in the assumption of

Lemma 6.7(ii). Then by Lemma 6.7(ii),

α = α1 + α2, α1 ∈ LF (V, W ) ∩KF (V, W )

and

α2 ∈ KF (V, W ) ∩ (αLF (V, W )α).

Since α ∈ BLF (V, W ) ∩ LF (V, W )B and 1V ∈ LF (V, W ), it follows that

α2 ∈ αLF (V, W )α ⊆ BLF (V, W )LF (V, W )LF (V, W )B

⊆ B ⊆ BLF (V, W ) ∩ LF (V, W )B.
(1)

Hence we have α1 = α− α2 ∈ BLF (V, W ) ∩ LF (V, W )B. We claim that α1 ∈ B.

Case 1 : There is a β ∈ B such that wβ 6= 0. Since Wβ ⊆ W = Zpw, we have

wβ = kw for some k ∈ Zpr{0}. We have that

α1 =

B1 w′ v′

0 w 0


v∈B2r{w}

.
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Then

α1β =

B1 w′ v′

0 kw 0


v∈B2r{w}

.

But α1 ∈ BLF (V, W ), thus α1β ∈ BLF (V, W )B ⊆ B. Since kZp = Zp, it follows

that

α1 ∈ Zp

B1 w′ v′

0 kw 0


v∈B2r{w}

⊆ B.

Case 2 : wβ = 0 for all β ∈ B. Then B ⊆ KF (V, W ) and hence B is a bi-

ideal of the ring (KF (V, W ), +, ◦). By Theorem 6.4, (KF (V, W ), +, ◦) is a BQ-

ring. It follows that B is a quasi-ideal of the ring (KF (V, W ), +, ◦) and thus

BKF (V, W ) ∩ KF (V, W )B ⊆ B. Since LF (V ) is regular, α1 ∈ α1LF (V )α1. But

α1 ∈ LF (V, W ) ∩ KF (V, W ) and LF (V, W ) and KF (V, W ) are a left ideal and a

right ideal of LF (V ), respectively and α1 ∈ BLF (V, W ) ∩ LF (V, W )B, so we have

α1 ∈ α1LF (V )α1 ∈ BLF (V, W )LF (V )LF (V, W ) ⊆ BLF (V, W ), (2)

α1 ∈ α1LF (V )α1 ∈ KF (V, W )LF (V )LF (V, W )B ⊆ KF (V, W )B. (3)

Since B ⊆ KF (V, W ), by Lemma 6.8, BLF (V, W ) ⊆ B + BKF (V, W ). From (2),

we have α1 = γ + λ for some γ ∈ B and λ ∈ BKF (V, W ). Thus

λ = α1 − γ

∈ KF (V, W )B + B by (3)

⊆ LF (V, W )B since 1V ∈ LF (V, W ).

Therefore we have λ ∈ BKF (V, W ) ∩ LF (V, W )B. Since LF (V ) is regular, λ ∈

λLF (V )λ. Thus

λ ∈ λLF (V )λ

⊆ BKF (V, W )LF (V )LF (V, W )B

⊆ KF (V, W )B since KF (V, W ) is a right ideal of (LF (V ), +, ◦).
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Consequently, λ ∈ BKF (V, W ) ∩ KF (V, W )B ⊆ B since KF (V, W ) ⊆ LF (V, W ).

Thus α1 = γ + λ ∈ B + B ⊆ B.

Hence α = α1 + α2 ∈ B + B ⊆ B by (1). This shows that BLF (V, W ) ∩

LF (V, W )B ⊆ B, as required.

Therefore the proof is completed.

Lemma 6.10. Assume that V = W + 〈u〉 where u ∈ V rW and α ∈ LF (V, W )r

Reg (LF (V, W )). Then the following statements hold.

(i) uα ∈ WrWα.

(ii) ker α ⊆ W .

(iii) Let B1 be a basis of ker α, B2 a basis of Wα and for each w ∈ B2, let

w′ ∈ wα−1 ∩W , then B1 ∪ {w′ | w ∈ B2} is a basis of W , B2 ∪ {uα} is a basis

of ran α and B1 ∪ {u} ∪ {w′ | w ∈ B2} is a basis of V .

(iv) If α1, α2 ∈ LF (V ) are defined on the basis B1 ∪ {u} ∪ {w′ | w ∈ B2} of V by

α1 =

B1 u w′

0 0 w


w∈B2

and α2 =

B1 u w′

0 uα 0


w∈B2

,

then

α =

B1 u w′

0 uα w


w∈B2

= α1 + α2,

α1 ∈ αLF (V, W )α and α2 ∈ LF (V, W ) ∩KF (V, W ).

Proof. First, we note that by assumption, V = W ∪̇ (W + (Fr{0})u).

(i) Since α /∈ Reg (LF (V, W )), by Theorem 3.3, ran α ∩ W 6= Wα. Since

V = W + 〈u〉, it follows that ran α = V α = Wα ∪ (W + (Fr{0})u) α. Hence

Wα 6= ran α ∩W =
(
Wα ∪ (W + (Fr{0})u) α

)
∩W

=
(
Wα ∪ (Wα + (Fr{0})uα)

)
∩W

= Wα ∪
(
(Wα + (Fr{0})uα) ∩W

)
since Wα ⊆ W
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which implies that wα + a(uα) ∈ WrWα for some w ∈ W and a ∈ Fr{0}.

