แบบจำลองการลดทอนเพื่อประมาณค่าสเปกตร้าการตอบสนองสำหรับประเทศไทย

นายวิษณุ หัตถา

สถาบนวทยบรการ จุฬาลงกรณ์มหาวิทยาลัย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมโยธา ภาควิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2551 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

ATTENUATION MODELS TO ESTIMATE RESPONSE SPECTRA FOR THAILAND

Mr.Wissanu Hatha

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Civil Engineering Department of Civil Engineering Faculty of Engineering Chulalongkorn University Academic Year 2008 Copyright of Chulalongkorn University

หัวข้อวิทยานิพนธ์	แบบจำลองการลดทอนเพื่อประมาณค่าสเปกตร้าการตอบสนอง
	สำหรับประเทศไทย
โดย	นายวิษณุ หัตถา
สาขาวิชา	วิศวกรรมโยธา
อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	ผู้ช่วยศาสตราจารย์ คร. ฉัตรพันธ์ จินตนาภักดี

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็น ส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

1000 15005 (รองศาสตราจารย์ คร. บุญสม เลิศหิรัญวงศ์) คณะกรรมการสอบวิทยานิพนธ์ ... ประธานกรรมการ (ศาสตราจารย์ คร. ปณิธาน ลักคุณะประสิทธิ์) avar อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก (ผู้ช่วยศาสตราจารย์ คร. ฉัตรพันธ์ จินตนาภักคี) **WWW. WWWWW** . กรรมการภายนอกมหาวิทยาลัย (คร.ชเนศวร์ แสงอารยะกุล)กรรมการ (ผู้ช่วยศาสตราจารย์ คร. อาณัติ เรื่องรัศมี)

วิษณุ หัตถา : แบบจำลองการลดทอนเพื่อประมาณค่าสเปคตร้ำการตอบสนองสำหรับ ประเทศไทย. (ATTENUATION MODELS TO ESTIMATE RESPONSE SPECTRA FOR THAILAND) อ.ที่ปรึกษา : ผศ.คร.ฉัตรพันธ์ จินตนาภักดี, 164 หน้า.

ในการประมาณความรุนแรงของการสั่นใหวของพื้นดินและการตอบสนองของโครงสร้างใน ้การออกแบบโครงสร้างให้ต้านทานแผ่นดินใหวจำเป็นต้องใช้แบบจำลองการลดทอนซึ่งเป็น ้ความสัมพันธ์ระหว่างความเร่งเทียม กับระยะทาง ขนาดของแผ่นดินใหว และคาบธรรมชาติของการ ้สั้นไหว รวมถึงลักษณะของแห<mark>ล่งกำเนิดแผ่นดินไหวและส</mark>ภาพทางธรณีวิทยา ขณะนี้ยังไม่มีข้อมูล เพียงพอที่จะสร้างแบบจำลองการลดทอนสำหรับประเทศไทยโดยเฉพาะ จึงจำเป็นต้องเลือกใช้ แบบจำลองจากต่างประเทศ การศึกษานี้มีวัตถุประสงค์เพื่อเลือกแบบจำลองการลดทอนสำหรับการ ประมาณค่าสเปคตร้าการตอบสนองที่เหมาะสมกับประเทศไทยโดยใช้ข้อมูลการสั่นไหวของพื้นดินที่ ตรวจวัดได้ในประเทศไทยจากสถานีตรวจวัดแผ่นดินไหวระบบใหม่ของกรมอุตุนิยมวิทยา ซึ่งมีข้อมูล การสั่นใหวของพื้นคินทั้งหมด 390 บันทึกจากแผ่นคินใหว 72 เหตุการณ์ แบ่งเป็นข้อมูลจาก แหล่งกำเนิคในบริเวณที่ไม่ใช่เขตมุดตัวของเปลือกโลก 90 บันทึก และจากบริเวณเขตมุดตัวของ เปลือกโลก 300 บันทึก การศึกษานี้พิจารณาแบบจำลองการลดทอนจากต่างประเทศทั้งหมด 13 ชุด ้โดยเปรียบเทียบความเร่งเทียมที่ทำนายโดยแบบจำลอง กับความเร่งเทียมที่กำนวณจากข้อมลการสั่น ใหวของพื้นดินที่ตรวจวัดได้ โดยได้พิจารณาคาบธรรมชาติของการสั่นใหวในช่วง 0.05 ถึง 10 วินาที ้ความสอดคล้องของสมการลดทอนกับข้อมูลที่บันทึกได้บ่งชี้โดยใช้ก่ารากที่สองของก่าเฉลี่ยของ ผลต่างกำลังสอง (square-root-of-mean-of-square-of-errors, RMS) จากการศึกษาพบว่า สมการ ้ลดทอนสำหรับบริเวณที่ไม่ใช่เขตมุดตัวของเปลือกโลกที่สอคคล้องกับข้อมูลที่บันทึกได้ในประเทศ ์ ใทยมากที่สุดได้แก่ สมการที่เสนอโดย Sadigh และคณะ (1997) ซึ่งมีค่า RMS ต่ำที่สุด และโดย Toro (2002): Gulf region ส่วนสมการถดทอนสำหรับบริเวณเขตมุดตัวของเปลือกโลกที่สอดคล้องกับ ข้อมูลที่บันทึกได้ในประเทศไทยมากที่สุดได้แก่ สมการที่เสนอโดย Youngs และคณะ (1997)

จุฬาลงกรณมหาวทยาลย

##4970729321 : MAJOR CIVIL ENGINEERING

KEY WORD: SPECTRAL ACCELERATION / ATTENUATION MODEL

WISSANU HATTHA : ATTENUATION MODELS TO ESTIMATE RESPONSE SPECTRA FOR THAILAND. THESIS PRINCIPAL ADVISOR : ASST. PROF. CHATPAN CHINTANAPAKDEE, Ph.D., 164 pp.

Estimation of ground motion intensity, i.e., peak ground acceleration or pseudo-acceleration of structures, needs to use an attenuation relationship, which is a function of earthquake magnitude, site-to-source distance, and natural period of vibration of structure. Attenuation model also depends on earthquake source mechanism, local site condition, and some other parameters. Currently, Thailand does not have enough ground motion data to develop an attenuation model specifically for the region; therefore, existing attenuation models from other regions have to be adopted. This research aims to determine the most suitable attenuation models for Thailand using newly available recorded ground motion data from new seismic stations of Thai Meteorological Department. A total of 390 records from 72 earthquake events were classified as 90 non-subduction zone earthquake records and 300 subduction zone earthquake records. Site conditions were also classified by the average shear wave velocity in the upper 30 m of the soil layers. Thirteen attenuation models were considered and their pseudo-acceleration estimates were compared to recorded data for natural period of vibration from 0.05 to 10 seconds. Peak ground acceleration estimates were also compared. The square root of mean of squares of differences (RMS) was computed to measure how well each model corresponds to recorded data. It was found that the attenuation equations for non-subduction zone earthquakes proposed by Sadigh et al. (1997), which has the lowest RMS value, for active tectonic regions and Toro (2002): gulf region for stable continental regions are most suitable for Thailand. Whereas, the most suitable attenuation equation for Thailand in estimating ground motion intensity due to subduction zone earthquakes is the one proposed by Youngs et al. (1997).

กิตติกรรมประกาศ

ข้าพเจ้านายวิษณุ หัตถา ขอกราบขอบพระคุณ ผู้ช่วยศาสตราจารย์ คร.ฉัตรพันธ์ จินตนาภักคี อาจารย์ที่ปรึกษาวิทยานิพนธ์ ที่สละเวลาให้คำแนะนำ ตรวจทาน และสอนสั่งความรู้ทางค้าน วิศวกรรมแผ่นคินไหวรวมทั้งความรู้ค้านอื่นๆ ที่เป็นประโยชน์ต่อข้าพเจ้า

ง้าพเจ้าขอกราบขอบพระคุณ ศาสตราจารย์ คร.ปณิธาน ลักคุณะประสิทธิ์ ผู้ช่วย ศาสตราจารย์ คร.อาณัติ เรื่องรัศมี และคร.ชเนศวร์ แสงอารยะกุล ที่ได้ให้คำแนะนำที่เป็นประโยชน์ ต่อการศึกษาครั้งนี้ รวมทั้งข้าพเจ้าขอกราบขอบพระคุณ ศูนย์เชี่ยวชาญเฉพาะทางค้านวิศวกรรม แผ่นดินไหวและการสั่นสะเทือน ที่ได้อุคหนุนทุนวิจัยให้กับข้าพเจ้าไว้ ณ โอกาสนี้

ข้าพเจ้าขอขอบพระคุณ คุณบุรินทร์ เวชบรรเทิง และเจ้าหน้าที่กรมอุตุนิยมวิทยาทุกท่าน ที่ได้ เอื้อเพื่อข้อมูลที่เป็นประโยชน์ต่อการศึกษา และขอขอบคุณ คุณมาณพ เจริญยุทธ คุณจิตติ ปาลศรี และ รุ่นพี่ รุ่นน้อง เพื่อนๆ สาขาวิศวกรรมโครงสร้าง ภาควิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ที่คอยให้กำลังใจและคำแนะนำที่เป็นประโยชน์ต่อการศึกษา

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

۲	เน้า
บทคัดย่อภาษาไทย	I
บทคัดย่อภาษาอังกฤษ	I
กิตติกรรมประกาศ	นิ
สารบัญ	¥
สารบัญตาราง	ฌ
สารบัญภาพ	ល្ង
บทที่ 1 บทนำ	1
1.1 ความนำ	1
1.2 ความสำคัญของปัญหา	1
1.3 วัตถุประสงค์ของการศึกษา	1
1.4 ขอบเขตของการศึกษา	2
1.5 งานวิจัยที่เกี่ยวข้อง	2
บทที่ 2 ข้อมูลการเกลื่อนให <mark>วของพื้น</mark> ดิน	7
2.1 ระบบเกรือข่ายตรวจวัดแผ่นดินใหวของกรมอุตุนิยมวิทยา	7
2.2 การประมวลข้อมูลเพื่อสร้างฐานข้อมูล	. 15
2.3 การปรับแก้เส้นฐาน <mark>และการกรองสัญญาณ</mark> รบกวนของคลื่นแผ่นดินไหว	. 18
2.4 พารามิเตอร์ที่ใช้ในกระบวนการสร้างฐานข้อมูล	. 19
บทที่ 3 สเปคตรัมการตอบสนองและแบบจำลองการลดทอน	. 28
3.1 แนวความคิดของสเปกตรัมการตอบสนอง	. 28
3.2 สเปกตรัมการตอบสนองแบบยึคหยุ่น	. 29
3.3 การคำนวณสเปคตรัมการตอบสนองที่ใช้ในการศึกษา	. 35
3.4 ทฤษฎีพื้นฐานของแบบจำลองการลดทอน	. 37
3.5 ปัจจัยที่มีผลกระทบกับแบบจำลองการลดทอน	. 39
3.6 แบบจำลองการลดทอนรุ่นใหม่	. 42
3.7 แบบจำลองการลดทอนที่เลือกใช้ในการศึกษา	. 43
บทที่ 4 ผลการศึกษา	. 56
4.1 ข้อมูลเหตุการณ์แผ่นดินไหว	. 56
4.2 ข้อมูลการเคลื่อนไหวของพื้นดิน	. 59
4.3 การเปรียบเทียบแบบจำลองการลดทอน	. 62
4.4 ความเร่งสูงสุดของพื้นดิน และสมการลดทอนที่เหมาะสม	. 63

สารบัญ

หน้า
4.5 สเปคตรัมการตอบสนอง และสมการลดทอนที่เหมาะสมสม
บทที่ 5 สรุปผลการศึกษา
รายการอ้างอิง
ภาคผนวก
ภาคผนวก ก ข้อมูลการเคลื่อนไหวของพื้นดินที่ใช้ในการศึกษา
ภาคผนวก ข ค่าสัมประสิทธิ์ของแบบจำลองการลดทอน
ภาคผนวก ค ค่า Sy <mark>stem sensiti</mark> vity ของเค <mark>รื่องมือตรว</mark> จวัดแผ่นดินไหวในระบบเครือข่าย
ตรวจวัดแผ่นดินใหวระบบใหม่ระย <mark>ะ</mark> ที่ 2
ประวัติผู้เขียนวิทยานิพนธ์

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

สารบัญตาราง

ตารางที่	۱ ۱	หน้า
2.1	สถานีตรวจวัดแผ่นดินไหวหลักระบบใหม่ระยะที่ 1	9
2.2	สถานีตรวจวัดเฉพาะความเร่งของพื้นดินระบบใหม่ระยะที่ 1	.10
2.3	รายละเอียดของเครื่องมือของสถานีตรวจวัดแผ่นดินไหวระบบใหม่ระยะที่ 2	.11
2.4	สถานีตรวจวัดแผ่นดินไหวหลักระบบใหม่ระยะที่ 2	.11
2.5	สถานีตรวจวัคเฉพาะค <mark>วามเร่งของพื้นดินระบบให</mark> ม่ระยะที่ 2	.14
2.6	สถานีตรวจวัดแผ่นดินไหวแบบหลุมเจาะ (borehole)	. 15
2.7	การตรวจสอบระ <mark>ยะทางจุดเหนือ</mark> สูนย์เกิ <mark>ดแผ่นดินไหว</mark>	. 22
2.8	การแบ่งประเภทชั้นดินที่ตั้งสถานีตามเกณฑ์ของ International Building Code (2003)	. 24
2.9	ประเภทชั้นดินที่ตั้งสถานีตรวจวัดแผ่นดินไหวหลักระบบใหม่ระยะที่ 1	. 24
2.10	ประเภทชั้นดินที่ตั้งสถานีตรวจวัดเฉพาะความเร่งของพื้นดินระบบใหม่ระยะที่ 1	.25
2.11	ประเภทชั้นดินที่ตั้งสถานีตรวจวัดแผ่นดินไหวหลักระบบใหม่ระยะที่ 2	. 26
3.1	ค่าคงที่ของรูปแบบการเลื่อน (Atkinson and Boore, 2008)	. 46
3.2	แบบจำลองการลดทอนที่เลือกใช้ในการศึกษา	. 55
4.1	้จำนวนข้อมูลการเคลื่อนไ <mark>หวของพื้นคินที่ได้แ</mark> บ่งตามบริเวณการแปรสัณฐานและลักษณ	រេះ
	ชั้นดินที่ตั้งสถานีตรวจวัดแผ่นดินไหว	. 59

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

สารบัญภาพ

รูปที่	หน้า
1.1	การเปรียบเทียบความสัมพันธ์การลดทอน (Warnitchai และคณะ, 2000)
2.1	การเชื่อมโยงข้อมูลในระบบเครือข่ายตรวจวัดแผ่นดินใหวระบบใหม่ระยะที่ 1 โดย
	โปรแกรม Atlas
2.2	สถานีตรวจวัดแผ่นดินไหวหลักระบบใหม่ระยะที่ 10 และระยะที่ 2
2.3	การค้นหาข้อมูลเหตุการณ์แผ่นดินไหวในฐานข้อมูล Harvard CMT Catalog
2.4	การปรับแก้เส้นฐา <mark>นข้อมูลประว</mark> ัติเวลาความเร่งของพื้นดิน (Hudson , 1979)
2.5	ความสัมพันธ์ของมาตราส่วนขนาด (Heaton และคณะ, 1986)
3.1	ขั้นตอนการคำนวณสเปคตรัมการตอบสนองของการกระจัด (Chen and Scawthorn, 2003)
3.2	ระบบยึดหยุ่นระดับขั้นความเสรีเดียวโดยฐานของโครงสร้างเกิดการเคลื่อนที่
3.3	(ก) การเปรียบเท <mark>ี</mark> ยบความเร่งรวม และความเร่งเทียม (ζ = 0.1) (ข) อัตราส่วนความเร่ง
	เทียมต่อความเร่งรวม (ζ = 0.1 และ 0.2) (Chopra, 2001)
3.4	(ก) การเปรียบเทีย <mark>บความเร็วสัมพัทธ์ และความเร็ว</mark> เทียม (ζ = 0.1) (ข) อัตราส่วนความเร็ว
	เทียมต่อความเร็วสัมพัทธ์ (ζ = 0.1 และ 0.2) (Chopra, 2001)
3.5	สเปคตรัมการตอบสนอง (ζ = 0.02) ของคลื่นแผ่นดินใหวที่สถานี El Centro จาก
	เหตุการณ์แผ่นดินใหว Imperial Valley ปี 1940 (ก) สเปคตรัมการตอบสนองของการ
	กระจัด (ข) สเปคตรัมการตอบสนองของความเร็วเทียม (ค) สเปคตรัมการตอบสนองของ
	ความเร่งเทียม (Chen and Scawthorn, 2003)
3.6	ขั้นตอนการสร้างแบบจำลองการลดทอน (Douglas, 2003)
3.7	รูปแบบของระยะทาง (Abrahamson and Sheslock, 1997)41
4.1	ข้อมูลเหตุการณ์แผ่นดินไหวที่ใช้ในการศึกษา
4.2	ข้อมูลเหตุการณ์แผ่นดินไหวที่ได้แบ่งตามบริเวณการแปรสัณฐาน
4.3	ประวัติเวลาการเกลื่อนไหวของพื้นดินที่ตรวงวัดได้โดยเกรื่องมือตรวงวัดความเร่ง 60
4.4	ประวัติเวลาการเกลื่อนไหวของพื้นดินที่ตรวจวัดได้โดยเกรื่องมือตรวจวัดความเร็ว 60
4.5	การเปรียบเทียบประวัติเวลาความเร่งสูงสุดของพื้นดิน
4.6	การเปรียบเทียบสเปคตรัมความเร่งเทียม61
4.7	แบบจำลองลดทอนสำหรับบริเวณการแปรสัณฐานที่มีพลังซึ่งที่ตั้งอยู่บนหิน (<i>M</i> " = 6.3)62
4.8	การกระจายของข้อมูลที่บันทึกได้ตามขนาดและระยะทางจากแหล่งกำเนิดถึงสถานี 63

รูปที่	หน้า
4.9	การกระจายของข้อมูลความเร่งสูงสุดของพื้นดินกับระยะทางจากแหล่งกำเนิดถึงสถานี 63
4.10	กราฟการลดทอนของความเร่งสูงสุดของพื้นดินบนที่ตั้งหินสำหรับบริเวณการแปรสัณฐาน
	ที่มีพลัง
4.11	กราฟการลดทอนของความเร่งสูงสุดของพื้นดินบนที่ตั้งหินสำหรับบริเวณภากพื้นทวีปที่มี
	เสถียรภาพ
4.12	กราฟการลดทอนของความเร่งสูงสุดของพื้นดินบนที่ตั้งหินสำหรับบริเวณเขตมุดตัวของ
	เปลือก โลก
4.13	กราฟการลคทอนของความเร่งสูงสุดของพื้นดินบนที่ตั้งดินสำหรับบริเวณการแปรสัณฐาน
	ที่มีพลัง
4.14	กราฟการลคทอนของความเร่งสูงสุดของพื้นดินบนที่ตั้งดินสำหรับบริเวณเขตมุดตัวของ
	เปลือกโลก
4.15	การเปรียบเทียบ <mark>สเปคตร้าความเร่งเทียม</mark> ที่บันทึกได้ที่สถานีแม่ฮ่องสอนเมื่อ 30 ก.ค. 2550
	M _w =5.6 ระยะทาง=232 กิโลเมตร กับแบบจำลองการลดทอนสำหรับที่ตั้งบนหินในสเกล
	ปกติ
4.16	การเปรียบเทียบสเป <mark>คตร้าความเร่งเทียมที่บัน</mark> ทึกได้ที่สถานีแม่ฮ่องสอนเมื่อ 30 ก.ค. 2550
	M " =5.6 ระยะทาง=232 กิโลเมตร กับแบบจำลองการลดทอนสำหรับที่ตั้งบนหินใน
	สเกลลอการิทึม
4.17	การกระจายของ <mark>ความเร่งเทียมตามระยะทางจากแหล่งกำเน</mark> ิคลึงสถานี
4.18	กราฟการถคท <mark>อนของความเร่งเทียมบนที่ตั้งหินสำหรับ</mark> บริเวณการแปรสัณฐานที่มีพลัง
	(Abrahamson and Silva, 1997)
4.19	กราฟการถคทอนของความเร่งเทียมบนที่ตั้งหินสำหรับบริเวณการแปรสัณฐานที่มีพลัง
	(Ambraseys และคณะ, 2005)
4.20	กราฟการถคทอนของความเร่งเทียมบนที่ตั้งหินสำหรับบริเวณการแปรสัณฐานที่มีพลัง
	(Atkinson and Boore, 2008)
4.21	กราฟการถคทอนของความเร่งเทียมบนที่ตั้งหินสำหรับบริเวณการแปรสัณฐานที่มีพลัง
	(Boore และกณะ, 1997)77
4.22	กราฟการถคทอนของความเร่งเทียมบนที่ตั้งหินสำหรับบริเวณการแปรสัณฐานที่มีพลัง
	(Idriss, 1993)

รูปที่	หน้า
4.23	กราฟการถดทอนของความเร่งเทียมบนที่ตั้งหินสำหรับบริเวณการแปรสัณฐานที่มีพลัง
	(Idriss, 2008)
4.24	กราฟการลดทอนของความเร่งเทียมบนที่ตั้งหินสำหรับบริเวณการแปรสัณฐานที่มีพลัง
	(Sadigh และคณะ, 1997)
4.25	กราฟการลดทอนของความเร่งเทียมบนที่ตั้งหินสำหรับบริเวณภาคพื้นทวีปที่มีเสถียรภาพ
	(Atkinson and Boore, 1997b)
4.26	กราฟการลดทอนข <mark>องความเร่ง</mark> เทียมบนที่ตั้งหินสำหรับบริเวณภาคพื้นทวีปที่มีเสถียรภาพ
	(Hwang and Huo, 1997)
4.27	กราฟการลดทอนของความเร่งเทียมบนที่ตั้งหินสำหรับบริเวณภาคพื้นทวีปที่มีเสลียรภาพ
	(Toro: Gulf Regions, 2002)
4.28	กราฟการลดทอนของความเร่งเทียมบนที่ตั้งหินสำหรับบริเวณภาคพื้นทวีปที่มีเสถียรภาพ
	(Toro: Mid-continent Regions, 2002)
4.29	กราฟการลดทอนของกวามเร่งเทียมบนที่ตั้งหินสำหรับบริเวณเขตมุดตัวของเปลือกโลก
	(Atkinson and Boore, 1997a)
4.30	กราฟการถดทอนของกวา <mark>มเร่งเทียมบนที่ตั้ง</mark> หินสำหรับบริเวณเขตมุดตัวของเปลือกโลก
	(Megawati และกณะ, 2005)
4.31	กราฟการลดทอนของความเร่งเทียมบนที่ตั้งหินสำหรับบริเวณเขตมุดตัวของเปลือกโลก
	(Youngs และคณะ, 1997)87
4.32	กราฟการลดท <mark>อ</mark> นของความเร่งเทียมบนที่ตั้งดินสำหรับ <mark>บริเวณการแปรสัณฐานที่มีพลัง</mark>
	(Abrahamson and Silva, 1997)
4.33	กราฟการถดทอนของความเร่งเทียมบนที่ตั้งดินสำหรับบริเวณการแปรสัณฐานที่มีพลัง
	(Ambraseys และคณะ, 2005)
4.34	กราฟการถคทอนของความเร่งเทียมบนที่ตั้งดินสำหรับบริเวณการแปรสัณฐานที่มีพลัง
	(Atkinson and Boore, 2008)
4.35	กราฟการลดทอนของความเร่งเทียมบนที่ตั้งดินสำหรับบริเวณการแปรสัณฐานที่มีพลัง
	(Boore และคณะ, 1997)
4.36	กราฟการลดทอนของความเร่งเทียมบนที่ตั้งดินสำหรับบริเวณเขตมุดตัวของเปลือกโลก
	(Youngs และคณะ, 1997)
4 37	การเปรียบเทียบค่า RMS ของแบบจำกองการกดทอบสำหรับที่ตั้งบบหิบ 94

รูปที่		หน้า
4.38	การเปรียบเทียบค่า RMS ของแบบจำลองการลคทอนสำหรับที่ตั้งบนคิน	94

ຼົງ

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

บทที่ 1 บทนำ

1.1 ความนำ

ในการออกแบบโครงสร้างด้านทานแผ่นดินไหว วิศวกรจำเป็นต้องใช้สเปคตรัมสำหรับ ออกแบบ ซึ่งในมาตรฐานการออกแบบในรูปของสเปคตรัม จำเป็นด้องมีการสร้างแผนที่เสี่ยงภัย และประมาณค่าความเร่งเทียม (pseudo acceleration) ที่จะเกิดขึ้นจากแผ่นดินไหวที่ขนาด ระยะทาง และคาบการสั่นไหวธรรมชาติต่างๆ โดยใช้แบบจำลองการลดทอน (attenuation model) คลื่น แผ่นดินไหว ซึ่งสมการได้สร้างจากวิธีเชิงสถิติโดยใช้ฐานข้อมูลการเคลื่อนไหวของพื้นดินที่ ตรวจวัดได้จริง หรือคลื่นแผ่นดินไหวจำลอง (simulation)

1.2 ความสำคัญของปัญ<mark>หา</mark>

การสร้างแบบจำลองการลดทอนคลื่นแผ่นดินใหวสำหรับประเทศไทยยังไม่สามารถทำได้ เนื่องจากข้อมูลการเคลื่อนใหวของพื้นดินที่สามารถตรวจวัดได้ภายในประเทศยังมีไม่เพียงพอจึง จำเป็นต้องเลือกสมการที่มีอยู่ในต่างประเทศมาใช้ประมาณก่ากวามรุนแรงของแผ่นดินไหว ซึ่ง สมการที่เลือกใช้จะต้องมีกวามเหมาะสมกับแหล่งกำเนิดแผ่นดินไหวและลักษณะทางธรณีวิทยา ของประเทศไทย

1.3 วัตถุประสงค์ของการศึกษา

ในการศึกษานี้มีวัตถุประสงค์

- เพื่อรวบรวมข้อมูลการเคลื่อนใหวของพื้นดินเนื่องจากแผ่นดินใหวที่บันทึกได้ใน ประเทศไทยจนถึงเดือนพฤษภาคม พ.ศ. 2551 เพื่อใช้เป็นข้อมูลในการหาความสัมพันธ์ ของแบบจำลองการลดทอนที่เหมาะสมสำหรับประเทศไทย
- เพื่อค้นหาแบบจำลองการลดทอน (attenuation model) ที่เหมาะสมสำหรับประเทศไทย ที่เป็นความสัมพันธ์ของความเร่งเทียม (pseudo acceleration) กับขนาด (magnitude) ของแผ่นดินไหว ระยะห่าง (distance) จากจุดกำเนิด และคาบธรรมชาติ (natural period) ของการสั่นไหว

1.4 ขอบเขตของการศึกษา

การศึกษาครั้งนี้ใช้ข้อมูลการเคลื่อนใหวของพื้นดินเนื่องจากแเผ่นดินใหวที่สามารถบันทึก ใด้โดยสถานีตรวจวัดแผ่นดินใหวระบบใหม่ระยะที่ 1 และระยะที่ 2 ของกรมอุตุนิยมวิทยาตั้งแต่ วันที่ 1 ตุลาคม พ.ศ. 2549 ถึง วันที่ 31 พฤษภาคม พ.ศ. 2551 โดยใช้รายการเหตุการณ์แผ่นดินใหว Harvard CMT Catalog และได้พิจารณาแผ่นดินใหวที่มีจุดกำเนิดอยู่ระหว่างพิกัดละติจูด 0 ถึง 25 องศาเหนือ และลองจิจูด 90 ถึง 110 องศาตะวันออก ซึ่งมีขนาดโมเมนต์ตั้งแต่ 4 ขึ้นไป

1.5 งานวิจัยที่เกี่ยวข้อง

Shrestha (1987) ได้ศึกษาบริเวณเสี่ยงภัยเนื่องจากแผ่นดินไหวและได้ประเมินแบบจำลอง การลดทอน (attenuation model) โดยทำการเปรียบเทียบระหว่างค่าความเร่งสูงสุดพื้นดิน (peak ground acceleration, PGA) ที่ได้จากการตรวจวัดที่เงื่อนศรีนครินทร์และเงื่อนเงาแหลมในเดือน เมษายน ค.ศ. 1983 และเดือนกรกฎาคม ค.ศ. 1985 กับแบบจำลองที่เสนอ โดย Esteva and Villaverde (1973), McGuire (1978) และ Watabe (1980) ซึ่งผลการศึกษาพบว่าแบบจำลองที่เสนอ โดย Esteva and Villaverd (1973) ให้การประมาณค่าความเร่งสูงสุดของพื้นดิน (PGA) สอดคล้อง กับข้อมูลที่บันทึกได้มากกว่าแบบจำลองที่เสนอ โดย McGuire (1978) และ Watabe (1980)

Lisantono (1994) ได้ใช้แผนที่แสดงขั้นความรุนแรงของการสั่นไหว (isoseismal maps) สร้างแบบจำลองการลดทอน (attenuation model) โดยการประยุกต์ใช้วิธีกำลังสองน้อยที่สุด โดย แบ่งออกเป็น 2 กรณี ซึ่งกรณีแรกได้พิจารณาผลกระทบเนื่องจากตัวประกอบการขยายตัว (amplification factors) ของชั้นดิน และกรณีที่สองไม่ได้พิจารณาผลกระทบเนื่องจากตัว ประกอบการขยายตัว (amplification factors) ของชั้นดิน และในการศึกษาได้นำแบบจำลองที่สร้าง ขึ้นเปรียบเทียบกับแบบจำลองที่เลือกศึกษาโดย Shrestha (1987) และข้อมูลสำหรับเปรียบเทียบ แบบจำลองได้จากการบันทึกที่เขื่อนศรีนครินทร์และเชื่อนเขาแหลม ซึ่งเป็นข้อมูลความเร่งของ พื้นดิน 7 บันทึก และจากการสังเกตความสัมพันธ์การลดทอนของแบบจำลองกับข้อมูลความเร่ง สูงสุดของพื้นดิน (PGA) ทำให้สรุปได้ว่าแบบจำลองที่เสืองที่ได้สร้างขึ้น

Warnitchai และคณะ (2000) ได้ศึกษาหาความเหมาะสมของแบบจำลองการลดทอน (attenuation model) สำหรับบริเวณกรุงเทพมหานคร โดยได้เลือกศึกษาแบบจำลองที่เสนอโดย Esteva and Villaverde (1973) และแบบจำลองที่สร้างสำหรับแผ่นดินไหวตื้นในแผ่นเปลือกโลก (shallow crustal earthquakes) ในบริเวณการแปรสัณฐานที่มีพลัง (active tectonic regions) และ บริเวณภาคพื้นทวีปที่มีเสถียรภาพ (stable continental region) ส่วนบริเวณเขตมคตัวของเปลือกโลก (subduction zone) ไม่ได้ทำการศึกษาเนื่องจากข้อมูลการเกิดแผ่นดินไหวในบริเวณนี้ก่อนข้างไกล ้จากกรุงเทพมหานคร และแบบจำลองกลุ่มแรกที่ได้นำมาศึกษาเป็นแบบจำลองที่สร้างสำหรับภาค ตะวันตกของทวีปอเมริกาเหนือ (Western North America, WNA) ซึ่งได้เสนอโดย Abrahamson and Silva (1997), Campbell and Bozorgnia (1994), Sadigh และคณะ (1993) และ Boore และคณะ (1997) และกลุ่มที่สองเป็นแบบจำลองที่สร้างสำหรับทวีปยุโรป (Europe, ซึ่งเสนอโดย EU) Ambraseys and Bommer (1992), Sabetta and Pugliese (1987) โดยแบบจำลองทั้งสองกลุ่มเป็น แบบจำลองสำหรับแผ่นดินไหวตื้นในแผ่นเปลือกโลก (shallow crustal earthquakes) ในบริเวณการ แปรสัณฐานที่มีพลัง (active tectonic regions) และกลุ่มที่สามเป็นแบบจำลองสำหรับภาคกลางและ ภาคตะวันออกของทวีปอเมริกาเหนือ (Central and Eastern North America, CENA) ซึ่งเสนอโดย Toro and McGuire (1987), Atkinson and Boore (1995) และ Hwang and Huo (1997) โดย แบบจำลองกลุ่มนี้ได้สร้างสำหรับแผ่นดินไหวตื้นในแผ่นเปลือกโลก (shallow crustal earthquakes) ในบริเวณภาคพื้นทวีปที่มีเสถียรภาพ (stable continental region) ซึ่งเป็นแบบจำลองที่เหมาะสมกับ บริเวณที่มีอัตราการเกิดแผ่นดินไหวต่ำ

ร**ูปที่ 1.1** การเปรียบเทียบความสัมพันธ์การลดทอน (Warnitchai และคณะ, 2000)

การเปรียบเทียบความสัมพันธ์การลดทอนได้ใช้ข้อมูลการเกิดแผ่นดินไหวขนาดใหญ่ โดย มีขนาดโมเมนต์ (M_w) ระหว่าง 6.5 ถึง 8 และมีระยะทางตั้งแต่ 120 กิโลเมตร ถึง 300 กิโลเมตร และในรูปที่ 1.1 เป็นกราฟเปรียบเทียบความสัมพันธ์การลดทอนระหว่างค่าความเร่งสูงสุดของหิน โผล่ (peak rock outerop acceleration, PRA) กับระยะทาง (rupture distance) โดยได้พิจารณาขนาด โมเมนต์ (M_w) เท่ากับ 7.2 และ 8 จากการสังเกตจะเห็นได้ว่าถ้าระยะทาง (rupture distance) ต่ำกว่า 100 กิโลเมตร แบบจำลองที่พัฒนาสำหรับภาคตะวันตกของทวีปอเมริกาเหนือ (Western North America, WNA) และทวีปยุโรป (Europe, EU) จะมีลักษณะกราฟเหมือนกันแต่ถ้าระยะทาง (rupture distance) มากกว่า 100 กิโลเมตรขึ้นไปกราฟจะแยกออกจากกันส่วนกราฟของแบบจำลอง ที่พัฒนาสำหรับภาคกลางและภาคตะวันออกของทวีปอเมริกาเหนือ (Central and Eastern North America, CENA) และกราฟของแบบจำลองที่เสนอโดย Esteva and Villaverde (1973) ที่ระยะทาง ตั้งแต่ 200 กิโลเมตร ถึง 300 กิโลเมตร หรือมากกว่า 300 กิโลเมตร กราฟจะมีลักษณะใกล้เคียงกัน และถ้าพิจารณาระยะทางในช่วง 10 กิโลเมตร ถึง 200 กิโลเมตร กราฟจะมีอัตราการลดทอนต่ำกว่า แบบจำลองที่สร้างสำหรับภาคตะวันตกของทวีปอเมริกาเหนือ (Western North America, WNA) และกวีปยุโรป (Europe, EU)

การหาความเหมาะสมของแบบจำลองการลดทอนสำหรับบริเวณกรุงเทพมหานครนักวิจัย ได้เปรียบเทียบข้อมูลแผ่นดินไหวกับค่าที่ได้จากการประมาณโดยใช้แบบจำลอง ซึ่งข้อมูล แผ่นดินไหวได้ใช้จากแผนที่แสดงชั้นความรุนแรงของการสั่นไหว (isoseismal map) ของ แผ่นดินไหว Mandalay earthquake เมื่อวันที่ 23 พฤษภาคม ค.ศ. 1912 โดยมีขนาดคลื่นพื้นผิว (surface wave magnitude) $M_s = 8$, แผ่นดินไหว Pegu earthquake เมื่อวันที่ 5 พฤษภาคม ค.ศ. 1930 โดยมีขนาดกลื่นพื้นผิว (surface wave magnitude) $M_s = 7.2$ และแผ่นดินไหว Pyu earthquake เมื่อ วันที่ 3 ธันวาคม ค.ศ. 1930 โดยมีขนาดกลื่นพื้นผิว (surface wave magnitude) $M_s = 7.2$ โดยข้อมูล แผ่นดินไหวทั้งหมดมีศูนย์กลางแผ่นดินไหวอยู่ในประเทศพม่าซึ่งได้แสดงด้วยเส้นกราฟหนาในรูป ที่ 1.1

จากการเปรียบเทียบข้อมูลที่ได้จากแผนที่แสดงชั้นความรุนแรงของการสั่นไหว (isoseismal map) กับค่าที่ได้จากการประมาณโดยใช้แบบจำลอง พบว่าแบบจำลองที่สร้างสำหรับ ภาคกลางและภาคตะวันออกของทวีปอเมริกาเหนือ (Central and Eastern North America, CENA) และแบบจำลองที่เสนอโดย Esteva and Villaverde (1973) เป็นแบบจำลองที่เหมาะสมสำหรับใช้ ประมาณค่าความเร่งสูงสุดของหินโผล่ (peak rock outcrop acceleration, PRA) สำหรับบริเวณ กรุงเทพมหานครซึ่งเป็นบริเวณที่มีอัตราการลดทอนด่ำ Lukkunaprasit (2006) ใต้อธิบายสรุปเกี่ยวกับเหตุการณ์แผ่นดินใหวในประเทศไทย และ ผลกระทบจากเหตุการณ์สึนามิ เมื่อวันที่ 26 ธันวาคม พ.ศ. 2547 รวมทั้งได้อธิบายลำดับของ เหตุการณ์แผ่นดินใหวในประเทศไทยซึ่งทำให้เกิดการเปลี่ยนแปลงของหน่วยงานรัฐบาล และได้ กล่าวถึงอาการในกรุงเทพมหานครกวรมีการออกแบบให้สามารถด้านแรงแผ่นดินใหว ซึ่งในการ ออกแบบอาการกวรออกแบบให้เหมาะสมกับขนาดและลักษณะของภัยธรรมชาติเนื่องจาก แผ่นดินใหวที่อาจจะเกิดขึ้น รวมทั้งได้กล่าวถึงกฎกระทรวงฉบับที่ 49 ของกระทรวงมหาดไทยกวร ใต้รับการปรับปรุงและแก้ไขให้เหมาะสมกับการออกแบบอาการด้านแรงแผ่นดินใหวใน กรุงเทพมหานครและพื้นที่ใกล้เคียง และได้ประเมินความเสี่ยงภัยเนื่องจากแผ่นดินไหวใน กรุงเทพมหานครโดยได้ใช้แบบจำลองการลดทอน (attenuation model) ที่พัฒนาสำหรับภาค ตะวันตกของทวีปอเมริกาเหนือซึ่งเสนอโดย Boore และคณะ (1997) ประมาณก่าความเร่งสูงสุด ของพื้นดิน (peak ground acceleration, PGA) สำหรับที่ตั้งบนหินโดยมีขนาดโมเมนต์เท่ากับ 7 และ ระยะทางเท่ากับ 200 กิโลเมตร ซึ่งเป็นระยะทางที่ใกล้ที่สุดระหว่างกรุงเทพมหานครกับรอยเลื่อนที่ มีพลัง (active tault) โดยก่ากวามเร่งสูงสุดของพื้นดินที่ประมานก่าจากแบบจำลองมีก่าเท่ากับ 2%g และ ในบริเวณกรุงเทพมหานกรจะเกิดการขยายตัวของกลิ่นแผ่นดินไหวเนื่องจากดินเหนียวอ่อนซึ่ง มีก่าตัวประกอบการขยายคลื่นเท่ากับ 4 ซึ่งจะทำให้ก่ากวามเร่งสูงสุดของพื้นดิน (PGA) เท่ากับ 8%g

Naguit (2007) ได้ทำการศึกษาหาแบบจำลองการลดทอน (attenuation model) ที่เหมาะสม สำหรับประเทศไทยโดยได้เปรียบเทียบก่าความเร่งสูงสุดของพื้นดิน (peak ground acceleration, PGA) ที่ประมาณก่าได้จากแบบจำลอง 18 ชุด กับข้อมูลความเร่งสูงสุดของพื้นดิน (PGA) ที่ตรวจวัด ได้โดยสถานีตรวจวัดแผ่นดินไหวของกรมอุตุนิยมวิทยาที่ได้ติดตั้งก่อนปี พ.ศ. 2549 โดยมีข้อมูล การเคลื่อนไหวของพื้นดินทั้งหมด 557 บันทึก ซึ่งเกิดจากเหตุการณ์แผ่นดินไหว 430 เหตุการณ์ ซึ่ง มีขนาดโมเมนต์ (moment magnitude, M_w) ตั้งแต่ 4 ขึ้นไป และความเหมาะสมของแบบจำลอง การเดกตอนได้พิจารณาจากก่ารากที่สองของก่าเฉลี่ยผลต่างกำลังสอง (square root of mean square of error, RMS) ของข้อมูลความเร่งสูงสุดของพื้นดิน (PGA) กับค่าที่ได้ประมาณจากแบบจำลอง ซึ่ง ผลการศึกษาพบว่าแบบจำลองที่เสนอโดย Idriss (1993) ได้มีก่ารากที่สองของค่าเฉลี่ยผลต่างกำลัง สำหรับประเทศไทยในบริเวณที่ไม่ใช่เขตมุดตัวของเปลือกโลก (non-subduction zone) ได้แก่ แบบจำลองที่เสนอโดย Idriss (1993), Sadigh และคณะ (1997), Campbell (1997) ส่วนบริเวณเขต มุดตัวของเปลือกโลก (subduction zone) ได้แก่แบบจำลองที่สนอโดย Crouse (1991) Charoenyuth (2007) ได้รวบรวมและสร้างฐานข้อมูลการเคลื่อนใหวของพื้นดินที่ตรวจวัด ได้ในประเทศไทยโดยสถานีตรวจวัดแผ่นดินใหวของกรมอุตุนิยมวิทยาที่ได้ติดตั้งปี พ.ศ. 2549 รวม ทั้งหมด 15 สถานี และได้นำข้อมูลการเคลื่อนใหวของพื้นดินในฐานข้อมูลมาใช้หาความเหมาะสม ของแบบจำลองการลดทอน (attenuation model) สำหรับใช้ประมาณก่าความเร่งสูงสุดของพื้นดิน (peak ground acceleration, PGA) โดยในฐานข้อมูลมีข้อมูลการเคลื่อนใหวของพื้นดินทั้งหมด 163 บันทึก ซึ่งเกิดจากเหตุการณ์แผ่นดินใหว 45 เหตุการณ์ และนักวิจัยได้เลือกศึกษาแบบจำลอง ทั้งหมด 18 ชุด ซึ่งผลการศึกษาพบว่าแบบจำลองที่เสนอโดย Sadigh และคณะ (1997) และ Idriss (1993) เป็นแบบจำลองที่เหมาะสมสำหรับใช้ประมาณก่าความเร่งสูงสุดของพื้นดินในประเทศไทย

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

บทที่ 2

ข้อมูลการเคลื่อนใหวของพื้นดิน

ข้อมูลการเคลื่อนไหวของพื้นดินที่ใช้ในการศึกษานี้ได้รวบรวมจากกรมอุตุนิยมวิทยา ซึ่ง เป็นข้อมูลที่ตรวจวัดได้โดยสถานีตรวจวัดแผ่นดินไหวระบบใหม่ระยะที่ 1 และระยะที่ 2 โดยข้อมูล เวลาเกิดและตำแหน่งของเหตุการณ์แผ่นดินไหวได้อ้างอิงจากแฟ้มรายการเหตุการณ์แผ่นดินไหว ของฮาร์วาร์ด (Harvard Central Moment Tensor Catalog)

2.1 ระบบเครือข่ายตรวจวัดแผ่นดินใหวของกรมอุตุนิยมวิทยา

กรมอุตุนิยมวิทยาได้พัฒนาระบบเครือข่ายตรวจวัดแผ่นดินไหวอย่างต่อเนื่อง ซึ่งใน การศึกษานี้จะอ้างถึงระบบเครือข่ายตรวจวัดแผ่นดินไหวที่ติดตั้งใน ปี พ.ศ. 2548 ถึง พ.ศ. 2549 เป็น ระบบเครือข่ายตรวจวัดแผ่นดินไหวระบบใหม่ระยะที่ 1 และระบบเครือข่ายตรวจวัดแผ่นดินไหวที่ ติดตั้งในปี พ.ศ. 2549 ถึง พ.ศ. 2551 เป็นระบบเครือข่ายตรวจวัดแผ่นดินไหวระบบใหม่ระยะที่ 2 ซึ่งภายหลังการพัฒนาระบบเครือข่ายตรวจวัดแผ่นดินไหวของกรมอุตุนิยมวิทยาทำให้ประเทศไทย สามารถตรวจวัดการเคลื่อนไหวของพื้นดินเนื่องจากแผ่นดินไหวได้ที่เกือบทุกจังหวัดในประเทศ ไทย

2.1.1 ระบบเครือข่ายตรวจวัดแผ่นดินใหวระบบใหม่ระยะที่ 1

หลังจากเหตุการณ์สึนามิเมื่อวันที่ 26 ธันวาคม พ.ศ. 2547 กรมอุตุนิยมวิทยาได้ขยายและ ปรับปรุงระบบตรวจวัดแผ่นดินไหวในประเทศไทยโดยทำการติดตั้งสถานีตรวจวัดแผ่นดินไหว แบบดิจิตอลระบบใหม่ระยะที่ 1 ทั้งหมด 15 สถานีหลัก ในปี พ.ศ. 2548 ถึง พ.ศ. 2549 ซึ่งระบบ เครือข่ายตรวจวัดแผ่นดินไหวระบบใหม่ระยะที่ 1 ประกอบด้วยเครื่องมือวัดความเร็วของพื้นดิน แบบคาบสั้น (short period) 8 สถานี แบบช่วงความถี่กว้าง (broadband) 7 สถานี และติดตั้งเครื่อง ตรวจวัดความเร่งของพื้นดินคู่กับเครื่องตรวจวัดความเร็ว 15 สถานี ซึ่งเครื่องมือตรวจวัดความเร็วที่ ใช้ในระบบเครือข่ายตรวจวัดแผ่นดินไหวระบบใหม่ระยะที่ 1 ได้ผลิตโดย บริษัท Nanometrics Inc. รุ่น Trillium 40 และ Trillium 120 ส่วนเครื่องมือตรวจวัดความเร่งผลิตโดย บริษัท Metrozet รุ่น TSA100S