Consequently, a(uα) ∈ WrWα and thus uα ∈ WrWα.

(ii) If w ∈ W and a ∈ Fr{0}, then by (i),

(w + au)α = wα + a(uα) ∈ WrWα.

But V = W ∪̇ (W + (Fr{0})u), so we have ker α ⊆ W .

(iii) is clearly seen from (i) and (ii). Note that ker α = ker(α|W ).

(iv) It is clear that

α =

B1 u w′

0 uα w


w∈B2

= α1 + α2.

Since W = 〈B1 ∪ {w′ | w ∈ B2}〉, by the definition of α2, we have α2 ∈ LF (V, W )∩

KF (V, W ).

We note that B2∪{uα} ⊆ Wα∩W ⊆ W . Next, to show that α1 ∈ αLF (V, W )α,

let B3 be a basis of W containing B2 ∪ {uα}. This implies that B3 ∪ {u} is a basis

of V . Define β ∈ LF (V ) by

β =

w (B3rB2) ∪ {uα}

w′ 0


w∈B2

.

Then ran β ⊆ W , so β ∈ LF (V, W ). Since

B1αβα = {0} = B1α1,

uαβα = (uα)βα = 0α = 0 = uα1,

w′αβα = wβα = w′α = w = w′α1 for all w ∈ B2,

we have α1 = αβα ∈ αLF (V, W )α, as desired.

Lemma 6.11. If F = Zp and dimF (V/W ) = 1, then the ring (LF (V, W ), +, ◦)

has the BQ-property.
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Proof. Let B be a bi-ideal of (LF (V, W ), +, ◦). Then BLF (V, W )B ⊆ B. To show

that B is a quasi-ideal of (LF (V, W ), +, ◦), let α ∈ BLF (V, W ) ∩ LF (V, W )B. If

α ∈ Reg (LF (V, W )), then by Lemma 6.5, α ∈ B.

Next, assume that α /∈ Reg (LF (V, W )). Since dimF (V/W ) = 1, we have

V = W + 〈u〉 for some u ∈ V rW . By Lemma 6.10(i), uα ∈ WrWα. Define

B1, B2, α1 and α2 be as in the assumption of Lemma 6.10(iii) and (iv). Then

α = α1 + α2, α1 ∈ αLF (V, W )α and α2 ∈ LF (V, W ) ∩KF (V, W ).

Thus

α1 ∈ αLF (V, W )α ⊆ BLF (V, W )LF (V, W )LF (V, W )B

⊆ B ⊆ BLF (V, W ) ∩ LF (V, W )B

which implies that

α2 = α− α1 ∈ BLF (V, W ) ∩ LF (V, W )B. (1)

Since α1 ∈ B, to show that α ∈ B, it suffices to show that α2 ∈ B. Since

α2 ∈ LF (V, W )B by (1), we have that

α2 =
n∑

k=1

γkβk for some γk ∈ LF (V, W ) and βk ∈ B.

Without loss of generality, assume that uγ1, . . . , uγm ∈ V rW and uγm+1, . . . , uγn

∈ W . Then for i ∈ {1, . . . ,m},

vγi = wi + liu for some wi ∈ W and li ∈ Zpr{0}. (2)

Since (B, +) is an abelian group, we have

m∑
i=1

liβi ∈ B. (3)

Let B4 be a basis of V containing uα. For each i ∈ {1, . . . ,m}, let

λi =

uα B4r{uα}

wi 0
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and for each j ∈ {m + 1, . . . , n}, let

µj =

uα B4r{uα}

uγj 0

 .

Then λi, µj ∈ LF (V, W ) for all i ∈ {1, . . . ,m} and j ∈ {m + 1, . . . , n}. From (1),

we have

α2λiβi, α2µjβj ∈ BLF (V, W )LF (V, W )B ⊆ B (4)

for all i ∈ {1, . . . ,m} and j ∈ {m + 1, . . . , n}. By (3) and (4),

θ =
m∑

i=1

liβi +
m∑

i=1

α2λiβi +
n∑

j=m+1

α2µjβj ∈ B. (5)

We also have that

uθ =
m∑

i=1

li(uβi) +
m∑

i=1

(uα2)λiβi +
n∑

j=m+1

(uα2)µjβj

=
m∑

i=1

li(uβi) +
m∑

i=1

(uα)λiβi +
n∑

j=m+1

(uα)µjβj since uα2 = uα

=
m∑

i=1

li(uβi) +
m∑

i=1

wiβi +
n∑

j=m+1

(uγj)βj

=
m∑

i=1

(liu + wi)βi +
n∑

j=m+1

(uγj)βj

=
m∑

i=1

(uγi)βi +
n∑

j=m+1

(uγj)βj from (2)

= u(
n∑

k=1

γkβk) = uα2 = uα since α2 =
n∑

k=1

γkβk. (6)

Case 1 : θ ∈ Reg (LF (V, W )). Then ran θ∩W = Wθ. Since uθ = uα ∈ ran θ∩W

by (6) and Lemma 6.10(i), there is an element z ∈ W such that zθ = uα. Define

η ∈ LF (V, W ) on the basis B4 of V by

η =

uα B4r{uα}

z 0

 .
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Since

α2ηθ =

B1 u w′

0 uα 0


w∈B2

uα B4r{uα}

z 0

 θ

=

B1 u w′

0 z 0


w∈B2

θ

=

B1 u w′

0 zθ 0


w∈B2

=

B1 u w′

0 uα 0


w∈B2

= α2,

it follows that α2 = α2ηθ ∈ BLF (V, W )LF (V, W )B ⊆ B by (1) and (5).