ระบบเครือข่ายตรวจวัดแผ่นดินใหวของกรมอุตุนิยมวิทยาระบบใหม่ระยะที่ 1 มีการส่ง ข้อมูลผ่านอินเตอร์เน็ตและผ่านดาวเทียมโดยสามารถส่งข้อมูลมายัง สำนักแผ่นดินไหว กรม อุตุนิยมวิทยา กรุงเทพมหานคร ได้ทันทีซึ่งสถานีตรวจวัดแผ่นดินไหวหลักสามารถแบ่งออกได้เป็น สองประเภทตามประเภทของเครื่องมือตรวจวัดความเร็วของพื้นดินที่ได้ทำการติดตั้งในแต่ละสถานี คือ สถานีแบบคาบสั้น (short period) ใช้เครื่องวัดความเร็ว Nanometrics รุ่น Trillium 40 และสถานี แบบช่วงความถี่กว้าง (broadband) ใช้เครื่องวัดความเร็ว Nanometrics รุ่น Trillium 120 ซึ่งในแต่ละ สถานีตรวจวัดแผ่นดินไหวหลักได้ติดตั้งเครื่องมือวัดความเร่งของพื้นดิน (Tri-axial seismic accelerometers, Metrozet-TSA100S) โดยรายละเอียดของสถานีตรวจวัดแผ่นดินไหวแบบดิจิตอล ระบบใหม่ระยะที่ 1 ได้รวบรวมไว้ในตารางที่ 2.1 และ 2.2 และรูปที่ 2.2

การส่งข้อมูลการเคลื่อนไหวของพื้นดินจากสถานีตรวจวัดแผ่นดินไหวมายังสำนัก แผ่นดินไหว กรมอุตุนิยมวิทยาได้ใช้โปรแกรม Atlas Version 1.2 ซึ่งผลิตโดยบริษัท Nanometrics Inc. เชื่อมต่อกับระบบเครือข่ายตรวจวัดแผ่นดินไหว ซึ่งโปรแกรม Atlas Version 1.2 สามารถที่จะ แสดงรายการข้อมูลแผ่นดินไหวหลายๆเหตุการณ์ในหน้าต่างการแสดงผลหลัก โดยผู้ใช้สามารถที่ จะเลือกดูข้อมูลประวัติเวลาการเกลื่อนไหวของพื้นดินของเหตุการณ์แผ่นดินไหวที่แต่ละสถานีได้ และสามารถที่จะเลือกช่วงเวลาในการเก็บข้อมูลได้

ร**ูปที่ 2.1** การเชื่อมโยงข้อมูลในระบบเครือข่ายตรวจวัดแผ่นดินใหวระบบใหม่ระยะที่ 1 โดย โปรแกรม Atlas

Digitizer และ Sensor sensitivities ของเครื่องมือตรวจวัคแผ่นคินใหวแบบคิจิตอลในระบบ เครือข่ายตรวจวัคแผ่นคินใหวของกรมอุตุนิยมวิทยาระบบใหม่ระยะที่ 1 ได้แสดงในสมการที่ 2.1 และ 2.2 ซึ่งใช้ในการแปลงแฟ้มข้อมูลประวัติเวลาการเคลื่อนไหวของพื้นดินที่ได้จากเครื่องมือ ตรวจวัดแผ่นดินไหวให้เป็นแฟ้มข้อมูลประวัติเวลาความเร่งของพื้นดิน และแฟ้มข้อมูลประวัติเวลา ความเร็วของพื้นดิน (ground velocity time history)

เครื่องมือตรวจวัดความเร่ง:

System sensitivity (Taurus+TSA100S) =
$$(8,388,608 \text{ count/20volt}) \times (0.51 \text{ volt/(m/s}^2))$$

= 213.909.504 count/(m/s²) (2.1)

เครื่องมือตรวจวัดความเร็ว:

System sensitivity (Taurus + Trillium40)	= $(8,388,608 \text{ count/8volt}) \times (1500 \text{ volt/(m/s)})$		
	= 1,572,864,000 count/(m/s)	(2.2กิ)	
System sensitivity (Taurus+Trillium120)	=(8,388,608 count/20volt) x (1200 volt/(m/s))		
	= 503.316.480 count/(m/s)	(2.2ข)	

ตารางที่ 2.1 สถานีตรวจวัดแผ่นดินใหวหลักระบบใหม่ระยะที่ 1

Code	Station	Latitude (°N)	Longitude (°E)	Elevation (m)		
	Short-period seism	nic stations (Nanome	etrics Trillium 40)			
KHLT	เขื่อนเขาแหลม	14.7970	98.5893	164		
MHMT	แม่สะเรียง	18.1764	97.9310	164		
KRDT	นครราชสีมา	14.5905	101.8442	266		
PKDT	ภูเก็ต	7.8920	98.3350	53		
RNTT	ระนอง	9.3904	98.4778	38		
SKNT	สกลนคร	16.9742	103.9815	254		
SURT	สุราษฎร์ชานี	8.6582	98.4098	20		
TRTT	ตรัง	7.8362	99.6912	71		
	Broadband seismic stations (Nanometrics Trillium 120)					
CHBT	จันทบุรี	12.7526	102.3297	4		
CMMT	เชียงใหม่	18.8128	98.9476	400		
SRDT	กาญจนบุรี	14.3945	99.1212	122		
MHIT	แม่ฮ่องสอน	19.3148	97.9632	270		

Cada	Station	Latitude	Longitude	Elevation
Code		(°N)	(°E)	(m)
Broadband seismic stations (Nanometrics Trillium 120)				
PBKT	เพชรบูรณ์	16.5733	100.9687	8
SKLT	สงขลา	7.1735	100.6188	145
UBPT	อุบลราชธานี	15.2773	105.4695	120

ตารางที่ 2.1 (ต่อ) สถานีตรวจวัดแผ่นดินใหวหลักระบบใหม่ระยะที่ 1

การติดตั้งสถานีตรวจวัดแผ่นดินไหวแบบดิจิตอลระบบใหม่ระยะที่ 1 ของกรม อุตุนิยมวิทยาได้ทำการติดตั้งสถานีตรวจวัดกวามเร่งของพื้นดิน 6 สถานี ซึ่งเป็นสถานีย่อยโดยได้ แสดงรายละเอียดในตารางที่ 2.2

Code	Station	System sensitivity	Latitude (°N)	Longitude (°E)
BKKA	สถานีกรมอุตุนิยมวิทยาบางนา	TSA100S	13.664	101.610
SPBA	สถานีอุตุนิยมวิทยาสุพรรณบุรี	TSA100S	14.475	100.000
KCBA	สถานีอุตุนิยมวิทยากาญจนบุรี	TSA100S	14.022	99.536
CHLA	สถานีจุฬาลงกรณ์มหาวิทยาลัย	TSA100S	13.737	100.530
PTNA	สถานีอุตุนิย <mark>มวิทยาปทุมธานี</mark>	TSA100S	14.066	100.371
CMCA	ศูนย์อุตุนิยมวิทยาภาคเหนือ	TSA100S	18.722	98.969

ตารางที่ 2.2 สถานีตรวจวัคเฉพาะความเร่งของพื้นคินระบบใหม่ระยะที่ 1

2.1.2 ระบบเครือข่ายตรวจวัดแผ่นดินไหวระบบใหม่ระยะที่ 2

ในการยกระดับความสามารถเพื่อตรวจหาการเกิดแผ่นดินไหวภายในประเทศไทยและเพื่อ การเตือนภัยสึนามิ กรมอุตุนิยมวิทยาได้กำหนดงบประมาณเพื่อการพัฒนาอย่างต่อเนื่องและเพิ่ม จำนวนสถานีตรวจวัดแผ่นดินไหว จากปี พ.ศ. 2549 ถึงปี พ.ศ. 2551 ซึ่งการพัฒนานี้ประกอบด้วย สถานีตรวจวัดแผ่นดินไหวหลัก จำนวน 25 สถานี ซึ่งสามารถตรวจวัดได้ทั้งความเร็วของพื้นดิน และความเร่งของพื้นดินโดยแบ่งเป็น เครื่องมือตรวจวัดความเร็วของพื้นดินแบบช่วงความถี่กว้าง (broadband) 10 สถานี และแบบคาบสั้น (short period) 15 สถานี, สถานีย่อยตรวจวัดเฉพาะความเร่ง ของพื้นดิน 20 สถานี, สถานีตรวจวัดการเกลื่อนที่ของเปลือกโลก (global positioning system, GPS) 4 สถานี, สถานีตรวจวัคระคับน้ำทะเล (tide gauge) 9 สถานี, สถานีหลุมเจาะ (borehole) 2 สถานี ซึ่ง ใค้ติดตั้งเครื่องมือตรวจวัคความเร่งของพื้นคินและเครื่องมือตรวจวัคความเร็วของพื้นคินแบบช่วง ความถี่กว้าง (broadband) และสถานีตรวจวัคความเร่งของพื้นดิน 1 สถานี เพื่อศึกษาการขยายตัว ของคลื่นแผ่นดิน ใหวบนชั้นดินเหนียวอ่อน ในกรุงเทพมหานคร ส่วนการส่งถ่ายข้อมูลที่บันทึกได้ จากสถานีตรวจวัคแผ่นคิน ใหวหลักมายังสำนักแผ่นดิน ใหว กรมอุตุนิยมวิทยา กรุงเทพมหานคร จะ ใช้ระบบคาวเทียม VSAT, IPSTAR และระบบ โมเค็ม (ADSL telecommunications) ซึ่งรายละเอียค ของสถานีตรวจวัคแผ่นคิน ใหวบางส่วน ได้แสดงในตารางที่ 2.3, 2.4, และ 2.5 (Saringkarnphasit and Prachuab, 2006)

Instrument/System	Company/Model
15 Short Period Seismometers	Geotech (S–13)
10 Broadband Seismometers	Geotech (KS-2000M)
25 Accelerometers	Geotech (PA-23)
Borehole Seismometer	Geotech (KS–2000BH)
Borehole Accelerometer	Geotech (PA-23BH)
20 Accelerometers	Smart–24A
Data Acquisition	Smart–24R
Software	Smart Quake, SeisPlus
Telecommunication	5 VSAT and 20 ADSL networks

ตารางที่ 2.3 รายละเอียดของเครื่องมือของสถานีตรวจวัดแผ่นดินไหวระบบใหม่ระยะที่ 2

Code	Station	Latitude (°N)	Longitude (°E)	Elevation (m)
9	Short-period seismic stations (Geotech S-13) a	and Accelero	ometer (PA-23)	
PHIT	เขื่อนแควน้อย จ.พิษณุโลก	17.189	100.416	114
SUKH	อ่างเก็บน้ำห้วยท่าแพร่ จ.สุโขทัย	17.482	99.631	58
UTTA	เขื่อนสิริกิต จ.อุตรคิตถ์	17.744	100.554	63
LAMP	เขื่อนกิ่วลม จ.ลำปาง	18.523	99.632	247
NAN	ฝ่ายน้ำกอน จ.น่าน	19.284	100.912	262

ตารางที่ 2.4 สถานีตรวจวัดแผ่นดิน ใหวหลักระบบใหม่ระยะที่ 2

C. I.	Station		Longitude	Elevation
Code	Station	(°N)	(°E)	(m)
	Short-period seismic stations (Geotech S-13) a	and Accelero	meter (PA-23)	
PAYA	อ่างเก็บน้ำแม่ปืม จ.พะเยา	19.360	99.869	408
UMPA	สถานีอุตุนิยมวิทยาอุ้มผาง จ.ตาก	16.206	98.860	403
UTHA	เงื่อนทับเสลา จ.อุทัยธานี	15.559	99.445	129
PHET	อ่างเก็บน้ำแก่งกระจาน จ.เพชรบุรี	12.913	99.627	101
PATY	สถานีอุตุนิยมวิทย <mark>าพั</mark> ทยา จ.ชลบุรี	12.923	100.866	39
CHAI	อ่างเก็บน้ำช่อระกา จ.ชัยภูมิ	15.902	101.986	199
KHON	สถานีอากาศเกษตรท่าพระ จ.ขอนแก่น	16.338	102.823	135
SURI	อ่างเก็บน้ำอำปืม จ.สุรินทร์	14.769	103.553	126
SRAK	อ่างเก็บน้ำห้ว <mark>ยยาง</mark> จ.สระแก้ว	14.012	102.043	97
KRAB	อ่างเก็บน้ำบางกำ <mark>ปรัด</mark> จ.กระบ <mark>ี่</mark>	8.222	99.197	73
Broadband seismic stations (Geotech KS-2000M) and Accelerometer (PA-23)			23)	
PHRA	อ่างเก็บน้ำสอง จ.แพร่	18.499	100.229	187
CRAI	อ่างเก็บน้ำห้วยช้าง จ.เชียงราย	20.229	100.373	357
CMAI	สถานีอุตุนิยมวิทยาคอยอ่างขาง จ.เชียงใหม่	19.932	99.045	1,503
PRAC	เขื่อนปราณบุรี จ.ประจวบคีรีขันธุ์	12.473	99.793	54
SRIT	อ่างเก็บน้ำคลองคินแดง จ.นครศรีธรรมราช	8.595	99.602	58
SURA	ฝ่ายเก็บน้ำท่าทอง จ.สุราษฎร์ธานี	9.166	99.629	-6
NONG	อ่างเก็บน้ำห้วยเปลวเหงือก จ.หนองคาย	18.063	103.146	140
PANO	อ่างเก็บน้ำห้วยแคน จ.นครพนม	17.148	104.612	136
NAYO	อ่างเก็บน้ำคลองท่าด่าน จ.นครนายก	14.315	101.321	106
LOEI	อ่างเก็บน้ำห้วยน้ำหนาม จ.เลย	17.509	101.264	306

ตารางที่ 2.4 (ต่อ) สถานีตรวจวัดแผ่นดินไหวหลักระบบใหม่ระยะที่ 2

ร**ูปที่ 2.2** สถานีตรวจวัคแผ่นดินไหวหลักระบบใหม่ระยะที่ 1 และระยะที่ 2

	Latitude	Longitude	Elevation
Station	(°N)	(°E)	(m)
Accelerometer (Smart-	24A)		
เทศบาล ต.เชียงคาว อ.เชียงคาว จ.เชียงราย	19.3612	98.9654	397
สถานีอุตุนิยมวิทยา จ.ลำพูน	18.5667	99.0333	298
ที่ว่าการ อ.สันทราย จ.เชียงใหม่	18.8479	99.0487	348
สถานีอุตุนิยมวิทยา จ.เชียงราย (สนามบิน)	19.9602	99.8874	392
ที่ว่าการ อ.แม่จัน จ.เชียงราย	20.1447	99.8557	425
ที่ว่าการ อ.แม่สาย จ.เชียงราย	20.4277	99.8865	416
สถานีอุตุนิยมวิทยา จ.ต <mark>าก</mark>	16.8777	99.1432	111
สถานีอุตุนิยมวิทยาแม่สอด จ.ตาก	16.7010	98.5449	223
สถานีอุตุนิยมวิทยาคอยมูเซอร์ จ.แม่ฮ่องสอน	16.7508	98.9384	854
สถานีอุตุนิยมวิทยา จ.แม่ฮ่องสอน (สนามบิน)	19.2985	97.9759	-
ที่ทำการการศึกษานอกโรงเรียน อ.ขุนยวม จ.แม่ฮ่องสอน	18.8296	97.9389	622
สถานีอุตุนิยมวิทยา จ.ลำปาง	18.2768	99.5099	244
สถานีอุตุนิยมวิทยา จ.แพร่ (สนามบิน)	18.1272	100.1660	167
ที่ว่าการอำเภอสูงเม่น จ.แพร่	18.0157	100.1150	160
สถานีอุตุนิยมวิทยา จ.น่าน	18.7659	100.7670	203
ที่ว่าการ อ.พระนครศรีอยุธยา จ.พระนครศรีอยุธยา	14.3521	100.5770	16
สถานีอุตุนิยมวิทยาสงขลา (คอหงษ์) จ.สงขลา	6.9832	100.4550	854
ศูนย์อุตุนิยมวิทยาภาคใต้ฝังตะวันออก จ.สงขลา	7.1277	100.5830	854
ศูนย์อุตุนิยมวิทยาภาคใต้ฝั่งตะวันตก จ.ภูเก็ต	8.1081	98.3132	3
สถานีอุตุนิยมวิทยา จ.ภูเกี่ต	7.8941	98.3981	9

ตารางที่ 2.5 สถานีตรวจวัคเฉพาะความเร่งของพื้นดินระบบใหม่ระยะที่ 2

การแปลงแฟ้มข้อมูลประวัติเวลาการเคลื่อนไหวของพื้นดินที่ได้จากเครื่องมือตรวจวัด แผ่นดินไหวในระบบเครือข่ายตรวจวัดแผ่นดินไหวของกรมอุตุนิยมวิทยาระบบใหม่ระยะที่ 2 ให้ เป็นแฟ้มข้อมูลประวัติเวลาความเร็วของพื้นดิน และแฟ้มข้อมูลประวัติเวลาความเร่งของพื้นดินได้ แสดงในสมการที่ 2.3 และตารางในภาคผนวก ค เครื่องมือตรวจวัดความเร็ว:

System sensitivity
$$(\mu m / s/count) = \frac{Bit Weight (LSB, \mu V/count)}{Sensor sensitivity (V/m / s)}$$
 (2.3f)

เครื่องมือตรวจวัดความเร่ง:

System sensitivity
$$(\mu m/s^2/count) = \frac{Bit Weight (LSB, \mu V/count)}{Sensor sensitivity (V/m/s^2)}$$
 (2.3)

สถานีตรวจวัดแผ่นดินไหวแบบหลุมเจาะ (borehole) จำนวน 2 สถานี ที่สำนักแผ่นดินไหว กรมอุตุนิยมวิทยา เขตบางนา กรุงเทพมหานคร มีรายละเอียดดังแสดงในตารางที่ 2.6

Code	Station	Latitude (°N)	Longitude (°E)	Elevation (m)	
Geotech (KS–2000BH)					
TMDB	กรมอุตุนิยมวิทยาบางนา	13.668	100.607	-6	
Geotech (PA–23BH)					
TMDA	กรมอุตุนิยมวิทยาบางนา	13.668	100.607	-26	

ตารางที่ 2.6 สถานีตรวจวัดแผ่นดินไหวแบบหลุมเจาะ (borehole)

ระบบเครือข่ายตรวจวัดแผ่นดินใหวของกรมอุตุนิยมวิทยาระบบใหม่ระยะที่ 2 มี กวามสามารถในการหาข้อมูลของแต่ละเหตุการณ์แผ่นดินใหวท้องถิ่น (local earthquake) ได้ ดังนี้คือ จุดเหนือศูนย์เกิดแผ่นดินใหว (epicenter), โมเมนต์แผ่นดินใหว (seismic moment), ขนาด โมเมนต์ (moment magnitude), ความเค้นปล่อย (stress drop), พลังงานปลดปล่อย (released energy), กลใกศูนย์กลางแผ่นดินใหว (focal mechanism) และแผนที่แสดงชั้นความรุนแรงของการ สั่นใหว (isoseismal map) ซึ่งข้อมูลเหล่านี้สามารถคำนวณโดยใช้โปรแกรม SmartQuake ในระบบ เครือข่ายตรวจวัดแผ่นดินไหว

2.2 การประมวลข้อมูลเพื่อสร้างฐานข้อมูล

ข้อมูลการเกลื่อนไหวของพื้นดินที่ตรวจวัดได้โดยสถานีตรวจวัดแผ่นดินไหวแบบดิจิตอล ระบบใหม่ระยะที่ 1 ของกรมอุตุนิยมวิทยาได้ดาวน์โหลดข้อมูลจากระบบออนไลน์ผ่านทางระบบ อินเตอร์เน็ตกับสถานีตรวจวัดแผ่นดินไหวโดยตรง ซึ่งไม่ได้ผ่านสำนักแผ่นดินไหว กรม อุตุนิยมวิทยาโดยข้อมูลที่ได้จะอยู่ในรูปแบบของแฟ้มข้อมูลประวัติเวลาการเกลื่อนไหวของพื้นดิน (ground motion time history data) โดยจะขึ้นอยู่กับชนิดของเกรื่องมือตรวจวัดแผ่นดินไหว ซึ่งแบ่ง ออกเป็นเกรื่องมือตรวจวัดความเร็วของพื้นดิน และเกรื่องมือตรวจวัดความเร่งของพื้นดิน สำหรับ ข้อมูลการเกลื่อนไหวของพื้นดินที่ตรวจวัดได้โดยสถานีตรวจวัดแผ่นดินไหวแบบดิจิตอลระบบ ใหม่ระยะที่ 2 ได้ดาวน์โหลดข้อมูลผ่านทางสำนักแผ่นดินไหว กรมอุตุนิยมวิทยา ซึ่งการดาวน์ โหลดข้อมูลผ่านทาง สำนักแผ่นดินไหวของสถานีตรวจวัดแผ่นดินไหวระยะที่ 2 สามารถดาวน์ โหลดข้อมูลผ่านทาง สำนักแผ่นดินไหวของสถานีตรวจวัดแผ่นดินไหวระยะที่ 2 สามารถดาวน์ โหลดข้อมูลของทุกสถานีพร้อมกันได้ในเวลาเดียวกัน และสามารถเปิดอ่านแฟ้มข้อมูลโดยใช้ โปรแกรม SeisPlus และเปลี่ยนแปลงชนิดของแฟ้มข้อมูลจาก SUD format เป็น ASCII format ได้ อย่างรวดเร็ว ซึ่งโปรแกรม SeisPlus สามารถแยกแฟ้มข้อมูลประวัติเวลาการเกลื่อนไหวของพื้นดิน เป็นของแต่ละสถานีในแต่ละองก์ประกอบ (component) ให้อัตโนมัติ ซึ่งจะแตกต่างจากโปรแกรม Atlas ของระบบสถานีตรวจวัดแผ่นดินไหวแบบดิจิตอลระบบใหม่ระยะที่ 1 ที่ไม่สามารถ เปลี่ยนแปลงชนิดของแฟ้มข้อมูลประวัติเวลาการเกลื่อนไหวของพื้นดินได้เลย ซึ่งทำให้การนำ ข้อมูลมาใช้มีความลำบาก

การพิจารณาช่วงเวลาในการคาวน์โหลดข้อมูลจากสถานีตรวจวัดแผ่นดินไหวได้พิจารณา เวลาการเกิดเหตุการณ์แผ่นดินไหวในฐานข้อมูลของ Harvard CMT Catalog ซึ่งข้อมูลเหตุการณ์การ เกิดแผ่นดินไหวของ Harvard CMT Catalog มีความสำคัญต่อการศึกษาในครั้งนี้เป็นอย่างมาก เพราะว่าในฐานข้อมูลจะประกอบด้วยขนาดโมเมนต์ (moment magnitude, M_w), กลไกการเลื่อน (faulting mechanism) ของแผ่นเปลือกโลก, ศูนย์กลางแผ่นดินไหว (epicenter), ความลึกศูนย์เกิด แผ่นดินไหว (focal depth) และข้อมูลที่ได้จากการค้นหาในฐานข้อมูล Harvard CMT Catalog แสดง ให้เห็นว่าการเกิดแผ่นดินไหวและผลกระทบจากแผ่นดินไหวในประเทศไทยได้เกิดขึ้นตามแนวเส้น แบ่งเขตแดนที่ติดต่อกับประเทศเพื่อนบ้าน ทำให้ขอบเขตของเหตุการณ์แผ่นดินไหวที่พิจารณาใน การศึกษาครั้งนี้ขยายออกไปครอบคลุมพื้นที่ส่วนนี้ด้วย ซึ่งพื้นที่ส่วนนี้จะเกิดแผ่นดินไหวบ่อยครั้ง และมีความรุนแรงของเหตุการณ์แผ่นดินไหวค่อนข้างสูงเพียงพอที่จะมีผลกระทบกับประเทศไทย

การค้นหาข้อมูลเหตุการณ์แผ่นดินใหวในฐานข้อมูล Harvard CMT Catalog ได้ค้นหาจาก ระบบออนไลน์ซึ่งได้แสดงในรูปที่ 2.3 โดยการกำหนดขอบเขตในการค้นหาข้อมูลเหตุการณ์ แผ่นดินไหวประกอบด้วยขอบเขตพิกัดฉาก ละติจูด 0° ถึง 32° และ ลองจิจูด 90° ถึง 110° ขนาดของ แผ่นดินไหว (moment magnitude, *M*,) มากกว่า 3.5 ถึง 9.5 และเวลาการเกิดแผ่นดินไหวที่ ต้องการค้นหาได้กำหนดตั้งแต่เดือนตุลาคม พ.ศ. 2549 ถึง เดือนพฤษภาคม พ.ศ. 2551

	Global CMT Catalog Search
Search form	
Enter parameters for CMT catalog search. All constraints an	e 'AND' logic.
Date constraints: catalog starts in 1976 and goes throug There are several methods to choose date ranges—use the radio buttons	in present to select which method you want to use
Starting Date:	Ending Date:
(e) Year: 2006 Marith: 10 Day: 1	Year: 2008 Month: 1 Day: 31
O Year 1976 Julian Day: 1	O Year, 1976 Julian Day: 1
	O Number of days: 1 Including starting day
Magnitude constraints: catalog includes moderate to lar (see rote on calculation of magnitudes) Moment magnitude: 35 <= Mw <= 95	ige earthquakes only
Location constraints	
Latitude: (decrees) from -6 to 32 Must be betwee	en -90 and 90
Longitude: (degrees) from 90 to 108 Must be be	etween -100 and 100
Denth: (kllameters) from 0 to 1000	

รูปที่ 2.3 การค้นหาข้อมูลเหตุการณ์แผ่นดินไหวในฐานข้อมูล Harvard CMT Catalog

การปรับเปลี่ยนข้อมูลประวัติเวลาความเร็วของพื้นดิน (velocity time history) ที่ได้จาก เครื่องมือตรวจวัดความเร็วให้เป็นข้อมูลประวัติเวลาความเร่งของพื้นดิน (acceleration time history) และข้อมูลประวัติเวลาการกระจัดของพื้นดิน (displacement time history) เป็นการประมาณค่าโดย การประยุกต์ใช้การหาอนุพันธ์เชิงตัวเลข (numerical differentiation) ซึ่งใช้วิธีผลต่างกลาง (central difference) โดยการประยุกต์ใช้พหุนามลากรานจ์ อันดับที่ 4 (4th order lagrange polynomial) และ การหาปริพันธ์เชิงตัวเลข (numerical integration) โดยใช้วิธีกฎสี่เหลี่ยมคางหมู (trapezoidal rule) ดังสมการที่ 2.4 และ 2.5 ตามลำดับ

$$\begin{aligned} \ddot{x}_{2} &= \frac{1}{12h} (\dot{x}_{0} - 8\dot{x}_{1} + 8\dot{x}_{3} - \dot{x}_{4}) \\ \ddot{x}_{n} &= \frac{1}{12h} (\dot{x}_{n-2} - 8\dot{x}_{n-1} + 8\dot{x}_{n+1} - \dot{x}_{n+2}) \end{aligned}$$

$$\begin{aligned} \dot{x}_{n} &= \dot{x}_{n-1} + \frac{h}{2} (\ddot{x}_{n} + \ddot{x}_{n-1}) \\ x_{n} &= x_{n-1} + \frac{h}{2} (\dot{x}_{n} + \dot{x}_{n-1}) \end{aligned}$$

$$(2.4)$$

$$\begin{aligned} (2.4) \\ (2.5) \\ (2.5) \end{aligned}$$

โดยที่

- h = ช่วงเวลาในการบันทึกข้อมูลในแต่ละค่า (time step, Δt) ซึ่งมีค่า เท่ากับ $\frac{1}{Fs}$
- Fs = ความถี่ในการบันทึกข้อมูล (sampling frequency)
- x = ความเร่งของพื้นดิน
- \dot{x} = ความเร็วของพื้นดิน
- x = การกระจัดของพื้นดิน

2.3 การปรับแก้เส้นฐานและการกรองสัญญาณรบกวนของคลื่นแผ่นดินไหว

การปรับแก้เส้นฐานของข้อมูลประวัติเวลาการเคลื่อนไหวของพื้นดินมีความจำเป็นใน กระบวนการสร้างฐานข้อมูลเนื่องจากข้อมูลประวัติเวลาการเคลื่อนไหวของพื้นดินที่ได้จาก เครื่องมือตรวจวัดแผ่นดินไหวมีทั้งค่าบวก และค่าลบซึ่งเส้นฐานของข้อมูลอาจจะไม่ได้อยู่ที่พิกัด ศูนย์ โดยความเร็วของพื้นดินและการกระจัดของพื้นดินที่ได้จากการหาปริพันธ์ความเร่งของพื้นดิน จะไม่แกว่งรอบแกนศูนย์ (รูปที่ 2.4) ซึ่งถ้าไม่มีการปรับแก้เส้นฐานข้อมูลที่นำมาใช้ในกระบวนการ สร้างฐานข้อมูลอาจจะมีความไม่ถูกต้อง

การปรับแก้เส้นฐานของศึกษาครั้งนี้ได้อ้างอิงจาก Hudson (1979) ซึ่งได้อธิบายไว้ว่าหากมี ความคลาดเคลื่อนคงที่ a_o ในประวัติเวลาความเร่งของพื้นดิน เมื่อนำไปหาค่าปริพันธ์จะทำให้ ข้อมูลความเร็วของพื้นดินมีค่าไม่เท่ากับศูนย์เมื่อความสั่นสะเทือนของพื้นดินสิ้นสุดลง ซึ่งไม่ สมเหตุสมผลกับความเป็นจริงดังนั้นจึงจำเป็นต้องปรับแก้เส้นฐานของประวัติเวลาความเร่งของ พื้นดิน ดังสมการที่ 2.6 และรูปที่ 2.4

$$a^*(t) = a(t) - a_0$$

(2.6)

โดยที่

- a^{*}(t) = ความเร่งของพื้นดินที่ได้ปรับแก้เส้นฐาน ณ เวลา t
- a(t) = ความเร่งของพื้นดินที่ไม่ได้ปรับแก้เส้นฐาน ณ เวลา t
- a₀ = ค่าปรับแก้เส้นฐานของความเร่งของพื้นดิน ซึ่งมีค่าเท่ากับค่าเฉลี่ยของความเร่ง ของพื้นดินที่เวลาตั้งแต่ 0 ถึง T

รูปที่ 2.4 การปรับแก้เส้นฐานข้อมูลประวัติเวลาความเร่งของพื้นดิน (Hudson , 1979)

การกรองสัญญาณรบกวนของคลื่นแผ่นดินใหวได้ใช้วิธี Butterworth filter ซึ่งอันดับของ วิธี Butterworth filter ได้ใช้อันดับที่ 4 ตามกระบวนการของ United States Geological Survey (USGS) ซึ่งความถี่ที่เหมาะสมในการกรองสัญญาณรบกวนของคลื่นแผ่นดินใหวได้อ้างอิงจาก การศึกษาของ Charoenyuth (2007) ซึ่งการศึกษาดังกล่าวได้ใช้ข้อมูลประวัติเวลาการเคลื่อนใหว ของพื้นดินจากเหตุการณ์แผ่นดินใหว 3 เหตุการณ์พิจารณาหาความถี่ที่เหมาะสมในการกรอง สัญญาณรบกวนโดยการศึกษานั้นได้สรุปไว้ว่า ถ้าระยะทางจากสถานีตรวจวัดแผ่นดินไหวถึงจุด เหนือศูนย์เกิดแผ่นดินใหว (epicenter) มากกว่า 1,000 กิโลเมตร และค่าความเร่งสูงสุดของพื้นดิน (peak ground acceleration, PGA) มีค่าน้อยกว่า 0.0003g ให้กรองสัญญาณรบกวนความถี่ต่ำผ่าน (low pass) ที่ 10 เฮิรตซ์ และการกรองความถี่สูงผ่านให้กรองกวามถี่สูงผ่าน (high pass) ที่ 0.01 เฮิรตซ์

2.4 พารามิเตอร์ที่ใช้ในกระบวนการสร้างฐานข้อมูล

ในการประมวลข้อมูลเพื่อสร้างฐานข้อมูลของเหตุการณ์แผ่นดินไหวจำเป็นต้องหา ก่าพารามิเตอร์ดังต่อไปนี้เช่น ก่ากวามเร่งสูงสุดของพื้นดิน (peak ground acceleration, PGA), ขนาดโมเมนต์ (moment magnitude), ระยะทางจากแหล่งกำเนิดถึงสถานี (site-to-source distance) และประเภทชั้นดินที่ตั้งสถานี (site category) ซึ่งก่าพารามิเตอร์เหล่านี้สามารถบ่งบอกถึงระดับ ความรุนแรงของเหตุการณ์แผ่นดินไหว ระยะทางจากแหล่งกำเนิดถึงสถานี (site-to-source distance) และประเภทชั้นดินที่ตั้งสถานี (site category)

2.4.1 ความเร่งสูงสุดของพื้นดิน (peak ground acceleration, PGA)

การประมาณก่าความเร่งสูงสุดของพื้นดินในแนวราบโดยใช้แบบจำลองการลดทอนก่าที่ ได้จะถูกนำไปเปรียบเทียบกับก่าที่บันทึกได้จริงซึ่งที่สถานีหนึ่งๆ จะบันทึกได้สองทิศทางใน แนวราบจึงพิจารณาก่าเฉลี่ยทางเรขาคณิต (geometric mean) ของสองทิศทาง ซึ่งเท่ากับรากที่สอง ของผลกูณของกวามเร่งสูงสุดของพื้นดินในสองทิศทางนั้น

2.4.2 ขนาดโมเมนต์ (moment magnitude, M_w)

ขนาดโมเมนต์เป็นมาตราวัดขนาดของแผ่นดินใหวชนิดหนึ่งโดยขนาดโมเมนต์จะเป็น ขนาดที่เกี่ยวข้องกับพลังงานศักย์ที่ปลดปล่อยออกมาเป็นพลังงานจลน์ซึ่งขึ้นอยู่กับพื้นที่การ แตกร้าวของรอยเลื่อนและระยะการเลื่อนของแผ่นเปลือกโลกและค่าโมดูลัสการเฉือนของหินที่รอย เลื่อนใถลของเหตุการณ์แผ่นดินใหวในแต่ละครั้ง ซึ่งขนาดโมเมนต์เป็นมาตราที่สามารถวัดขนาด ของเหตุการณ์แผ่นดินใหวที่มีความรุนแรงมากๆ ได้ โดยไม่เกิดสภาวะอิ่มตัว (magnitude saturation) ซึ่งเป็นปัญหาของมาตราส่วนวัดขนาดของแผ่นดินใหวชนิดอื่น (รูปที่ 2.8) ที่ไม่สามารถแยกแยะ ความแตกต่างของแผ่นดินใหวขนาดใหญ่มากๆได้

รูปที่ 2.5 ความสัมพันธ์ของมาตราส่วนขนาด (Heaton และคณะ, 1986)

2.4.3 ระยะทางจากแหล่งกำเนิดถึงสถานี (site-to-source distance)

ระยะทางจากแหล่งกำเนิดถึงสถานีตรวจวัดที่ใช้ในการศึกษาครั้งนี้เป็นระยะทางจุดเหนือ ศูนย์เกิดแผ่นดินไหว (epicentral distance) ซึ่งหมายถึงระยะที่สั้นที่สุดตามผิวโค้งของโลกที่ ระดับน้ำทะเลระหว่างจุดเหนือศูนย์เกิดแผ่นดินไหว (epicenter) กับสถานีตรวจวัดแผ่นดินไหว ซึ่ง ในการคำนวณระยะทางจุดเหนือศูนย์เกิดแผ่นดินไหวได้ใช้สูตรระยะทางของวงกลมใหญ่ (great circle distance formula) ซึ่งแสดงดังสมการที่ 2.7

$$d = \left\{ \cos^{-1} \left[\sin(A) \cdot \sin(B) + \cos(A) \cdot \cos(B) \cdot \cos(\Delta_{long} |) \right] \right\} \cdot \frac{180}{\pi} \cdot 111.23 \ km \tag{2.7}$$

โดยที่

d	= ระยะทางจากแหล่งกำเนิคถึงสถานีตรวจวัค (กิโลเมตร)
A	= ละติจูดของสถาน•(π/180)
В	= ละติจูดของจุดเหนือศูนย์เกิดแผ่นดินไหว• (π/180)
$\Delta_{ m long}$	= (ถองจิ _จ ิดของสถานี - ถองจิจูดของจุดเหนือศูนย์เกิดแผ่นดินไหว) • (π/180)
111.23 km	= ความยาวบนผิวโลกของมุมลองจิจูคหนึ่งองศา ณ เส้นศูนย์สูตร

การตรวจสอบระยะทางจุดเหนือศูนย์เกิดแผ่นดินไหว (epicenter distance) ที่คำนวณได้จาก สูตรระยะทางของวงกลมใหญ่ (great circle distance formula) ได้ตรวจสอบกับระยะทางที่วัดได้ใน โปรแกรม MapInfo Professional โดยการพลีอตจุดเหนือศูนย์เกิดแผ่นดินไหว (epicenter) ของ เหตุการณ์แผ่นดินไหวที่ได้เกิดขึ้น วันที่ 16 เดือนพฤษภาคม พ.ศ. 2550 เวลา 8:56:18 (UTC) และ สถานีตรวจวัดแผ่นดินไหวที่สามารถตรวจวัดการเคลื่อนไหวของพื้นดินเนื่องจากแผ่นดินไหวของ เหตุการณ์นี้ลงบนแผนที่ในโปรแกรม MapInfo Professional และวาดเส้นตรงจากจุดเหนือศูนย์เกิด แผ่นดินไหว (epicenter) ถึงสถานีตรวจวัดแผ่นดินไหว ซึ่งได้แสดงในตารางที่ 2.7

	I atituda	Longituda	Epicenter Distance	Epicenter Distance
Station	tion (°N) (°E)		Calculate from Equation	Measured on Map
			(km)	(km)
CHBT	12.7526	102.3297	877	877
CMMT	18.8128	98.9476	278	278
KHLT	14.797	98.5 <mark>8</mark> 9	682	681
KRDT	14.5905	101.8442	667	667
MHIT	19.3148	97.9632	334	334
PBKT	16.5733	100.9687	439	439
SURT	8.958	98.795	1306	1305
UBPT	15.2773	105.4695	758	758

ตารางที่ 2.7 การตรวจสอบระยะทางจุดเหนือศูนย์เกิดแผ่นดินไหว

2.4.4 ประเภทชั้นดินที่ตั้งสถานี (site category)

การแบ่งประเภทชั้นดินที่ตั้งสถานีตรวจวัดแผ่นดินไหวกวรจะใช้ข้อมูลเจาะสำรวจชั้นดิน ณ ที่ตั้งสถานีตรวจวัดแผ่นดินไหว แต่เนื่องจากไม่มีข้อมูลดังกล่าวจึงใช้ข้อมูลการขุดเจาะสำรวจชั้น ดินของบริเวณใกล้เกียงเป็นตัวแทนข้อมูลการขุดเจาะสำรวจชั้นดินของแต่ละสถานีซึ่งข้อมูลการขุด เจาะสำรวจชั้นดินได้จากเว็บไซต์ของกรมโยธาธิการ และผังเมือง กระทรวงมหาดไทย ซึ่งมีข้อมูล เจาะสำรวจชั้นดินทั่วประเทศไทย และในการศึกษาครั้งนี้ได้แบ่งประเภทชั้นดินที่ตั้งสถานีตรวจวัด แผ่นดินไหวออกเป็นสองประเภทกือ สถานีที่ตั้งอยู่บนหิน (rock site) และสถานีที่ตั้งอยู่บนดิน (soil site)

ข้อมูลเจาะสำรวจชั้นดินจะใช้ประมาณก่าความเร็วคลื่นเฉือน (shear wave velocity, V_s) ในแต่ละชั้นดิน โดยใช้สมการเชิงประสบการณ์ (empirical equations) ซึ่งเป็นสัมพันธ์ระหว่างก่า Nvalues ของการทดสอบการทะลวงมาตรฐาน (standard penetration test, SPT) กับความเร็วคลื่น เฉือน (shear wave velocity, V_s) ซึ่งการประมาณก่าความเร็วคลื่นเฉือน (shear wave velocity, V_s) สำหรับชั้นดินทรายได้ใช้สมการดังนี้

Dickenson (1994) :	$V_s = 88.392 (N+1)^{0.3}$	(2.8ก)
--------------------	----------------------------	--------

Seed, Idriss and Arango (1983):
$$V_s = 56.388 N^{0.5}$$
 (2.80)

Sykora and Stokoe (1983):
$$V_s = 100.584 N^{0.29}$$
 (2.89)

สำหรับการประมาณค่าความเร็วคลื่นเนือน (shear wave velocity, V_s) สำหรับชั้นดิน เหนียวได้ใช้สมการดังต่อไปนี้

Imai and Tonouchi (1982) :	$V_s = 96.926 N^{0.314}$	(2.9fl)
Ohsaki and Iwasaki (1973) :	$V_s = 81.686 N^{0.39}$	(2.9V)
Ohta and Goto (1978) :	$V_{\rm s} = 85.344 N^{0.341}$	(2.9ค)

โดยที่

V_{S}	= ความเร็วกลื่นเฉือน (shear wave velocity, V_{s}) (เมตร/วินาที)
Ν	= ค่า blow count ที่นับได้จากการทดสอบการทะลวงมาตรฐาน (standard
	penetration test, SPT) (ครั้ง/ฟุต)

การประมาณค่าความเร็วคลื่นเฉือนในบริเวณที่มีสภาพคินเป็นคินเหนียวอ่อนซึ่งได้แก่ บริเวณกรุงเทพมหานครและปริมลฑล ค่าพารามิเตอร์สำหรับการประมาณค่าความเร็วคลื่นเฉือน ต้องเปลี่ยนไปเนื่องจากไม่สามารถหาค่า blow count ของการทคสอบการทะลวงมาตรฐาน (standard penetration test, SPT) ได้ จึงประมาณค่าความเร็วคลื่นเฉือนโดยใช้ความสัมพันธ์ระหว่าง ความเร็วคลื่นเฉือนกับกำลังเฉือนของคินแบบไม่ระบายน้ำโดยใช้สมการที่เสนอโดย Dickenson (1994) ซึ่งได้แสดงในสมการที่ 2.10

$$V_s = 68.7 \, S_u^{0.475} \tag{2.10}$$

โดยที่

 V_s = ความเร็วคลื่นเฉือน (shear wave velocities, V_s) (เมตร/วินาที) S_u = ค่า undrained shear strength (ตัน/เมตร²)

การแบ่งประเภทชั้นดินที่ตั้งสถานีได้แบ่งตามเกณฑ์ของ International Building Code (IBC) โดยใช้ความเร็วคลื่นเฉือนเฉลี่ยในช่วงความลึก 30 เมตร จากผิวดิน ซึ่งการหาค่าเฉลี่ย ความเร็วคลื่นเฉือนในช่วงความลึก 30 เมตรจากผิวดินได้แสดงในสมการที่ 2.11
$$\overline{V}_{S,30} = \frac{\sum_{i=1}^{n} d_i}{\sum_{i=1}^{n} \frac{d_i}{V_{si}}}$$
(2.11)

โดยที่

- $\overline{V}_{s,30}$ = ความเร็วคลื่นเฉือนเฉลี่ยในช่วงความลึก 30 เมตร จากผิวดิน (เมตร/วินาที)
- n = จำนวนชั้นดินในช่วงความลึก 30 เมตร จากผิวดิน
- d_i = ความหนาของชั้นคิน i (เมตร)
- V_{si} = ความเร็วคลื่นเฉือนในชั้นดิน i (เมตร/วินาที)

ตารางที่ 2.8 การแบ่งประเภทชั้นดินที่ตั้งสถานีตามเกณฑ์ของ International Building Code (2003)

Site Class	Soil Type	Average Shear Wave Velocity (m/s)
А	หินแข็ง	$\overline{V}_{s,30} > 1,500$
В	หิน	$760 < \overline{V}_{S,30} \le 1,500$
С	ดินแน่ <mark>นมากและหินผุ</mark>	$360 < \overline{V}_{s,30} \le 760$
D	คิ <mark>น</mark> แข็ง	$180 < \overline{V}_{s,30} \le 360$
Е	ดินอ่อ <mark>น</mark>	$\overline{V}_{s,30} < 180$

ประเภทชั้นดินที่ตั้งสถานีและค่าความเร็วคลื่นเฉือนเฉลี่ย (average shear wave velocity, $\overline{V}_{s,30}$) ของสถานีตรวจวัดแผ่นดินไหวในระบบเครือข่ายตรวจวัดแผ่นดินไหวระบบใหม่ระยะที่ 1 และระยะที่ 2 ได้แสดงในตารางที่ 2.9, 2.10, และ 2.11

ตารางที่ 2.9 ประเภทชั้นดินที่ตั้งสถานีตรวจวัดแผ่นดินไหวหลักระบบใหม่ระยะที่ 1

Code	Station	Soil type	Average shear wave velocity (m/s)
9	Soil si	te ($\overline{V}_{s,30} \leq 360$)	
KRDT	นครราชสีมา	ดินแข็ง	348
SKNT	สกลนคร	ดินแข็ง	254
PBKT	เพชรบูรณ์	ดินแข็ง	245
UBPT	อุบลราชธานี	ดินแข็ง	294
MHMT	แม่สะเรียง	ดินแข็ง	330

Code	Station	Soil type	Average shear wave velocity (m/s)
	Soil si	te ($\overline{V}_{s,30} \leq 360$)	
SURT	สุราษฎร์ธานี	ดินแข็ง	290
TRTT	ตรัง	ดินแข็ง	340
PKDT	ภูเก็ต	ดินแข็ง	215
SKLT	สงขลา	ดินแข็ง	340
	Rock s	ite ($\overline{V}_{s,30} > 360$)	
KHLT	เงื่อนเขาแหล <mark>ม</mark>	ดินแน่นมากและหินผุ	387
SRDT	กาญจนบุรี	ดินแน่นมากและหินผุ	387
CHBT	จันทบุรี	ดินแน่นมากและหินผุ	487
CMMT	เชียงใหม่	หิน	-
MHIT	แม่ฮ่องสอน	ดินแน่นมากและหินผุ	379
RNTT	ระนอง	<mark>ดินแน่นมา</mark> กและหินผุ	417

ตารางที่ 2.9 (ต่อ) ประเภทชั้นดินที่ตั้งสถานีตรวจวัดแผ่นดินไหวหลักระบบใหม่ระยะที่ 1

ตารางที่ 2.10 ประเภทชั้นดินที่ตั้งสถานีตรวจวัดเฉพาะความเร่งของพื้นดินระบบใหม่ระยะที่ 1

Code	Station	Soil type	Average shear wave velocity (m/s)	
	Soil si	te ($\overline{V}_{s,30} \leq 360$)		
BKKA	สถานึกรมอุตุนิยมวิทยา บางนา	ดินอ่อน	139	
SPBA	สถานีอุตุนิยมวิทยาสุพรรณบุรี	ดินแข็ง	291	
CHLA	สถานีจุฬาลงกรณ์มหาวิทยาลัย	ดินอ่อน	160	
PTNA สถานีอุตุนิยมวิทยาปทุมธานี		ดินอ่อน	161	
Rock site ($\overline{V}_{s,30}$		ite ($\overline{V}_{S,30} > 360$)		
KCBA	สถานีอุตุนิยมวิทยากาญจนบุรี	ดินแน่นมากและหินผุ	368	
CMCA ศูนย์อุตุนิยมวิทยาภาคเหนือ		ดินแน่นมากและหินผุ	392	

Cada	Station	Soil trac	Average shear wave
Code	Station Son type		velocity (m/s)
Soil site ($\overline{V}_{s,30} \leq 360$)			
PHIT	เขื่อนแควน้อย จ.พิษณุโลก	ดินแข็ง	254
SUKH	อ่างเก็บน้ำห้วยท่าแพร่ จ.สุโขทัย	ดินแข็ง	321
UTTA	เขื่อนสิริกิต จ.อุตรดิตถ์	คินแข็ง	278
LAMP	เขื่อนกิ่วลม จ.ลำปาง	ดินแข็ง	321
PAYA	อ่างเก็บน้ำแม่ปีม จ.พะเยา	ดินแข็ง	327
UMPA	สถานีอุตุนิยมวิทยาอุ้มผาง จ.ตาก	ดินแข็ง	307
UTHA	เขื่อนทับเสลา จ.อุทัยธานี	ดินแข็ง	249
PATY	สถานีอุตุนิยมวิทยาพัทยา จ.ชลบุรี	ดินแข็ง	300
CHAI	อ่างเก็บน้ำช่อระกา จ.ชัยภูมิ	ดินแข็ง	338
KHON	สถานีอากาศเกษ <mark>ตรท่า</mark> พระ	ดินแข็ง	281
SURI	อ่างเกีบน้ำอำปืม จ. <mark>สุรินทร์</mark>	ดินแข็ง	312
CMAI	สถานีอุตุนิยมวิทยาคอยอ่างขาง	ดินแข็ง	351
SRIT	อ่างเกีบน้ำคลองคินแคง	ดินแข็ง	270
SURA	ฝ่ายเกีบน้ำท่าทอง	ดินแข็ง	254
NONG	อ่างเกีบน้ำห้วย <mark>เป</mark> ลวเหงือก	ดินแข็ง	266
PANO	อ่างเกี่บน้ำห้วยแคน จ.นครพนม	ดินแข็ง	296
NAYO	อ่างเกีบน้ำคลองท่าด่าน	ดินแข็ง	258
LOEI	อ่างเกีบน้ำห้วยน้ำหนาม จ.เลย 😁	ดินแขึ่ง	355
9	Rock sit	te ($\overline{V}_{s,30} > 360$)	ลย
NAN	ฝ่ายน้ำกอน จ.น่าน	ดินแน่นมากและหินผุ	454
PHET	อ่างเกี่บน้ำแก่งกระจาน	ดินแน่นมากและหินผุ	382
SRAK	อ่างเกี่บน้ำห้วยยาง จ.สระแก้ว	ดินแน่นมากและหินผุ	395
KRAB	อ่างเกี่บน้ำบางกำปรัด จ.กระบี่	ดินแน่นมากและหินผุ	540
PHRA	อ่างเกี่บน้ำสอง จ.แพร่	ดินแน่นมากและหินผุ	362
CRAI	อ่างเก็บน้ำห้วยช้าง จ.เชียงราย	ดินแน่นมากและหินผุ	387

ตารางที่ 2.11 ประเภทชั้นดินที่ตั้งสถานีตรวจวัดแผ่นดินไหวหลักระบบใหม่ระยะที่ 2

Code	Station	Soil type	Average shear wave velocity (m/s)	
Soil site ($\overline{V}_{s,30} \leq 360$)				
PRAC	เขื่อนปราณบุรี	ดินแน่นมากและหินผุ	527	

ตารางที่ 2.11 (ต่อ) ประเภทชั้นดินที่ตั้งสถานีตรวจวัดแผ่นดินไหวหลักระบบใหม่ระยะที่ 2

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

สเปคตรัมการตอบสนองและแบบจำลองการลดทอน

3.1 แนวความคิดของสเปคตรัมการตอบสนอง

สเปลตรัมการตอบสนอง คือเส้นแสดงค่าการตอบสนองสูงสุดในระบบยืดหยุ่นระดับขั้น ความเสรีเดียว (SDOF) ภายใต้แผ่นดินไหวที่พิจารณา ซึ่งเป็นฟังก์ชันของคาบการสั่นไหวธรรมชาติ (natural vibration period, T_n) หรือความถี่ธรรมชาติเชิงมุม (circular natural frequency, ω_n) โดย แสดงสำหรับค่าอัตราส่วนความหน่วง (damping ratio, ζ) คงที่ ซึ่งแสดงในรูปที่ 3.1

รูปที่ 3.1 ขั้นตอนการคำนวณสเปลตรัมการตอบสนองของการกระจัด (Chen and Scawthorn, 2003)

3.2 สเปคตรัมการตอบสนองแบบยืดหยุ่น

สเปคตรัมการตอบสนองแบบยืดหยุ่นของโครงสร้างสามารถคำนวณหาได้โดยวิธี พลศาสตร์โครงสร้าง ซึ่งการคำนวณเป็นการพิจารณาในระบบยืดหยุ่นระดับขั้นความเสรีเดียว (single-degree-of-freedom system, SDOF) (รูปที่ 3.2) โดยที่ฐานของโครงสร้างเกิดการสั่น เนื่องจากการเคลื่อนไหวของพื้นดิน *ü_s(t)* ซึ่งจะทำให้มวลของโครงสร้างเกิดการกระจัดโดยมี ความสัมพันธ์กับฐานของโครงสร้าง ซึ่งสามารถเขียนสมการการเคลื่อนที่ของระบบได้ดังนี้

รูปที่ 3.2 ระบบยืดหยุ่นระดับขั้นความเสรีเดียวโดยฐานของโครงสร้างเกิดการเคลื่อนที่

$$m\ddot{u}^{t} + 2\zeta m\omega_{n}\dot{u} + ku = 0 \tag{3.1}$$

เมื่อ

เมื่อแทนค่าสมการที่ 3.2 และ 3.3 ในสมการที่ 3.1 จะได้

$$\ddot{u} + 2\zeta \omega_n \dot{u} + \omega_n^2 u = -\ddot{u}_g(t) \tag{3.4}$$

และถ้าระบบยังไม่มีการสั่นไหวเมื่อเวลา t = 0 ผลเฉลยการกระจัดของสมการที่ 3.4 สามารถเขียน ให้อยู่ในรูปแบบของ Duhamel's integral ได้ดังสมการที่ 3.5

$$u(t) = -\frac{1}{\omega_D} \int_0^t \ddot{u}_g(\tau) e^{-\zeta \omega_n(t-\tau)} \sin[\omega_D(t-\tau)] d\tau$$
(3.5)

โดยที่ $\omega_D = \omega_n \sqrt{1 - \zeta^2}$

และในกรณีที่ $\zeta = 0$ หากกำหนดให้ $V(t) = -\int_{0}^{t} \ddot{u}_{g}(\tau) e^{-\zeta \omega_{n}(t-\tau)} \sin[\omega_{D}(t-\tau)] d\tau$ ซึ่งมีหน่วย เป็นความเร็วจะได้ว่า

$$u(t) = \frac{1}{\omega_n} V(t) \tag{3.6}$$

ซึ่งค่าสัมบูรณ์สูงสุดของการกระจัดเท่ากับ

$$u_o = S_d = \frac{S_v}{\omega_n} \tag{3.7}$$

โดยที่

$$S_{v}(\ddot{u}_{g},\zeta,\omega_{n}) = \max_{\forall t} |V(t)|$$
(3.8)

S_d คือการกระจัดสูงสุด (maximum displacement) และ S_v คือ ความเร็วเทียม (pseudo velocity) เพราะมีหน่วยเป็นความเร็วแต่ไม่ใช่ความเร็วสัมพัทธ์ที่แท้จริง

เมื่อพิจารณาระบบยืดหยุ่นระดับขั้นความเสรีเดียวในรูปที่ 3.2 เป็นกรณีที่ปราศจาก ความหน่วง สมการการเคลื่อนที่ของระบบจะเป็น

$$m\ddot{u}^{t} + ku = 0 \tag{3.9}$$

ซึ่งเมื่อจัครูป และหาค่าสัมบูรณ์จะได้

$$\ddot{u}^t = \frac{k}{m} |u| = \omega_n^2 |u|$$

และถ้ากำหนดให้

$$S_a = \omega_n^2 S_d \tag{3.10}$$

โดย S_a คือ ความเร่งเทียม (pseudo acceleration) เพราะมีหน่วยเป็นความเร่งแต่ไม่ใช่ความเร่ง สัมพัทธ์ที่แท้จริง ดังนั้นเมื่อระบบยืดหยุ่นระดับขั้นความเสรีเดียวปราศจากความหน่วงความเร่ง เทียมจะมีก่าเท่ากับความเร่งรวมดังแสดงในรูปที่ 3.3

สเปกตรัมของความเร่งเทียม (pseudo acceleration) มีก่าใกล้เกียงกับสเปกตรัมของความเร่ง รวม (total acceleration) เมื่อระบบมีอัตราส่วนความหน่วงต่ำ (รูปที่ 3.3) หรือระบบมีกาบธรรมชาติ สั้น

ความเร็วเทียม (pseudo velocity) จะมีค่าใกล้เคียงกับความเร็วสัมพัทธ์ (relative velocity) ในช่วงคาบธรรมชาติปานกลาง ในกรณีที่มีคาบธรรมชาติสั้นความแตกต่างจะเพิ่มมากขึ้นเมื่อ อัตราส่วนความหน่วงเพิ่มมากขึ้น ในกรณีที่คาบธรรมชาติยาวมากความเร็วเทียมจะลู่เข้าหาศูนย์ใน ขณะที่ความเร็วสัมพัทธ์ไม่เป็นศูนย์ (รูปที่ 3.4)

ร**ูปที่ 3.3** (ก) การเปรียบเทียบความเร่งรวม และความเร่งเทียม ($\zeta = 0.1$) (ข) อัตราส่วน ความเร่งเทียมต่อความเร่งรวม ($\zeta = 0.1$ และ 0.2) (Chopra, 2001)

ร**ูปที่ 3.4** (ก) การเปรียบเทียบความเร็วสัมพัทธ์ และความเร็วเทียม ($\zeta = 0.1$) (ข) อัตราส่วน ความเร็วเทียมต่อความเร็วสัมพัทธ์ ($\zeta = 0.1$ และ 0.2) (Chopra, 2001)

รูปที่ 3.5 แสดงสเปลตรัมการตอบสนองของโครงสร้างที่คำนวณจากข้อมูลการเคลื่อนไหว ของพื้นดินที่สถานี El Centro โดยมีอัตราส่วนความหน่วงเท่ากับ 2 เปอร์เซ็นต์ ซึ่งการคำนวณหา การกระจัดสูงสุดของโครงสร้างสามารถคำนวณโดยใช้สมการ Duhamel's integral โดยกำหนด อัตราส่วนความหน่วง และความถี่ธรรมชาติ ส่วนความเร็วเทียม (pseudo velocity) และความเร่ง เทียม (pseudo acceleration) สามารถคำนวณโดยใช้สมการที่ 3.7 และ 3.10

รูปที่ 3.5 สเปลตรัมการตอบสนอง ($\zeta = 0.02$) ของคลื่นแผ่นดินใหวที่สถานี El Centro จาก เหตุการณ์แผ่นดินไหว Imperial Valley ปี 1940 (ก) สเปลตรัมการตอบสนอง ของการกระจัด (ข) สเปลตรัมการตอบสนองของความเร็วเทียม (ค) สเปลตรัม การตอบสนองของความเร่งเทียม (Chen and Scawthorn, 2003)

3.2.1 ความหมายทางกายภาพของความเร็วเทียม และความเร่งเทียม

ในขณะโครงสร้างเกิดการสั่นใหวเนื่องจากได้รับกระตุ้นจากแผ่นดินไหวโครงสร้างจะเกิด การสะสมพลังงานศักย์ยืดหยุ่น (strain energy) ซึ่งพลังงานศักย์ยืดหยุ่นมีความสัมพันธ์กับการ กระจัดดังสมการ

$$E_s = \frac{ku^2}{2} \tag{3.11}$$

โดยก่าสูงสุดของพลังงานศักย์ยืดหยุ่นจะมีก่าเท่ากับ

$$E_{so} = \frac{ku_o^2}{2}$$
$$E_{so} = \frac{kS_d^2}{2}$$

ซึ่งมีความสัมพันธ์กับความเร็วเทียมดังสมการ

$$E_{so} = \frac{mS_{v}^{2}}{2}$$
(3.12)

เมื่อ E_s คือ พลังงานศักย์ยึดหยุ่น (strain energy) และ E_{so} คือ พลังงานศักย์ยึดหยุ่นสูงสุด

การวิเคราะห์โครงสร้างเพื่อออกแบบอาการสำหรับต้านแรงแผ่นดินไหวโดยใช้วิธีแรงสถิต เทียบเท่าสามารถหาแรงที่ทำให้เกิดการกระจัดได้ดังสมการ

$$f_s(t) = ku(t) \tag{3.13}$$

ซึ่งสามารถเขียนในรูปของความเร่งเทียมได้ดังสมการที่ 3.14

$$f_{s}(t) = m\omega^{2}u(t)$$

$$f_{s}(t) = mA(t)$$
(3.14)

โดยที่ A(t) คือ การตอบสนองของความเร่งเทียม ณ เวลา t ดังนั้นค่าแรงสถิตเทียบเท่าสูงสุด หรือ ค่าแรงเฉือนที่ฐาน (base shear) สูงสุด เท่ากับ

$$V_{bo} = f_{so} = mS_a = \frac{S_a}{g}w$$
(3.15)

โดยที่

$$V_{ba}$$
 = ค่าสูงสุดของแรงเฉือนที่ฐาน (base shear) ของโครงสร้าง

g = ความเร่งโน้มถ่วงของโลกซึ่งมีค่าเท่ากับ 9.81 เมตร/วินาที²

$$S_a =$$
 ความเร่งเทียม (pseudo acceleration) สูงสุด หรือ ความเร่งสเปคตรัม (spectral acceleration) = max | $A(t)$ |

3.3 การคำนวณสเปคตรัมการตอบสนองที่ใช้ในการศึกษา

สเปกตรัมการตอบสนองที่ใช้ในการศึกษาได้กำนวณโดยใช้โปรแกรม SPECEQ ซึ่งเป็น โปรแกรมกอมพิวเตอร์ที่ใช้ระเบียบวิธีเชิงตัวเลข (numerical method) หาผลเฉลยของสมการการ เกลื่อนที่ซึ่งได้แก่ การกระจัด ความเร็วสัมพัทธ์ และความเร่งสัมบูรณ์ ซึ่งสมการที่ใช้เขียน โปรแกรมกอมพิวเตอร์ได้แสดงดังสมการที่ 3.16 และ 3.17

$$\mathbf{u}_{i+1} = \mathbf{A}(\zeta, \omega_n, \Delta t_i) \mathbf{u}_i + \mathbf{B}(\zeta, \omega_n, \Delta t_i) \ddot{\mathbf{u}}_{\mathbf{g}_i}$$
(3.16a)

ເນື່ອ

$$\Delta t_i = t_{i+1} - t_i \tag{3.16b}$$

$$\Delta u_{g_{i}} = u_{g_{i+1}} - u_{g_{i}}$$
(3.16c)

$$\mathbf{u}_{i} = \begin{cases} u_{i} \\ \dot{u}_{i} \end{cases}$$
(3.16d)

$$\ddot{\mathbf{u}}_{g_{i}} = \begin{cases} \ddot{u}_{g_{i}} \\ \vdots \\ \ddot{u}_{g_{i+1}} \end{cases}$$
(3.16e)

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
(3.16f)

$$\mathbf{B} = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$
(3.16g)

องค์ประกอบของเมตริกซ์ A และ เมตริกซ์ B ได้แสดงดังนี้

$$a_{11} = e^{-\zeta \omega_n \Delta t_i} \left(\frac{\zeta}{\sqrt{1 - \zeta^2}} \sin(\omega_n \sqrt{1 - \zeta^2}) \Delta t_i + \cos(\omega_n \sqrt{1 - \zeta^2}) \Delta t_i \right)$$
(3.16h)

$$a_{12} = \frac{e^{-\zeta \omega_n \Delta t_i}}{\omega_n \sqrt{1 - \zeta^2}} \sin(\omega_n \sqrt{1 - \zeta^2}) \,\Delta t_i \tag{3.16i}$$

$$a_{21} = -\frac{\omega_n}{\sqrt{1-\zeta^2}} e^{-\zeta\omega_n\Delta t_i} \sin(\omega_n\sqrt{1-\zeta^2}) \,\Delta t_i$$
(3.16j)

$$a_{22} = e^{-\zeta \omega_n \Delta t_i} \left(\cos(\omega_n \sqrt{1 - \zeta^2}) \Delta t_i - \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin(\omega_n \sqrt{1 - \zeta^2}) \Delta t_i \right)$$
(3.16k)

$$b_{11} = e^{-\zeta \omega_n \Delta t_i} \left[\left(\frac{2\zeta^2 - 1}{\omega_n^2 \Delta t_i} + \frac{\zeta}{\omega_n} \right) \frac{\sin(\omega_n \sqrt{1 - \zeta^2} \Delta t_i)}{\omega_n \sqrt{1 - \zeta^2}} + \left(\frac{2\zeta}{\omega_n^3 \Delta t_i} + \frac{1}{\omega_n^2} \right) \right] - \frac{2\zeta}{\omega_n^3 \Delta t_i}$$
(3.16l)

$$b_{12} = -e^{-\zeta \omega_n \Delta t_i} \begin{bmatrix} \frac{2\zeta^2 - 1}{\omega_n^2 \Delta t_i} \frac{\sin(\omega_n \sqrt{1 - \zeta^2} \Delta t_i)}{\omega_n \sqrt{1 - \zeta^2}} + \frac{2\zeta}{\omega_n^3 \Delta t_i} \\ \cos(\omega_n \sqrt{1 - \zeta^2} \Delta t_i) \end{bmatrix} - \frac{1}{\omega_n^2} + \frac{2\zeta}{\omega_n^3 \Delta t_i}$$
(3.16m)

$$b_{21} = e^{-\zeta \omega_n \Delta t_i} \left[\frac{2\zeta^2 - 1}{\omega_n^2 \Delta t_i} + \frac{\zeta}{\omega_n} \right] \left[\frac{\cos(\omega_n \sqrt{1 - \zeta^2} \Delta t_i) - \frac{\zeta}{\sqrt{1 - \zeta^2}}}{\sin(\omega_n \sqrt{1 - \zeta^2} \Delta t_i)} \right] + \frac{1}{\omega_n^2 \Delta t_i} + \frac{1}{\omega_n^2} \left[\frac{\omega_n \sqrt{1 - \zeta^2} \Delta t_i}{\sqrt{1 - \zeta^2} \Delta t_i} \right] + \frac{1}{\omega_n^2 \Delta t_i}$$
(3.16n)

$$b_{22} = -e^{-\zeta\omega_{n}\Delta t_{i}} \begin{bmatrix} \frac{2\zeta^{2}-1}{\omega_{n}^{2}\Delta t_{i}} \begin{pmatrix} \cos(\omega_{n}\sqrt{1-\zeta^{2}} \Delta t_{i}) - \frac{\zeta}{\sqrt{1-\zeta^{2}}} \\ \sin(\omega_{n}\sqrt{1-\zeta^{2}} \Delta t_{i}) \\ -\frac{2\zeta}{\omega_{n}^{3}\Delta t_{i}} \begin{pmatrix} \omega_{n}\sqrt{1-\zeta^{2}} \sin(\omega_{n}\sqrt{1-\zeta^{2}} \Delta t_{i}) \\ +\zeta\omega_{n}\cos(\omega_{n}\sqrt{1-\zeta^{2}} \Delta t_{i}) \end{pmatrix} \end{bmatrix} - \frac{1}{\omega_{n}^{2}\Delta t_{i}}$$
(3.16o)

ความเร่งรวมของมวล ณ เวลา *t_i* ได้แสดงดังสมการ

$$\ddot{u}_{i}^{t} = |\ddot{u}_{i} + \ddot{u}_{g_{i}}| = -(2\zeta \omega_{n} \dot{u}_{i} + \omega_{n}^{2} u_{i})$$
(3.17)

เมื่อ

A= เมตริกซ์ขนาด 2 x 2B= เมตริกซ์ขนาด 2 x 2u= การกระจัดสัมพัทธ์ \ddot{u}^{t} = ความเร่งรวม (total acceleration) ζ = อัตราส่วนความหน่วง ω_n = ความถี่ธรรมชาติเชิงมุม Δt_i = ช่วงการเปลี่ยนข้อมูลประวัติเวลาให้เป็นตัวเลข (time step)

Nigam and Jenning (1968) ได้ใช้สมการที่ 3.15 และ 3.16 หาค่าการกระจัด, ความเร็ว และ ความเร่งสัมบูรณ์ที่เวลาต่างๆ จากนั้นจึงหาค่าสูงสุดตามสมการที่ 3.18 ถึง 3.20

$$u_o(\omega_n,\zeta) = \max_{i=1,N} |u_i(\omega_n,\zeta)|$$
(3.18)

$$\dot{u}_{o}(\omega_{n},\zeta) = \max_{i=1,N} |\dot{u}_{i}(\omega_{n},\zeta)|$$
(3.19)

$$\ddot{u}_o^t(\omega_n,\zeta) = \max_{i=1,N} |\ddot{u}_i^t(\omega_n,\zeta)|$$
(3.20)

ເນື່ອ

 u_o = การกระจัคสัมพัทธ์สูงสุด (peak relative displacement)

 \dot{u}_o = ความเร็วสัมพัทธ์สูงสุด (peak relative velocity)

 \ddot{u}_o^t = ความเร่งรวมสูงสุด (peak total acceleration)

3.4 ทฤษฎีพื้นฐานของแบบจำลองการลดทอน

แบบจำลองการลดทอน (attenuation model) คือสมการที่ใช้ทำนายค่าพารามิเตอร์การ เคลื่อนไหวของพื้นดิน เช่น การกระจัดสูงสุดของพื้นดิน (peak ground displacement) ความเร็ว สูงสุดของพื้นดิน (peak ground velocity) ความเร่งสูงสุดของพื้นดิน (peak ground acceleration) และความเร่งเทียม (pseudo acceleration) ซึ่งค่าพารามิเตอร์เหล่านี้จะขึ้นอยู่กับขนาดของ แผ่นดินไหว (magnitude) ระยะห่าง (distance) จากแหล่งกำเนิด คาบธรรมชาติ (natural period) ชนิดของรอยเลื่อน (fault) และกลไกการแตกร้าว (rupture mechanism) ซึ่งแบบจำลองได้มีรูปแบบ ฟังก์ชัน โดยทั่วไปดังสมการที่ 3.21 และขั้นตอนการสร้างแบบจำลองโดยใช้ข้อมูลการเคลื่อนไหว ของพื้นดินได้แสดงในรูปที่ 3.6

รูปที่ 3.6 ขั้นตอนการสร้างแบบจำลองการลดทอน (Douglas, 2003)

$$\ln(Y) = \ln(b_1) + \ln f_1(M) + \ln f_2(R) + \ln f_3(M, R) + \ln f_4(P_i) + \ln(\varepsilon)$$
(3.21)

เมื่อ

Y	= พารามิเตอร์การเคลื่อนไหวของพื้นคิน
b_1	= ตัวประกอบมาตราส่วน
$f_1(M)$	= ฟังก์ชันของขนาดแผ่นดินใหว (magnitude)
$f_2(\mathbf{R})$	= ฟังก์ชันของระยะทาง (distance)
$f_3(M,R)$	= ฟังก์ชันขนาดแผ่นดินไหว (magnitude) และระยะทาง (distance)
$f_4(P_i)$	= ตัวแปรอื่นๆของแหล่งกำเนิดแผ่นดินไหว (source) และผลกระทบของชั้นดิน
	ที่ตั้งสถานี <mark>ต</mark> รวจวัดแผ่นดินไหว
Е	= ค่าคลาดเคลื่อนเนื่องจากความไม่แน่นอน

แบบจำลองการลดทอน (attenuation model) อาจจะมีรูปแบบแตกต่างจากสมการที่ 3.21 ขึ้นอยู่กับนักวิจัยผู้พัฒนา ซึ่งค่าสัมประสิทธิ์ของแบบจำลองเป็นค่าที่ได้จากการวิเคราะห์การถดถอย (regression analysis) ข้อมูลการเคลื่อนไหวของพื้นดิน ซึ่งวิธีการวิเคราะห์การถดถอยที่นิยมใช้มี ดังนี้คือ วิธีการถดถอยกำลังสองน้อยที่สุดแบบถ่วงน้ำหนักนอนลิเนียร์ (weighted nonlinear leastsquares regression), วิธีการถดถอยสองขั้นตอน (two-step regression) และวิธีผลกระทบแบบสุ่ม (random-effects method)

3.5 ปัจจัยที่มีผลกระทบกับแบบจำลองการลดทอน

3.5.1 บริเวณการแปรสัณฐานของเปลือกโลก

บริเวณการแปรสัณฐานของเปลือกโลกจะประกอบด้วย 3 บริเวณคือ บริเวณการแปร สัณฐานที่มีพลัง (active tectonic regions), บริเวณภาคพื้นทวีปที่มีเสถียรภาพ (stable continental region) และบริเวณเขตหมุดตัวของเปลือกโลก (subduction zones) ซึ่งบริเวณการแปรสัณฐานที่มี พลัง (active tectonic regions) เป็นบริเวณที่เกิดแผ่นดินไหวบ่อยครั้ง และมีระยะทางก่อนข้างใกล้ กับที่ตั้งสถานีตรวจวัดแผ่นดินไหว แต่บริเวณเขตหมุดตัวของเปลือกโลก (subduction zones) จะมี ระยะทางก่อนข้างใกล ซึ่งการสร้างแบบจำลองสำหรับทั้งสองบริเวณนี้นักวิจัยนิยมใช้ข้อมูลการ เกลื่อนไหวของพื้นดินจากเหตุการณ์แผ่นดินไหวที่เกิดขึ้นจริงเป็นข้อมูลสำหรับสร้างแบบจำลอง ส่วนบริเวณภาคพื้นทวีปที่มีเสถียรภาพ (stable continental region) เป็นบริเวณที่เกิดแผ่นดินไหว น้อยกว่าบริเวณอื่น ซึ่งการสร้างแบบจำลองสำหรับบริเวณนี้นักวิจัยมักจะใช้วิธีการจำลองกลื่น แผ่นดินไหว (simulations) ควบคู่กับการใช้ข้อมูลการเกลื่อนไหวของพื้นดิน

3.5.2 ขนาดของแผ่นดินใหว (earthquake magnitude)

ขนาดของแผ่นดินใหวเป็นมาตราส่วนที่ใช้วัดระดับความรุนแรงของแผ่นดินใหวที่จุด กำเนิด ซึ่งขนาดของแผ่นดินใหวจะมีความสัมพันธ์กับพลังงานที่แผ่นเปลือกโลกปลดปล่อยออกมา ในรูปแบบของการสั่นสะเทือน ซึ่งประเภทของขนาดที่ใช้วัดความรุนแรงของแผ่นดินใหวมีอยู่ หลายชนิดด้วยกันเช่น ขนาดท้องถิ่น (local magnitude, M_L), ขนาดคลื่นพื้นผิว (surface wave magnitude, M_s), ขนาดคลื่นหลัก (body wave magnitude, m_b) และขนาดโมเมนต์ (moment magnitude, M_w) ซึ่งในการสร้างแบบจำลองการลดทอน (attenuation model) มาตราส่วนที่นิยมใช้ กือ ขนาดโมเมนต์ (moment magnitude, M_w) เนื่องจากมาตราส่วนชนิดนี้สามารถวัดขนาดของ แผ่นดินใหวที่มีระดับความรุนแรงมากได้โดยไม่เกิดสภาวะการอิ่มตัว ซึ่งขนาดโมเมนต์จะมีก่า เท่ากับ

$$M_{w} = \log M_{0} - 10.7 \tag{3.22}$$

เมื่อ

 M_w = ขนาคโมเมนต์ (moment magnitude) M_0 = โมเมนต์แผ่นดินไหว (seismic moment) (ดายน์-เซ็นติเมตร)

โดยโมเมนต์แผ่นดินใหว (seismic moment) จะมีค่าเท่ากับ

$$M_0 = \mu A \overline{D} \tag{3.23}$$

เมื่อ

μ = กำลังการแตกร้าว (rupture strength) ของวัสดุตามแนวของรอยเลื่อน (fault) (ดายน์-เซ็นติเมตร²)

$$\overline{D}$$
 = การกระจัดของรอยเถื่อน (เซ็นติเมตร)

3.5.3 ระยะทางจากแหล่งกำเนิดถึงสถานี

การวัคระยะทางจากแหล่งกำเนิคถึงสถานี (site-to-source distance) มีรูปแบบในการวัค หลายรูปแบบ ซึ่งรูปแบบของระยะทางที่นักวิจัยมักนิยมใช้ในการสร้างแบบจำลองการลดทอน (attenuation model) สามารถแบ่งออกเป็นสองประเภทคือ ระยะทางที่ขึ้นอยู่กับจุคกำเนิด แผ่นดินใหวจุดเดียวและระยะทางที่ขึ้นอยู่กับการแตกร้าวของรอยเลื่อน (finite fault rupture) โดย รูปแบบของระยะทางที่ขึ้นอยู่กับจุดกำเนิดแผ่นดินใหวจุดเดียวสามารถแบ่งออกเป็นสองรูปแบบคือ ระยะทางจุดเกิดแผ่นดินใหว (hypocentral distance, r_{hypo}) และระยะทางจุดเหนือสูนย์เกิด แผ่นดินใหว (epicentral distance, r_{epi}) ซึ่งระยะทางจุดเกิดแผ่นดินใหวเป็นการวัดระยะจากสถานี ถึงจุดเกิดแผ่นดินใหวที่เริ่มมีการแตกร้าว และระยะทางจุดเหนือสูนย์เกิดแผ่นดินใหวเป็นการวัด ระยะจากสถานีถึงภาพฉายแนวดิ่งของจุดเกิดแผ่นดินใหวบนพื้นผิวโลก ส่วนรูปแบบของระยะทาง ที่ขึ้นอยู่กับการแตกร้าวของรอยเสื่อน (finite fault rupture) จะประกอบด้วยรูปแบบของระยะทาง ดังนี้คือ ระยะทางในแนวราบที่สั้นที่สุดถึงบริเวณภาพฉายบนผิวดินของระนาบแตกร้าว (Joyner-Boore distance, r_{jb}), ระยะทางที่ใกล้ที่สุดกับพื้นผิวการแตกร้าว (closest distance to the rupture surface, r_{nup}) และระยะทางที่ใกล้ที่สุดกับส่วนที่ก่อให้เกิดแผ่นดินใหวของระยะทางได้แสดงในรูปที่ 3.7

รูปที่ 3.7 รูปแบบของระยะทาง (Abrahamson and Sheslock, 1997)

3.5.4 ลักษณะชั้นดินของสถานีตรวจวัดแผ่นดินไหว

ในการสร้างแบบจำลองการลดทอน (attenuation model) จำเป็นต้องพิจารณาความแตกต่าง ของลักษณะชั้นดิน ณ สถานีตรวจวัดแผ่นดินไหว เนื่องจากคลื่นแผ่นดินไหวที่เดินทางมาถึงสถานี ได้มีระดับความรุนแรงที่แตกต่างกันโดยมีสาเหตุมาจากลักษณะของชั้นดิน ซึ่งในการแยกประเภท ลักษณะของชั้นดินของแต่ละสถานีจะขึ้นอยู่กับความเร็วคลื่นเฉือนเฉลี่ย (average shear wave velocity)

3.5.5 กลไกการเลื่อนของแผ่นเปลือกโลก

การเลื่อนของแผ่นเปลือกโลกเป็นสาเหตุหนึ่งที่ทำให้เกิดแผ่นดินไหวขึ้น ซึ่งการเกิด เหตุการณ์แผ่นดินไหวในแต่ละครั้งก็จะมีรูปแบบการเลื่อนที่แตกต่างกัน โดยความแตกต่างของ รูปแบบการเลื่อนจะมีผลต่อระดับความรุนแรงของคลื่นแผ่นดินไหว ดังนั้นในการสร้างแบบจำลอง การลดทอน (attenuation model) จำเป็นจะต้องมีการแยกประเภทกลไกการเลื่อน (faulting mechanism) ของแผ่นเปลือกโลก ซึ่งประเภทกลไกการเลื่อนจะประกอบด้วย การเลื่อนในแนว ระดับ (strike slip), การเลื่อนย้อน (reverse slip), และการเลื่อนปกติ (normal slip) และการแยก ประเภทกลไกการเลื่อนจะใช้มุมลาดเอียง (rake) และมุมแนวระดับ (strike) เป็นเครื่องมือในการ แยกประเภท ซึ่งความหมายของมุมลาดเอียง (rake) คือมุมระหว่างทิศทางการเลื่อนบนระนาบรอย เลื่อน และมุมแนวระดับ (strike) คือมุมที่แสดงทิศทางการเลื่อนเทียบกับทิศเหนือ

3.5.6 ปัจจัยอื่นๆ ที่มีผลกระทบกับแบบจำลองการลดทอน

การพิจารณาปัจจัยที่มีผลกระทบต่ออัตราการลดทอนคลื่นแผ่นดินไหวจะขึ้นอยู่กับนักวิจัย ผู้พัฒนาแบบจำลองเป็นผู้กำหนดและเลือกพิจารณา ซึ่งปัจจัยที่มีความสำคัญจะประกอบด้วย ความ เค้นปล่อย (stress drop), กระบวนการแตกร้ำว (rupture process), ผลกระทบเนื่องจากหินเพคาน (hanging wall effects)

3.6 แบบจำลองการลดทอนรุ่นใหม่

การสร้างแบบจำลองการลดทอนรุ่นใหม่ (Next Generation of Ground-Motion Attenuation Models, NGA) เป็นโครงการวิจัยที่จัดการโดย Pacific Earthquake Engineering Research Center -Lifelines Program (PEER-LL), U.S. Geological Survey (USGS) และ Southern California Earthquake Center (SCEC) ซึ่งได้ริเริ่มโครงการตั้งแต่ปี ค.ศ. 2002 โดยมีวัตถุประสงค์เพื่อสร้าง แบบจำลองสำหรับแผ่นดินไหวตื้นในอเมริกาตะวันตก ซึ่งในโครงการนี้มีกลุ่มผู้สร้างแบบจำลอง ทั้งหมด 5 กลุ่มซึ่งประกอบด้วย Abrahamson and Silva, Boore and Atkinson, Campbell and Bozorgnia, Chiou and Youngs และ Idriss

แบบจำลองการลดทอนรุ่นใหม่ (NGA) ได้สร้างจากฐานข้อมูลเหตุการณ์แผ่นดินไหว 173 เหตุการณ์ โดยมีข้อมูลการเคลื่อนไหวของพื้นดิน 3,551 บันทึก ซึ่งบันทึกจากสภาพภาคสนามอิสระ (free-filed conditions) และในฐานข้อมูลยังมีข้อมูลอื่นๆที่เกี่ยวข้องดังนี้คือ รูปแบบของระยะทาง 6 ชนิด, ลักษณะชั้นดินของที่ตั้งสถานีตรวจวัด, ความเร็วคลื่นเฉือนเฉลี่ยของแต่ละสถานี, ข้อมูลของ หินเพดาน และหินพื้น

แบบจำลองการลดทอนรุ่นใหม่ (NGA) ให้ความสัมพันธ์ของพารามิเตอร์การเคลื่อนไหว ของพื้นดินกับระยะทาง (distance) ซึ่งได้แก่ การกระจัดสูงสุดของพื้นดิน (peak ground displacement), ความเร็วสูงสูงสุดของพื้นดิน (peak ground velocity, PGV), ความเร่งสูงสุดของ พื้นดิน (peak ground acceleration, PGA) และความเร่งเทียม (pseudo acceleration) ซึ่งขอบเขตของ การสร้างแบบจำลองได้พิจารณาคาบการสั่นไหวธรรมชาติตั้งแต่ 0 ถึง 10 วินาที โดยมีขนาด โมเมนต์ (M_w) ตั้งแต่ 5 ถึง 8.5 และระยะทางจาก 0 ถึง 200 กิโลเมตร

3.7 แบบจำลองการลดทอนที่เลือกใช้ในการศึกษา

การสร้างแบบจำลองการลดทอน (attenuation model) สำหรับประเทศไทยยังไม่สามารถทำ ได้เนื่องจากขาดแคลนข้อมูลการเคลื่อนไหวของพื้นดินจึงจำเป็นต้องศึกษาหาความเหมาะสมของ แบบจำลองที่ได้สร้างขึ้นสำหรับต่างประเทศก่อนที่จะนำมาใช้ประมาณค่าความเร่งสูงสุดของ พื้นดิน (peak ground acceleration, PGA) และความเร่งเทียม (pseudo acceleration) ในประเทศไทย ซึ่งในการศึกษาได้เลือกศึกษาแบบจำลองทั้งหมด 13 ชุด โดยแบ่งเป็นแบบจำลองสำหรับ บริเวณ การแปรสัณฐานที่มีพลัง (active tectonic regions) 7 ชุด, บริเวณภาคพื้นทวีปที่มีเสลียรภาพ (stable continental region) 3 ชุด และบริเวณเขตมุดตัวของเปลือกโลก (subduction zones) 3 ชุด

3.7.1 แบบจำลองของ Abrahamson and Silva (1997)

แบบจำลองที่เสนอโดย Abrahamson and Silva (1997) (สมการที่ 3.24) ได้สร้างจาก เหตุการณ์แผ่นดินไหวตื้นของแผ่นเปลือกโลกในบริเวณการแปรสัณฐานที่มีพลัง (active tectonic region) ซึ่งใช้ข้อมูลการเคลื่อนไหวของพื้นดินทั้งหมด 655 บันทึก จากเหตุการณ์แผ่นดินไหว 58 เหตุการณ์ ซึ่งมีขนาดโมเมนต์ (*M*_w) ตั้งแต่ 4.4 ถึง 7.4 และมีระยะทางที่ใกล้ที่สุดถึงระนาบแตกร้าว (*r_{rup}*) 0 ถึง 220 กิโลเมตร และแบบจำลองได้พิจารณาถึงความรุนแรงของคลื่นแผ่นดินไหวที่ได้ เพิ่มขึ้นเนื่องจากเป็นบริเวณหินเพดาน (hanging wall)

$$\ln(S_a) = f_1(M_w, r_{rup}) + Ff_3(M_w) + HWf_4(M_w, r_{rup}) + Sf_5(p\hat{g}a_{rock})$$
(3.24)

เมื่อ

- $S_a =$ ความเร่งเทียม (g)
- M_w = ขนาดโมเมนต์
- r_{rup} = ระยะทางที่ใกล้ที่สุดถึงระนาบแตกร้าว (กิโลเมตร)
- F = รูปแบบการเลื่อน (เท่ากับ 1 สำหรับการเลื่อนย้อน (reverse), 0.5 สำหรับการ
 เลื่อนเฉียง (oblique) และ 0 สำหรับการเลื่อนแบบอื่น)

$$f_1(M_w, r_{rup}) = \begin{cases} a_1 + a_2(M_w - c_1) + a_{12}(8.5 - M_w)^n + [a_3 + a_{13}(M_w - c_1)] \ln R & \text{for } M \le c_1 \\ a_1 + a_4(M_w - c_1) + a_{12}(8.5 - M_w)^n + [a_3 + a_{13}(M_w - c_1)] \ln R & \text{for } M > c_1 \end{cases}$$

$$R = \sqrt{r_{rup}^2 + c_4^2}$$

$$f_{3}(M_{w}) = \begin{cases} a_{5} & \text{for } M_{w} \leq 5.8 \\ a_{5} + \frac{(a_{6} - a_{5})}{c_{1} - 5.8} & \text{for } 5.8 < M_{w} < c_{1} \\ a_{6} & \text{for } M_{w} \geq c_{1} \end{cases}$$

 $f_4(M_w, r_{rup}) = f_{HW}(M_w) f_{HW}(r_{rup})$ เมื่อ

$$f_{HW}(M_w) = \begin{cases} 0 & \text{for } M_w \le 5.5 \\ M_w - 5.5 & \text{for } 5.5 < M_w < 6.5 \\ 1 & \text{for } M_w \ge 6.5 \end{cases}$$

$$f_{HW}(r_{rup}) = \begin{cases} 0 & \text{for } r_{rup} < 4 \\ a_9 \frac{r_{rup} - 4}{4} & \text{for } 4 < r_{rup} \le 8 \\ a_9 & \text{for } 8 < r_{rup} \le 18 \\ a_9 \left(1 - \frac{r_{rup} - 18}{7}\right) & \text{for } 18 < r_{rup} \le 25 \\ 0 & \text{for } r_{rup} > 25 \end{cases}$$

 $f_5(p\hat{g}a_{rack}) = a_{10} + a_{11}\ln(p\hat{g}a_{rack} + c_5)$

เมื่อ $p\hat{g}a_{rock}$ = ค่าความเร่งสูงสุดของพื้นดินบนที่ตั้งหิน (กำหนดให้ S=0)

ค่าสัมประสิทธิ์ของแบบจำลองได้แสคงในตารางที่ ข.17

3.7.2 แบบจำลองของ Atkinson and Boore (2008)

Atkinson and Boore (2008) ได้สร้างแบบจำลองเพื่อประมาณค่าความเร่งเทียม (pseudo acceleration) ซึ่งมีอัตราส่วนความหน่วงเท่ากับ 5 เปอร์เซ็นต์ และมีคาบธรรมชาติ ตั้งแต่ 0.01 ถึง 10 วินาที และในกระบวนการสร้างแบบจำลองได้ใช้ข้อมูลในฐานข้อมูลของ PEER NGA จำนวน 1,574 บันทึก ซึ่งเกิดจากเหตุการณ์แผ่นดินไหว 58 เหตุการณ์ โดยมีขนาดโมเมนต์ตั้งแต่ 5 ถึง 8 และ มีระยะทางในแนวราบที่สั้นที่สุดถึงบริเวณภาพฉายบนผิวคินของระนาบแตกร้าวตั้งแต่ 0 ถึง 200 กิโลเมตร ซึ่งแบบจำลองได้แสดงในสมการที่ 3.25

$$\ln(S_a) = F_M(M_w) + F_D(r_{jb}, M_w) + F_S(V_{S,30}, r_{jb}, M_w)$$
(3.25)

เมื่อ

- S_a = ความเร่งเทียม (g) = ระยะทางในแนวราบที่สั้นที่สุดถึงบริเวณภาพฉายบนผิวดินของระนาบแตกร้าว r_{ib} (Joyner-Boore distance) (กิโลเมตร)
- = ฟังก์ชันของขนาดแผ่นดินใหว F_{M}
- = ฟังก์ชันของระยะทาง F_{D}
- = ฟังก์ชันการขยายตัวของคลื่นแผ่นดินใหวเนื่องจากสภาพชั้นดินของที่ตั้ง F_{s}
- = ความเร็วคลื่นเฉือนเฉลี่ยในช่วงความลึก 30 เมตรจากผิวคิน $V_{S.30}$

$$F_{D}(r_{jb}, M_{w}) = [c_{1} + c_{2}(M_{w} - M_{ref})] \ln\left(\frac{R}{R_{ref}}\right) + c_{3}(R - R_{ref})$$

เมื่อ $R = \sqrt{r_{jb}^2 + h^2}$ และ $c_1, c_2, M_{ref}, R_{ref}$ และ h เป็นค่าสัมประสิทธิ์

$$F_{M}(M_{w}) = \begin{cases} e_{1}U + e_{2}SS + e_{3}NS + e_{4}RS + e_{5}(M_{w}-M_{h}) + e_{6}(M_{w}-M_{h})^{2} \text{ for } M_{w} \le M_{h} \\ e_{1}U + e_{2}SS + e_{3}NS + e_{4}RS + e_{7}(M_{w}-M_{h}) & \text{for } M_{w} > M_{h} \end{cases}$$

$$F_{S} = F_{LIN} + F_{NL}$$

เมื่อ F_{LIN} = พจน์ที่เป็นเชิงเส้น (linear terms) และ F_{NL} = พจน์ที่ไม่เป็นเชิงเส้น (nonlinear terms)

$$F_{LIN} = b_{lin} \ln \left(\frac{V_{S,30}}{V_{ref}} \right)$$

เมื่อ $b_{_{lin}}$ คือ ค่าสัมประสิทธิ์ที่ไม่เป็นอิสระกับคาบธรรมชาติ และ $V_{_{ref}}$ คือ ความเร็วอ้างอิงระบุ

Fault Type	U	SS	NS	RS
Unspecified	1	0	0	0
Strike-slip	0	1	0	0
Normal	0	0	1	0
Thrust/Reverse	0	0	0	1