Case 2 : θ /∈ Reg (LF (V, W )). By Lemma 6.10(iv), there are θ1 ∈ θLF (V, W )θ, θ2

∈ LF (V, W ) ∩ KF (V, W ) with uθ2 = uθ such that θ = θ1 + θ2. Since θ ∈ B, we

have θ1 ∈ B which implies that θ2 = θ − θ1 ∈ B. But

(B1 ∪ {w′ | w ∈ B2}) θ2 ⊆ Wθ2

= {0} since θ2 ∈ KF (V, W )

= (B1 ∪ {w′ | w ∈ B2}) α2 by the definition of α2

and uθ2 = uθ = uα2 by (6), so we deduce that α2 = θ2 ∈ B.

Hence the lemma is proved.

Theorem 6.12. The ring (LF (V, W ), +, ◦) has the BQ-property if and only if one

of the following statements holds.

(i) W = V .

(ii) W = {0}.

(iii) F = Zp for some prime p and dimF W = 1.

(iv) F = Zp for some prime p and dimF (V/W ) = 1.

Proof. Assume that (i), (ii), (iii) and (iv) are false. Then {0} 6= W ( V and (1)

F 6= Zp for all prime p or (2) dimF W > 1 and dimF (V/W ) > 1. Let B1 be a basis

of W and B a basis of V containing B1. Then B1 6= ∅ and BrB1 6= ∅.
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Case 1 : F 6= Zp for all prime p. By Lemma 6.6, the ring (LF (V, W ), +, ◦) does

not have the BQ-property.

Case 2 : dimF W > 1 and dimF (V/W ) > 1. Then |B1| > 1 and |BrB1| > 1.

Let w1, w2 ∈ B1 and u1, u2 ∈ BrB1 be such that w1 6= w2 and u1 6= u2. Let

α, β, γ ∈ LF (V, W ) be defined by

α =

u1 u2 v

w1 w2 0


v∈Br{u1,u2}

, β =

w2 v

w1 0


v∈Br{w2}

, γ =

u2 v

u1 0


v∈Br{u2}

.

Then we have

αβ =

u2 v

w1 0


v∈Br{u2}

= γα 6= α,

so αβ ∈ αLF (V, W ) ∩ LF (V, W )α ⊆ (α)q by Proposition 1.3. Suppose that αβ ∈

(α)b. By Proposition 1.4, αβ = aα+αηα for some η ∈ LF (V, W ) and a ∈ F . Thus

w1 = u2αβ = u2(aα + αηα) = a(u2α) + (u2α)ηα = aw2 + (w2η)α.

But w2η ∈ W and Wα = {0}, so (w2η)α = 0. Hence w1 = aw2 which is contrary

to the independence of w1 and w2. Hence (α)q 6= (α)b, so the ring (LF (V, W ), +, ◦)

does not have the BQ-property.

For the converse, if (i) or (ii) holds, then LF (V, W ) = LF (V ) which has the BQ-

property. If (iii) or (iv) holds, then the ring (LF (V, W ), +, ◦) has the BQ-property

by Lemma 6.9 and Lemma 6.11, respectively.

Hence the theorem is proved.
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Budapest, 1978.

[21] Symons, J. S. V. Some results concerning a transformation semigroup. J.

Austral. Math. Soc. 19 (Series A)(1975): 413–425.

[22] Wilnert, H. J. On quasi-ideals in rings. Acta Math. Hung. 43 (1984): 85–99.



64

VITA

Name : Miss Sansanee Nenthein

Date of Birth : 19 August 1978

Place of Birth : Chachoengsao, Thailand

Education : B.Sc.(Mathematics), Chulalongkorn University, 2000

M.Sc.(Mathematics), Chulalongkorn University, 2003

Scholarship : The Ministry Development Staff Project Scholarship for the

M.Sc. program (2 years) and the Ph.D. program (3 years)

Place of Work : Department of Curriculum, Instruction and Educational Tech-

nology, Faculty of Education, Chulalongkorn University

(starting from October 2006)


	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Introduction
	Chapter I Preliminaries
	Chapter II Regular Elements of semigroups of transformations of sets
	Chapter III Regular Elements of semigroups of linear transformations
	Chapter IV The BQ -Property simigroups of transformations of sets
	Chapter V The BQ -Property simigroups of linear transformations 
	Chapter VI The BQ -Property of rings of linear  transformations 
	References
	Vita