ตารางที่ 3.1 ค่าคงที่ของรูปแบบการเลื่อน (Atkinson and Boore, 2008)

$$F_{NL} = \begin{cases} b_{nl} \ln\left(\frac{pga_low}{0.1}\right) & \text{for } a_1 \ge pga4nl \\ b_{nl} \ln\left(\frac{pga_low}{0.1}\right) + c\left[\frac{pga4nl}{a_1}\right]^2 + d\left[\frac{pga4nl}{a_1}\right]^3 & \text{for } a_1 < pga4nl \le a_2 \\ b_{nl} \ln\left(\frac{pga4nl}{0.1}\right) & \text{for } pga4nl > a_2 \end{cases}$$

$$b_{nl} = \begin{cases} b_{1} & \text{for } V_{1} \geq V_{5,30} \\ (b_{1}-b_{2})\ln\left(\frac{V_{5,30}}{V_{2}}\right) \\ \hline \ln\left(\frac{V_{1}}{V_{2}}\right) + b_{2} & \text{for } V_{1} < V_{5,30} \leq V_{2} \\ \\ \frac{b_{2}\ln\left(\frac{V_{5,30}}{V_{ref}}\right)}{\ln\left(\frac{V_{2}}{V_{ref}}\right)} & \text{for } V_{2} < V_{5,30} < V_{ref} \\ \hline 0 & \text{for } V_{5,30} \geq V_{ref} \end{cases}$$

ເມື່ອ
$$c = \frac{3\Delta y - b_{nl}\Delta x}{\Delta x^2}$$
 ແລະ $d = \frac{-(2\Delta y - b_{nl}\Delta x)}{\Delta x^3}$

โดยที่
$$\Delta x = \ln\left(\frac{a_2}{a_1}\right)$$
 และ $\Delta y = b_{nl} \ln\left(\frac{a_2}{pga_low}\right)$

ค่าสัมประสิทธิ์ของแบบจำลองได้แสดงในตารางที่ ข.1 ถึง ข.6

3.7.3 แบบจำลองของ Idriss (2008)

Idiss (2008) ได้สร้างแบบจำลองเพื่อประมาณก่ากวามเร่งเทียมที่มีคาบการสั่นไหว ธรรมชาติตั้งแต่ 0.02 ถึง 10 วินาที โดยใช้ข้อมูลเหตุการณ์แผ่นดินไหวตื้นของแผ่นเปลือกโลก (shallow crustal earthquakes) ในฐานข้อมูลของ PEER NGA ซึ่งข้อมูลแผ่นดินไหวที่ใช้ใน การศึกษาส่วนใหญ่จะอยู่ในแกลิฟอร์เนียและข้อมูลของเหตุการณ์แผ่นดินไหวอื่นๆ ที่มีแหล่งกำเนิด ในบริเวณการแปรสัณฐานที่มีพลัง (active tectonic regions) ส่วนก่าความเร็วกลื่นเฉือนเฉลี่ยในช่วง กวามลึก 30 เมตรจากผิวดิน ($V_{s,30}$) ที่ใช้ในการสร้างแบบจำลองมีก่าอยู่ในช่วง 450 ถึง 900 เมตร/ วินาที และมีระยะทางตั้งแต่ 0 ถึง 200 กิโลเมตร ซึ่งในการวิเคราะห์หาก่าสัมประสิทธิ์ของ แบบจำลองได้แบ่งออกเป็น 2 ช่วง คือ $M_{_v} < 6.75$ และ $M_{_v} \ge 6.75$ ซึ่งแบบจำลองได้แสดงใน สมการที่ 3.26

$$\ln(S_a) = (\alpha_1 + \alpha_2 M_w) - (\beta_1 + \beta_2 M_w) \ln(r_{rup} + 10) + \gamma r_{rup} + F\varphi$$
(3.26)

เมื่อ

$$S_a$$
 = ความเร่งเทียม (g)

- M_w = ขนาดโมเมนต์
- r_{rup} = ระยะทางที่ใกล้ที่สุดถึงระนาบแตกร้าว (กิโลเมตร)
- φ = ตัวประกอบของรูปแบบการเลื่อน
- F = 0 สำหรับการเลื่อนในแนวระดับ (strike slip) และเท่ากับ 1 สำหรับการเลื่อน ย้อน (reverse)
- γ = ตัวประกอบของการปรับระยะทาง

ค่าสัมประสิทธิ์ของแบบจำลองได้แสคงในตารางที่ ข.18

3.7.4 แบบจำลองของ Idriss (1993)

Idriss (1993) ได้สร้างแบบจำลองโดยใช้ข้อมูลเหตุการณ์แผ่นดินไหวทั้งหมด 30 เหตุการณ์ ซึ่งมีขนาดท้องถิ่น (local magnitude, M_L) น้อยกว่า 6 และขนาดกลื่นพื้นผิว (surface wave magnitude, M_s) มากกว่า 6 และมีระยะทางตั้งแต่ 1 ถึง 100 กิโลเมตร ซึ่งแบบจำลองได้แสดงใน สมการที่ 3.27

$$\ln(S_a) = [\alpha_0 + e^{\alpha_1 + \alpha_2 M}] + [\beta_0 - e^{\beta_1 + \beta_2 M}] \ln(R + 20) + 0.2F + \varepsilon$$
(3.27)

เมื่อ

 S_a = ความเร่งเทียม (g)
 M = ขนาดของแผ่นดินไหว
 R = ระยะทางที่ใกล้ที่สุดกับแหล่งกำเนิด (กิโลเมตร)
 F = 0 สำหรับการเลื่อนในแนวระดับ (strike slip), 1.0 สำหรับการเลื่อนย้อน (reverse) และ 0.5 สำหรับการเลื่อนเฉียง (oblique)

ค่าสัมประสิทธิ์ของแบบจำลองได้แสดงในตารางที่ ข.7 และข.8

3.7.5 แบบจำลองของ Ambraseys และคณะ (2005)

Ambraseys และคณะ (2005) ได้สร้างแบบจำลองโดยใช้วิธีการวิเคราะห์การถดถอยแบบ ถ่วงน้ำหนัก (weighted regression analysis) ซึ่งได้ใช้ข้อมูลเหตุการณ์แผ่นดินไหวตื้นของแผ่น เปลือกโลก (shallow crustal earthquakes) 595 บันทึก ในทวีปยุโรปและศูนย์กลางตะวันออก ซึ่งมี *M*_w ≥ 5 และมีระยะทางในแนวราบที่สั้นที่สุดถึงบริเวณภาพฉายบนผิวดินของระนาบแตกร้าว น้อยกว่า 100 กิโลเมตร ซึ่งแบบจำลองได้แสดงในสมการที่ 3.28

$$Log(S_a) = a_1 + a_2 M_w + (a_3 + a_4 M_w) \log \sqrt{r_{jb}^2 + a_5^2} + a_6 S_s + a_7 S_A + a_8 F_N + a_9 F_T + a_{10} F_O$$
(3.28)

เมื่อ

= ความเร่งเทียม (เมตร/วินาที²) S_{a} = ขนาด โมเมนต์ M_{w} = ระยะทางในแนวราบที่สั้นที่สุดถึงบริเวณภาพฉายบนผิวดินของระนาบแตกร้าว r_{ib} (Joyner-Boore distance) (กิโลเมตร) = 1 สำหรับการเลื่อนแบบปกติ (normal slip) และ 0 สำหรับการเลื่อนแบบอื่น F_{N} = 1 สำหรับการเลื่อนย้อน (reverse) และ 0 สำหรับการเลื่อนแบบอื่น F_{T} = 1 สำหรับการเลื่อนเฉียง (oblique) และ 0 สำหรับการเลื่อนแบบอื่น F_o = 1 สำหรับที่ตั้งดินอ่อน และ 0 สำหรับที่ตั้งแบบอื่น S_{s} = 1 สำหรับที่ตั้งดินแข็ง และ 0 สำหรับที่ตั้งแบบอื่น S_A ค่าสัมประสิทธิ์ของแบบจำลองได้แสคงในตารางที่ ข.19

3.7.6 แบบจำลองของ Boore และคณะ (1997)

 $r = \sqrt{r_{ib}^2 + h^2}$

Boore และคณะ (1997) ได้สร้างแบบจำลองโดยใช้วิธีการถดถอยสองขั้นตอน ซึ่ง วัตถุประสงค์ของการสร้างแบบจำลองนี้มีจุดมุ่งหมายเพื่อใช้แบบจำลองประมาณค่าความรุนแรง ของแผ่นดินไหวที่มีขนาดโมเมนต์ตั้งแต่ 5.5 ถึง 7.5 และมีระยะทางน้อยกว่า 80 กิโลเมตร ซึ่ง แบบจำลองได้แสดงในสมการที่ 3.29

$$\ln(S_a) = b_1 + b_2(M_w - 6) + b_3(M_w - 6)^2 + b_5 \ln r + b_v \ln \frac{\overline{V}_{s,30}}{V_A}$$
(3.29)

$$b_{1} = \begin{cases} b_{1SS} & \text{for strike-slip earthquakes} \\ b_{1RS} & \text{for reverse-slip earthquakes} \\ b_{1ALL} & \text{if mechanism is not specified} \end{cases}$$

เมื่อ

- *r_{jb}* = ระยะทางในแนวราบที่สั้นที่สุดถึงบริเวณภาพฉายบนผิวดินของระนาบแตกร้าว
 (Joyner-Boore distance) (กิโลเมตร)
- $\overline{V}_{s,30}$ = ความเร็วคลื่นเฉือนเฉลี่ยในช่วงความลึก 30 เมตรจากผิวคิน (เมตร/วินาที)

ค่าสัมประสิทธิ์ของแบบจำลองได้แสคงในตารางที่ ข.20

3.7.7 แบบจำลองของ Sadigh และคณะ (1997)

Sadigh และคณะ (1997) ได้สร้างแบบจำลองเพื่อประมาณค่าความเร่งเทียม โดยใช้ข้อมูล ของเหตุการณ์แผ่นดินไหวตื้นในแคลิฟอร์เนีย ซึ่งเป็นเหตุการณ์แผ่นดินไหวเนื่องจากการเลื่อนใน แนวระดับ (strike-slip) และเหตุการณ์แผ่นดินไหวเนื่องจากการเลื่อนย้อน (reverse-faulting) โดยมี ขนาดโมเมนต์ในช่วง 4 ถึง 8 และมีระยะทางตั้งแต่ 0 ถึง 100 กิโลเมตร ซึ่งแบบจำลองได้แสดงใน สมการที่ 3.30

$$\ln S_a = c_1 + c_2 M_w + c_3 (8.5 - M_w)^{2.5} + c_4 \ln \left(r_{rup} + e^{(c_5 + c_6 M_w)} \right) + c_7 \ln(r_{rup} + 2)$$
(3.30)

เมื่อ

S_a = ความเร่งเทียม (g)
 M_w = ขนาคโมเมนต์
 r_{rup} = ระยะทางที่ใกล้ที่สุคถึงระนาบแตกร้าว (กิโลเมตร)

ค่าสัมประสิทธิ์ของแบบจำลองได้แสดงในตารางที่ ข.9 และข.10

3.7.8 ແບນຈຳລວຈາວຈ Atkinson and Boore (1997b)

Atkinson and Boore (1997b) ได้สร้างแบบจำลองจากเหตุการณ์แผ่นดินไหวที่มีขนาด โมเมนต์ (*M*_w) ตั้งแต่ 4 ถึง 7.5 และมีระยะทางตั้งแต่ 10 ถึง 500 กิโลเมตร ซึ่งแบบจำลองได้แสดง ในสมการที่ 3.31

$$\ln S_a = c_1 + c_2 (M_w - 6) + c_3 (M_w - 6)^2 - \ln r_{hypo} - c_4 r_{hypo}$$
(3.31)

เมื่อ

r_{hypo} = ระยะทางจุดเกิดแผ่นดินใหว (กิโลเมตร) ซึ่งมีก่าเท่ากับ \sqrt{R_o}^2 + h^2 เมื่อ R_o กือ
 ระยะทางในแนวราบที่สั้นที่สุดถึงบริเวณภาพฉายบนผิวดินของระนาบ
 แตกร้าว (กิโลเมตร) และ h กือกวามลึกศูนย์เกิดแผ่นดินใหว (กิโลเมตร)

้ ก่าสัมประสิทธิ์ของแบบจำลองได้แสดงในตารางที่ ข.11

3.7.9 แบบจำลองของ Hwang and Huo (1997)

แบบจำลองที่สร้างโดย Hwang and Huo (1997) ได้สร้างจากข้อมูลเหตุการณ์แผ่นดินไหวที่ มีขนาดโมเมนต์ตั้งแต่ 5 ถึง 7.5 และมีระยะทางจุดเหนือศูนย์เกิดแผ่นดินไหว (epicentral distance) ตั้งแต่ 5 ถึง 200 กิโลเมตร ซึ่งแบบจำลองได้แสดงในสมการที่ 3.32

$$\ln S_a = C_1 + C_2 M_w + C_3 \ln \left(\sqrt{r_{epi}^2 + H^2} + 0.06e^{0.7M_w} \right) + C_4 \sqrt{r_{epi}^2 + H^2}$$
(3.32)

เมื่อ

$$S_a =$$
ความเร่งเทียม (g)

M_{w}	= ขนาด	โมเมนด

H = ความลึกศูนย์เกิดแผ่นดินไหว (กิโลเมตร)

r_{epi} = ระยะทางจุดเหนือศูนย์เกิดแผ่นดินไหว (กิโลเมตร)

้ก่าสัมประสิทธิ์ของแบบจำลองได้แสดงในตารางที่ ข.12

3.7.10 แบบจำลองของ Toro (2002)

แบบจำลองที่เสนอโดย Toro (2002) ได้ปรับปรุงจากแบบจำลองการลดทอนที่ได้สร้างโดย Toro และคณะ (1997) ซึ่งแบบจำลองได้มีการปรับรูปแบบของระยะทาง R_M ให้เหมาะสมกับ ข้อมูลการเคลื่อนไหวของพื้นดินที่มีแหล่งกำเนิดใน แคลิฟอร์เนีย ซึ่งแหล่งกำเนิดจะประกอบด้วย บริเวณ gulf coast regions และบริเวณ mid-continent crustal regions โดยการสร้างแบบจำลองของ ทั้งสองบริเวณนี้ได้แยกกันพิจารณาค่าสัมประสิทธิ์การถดถอยโดยใช้วิธีสโทแคสติก (stochastic method) ซึ่งมีขนาดโมเมนต์ (M_w) ตั้งแต่ 5 ถึง 8 และมีระยะทางในแนวราบที่สั้นที่สุดถึงบริเวณ ภาพฉายบนผิวคินของระนาบแตกร้าวตั้งแต่ 1 ถึง 500 กิโลเมตร ซึ่งแบบจำลองได้แสดงในสมการที่ 3.33

$$\ln S_a = C_1 + C_2(M_w - 6) - C_3 \ln R_M - (C_4 - C_3) f(R_M) - C_5 R_M$$
(3.33)

เมื่อ

$$\int (\mathbf{r}_M) = \mathbf{r}_{jb} = \mathbf{r}_{0} + \mathbf{r$$

ค่าสัมประสิทธิ์ของแบบจำลองได้แสดงในตารางที่ ข.13

3.7.11 แบบจำลองของ Atkinson and Boore (1997a)

Atkinson and Boore (1997a) ได้สร้างแบบจำลองสำหรับบริเวณเขตมุดตัวของเปลือกโลก Cascadia ซึ่งมีลักษณะชั้นดินของที่ตั้งเป็นหิน (rock site) โดยในการสร้างแบบจำลองได้จำลอง (simulation) เหตุการณ์แผ่นดินไหวที่มีขนาดโมเมนต์ตั้งแต่ 4 ถึง 8.25 และมีระยะทางจุดเกิด แผ่นดินไหวตั้งแต่ 10 ถึง 400 กิโลเมตร ซึ่งในการจำลอง (simulation) เหตุการณ์แผ่นดินไหวที่มี ขนาดโมเมนต์ตั้งแต่ 4 ถึง 5.5 ได้มีความเหมาะสมกับบริเวณเขตมุดตัวของเปลือกโลก Cascadia แต่ ในทางตรงกันข้ามถ้าแผ่นดินไหวมีขนาดโมเมนต์ตั้งแต่ 6.8 ถึง 7.4 จะทำให้จุดข้อมูลที่ได้ไม่มีความ เหมาะสมกับบริเวณเขตมุดตัวของเปลือกโลก Cascadia นักวิจัยจึงได้นำข้อมูลเหตุการณ์ แผ่นดินไหวที่มีความรุนแรงในบริเวณเขตมุดของแผ่นเปลือกโลกอื่นมาใช้เป็นข้อมูลแทนข้อมูลที่ ได้จากการจำลอง (simulation) เหตุการณ์แผ่นดินไหว ซึ่งแบบจำลองได้แสดงในสมการที่ 3.34

$$\ln S_a = c_1 + c_2 (M_w - 6) + c_3 (M_w - 6)^2 - \ln r_{hypo} - c_4 r_{hypo}$$
(3.34)

ເນື່ອ

S_a = ความเร่งเทียม (g)
M_w = ขนาค โมเมนต์
r_{hypo} = ระยะทางจุคเกิคแผ่นดินไหว (กิโลเมตร) ซึ่งมีค่าเท่ากับ
$$\sqrt{R_o^2 + h^2}$$
 เมื่อ R_o คือ

ระยะทางในแนวราบที่สั้นที่สุดถึงบริเวณภาพฉายบนผิวดินของระนาบ แตกร้าว (กิโลเมตร) และ h คือความลึกศูนย์เกิดแผ่นดินไหว (กิโลเมตร)

้ ก่าสัมประสิทธิ์ของแบบจำลองได้แสดงในตารางที่ ข.14

3.7.12 แบบจำลองของ Youngs และคณะ (1997)

Youngs และคณะ (1997) ได้สร้างแบบจำลองการลดทอนเพื่อใช้ประมาณค่าความเร่งเทียม ของเหตุการณ์แผ่นดินไหวที่ผิวหน้าสัมผัส (interface) และเหตุการณ์แผ่นดินไหวภายในแผ่น (intraslab) ในบริเวณเขตมุดตัวของเปลือกโลก (subduction zone) ซึ่งมีขนาดโมเมนต์มากกว่า 5 และมีระยะทางตั้งแต่ 10 ถึง 500 กิโลเมตร ซึ่งแบบจำลองได้แสดงในสมการที่ 3.35ก สำหรับที่ตั้ง หิน และสมการที่ 3.35ข สำหรับที่ตั้งดิน

$$\ln S_a = 0.2418 + 1.414M_w + C_1 + C_2(10 - M_w)^3 + C_3 \ln(r_{rup} + 1.7818e^{0.554M_w}) + 0.00607H + 0.3846Z_T$$
(3.35fi)

$$\ln S_a = -0.6687 + 1.438M_w + C_1 + C_2(10 - M_w)^3 + C_3 \ln(r_{rup} + 1.097e^{0.617M_w}) + 0.00648H + 0.3643Z_T$$
(3.350)

เมื่อ

S_{a}	= ความเร่งเทียม	(g)
u		

 $M_w =$ ขนาดโมเมนต์

r_{rup} = ระยะทางที่ใกล้ที่สุดถึงระนาบแตกร้าว (กิโลเมตร)

H = ความลึกศูนย์เกิดแผ่นดินไหว (กิโลเมตร)

Z_T = 0 สำหรับเหตุการณ์ที่ผิวหน้าสัมผัส (interface events) (บริเวณเขตมุดตัวของ
 เปลือกโลก Cascadia)

 Z_T = 1 สำหรับเหตุการณ์ภายในแผ่น (intraslab events) (บริเวณเขตมุดตัวของเปลือก โลก Juan de Fuca)

ค่าสัมประสิทธิ์ของแบบจำลองได้แสดงในตารางที่ ข.15

3.7.13 แบบจำลองของ Megawati และคณะ (2005)

Megawati และคณะ (2005) ได้สร้างแบบจำลองสำหรับที่ตั้งหิน (rock site) เพื่อประมาณค่า การเคลื่อนไหวของพื้นดินที่มีสาเหตุมาจากแผ่นดินไหวที่มีระยะทางมากกว่า 300 กิโลเมตร ใน บริเวณประเทศสิงคโปร์ และกรุงกัวลาลัมเปอร์ ประเทศอินโดนีเซีย ซึ่งทั้งสองบริเวณนี้ได้รับ ผลกระทบจากแผ่นดินไหวที่มีแหล่งกำเนิดอยู่ในบริเวณเกาะสุมาตรา โดยแบบจำลองที่ได้สร้างขึ้น สามารถใช้ประมาณค่าการเคลื่อนไหวของพื้นดินในขอบเขตของระยะทางตั้งแต่ 198 ถึง 1,422 กิโลเมตร และขนาดโมเมนต์ (*M*,) ตั้งแต่ 4.5 ถึง 8 ซึ่งแบบจำลองได้แสดงในสมการที่ 3.36

$$\ln S_a = a_0 + a_1 M_w + a_2 M_w^2 + a_3 \ln(r) + a_4 r + a_5 H$$
(3.36)

เมื่อ

S_a	= ความเร่งเทียม (เซ็นติเมตร/วินาที²)
M_{w}	= ขนาด โมเมนต์
r	= ระยะทางจากสถานีถึงแหล่งกำเนิด (กิโลเมตร)
Η	= ความลึกศูนย์เกิดแผ่นดินไหว (กิโลเมตร)

ค่าสัมประสิทธิ์ของแบบจำลองได้แสคงในตารางที่ ข.16

ในตารางที่ 3.2 ได้แสดงรายละเอียดของแบบจำลองการลดทอน (attenuation model) ที่ เลือกใช้ในการศึกษาโดยได้แบ่งตามบริเวณการแปรสัณฐาน (tectonic regimes) ของแผ่นเปลือก โลก ซึ่งจะประกอบด้วยช่วงของขนาด (magnitude), ระยะทาง (distance), คาบธรรมชาติ (natural period) และค่าอัตราส่วนความหน่วง (damping ratio) ที่ใช้ในการสร้างแบบจำลอง อย่างไรก็ตามใน ตารางไม่ได้แสดงความแตกต่างของมาตราส่วนขนาด (magnitude) และรูปแบบของระยะทาง (distance) ที่ใช้ในการวิเคราะห์การถดถอย (regression analysis)

Attenuation Model	Model Notation	Distance Range (km)	Magnitude Range	Spectral Period (sec)	Damping Ratio
	Active Te	ctonic Regio	ons		
Abrahamson and Silva (1997)	AS97	0-220	4.4-7.4	0.01-5.0	5%
Atkinson and Boore (2008)	AB08	0-400	5.0-8.0	0.01-10.0	5%
Idriss (2008)	ID08	0-200	5.0-7.5	0.01-10.0	5%
Idriss (1993)	ID93	1-100	4.6-7.4	0.03-5.0	5%
Ambraseys et al. (2005)	AM05	0-100	5.0-7.6	0.05-2.5	5%
Boore et al. (1997)	BJF97	0-80	5.5-7.5	0.10-2.0	5%
Sadigh et al. (1997)	SD97	0-100	4.0-8.0	0.03-4.0	5%
	Stable Con	tinental Reg	ions		
Atkinson and Boore (1997b)	AB97b	10-500	4.0-7.5	0.05-2.0	5%
Hwang and Huo (1997)	HH97	5-200	5.0-7.5	0.05-3.0	5%
Toro (2002)	TR02	1-500	5.0-8.0	0.03-2.0	5%
6	Subdu	ction Zones			
Atkinson and Boore (1997a)	AB97a	10-400	4.0-8.25	0.05-2.0	5%
Youngs et al. (1997)	YO97	10-500	5.0-8.2	0.075-3.0	5%
Megawati et al. (2005)	MW05	198-1422	4.5-8.0	0.5-20.0	5%
ลลาบเ	าวม	112	การ	e ع	

ตารางที่ 3.2 แบบจำลองการลดทอนที่เลือกใช้ในการศึกษา

จุฬาลงกรณ์มหาวิทยาลย

บทที่ 4

ผลการศึกษา

การรวบรวมข้อมูลการเคลื่อนไหวของพื้นดินเนื่องจากแผ่นดินไหวที่บันทึกได้ในประเทศ ไทยได้รวบรวมข้อมูลตั้งแต่วันที่ 1 ตุลาคม พ.ศ. 2549 ถึงวันที่ 31 พฤษภาคม พ.ศ. 2551 ซึ่งข้อมูล การเคลื่อนไหวของพื้นดินทั้งหมดที่ใช้ในการศึกษาเป็นข้อมูลที่บันทึกได้โดยสถานีตรวจวัด แผ่นดินไหวแบบดิจิตอลระบบใหม่ระยะที่ 1 และระยะที่ 2 ของกรมอุตุนิยมวิทยา และแบบจำลอง การลดทอนที่เลือกใช้ในการศึกษามีทั้งหมด 13 ชุดโดยแบ่งเป็นแบบจำลองสำหรับบริเวณการแปร ที่มีพลัง 7 ชุด, แบบจำลองสำหรับบริเวณภาคพื้นที่มีเสถียรภาพ 3 ชุด และแบบจำลองสำหรับ บริเวณเขตมุดตัวของเปลือกโลก 3 ชุด ซึ่งในการศึกษาได้พิจารณาความเร่งสูงสุดของพื้นดิน และ ความเร่งเทียมเป็นพารามิเตอร์ที่ประมาณค่าได้จากแบบจำลอง ซึ่งในการประมาณค่าความเร่งเทียม ได้พิจารณาคาบธรรมชาติตั้งแต่ 0.05 ถึง 10 วินาที โดยมีอัตราส่วนความหน่วง 5 เปอร์เซ็นต์

4.1 ข้อมูลเหตุการณ์แผ่นดินไหว

ข้อมูลรายการเหตุการณ์แผ่นดินไหวที่ได้ก้นหาในฐานข้อมูล Harvard CMT Catalog ได้มี เหตุการณ์แผ่นดินไหวที่มีผลกระทบกับประเทศไทยทั้งหมด 72 เหตุการณ์ โดยมีขนาดโมเมนต์ ตั้งแต่ 4.8 ถึง 8.5 ซึ่งข้อมูลส่วนมากได้มีแหล่งกำเนิดอยู่ในบริเวณเกาะสุมาตรา ประเทศอินโดนีเซีย ซึ่งเป็นบริเวณที่เกิดแผ่นดินไหวบ่อยครั้งและมีขนาดของแผ่นดินไหวก่อนข้างรุนแรง (รูปที่ 4.1)

การจัดกลุ่มข้อมูลเหตุการณ์แผ่นดินไหวตามบริเวณการแปรสัณฐานได้แบ่งออกเป็นสอง บริเวณคือ บริเวณไม่ใช่เขตมุดตัวของเปลือกโลก (non-subduction zone) และบริเวณเขตมุดตัวของ เปลือกโลก (subduction zone) ซึ่งเหตุการณ์แผ่นดินไหวที่มีแหล่งกำเนิดอยู่ในบริเวณไม่ใช่เขตมุด ตัวของเปลือกโลก (non-subduction zone) ได้มีเหตุการณ์แผ่นดินไหว 12 เหตุการณ์ และเหตุการณ์ แผ่นดินไหวที่มีแหล่งกำเนิดอยู่ในบริเวณเขตมุดตัวของเปลือกโลก (subduction zone) ได้มี เหตุการณ์แผ่นดินไหว 60 เหตุการณ์ โดยเหตุการณ์แผ่นดินไหวที่มีแหล่งกำเนิดอยู่ในบริเวณไม่ใช่ เขตมุดตัวของเปลือกโลก (non-subduction zone) ได้กำหนดให้เป็นเหตุการณ์แผ่นดินไหวที่มี แหล่งกำเนิดอยู่ในบริเวณการแปรสัณฐานที่มีพลัง (active tectonic regions) และบริเวณภาดพื้นทวีป ที่มีเสถียรภาพ (stable continental regions) ซึ่งได้แสดงในรูปที่ 4.2

รูปที่ 4.1 ข้อมูลเหตุการณ์แผ่นดินไหวที่ใช้ในการศึกษา

รูปที่ 4.2 ข้อมูลเหตุการณ์แผ่นดินไหวที่ได้แบ่งตามบริเวณการแปรสัณฐาน

4.2 ข้อมูลการเคลื่อนใหวของพื้นดิน

ในการศึกษาครั้งนี้ได้ใช้ข้อมูลการเคลื่อนไหวของแผ่นดินทั้งหมด 390 บันทึก ซึ่งเกิดจาก เหตุการณ์แผ่นดินไหว 72 เหตุการณ์ โดยแบ่งเป็นข้อมูลการเคลื่อนไหวของพื้นดินที่มีแหล่งกำเนิด อยู่ในบริเวณไม่ใช่เขตมุดตัวของเปลือกโลก (non-subduction zone) 90 บันทึก และบริเวณเขตมุด ตัวของเปลือกโลก (subduction zone) 300 บันทึก ซึ่งในแต่ละบริเวณได้จัดกลุ่มข้อมูลการ เคลื่อนไหวของพื้นดินตามลักษณะชั้นดินที่ตั้งสถานีตรวจวัดแผ่นดินไหวโดยแบ่งออกเป็นสองกลุ่ม กือ ข้อมูลการเคลื่อนไหวของพื้นดินที่บันทึกได้โดยสถานีตรวจวัดแผ่นดินไหวที่ตั้งอยู่บนหิน (rock site) และที่ตั้งอยู่บนดิน (soil site) ซึ่งรายละเอียดได้แสดงในตารางที่ 4.1

ตารางที่ 4.1 จำนวนข้อมูลการเคลื่อนไหวของพื้นดินที่ได้แบ่งตามบริเวณการแปรสัณฐานและ ลักษณะชั้นดินที่ตั้งสถานีตรวจวัดแผ่นดินไหว

Seismic source z <mark>o</mark> ne	Site category		Tatal
	Rock site	Soil site	Total
Non-subduction zone	38	52	90
Subduction Zone	111	189	300

สถานีตรวจวัดแผ่นดินไหวหลักแบบดิจิตอลระบบใหม่ระยะที่ 1 และระยะที่ 2 ของกรม อุตุนิยมวิทยาประกอบด้วยเครื่องมือตรวจวัดแผ่นดินไหวสองประเภทกือ เครื่องมือตรวจวัด กวามเร็วของพื้นดิน และเครื่องมือตรวจวัดความเร่งของพื้นดิน ซึ่งเมื่อเกิดเหตุการณ์แผ่นดินไหวขึ้น เกรื่องมือทั้งสองประเภทนี้จะบันทึกข้อมูลการเคลื่อนไหวของพื้นดินที่สถานีเดียวกันและมี ดำแหน่งของเครื่องมือใกล้เกียงกันเมื่อนำข้อมูลประวัติเวลาการเคลื่อนไหวของพื้นดินที่สถานีเดียวกันและมี ดำแหน่งของเครื่องมือใกล้เกียงกันเมื่อนำข้อมูลประวัติเวลาการเคลื่อนไหวของพื้นดินของเครื่องมือ ทั้งสองประเภทมาผ่านกระบวนการปรับแก้เส้นฐาน และกระบวนการกรองสัญญาณรบกวน จะได้ ข้อมูลประวัติเวลาการเคลื่อนไหวของพื้นดินมี่ก่าใกล้เกียงกัน โดยในการศึกษาครั้งนี้ได้เลือกข้อมูล ประวัติเวลาการเคลื่อนไหวของพื้นดินที่บันทึกได้โดยเครื่องมือตรวจวัดความเร่งของพื้นดินเป็น ข้อมูลในการศึกษา และถ้าหากเครื่องมือตรวจวัดความเร่งของพื้นดินไม่สามารถบันทึกการ เกลื่อนไหวของพื้นดินได้ จึงจะเลือกใช้ข้อมูลที่บันทึกได้โดยเกรื่องมือตรวจวัดความเร่ว ซึ่งประวัติ เวลาการเคลื่อนไหวของพื้นดินจนูตทั้งสองประเภทได้แสดงในรูปที่ 4.3 และ 4.4

ร**ูปที่ 4.3** ประวัติเวลาก<mark>ารเคลื่อนไหวของพื้นดินที่ตรวจวัดได้</mark>โดยเครื่องมือตรวจวัดความเร่ง

รูปที่ 4.4 ประวัติเวลาการเคลื่อนไหวของพื้นดินที่ตรวจวัดได้ โดยเครื่องมือตรวจวัดความเร็ว

การตรวจสอบความถูกต้องของข้อมูลที่ใช้ในการศึกษาครั้งนี้ได้ใช้วิธีนำคลื่นแผ่นดินไหวที่ ตรวจวัดได้โดยเครื่องมือตรวจวัดความเร่งของพื้นดิน (TSA100S) และเครื่องมือตรวจวัดความเร็ว ของพื้นดิน (Trillium 120) มาทำการเปรียบเทียบก่าความเร่งของพื้นดิน (ground acceleration) ที่ได้ จากเครื่องมือทั้งสองประเภท ซึ่งคลื่นแผ่นดินไหวที่นำมาเปรียบเทียบเป็นคลื่นที่บันทึกได้โดย สถานีจังหวัดเชียงใหม่ (CMMT) ซึ่งเป็นเหตุการณ์เมื่อวันที่ 16 พฤษภาคม พ.ศ. 2550 เวลา 8:56 น. โดยมีจุดศูนย์กลางแผ่นดินไหวอยู่ที่ประเทศลาว ซึ่งจากการเปรียบเทียบพบว่าก่าความเร่งของ พื้นดินที่บันทึกได้จากเครื่องมือทั้งสองประเภทมีค่าใกล้เคียงกัน และมีรูปแบบการแกว่งของคลื่น รอบแกนศูนย์กล้ายคลึงกัน (รูปที่ 4.5) จากนั้นได้นำข้อมูลประวัติเวลาความเร่งของพื้นดินของ เครื่องมือทั้งสองประเภทคำนวณหาสเปลตรัมความเร่งเทียม (pseudo acceleration) ซึ่งพบว่า สเปลตรัมความเร่งเทียมของเครื่องมือทั้งสองประเภทมีค่าใกล้เคียงกัน (รูปที่ 4.6)

รูปที่ 4.5 การเปรียบเทียบประวัติเวลาความเร่งสูงสุดของพื้นดิน

รูปที่ 4.6 การเปรียบเทียบสเปคตรัมความเร่งเทียม

4.3 การเปรียบเทียบแบบจำลองการลดทอน

ข้อมูลการเคลื่อนไหวของพื้นดินที่บันทึกได้ในประเทศไทยส่วนมากแล้วจะมีระยะทางจาก แหล่งกำเนิดถึงสถานีค่อนข้างไกล จึงทำให้ข้อมูลของระยะทางที่ใช้ในการศึกษามีระยะทางเกินกว่า ขอบเขตที่กำหนดในแต่ละแบบจำลอง และหากใช้แบบจำลองเหล่านี้ประมาณก่าความเร่งสูงสุด ของพื้นดิน หรือความเร่งเทียมภายใต้ขอบเขตของตัวแปรที่ใช้ในการสร้างแบบจำลองจะได้ก่าไม่ แตกต่างกันมากนัก เช่นในรูปที่ 4.7 แบบจำลองต่างๆ ให้ก่าใกล้เคียงกันเมื่อระยะทางน้อยกว่า 200 กิโลเมตร และก่าจากแบบจำลองต่างๆ จะมีความแตกต่างกันมากขึ้นเมื่อระยะทางไกลเพิ่มมากขึ้น ซึ่งการประมาณความรุนแรงของแผ่นดินไหวที่กรุงเทพมหานครเนื่องจากแผ่นดินไหวที่มี แหล่งกำเนิดในบริเวณจังหวัดกาญจนบุรี จะมีระยะทางจากแหล่งกำเนิดประมาณ 200 กิโลเมตร จึง จำเป็นต้องเลือกใช้สมการลดทอนที่เหมาะสม และในการศึกษาครั้งนี้ได้พิจารณาแบบจำลองการ ลดทอนรุ่นใหม่ (Next Generation Attenuation model, NGA) สำหรับบริเวณการแปรสัณฐานที่มี พลังด้วย แต่บางสมการต้องแทนก่าตัวแปรซึ่งไม่มีข้อมูลในประเทศไทย เช่น ความลึกจากผิวดินที่ ความเร็วคลื่นเลือนมีค่าเท่ากับ 1 กิโลเมตรต่อวินาที และอื่นๆ ดังนั้นจากข้อมูลที่มีอยู่จึงสามารถ ใช้ได้เพียงสมการของ Atkinson and Boore (2008) และ Idriss (2008) โดยจากรูปที่ 4.7 พบว่า สมการของ Idriss (2008) ให้ก่าความเร่งเทียมที่ไม่ลดทอนตามที่ควรจะเป็นเมื่อระยะทางมากกว่า 300 กิโลเมตร เพราะให้ก่าที่เพิ่มขึ้นเมื่อระยะทางเพิ่มขึ้น

ร**ูปที่ 4.7** แบบจำลองลดทอนสำหรับบริเวณการแปรสัณฐานที่มีพลังซึ่งที่ตั้งอยู่บนหิน (M_w = 6.3)

4.4 ความเร่งสูงสุดของพื้นดิน และสมการลดทอนที่เหมาะสม

ข้อมูลกลื่นแผ่นดินไหวที่บันทึกได้ในประเทศไทยโดยมีการกระจายตามขนาดโมเมนต์ และระยะทางจากจุดกำเนิดแผ่นดินไหวถึงสถานีตรวจวัดได้แสดงในรูปที่ 4.8 ซึ่งข้อมูลที่ตรวจวัด ได้ มีระยะทางตั้งแต่ 13 ถึง 2,948 กิโลเมตร และมีขนาดโมเมนต์ระหว่าง 4.8 ถึง 8.5 ซึ่งแผ่นดินไหว ที่มีความรุนแรงส่วนมากจะมีแหล่งกำเนิดอยู่ในบริเวณเกาะสุมาตรา ประเทศอินโดนีเซีย ซึ่งมี ระยะทางก่อนข้างไกลจากสถานีตรวจวัด ส่วนข้อมูลที่มีระยะใกล้ในช่วง 13 ถึง 200 กิโลเมตรเป็น ข้อมูลที่มีแหล่งกำเนิดในประเทศและประเทศเพื่อนบ้านทางภาคเหนือของประเทศไทยโดยมีขนาด โมเมนต์น้อยกว่า 6 ซึ่งแสดงให้เห็นว่าข้อมูลการเกลื่อนไหวของพื้นดินที่บันทึกได้ยังมีไม่เพียง พอที่จะนำมาสร้างแบบจำลองการลดทอนสำหรับประเทศไทย และในรูปที่ 4.9 ได้แสดงการ กระจายของข้อมูลความเร่งสูงสุดของพื้นดินที่บันทึกได้กับระยะทาง ซึ่งเป็นค่าที่ได้จากการหา ค่าเฉลี่ยเชิงเรขาคณิตของ 2 ทิศทางในแนวราบที่ตั้งฉากกัน

รูปที่ 4.8 การกระจายของข้อมูลที่บันทึกได้ตามขนาดและระยะทางจากแหล่งกำเนิดถึงสถานี

ร**ูปที่ 4.9** การกระจายของข้อมูลความเร่งสูงสุดของพื้นดินกับระยะทางจากแหล่งกำเนิดถึงสถานี

การหาความเหมาะสมของแบบจำลองการลดทอนเพื่อใช้ประมาณค่าความเร่งสูงสุดของ พื้นดินในประเทศไทย ได้นำข้อมูลความเร่งสูงสุดของพื้นดินที่บันทึกได้จริง (รูปที่ 4.9) เปรียบเทียบกับค่าที่ประมาณจากแบบจำลอง ซึ่งการกระจายของข้อมูลที่บันทึกได้กับแบบจำลองได้ แสดงในรูปที่ 4.10 ถึง 4.14 โดยได้แบ่งตามบริเวณการแปรสัณฐานและลักษณะชั้นดินที่ตั้งสถานี จากรูปจะเห็นได้ว่าข้อมูลในบริเวณไม่ใช่เขตมุดตัวของเปลือกโลกที่มีระยะทางน้อยกว่า 200 กิโลเมตร เป็นข้อมูลที่เกิดจากเหตุการณ์แผ่นดินไหวในทางภาคเหนือของประเทศไทย และมี แนวโน้มเข้าใกล้กับค่าที่ประมาณจากแบบจำลองเกิบทุกชุดที่เลือกใช้ในการศึกษา

แบบจำลองการลดทอนสำหรับบริเวณการแปรสัณฐานที่มีพลังบนที่ตั้งหินที่เสนอโดย Abrahamson and Silva (1997) และ Ambraseys และคณะ (2005) ให้ค่าความเร่งสูงสุดของพื้นดินมีค่า สูงกว่าข้อมูลที่บันทึกได้เมื่อระยะทางเพิ่มมากขึ้นจาก 200 กิโลเมตร และจะมีความแตกต่างกันมาก ขึ้นเมื่อขนาดโมเมนต์มีค่าตั้งแต่ 7 ขึ้นไป ส่วนค่าความเร่งสูงสุดของพื้นดินที่ประมาณจาก แบบจำลองที่เสนอโดย Boore และคณะ (1997) ได้มีค่าสูงกว่าข้อมูลที่ตรวจวัดได้จริงอย่างมาก

ข้อมูลความเร่งสูงสุดของพื้นดินที่บันทึกได้จริงบนที่ตั้งหินสำหรับบริเวณการแปรสัณฐาน ที่มีพลังมีแนวโน้มเข้าใกล้กับค่าที่ประมาณจากแบบจำลองการลดทอนที่เสนอโดย Sadigh และคณะ (1997) ส่วนในบริเวณภาคพื้นทวีปที่มีเสถียรภาพ และบริเวณเขตมุดตัวของเปลือกโลกได้แก่ แบบจำลองที่เสนอโดย Toro : Gulf regions (2002) และ Youngs และคณะ (1997) ตามลำดับ

การกระจายของข้อมูลความเร่งสูงสุดของพื้นดินที่บันทึกได้บนที่ตั้งดินค่อนข้างห่างจาก ค่าที่ประมาณจากแบบจำลองอย่างมาก ซึ่งข้อมูลที่ตรวจวัดได้จะมีค่าต่ำกว่าค่าที่ประมาณจาก แบบจำลอง และแบบจำลองที่เสนอโดย Ambraseys และคณะ (2005) ให้ค่าความเร่งสูงสุดของ พื้นดินใกล้เกียงกับข้อมูลที่บันทึกได้มากที่สุดเมื่อเปรียบเทียบกับแบบจำลองอื่นๆ แต่ข้อมูลที่บันทึก ได้ยังห่างจากค่าที่ประมาณจากแบบจำลองอย่างมาก ซึ่งได้แสดงในรูปที่ 4.13

ค่าความเร่งสูงสุดของพื้นดินที่ประมาณจากแบบจำลองที่สร้างสำหรับที่ตั้งหินจะมีค่า ใกล้เคียงกับข้อมูลที่ตรวจวัดได้จริงมากกว่าก่าที่ประมาณจากแบบจำลองที่สร้างสำหรับที่ตั้งดิน ซึ่ง สังเกตได้จากการกระจายของข้อมูลที่ได้แสดงในรูปที่ 4.10 ถึง 4.14

ร**ูปที่ 4.10** กราฟการลดทอนของกวามเร่งสูงสุดของพื้นดินบนที่ตั้งหินสำหรับบริเวณการแปร สัณฐานที่มีพลัง

ร**ูปที่ 4.10 (ต่อ**) กราฟการลดทอนของความเร่งสูงสุดของพื้นดินบนที่ตั้งหินสำหรับบริเวณการ แปรสัณฐานที่มีพลัง

ร**ูปที่ 4.11** กราฟการลดทอนของความเร่งสูงสุดของพื้นดินบนที่ตั้งหินสำหรับบริเวณภากพื้นทวีปที่ มีเสถียรภาพ

รูปที่ 4.12 กราฟการลดทอนของกวามเร่งสูงสุดของพื้นดินบนที่ตั้งหินสำหรับบริเวณเขตมุดตัวของ

ร**ูปที่ 4.13** กราฟการลดทอนของความเร่งสูงสุดของพื้นดินบนที่ตั้งดินสำหรับบริเวณการแปร สัณฐานที่มีพลัง

68

ร**ูปที่ 4.14** กราฟการ<mark>ลด</mark>ทอนของความเร่งสูงสุดของพื้นดินบนที่ตั้งดินสำหรับบริเวณเขตมุดตัว ของเปลือกโลก

4.5 สเปคตรัมการตอบสนอง และสมการลดทอนที่เหมาะสม

การหาความเหมาะสมของแบบจำลองการลดทอนเพื่อใช้ประมาณค่าความเร่งเทียม (pseudo acceleration) ในประเทศไทยได้ใช้วิธีการเปรียบเทียบค่าความเร่งเทียมที่ได้ประมาณค่าได้จาก แบบจำลอง กับความเร่งเทียมที่คำนวณได้จากข้อมูลประวัติเวลาความเร่งของพื้นดินที่บันทึกได้จริง ซึ่งได้คำนวณในระบบยืดหยุ่นอิสระดีกรีเดียว โดยมีอัตราส่วนความหน่วง 5 เปอร์เซ็นต์ และมีคาบ ธรรมชาติตั้งแต่ 0.05 ถึง 10 วินาที

การเปรียบเทียบสเปลตรัมความเร่งเทียมที่คำนวณจากข้อมูลการเคลื่อนใหวของพื้นดินกับ ค่าที่ประมาณจากแบบจำลองได้แสดงในรูปที่ 4.15 และ 4.16 โดยเป็นสเปลตรัมความเร่งเทียมที่ คำนวณจากข้อมูลการเคลื่อนใหวของพื้นดินที่บันทึกได้ที่สถานีจังหวัดแม่ฮ่องสอน (MHIT) จาก แผ่นดินใหวที่ประเทศพม่า $M_w = 5.6$ เมื่อวันที่ 30 กรกฎาคม พ.ศ. 2550 เวลา 22:42 น. ซึ่งห่างจาก จุดกำเนิด 232 กิโลเมตร มีค่าความเร่งสูงสุดของพื้นดินประมาณ 0.0023g เปรียบเทียบกับสเปลตรัม ความเร่งเทียมของแบบจำลองสำหรับ non-subduction zones จากรูปสังเกตได้ว่าแบบจำลองต่างๆ ให้ค่าความเร่งสูงสุดของพื้นดินไม่ต่างกันมากนัก แต่ให้ค่าความเร่งเทียมที่คาบธรรมชาติต่างๆ แตกต่างกันอย่างมากทำให้รูปร่างของสเปลตรัมมีความไม่แน่นอนสูง และค่าจากแบบจำลองหนึ่งๆ อาจใกล้กับสเปลตรัมของข้อมูลที่บันทึกได้เฉพาะที่บางค่าของคาบธรรมชาติ

ร**ูปที่ 4.15** การเปรียบเทียบสเปคตร้ำความเร่งเทียมที่บันทึกได้ที่สถานีแม่ฮ่องสอนเมื่อ 30 ก.ค. 2550 M_w =5.6 ระยะทาง=232 กิโลเมตร กับแบบจำลองการลดทอนสำหรับที่ตั้งบนหินใน สเกลปกติ

ร**ูปที่ 4.16** การเปรียบเทียบสเปคตร้าความเร่งเทียมที่บันทึกได้ที่สถานีแม่ฮ่องสอนเมื่อ 30 ก.ค. 2550 M ู =5.6 ระยะทาง=232 กิโลเมตร กับแบบจำลองการลดทอนสำหรับที่ตั้งบนหินใน สเกลลอการิทึม

ข้อมูลความเร่งเทียมที่ใช้ในการหาความเหมาะสมของแบบจำลองการลดทอนเพื่อประมาณ ก่าความเร่งเทียมได้แสดงในรูปที่ 4.17 ซึ่งเป็นความเร่งเทียมในระบบยืดหยุ่นอิสระ ดีกรีเดียว โดยมี อัตราส่วนความหน่วง 5 เปอร์เซ็นต์ และมีคาบธรรมชาติตั้งแต่ 0.1 ถึง 4 วินาที ซึ่งได้กำนวณจาก ข้อมูลประวัติเวลาความเร่งของพื้นดินที่ตรวจวัดได้ในประเทศไทย โดยในรูปที่ 4.17 เป็นการ กระจายตามระยะทางจากแหล่งกำเนิดถึงสถานี และคาบธรรมชาติ ซึ่งได้แบ่งออกเป็นความเร่ง เทียมที่กำนวณจากข้อมูลประวัติเวลาความเร่งของพื้นดินที่ตรวจวัดได้โดยสถานีที่ตั้งอยู่บนหิน และ สถานีที่ตั้งอยู่บนดิน ซึ่งข้อมูลความเร่งเทียมจากสถานีที่ตั้งอยู่บนดินได้มีจำนวนมากกว่าข้อมูล ความเร่งเทียมจากสถานีที่ตั้งอยู่บนหิน และการกระจายของข้อมูลความเร่งเทียมส่วนมากมี ระยะทางมากกว่า 200 กิโลเมตร

การหาความเหมาะสมของแบบจำลองได้นำข้อมูลที่ได้แสดงในรูปที่ 4.17 เปรียบเทียบกับ ค่าที่ประมาณจากแบบจำลองตามคาบธรรมชาติต่างๆ และในขั้นตอนการเปรียบเทียบได้จำแนก ความเร่งเทียมตามบริเวณการแปรสัณฐาน ซึ่งประกอบด้วย บริเวณไม่ใช่เขตมุดตัวของเปลือกโลก และบริเวณเขตมุดตัวของเปลือกโลก โดยความเร่งเทียมของบริเวณไม่ใช่เขตมุดตัวของเปลือกโลก ได้ใช้เป็นข้อมูลสำหรับบริเวณการแปรสัณฐานที่มีพลัง และบริเวณภาคพื้นทวีปที่มีเสถียรภาพ

จากรูปที่ 4.17 จุดข้อมูลความเร่งเทียมของเหตุการณ์แผ่นดินไหวที่มีขนาดโมเมนต์ต่ำเมื่อ คาบธรรมชาติเพิ่มมากขึ้นจะมีก่าต่ำลงมากกว่าจุดข้อมูลความเร่งเทียมของเหตุการณ์แผ่นดินไหวที่มี ขนาดโมเมนต์สูง

รูปที่ 4.17 การกระจายของความเร่งเทียมตามระยะทางจากแหล่งกำเนิคถึงสถานี

กราฟการลดทอนของความเร่งเทียมตามระยะทางจากแหล่งกำเนิดถึงสถานี และคาบ ธรรมชาติในแต่ละบริเวณการแปรสัณฐานได้แสดงในรูปที่ 4.18 ถึง 4.36 โดยแบ่งตามลักษณะชั้น ดินที่ตั้งสถานี และในรูปที่ 4.18 ถึง 4.36 ได้แสดงการกระจายของจุดข้อมูลความเร่งเทียมที่กำนวณ จากข้อมูลประวัติเวลาความเร่งของพื้นดินตามระยะทางจากแหล่งกำเนิดถึงสถานี ซึ่งจุดข้อมูล ความเร่งเทียมส่วนมากจะมีก่าต่ำกว่าความเร่งเทียมที่ประมาณก่าจากแบบจำลองการลดทอน

ความเร่งเทียมที่ประมาณค่าจากแบบจำลองที่เสนอโดย Abrahamson and Silva (1997) (รูป ที่ 4.18 และ 4.32) และ Ambraseys และคณะ (2005) (รูปที่ 4.19 และ 4.33) บนที่ตั้งหินและบนที่ตั้ง ดินสำหรับบริเวณการแปรสัณฐานที่มีพลังให้ค่าความเร่งเทียมค่อนข้างสูงเมื่อปรียบเทียบกับข้อมูล ที่ตรวจวัดได้จริงเมื่อมีขนาดโมเมนต์ตั้งแต่ 7 ขึ้นไป และมีระยะทางจากแหล่งกำเนิดถึงสถานีตั้งแต่ 1,000 ถึง 3,000 กิโลเมตร

แบบจำลองที่เสนอโดย Boore และคณะ (1997) (รูปที่ 4.21 และ 4.35) ให้ค่าความเร่งเทียม สูงกว่าความเร่งเทียมที่คำนวณจากข้อมูลที่บันทึกได้จริงอย่างมากเมื่อคาบธรรมชาติสั้น แต่ถ้าคาบ ธรรมชาติยาวมากขึ้นค่าความเร่งเทียมที่ได้จากการประมาณจะเข้าใกล้กับความเร่งเทียมที่คำนวณ จากข้อมูลที่บันทึกได้จริงมากขึ้น

แบบจำลองการลดทอนรุ่นใหม่บนที่ตั้งหิน สำหรับบริเวณการแปรสัณฐานที่มีพลังที่เสนอ โดย Idriss (2008) (รูปที่ 4.23) ให้ค่าความเร่งเทียมเพิ่มมากขึ้นเมื่อระยะทางมากกว่า 200 กิโลเมตร ซึ่งได้มีอัตราการเพิ่มขึ้นสำหรับคาบธรรมชาติบางค่า แต่บางค่าอาจจะน้อย ด้วยสาเหตุนี้ทำให้จุด ข้อมูลความเร่งเทียมที่คำนวณจากข้อมูลที่บันทึกได้จริงห่างจากความเร่งเทียมที่ประมาณจาก แบบจำลอง

การกระจายของจุดข้อมูลความเร่งเทียมที่คำนวณจากข้อมูลที่บันทึกได้จริงบนที่ตั้งหิน สำหรับบริเวณการแปรสัณฐานที่มีพลังได้มีความสอดคล้องกับความเร่งเทียมที่ประมาณจาก แบบจำลองที่เสนอโดย Sadigh และคณะ (1997) (รูปที่ 4.24) มากที่สุด ส่วนบริเวณภาคพื้นทวีปที่มี เสถียรภาพได้แก่แบบจำลองที่เสนอโดย Toro: Gulf regions (2002) (รูปที่ 4.27) และบริเวณเขตมุด ตัวของเปลือกโลกได้แก่แบบจำลองที่เสนอโดย Youngs และคณะ (1997) (รูปที่ 4.31)

ความเร่งเทียมที่คำนวณจากข้อมูลที่บันทึกได้จริงบนที่ตั้งดินสำหรับบริเวณการแปร สัณฐานที่มีพลังยังไม่ความสอดกล้องกับความเร่งเทียมที่ประมาณจากแบบจำลองการลดทอน เท่าที่ควร เนื่องจากจุดข้อมูลความเร่งเทียมที่คำนวณจากข้อมูลที่บันทึกได้จริงยังห่างจากความเร่ง เทียมที่ประมาณจากแบบจำลองอย่างมาก แต่ความเร่งเทียมที่ประมาณจากแบบจำลองที่เสนอโดย Ambraseys และคณะ (2005) (รูปที่ 4.33) ถือว่าใกล้เคียงกับความเร่งเทียมที่คำนวณจากข้อมูลที่ บันทึกได้จริงมากที่สุดเมื่อเปรียบเทียบกับแบบจำลองอื่นที่เลือกใช้ในการศึกษาครั้งนี้

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

รูปที่ 4.18 กราฟการลดทอนของความเร่งเทียมบนที่ตั้งหินสำหรับบริเวณการแปรสัณฐานที่มีพลัง

(Abrahamson and Silva, 1997)

รูปที่ 4.19 กราฟการลดทอนของความเร่งเทียมบนที่ตั้งหินสำหรับบริเวณการแปรสัณฐานที่มีพลัง

(Ambraseys และคณะ, 2005)

รูปที่ 4.20 กราฟการลดทอนของความเร่งเทียมบนที่ตั้งหินสำหรับบริเวณการแปรสัณฐานที่มีพลัง

(Atkinson and Boore, 2008)

ร**ูปที่ 4.21** กราฟการลดทอนของความเร่งเทียมบนที่ตั้งหินสำหรับบริเวณการแปรสัณฐานที่มีพลัง (Boore และคณะ, 1997)

ร**ูปที่ 4.22** กราฟการลดทอนของความเร่งเทียมบนที่ตั้งหินสำหรับบริเวณการแปรสัณฐานที่มีพลัง (Idriss, 1993)

รูปที่ 4.23 กราฟการลดทอนของความเร่งเทียมบนที่ตั้งหินสำหรับบริเวณการแปรสัณฐานที่มีพลัง

|

79

(Idriss, 2008)

ร**ูปที่ 4.24** กราฟการถดทอนของความเร่งเทียมบนที่ตั้งหินสำหรับบริเวณการแปรสัณฐานที่มีพลัง (Sadigh และคณะ, 1997)

รูปที่ 4.25 กราฟการลดทอนของความเร่งเทียมบนที่ตั้งหินสำหรับบริเวณภาคพื้นทวีปที่มีเสลียรภาพ

(Atkinson and Boore, 1997b)

ร**ูปที่ 4.26** กราฟการลดทอนของความเร่งเทียมบนที่ตั้งหินสำหรับบริเวณภาคพื้นทวีปที่มีเสลียรภาพ (Hwang and Huo, 1997)

82

ร**ูปที่ 4.27** กราฟการลดทอนของความเร่งเทียมบนที่ตั้งหินสำหรับบริเวณภาคพื้นทวีปที่มีเสลียรภาพ

(Toro: Gulf Regions, 2002)

รูปที่ 4.28 กราฟการลดทอนของความเร่งเทียมบนที่ตั้งหินสำหรับบริเวณภาคพื้นทวีปที่มีเสลียรภาพ

(Toro:Mid-continent Regions, 2002)

รูปที่ 4.29 กราฟการลดทอนของความเร่งเทียมบนที่ตั้งหินสำหรับบริเวณเขตมุดตัวของเปลือกโลก

(Atkinson and Boore, 1997a)

ร**ูปที่ 4.30** กราฟการลดทอนของความเร่งเทียมบนที่ตั้งหินสำหรับบริเวณเขตมุดตัวของเปลือกโลก (Megawati และคณะ, 2005)

ร**ูปที่ 4.31** กราฟการลดทอนของความเร่งเทียมบนที่ตั้งหินสำหรับบริเวณเขตมุดตัวของเปลือกโลก (Youngs และคณะ, 1997)

รูปที่ 4.32 กราฟการลดทอนของความเร่งเทียมบนที่ตั้งดินสำหรับบริเวณการแปรสัณฐานที่มีพลัง

(Abrahamson and Silva, 1997)

(Ambraseys และคณะ, 2005)

(Atkinson and Boore, 2008)

ร**ูปที่ 4.35** กราฟการถคทอนของความเร่งเทียมบนที่ตั้งคินสำหรับบริเวณการแปรสัณฐานที่มีพลัง (Boore และคณะ, 1997)

ร**ูปที่ 4.36** กราฟการลดทอนของความเร่งเทียมบนที่ตั้งดินสำหรับบริเวณเขตมุดตัวของเปลือกโลก (Youngs และคณะ, 1997)

การพิจารณาความเหมาะสมของแบบจำลองการลดทอนเพื่อใช้ประมาณก่าความเร่งสูงสุด ของพื้นดิน และความเร่งเทียมในประเทศไทย ได้ใช้วิธีการพิจารณาความแตกต่างระหว่างก่าจริง และก่าที่ประมาณโดยการกำนวณหาก่ารากที่สองของก่าเฉลี่ยผลต่างกำลังสอง (square root of mean of square of error, RMS) ซึ่งได้แสดงในสมการที่ 4.1

$$RMS = \sqrt{\frac{\sum (\ln y - \ln \hat{y})^2}{n}}$$
(4.1)

ເນື່ອ

y = จุดข้อมูลที่ตรวจวัดได้จริง

ŷ = ข้อมูลที่ประมาณจากแบบจำลองการลดทอน

n =จำนวนของจุดข้อมูล

ค่ารากที่สองของค่าเฉลี่ยผลต่างกำลังสอง (square root of mean of square of error, *RMS*) ได้กำนวณหาในแต่ละคาบธรรมชาติของแต่ละแบบจำลอง ซึ่งจะขึ้นอยู่กับลักษณะชั้นดินที่ตั้งสถานี ตรวจวัดแผ่นดินไหว และบริเวณการแปรสัณฐาน ซึ่งค่า RMS ของแบบจำลองที่เลือกใช้ใน การศึกษาได้แสดงในรูปที่ 4.37 และ 4.38

แบบจำลองที่เสนอโดย Sadigh และคณะ (1997) บนที่ตั้งหินสำหรับบริเวณการแปร สัณฐานที่มีพลัง (รูปที่ 4.37 (a)) เป็นแบบจำลองที่มีของค่ารากที่สองของค่าเฉลี่ยผลต่างกำลังสองต่ำ ที่สุด (*RMS_{average}* = 1.28) และบริเวณภาคพื้นทวีปที่มีเสถียรภาพ (รูปที่ 4.37 (b)) ได้แก่แบบจำลอง ที่เสนอโดย Toro: Gulf regions (2002) (*RMS_{average}* = 1.72) ส่วนบริเวณเขตมุดตัวของเปลือกโลก (รูปที่ 4.37 (c)) ได้แก่แบบจำลองที่เสนอโดย Youngs และคณะ (1997) (*RMS_{average}* = 2.18)

ค่ารากที่สองของค่าเฉลี่ยผลต่างกำลังสองของแบบจำลองที่เสนอ โดย Ambraseys และคณะ (2005) (*RMS_{average}* = 3.47) บนที่ตั้งคินสำหรับบริเวณการแปรสัณฐานที่มีพลัง (รูปที่ 4.38 (a)) ยังมี ค่ามาก เนื่องจากข้อมูลความเร่งสูงสุดของพื้นคิน และข้อมูลความเร่งเทียมที่คำนวณจากข้อมูลการ เคลื่อนไหวของพื้นคินยังไม่สอคคล้องกับค่าที่ประมาณจากแบบจำลองเท่าที่ควร

ค่ารากที่สองของค่าเฉลี่ยผลต่างกำลังสอง (RMS) ของแบบจำลองที่เสนอโดย Sadigh และ คณะ (1997) ได้มีค่าต่ำที่สุดเมื่อเปรียบเทียบกับแบบจำลองอื่นที่เลือกใช้ในการศึกษา (รูปที่ 4.37 (a)) ซึ่งสรุปได้ว่าเป็นแบบจำลองที่มีความเหมาะสมสำหรับใช้ประมาณค่าความเร่งสูงสุดของพื้นดิน และความเร่งเทียมในประเทศไทย

ร**ูปที่ 4.38** การเปรียบเทียบก่า RMS ของแบบจำลองการลดทอนสำหรับที่ตั้งบนดิน

การพิจารณาความสอดคล้องของข้อมูลที่ประมาณค่าโดยใช้แบบจำลองการลดทอนกับ ข้อมูลที่บันทึกได้ในประเทศไทยได้แบ่งพิจารณาตามบริเวณของแหล่งกำเนิดแผ่นดินไหว และ ลักษณะชั้นดินที่ตั้งสถานีตรวจวัด ซึ่งข้อมูลที่ประมาณค่าโดยใช้แบบจำลองการลดทอนได้มีความ สอดคล้องกับข้อมูลที่ตรวจวัดได้โดยสถานีที่ตั้งอยู่บนหินมากกว่าข้อมูลที่ตรวจวัดได้โดยสถานีที่ ตั้งอยู่บนดิน และแบบจำลองที่สร้างสำหรับบริเวณการแปรสัณฐานที่มีพลัง (active tectonic regions) ได้มีความสอดคล้องกับข้อมูลการเคลื่อนไหวของพื้นดินที่บันทึกได้ในประเทศไทย มากกว่าบริเวณภาคพื้นทวีปที่มีเสถียรภาพ (stable continental regions) และบริเวณเขตมุดตัวของ เปลือกโลก (subduction zones) ดังแสดงในรูปที่ 4.37 และ 4.38

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย
บทที่ 5

สรุปผลการศึกษา

การศึกษานี้มีข้อสรุปคังนี้

- แบบจำลองการลดทอนรุ่นใหม่ (Next Generation of Ground-Motion Attenuation Models, NGA) ที่พัฒนาโดย Abrahamson and Silva (2008), Campbell and Bozorgnia (2008) และ Chiou and Youngs (2008) ไม่สามารถที่จะนำมาใช้ประมาณก่าพารามิเตอร์การเคลื่อนไหว ของพื้นดินในการศึกษาครั้งนี้ได้ เนื่องจากข้อมูลเหตุการณ์แผ่นดินไหวที่เป็นตัวแปรของ แต่ละแบบจำลองมีไม่เพียงพอ แต่แบบจำลองที่เสนอ โดย Atkinson and Boore (2008) และ Idriss (2008) สามารถใช้ประมาณก่าพารามิเตอร์การเคลื่อนไหวของพื้นดินได้ และจาก การศึกษาครั้งนี้เมื่อเปรียบเทียบแบบจำลองการลดทอนรุ่นใหม่ กับแบบจำลองที่สร้างก่อน ปี ค.ศ. 2008 พบว่ากวามเร่งสูงสุดของพื้นดิน และกวามเร่งเทียมที่ประมาณก่าโดยใช้ แบบจำลองที่สร้างก่อนปี ค.ศ. 2008 มีความสอดคล้องกับข้อมูลการเคลื่อนไหวของพื้นดิน ที่บันทึกได้ในประเทศไทยมากกว่าแบบจำลองการลดทอนรุ่นใหม่ และก่ารากที่สองของ ก่าเฉลี่ยผลต่างกำลังสอง (RMS) ของแบบจำลองการลดทอนรุ่นใหม่ และก่ารากที่สองของ เผ่นดินไหวในระยะทางใกล้เท่านั้น ซึ่งเมื่อนำมาเปรียบเทียบกับข้อมูลที่บันทึกได้ในระยะ ทางไกล จึงมีกวามแตกต่างกันมาก
- แบบจำลองที่เสนอโดย Idriss (2008) เมื่อใช้ประมาณค่าความเร่งเทียมที่ระยะทางมากกว่า
 200 กิโลเมตร ความเร่งเทียมที่ได้จากการประมาณจะมีค่าเพิ่มขึ้นเมื่อระยะทางเพิ่มมากขึ้น
 ซึ่งไม่ได้ลดทอนอย่างที่ควรจะเป็น
- แบบจำลองที่เหมาะสมสำหรับใช้ประมาณค่าความเร่งสูงสุดของพื้นดินและความเร่งเทียม ในประเทศไทย บนที่ตั้งหินสำหรับบริเวณการแปรสัณฐานที่มีพลังได้แก่แบบจำลองที่ เสนอโดย Sadigh และคณะ (1997) และบริเวณภาคพื้นทวีปที่มีเสถียรภาพได้แก่ แบบจำลองที่เสนอโดย Toro: Gulf regions (2002) ส่วนบริเวณเขตมุดตัวของเปลือกโลก ได้แก่แบบจำลองที่เสนอโดย Youngs และคณะ (1997)
- ในกรณีที่ตั้งบนดิน แบบจำลองการลดทอนที่เสนอโดย Ambraseys และคณะ (2005) เป็น แบบจำลองที่มีค่ารากที่สองของค่าเฉลี่ยผลต่างกำลังสอง สำหรับบริเวณการแปรสัณฐานที่

มีพลังน้อยที่สุด ส่วนบริเวณเขตมุดตัวของเปลือกได้แก่แบบจำลองที่เสนอโดย Youngs และคณะ (1997) ซึ่งมีค่ารากที่สองของค่าเฉลี่ยผลต่างกำลังสองใกล้เคียงกับแบบจำลองที่ เสนอโดย Ambraseys และคณะ (2005) แต่แบบจำลองทั้ง 2 ชุดนี้ยังไม่เหมาะสมที่จะ นำมาใช้ประมาณค่าความเร่งสูงสุดของพื้นดิน และความเร่งเทียมในประเทศไทย เนื่องจาก ค่ารากที่สองของค่าเฉลี่ยผลต่างกำลังสอง ของแบบจำลองยังมีค่าสูง

 ในอนาคตหากประเทศไทยมีข้อมูลการเคลื่อนไหวของพื้นดินที่ได้เกิดขึ้นเนื่องจาก เหตุการณ์แผ่นดินไหวที่มีขนาดโมเมนต์มากกว่า 4 ขึ้นไป และมีระยะทางจากแหล่งกำเนิด ถึงสถานีตรวจวัดประมาณ 0 ถึง 200 กิโลเมตร ในปริมาณที่เพียงพอก็จะสามารถสร้าง แบบจำลองสำหรับประเทศไทยได้

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

รายการอ้างอิง

<u>ภาษาอังกฤษ</u>

- Abrahamson, N.A. and Silva, W.J. (2008), Summary of the Abrahamson & Silva NGA Ground-Motion Relations, <u>Earthquake Spectra</u>. 24, 1: 67–97.
- Abrahamson, N.A. and Silva, W.J. (1997). Empirical Response Spectral Attenuation Relations for Shallow Crustal Earthquakes. <u>Seismological Research Letters</u>. 68, 1: 94-109.
- Ambraseys, N.N. and Bommer, J.J. (1992). On the Attenuation of Ground Acceleration in Europe. Proceedings of the 10th World Conference on Earthquake Engineering. Rotterdam.
- Ambraseys, N., Douglas, J., Sarma, S. and Smit, P. (2005). Equations for the Estimation of Strong Ground Motions from Shallow Crustal Earthquakes Using Data from Europe and the Middle East: Horizontal Peak Ground Acceleration and Spectral Acceleration. <u>Bulletin of Earthquake Engineering.</u> 3, 1: 1-53.
- Ashford, S., Jakrapiyanun, W. and Lukkunaprasit, P. (2000). Amplification of Earthquake Ground Motions in Bangkok. <u>Proceedings of the 12th World Conference on Earthquake</u> <u>Engineering</u>. Auckland. New Zealand.
- Atkinson, G. and Boore, D. (2008). Ground-Motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and 5% Damped PSA at Spectral Periods between 0.01 s and 10.0 s. <u>Earthquake Spectra</u>. 24, 1: 99–138.
- Atkinson, G. and Boore, D. (1997). Some Comparisons Between Recent Ground Motion Relations. <u>Seismological Research Letters</u>. 68, 1: 24-40.
- Atkinson, G.M. and Boore, D.M. (1995). Ground-Motion Relations for Eastern North America. Bulletin of Seismological Society of America. 85, 1: 17-30.
- Boore, D., Joyner, W. and Fumal, T. (1997). Equations for Estimating Horizontal Response Spectra and Peak Acceleration from Western North American Earthquakes: A Summary of Recent Work. <u>Seismological Research Letters</u>. 68, 1: 128-153.
- Campbell, K.W. and Bozorgnia, Y. (1994). Near-source Attenuation of Peak Horizontal Acceleration from Worldwide Accelerograms Recorded from 1957 to 1993. <u>Proceedings</u> of the 5th U.S. National Conference on Earthquake Engineering. California.

- Campbell, K.W. (1997). Empirical Near-Source Attenuation Relationships for Horizontal and Vertical Components of Peak Ground Acceleration, Peak Ground Velocity and Pseudo-Absolute Acceleration Response Spectra. <u>Seismological Research Letters</u>. 68, 1: 154-179.
- Charoenyuth, M. (2007). <u>Database of Earthquake Ground Motions Recorded in Thailand</u>. Master Engineering Thesis. Chulalongkorn University. Bangkok. Thailand.
- Chen, W. and Scawthorn, C. (2003). <u>Handbook of Earthquake Engineering</u>. CRC Press Boca Raton. Florida.
- Chiou, B. and Youngs, R. (2008). An NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra. <u>Earthquake Spectra</u>. 24, 1: 173–215.
- Chopra A. K., (2001). <u>Dynamics of Structures : Theory and Applications to Earthquake</u> <u>Engineering</u>. 2nd edition. Prentice Hall. Upper Saddle River. New Jersey.
- Crouse, C.B. (1991). Ground Motion Attenuation Equation for Earthquakes on Cascadia Subduction Zones. <u>Earthquake Spectra</u>. 7, 2: 201-236.
- Dickenson, S.E. (1994). <u>Dynamic Response of Soft and Deep Cohesive Soils During the Loma</u> <u>Prieta Earthquake of October 17, 1989</u>. Ph.D. Thesis. University of California at Berkeley.
- Douglas, J. (2004). Ground Motion Estimation Equations 1964-2003, Reissue of ESEE Report No. 01-1: A Comprehensive Worldwide Summary of Strong-Motion Attenuation Relationships for Peak Ground Acceleration and Spectral Ordinates (1969 to 2000) with Corrections and Additions. <u>Research Report Number 04-001-SM</u>. Department of Civil and Environmental Engineering. Imperial College.
- Douglas, J. (2003). Earthquake Ground Motion Estimation Using Strong-Motion Records: A Review of Equations for the Estimation of Peak Ground Acceleration and Response Spectral Ordinates. <u>Earth Science Reviews</u>. 61, 1: 43-104.
- Esteva, L. and Villaverde, R. (1973). Seismic Risk, Design Spectra and Structural Reliability. <u>Proceedings of the 5th World Conference on Earthquake Engineering</u>. Rome.

- Gardner, J.K. and Knopoff, L. (1974). Is the Sequence of Earthquakes in Southern California, With Aftershocks Removed, Poissonian. <u>Bulletin of the Seismological Society of</u> <u>America</u>. 64, 5: 1363-1367.
- Heaton, T.H., Tajima, F., and Mori, A.W. (1986). Estimating Ground Motions Using Recorded Accelerograms. <u>Survey Geophysics</u>. 8, 1: 25–83.
- Hwang, H. and Huo, J. (1997). Attenuation Relations of Ground Motions for Rock and Soil Sites in Eastern United States. Soil Dynamics and Earthquake Engineering. <u>Elsevier Science</u>. 16, 6: 363-372.
- Idriss, I. M. (2008). An NGA Empirical Model for Estimating the Horizontal Spectral Values Generated By Shallow Crustal Earthquakes. <u>Earthquake Spectra</u>. 24, 1:217–242.
- Idriss, I.M. (1993). Procedures for Selecting Earthquake Ground Motions at Rock Sites. <u>Report</u> <u>No. NIST GCR 93-625</u>. Report to National Institute of Standards and Technology. Gaithersburg. Maryland. Center for Geotechnical Modeling. Department of Civil and Environmental Engineering. University of California at Davis.
- Imai, T. and Tonouchi, K. (1982). Correlation of N-Value with S-Wave Velocity and Shear Modulus. <u>Proceedings of the 2nd European Symposium on Penetration Testing</u>. Amsterdam. The Netherlands: 67-72.
- International Code Council. (2003). International Building Code. Country Club Hills, Illinois.
- Lukkunaprasit, P., (2006). Earthquake-Related Disaster Mitigation-the Thailand Experience. <u>Proceedings of the 4th International Conference on Earthquake Engineering</u>. Taipei. Taiwan.
- Lam, N., Wilson, J., Chandler, A. and Hutchinson, G. (2000). Response Spectral Relationships for Rock Sites Derived from the Component Attenuation Model. <u>Earthquake Engineering</u> <u>and Structural Dynamics</u>. 29: 1457-1489.
- Lisantono, A. (1994). <u>Development of a Seismic Risk Map for the Structural Design Code in</u> <u>Thailand</u>. Master Engineering Thesis No. ST-94-14. Asian Institute of Technology. Thailand.
- McGuire, R. K. (1978). Seismic Ground Motion Parameter Relations. <u>Journal of the Geotechnical</u> <u>Engineering</u>. ASCE. 104(GT4): 481–490.

- Megawati, K., Pan, T. and Koketsu, K. (2005). Response Spectral Attenuation Relationships for Sumatran-Subduction Earthquakes and the Seismic Hazard Implications to Singapore and Kuala Lumpur. <u>Soil Dynamics and Earthquake Engineering</u>. 25, 1: 11-25.
- Naguit, M.E. (2007). <u>Estimation of Probable Earthquake Ground Motions in Bangkok</u>. Master Engineering Thesis. Chulalongkorn University. Bangkok. Thailand.
- Nigam, N.C., and Jennings, P.C. (1968). <u>Digital Calculation of Responses Spectra from Storng-</u> <u>Motion Eathquake Records</u>. Earthquake Engineering Research Laboratory. California Institute of Technology. Pasadena. California. USA.
- Ohsaki, Y. and Iwasaki, R. (1973). On Dynamic Shear Moduli and Poisson's Ratio of Soil Deposits. Soil and Foundations. 13, 4: 61-73.
- Ohta, Y. and Goto, N. (1978). Empirical Shear Wave Velocity Equations in Terms of Characteristic Soil Indexes. Earthquake Engineering and Structural Dynamics. 6, 2: 167-187.
- Padermkul, S. (1999). <u>An Integrated Inventory Methodology for Seismic Damage Assessment of Bangkok</u>. Master Engineering Thesis No. ST-99-29. Asian Institute of Technology. Bangkok. Thailand.
- Petersen, M., Bryant, W., Cramer, C., Cao, T., Reichle, M., Frankel, A., Lienkaemper, J., McCrory, P. and Schwartz, D. (1996). Probabilistic Seismic Hazard Assessment for the State of California. <u>Open File Report No. 96-08</u>. California Department of Conservation Division of Mines and Geology.
- Raoof, M., Hermann, R.B. and Malagnini, L. (1999). Attenuation and Excitation of Three-Component Ground Motion in Southern California. <u>Bulletin of the Seismological Society</u> <u>of America</u>. 89, 1: 888-902.
- Sabetta, F. and Pugliese, A. (1987). Attenuation of Peak Horizontal Acceleration and Velocity from Italian Strong-motion Records. <u>Bulletin of the Seismological Society of America</u>. 77, 5: 1491-1513.
- Sadigh, K., Chang, C.Y., Abrahamson, N.A., Chiou, S.J., and Power, M.S. (1993). Specification of Long-period Ground Motions: Updated Attenuation Relationships for Rock Site Conditions and Adjustment Factors for Near-fault Effects. <u>Proceedings ATC-17-1</u>. Applied Technology Council. California: 59-70.

- Sadigh, K., Chang, C., Egan, J., Makdisi, F. and Youngs, R. (1997). Attenuation Relationships for Shallow Crustal Earthquakes Based on California Strong Motion Data. <u>Seismological</u> <u>Research Letters</u>. 68, 1: 180-189.
- Saringkarnphasit, K. and Prachuab, S. (2006). Seismic Monitoring Network in Thailand. <u>Asian</u> <u>Seismological Commission Symposium of Earthquakes and Tsunami Disaster</u> <u>Preparedness and Mitigation</u>. Bangkok. Thailand.
- Seed, H.B., Idriss, I.M. and Arango, I. (1983). Evaluation of Liquefaction Potential Using Field Performance Data. Journal of Geotechnical Engineering. ASCE. 109, 3:458-482.
- Shrestha, P. (1987). <u>Investigation of Active Faults in Kanchanaburi Province</u>. Master Engineering Thesis No. GT-86-30. Asian Institute of Technology. Bangkok. Thailand.
- Stewart, J., Chiou, S., Bray, J., Graves, R., Somerville, P. and Abrahamson, N. (2001). Ground Motion Evaluation Procedures for Performance-Based Design. <u>PEER Report 2001/09</u>.
 Pacific Earthquake Engineering Research Center. University of California. Berkeley.
- Sykora, D.W. and Stokoe, K.H. (1983). Correlations of In-Situ Measurements in Sands with Shear Wave Velocity. <u>Geotechnical Engineering Report GR 83-33</u>. The University of Texas at Austin. Texas.
- Toro, G.R. (2002). Modification of the Toro et. al. (1997) Attenuation Equations for Large Magnitudes and Short Distances. <u>Risk Engineering</u>. : 4-1 to 4-10.
- Toro, G.R., Abrahamson, N.A. and Schneider, J.F. (1997). Model of Strong Ground Motions from Earthquakes in Central and Eastern North America: Best Estimates and Uncertainties. <u>Seismological Research Letters</u>. 68, 1: 41-57.
- Toro, G.R. and McGuire, R.K. (1987). An Investigation into Earthquake Ground Motion Characteristics in Eastern North America. <u>Bulletin of the Seismological Society of</u> <u>America</u>. 77, 2: 468-489.
- Warnitchai, P., Sangarayakul, C. and Ashford, S. (2000). Seismic Hazard in Bangkok Due to Long-Distance Earthquake. Proceedings of the 12th World Conference on Earthquake Engineering. Auckland. New Zealand.
- Watabe, M., (1980). Analyses on Seismic Ground Motion Parameters Including Vertical Components. <u>Proceedings of 7th World Conference on Earthquake Engineering</u>. 2: 97– 104.

Youngs, R.R., Chiou, S.-J., Silva, W.J., Humphrey, J.R. (1997). Strong Ground Motion Attenuation Relationships for Subduction Zone. <u>Seismological Research Letters</u>. 68, 1: 74-85.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

ภาคผนวก

ภาคผนวก ก ข้อมูลการเคลื่อนไหวของพื้นดินที่ใช้ในการศึกษา

	Even					Fa	ult plar	ie	F	ault plane	7	Sta.			-	$\overline{V}_{s,30}$			Focal	PGA
No.	No.	Date	Time	Lat _{EP}	Lon _{EP}	Strike	Dip	Slip	Strike	Dip	Slip	ID	Lat _{Sta}	Lon _{Sta}	Instrument	(m/s)	Dis.	Mw	Depth	(g)
1		2006/10/07	21:12:28	11.78	100.15	171	37	-84	344	53	-94	CMMT	18.8128	98.9476	T 120	Rock	793	5.0	12.0	0.0000037
2	1	2006/10/07	21:12:28	11.78	100.15	171	37	-8 <mark>4</mark>	344	53	-94	KRDT	14.5905	101.8442	T 40	348	362	5.0	12.0	0.0000636
3		2006/10/07	21:12:28	11.78	100.15	171	37	-84	344	53	-94	UBPT	15.2773	105.4695	T 120	294	694	5.0	12.0	0.0000410
4	2	2006/11/18	13:55:25	4.58	94.57	321	22	91	140	68	90	SURT	8.9580	98.7950	T 40	290	674	5.9	36.4	0.0000298
5	3	2006/11/18	13:57:57	4.60	94.67	335	13	97	147	77	88	SURT	8.9580	98.7950	T 40	290	665	5.9	23.0	0.0000298
6	4	2006/12/01	3:58:24	3.46	99.05	78	10	157	191	86	81	PKDT	7.8920	98.3350	T 40	215	499	6.3	208.4	0.0001710
7	4	2006/12/01	3:58:24	3.46	99.05	78	10	157	191	86	81	SURT	8.9580	98.7950	T 40	290	612	6.3	208.4	0.0000380
8	5	2006/12/12	17:02:00	18.93	98.97	-	-		-	-	-	CMMT	18.8128	98.9476	T 120	Rock	13	5.1	-	0.0195057
9		2006/12/17	21:10:26	4.58	94.89	314	27	93	131	63	89	CMMT	18.8128	98.9476	T 120	Rock	1643	5.8	54.4	0.0000019
10	6	2006/12/17	21:10:26	4.58	94.89	314	27	93	131	63	89	KHLT	14.7970	98.5890	T 40	387	1206	5.8	54.4	0.0000052
11		2006/12/17	21:10:26	4.58	94.89	314	27	93	131	63	89	SURT	8.9580	98.7950	T 40	290	650	5.8	54.4	0.0000616
12		2006/12/17	21:39:17	0.57	99.83	162	86	180	252	90	4	CMMT	18.8128	98.9476	T 120	Rock	2031	5.8	18.2	0.0000041
13	7	2006/12/17	21:39:17	0.57	99.83	162	86	180	252	90	4	KHLT	14.7970	98.5890	T 40	387	1588	5.8	18.2	0.0000088
14	/	2006/12/17	21:39:17	0.57	99.83	162	86	180	252	90	4	PKDT	7.8920	98.3350	T 40	215	831	5.8	18.2	0.0000710
15		2006/12/17	21:39:17	0.57	99.83	162	86	180	252	90	4	SURT	8.9580	98.7950	T 40	290	940	5.8	18.2	0.0000171
16	8	2006/12/22	19:50:49	10.7	92.11	350	14	95	164	76	89	CMMT	18.8128	98.9476	T 120	Rock	1164	6.2	22.0	0.0000023

27	Even	D.	T .	T .	T	Fa	ult plar	ne	F	ault plane		Sta.	T.	T	T ()	$\overline{V}_{S,30}$	D		Focal	PGA
No.	No.	Date	Time	Lat _{EP}	Lon _{EP}	Strike	Dip	Slip	Strike	Dip	Slip	ID	Lat _{Sta}	Lon _{Sta}	Instrument	(m/s)	Dis.	Mw	Depth	(g)
17		2006/12/22	19:50:49	10.7	92.11	350	14	95	164	76	89	KRDT	14.5905	101.8442	Т 40	348	1141	6.2	22.0	0.0000065
18	8	2006/12/22	19:50:49	10.7	92.11	350	14	9 <mark>5</mark>	164	76	89	PKDT	7.8920	98.3350	Т 40	215	751	6.2	22.0	0.0000549
19		2006/12/22	19:50:49	10.7	92.11	350	14	<mark>95</mark>	164	76	89	SURT	8.9580	98.7950	Т 40	290	758	6.2	22.0	0.0000227
20	9	2007/01/03	12:47:33	5.25	94.28	329	28	105	132	63	82	SURT	8.9580	98.7950	т 40	290	647	5.4	44.0	0.0000195
21	10	2007/01/07	10:47:07	22.04	98.3	92	71	-1	182	89	-161	CMMT	18.8128	98.9476	т 120	Rock	365	4.8	20.0	0.0000528
22		2007/01/08	12:48:44	8.03	92.3	317	32	65	1 <mark>6</mark> 5	61	105	CMMT	18.8128	98.9476	т 120	Rock	1398	6.1	12.0	0.0000026
23	11	2007/01/08	12:48:44	8.03	92.3	317	32	65	165	61	105	KRDT	14.5905	101.8442	Т 40	348	1271	6.1	12.0	0.0000053
24		2007/01/08	12:48:44	8.03	92.3	317	32	65	165	61	105	SURT	8.9580	98.7950	Т 40	290	722	6.1	12.0	0.0000085
25	12	2007/01/09	5:27:24	19.13	95.35	174	48	18	72	77	136	CMMT	18.8128	98.9476	T 120	Rock	380	4.9	97.6	0.0000165
26	12	2007/01/09	5:27:24	19.13	95.35	174	48	18	72	77	136	PBKT	16.5733	100.9687	T 120	245	659	4.9	97.6	0.0000365
27	13	2007/01/22	16:44:35	2.36	95.58	301	27	80	132	64	95	PBKT	16.5733	100.9687	Т 120	245	1687	5.3	36.8	0.0000211
28		2007/01/22	16:44:35	2.36	95.58	301	27	80	132	64	95	PKDT	7.8920	98.3350	т 40	215	687	5.3	36.8	0.0000233
29	14	2007/01/25	15:18:40	1.36	97.03	331	37	132	103	64	64	SURT	8.9580	98.7950	т 40	290	867	5.0	39.6	0.0000021
30	15	2007/01/29	19:48:40	8.37	93.76	136	60	167	233	78	31	PKDT	7.8920	98.3350	Т 40	215	507	5.4	77.3	0.0000502
31	15	2007/01/29	19:48:40	8.37	93.76	136	60	167	233	78	31	SURT	8.9580	98.7950	Т 40	290	557	5.4	77.3	0.0000125
32	16	2007/02/11	10:47:37	6.12	94.47	193	58	21	91	72	146	SURT	8.9580	98.7950	Т 40	290	572	5.4	63.6	0.0000504
33		2007/02/14	19:50:02	0.33	97.22	320	38	119	105	57	69	CMMT	18.8128	98.9476	т 120	Rock	2064	5.7	12.0	0.0000017
34	17	2007/02/14	19:50:02	0.33	97.22	320	38	119	105	57	69	KHLT	14.7970	98.5890	Т 40	387	1616	5.7	12.0	0.0000027
35		2007/02/14	19:50:02	0.33	97.22	320	38	119	105	57	69	SURT	8.9580	98.7950	Т 40	290	975	5.7	12.0	0.0000055
36	10	2007/02/14	20:12:00	5.04	94.23	327	32	99	136	59	84	CHBT	12.7526	102.3297	T 120	487	1236	5.2	34.2	0.0000156
37	18	2007/02/14	20:12:00	5.04	94.23	327	32	99	136	59	84	PKDT	7.8920	98.3350	Т 40	215	554	5.2	34.2	0.0002619
						9														

N	Even	Dit	T	T	т	Fa	ult plan	ne	F	ault plane		Sta.	T	T	Turture t	$\overline{V}_{S,30}$	D	Mari	Focal	PGA
NO.	No.	Date	Time	Lat _{EP}	Lon _{EP}	Strike	Dip	Slip	Strike	Dip	Slip	ID	Lat _{Sta}	Lon _{Sta}	Instrument	(m/s)	Dis.	MW	Depth	(g)
38	18	2007/02/14	20:12:00	5.04	94.23	327	32	99	136	59	84	SURT	8.9580	98.7950	Т 40	290	666	5.2	34.2	0.0000189
39	19	2007/02/14	20:46:34	0.39	97.17	300	32	116	90	61	74	UBPT	15.2773	105.4695	T 120	294	1890	5.4	12.0	0.0000008
40		2007/03/01	2:01:05	3.6	96.23	71	41	1 <mark>46</mark>	188	69	54	CHBT	12.7526	102.3297	T 120	487	1219	5.2	43.4	0.0000224
41	20	2007/03/01	2:01:05	3.6	96.23	71	41	146	188	69	54	PKDT	7.8920	98.3350	т 40	215	531	5.2	43.4	0.0001540
42		2007/03/01	2:01:05	3.6	96.23	71	41	1 <mark>4</mark> 6	188	69	54	SURT	8.9580	98.7950	т 40	290	660	5.2	43.4	0.0000199
43	21	2007/03/01	5:08:23	10.42	93.23	141	50	161	243	75	41	SURT	8.9580	98.7950	т 40	290	631	5.0	89.2	0.0000073
44	22	2007/03/06	3:49:44	-0.65	100.53	150	84	-177	60	87	-6	CMMT	18.8128	98.9476	T 120	Rock	2172	6.4	20.9	0.0000057
45	22	2007/03/06	3:49:44	-0.65	100.53	150	84	-177	60	87	-6	UBPT	15.2773	105.4695	T 120	294	1853	6.4	20.9	0.0000064
46	23	2007/03/06	5:49:29	-0.51	100.47	149	80	179	239	89	10	CMMT	18.8128	98.9476	T 120	Rock	2156	6.3	21.9	0.0000103
47	23	2007/03/06	5:49:29	-0.51	100.47	149	80	179	239	89	10	UBPT	15.2773	105.4695	T 120	294	1840	6.3	21.9	0.0000093
48	24	2007/03/07	10:53:42	1.8	97.74	333	26	115	126	67	79	PKDT	7.8920	98.3350	т 40	215	681	5.9	49.0	0.0001430
49	24	2007/03/07	10:53:42	1.8	97.74	333	26	115	126	67	79	SURT	8.9580	98.7950	т 40	290	805	5.9	49.0	0.0000140
50	25	2007/04/07	9:51:54	2.74	95.48	293	8	65	138	83	93	KHLT	14.7970	98.5890	т 40	387	1384	6.1	12.0	0.0000051
51	23	2007/04/07	9:51:54	2.74	95.48	293	8	65	138	83	93	SURT	8.9580	98.7950	т 40	290	783	6.1	12.0	0.0000095
52	26	2007/04/10	13:56:55	13.13	92.59	238	49	-42	360	60	-130	CMMT	18.8128	98.9476	T 120	Rock	928	5.5	18.3	0.0000032
53	27	2007/04/26	5:23:48	15.47	96.16	6	72	-167	272	78	-19	CMMT	18.8128	98.9476	T 120	Rock	475	4.9	12.0	0.0000054
54	27	2007/04/26	5:23:48	15.47	96.16	6	72	-167	272	78	-19	UBPT	15.2773	105.4695	T 120	294	999	4.9	12.0	0.0000041
55		2007/04/27	8:02:52	5.09	94.43	319	25	95	133	65	88	CHBT	12.7526	102.3297	T 120	487	1216	5.9	49.2	0.0000926
56	28	2007/04/27	8:02:52	5.09	94.43	319	25	95	133	65	88	PKDT	7.8920	98.3350	T 40	215	532	5.9	49.2	0.0012405
57		2007/04/27	8:02:52	5.09	94.43	319	25	95	133	65	88	SURT	8.9580	98.7950	T 40	290	646	5.9	49.2	0.0001273
58	29	2007/04/28	19:14:31	1.76	99.15	229	70	-11	323	80	-159	PKDT	7.8920	98.3350	T 40	215	688	4.9	18.1	0.0000212
						9				÷						÷			÷	

N	Even	D.	T .	T .	T	Fa	ult plar	ie	F	ault plane		Sta.	T	T	T ()	$\overline{V}_{s,30}$	D.		Focal	PGA
No.	No.	Date	Time	Lat _{EP}	Lon _{EP}	Strike	Dip	Slip	Strike	Dip	Slip	ID	Lat _{Sta}	Lon _{Sta}	Instrument	(m/s)	Dis.	Mw	Depth	(g)
59	30	2007/05/01	19:44:20	5.29	94.38	334	33	110	131	59	77	PKDT	7.8920	98.3350	Т 40	215	524	5.0	51.2	0.0001638
60		2007/05/16	8:56:18	20.52	100.89	324	81	179	54	89	9	CHBT	12.7526	102.3297	T 120	487	877	6.3	12.6	0.0001783
61		2007/05/16	8:56:18	20.52	100.89	324	81	1 <mark>79</mark>	54	89	9	CHBT	12.7526	102.3297	TSA100S	487	877	6.3	12.6	0.0001829
62		2007/05/16	8:56:18	20.52	100.89	324	81	179	54	89	9	CMMT	18.8128	98.9476	T 120	Rock	278	6.3	12.6	0.0011260
63		2007/05/16	8:56:18	20.52	100.89	324	81	179	54	89	9	CMMT	18.8128	98.9476	TSA100S	Rock	278	6.3	12.6	0.0011427
64		2007/05/16	8:56:18	20.52	100.89	324	81	179	54	89	9	KHLT	14.7970	98.5890	т 40	387	682	6.3	12.6	0.0002341
65	21	2007/05/16	8:56:18	20.52	100.89	324	81	17 <mark>9</mark>	54	89	9	KHLT	14.7970	98.5890	TSA100S	387	682	6.3	12.6	0.0002198
66	51	2007/05/16	8:56:18	20.52	100.89	324	81	179	54	89	9	KRDT	14.5905	101.8442	т 40	348	667	6.3	12.6	0.0002702
67		2007/05/16	8:56:18	20.52	100.89	324	81	179	<mark>5</mark> 4	89	9	MHIT	19.3148	97.9632	Т 120	379	334	6.3	12.6	0.0033728
68		2007/05/16	8:56:18	20.52	100.89	324	81	179	54	89	9	PBKT	16.5733	100.9687	T 120	245	439	6.3	12.6	0.0006453
69		2007/05/16	8:56:18	20.52	100.89	324	81	179	54	89	9	PBKT	16.5733	100.9687	TSA100S	245	439	6.3	12.6	0.0006526
70		2007/05/16	8:56:18	20.52	100.89	324	81	179	54	89	9	SURT	8.9580	98.7950	Т 40	290	1306	6.3	12.6	0.0000417
71		2007/05/16	8:56:18	20.52	100.89	324	81	179	54	89	9	UBPT	15.2773	105.4695	T 120	294	758	6.3	12.6	0.0001813
72	32	2007/05/18	15:57:31	3.68	96.07	282	34	67	129	59	105	PKDT	7.8920	98.3350	Т 40	215	531	5.2	56.5	0.0001216
73	33	2007/05/23	20:19:11	2.48	95.39	358	61	167	95	78	30	PKDT	7.8920	98.3350	Т 40	215	685	5.2	12.0	0.0000138
74	24	2007/05/31	23:18:05	8.31	94.03	124	63	178	215	88	27	PKDT	7.8920	98.3350	T 40	215	476	5.4	12.0	0.0004947
75	34	2007/05/31	23:18:05	8.31	94.03	124	63	178	215	88	27	SKLT	7.1735	100.6188	T 120	340	737	5.4	12.0	0.0000062
76		2007/06/02	21:35:02	23.02	101.13	146	63	156	247	69	29	CHBT	12.7526	102.3297	T 120	487	1149	6.1	12.0	0.0000643
77	25	2007/06/02	21:35:02	23.02	101.13	146	63	156	247	69	29	CMMT	18.8128	98.9476	T 120	Rock	520	6.1	12.0	0.0001281
78	33	2007/06/02	21:35:02	23.02	101.13	146	63	156	247	69	29	CMMT	18.8128	98.9476	TSA100S	Rock	520	6.1	12.0	0.0001275
79		2007/06/02	21:35:02	23.02	101.13	146	63	156	247	69	29	KHLT	14.7970	98.5890	Т 40	387	953	6.1	12.0	0.0000573
			÷			9				÷						÷	÷			

N	Even	Dit	T	T	T	Fa	ult plan	ie	F	ault plane		Sta.	T	T	Turture t	$\overline{V}_{S,30}$	D	Mari	Focal	PGA
NO.	No.	Date	Time	Lat _{EP}	Lon _{EP}	Strike	Dip	Slip	Strike	Dip	Slip	ID	Lat _{Sta}	Lon _{Sta}	Instrument	(m/s)	Dis.	MW	Depth	(g)
80		2007/06/02	21:35:02	23.02	101.13	146	63	156	247	69	29	KRDT	14.5905	101.8442	T 40	348	941	6.1	12.0	0.0001411
81		2007/06/02	21:35:02	23.02	101.13	146	63	156	247	69	29	MHIT	19.3148	97.9632	T 120	379	527	6.1	12.0	0.0003197
82		2007/06/02	21:35:02	23.02	101.13	146	63	1 <mark>56</mark>	247	69	29	PBKT	16.5733	100.9687	T 120	245	717	6.1	12.0	0.0001019
83		2007/06/02	21:35:02	23.02	101.13	146	63	156	247	69	29	PBKT	16.5733	100.9687	TSA100S	245	717	6.1	12.0	0.0001035
84	35	2007/06/02	21:35:02	23.02	101.13	146	63	156	247	69	29	PKDT	7.8920	98.3350	т 40	215	1709	6.1	12.0	0.0001020
85		2007/06/02	21:35:02	23.02	101.13	146	63	156	2 <mark>4</mark> 7	69	29	RNTT	9.3904	98.4778	т 40	417	1542	6.1	12.0	0.0000233
86		2007/06/02	21:35:02	23.02	101.13	146	63	156	247	69	29	SKLT	7.1735	100.6188	T 120	340	1763	6.1	12.0	0.0000102
87		2007/06/02	21:35:02	23.02	101.13	146	63	156	2 <mark>47</mark>	69	29	SURT	<mark>8.95</mark> 80	98.7950	т 40	290	1584	6.1	12.0	0.0000205
88		2007/06/02	21:35:02	23.02	101.13	146	63	156	<mark>2</mark> 47	69	29	UBPT	15.2773	105.4695	T 120	294	974	6.1	12.0	0.0000700
89	36	2007/06/03	2:49:03	22.93	101.12	238	79	10	147	80	169	CMMT	18.8128	98.9476	T 120	Rock	511	4.9	24.4	0.0000115
90	37	2007/06/09	14:59:51	2.19	95.93	298	27	82	127	63	94	SKLT	7.1735	100.6188	T 120	340	760	5.2	36.3	0.0000042
91		2007/06/23	8:17:20	21.49	100	61	81	8	330	82	171	CMMT	18.8128	98.9476	T 120	Rock	317	5.6	16.1	0.0002478
92		2007/06/23	8:17:20	21.49	100	61	81	8	330	82	171	KHLT	14.7970	98.5890	т 40	387	759	5.6	16.1	0.0000833
93		2007/06/23	8:17:20	21.49	100	61	81	8	330	82	171	KRDT	14.5905	101.8442	т 40	348	792	5.6	16.1	0.0000339
94	38	2007/06/23	8:17:20	21.49	100	61	81	8	330	82	171	MHIT	19.3148	97.9632	T 120	379	322	5.6	16.1	0.0010060
95		2007/06/23	8:17:20	21.49	100	61	81	8	330	82	171	PBKT	16.5733	100.9687	T 120	245	556	5.6	16.1	0.0001045
96		2007/06/23	8:17:20	21.49	100	61	81	8	330	82	171	SURT	8.9580	98.7950	Т 40	290	1400	5.6	16.1	0.0000149
97		2007/06/23	8:17:20	21.49	100	61	81	8	330	82	171	UBPT	15.2773	105.4695	T 120	294	900	5.6	16.1	0.0000453
98		2007/06/23	8:27:49	21.46	99.93	334	60	-167	237	79	-31	CMMT	18.8128	98.9476	T 120	Rock	312	5.4	17.6	0.0001311
99	39	2007/06/23	8:27:49	21.46	99.93	334	60	-167	237	79	-31	KRDT	14.5905	101.8442	T 40	348	790	5.4	17.6	0.0000190
100		2007/06/23	8:27:49	21.46	99.93	334	60	-167	237	79	-31	MHIT	19.3148	97.9632	T 120	379	315	5.4	17.6	0.0005138
						9										·	÷		·	

N	Even	D.	T .	T.	T	Fa	ult plan	ie	F	ault plane		Sta.	T. I	T	T	$\overline{V}_{S,30}$	D.		Focal	PGA
No.	No.	Date	Time	Lat _{EP}	Lon _{EP}	Strike	Dip	Slip	Strike	Dip	Slip	ID	Lat _{Sta}	Lon _{Sta}	Instrument	(m/s)	Dis.	Mw	Depth	(g)
101	39	2007/06/23	8:27:49	21.46	99.93	334	60	-167	237	79	-31	PBKT	16.5733	100.9687	T 120	245	554	5.4	17.6	0.0000664
102	40	2007/06/24	13:47:40	5.21	94.5	316	32	9 <mark>3</mark>	133	58	88	PKDT	7.8920	98.3350	т 40	215	518	5.0	54.0	0.0000940
103		2007/07/21	12:53:03	5.14	97.72	116	35	100	284	56	83	CMMT	18.8128	98.9476	T 120	Rock	1527	5.2	12.0	0.0000020
104		2007/07/21	12:53:03	5.14	97.72	116	35	100	284	56	83	PKDT	7.8920	98.3350	т 40	215	314	5.2	12.0	0.0014086
105	41	2007/07/21	12:53:03	5.14	97.72	116	35	100	284	56	83	RNTT	9.3904	98.4778	т 40	417	480	5.2	12.0	0.0002192
106		2007/07/21	12:53:03	5.14	97.72	116	35	100	284	56	83	SURT	8.9580	98.7950	т 40	290	441	5.2	12.0	0.0000799
107		2007/07/21	12:53:03	5.14	97.72	116	35	100	284	56	83	TRTT	7.8362	99.6912	т 40	340	371	5.2	12.0	0.0000662
108		2007/07/24	14:51:33	2.14	97.72	321	29	52	182	67	109	PKDT	7.8920	98.3350	т 40	215	643	5.3	50.5	0.0001572
109		2007/07/24	14:51:33	2.14	97.72	321	29	52	182	67	109	RNTT	9.3904	98.4778	т 40	417	811	5.3	50.5	0.0000223
110	42	2007/07/24	14:51:33	2.14	97.72	321	29	52	182	67	109	SKLT	7.1735	100.6188	T 120	340	646	5.3	50.5	0.0000164
111		2007/07/24	14:51:33	2.14	97.72	321	29	52	182	67	109	SURT	8.9580	98.7950	Т 40	290	768	5.3	50.5	0.0000147
112		2007/07/24	14:51:33	2.14	97.72	321	29	52	182	67	109	TRTT	7.8362	99.6912	т 40	340	670	5.3	50.5	0.0000341
113		2007/07/25	23:37:35	7.06	92.52	321	43	79	156	48	100	CMMT	18.8128	98.9476	Т 120	Rock	1481	6.0	12.0	0.0000026
114		2007/07/25	23:37:35	7.06	92.52	321	43	79	156	48	100	KHLT	14.7970	98.5890	Т 40	387	1086	6.0	12.0	0.0000046
115		2007/07/25	23:37:35	7.06	92.52	321	43	79	156	48	100	KRDT	14.5905	101.8442	т 40	348	1318	6.0	12.0	0.0000140
116		2007/07/25	23:37:35	7.06	92.52	321	43	79	156	48	100	PBKT	16.5733	100.9687	т 120	245	1401	6.0	12.0	0.0000072
117	43	2007/07/25	23:37:35	7.06	92.52	321	43	79	156	48	100	PBKT	16.5733	100.9687	TSA100S	245	1401	6.0	12.0	0.0000071
118		2007/07/25	23:37:35	7.06	92.52	321	43	79	156	48	100	PKDT	7.8920	98.3350	т 40	215	648	6.0	12.0	0.0000266
119		2007/07/25	23:37:35	7.06	92.52	321	43	79	156	48	100	PKDT	7.8920	98.3350	TSA100S	215	648	6.0	12.0	0.0000246
120		2007/07/25	23:37:35	7.06	92.52	321	43	79	156	48	100	RNTT	9.3904	98.4778	т 40	417	705	6.0	12.0	0.0000190
121		2007/07/25	23:37:35	7.06	92.52	321	43	79	156	48	100	SKLT	7.1735	100.6188	T 120	340	894	6.0	12.0	0.0000105
						9														

ŊŢ	Even	D. (T.	T	Fa	ult plan	ie	F	ault plane		Sta.	T.	T	T A A	$\overline{V}_{S,30}$	D.		Focal	PGA
NO.	No.	Date	Time	Lat _{EP}	Lon _{EP}	Strike	Dip	Slip	Strike	Dip	Slip	ID	Lat _{Sta}	Lon _{Sta}	Instrument	(m/s)	Dis.	MW	Depth	(g)
122		2007/07/25	23:37:35	7.06	92.52	321	43	79	156	48	100	SKNT	16.9742	103.9815	TSA100S	254	1663	6.0	12.0	0.0000133
123		2007/07/25	23:37:35	7.06	92.52	321	43	79	156	48	100	SRDT	14.3945	99.1212	T 120	387	1089	6.0	12.0	0.0000087
124	13	2007/07/25	23:37:35	7.06	92.52	321	43	<mark>79</mark>	156	48	100	SRDT	14.3945	99.1212	TSA100S	387	1089	6.0	12.0	0.0000089
125	45	2007/07/25	23:37:35	7.06	92.52	321	43	79	156	48	100	SURT	8.9580	98.7950	T 40	290	723	6.0	12.0	0.0000128
126		2007/07/25	23:37:35	7.06	92.52	321	43	<mark>7</mark> 9	156	48	100	TRTT	7.8362	99.6912	T 40	340	796	6.0	12.0	0.0000138
127		2007/07/25	23:37:35	7.06	92.52	321	43	79	156	48	100	UBPT	15.2773	105.4695	T 120	294	1682	6.0	12.0	0.0000054
128		2007/07/30	22:42:06	19.06	95.77	322	44	101	127	47	79	CHBT	12.7526	102.3297	T 120	487	992	5.6	12.0	0.0000347
129		2007/07/30	22:42:06	19.06	95.77	322	44	101	127	47	79	CMAI	19.9320	99.0450	KS-2000M	351	357	5.6	12.0	0.0008963
130		2007/07/30	22:42:06	19.06	95.77	322	44	101	<mark>12</mark> 7	47	79	CMMT	18.8128	98.9476	T 120	Rock	335	5.6	12.0	0.0001841
131		2007/07/30	22:42:06	19.06	95.77	322	44	101	127	47	79	CRAI	20.2290	100.3730	PA-23	387	499	5.6	12.0	0.0001124
132		2007/07/30	22:42:06	19.06	95.77	322	44	101	127	47	79	KHLT	14.7970	98.5890	T 40	387	561	5.6	12.0	0.0000654
133		2007/07/30	0.945903	19.06	95.77	322	44	101	127	47	79	KRDT	14.5905	101.8442	T 40	348	816	5.6	12.0	0.0000393
134		2007/07/30	22:42:06	19.06	95.77	322	44	101	127	47	79	MHIT	19.3148	97.9632	T 120	379	232	5.6	12.0	0.0023162
135	44	2007/07/30	22:42:06	19.06	95.77	322	44	101	127	47	79	NAN	19.2840	100.9120	PA-23	454	541	5.6	12.0	0.0001038
136		2007/07/30	22:42:06	19.06	95.77	322	44	101	127	47	79	PAYA	19.3600	99.8690	PA-23	327	432	5.6	12.0	0.0002596
137		2007/07/30	22:42:06	19.06	95.77	322	44	101	127	47	79	PBKT	16.5733	100.9687	T 120	245	616	5.6	12.0	0.0000795
138		2007/07/30	22:42:06	19.06	95.77	322	44	101	127	47	79	PHRA	18.4990	100.2290	PA-23	362	474	5.6	12.0	0.0001438
139		2007/07/30	22:42:06	19.06	95.77	322	44	101	127	47	79	RNTT	9.3904	98.4778	T 40	417	1114	5.6	12.0	0.0000072
140		2007/07/30	22:42:06	19.06	95.77	322	44	101	127	47	79	SKLT	7.1735	100.6188	Т 120	340	1422	5.6	12.0	0.0000024
141		2007/07/30	22:42:06	19.06	95.77	322	44	101	127	47	79	SRDT	14.3945	99.1212	TSA100S	387	630	5.6	12.0	0.0000476
142		2007/07/30	22:42:06	19.06	95.77	322	44	101	127	47	79	SUKH	17.4820	99.6310	PA-23	321	444	5.6	12.0	0.0001237
						9														

N	Even	D.	T .	T.	T	Fa	ult plan	e	Fa	ault plane		Sta.	T. I.	T	T A A	$\overline{V}_{S,30}$	D.		Focal	PGA
No.	No.	Date	Time	Lat _{EP}	Lon _{EP}	Strike	Dip	Slip	Strike	Dip	Slip	ID	Lat _{Sta}	Lon _{Sta}	Instrument	(m/s)	Dis.	MW	Depth	(g)
143		2007/07/30	22:42:06	19.06	95.77	322	44	101	127	47	79	SURT	8.9580	98.7950	TSA100S	290	1170	5.6	12.0	0.0000093
144	4.4	2007/07/30	22:42:06	19.06	95.77	322	44	101	127	47	79	TRTT	7.8362	99.6912	T 40	340	1318	5.6	12.0	0.0000056
145	44	2007/07/30	22:42:06	19.06	95.77	322	44	101	127	47	79	UBPT	15.2773	105.4695	T 120	294	1113	5.6	12.0	0.0000227
146		2007/07/30	22:42:06	19.06	95.77	322	44	101	127	47	79	UMPA	16.2060	98.8600	PA-23	307	456	5.6	12.0	0.0001688
147		2007/07/30	22:42:06	19.06	95.77	322	44	101	127	47	79	UTTA	17.7440	100.5540	PA-23	278	526	5.6	12.0	0.0000841
149		2007/07/31	8:43:42	19.05	95.79	313	43	86	1 <mark>3</mark> 8	47	94	CMMT	18.8128	98.9476	T 120	Rock	333	5.0	13.5	0.0000567
150		2007/07/31	8:43:42	19.05	95.79	313	43	86	138	47	94	CRAI	20.2290	100.3730	KS-2000M	387	498	5.0	13.5	0.0000364
151		2007/07/31	8:43:42	19.05	95.79	313	43	86	138	47	94	NAN	19.2840	100.9120	S13	454	539	5.0	13.5	0.0000103
152		2007/07/31	8:43:42	19.05	95.79	313	43	86	<mark>13</mark> 8	47	94	PAYA	19.3600	99.8690	S13	327	430	5.0	13.5	0.0000329
153	45	2007/07/31	8:43:42	19.05	95.79	313	43	86	138	47	94	PBKT	16.5733	100.9687	T 120	245	614	5.0	13.5	0.0000338
154		2007/07/31	8:43:42	19.05	95.79	313	43	86	138	47	94	PHIT	17.1890	100.4160	S13	254	531	5.0	13.5	0.0001284
155		2007/07/31	8:43:42	19.05	95.79	313	43	86	138	47	94	PHRA	18.4990	100.2290	KS-2000M	362	471	5.0	13.5	0.0000454
156		2007/07/31	8:43:42	19.05	95.79	313	43	86	138	47	94	SUKH	17.4820	99.6310	S13	321	442	5.0	13.5	0.0000038
157		2007/07/31	8:43:42	19.05	95.79	313	43	86	138	47	94	UMPA	16.2060	98.8600	S13	307	454	5.0	13.5	0.0000138
158		2007/07/31	8:43:42	19.05	95.79	313	43	86	138	47	94	UTTA	17.7440	100.5540	S13	278	523	5.0	13.5	0.0000073
159		2007/08/08	17:05:11	-6.03	107.58	330	30	155	82	78	62	CHBT	12.7526	102.3297	T 120	487	2168	7.5	304.8	0.0001210
160		2007/08/08	17:05:11	-6.03	107.58	330	30	155	82	78	62	LAMP	18.5230	99.6320	S13	321	2867	7.5	304.8	0.0000124
161	46	2007/08/08	17:05:11	-6.03	107.58	330	30	155	82	78	62	NAN	19.2840	100.9120	S13	454	2909	7.5	304.8	0.0000138
162	40	2007/08/08	17:05:11	-6.03	107.58	330	30	155	82	78	62	PAYA	19.3600	99.8690	S13	327	2948	7.5	304.8	0.0000107
163		2007/08/08	17:05:11	-6.03	107.58	330	30	155	82	78	62	PBKT	16.5733	100.9687	T 120	245	2617	7.5	304.8	0.0000451
164		2007/08/08	17:05:11	-6.03	107.58	330	30	155	82	78	62	PBKT	16.5733	100.9687	TSA100S	245	2617	7.5	304.8	0.0000453
						9					·					÷				

N	Even	D. (T .	T .	T	Fa	ult plar	ie	F	ault plane		Sta.	T.	T	T i i	$\overline{V}_{S,30}$	D.		Focal	PGA
No.	No.	Date	Time	Lat _{EP}	Lon _{EP}	Strike	Dip	Slip	Strike	Dip	Slip	ID	Lat _{Sta}	Lon _{Sta}	Instrument	(m/s)	Dis.	MW	Depth	(g)
165		2007/08/08	17:05:11	-6.03	107.58	330	30	155	82	78	62	PHIT	17.1890	100.4160	S13	254	2700	7.5	304.8	0.0000499
166		2007/08/08	17:05:11	-6.03	107.58	330	30	155	82	78	62	PKDT	7.8920	98.3350	T 40	215	1857	7.5	304.8	0.0003952
167		2007/08/08	17:05:11	-6.03	107.58	330	30	155	82	78	62	PKDT	7.8920	98.3350	TSA100S	215	1857	7.5	304.8	0.0003562
168		2007/08/08	17:05:11	-6.03	107.58	330	30	155	82	78	62	RNTT	9.3904	98.4778	T 40	417	1990	7.5	304.8	0.0001204
169		2007/08/08	17:05:11	-6.03	107.58	330	30	1 <mark>5</mark> 5	82	78	62	SKLT	7.1735	100.6188	T 120	340	1659	7.5	304.8	0.0000964
170		2007/08/08	17:05:11	-6.03	107.58	330	30	155	82	78	62	SKNT	16.9742	103.9815	T 40	254	2589	7.5	304.8	0.0000235
171	16	2007/08/08	17:05:11	-6.03	107.58	330	30	15 <mark>5</mark>	82	78	62	SKNT	16.9742	103.9815	TSA100S	254	2589	7.5	304.8	0.0000241
172	40	2007/08/08	17:05:11	-6.03	107.58	330	30	155	82	78	62	SRDT	14.3945	99.1212	T 120	387	2456	7.5	304.8	0.0000202
173		2007/08/08	17:05:11	-6.03	107.58	330	30	155	82	78	62	SRDT	14.3945	99.1212	TSA100S	387	2456	7.5	304.8	0.0000201
174		2007/08/08	17:05:11	-6.03	107.58	330	30	155	82	78	62	SURT	8.9580	98.7950	T 40	290	1931	7.5	304.8	0.0001346
175		2007/08/08	17:05:11	-6.03	107.58	330	30	155	82	78	62	TRTT	7.8362	99.6912	T 40	340	1773	7.5	304.8	0.0000962
176		2007/08/08	17:05:11	-6.03	107.58	330	30	155	82	78	62	UBPT	15.2773	105.4695	T 120	294	2381	7.5	304.8	0.0000332
177		2007/08/08	17:05:11	-6.03	107.58	330	30	155	82	78	62	UMPA	16.2060	98.8600	S13	307	2653	7.5	304.8	0.0000115
178		2007/08/08	17:05:11	-6.03	107.58	330	30	155	82	78	62	UTTA	17.7440	100.5540	S13	278	2755	7.5	304.8	0.0000046
179		2007/08/25	17:03:08	14.31	94.01	220	59	-170	124	81	-32	CMMT	18.8128	98.9476	T 120	Rock	726	5.2	41.1	0.0000108
180	47	2007/08/25	17:03:08	14.31	94.01	220	59	-170	124	81	-32	RNTT	9.3904	98.4778	T 40	417	732	5.2	41.1	0.0000320
181		2007/08/25	17:03:08	14.31	94.01	220	59	-170	124	81	-32	SRDT	14.3945	99.1212	T 120	387	551	5.2	41.1	0.0000341
182		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	CHBT	12.7526	102.3297	T 120	487	1845	8.5	24.4	0.0002887
183	49	2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	CHBT	12.7526	102.3297	TSA100S	487	1845	8.5	24.4	0.0002981
184	48	2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	CMAI	19.9320	99.0450	KS-2000M	351	2646	8.5	24.4	0.0002790
185		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	CMMT	18.8128	98.9476	T 120	Rock	2523	8.5	24.4	0.0051182
			•			9			-							·				

	Even	D .	T .	. .	Ŧ	Fa	ult plar	ie	Fa	ault plane		Sta.		Ŧ	.	$\overline{V}_{s,30}$	D .		Focal	PGA
No.	No.	Date	Time	Lat _{EP}	Lon _{EP}	Strike	Dip	Slip	Strike	Dip	Slip	ID	Lat _{Sta}	Lon _{Sta}	Instrument	(m/s)	Dis.	MW	Depth	(g)
186		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	CRAI	20.2290	100.3730	KS-2000M	387	2671	8.5	24.4	0.0001628
187		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	CRAI	20.2290	100.3730	PA-23	387	2671	8.5	24.4	0.0001768
188		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	KHLT	14.7970	98.5890	TSA100S	387	2083	8.5	24.4	0.0002933
189		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	KRDT	14.5905	101.8442	TSA100S	348	2046	8.5	24.4	0.0002297
190		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	LAMP	18.5230	99.6320	PA-23	320.1	2485	8.5	24.4	0.0002247
191		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	NAN	19.2840	100.9120	PA-23	454	2565	8.5	24.4	0.0002034
192		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	PAYA	19.3600	99.8690	PA-23	327	2577	8.5	24.4	0.0002703
193		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	PBKT	16.5733	100.9687	T 120	245	2264	8.5	24.4	0.0002500
194		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	PHRA	18.4990	100.2290	KS-2000M	362	2479	8.5	24.4	0.0002243
195		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	PHRA	18.4990	100.2290	PA-23	362	2479	8.5	24.4	0.0002134
196	48	2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	PKDT	7.8920	98.3350	T 40	215	1331	8.5	24.4	0.0003160
197		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	RNTT	9.3904	98.4778	T 40	417	1491	8.5	24.4	0.0003543
198		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	RNTT	9.3904	98.4778	TSA100S	417	1491	8.5	24.4	0.0003375
199		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	SKLT	7.1735	100.6188	T 120	340	1219	8.5	24.4	0.0005094
200		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	SKLT	7.1735	100.6188	TSA100S	340	1219	8.5	24.4	0.0005221
201		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	SKNT	16.9742	103.9815	T 40	254	2332	8.5	24.4	0.0003120
202		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	SKNT	16.9742	103.9815	TSA100S	254	2332	8.5	24.4	0.0002816
203		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	SRDT	14.3945	99.1212	T 120	387	2032	8.5	24.4	0.0002341
204		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	SRDT	14.3945	99.1212	TSA100S	387	2032	8.5	24.4	0.0002392
205		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	SUKH	17.4820	99.6310	PA-23	321	2370	8.5	24.4	0.0002182
206		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	SURT	8.9580	98.7950	T 40	290	1438	8.5	24.4	0.0004091
						9														

27	Even	D	T .	T .	T	Fa	ult plan	ie	F	ault plane		Sta.	T.	Ŧ	T	$\overline{V}_{S,30}$	D.		Focal	PGA
No.	No.	Date	Time	Lat _{EP}	Lon _{EP}	Strike	Dip	Slip	Strike	Dip	Slip	ID	Lat _{Sta}	Lon _{Sta}	Instrument	(m/s)	Dis.	Mw	Depth	(g)
207		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	SURT	8.9580	98.7950	TSA100S	290	1438	8.5	24.4	0.0003237
208		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	TRTT	7.8362	99.6912	T 40	340	1300	8.5	24.4	0.0003917
209	48	2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	TRTT	7.8362	99.6912	TSA100S	340	1300	8.5	24.4	0.0004017
210		2007/09/12	11:11:15	-3.78	100.99	328	9	114	123	82	86	UMPA	16.2060	98.8600	PA-23	307	2235	8.5	24.4	0.0002935
211		2007/09/12	11:11:15	-3.78	100.99	328	9	<mark>114</mark>	123	82	86	UTHA	15.5590	99.4450	PA-23	249	2158	8.5	24.4	0.0002344
212		2007/09/12	23:49:35	-2.46	100.13	317	19	102	125	71	86	CHBT	12.7526	102.3297	T 120	487	1709	7.9	43.1	0.0001997
213		2007/09/12	23:49:35	-2.46	100.13	317	19	102	125	71	86	CHBT	12.7526	102.3297	TSA100S	487	1709	7.9	43.1	0.0002025
214		2007/09/12	23:49:35	-2.46	100.13	317	19	102	12 <mark>5</mark>	71	86	CMMT	18.8128	98.9476	T 120	Rock	2370	7.9	43.1	0.0001744
215		2007/09/12	23:49:35	-2.46	100.13	317	19	102	125	71	86	KHLT	14.7970	98.5890	TSA100S	387	1927	7.9	43.1	0.0002305
216		2007/09/12	23:49:35	-2.46	100.13	317	19	102	125	71	86	KRDT	14.5905	101.8442	TSA100S	348	1906	7.9	43.1	0.0002115
217		2007/09/12	23:49:35	-2.46	100.13	317	19	102	125	71	86	PBKT	16.5733	100.9687	Т 120	245	2119	7.9	43.1	0.0001050
218		2007/09/12	23:49:35	-2.46	100.13	317	19	102	125	71	86	PKDT	7.8920	98.3350	Т 40	215	1169	7.9	43.1	0.0002480
219	40	2007/09/12	23:49:35	-2.46	100.13	317	19	102	125	71	86	PKDT	7.8920	98.3350	TSA100S	215	1169	7.9	43.1	0.0002179
220	49	2007/09/12	23:49:35	-2.46	100.13	317	19	102	125	71	86	RNTT	9.3904	98.4778	Т 40	417	1331	7.9	43.1	0.0002743
221		2007/09/12	23:49:35	-2.46	100.13	317	19	102	125	71	86	RNTT	9.3904	98.4778	TSA100S	417	1331	7.9	43.1	0.0003097
222		2007/09/12	23:49:35	-2.46	100.13	317	19	102	125	71	86	SKLT	7.1735	100.6188	Т 120	340	1073	7.9	43.1	0.0004687
223		2007/09/12	23:49:35	-2.46	100.13	317	19	102	125	71	86	SKNT	16.9742	103.9815	T 40	254	2203	7.9	43.1	0.0001561
224		2007/09/12	23:49:35	-2.46	100.13	317	19	102	125	71	86	SKNT	16.9742	103.9815	TSA100S	254	2203	7.9	43.1	0.0001667
225		2007/09/12	23:49:35	-2.46	100.13	317	19	102	125	71	86	SRDT	14.3945	99.1212	T 120	387	1878	7.9	43.1	0.0002508
226		2007/09/12	23:49:35	-2.46	100.13	317	19	102	125	71	86	SRDT	14.3945	99.1212	TSA100S	387	1878	7.9	43.1	0.0002472
227		2007/09/12	23:49:35	-2.46	100.13	317	19	102	125	71	86	SURT	8.9580	98.7950	Т 40	290	1279	7.9	43.1	0.0003722
						9				÷		·					-		·	

N	Even	D.	T .	T.	T	Fa	ult plan	ie	F	ault plane		Sta.	T.	T	T	$\overline{V}_{S,30}$	D.		Focal	PGA
No.	No.	Date	Time	Lat _{EP}	Lon _{EP}	Strike	Dip	Slip	Strike	Dip	Slip	ID	Lat _{Sta}	Lon _{Sta}	Instrument	(m/s)	Dis.	MW	Depth	(g)
228		2007/09/12	23:49:35	-2.46	100.13	317	19	102	125	71	86	SURT	8.9580	98.7950	TSA100S	290	1279	7.9	43.1	0.0003650
229	49	2007/09/12	23:49:35	-2.46	100.13	317	19	102	125	71	86	TRTT	7.8362	99.6912	T 40	340	1146	7.9	43.1	0.0004039
230		2007/09/12	23:49:35	-2.46	100.13	317	19	102	125	71	86	TRTT	7.8362	99.6912	TSA100S	340	1146	7.9	43.1	0.0003601
231		2007/09/13	2:30:04	-1.94	99.54	286	35	79	119	56	97	RNTT	9.3904	98.4778	Т 40	417	1266	6.5	34.8	0.0000144
232	50	2007/09/13	2:30:04	-1.94	99.54	286	35	<mark>7</mark> 9	119	56	97	SKLT	7.1735	100.6188	Т 120	340	1021	6.5	34.8	0.0000308
233	50	2007/09/13	2:30:04	-1.94	99.54	286	35	79	119	56	97	SURT	8.9580	98.7950	Т 40	290	1215	6.5	34.8	0.0000179
234		2007/09/13	2:30:04	-1.94	99.54	286	35	79	119	56	97	TRTT	7.8362	99.6912	Т 40	340	1088	6.5	34.8	0.0000208
235	51	2007/09/13	3:35:36	-2.31	99.39	312	10	90	132	80	90	CHBT	12.7526	102.3297	T 120	487	1707	7.0	17.0	0.0000470
236	51	2007/09/13	3:35:36	-2.31	99.39	312	10	90	132	80	90	CHBT	12.7526	102.3297	TSA100S	487	1707	7.0	17.0	0.0000493
237		2007/09/13	3:35:36	-2.31	99.39	312	10	90	132	80	90	CMMT	18.8128	98.9476	Т 120	Rock	2350	7.0	17.0	0.0000284
238		2007/09/13	3:35:36	-2.31	99.39	312	10	90	132	80	90	KHLT	14.7970	98.5890	TSA100S	387	1905	7.0	17.0	0.0000446
239		2007/09/13	3:35:36	-2.31	99.39	312	10	90	132	80	90	KRDT	14.5905	101.8442	TSA100S	348	1899	7.0	17.0	0.0000379
240		2007/09/13	3:35:36	-2.31	99.39	312	10	90	132	80	90	PBKT	16.5733	100.9687	T 120	245	2108	7.0	17.0	0.0000269
241		2007/09/13	3:35:36	-2.31	99.39	312	10	90	132	80	90	PBKT	16.5733	100.9687	TSA100S	245	2108	7.0	17.0	0.0000280
242	51	2007/09/13	3:35:36	-2.31	99.39	312	10	90	132	80	90	PKDT	7.8920	98.3350	T 40	215	1141	7.0	17.0	0.0000614
243	51	2007/09/13	3:35:36	-2.31	99.39	312	10	90	132	80	90	PKDT	7.8920	98.3350	TSA100S	215	1141	7.0	17.0	0.0000605
244		2007/09/13	3:35:36	-2.31	99.39	312	10	90	132	80	90	RNTT	9.3904	98.4778	T 40	417	1305	7.0	17.0	0.0000695
245		2007/09/13	3:35:36	-2.31	99.39	312	10	90	132	80	90	SKLT	7.1735	100.6188	T 120	340	1064	7.0	17.0	0.0001164
246		2007/09/13	3:35:36	-2.31	99.39	312	10	90	132	80	90	SKLT	7.1735	100.6188	T 120	340	1064	7.0	17.0	0.0001180
247		2007/09/13	3:35:36	-2.31	99.39	312	10	90	132	80	90	SKNT	16.9742	103.9815	Т 40	254	2203	7.0	17.0	0.0000420
248		2007/09/13	3:35:36	-2.31	99.39	312	10	90	132	80	90	SKNT	16.9742	103.9815	TSA100S	254	2203	7.0	17.0	0.0000441
			•			9										•				

ŊŢ	Even	D.	T .	T.	T	Fa	ult plan	ie	F	ault plane	;	Sta.	T.	T	T	$\overline{V}_{S,30}$	D.		Focal	PGA
No.	No.	Date	Time	Lat _{EP}	Lon _{EP}	Strike	Dip	Slip	Strike	Dip	Slip	ID	Lat _{Sta}	Lon _{Sta}	Instrument	(m/s)	Dis.	Mw	Depth	(g)
249		2007/09/13	3:35:36	-2.31	99.39	312	10	90	132	80	90	SRDT	14.3945	99.1212	T 120	387	1858	7.0	17.0	0.0000412
250		2007/09/13	3:35:36	-2.31	99.39	312	10	90	132	80	90	SRDT	14.3945	99.1212	TSA100S	387	1858	7.0	17.0	0.0000418
251	51	2007/09/13	3:35:36	-2.31	99.39	312	10	<mark>90</mark>	132	80	90	SURT	8.9580	98.7950	Т 40	290	1255	7.0	17.0	0.0000677
252	51	2007/09/13	3:35:36	-2.31	99.39	312	10	90	132	80	90	SURT	8.9580	98.7950	TSA100S	290	1255	7.0	17.0	0.0000629
253		2007/09/13	3:35:36	-2.31	99.39	312	10	<mark>9</mark> 0	132	80	90	TRTT	7.8362	99.6912	Т 40	340	1129	7.0	17.0	0.0000882
254		2007/09/13	3:35:36	-2.31	99.39	312	10	90	132	80	90	TRTT	7.8362	99.6912	TSA100S	340	1129	7.0	17.0	0.0000901
255		2007/09/20	8:31:24	-2.24	99.85	313	19	9 <mark>9</mark>	123	71	87	CMMT	18.8128	98.9476	Т 120	Rock	2344	6.7	32.3	0.0000056
256	57	2007/09/20	8:31:24	-2.24	99.85	313	19	99	123	71	87	KHLT	14.7970	98.5890	Т 40	387	1900	6.7	32.3	0.0000050
257	52	2007/09/20	8:31:24	-2.24	99.85	313	19	99	123	71	87	RNTT	9.3904	98.4778	Т 40	417	1303	6.7	32.3	0.0000167
258		2007/09/20	8:31:24	-2.24	99.85	313	19	99	123	71	87	SKLT	7.1735	100.6188	Т 120	340	1051	6.7	32.3	0.0000237
259		2007/09/20	8:31:24	-2.24	99.85	313	19	99	123	71	87	SRDT	14.3945	99.1212	Т 120	387	1852	6.7	32.3	0.0000111
260	57	2007/09/20	8:31:24	-2.24	99.85	313	19	99	123	71	87	SRDT	14.3945	99.1212	TSA100S	387	1852	6.7	32.3	0.0000109
261	52	2007/09/20	8:31:24	-2.24	99.85	313	19	99	123	71	87	SURT	8.9580	98.7950	Т 40	290	1251	6.7	32.3	0.0000179
262		2007/09/20	8:31:24	-2.24	99.85	313	19	99	123	71	87	TRTT	7.8362	99.6912	Т 40	340	1121	6.7	32.3	0.0000190
263		2007/10/04	12:40:30	2.47	92.83	110	63	-170	15	81	-27	PKDT	7.8920	98.3350	Т 40	215	858	6.2	12.0	0.0002060
264		2007/10/04	12:40:30	2.47	92.83	110	63	-170	15	81	-27	RNTT	9.3904	98.4778	Т 40	417	991	6.2	12.0	0.0000387
265	53	2007/10/04	12:40:30	2.47	92.83	110	63	-170	15	81	-27	SKLT	7.1735	100.6188	T 120	340	1009	6.2	12.0	0.0000149
266		2007/10/04	12:40:30	2.47	92.83	110	63	-170	15	81	-27	SURT	8.9580	98.7950	T 40	290	978	6.2	12.0	0.0000212
267		2007/10/04	12:40:30	2.47	92.83	110	63	-170	15	81	-27	TRTT	7.8362	99.6912	T 40	340	966	6.2	12.0	0.0000119
268	54	2007/10/24	21:02:58	-4.37	100.78	322	13	108	124	78	86	CMMT	18.8128	98.9476	T 120	Rock	2586	6.8	20.0	0.0000069
269	54	2007/10/24	21:02:58	-4.37	100.78	322	13	108	124	78	86	CMMT	18.8128	98.9476	TSA100S	Rock	2586	6.8	20.0	0.0000071
				÷		9						· · · · · ·					-			

A.	Even	D.	T .	Ŧ.	T	Fa	ult plan	e	F	ault plane		Sta.	T.	T	T	$\overline{V}_{S,30}$	D.		Focal	PGA
No.	No.	Date	Time	Lat _{EP}	Lon _{EP}	Strike	Dip	Slip	Strike	Dip	Slip	ID	Lat _{Sta}	Lon _{Sta}	Instrument	(m/s)	Dis.	MW	Depth	(g)
270		2007/10/24	21:02:58	-4.37	100.78	322	13	108	124	78	86	KHLT	14.7970	98.5890	T 40	387	2146	6.8	20.0	0.0000030
271		2007/10/24	21:02:58	-4.37	100.78	322	13	108	124	78	86	PHIT	17.1890	100.4160	S13	254	2398	6.8	20.0	0.0000056
272		2007/10/24	21:02:58	-4.37	100.78	322	13	108	124	78	86	PKDT	7.8920	98.3350	T 40	215	1391	6.8	20.0	0.0000099
273		2007/10/24	21:02:58	-4.37	100.78	322	13	108	124	78	86	RNTT	9.3904	98.4778	Т 40	417	1552	6.8	20.0	0.0000091
274	54	2007/10/24	21:02:58	-4.37	100.78	322	13	108	124	78	86	SKLT	7.1735	100.6188	Т 120	340	1284	6.8	20.0	0.0000148
275		2007/10/24	21:02:58	-4.37	100.78	322	13	108	124	78	86	SRDT	14.3945	99.1212	T 120	387	2095	6.8	20.0	0.0000088
276		2007/10/24	21:02:58	-4.37	100.78	322	13	108	124	78	86	SURT	8.9580	98.7950	Т 40	290	1499	6.8	20.0	0.0000118
277		2007/10/24	21:02:58	-4.37	100.78	322	13	108	1 <mark>24</mark>	78	86	TRTT	7.8362	99.6912	T 40	340	1363	6.8	20.0	0.0000115
278		2007/10/24	21:02:58	-4.37	100.78	322	13	108	<mark>12</mark> 4	78	86	UBPT	15.2773	105.4695	T 120	294	2246	6.8	20.0	0.0000073
279	55	2007/11/21	3:30:15	2.81	96.19	318	28	111	114	64	79	RNTT	9.3904	98.4778	Т 40	417	774	4.9	41.0	0.0000059
280	56	2007/11/21	19:04:02	7.76	93.79	60	41	-105	260	50	-77	RNTT	9.3904	98.4778	Т 40	417	547	4.9	17.8	0.0000131
281	56	2007/11/21	19:04:02	7.76	93.79	60	41	-105	260	50	-77	SURT	8.9580	98.7950	Т 40	290	567	4.9	17.8	0.0000037
282		2007/11/22	23:02:14	4.46	95.01	313	27	92	130	63	89	KHLT	14.7970	98.5890	Т 40	387	1215	5.8	52.1	0.0000018
283		2007/11/22	23:02:14	4.46	95.01	313	27	92	130	63	89	MHMT	18.1764	97.9310	Т 40	330	1558	5.8	52.1	0.0000059
284		2007/11/22	23:02:14	4.46	95.01	313	27	92	130	63	89	PHIT	17.1890	100.4160	S13	254	1534	5.8	52.1	0.0000050
285		2007/11/22	23:02:14	4.46	95.01	313	27	92	130	63	89	PKDT	7.8920	98.3350	Т 40	215	530	5.8	52.1	0.0008249
286	57	2007/11/22	23:02:14	4.46	95.01	313	27	92	130	63	89	RNTT	9.3904	98.4778	T 40	417	669	5.8	52.1	0.0001713
287		2007/11/22	23:02:14	4.46	95.01	313	27	92	130	63	89	SKLT	7.1735	100.6188	Т 120	340	690	5.8	52.1	0.0000337
288		2007/11/22	23:02:14	4.46	95.01	313	27	92	130	63	89	SRDT	14.3945	99.1212	T 120	387	1193	5.8	52.1	0.0000054
289		2007/11/22	23:02:14	4.46	95.01	313	27	92	130	63	89	SURT	8.9580	98.7950	T 40	290	652	5.8	52.1	0.0000871
290		2007/11/22	23:02:14	4.46	95.01	313	27	92	130	63	89	TRTT	7.8362	99.6912	T 40	340	639	5.8	52.1	0.0000581
						9														

	Even	D .		T .		Fa	ult plan	ie	F	ault plane		Sta.		Ŧ	.	$\overline{V}_{s,30}$	D :		Focal	PGA
No.	No.	Date	Time	Lat _{EP}	Lon _{EP}	Strike	Dip	Slip	Strike	Dip	Slip	ID	Lat _{Sta}	Lon _{Sta}	Instrument	(m/s)	Dis.	MW	Depth	(g)
291		2007/12/01	1:44:35	1.81	97.75	335	27	116	126	66	77	PKDT	7.8920	98.3350	Т 40	215	680	5.9	50.3	0.0002104
292	5 0	2007/12/01	1:44:35	1.81	97.75	335	27	116	126	66	77	RNTT	9.3904	98.4778	T 40	417	847	5.9	50.3	0.0000264
293	58	2007/12/01	1:44:35	1.81	97.75	335	27	1 <mark>16</mark>	126	66	77	SURT	8.9580	98.7950	T 40	290	803	5.9	50.3	0.0000189
294		2007/12/01	1:44:35	1.81	97.75	335	27	116	126	66	77	TRTT	7.8362	99.6912	T 40	340	704	5.9	50.3	0.0000353
295		2007/12/22	12:26:21	1.92	96.58	295	9	65	141	82	94	CMMT	18.8128	98.9476	T 120	Rock	1897	6.1	25.0	0.0000022
296		2007/12/22	12:26:21	1.92	96.58	295	9	65	141	82	94	RNTT	9.3904	98.4778	T 40	417	857	6.1	25.0	0.0000132
297	59	2007/12/22	12:26:21	1.92	96.58	295	9	65	141	82	94	SKLT	7.1735	100.6188	T 120	340	736	6.1	25.0	0.0000232
298		2007/12/22	12:26:21	1.92	96.58	295	9	65	1 <mark>41</mark>	82	94	SURT	8.9580	98.7950	T 40	290	820	6.1	25.0	0.0000165
299		2007/12/22	12:26:21	1.92	96.58	295	9	65	<mark>14</mark> 1	82	94	TRTT	7.8362	99.6912	T 40	340	743	6.1	25.0	0.0000211
300		2007/12/28	5:24:19	5.63	95.95	129	47	167	227	81	43	KHLT	14.7970	98.5890	Т 40	387	1060	5.4	25.7	0.0000052
301	60	2007/12/28	5:24:19	5.63	95.95	129	47	167	227	81	43	RNTT	9.3904	98.4778	T 40	417	503	5.4	25.7	0.0001914
302		2007/12/28	5:24:19	5.63	95.95	129	47	167	227	81	43	SKLT	7.1735	100.6188	T 120	340	544	5.4	25.7	0.0000218
303	60	2007/12/28	5:24:19	5.63	95.95	129	47	167	227	81	43	SRDT	14.3945	99.1212	Т 120	387	1035	5.4	25.7	0.0000173
304	00	2007/12/28	5:24:19	5.63	95.95	129	47	167	227	81	43	TRTT	7.8362	99.6912	T 40	340	481	5.4	25.7	0.0000467
305		2008/01/14	13:38:40	10.39	92.69	347	28	97	160	63	87	PKDT	7.8920	98.3350	T 40	215	679	5.8	43.8	0.0000532
306	(1	2008/01/14	13:38:40	10.39	92.69	347	28	97	160	63	87	RNTT	9.3904	98.4778	T 40	417	644	5.8	43.8	0.0000171
307	61	2008/01/14	13:38:40	10.39	92.69	347	28	97	160	63	87	SURT	8.9580	98.7950	T 40	290	688	5.8	43.8	0.0000131
308		2008/01/14	13:38:40	10.39	92.69	347	28	97	160	63	87	TRTT	7.8362	99.6912	T 40	340	820	5.8	43.8	0.0000051
309		2008/01/22	17:15:03	0.94	97.16	334	23	100	143	68	86	CHBT	12.7526	102.3297	T 120	487	1432	6.1	23.2	0.0000183
310	62	2008/01/22	17:15:03	0.94	97.16	334	23	100	143	68	86	CMMT	18.8128	98.9476	T 120	Rock	1998	6.1	23.2	0.0000057
311		2008/01/22	17:15:03	0.94	97.16	334	23	100	143	68	86	KHLT	14.7970	98.5890	Т 40	387	1549	6.1	23.2	0.0000048
				÷		9			÷	•		· · · · · ·				÷				

N	Even		T .	T .	T	Fa	ult plan	e	F	ault plane		Sta.	T.	T	T A A	$\overline{V}_{S,30}$	D.		Focal	PGA
No.	No.	Date	Time	Lat _{EP}	Lon _{EP}	Strike	Dip	Slip	Strike	Dip	Slip	ID	Lat _{Sta}	Lon _{Sta}	Instrument	(m/s)	Dis.	Mw	Depth	(g)
312		2008/01/22	17:15:03	0.94	97.16	334	23	100	143	68	86	KRDT	14.5905	101.8442	T 40	348	1603	6.1	23.2	0.0000028
313		2008/01/22	17:15:03	0.94	97.16	334	23	100	143	68	86	MHIT	19.3148	97.9632	T 120	379	2046	6.1	23.2	0.0000133
314		2008/01/22	17:15:03	0.94	97.16	334	23	100	143	68	86	MHMT	18.1764	97.9310	T 40	330	1919	6.1	23.2	0.0000095
315		2008/01/22	17:15:03	0.94	97.16	334	23	100	1 <mark>43</mark>	68	86	PBKT	16.5733	100.9687	Т 120	245	1788	6.1	23.2	0.0000063
316		2008/01/22	17:15:03	0.94	97.16	334	23	100	143	68	86	PKDT	7.8920	98.3350	Т 40	215	784	6.1	23.2	0.0000536
317	62	2008/01/22	17:15:03	0.94	97.16	334	23	100	1 <mark>4</mark> 3	68	86	RNTT	9.3904	98.4778	Т 40	417	951	6.1	23.2	0.0000166
318		2008/01/22	17:15:03	0.94	97.16	334	23	100	143	68	86	SKLT	7.1735	100.6188	Т 120	340	792	6.1	23.2	0.0000390
319		2008/01/22	17:15:03	0.94	97.16	334	23	100	1 <mark>43</mark>	68	86	SRDT	14.3945	99.1212	T 120	387	1512	6.1	23.2	0.0000092
320		2008/01/22	17:15:03	0.94	97.16	334	23	100	<mark>14</mark> 3	68	86	SURT	8.9580	98.7950	Т 40	290	910	6.1	23.2	0.0000234
321		2008/01/22	17:15:03	0.94	97.16	334	23	100	143	68	86	TRTT	7.8362	99.6912	Т 40	340	817	6.1	23.2	0.0000297
322		2008/01/22	17:15:03	0.94	97.16	334	23	100	143	68	86	UBPT	15.2773	105.4695	T 120	294	1837	6.1	23.2	0.0000045
323	62	2008/02/20	8:08:45	2.73	95.93	302	7	81	131	83	91	CHBT	12.7526	102.3297	T 120	487	1319	7.4	15.2	0.0001340
324	03	2008/02/20	8:08:45	2.73	95.93	302	7	81	131	83	91	CHBT	12.7526	102.3297	TSA100S	487	1319	7.4	15.2	0.0001358
325		2008/02/20	8:08:45	2.73	95.93	302	7	81	131	83	91	CMMT	18.8128	98.9476	T 120	Rock	1819	7.4	15.2	0.0000360
326		2008/02/20	8:08:45	2.73	95.93	302	7	81	131	83	91	CMMT	18.8128	98.9476	TSA100S	Rock	1819	7.4	15.2	0.0000370
327		2008/02/20	8:08:45	2.73	95.93	302	7	81	131	83	91	KHLT	14.7970	98.5890	TSA100S	387	1374	7.4	15.2	0.0000568
328	62	2008/02/20	8:08:45	2.73	95.93	302	7	81	131	83	91	KRDT	14.5905	101.8442	T 40	348	1470	7.4	15.2	0.0000211
329	03	2008/02/20	8:08:45	2.73	95.93	302	7	81	131	83	91	MHIT	19.3148	97.9632	T 120	379	1858	7.4	15.2	0.0000844
330		2008/02/20	8:08:45	2.73	95.93	302	7	81	131	83	91	MHMT	18.1764	97.9310	T 40	330	1732	7.4	15.2	0.0000443
331		2008/02/20	8:08:45	2.73	95.93	302	7	81	131	83	91	PBKT	16.5733	100.9687	T 120	245	1635	7.4	15.2	0.0000353
332		2008/02/20	8:08:45	2.73	95.93	302	7	81	131	83	91	PBKT	16.5733	100.9687	TSA100S	245	1635	7.4	15.2	0.0000377
				÷		9				÷			-			·				

Ŋ	Even	D.	T .	T .	T	Fa	ult plar	ne	Fa	ault plane	,	Sta.	T. I	Ŧ	T i i	$\overline{V}_{s,30}$	D.'		Focal	PGA
No.	No.	Date	Time	Lat _{EP}	Lon _{EP}	Strike	Dip	Slip	Strike	Dip	Slip	ID	Lat _{Sta}	Lon _{Sta}	Instrument	(m/s)	Dis,	MW	Depth	(g)
333		2008/02/20	8:08:45	2.73	95.93	302	7	81	131	83	91	PKDT	7.8920	98.3350	T 40	215	633	7.4	15.2	0.0006167
334		2008/02/20	8:08:45	2.73	95.93	302	7	81	131	83	91	RNTT	9.3904	98.4778	T 40	417	793	7.4	15.2	0.0001481
335		2008/02/20	8:08:45	2.73	95.93	302	7	81	131	83	91	RNTT	9.3904	98.4778	TSA100S	417	793	7.4	15.2	0.0001444
336		2008/02/20	8:08:45	2.73	95.93	302	7	81	131	83	91	SKLT	7.1735	100.6188	T 120	340	717	7.4	15.2	0.0002819
337		2008/02/20	8:08:45	2.73	95.93	302	7	81	131	83	91	SKLT	7.1735	100.6188	TSA100S	340	717	7.4	15.2	0.0002869
338		2008/02/20	8:08:45	2.73	95.93	302	7	81	131	83	91	SKNT	16.9742	103.9815	T 40	254	1812	7.4	15.2	0.0000444
339		2008/02/20	8:08:45	2.73	95.93	302	7	81	131	83	91	SKNT	16.9742	103.9815	TSA100S	254	1812	7.4	15.2	0.0000391
340	63	2008/02/20	8:08:45	2.73	95.93	302	7	81	131	83	91	SRDT	14.3945	99.1212	T 120	387	1344	7.4	15.2	0.0000590
341		2008/02/20	8:08:45	2.73	95.93	302	7	81	<mark>13</mark> 1	83	91	SRDT	14.3945	99.1212	TSA100S	387	1344	7.4	15.2	0.0000590
342		2008/02/20	8:08:45	2.73	95.93	302	7	81	131	83	91	SURT	8.9580	98.7950	T 40	290	762	7.4	15.2	0.0001240
343		2008/02/20	8:08:45	2.73	95.93	302	7	81	131	83	91	SURT	8.9580	98.7950	TSA100S	290	762	7.4	15.2	0.0001251
344		2008/02/20	8:08:45	2.73	95.93	302	7	81	131	83	91	TRTT	7.8362	99.6912	T 40	340	704	7.4	15.2	0.0002190
345		2008/02/20	8:08:45	2.73	95.93	302	7	81	131	83	91	TRTT	7.8362	99.6912	TSA100S	340	704	7.4	15.2	0.0002007
346		2008/02/20	8:08:45	2.73	95.93	302	7	81	131	83	91	UBPT	15.2773	105.4695	Т 120	294	1744	7.4	15.2	0.0000395
347		2008/02/20	8:08:45	2.73	95.93	302	7	81	131	83	91	UBPT	15.2773	105.4695	TSA100S	294	1744	7.4	15.2	0.0000384
348		2008/02/24	14:46:27	-2.65	99.69	322	8	105	127	82	88	CMMT	18.8128	98.9476	Т 120	Rock	2389	6.4	12.0	0.0000032
349		2008/02/24	14:46:27	-2.65	99.69	322	8	105	127	82	88	KHLT	14.7970	98.5890	T 40	387	1944	6.4	12.0	0.0000032
350	64	2008/02/24	14:46:27	-2.65	99.69	322	8	105	127	82	88	MHIT	19.3148	97.9632	T 120	379	2450	6.4	12.0	0.0000105
351	04	2008/02/24	14:46:27	-2.65	99.69	322	8	105	127	82	88	RNTT	9.3904	98.4778	T 40	417	1346	6.4	12.0	0.0000074
352		2008/02/24	14:46:27	-2.65	99.69	322	8	105	127	82	88	SKLT	7.1735	100.6188	T 120	340	1098	6.4	12.0	0.0000136
353		2008/02/24	14:46:27	-2.65	99.69	322	8	105	127	82	88	SURT	8.9580	98.7950	T 40	290	1295	6.4	12.0	0.0000089
						9														

Ŋ	Even	D.	T .	T.	T	Fa	ult plan	e	F	ault plane	;	Sta.	T. I	Ŧ	T A A	$\overline{V}_{S,30}$	D.	N	Focal	PGA
No.	No.	Date	Time	Lat _{EP}	Lon _{EP}	Strike	Dip	Slip	Strike	Dip	Slip	ID	Lat _{Sta}	Lon _{Sta}	Instrument	(m/s)	Dis.	MW	Depth	(g)
354	64	2008/02/24	14:46:27	-2.65	99.69	322	8	105	127	82	88	TRTT	7.8362	99.6912	T 40	340	1166	6.4	12.0	0.0000111
355		2008/02/25	8:36:42	-2.76	99.87	321	18	106	124	73	85	CHBT	12.7526	102.3297	T 120	487	1747	6.9	22.6	0.0000534
356		2008/02/25	8:36:42	-2.76	99.87	321	18	106	124	73	85	CHBT	12.7526	102.3297	TSA100S	487	1747	6.9	22.6	0.0000529
357		2008/02/25	8:36:42	-2.76	99.87	321	18	106	124	73	85	CMMT	18.8128	98.9476	T 120	Rock	2402	6.9	22.6	0.0000371
358		2008/02/25	8:36:42	-2.76	99.87	321	18	<mark>106</mark>	124	73	85	CMMT	18.8128	98.9476	TSA100S	Rock	2402	6.9	22.6	0.0000369
359		2008/02/25	8:36:42	-2.76	99.87	321	18	106	124	73	85	KHLT	14.7970	98.5890	TSA100S	387	1958	6.9	22.6	0.0000548
360		2008/02/25	8:36:42	-2.76	99.87	321	18	106	124	73	85	MHIT	19.3148	97.9632	Т 120	379	2464	6.9	22.6	0.0001136
361		2008/02/25	8:36:42	-2.76	99.87	321	18	106	1 <mark>24</mark>	73	85	МНМТ	18.1764	97.9310	T 40	330	2338	6.9	22.6	0.0000458
362		2008/02/25	8:36:42	-2.76	99.87	321	18	106	<mark>12</mark> 4	73	85	МНМТ	18.1764	97.9310	T 40	330	2338	6.9	22.6	0.0000392
363		2008/02/25	8:36:42	-2.76	99.87	321	18	106	124	73	85	PBKT	16.5733	100.9687	Т 120	245	2154	6.9	22.6	0.0000262
364	65	2008/02/25	8:36:42	-2.76	99.87	321	18	106	124	73	85	PBKT	16.5733	100.9687	TSA100S	245	2154	6.9	22.6	0.0000282
365	05	2008/02/25	8:36:42	-2.76	99.87	321	18	106	124	73	85	RNTT	9.3904	98.4778	Т 40	417	1360	6.9	22.6	0.0000444
366		2008/02/25	8:36:42	-2.76	99.87	321	18	106	124	73	85	RNTT	9.3904	98.4778	TSA100S	417	1360	6.9	22.6	0.0000419
367		2008/02/25	8:36:42	-2.76	99.87	321	18	106	124	73	85	SKLT	7.1735	100.6188	Т 120	340	1108	6.9	22.6	0.0000949
368		2008/02/25	8:36:42	-2.76	99.87	321	18	106	124	73	85	SKLT	7.1735	100.6188	TSA100S	340	1108	6.9	22.6	0.0000985
369		2008/02/25	8:36:42	-2.76	99.87	321	18	106	124	73	85	SKNT	16.9742	103.9815	TSA100S	254	2241	6.9	22.6	0.0000376
370		2008/02/25	8:36:42	-2.76	99.87	321	18	106	124	73	85	SRDT	14.3945	99.1212	T 120	387	1910	6.9	22.6	0.0000510
371		2008/02/25	8:36:42	-2.76	99.87	321	18	106	124	73	85	SRDT	14.3945	99.1212	TSA100S	387	1910	6.9	22.6	0.0000531
372		2008/02/25	8:36:42	-2.76	99.87	321	18	106	124	73	85	SURT	8.9580	98.7950	T 40	290	1309	6.9	22.6	0.0000611
373		2008/02/25	8:36:42	-2.76	99.87	321	18	106	124	73	85	SURT	8.9580	98.7950	TSA100S	290	1309	6.9	22.6	0.0000604
374		2008/02/25	8:36:42	-2.76	99.87	321	18	106	124	73	85	TRTT	7.8362	99.6912	T 40	340	1179	6.9	22.6	0.0000980
						9														

	Even	D .		T .	Ŧ	Fa	ult plan	ie	F	ault plane	;	Sta.		×	*	$\overline{V}_{S,30}$	D .		Focal	PGA
No.	No.	Date	Time	Lat _{EP}	Lon _{EP}	Strike	Dip	Slip	Strike	Dip	Slip	ID	Lat _{Sta}	Lon _{Sta}	Instrument	(m/s)	Dis.	MW	Depth	(g)
375		2008/02/25	8:36:42	-2.76	99.87	321	18	106	124	73	85	TRTT	7.8362	99.6912	TSA100S	340	1179	6.9	22.6	0.0000872
376	65	2008/02/25	8:36:42	-2.76	99.87	321	18	106	124	73	85	UBPT	15.2773	105.4695	T 120	294	2099	6.9	22.6	0.0000552
377		2008/02/25	8:36:42	-2.76	99.87	321	18	106	124	73	85	UBPT	15.2773	105.4695	TSA100S	294	2099	6.9	22.6	0.0000555
378		2008/02/25	18:06:09	-2.67	99.66	314	15	98	126	75	88	KHLT	14.7970	98.5890	Т 40	387	1946	6.4	23.0	0.0000027
379		2008/02/25	18:06:09	-2.67	99.66	314	15	<mark>98</mark>	126	75	88	MHIT	19.3148	97.9632	Т 120	379	2452	6.4	23.0	0.0000115
380		2008/02/25	18:06:09	-2.67	99.66	314	15	98	126	75	88	PBKT	16.5733	100.9687	Т 120	245	2145	6.4	23.0	0.0000035
381		2008/02/25	18:06:09	-2.67	99.66	314	15	9 <mark>8</mark>	126	75	88	PKDT	7.8920	98.3350	Т 40	215	1184	6.4	23.0	0.0000104
382	66	2008/02/25	18:06:09	-2.67	99.66	314	15	98	126	75	88	RNTT	9.3904	98.4778	Т 40	417	1348	6.4	23.0	0.0000073
383		2008/02/25	18:06:09	-2.67	99.66	314	15	98	126	75	88	SKLT	7.1735	100.6188	T 120	340	1100	6.4	23.0	0.0000123
384		2008/02/25	18:06:09	-2.67	99.66	314	15	98	126	75	88	SURT	8.9580	98.7950	Т 40	290	1297	6.4	23.0	0.0000085
385		2008/02/25	18:06:09	-2.67	99.66	314	15	98	126	75	88	TRTT	7.8362	99.6912	Т 40	340	1169	6.4	23.0	0.0000115
386		2008/02/25	18:06:09	-2.67	99.66	314	15	98	126	75	88	UBPT	15.2773	105.4695	Т 120	294	2096	6.4	23.0	0.0000066
387		2008/02/25	21:02:23	-2.53	99.65	311	16	94	127	74	89	CHBT	12.7526	102.3297	Т 120	487	1725	6.5	23.0	0.0000149
388		2008/02/25	21:02:23	-2.53	99.65	311	16	94	127	74	89	CHBT	12.7526	102.3297	TSA100S	487	1725	6.5	23.0	0.0000152
389		2008/02/25	21:02:23	-2.53	99.65	311	16	94	127	74	89	CMMT	18.8128	98.9476	Т 120	Rock	2375	6.5	23.0	0.0000084
390		2008/02/25	21:02:23	-2.53	99.65	311	16	94	127	74	89	CMMT	18.8128	98.9476	TSA100S	Rock	2375	6.5	23.0	0.0000088
391	67	2008/02/25	21:02:23	-2.53	99.65	311	16	94	127	74	89	KHLT	14.7970	98.5890	Т 40	387	1931	6.5	23.0	0.0000051
392		2008/02/25	21:02:23	-2.53	99.65	311	16	94	127	74	89	MHIT	19.3148	97.9632	T 120	379	2437	6.5	23.0	0.0000236
393		2008/02/25	21:02:23	-2.53	99.65	311	16	94	127	74	89	MHMT	18.1764	97.9310	T 40	330	2311	6.5	23.0	0.0000086
394		2008/02/25	21:02:23	-2.53	99.65	311	16	94	127	74	89	PKDT	7.8920	98.3350	T 40	215	1168	6.5	23.0	0.0000180
395		2008/02/25	21:02:23	-2.53	99.65	311	16	94	127	74	89	RNTT	9.3904	98.4778	T 40	417	1332	6.5	23.0	0.0000173
						9				•						÷				

	Even	D .		T .	Ŧ	Fa	ult plar	e	F	ault plane		Sta.		Ŧ	.	$\overline{V}_{s,30}$	D		Focal	PGA
No.	No.	Date	Time	Lat _{EP}	Lon _{EP}	Strike	Dip	Slip	Strike	Dip	Slip	ID	Lat _{Sta}	Lon _{Sta}	Instrument	(m/s)	Dis.	Mw	Depth	(g)
396		2008/02/25	21:02:23	-2.53	99.65	311	16	94	127	74	89	SKLT	7.1735	100.6188	T 120	340	1085	6.5	23.0	0.0000313
397		2008/02/25	21:02:23	-2.53	99.65	311	16	94	127	74	89	SKLT	7.1735	100.6188	TSA100S	340	1085	6.5	23.0	0.0000321
398		2008/02/25	21:02:23	-2.53	99.65	311	16	<mark>94</mark>	127	74	89	SRDT	14.3945	99.1212	T 120	387	1883	6.5	23.0	0.0000127
399	67	2008/02/25	21:02:23	-2.53	99.65	311	16	94	127	74	89	SURT	8.9580	98.7950	T 40	290	1281	6.5	23.0	0.0000171
400	07	2008/02/25	21:02:23	-2.53	99.65	311	16	<mark>94</mark>	127	74	89	SURT	8.9580	98.7950	TSA100S	290	1281	6.5	23.0	0.0000167
401		2008/02/25	21:02:23	-2.53	99.65	311	16	94	127	74	89	TRTT	7.8362	99.6912	Т 40	340	1153	6.5	23.0	0.0000213
402		2008/02/25	21:02:23	-2.53	99.65	311	16	9 <mark>4</mark>	127	74	89	TRTT	7.8362	99.6912	TSA100S	340	1153	6.5	23.0	0.0000231
403		2008/02/25	21:02:23	-2.53	99.65	311	16	94	127	74	89	UBPT	15.2773	105.4695	T 120	294	2082	6.5	23.0	0.0000166
404		2008/03/15	14:43:30	2.49	94.47	303	33	73	<mark>14</mark> 3	59	101	RNTT	9.3904	98.4778	T 40	417	886	6.0	12.0	0.0000059
405		2008/03/15	14:43:30	2.49	94.47	303	33	73	143	59	101	SKLT	7.1735	100.6188	T 120	340	858	6.0	12.0	0.0000100
406	68	2008/03/15	14:43:30	2.49	94.47	303	33	73	143	59	101	SURT	8.9580	98.7950	T 40	290	864	6.0	12.0	0.0000066
407		2008/03/15	14:43:30	2.49	94.47	303	33	73	143	59	101	TRTT	7.8362	99.6912	T 40	340	829	6.0	12.0	0.0000061
408		2008/03/15	14:43:30	2.49	94.47	303	33	73	143	59	101	UBPT	15.2773	105.4695	Т 120	294	1865	6.0	12.0	0.0000028
409		2008/03/29	17:30:57	2.74	95.19	297	8	72	135	83	92	CHBT	12.7526	102.3297	Т 120	487	1363	6.3	12.0	0.0000195
410		2008/03/29	17:30:57	2.74	95.19	297	8	72	135	83	92	CHBT	12.7526	102.3297	TSA100S	487	1363	6.3	12.0	0.0000197
411		2008/03/29	17:30:57	2.74	95.19	297	8	72	135	83	92	CMMT	18.8128	98.9476	T 120	Rock	1834	6.3	12.0	0.0000062
412	60	2008/03/29	17:30:57	2.74	95.19	297	8	72	135	83	92	CMMT	18.8128	98.9476	TSA100S	Rock	1834	6.3	12.0	0.0000064
413	69	2008/03/29	17:30:57	2.74	95.19	297	8	72	135	83	92	KHLT	14.7970	98.5890	T 40	387	1392	6.3	12.0	0.0000052
414		2008/03/29	17:30:57	2.74	95.19	297	8	72	135	83	92	MHIT	19.3148	97.9632	T 120	379	1868	6.3	12.0	0.0000093
415		2008/03/29	17:30:57	2.74	95.19	297	8	72	135	83	92	MHMT	18.1764	97.9310	T 40	330	1743	6.3	12.0	0.0000071
416		2008/03/29	17:30:57	2.74	95.19	297	8	72	135	83	92	PAYA	19.3600	99.8690	S13	327	1917	6.3	12.0	0.0000009
						9				÷						÷	·			

Ŋ	Even	D.	T .	T.	T	Fa	ult plar	ne	F	ault plane	,	Sta.	T	T	T i i	$\overline{V}_{S,30}$	D.	Ň	Focal	PGA
No.	No.	Date	Time	Lat _{EP}	Lon _{EP}	Strike	Dip	Slip	Strike	Dip	Slip	ID	Lat _{Sta}	Lon _{Sta}	Instrument	(m/s)	Dis.	MW	Depth	(g)
417		2008/03/29	17:30:57	2.74	95.19	297	8	72	135	83	92	PBKT	16.5733	100.9687	T 120	245	1663	6.3	12.0	0.0000054
418		2008/03/29	17:30:57	2.74	95.19	297	8	72	135	83	92	PHIT	17.1890	100.4160	S13	254	1706	6.3	12.0	0.0000060
419		2008/03/29	17:30:57	2.74	95.19	297	8	<mark>72</mark>	135	83	92	RNTT	9.3904	98.4778	T 40	417	824	6.3	12.0	0.0000273
420	60	2008/03/29	17:30:57	2.74	95.19	297	8	72	135	83	92	SKLT	7.1735	100.6188	T 120	340	778	6.3	12.0	0.0000160
421	09	2008/03/29	17:30:57	2.74	95.19	297	8	72	135	83	92	SRDT	14.3945	99.1212	T 120	387	1366	6.3	12.0	0.0000089
422		2008/03/29	17:30:57	2.74	95.19	297	8	72	1 <mark>3</mark> 5	83	92	SURT	8.9580	98.7950	T 40	290	798	6.3	12.0	0.0000145
423		2008/03/29	17:30:57	2.74	95.19	297	8	72	135	83	92	TRTT	7.8362	99.6912	T 40	340	755	6.3	12.0	0.0000187
424		2008/03/29	17:30:57	2.74	95.19	297	8	72	1 <mark>35</mark>	83	92	UBPT	15.2773	105.4695	T 120	294	1793	6.3	12.0	0.0000068
425		2008/05/12	6:28:41	31.49	104.11	229	33	141	<mark>35</mark> 2	70	63	CHBT	12.7526	102.3297	T 120	487	2092	7.9	12.0	0.0002405
426		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	CHBT	12.7526	102.3297	TSA100S	487	2092	7.9	12.0	0.0002478
427		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	KHLT	14.7970	98.5890	TSA100S	387	1940	7.9	12.0	0.0001371
428		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	KRDT	14.5905	101.8442	TSA100S	348	1894	7.9	12.0	0.0003162
429		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	LAMP	18.5230	99.6320	PA-23	321	1511	7.9	12.0	0.0002138
430		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	MHIT	19.3148	97.9632	Т 120	379	1488	7.9	12.0	0.0004394
431	70	2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	MHMT	18.1764	97.9310	T 40	330	1606	7.9	12.0	0.0002214
432		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	MHMT	18.1764	97.9310	TSA100S	330	1606	7.9	12.0	0.0002316
433		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	PANO	17.1480	104.6120	KS-2000M	296	1596	7.9	12.0	0.0006901
434		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	PANO	17.1480	104.6120	PA-23	296	1596	7.9	12.0	0.0006531
435		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	PAYA	19.3600	99.8690	PA-23	327	1414	7.9	12.0	0.0002525
436		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	PBKT	16.5733	100.9687	T 120	245	1689	7.9	12.0	0.0002455
437		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	PKDT	7.8920	98.3350	T 40	215	2692	7.9	12.0	0.0001493
						9														

.	Even	D .		. .	-	Fa	ult plan	ie	F	ault plane		Sta.		Ŧ	.	$\overline{V}_{S,30}$	D .		Focal	PGA
No.	No.	Date	Time	Lat _{EP}	Lon _{EP}	Strike	Dip	Slip	Strike	Dip	Slip	ID	Lat _{Sta}	Lon _{Sta}	Instrument	(m/s)	Dis.	MW	Depth	(g)
438		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	PRAC	12.4730	99.7930	KS-2000M	527	2161	7.9	12.0	0.0001719
439		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	PRAC	12.4730	99.7930	PA-23	527	2161	7.9	12.0	0.0001650
440		2008/05/12	6:28:41	31.49	104.11	229	33	1 <mark>4</mark> 1	352	70	63	RNTT	9.3904	98.4778	T 40	417	2526	7.9	12.0	0.0001385
441		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	RNTT	9.3904	98.4778	TSA100S	417	2526	7.9	12.0	0.0001259
442		2008/05/12	6:28:41	31.49	104.11	229	33	1 <mark>4</mark> 1	352	70	63	SKLT	7.1735	100.6188	T 120	340	2729	7.9	12.0	0.0000986
443		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	SKLT	7.1735	100.6188	TSA100S	340	2729	7.9	12.0	0.0000988
444		2008/05/12	6:28:41	31.49	104.11	229	33	14 <mark>1</mark>	352	70	63	SKNT	16.9742	103.9815	T 40	254	1615	7.9	12.0	0.0004771
445		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	SKNT	16.9742	103.9815	TSA100S	254	1615	7.9	12.0	0.0004073
446		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	SRDT	14.3945	99.1212	T 120	387	1968	7.9	12.0	0.0001403
447	70	2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	SRDT	14.3945	99.1212	TSA100S	387	1968	7.9	12.0	0.0001425
448		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	SURA	9.1660	99.6290	KS-2000M	254	2526	7.9	12.0	0.0001507
449		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	SURA	9.1660	99.6290	PA-23	254	2526	7.9	12.0	0.0001463
450		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	SURT	8.9580	98.7950	T 40	290	2566	7.9	12.0	0.0001301
451		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	SURT	8.9580	98.7950	TSA100S	290	2566	7.9	12.0	0.0001177
452		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	TMDA	13.6680	100.6070	PA-23	139	2014	7.9	12.0	0.0005935
453		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	TMDB	13.6680	100.6070	KS-2000M	139	2014	7.9	12.0	0.0006410
454		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	TRTT	7.8362	99.6912	T 40	340	2671	7.9	12.0	0.0001218
455		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	TRTT	7.8362	99.6912	TSA100S	340	2671	7.9	12.0	0.0001152
456		2008/05/12	6:28:41	31.49	104.11	229	33	141	352	70	63	UBPT	15.2773	105.4695	TSA100S	294	1809	7.9	12.0	0.0003097
457	71	2008/05/13	10:29:22	4.34	95.07	296	28	76	132	63	97	RNTT	9.3904	98.4778	T 40	417	676	5.4	50.0	0.0000864
458	/1	2008/05/13	10:29:22	4.34	95.07	296	28	76	132	63	97	SKLT	7.1735	100.6188	Т 120	340	690	5.4	50.0	0.0000120
	·•					9								-						

ŊŢ	Even	Di		T .	T	Fa	ult plar	ne	F	ault plane		Sta.	T	, r	T	$\overline{V}_{S,30}$	D.		Focal	PGA
No.	No.	Date	Time	Lat _{EP}	Lon _{EP}	Strike	Dip	Slip	Strike	Dip	Slip	ID	Lat _{Sta}	Lon _{Sta}	Instrument	(m/s)	Dis.	MW	Depth	(g)
459	71	2008/05/13	10:29:22	4.34	95.07	296	28	76	132	63	97	SURT	8.9580	98.7950	Т 40	290	658	5.4	50.0	0.0000336
460	/1	2008/05/13	10:29:22	4.34	95.07	296	28	76	132	63	97	TRTT	7.8362	99.6912	Т 40	340	642	5.4	50.0	0.0000174
461		2008/05/19	14:26:48	1.66	99.11	61	83	7	330	83	173	CMMT	18.8128	98.9476	Т 120	Rock	1908	6.0	16.5	0.0000039
462		2008/05/19	14:26:48	1.66	99.11	61	83	7	330	83	173	MHIT	19.3148	97.9632	Т 120	379	1968	6.0	16.5	0.0000153
463		2008/05/19	14:26:48	1.66	99.11	61	83	7	330	83	173	RNTT	9.3904	98.4778	Т 40	417	863	6.0	16.5	0.0000148
464	72	2008/05/19	14:26:48	1.66	99.11	61	83	7	<mark>33</mark> 0	83	173	SKLT	7.1735	100.6188	Т 120	340	636	6.0	16.5	0.0000401
465	12	2008/05/19	14:26:48	1.66	99.11	61	83	7	330	83	173	SRIT	8.5900	99.6020	KS-2000M	270	773	6.0	16.5	0.0000498
466		2008/05/19	14:26:48	1.66	99.11	61	83	7	330	83	173	SURA	9.1660	99.6290	KS-2000M	254	837	6.0	16.5	0.0000294
467		2008/05/19	14:26:48	1.66	99.11	61	83	7	330	83	173	SURT	8.9580	98.7950	Т 40	290	813	6.0	16.5	0.0000202
468		2008/05/19	14:26:48	1.66	99.11	61	83	7	330	83	173	TRTT	7.8362	99.6912	т 40	340	690	6.0	16.5	0.0000259

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

ภาคผนวก ข ค่าสัมประสิทธิ์ของแบบจำลองการลดทอน

D00	, 2000)		
Period (sec)	b _{lin}	b_1	b_2
PGA	-0.36	-0.64	-0.14
0.01	-0.36	-0.64	-0.14
0.02	-0.34	-0.63	-0.12
0.03	-0.33	-0.62	-0.11
0.05	-0.29	-0.64	-0.11
0.075	-0.23	-0.64	-0.11
0.10	-0.25	-0.6	-0.13
0.15	-0.28	-0.53	-0.18
0.20	-0.31	-0.52	-0.19
0.25	-0.39	-0.52	-0.16
0.30	-0.44	-0.52	-0.14
0.40	-0.5	-0.51	-0.1
0.50	-0.6	-0.5	-0.06
0.75	-0.69	-0.47	0
1.00	-0.7	-0.44	0
1.5	-0.72	-0.4	0
2.0	-0.73	-0.38	0
3.0	-0.74	-0.34	
4.0	-0.75	-0.31	0
5.0	-0.75	-0.291	0
7.5	-0.692	-0.247	0
10	-0.65	-0.215	0

ตารางที่ ข.1 ค่าสัมประสิทธิ์การขยายของที่ตั้งที่ไม่เป็นอิสระกับคาบของสเปคตรัม (Atkinson and Boore, 2008)

Boore, 2008)	
Coefficient	Value
a_1	0.03 g
pga_low	0.06 g
a_2	0.09 g
V_1	180 m/s
V ₂	300 m/s
V _{ref}	760 m/s

ตารางที่ ข.2 ค่าสัมประสิทธิ์การขยายของที่ตั้งที่เป็นอิสระกับคาบของสเปกตรัม (Atkinson and

ตารางที่ ข.3 ค่าสัมประสิทธิ์มาตราส่วนของระยะทางที่ไม่เป็นอิสระกับคาบของสเปคตรัม

		1 and 1		
Period (sec)	<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₃	h
Pga4nl	-0. <mark>5</mark> 5000	0.00000	-0.01151	3.00000
PGA	-0.6 <mark>60</mark> 50	0.11970	-0.01151	1.35000
0.01	-0.66220	0.12000	-0.01151	1.35000
0.02	-0.66600	0.12280	-0.01151	1.35000
0.03	-0.69010	0.12830	-0.01151	1.35000
0.05	-0.71700	0.13170	-0.01151	1.35000
0.08	-0.72050	0.12370	-0.01151	1.55000
0.10	-0.70810	0.11170	-0.01151	1.68000
0.15	-0.69610	0.09884	-0.01113	1.86000
0.20	-0.58300	0.04273	-0.00952	1.98000
0.25	-0.57260	0.02977	-0.00837	2.07000
0.30	-0.55430	0.01955	-0.00750	2.14000
0.40	-0.64430	0.04394	-0.00626	2.24000
0.50	-0.69140	0.06080	-0.00540	2.32000
0.75	-0.74080	0.07518	-0.00409	2.46000
1.00	-0.81830	0.10270	-0.00334	2.54000
1.50	-0.83030	0.09793	-0.00255	2.66000

(Atkinson and Boore, 2008)

(Atkinson and Boore, 2008)						
Period (sec)	c_1	c_2	<i>c</i> ₃	h		
2.00	-0.82850	0.09432	-0.00217	2.73000		
3.00	-0.78440	0.07282	-0.00191	2.83000		
4.00	-0.68540	0.03758	-0.00191	2.89000		
5.00	-0.50960	-0.02391	-0.00191	2.93000		
7.50	-0.37240	-0.06568	-0.00191	3.00000		
10.00	-0.09824	-0.13800	-0.00191	3.04000		

ตารางที่ **ข.3 (ต่อ)** ค่าสัมประสิทธิ์มาตราส่วนของระยะทางที่ไม่เป็นอิสระกับคาบของสเปคตรัม

ตารางที่ ข.4 ค่าสัมประสิทธิ์มาตราส่วนของระยะทางที่เป็นอิสระกับคาบของสเปคตรัม (Atkinson

and Boore, 2008)

Coefficient	Value				
M _{ref}	4.5				
R _{ref}	1.0				
The first a possible of the second					

ตารางที่ ข.5 ค่าสัมประสิทธิ์มาตราส่วนของขนาด (Atkinson and Boore, 2008)

Period (sec)	e_1	<i>e</i> ₂	<i>e</i> ₃	e_4	<i>e</i> ₅	e ₆	<i>e</i> ₇	${\pmb M}_h$
Pga4nl	-0.0328	-0.0328	-0.0328	-0.0328	0.2980	-0.2034	0.0000	7.0000
PGA	-0.5380	-0.5035	-0.7547	-0.5097	0.2881	-0.1016	0.0000	6.7500
0.01	-0.5288	-0.4943	-0.7455	-0.4997	0.2890	-0.1002	0.0000	6.7500
0.02	-0.5219	-0.4851	-0.7391	-0.4890	0.2514	-0.1101	0.0000	6.7500
0.03	-0.4529	-0.4183	-0.6672	-0.4223	0.1798	-0.1286	0.0000	6.7500
0.05 9	-0.2848	-0.2502	-0.4846	-0.2609	0.0637	-0.1575	0.0000	6.7500
0.08	0.0077	0.0491	-0.2058	0.0271	0.0117	-0.1705	0.0000	6.7500
0.10	0.2011	0.2310	0.0306	0.2219	0.0470	-0.1595	0.0000	6.7500
0.15	0.4613	0.4866	0.3019	0.4933	0.1799	-0.1454	0.0000	6.7500
0.20	0.5718	0.5925	0.4086	0.6147	0.5273	-0.1296	0.0010	6.7500
0.25	0.5188	0.5350	0.3388	0.5775	0.6088	-0.1384	0.0861	6.7500

Period (sec)	e_1	<i>e</i> ₂	<i>e</i> ₃	e_4	<i>e</i> ₅	e ₆	e_7	M_{h}
0.30	0.4383	0.4452	0.2536	0.5199	0.6447	-0.1569	0.1060	6.7500
0.40	0.3922	0.4060	0.2140	0.4608	0.7861	-0.0784	0.0226	6.7500
0.50	0.1896	0.1988	0.0097	0.2634	0.7684	-0.0905	0.0000	6.7500
0.75	-0.2134	-0.1950	-0.4918	-0.1081	0.7518	-0.1405	0.1030	6.7500
1.00	-0.4690	-0.4344	-0.7847	-0.3933	0.6788	-0.1826	0.0539	6.7500
1.50	-0.8627	-0.7959	-1.2090	-0.8809	0.7069	-0.2595	0.1908	6.7500
2.00	-1.2265	-1.1551	-1.5770	-1.2767	0.7799	-0.2966	0.2989	6.7500
3.00	-1.8298	-1.7469	-2.2258	-1.9181	0.7797	-0.4538	0.6747	6.7500
4.00	-2.2466	-2.1591	-2.5823	-2.3817	1.2496	-0.3587	0.7951	6.7500
5.00	-1.2841	- <mark>1.</mark> 2127	-1.5090	-1.4109	0.1427	-0.3901	0.0000	8.5000
7.50	-1.4315	-1. <mark>3163</mark>	-1.8102	-1.5922	0.5241	-0.3758	0.0000	8.5000
10.00	-2.1545	-2.16 <mark>1</mark> 4	0.0000	-2.1464	0.4039	-0.4849	0.0000	8.5000

ตารางที่ ข.5 (ต่อ) ค่าสัมประสิทธิ์มาตราส่วนของขนาด (Atkinson and Boore, 2008)

ตารางที่ ข.6 ความไม่แน่นอนของแบบจำลอง (Atkinson and Boore, 2008)

Period (sec)	σ	$ au_{\scriptscriptstyle U}$	$\sigma_{\scriptscriptstyle TU}$	$ au_{TM}$	$\sigma_{_{TM}}$
PGA	0.502	0.265	0.566	0.260	0.564
0.01	0.502	0.267	0.569	0.262	0.566
0.02	0.502	0.267	0.569	0.262	0.566
0.03	0.507	0.276	0.578	0.274	0.576
0.05	0.516	0.286	0.589	0.286	0.589
0.08	0.513	0.322	0.606	0.320	0.606
0.10	0.520	0.313	0.608	0.318	0.608
0.15	0.518	0.288	0.592	0.290	0.594
0.20	0.523	0.283	0.596	0.288	0.596
0.25	0.527	0.267	0.592	0.267	0.592
0.30	0.546	0.272	0.608	0.269	0.608
0.40	0.541	0.267	0.603	0.267	0.603
Period (sec)	σ	$ au_{_U}$	$\sigma_{\scriptscriptstyle TU}$	$ au_{TM}$	$\sigma_{\scriptscriptstyle TM}$
--------------	-------	------------	----------------------------------	------------	----------------------------------
0.50	0.555	0.265	0.615	0.265	0.615
0.75	0.571	0.311	0.649	0.299	0.645
1.00	0.573	0.318	0.654	0.302	0.647
1.50	0.566	0.382	0.684	0.373	0.679
2.00	0.580	0.398	0.702	0.389	0.700
3.00	0.566	0.410	0.700	0.401	0.695
4.00	0.583	0.394	0.702	0.385	0.698
5.00	0.601	0.414	0.730	0.437	0.744
7.50	0.626	0.465	0.781	0.477	0.787
10.00	0.645	0.355	0.735	0.477	0.801

ตารางที่ ข.6 (ต่อ) ความไม่แน่นอนของแบบจำลอง (Atkinson and Boore, 2008)

ตารางที่ ข.7 ค่าสัมประสิทธิ์ของแบบจำลองการลดทอน (Idriss, 1993)

			1	$M \leq 6.$.0		
Period (sec)	$lpha_{_0}$	α_1	α_2	eta_0	eta_1	β_2	Standard Error Term ε
PGA	-0.150	2.261	-0.083	0	1.602	-0.142	1.39-0.14M
0.030	-0.150	2.261	-0.083	0	1.602	-0.142	1.39-0.14M
0.050	-0.278	2.365	-0.092	0.066	1.602	-0.142	1.39-0.14M
0.075	-0.308	2.334	-0.081	0.070	1.602	-0.142	1.39-0.14M
0.100	-0.318	2.319	-0.075	0.072	1.602	-0.142	1.41-0.14M
0.110	-0.328	2.294	-0.070	-0.073	1.602	-0.142	1.42-0.14M
0.130	-0.338	2.255	-0.062	0.075	1.602	-0.142	1.42-0.14M
0.150	-0.348	2.219	-0.055	0.076	1.602	-0.142	1.42-0.14M
0.200	-0.358	2.146	-0.042	0.078	1.602	-0.142	1.42-0.14M
0.250	-0.429	2.073	-0.030	0.080	1.602	-0.142	1.44-0.14M
0.300	-0.486	2.010	-0.020	0.082	1.602	-0.142	1.44-0.14M
0.350	-0.535	1.977	-0.016	0.087	1.602	-0.142	1.44-0.14M
0.400	-0.577	1.921	-0.009	0.092	1.602	-0.142	1.44-0.14M

				$M \leq 6.$.0		
Period (sec)	$lpha_{_0}$	$lpha_{_1}$	$\alpha_{_2}$	$oldsymbol{eta}_0$	eta_1	eta_2	Standard Error Term ε
0.500	-0.648	1.818	0.003	0.099	1.602	-0.142	1.46-0.14M
0.600	-0.705	1.704	0.017	0.105	1.602	-0.142	1.46-0.14M
0.700	-0.754	1.644	0.022	0.111	1.602	-0.142	1.48-0.14M
0.800	-0.796	1.5 <mark>93</mark>	0.025	0.115	1.602	-0.142	1.48-0.14M
0.900	-0.834	1.482	0.039	0.119	1.602	-0.142	1.48-0.14M
1.000	-0.867	1.432	0.043	0.123	1.602	-0.142	1.48-0.14M
1.500	-0.970	1.072	0.084	0.136	1.602	-0.142	1.48-0.14M
2.000	-1.046	0.762	0.121	0.146	1.602	-0.142	1.52-0.14M
3.000	-1.143	0.194	0.191	0.160	1.602	-0.142	1.52-0.14M
4.000	-1.177	-0. <mark>46</mark> 6	0.280	0.169	1.602	-0.142	1.52-0.14M
5.000	-1.214	-1.361	0.410	0.177	1.602	-0.142	1.52-0.14M
			1 Section	1.219/19/1			

ตารางที่ ข.7 (ต่อ) ค่าสัมประสิทธิ์ของแบบจำลองการลดทอน (Idriss, 1993)

ตารางที่ ข.8 ค่าสัมประสิทธิ์ของแบบจำลองการลดทอน (Idriss, 1993)

M > 6.0								
		4					Standard	Standard
Period	~			0	0		Error	Error
(sec)	α_{0}	α_1	α_2	ρ_0	β_1	β_2	Term <i>E</i>	Term <i>E</i>
	สถ	111	122	9/181	าร	การ	<i>M</i> < 7.25	$M \ge 7.25$
PGA	-0.050	3.477	-0.284	0	2.475	-0.286	1.39-0.14M	0.38
0.030	-0.050	3.477	-0.284	0	2.475	-0.286	1.39-0.14M	0.38
0.050	-0.278	3.426	-0.269	0.066	2.475	-0.286	1.39-0.14M	0.38
0.075	-0.308	3.359	-0.252	0.070	2.475	-0.286	1.39-0.14M	0.38
0.100	-0.318	3.327	-0.243	0.072	2.475	-0.286	1.41-0.14M	0.41
0.110	-0.328	3.289	-0.236	0.073	2.475	-0.286	1.42-0.14M	0.41
0.130	-0.338	3.233	-0.225	0.075	2.475	-0.286	1.42-0.14M	0.41
0.150	-0.348	3.185	-0.216	0.076	2.475	-0.286	1.42-0.14M	0.41

	M > 6.0								
							Standard	Standard	
Period	a	a	~	ß	ß	ß	Error Term	Error Term	
(sec)	α_0	$\boldsymbol{\mu}_1$	a_2	\mathcal{P}_0	$ ho_1$	ρ_2	Е	Е	
							M < 7.25	$M \ge 7.25$	
0.200	-0.358	3.100	-0.201	0.078	2.475	-0.286	1.42-0.14M	0.41	
0.250	-0.429	3.034	-0.190	0.080	2.475	-0.286	1.44-0.14M	0.43	
0.300	-0.486	2.982	-0.182	0.082	2.475	-0.286	1.44-0.14M	0.43	
0.350	-0.535	2.943	-0.177	0.087	2.475	-0.286	1.44-0.14M	0.43	
0.400	-0.577	2.906	-0.173	0.092	2.475	-0.286	1.44-0.14M	0.43	
0.500	-0.648	2.850	-0.169	0.099	2.475	-0.286	1.46-0.14M	0.45	
0.600	-0.705	2.803	-0.166	0.105	2.475	-0.286	1.46-0.14M	0.45	
0.700	-0.754	2.7 <mark>65</mark>	-0.165	0.111	2.475	-0.286	1.48-0.14M	0.47	
0.800	-0.796	2.728	-0.164	0.115	2.475	-0.286	1.48-0.14M	0.47	
0.900	-0.834	2.694	-0.163	0.119	2.475	-0.286	1.48-0.14M	0.47	
1.000	-0.867	2.662	-0.162	0.123	2.475	-0.286	1.48-0.14M	0.47	
1.500	-0.970	2.536	-0.160	0.136	2.475	-0.286	1.48-0.14M	0.47	
2.000	-1.046	2.447	-0.160	0.146	2.475	-0.286	1.52-0.14M	0.51	
3.000	-1.143	2.295	-0.159	0.160	2.475	-0.286	1.52-0.14M	0.51	
4.000	-1.177	2.169	-0.159	0.169	2.475	-0.286	1.52-0.14M	0.51	
5.000	-1.214	2.042	-0.157	0.177	2.475	-0.286	1.52-0.14M	0.51	

ตารางที่ ข.8 (ต่อ) ค่าสัมประสิทธิ์ของแบบจำลองการลดทอน (Idriss, 1993)

ตารางที่ **ข.9** ค่าสัมประสิทธิ์สำหรับสเปคตรัมเฉลี่ย (Sadigh และคณะ, 1997)

Period (sec)	<i>c</i> ₁	<i>c</i> ₂	<i>C</i> ₃	<i>C</i> ₄	<i>C</i> ₅	C ₆	<i>C</i> ₇
			$M_{_W}$:	≤ 6.5			
PGA	-0.624	1.00	0.000	-2.100	1.29649	0.250	0.000
0.03	-0.624	1.00	0.000	-2.100	1.29649	0.250	0.000
0.07	0.110	1.00	0.006	-2.128	1.29649	0.250	-0.082

Period							
(sec)	c_1	<i>c</i> ₂	<i>C</i> ₃	C_4	<i>C</i> ₅	<i>C</i> ₆	<i>C</i> ₇
0.10	0.275	1.00	0.006	-2.148	1.29649	0.250	-0.041
0.20	0.153	1.00	-0.004	-2.080	1.29649	0.250	0.000
0.30	-0.057	1.00	-0.017	-2.028	1.29649	0.250	0.000
0.40	-0.298	1.00	-0.028	-1.990	1.29649	0.250	0.000
0.50	-0.588	1.00	-0.040	-1.945	1.29649	0.250	0.000
0.75	-1.208	1.00	-0.050	-1.865	1.29649	0.250	0.000
1.00	-1.705	1.00	-0.055	-1.800	1.29649	0.250	0.000
1.50	-2.407	1.00	-0.065	-1.725	1.29649	0.250	0.000
2.00	-2.945	1.00	-0.070	-1.670	1.29649	0.250	0.000
3.00	-3.700	1.00	-0.080	-1.610	1.29649	0.250	0.000
4.00	-4.230	1.00	-0.100	-1.570	1.29649	0.250	0.000
			M_w :	> 6.5			
PGA	-1.237	1.10	0.000	-2.100	-0.48451	0.524	0.000
0.03	-1.237	1.10	0.000	-2.100	-0.48451	0.524	0.000
0.07	-0.540	1.10	0.006	-2.128	-0.48451	0.524	-0.082
0.10	-0.375	1.10	0.006	-2.148	-0.48451	0.524	-0.041
0.20	-0.497	1.10	-0.004	-2.080	-0.48451	0.524	0.000
0.30	-0.707	1.10	-0.017	-2.028	-0.48451	0.524	0.000
0.40	-0.948	1.10	-0.028	-1.990	-0.48451	0.524	0.000
0.50	-1.238	1.10	-0.040	-1.945	-0.48451	0.524	0.000
0.75	-1.858	1.10	-0.050	-1.865	-0.48451	0.524	0.000
1.00	-2.355	1.10	-0.055	-1.800	-0.48451	0.524	0.000
1.50	-3.057	1.10	-0.065	-1.725	-0.48451	0.524	0.000
2.00	-3.595	1.10	-0.070	-1.670	-0.48451	0.524	0.000
3.00	-4.350	1.10	-0.080	-1.610	-0.48451	0.524	0.000
4.00	-4.880	1.10	-0.100	-1.570	-0.48451	0.524	0.000

ตารางที่ ข.9 (ต่อ) ค่าสัมประสิทธิ์สำหรับสเปลตรัมเฉลี่ย (Sadigh และคณะ, 1997)

หมายเหตุ: ค่าสัมประสิทธิ์ในตารางใช้สำหรับเหตุการณ์เลื่อนตามแนวระดับ (strike slip event) เท่านั้นสำหรับการคำนวณค่าความเร่งเทียมของเหตุการณ์เลื่อนย้อน (reverse/thrust events) ให้คูณ ค่าสัมประสิทธิ์ในตารางด้วยตัวประกอบ 1.2

Period (sec)	Standard Error Term	Minnimum Value for $M \ge 7.21$
PGA	1.39 - 0.14M _w	0.38
0.07	1.40 - 0.14M _w	0.39
0.10	1.41 - 0.14M _w	0.40
0.20	1.43 - 0.14M _w	0.42
0.30	1.45 - 0.14M _w	0.44
0.40	1.48 - 0.14M _w	0.47
0.50	1.50 - 0.14M _w	0.49
0.75	1.52 - 0.14M _w	0.51
≥ 1.00	1.53 - 0.14M _w	0.52

ตารางที่ **ข.10** ค่าสัมประสิทธิ์สำหรับพจน์กาดเคลื่อนมาตรฐาน (Sadigh และคณะ, 1997)

ตารางที่ ข.11 ค่าสัมประสิทธิ์การล<mark>ดถอยสำหรับสมกา</mark>รกำลังสอง (Atkinson and Boore, 1997b)

Freq (Hz)	c_1	<i>C</i> ₂	<i>c</i> ₃	<i>C</i> ₄
0.5	-1.660	1.460	-0.039	0.00000
0.8	-0.900	1.462	-0.071	0.00000
1.0	-0.508	1.428	-0.094	0.00000
1.3	-0.094	1.391	-0.118	0.00000
2.0	0.620	1.267	-0.147	0.00000
3.2	1.265	1.094	-0.165	0.00024
5.0	1.749	0.963	-0.148	0.00105
7.9	2.140	0.864	-0.129	0.00207
10.0	2.301	0.829	-0.121	0.00279
13.0	2.463	0.797	-0.113	0.00352

ตารางที่ ข.11 (ต่อ) ค่าสัมประสิทธิ์การลดถอยสำหรับสมการกำลังสอง (Atkinson and Boore,

1	997h)	
T	,,,,,,	

Freq (Hz)	c_1	<i>c</i> ₂	<i>C</i> ₃	<i>C</i> ₄
20.0	2.762	0.755	-0.110	0.00520
PGA	1.841	0.686	-0.123	0.00311

ตารางที่ **ข.12** ค่าสัมประสิทธิ์การ<mark>ลดถอยของความสัมพัน</mark>ธ์การลดทอนสำหรับที่ตั้งหินดาน (Hwang

C_1	C_2	C_{3}	C_4	$\sigma_{\ln S_a}$
-1.831	0.91	-1.244	-0.00440	0.307
-2.312	0.924	-1.233	-0.00317	0.311
-2.671	0.938	-1.227	-0.00265	0.317
-2.968	0.952	-1.219	-0.00240	0.326
-3.224	0.966	-1.213	-0.00221	0.337
-3.461	0.981	-1.208	-0.00210	0.343
-3.690	0.997	-1.201	-0.00204	0.349
-3.911	1.013	-1.195	-0.00199	0.357
-4.344	1.048	-1.18	-0.00200	0.365
-4.764	1.084	-1.165	-0.00203	0.375
-5.176	1.120	-1.149	-0.00211	0.383
-5.578	1.157	-1.134	-0.00219	0.388
-6.362	1.231	-1.1	-0.00243	0.404
-7.103	1.302	-1.069	-0.00267	0.416
-8.135	1.404	-1.024	-0.00302	0.431
-9.652	1.556	-0.961	-0.00354	0.451
-10.940	1.687	-0.912	-0.00392	0.459
-12.050	1.802	-0.875	-0.00267	0.466
-2.904	0.926	-1.271	-0.00302	0.309
	$\begin{array}{c} C_1 \\ \hline C_1 \\ \hline -1.831 \\ \hline -2.312 \\ \hline -2.671 \\ \hline -2.968 \\ \hline -3.224 \\ \hline -3.461 \\ \hline -3.690 \\ \hline -3.911 \\ \hline -4.344 \\ \hline -4.764 \\ \hline -5.176 \\ \hline -5.578 \\ \hline -6.362 \\ \hline -7.103 \\ \hline -8.135 \\ \hline -9.652 \\ \hline -10.940 \\ \hline -12.050 \\ \hline -2.904 \end{array}$	C_1 C_2 -1.8310.91-2.3120.924-2.6710.938-2.9680.952-3.2240.966-3.4610.981-3.6900.997-3.9111.013-4.3441.048-4.7641.084-5.1761.120-5.5781.157-6.3621.231-7.1031.302-8.1351.404-9.6521.556-10.9401.687-12.0501.802-2.9040.926	C_1 C_2 C_3 -1.8310.91-1.244-2.3120.924-1.233-2.6710.938-1.227-2.9680.952-1.219-3.2240.966-1.213-3.4610.981-1.208-3.6900.997-1.201-3.9111.013-1.195-4.3441.048-1.18-4.7641.084-1.165-5.1761.120-1.149-5.5781.157-1.134-6.3621.231-1.1-7.1031.302-1.069-8.1351.404-1.024-9.6521.556-0.961-10.9401.687-0.912-12.0501.802-0.875-2.9040.926-1.271	C_1 C_2 C_3 C_4 -1.8310.91-1.244-0.00440-2.3120.924-1.233-0.00317-2.6710.938-1.227-0.00265-2.9680.952-1.219-0.00240-3.2240.966-1.213-0.00221-3.4610.981-1.208-0.00210-3.6900.997-1.201-0.00204-3.9111.013-1.195-0.00200-4.3441.048-1.18-0.00203-5.1761.120-1.149-0.00211-5.5781.157-1.134-0.00219-6.3621.231-1.1-0.00243-7.1031.302-1.069-0.00267-8.1351.404-1.024-0.00302-9.6521.556-0.961-0.00354-10.9401.687-0.912-0.00267-2.9040.926-1.271-0.00302

and Huo, 1997)

Freq (Hz)	C	C	C	C	C	C
	Mid-cor	C_2	Equations us	ing Moment M	aonitude	06
0.5	0.74	1.96		0.46	0.0017	6.00
0.3	-0.74	1.00	0.92	0.40	0.0017	0.90
1.0	0.09	1.42	0.90	0.49	0.0023	6.80
2.5	1.07	1.05	0.93	0.56	0.0033	7.10
5.0	1.73	0.84	0.98	0.66	0.0042	7.50
10.0	2.37	0.81	1.10	1.02	0.0040	8.30
25.0	3.68	0.80	1.46	1.77	0.0013	10.50
35.0	4.00	0.79	1.57	1.83	0.0008	11.10
PGA	2.20	0.81	1.27	1.16	0.0021	9.30
	Gu	lf regions, Equ	uations using N	10ment Magni	tude	
0.5	-0.81	1.72	0.74	0.71	0.0025	6.60
1.0	0.24	1.31	0.79	0.82	0.0034	7.20
2.5	1.64	1.06	0.99	1.27	0.0036	8.90
5.0	3.10	0.92	1.34	1.95	0.0017	11.40
10.0	5.08	1.00	1.87	2.52	0.0002	14.10
25.0	5.19	0.91	1.96	1.96	0.0004	12.90
35.0	4.81	0.91	1.89	1.80	0.0008	11.90
PGA	2.91	0.92	1.49	1.61	0.0014	10.90

ตารางที่ ข.13 ค่าสัมประสิทธิ์สำหรับสมการการลดทอน (Toro, 2002)

ตารางที่ ข.14 ค่าสัมประสิทธิ์สำหรับสมการการลดทอน (Atkinson and Boore 1997a)

Freq (Hz)	<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₃	c_4
0.5	-0.912	1.565	-0.172	0.00207
0.8	-0.295	1.457	-0.201	0.00276
1.0	-0.033	1.388	-0.201	0.00299
1.3	0.232	1.322	-0.195	0.00345
2.0	0.650	1.174	-0.165	0.00414
3.2	1.001	1.041	-0.117	0.00530
5.0	1.273	0.929	-0.076	0.00645

Freq (Hz)	c_1	<i>c</i> ₂	c_{3}	<i>C</i> ₄
8.0	1.472	0.851	-0.044	0.00783
10.0	1.530	0.809	-0.032	0.00829
20.0	1.470	0.7333	0.000	0.00921
PGA	0.680	0.7333	0.000	0.00645

ตารางที่ ข.14 (ต่อ) ค่าสัมประสิทธิ์สำหรับสมการการลดทอน (Atkinson and Boore 1997a)

ตารางที่ ข.15 ค่าสัมประสิทธิ์สำหรับสมการการลุดทอน (Youngs และคณะ, 1997)

Period (sec)	C_1	<i>C</i> ₂	<i>C</i> ₃	C_4^*	C_5^*
		For	Rock		
PGA	0.000	0.000	-2.552	1.45	-0.10
0.075	1.275	0.000	-2.707	1.45	-0.10
0.10	1.188	-0.0011	-2.655	1.45	-0.10
0.20	0.722	-0.0027	-2.528	1.45	-0.10
0.30	0.246	-0.0036	-2.454	1.45	-0.10
0.40	-0.115	-0.0043	-2.401	1.45	-0.10
0.50	-0.400	-0.0048	-2.360	1.45	-0.10
0.75	-1.149	-0.0057	-2.286	1.45	-0.10
1.00	-1.736	-0.0064	-2.234	1.45	-0.10
1.50	-2.634	-0.0073	-2.160	1.50	-0.10
2.00	-3.328	-0.0080	-2.107	1.55	-0.10
3.00	-4.511	-0.0089	-2.033	1.65	-0.10
		<i>For</i>	Soil	6	
PGA	0.000	0.000	-2.329	1.45	-0.10
0.075	2.400	-0.0019	-2.697	1.45	-0.10
0.10	2.516	-0.0019	-2.697	1.45	-0.10
0.20	1.549	-0.0019	-2.464	1.45	-0.10
0.30	0.793	-0.0020	-2.327	1.45	-0.10
0.40	0.144	-0.0020	-2.230	1.45	-0.10

Period (sec)	C_1	C_2	C_3	C_4^*	C_5^*
		For	Soil		
0.50	-0.438	-0.0035	-2.140	1.45	-0.10
0.75	-1.704	-0.0048	-1.952	1.45	-0.10
1.00	-2.870	-0.0066	-1.785	1.45	-0.10
1.50	-5.101	-0.0114	-1.470	1.50	-0.10
2.00	-6.433	-0.0164	-1.290	1.55	-0.10
3.00	-6.672	-0.0221	-1.347	1.65	-0.10
4.00	-0.7618	-0.0235	-1.272	1.65	-0.10

ตารางที่ ข.15 (ต่อ) ก่าสัมประสิทธิ์สำหรับสมการการลดทอน (Youngs และคณะ, 1997)

* ค่าเบี่ยงเบนมาตรฐาน (Standard deviation) ของเหตุการณ์ที่มีขนาดโมเมนต์ (M_w) มากกว่า 8.0 ให้กำหนดขนาดโมเม<mark>นต์ (M_w) เท่ากับ 8.0</mark>

ตารางที่ ข.16 ค่าสัมประสิทธิ์การลดถอยสำหรับความสัมพันธ์การลดทอน (Megawati และคณะ,

	2005)						
Period (sec)	a_0	a_1	<i>a</i> ₂	<i>a</i> ₃	a_4	<i>a</i> ₅	$\sigma_{\scriptscriptstyle H}$
PGA	-7.198	2.3691	-0.0139	-1.0000	-0.001548	-0.08909	0.4413
0.50	-7.304	2.6160	-0.0317	-1.0000	-0.002300	-0.08008	0.4566
0.55	-7.421	2.7173	-0.0385	-1.0000	-0.002498	-0.07861	0.4754
0.60	-7.527	2.7735	-0.0427	-0.9999	-0.002509	-0.07907	0.4843
0.65	-7.483	2.7738	-0.0431	-0.9996	-0.002477	-0.07945	0.4928
0.70	-7.242	2.7144	-0.0388	-0.9998	-0.002465	-0.07943	0.5012
0.75	-6.842	2.5998	-0.0305	-0.9994	-0.002414	-0.08041	0.5110
0.80	-6.236	2.4078	-0.0156	-0.9993	-0.002334	-0.08234	0.5214
0.85	-5.987	2.3131	-0.0081	-0.9987	-0.002221	-0.08363	0.5297
0.90	-5.856	2.2457	-0.0026	-0.9970	-0.002123	-0.08392	0.5288
0.95	-5.830	2.2191	-0.0002	-0.9994	-0.002039	-0.08338	0.5234
1.00	-5.916	2.2273	-0.0010	-0.9979	-0.001947	-0.08337	0.5165
1.10	-5.895	2.2069	-0.0002	-0.9970	-0.001793	-0.08412	0.5308
1.20	-6.064	2.2098	-0.0010	-0.9746	-0.001702	-0.08370	0.5356
1.30	-6.773	2.1955	-0.0008	-0.8439	-0.001774	-0.08254	0.5188

140

	ยเนอ, 2	2005)					
Period (sec)	a_0	a_1	a_2	<i>a</i> ₃	a_4	a_5	$\sigma_{\scriptscriptstyle H}$
1.40	-7.236	2.1759	-0.0001	-0.7502	-0.001796	-0.08405	0.5099
1.50	-7.675	2.1746	-0.0005	-0.6850	-0.001744	-0.08302	0.4942
1.60	-7.308	2.1778	-0.0006	-0.7633	-0.001538	-0.08632	0.4815
1.70	-7.347	2.1875	-0.0011	-0.7714	-0.001465	-0.08784	0.4717
1.80	-7.716	2.1821	-0.0008	-0.7106	-0.001480	-0.08782	0.4708
1.90	-8.061	2.1855	-0.0009	-0.6569	-0.001466	-0.09051	0.4742
2.00	-8.318	2.1930	-0.0015	-0.6238	-0.001409	-0.09268	0.4795
2.20	-8.695	2.2932	-0.0094	-0.6246	-0.001255	-0.09516	0.4910
2.40	-9.304	2.4245	-0.0195	-0.5996	-0.001158	-0.09875	0.4889
2.60	-9.659	2.4696	-0.0230	-0.5799	-0.001070	-0.10028	0.4746
2.80	-9.900	2. <mark>4</mark> 824	-0.0235	-0.5739	-0.000976	-0.09891	0.4703
3.00	-10.097	2.5104	-0.0254	-0.5785	-0.000913	-0.09869	0.4636
3.20	-10.530	2.5831	-0.0305	-0.5604	-0.000923	-0.10028	0.4569
3.40	-11.047	2.6937	-0.0385	-0.5574	-0.000872	-0.09913	0.4625
3.60	-11.576	2.8610	-0.0509	-0.5835	-0.000784	-0.09693	0.4714
3.80	-12.344	3.0705	-0.0664	-0.5883	-0.000732	-0.09479	0.4753
4.00	-13.142	3.2878	-0.0828	-0.5900	-0.000688	-0.09307	0.4716
4.20	-14.031	3.5615	-0.1036	-0.6028	-0.000646	-0.09260	0.4577
4.40	-14.830	3.7992	-0.1215	-0.6055	-0.000648	-0.09386	0.4321
4.60	-15.467	3.9966	-0.1363	-0.6115	-0.000649	-0.09608	0.4045
4.80	-15.749	4.0951	-0.1435	-0.6350	-0.000568	-0.09653	0.3880
5.00	-16.107	4.1295	-0.1456	-0.6136	-0.000546	-0.09514	0.3825
5.50	-16.989	4.2188	-0.1515	-0.5561	-0.000562	-0.09032	0.3816
6.00	-18.076	4.3732	-0.1627	-0.4891	-0.000627	-0.08645	0.3874
6.50	-19.022	4.5641	-0.1758	-0.4688	-0.000631	-0.08357	0.3923
7.00	-20.137	4.8209	-0.1939	-0.4521	-0.000635	-0.08149	0.3905
7.50	-20.997	5.1078	-0.2147	-0.4951	-0.000550	-0.08042	0.3793

ตารางที่ ข.16 (ต่อ) ค่าสัมประสิทธิ์การลดถอยสำหรับความสัมพันธ์การลดทอน (Megawati และ

คณะ, 2005)

	,	/					
Period (sec)	a_0	a_1	a_2	<i>a</i> ₃	a_4	a_5	$\sigma_{\scriptscriptstyle H}$
8.00	-21.636	5.3937	-0.2359	-0.5708	-0.000445	-0.07992	0.3612
8.50	-22.079	5.5630	-0.2478	-0.6169	-0.000383	-0.07929	0.3550
9.00	-22.264	5.6060	-0.2495	-0.6437	-0.000323	-0.07770	0.3587
9.50	-22.664	5.7094	-0.2568	-0.6644	-0.000260	-0.07462	0.3634
10.00	-23.268	5.8172	-0.2649	-0.6463	-0.000271	-0.07075	0.3656
11.00	-24.253	5.8997	-0.2698	-0.5784	-0.000338	-0.06313	0.3740
12.00	-24.481	5.8303	-0.2613	-0.5651	-0.000331	-0.05684	0.3837
13.00	-24.888	5.8357	-0.2594	-0.5503	-0.000330	-0.05183	0.3821
14.00	-25.109	5.9151	-0.2643	-0.6008	-0.000221	-0.04827	0.3679
15.00	-25.631	6.0539	-0.2751	-0.6191	-0.000156	-0.04555	0.3519
16.00	-26.093	6.1718	-0.2849	-0.6270	-0.000133	-0.04344	0.3427
17.00	-26.595	6.2752	-0.2937	-0.6149	-0.000153	-0.04205	0.3378
18.00	-27.010	6.3450	-0.2995	-0.5982	-0.000198	-0.04117	0.3384
19.00	-27.369	6.3530	-0.2999	-0.5586	-0.000289	-0.04045	0.3435
20.00	-27.720	6.2917	-0.2940	-0.4854	-0.000440	-0.03981	0.3510

ตารางที่ ข.16 (ต่อ) ค่าสัมประสิทธิ์การลดถอยสำหรับความสัมพันธ์การลดทอน (Megawati และ

คณะ, 2005)

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Period (sec)	<i>C</i> ₄	a_1	a_2	a_3	a_4	a_5	a_6	a_9	a_{10}	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	c_1	<i>C</i> ₅	п	b_5	b_6
0.000	5.60	1.640	0.512	-1.1450	-0.144	0.610	0.260	0.370	-0.417	-0.230	0.0000	0.17	6.40	0.030	2.00	0.89	0.087
0.020	5.60	1.640	0.512	-1.1450	-0.144	0.610	0.260	0.370	-0.417	-0.230	0.0000	0.17	6.40	0.030	2.00	0.88	0.092
0.030	5.60	1.690	0.512	-1.1450	-0.144	0.610	0.260	0.370	-0.470	-0.230	0.0143	0.17	6.40	0.030	2.00	0.87	0.097
0.040	5.60	1.780	0.512	-1.1450	-0.144	0.610	0.260	0.370	-0.555	-0.251	0.0245	0.17	6.40	0.030	2.00	0.85	0.105
0.050	5.60	1.870	0.512	-1.1450	-0.144	<mark>0.610</mark>	0.260	0.370	-0.620	-0.267	0.0280	0.17	6.40	0.030	2.00	0.84	0.110
0.060	5.60	1.940	0.512	-1.1450	-0.144	0.610	0.260	0.370	-0.665	-0.280	0.0300	0.17	6.40	0.030	2.00	0.83	0.118
0.075	5.58	2.037	0.512	-1.1450	-0.144	0.61 <mark>0</mark>	0.260	0.370	-0.628	-0.280	0.0300	0.17	6.40	0.030	2.00	0.82	0.121
0.090	5.54	2.100	0.512	-1.1450	-0.144	0.610	0.260	0.370	-0.609	-0.280	0.0300	0.17	6.40	0.030	2.00	0.81	0.123
0.100	5.50	2.160	0.512	-1.1450	-0.144	0.610	0.260	0.370	-0.598	-0.280	0.0280	0.17	6.40	0.030	2.00	0.81	0.127
0.120	5.39	2.272	0.512	-1.1450	-0.144	0.610	0.260	0.370	-0.591	-0.280	-0.0180	0.17	6.40	0.030	2.00	0.80	0.130
0.150	5.27	2.407	0.512	-1.1450	-0.144	0.610	0.260	0.370	-0.577	-0.280	-0.0050	0.17	6.40	0.030	2.00	0.80	0.132
0.170	5.19	2.430	0.512	-1.1350	-0.144	0.610	0.260	0.370	-0.522	-0.265	-0.0040	0.17	6.40	0.030	2.00	0.79	0.135
0.200	5.10	2.406	0.512	-1.1150	-0.144	0.610	0.260	0.370	-0.445	-0.245	-0.0138	0.17	6.40	0.030	2.00	0.79	0.135
0.240	4.97	2.293	0.512	-1.0790	-0.144	0.610	0.232	0.370	-0.350	-0.223	-0.0238	0.17	6.40	0.030	2.00	0.78	0.135
0.300	4.80	2.114	0.512	-1.0350	-0.144	0.610	0.198	0.370	-0.219	-0.195	-0.0360	0.17	6.40	0.030	2.00	0.77	0.135

ตารางที่ ข.17 ค่าสัมประสิทธิ์ของแบบจำลองการลดทอน (Abrahamson and Silva, 1997)

จุพาสงการณมการทยาลย

Period (sec)	C_4	a_1	a_2	a_3	a_4	a_5	a_6	<i>a</i> ₉	a_{10}	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	c_1	c_5	n	b_5	b_6
0.360	4.62	1.955	0.512	-1.0052	-0.144	0.610	0.170	0.370	-0.123	-0.173	-0.0460	0.17	6.40	0.030	2.00	0.77	0.135
0.400	4.52	1.860	0.512	-0.9880	-0.144	0.610	0.154	0.370	-0.065	-0.160	-0.0518	0.17	6.40	0.030	2.00	0.76	0.135
0.460	4.38	1.717	0.512	-0.9652	-0.144	0.592	0.132	0.370	0.020	-0.136	-0.0594	0.17	6.40	0.030	2.00	0.75	0.135
0.500	4.30	1.615	0.512	-0.9515	-0.144	0.581	0.119	0.370	0.085	-0.121	-0.0635	0.17	6.40	0.030	2.00	0.75	0.135
0.600	4.12	1.428	0.512	-0.9218	-0.144	0.557	0.091	0.370	0.194	-0.089	-0.0740	0.17	6.40	0.030	2.00	0.74	0.135
0.750	3.90	1.160	0.512	-0.8852	-0.144	0.528	0.057	0.331	0.320	-0.050	-0.0862	0.17	6.40	0.030	2.00	0.74	0.135
0.850	3.81	1.020	0.512	-0.8648	-0.144	0.512	0.038	0.309	0.370	-0.028	-0.0927	0.17	6.40	0.030	2.00	0.73	0.135
1.000	3.70	0.828	0.512	-0.8383	-0.144	0.490	-0.013	0.281	0.423	0.000	-0.1020	0.17	6.40	0.030	2.00	0.72	0.135
1.500	3.55	0.260	0.512	-0.7721	-0.144	0.438	-0.049	0.210	0.600	0.040	-0.1200	0.17	6.40	0.030	2.00	0.71	0.135
2.000	3.50	-0.150	0.512	-0.7250	-0.144	0.400	-0.094	0.160	0.610	0.040	-0.1400	0.17	6.40	0.030	2.00	0.71	0.135
3.000	3.50	-0.690	0.512	-0.7250	-0.144	0.400	-0.156	0.089	0.630	0.040	-0.1726	0.17	6.40	0.030	2.00	0.70	0.135
4.000	3.50	-1.130	0.512	-0.7250	-0.144	0.400	-0.200	0.039	0.640	0.040	-0.1956	0.17	6.40	0.030	2.00	0.70	0.135
5.000	3.50	-1.460	0.512	-0.7250	-0.144	0.400	-0.200	0.000	0.664	0.040	-0.2150	0.17	6.40	0.030	2.00	0.70	0.135
					616	ľ	79	VE	IJ]						

ตารางที่ ข.17 (ต่อ) ค่าสัมประสิทธิ์ของแบบจำลองการลดทอน (Abrahamson and Silva, 1997)

จุฬาลงกรณ์มหาวิทยาลัย

	For	$M_w < 6$.75			Fo	$M_w \ge 6$.75				$M_w = 7.5$		$M_{w} = 5.0$	
Period (sec)	α_1	$lpha_2$	eta_1	eta_2	Period (sec)	α_1	$lpha_{_2}$	eta_1	β_2	γ	φ	SE Term_min	Value	SE Term_max	Value
0.01	3.7066	-0.1252	2.9832	-0.2339	0.01	5.6315	-0.4104	2.9832	-0.2339	0.00047	0.12	0.53	1.699	0.73	2.076
0.02	3.7066	-0.1252	2.9832	-0.2339	0.02	<mark>5.6</mark> 315	-0.4104	2.9832	-0.2339	0.00047	0.12	0.53	1.699	0.73	2.076
0.03	3.7566	-0.1252	2.9832	-0.2339	0.03	5.6815	-0.4104	2.9832	-0.2339	0.00047	0.12	0.53	1.699	0.73	2.076
0.04	3.8066	-0.1252	2.9832	-0.2339	0.04	5.7 <mark>3</mark> 15	-0.4104	2.9832	-0.2339	0.00047	0.12	0.53	1.699	0.73	2.076
0.05	3.9507	-0.1626	2.8658	-0.2239	0.05	5.285 <mark>3</mark>	-0.3293	2.5018	-0.1688	-0.00135	0.12	0.53	1.699	0.73	2.076
0.06	3.9050	-0.1432	2.8622	-0.2243	0.06	5.2840	-0.3177	2.4900	-0.1683	-0.00178	0.12	0.54	1.715	0.54	1.715
0.07	3.8680	-0.1254	2.8589	-0.2247	0.07	5.2879	-0.3071	2.4793	-0.1679	-0.00208	0.12	0.55	1.728	0.75	2.111
0.075	3.8456	-0.1171	2.8574	-0.2249	0.075	5.2848	-0.3021	2.4742	-0.1676	-0.00217	0.12	0.55	1.734	0.75	2.118
0.08	3.8265	-0.1090	2.8559	-0.2251	0.08	5.2844	-0.2973	2.4693	-0.1674	-0.00232	0.12	0.55	1.740	0.75	2.125
0.09	3.7849	-0.0937	2.8530	-0.2254	0.09	5.2784	-0.2882	2.4599	-0.1670	-0.00250	0.12	0.56	1.750	0.76	2.137
0.1	3.7461	-0.0792	2.8503	-0.2257	0.1	5.2733	-0.2796	2.4511	-0.1666	-0.00268	0.12	0.56	1.759	0.76	2.149
0.12	3.6556	-0.0526	2.8453	-0.2263	0.12	5.2453	-0.2637	2.4348	-0.1659	-0.00263	0.12	0.57	1.775	0.77	2.168
0.15	3.4911	-0.0169	2.8386	-0.2271	0.15	5.1652	-0.2424	2.4130	-0.1649	-0.00237	0.12	0.59	1.795	0.79	2.193

ตารางที่ ข.18 ค่าสัมประสิทธิ์ของแบบจำลองการลดทอนเชิงประสบการณ์ (Idriss, 2008)

จุพาสงการแมทารทยาลย

	For	$M_{w} < 6$.75			For $M_w \ge 6.75$						$M_w = 7.5$		$M_{_{W}} = 5.0$	
Period (sec)	$lpha_1$	α_{2}	eta_1	eta_2	Period (sec)	α_1	$lpha_2$	eta_1	β_2	γ	φ	SE Term_min	Value	SE Term_max	Value
0.17	3.3521	0.0048	2.8345	-0.2276	0.17	5.0777	-0.2295	2.3998	-0.1643	-0.00209	0.12	0.59	1.807	0.79	2.206
0.2	3.1226	0.0346	2.8288	-0.2282	0.2	<mark>4.9199</mark>	-0.2116	2.3814	-0.1635	-0.00144	0.12	0.60	1.821	0.80	2.224
0.25	2.7514	0.0791	2.8203	-0.2292	0.25	4.6567	-0.1850	2.3540	-0.1623	-0.00065	0.12	0.61	1.842	0.81	2.249
0.3	2.3754	0.1187	2.8126	-0.2301	0.3	4.3778	-0.1614	2.3296	-0.1612	0.00034	0.12	0.62	1.859	0.82	2.270
0.35	2.0132	0.1545	2.8056	-0.2309	0.35	4.104 <mark>4</mark>	-0.1399	2.3074	-0.1602	0.00088	0.12	0.63	1.873	0.83	2.288
0.4	1.6847	0.1873	2.7992	-0.2317	0.4	3.8582	-0.1202	2.2869	-0.1593	0.00106	0.12	0.63	1.885	0.83	2.303
0.45	1.3678	0.2177	2.7932	-0.2324	0.45	3.6181	-0.1020	2.2679	-0.1584	0.00117	0.12	0.64	1.897	0.84	2.317
0.5	1.0651	0.2461	2.7876	-0.2330	0.5	3.3877	-0.0849	2.2502	-0.1577	0.00130	0.12	0.65	1.907	0.85	2.329
0.6	0.4848	0.2979	2.7772	-0.2342	0.6	2.9407	-0.0538	2.2176	-0.1562	0.00175	0.12	0.65	1.924	0.85	2.350
0.7	-0.0205	0.3443	2.7677	-0.2353	0.7	2.5567	-0.0258	2.1883	-0.1549	0.00186	0.12	0.66	1.939	0.86	2.368
0.75	-0.2478	0.3660	2.7633	-0.2358	0.75	2.3864	-0.0128	2.1746	-0.1543	0.00175	0.12	0.67	1.946	0.87	2.376
0.4	1.6847	0.1873	2.7992	-0.2317	0.4	3.8582	-0.1202	2.2869	-0.1593	0.00106	0.12	0.63	1.885	0.83	2.303
0.45	1.3678	0.2177	2.7932	-0.2324	0.45	3.6181	-0.1020	2.2679	-0.1584	0.00117	0.12	0.64	1.897	0.84	2.317

ตารางที่ ข.18 (ต่อ) ค่าสัมประสิทธิ์ของแบบจำลองการลดทอนเชิงประสบการณ์ (Idriss, 2008)

งุพ เดงการแมท เวทย เดย

	For	$M_w < 6$.75			Fo	$M_w \ge 6$.75				$M_w = 1$	7.5	$M_w = 5$	5.0
Period (sec)	$lpha_{_1}$	$lpha_2$	eta_1	eta_2	Period (sec)	$\alpha_{_1}$	α_{2}	eta_1	β_2	γ	φ	SE Term_min	Value	SE Term_max	Value
0.8	-0.4629	0.3866	2.7590	-0.2363	0.8	2.2260	-0.0003	2.1614	-0.1537	0.00165	0.12	0.67	1.952	0.87	2.384
0.9	-0.8769	0.4255	2.7510	-0.2373	0.9	1.9156	0.0232	2.1366	-0.1525	0.00180	0.11	0.67	1.964	0.87	2.398
1	-1.2882	0.4615	2.7434	-0.2381	1	1.6014	0.0450	2.1135	-0.1515	0.00206	0.10	0.68	1.974	0.88	2.411
1.5	-2.9990	0.6103	2.7112	-0.2418	1.5	0.3010	0.1354	2.0167	-0.1471	0.00272	0.06	0.70	2.014	0.90	2.460
2	-4.3588	0.7246	2.6851	-0.2447	2	-0.7332	0.2054	1.9406	-0.1436	0.00278	0.04	0.71	2.043	0.91	2.496
3	-6.3139	0.8935	2.6437	-0.2493	3	-2.19 <mark>2</mark> 9	0.3099	1.8240	-0.1382	0.00056	0	0.73	2.085	0.935	2.547
4	-7.8169	1.0137	2.6110	-0.2529	4	-3.3362	0.3855	1.7366	-0.1341	-0.00209	0	0.73	2.085	0.93	2.547
5	-8.9869	1.1027	2.5839	-0.2558	5	-4.2404	0.4427	1.6679	-0.1308	-0.00396	0	0.73	2.085	0.93	2.547
6	-9.9192	1.1696	2.5607	-0.2582	6	-4.9785	0.4868	1.6124	-0.1281	-0.00500	0	0.73	2.085	0.93	2.547
7	-10.661	1.2197	2.5406	-0.2603	7	-5.5837	0.5209	1.5669	-0.1258	-0.00566	0	0.73	2.085	0.93	2.547
8	-11.284	1.2566	2.5228	-0.2621	8	-6.1196	0.5471	1.5294	-0.1239	-0.00589	0	0.73	2.085	0.93	2.547
9	-11.794	1.2826	2.5070	-0.2636	9	-6.5845	0.5669	1.4984	-0.1223	-0.00602	0	0.73	2.085	0.93	2.547
10	-12.215	1.2995	2.4928	-0.2650	10	-6.9979	0.5814	1.4728	-0.1209	-0.00616	0	0.735	2.085	0.93	2.547

ตารางที่ ข.18 (ต่อ) ค่าสัมประสิทธิ์ของแบบจำลองการลดทอนเชิงประสบการณ์ (Idriss, 2008)

งุพ เดงการแมท เวทย เดย

Period (sec)	a_1	a_2	a_3	a_4	a_5	a_6	<i>a</i> ₇	<i>a</i> ₈	a_9	a_{10}	$\sigma_{\scriptscriptstyle 1}$	$\sigma_{_2}$
PGA	2.522	-0.142	-3.184	0.314	7.6	0.137	0.05	-0.084	0.062	-0.044	$0.665 – 0.065 \ M_w$	$0.222 – 0.022 \ M_w$
0.050	3.247	-0.225	-3.525	0.359	7.4	0.098	0.005	-0.096	0.078	-0.048	$0.708 – 0.069 \ M_w$	$0.249 – 0.024 \ M_w$
0.055	3.125	-0.206	-3.418	0.345	7.1	0.085	0.004	-0.096	0.072	-0.050	$0.672 – 0.063 \ M_w$	$0.235 – 0.022 \text{ M}_{w}$
0.060	3.202	-0.212	-3.444	0.347	7.4	0.079	0.002	-0.103	0.073	-0.047	$0.687 – 0.065 \ \mathrm{M_w}$	$0.237 – 0.023 \ M_w$
0.065	3.442	-0.242	-3.571	0.365	7 <mark>.</mark> 7	0.069	0.001	-0.104	0.076	-0.035	$0.693 – 0.067 \ M_w$	$0.241 – 0.023 \ M_w$
0.070	3.504	-0.249	-3.576	0.367	7.9	0.064	-0.002	-0.114	0.068	-0.043	$0.647 – 0.059 \ M_w$	$0.225 – 0.021 \ M_w$
0.075	3.472	-0.240	-3.521	0.358	8	0.064	-0.003	-0.121	0.063	-0.046	$0.674 – 0.063 \ {\rm M}_{_{\rm W}}$	$0.227 – 0.021 \ M_w$
0.080	3.526	-0.248	-3.520	0.358	8.1	0.069	-0.002	-0.116	0.074	-0.040	$0.756 0.076 \text{ M}_{_{\mathrm{W}}}$	$0.252 – 0.025 \ M_w$
0.085	3.32	-0.215	-3.381	0.336	8	0.067	0.01	-0.116	0.075	-0.039	$0.750 – 0.076 \ M_w$	$0.258 – 0.026 \ M_w$
0.090	3.309	-0.211	-3.353	0.332	7.9	0.064	0.014	-0.119	0.065	-0.048	$0.727 – 0.072 \ M_w$	$0.249 – 0.025 \ M_w$
0.095	3.479	-0.240	-3.420	0.345	7.8	0.062	0.014	-0.107	0.073	-0.051	$0.772 – 0.079 \ \rm M_w$	$0.262 – 0.027 \ M_w$
0.100	3.596	-0.258	-3.511	0.36	7.9	0.065	0.025	-0.095	0.076	-0.047	$0.747 – 0.075 \ \rm M_w$	$0.249 – 0.025 \ M_w$
0.110	3.453	-0.239	-3.398	0.345	7.9	0.077	0.041	-0.082	0.072	-0.052	$0.810 – 0.084 \ M_w$	$0.2560.027 \text{ M}_{_{ m W}}$
0.120	3.33	-0.214	-3.300	0.329	8	0.07	0.045	-0.081	0.065	-0.046	0.753–0.075 M _w	0.240–0.024 M _w
0.130	3.249	-0.195	-3.254	0.321	8.2	0.069	0.043	-0.084	0.056	-0.059	$0.712 – 0.068 \ M_w$	$0.236-0.023 \ M_w$

ตารางที่ ข.19 ค่าสัมประสิทธิ์สำหรับประมาณค่าความเร่งสูงสุดของพื้นดินและสเปคตรัมการตอบสนองของความเร่งเทียม (Ambraseys และคณะ, 2005)

งพาตุ<u>มเารณหาการแย</u>

Period (sec)	a_1	a_2	a_3	a_4	a_5	a_6	<i>a</i> ₇	<i>a</i> ₈	a_9	a_{10}	$\sigma_{_{1}}$	$\sigma_{_2}$
0.140	2.993	-0.154	-3.088	0.297	8.2	0.065	0.042	-0.074	0.053	-0.067	$0.650 – 0.059 \ \mathrm{M_w}$	$0.218 – 0.020 \ M_w$
0.150	2.725	-0.111	-2.909	0.27	8.3	0.067	0.044	-0.074	0.067	-0.060	$0.634 0.057 \text{ M}_{_{\mathrm{W}}}$	$0.223-0.020 \ M_w$
0.160	2.738	-0.120	-2.912	0.274	8.2	0.085	0.049	-0.069	0.09	-0.061	0.734 – $0.072 \ M_w$	$0.251 – 0.025 \ M_w$
0.170	2.692	-0.114	-2.907	0.275	8.2	0.091	0.053	-0.059	0.087	-0.055	$0.760 0.077 \ \mathrm{M_w}$	$0.257 – 0.026 \ M_w$
0.180	2.665	-0.110	-2.907	0.276	<mark>8.1</mark>	0.098	0.049	-0.057	0.087	-0.054	$0.736 – 0.073 \ M_w$	0.251–0.025 M _w
0.190	2.713	-0.118	-2.989	0.288	8.1	0.112	0.059	-0.050	0.09	-0.054	$0.752 – 0.076 \; \rm M_w$	$0.250 – 0.025 \ M_w$
0.200	2.632	-0.109	-2.990	0.289	8.1	0.124	0.07	-0.033	0.09	-0.039	$0.784 – 0.080 \ \rm M_w$	$0.251 – 0.026 \ M_w$
0.220	2.483	-0.088	-2.941	0.281	7.9	0.136	0.078	-0.033	0.086	-0.024	$0.778 – 0.079 \ \rm M_w$	0.244 – $0.025 \ M_w$
0.240	2.212	-0.051	-2.823	0.265	7.6	0.156	0.087	-0.037	0.09	-0.020	0.770–0.077 ${\rm M}_{\rm w}$	$0.235-0.024 \ M_w$
0.260	2.058	-0.036	-2.787	0.263	7.3	0.179	0.077	-0.024	0.12	0.01	$0.917 – 0.101 \ \mathrm{M_w}$	$0.278 – 0.030 \ M_w$
0.280	1.896	-0.010	-2.732	0.251	7.5	0.193	0.074	-0.023	0.112	0.027	$0.947 – 0.104 \ M_w$	$0.285 - 0.031 \ \mathrm{M_w}$
0.300	1.739	0.009	-2.667	0.244	7.1	0.192	0.069	-0.034	0.104	0.012	0.890–0.095 $\rm M_{_{\rm W}}$	$0.267 – 0.028 \ M_w$
0.320	1.728	0.001	-2.688	0.251	7.1	0.207	0.073	-0.021	0.118	0.008	0.917–0.098 M _w	0.273–0.029 M _w
0.340	1.598	0.02	-2.667	0.246	7.2	0.216	0.078	-0.010	0.118	0.005	0.896–0.095 M _w	0.261–0.028 M _w
0.360	1.477	0.034	-2.641	0.244	6.9	0.23	0.091	-0.013	0.107	-0.011	$0.846 – 0.087 \ M_w$	0.254–0.026 M _w

ตารางที่ ข.19 (ต่อ) ค่าสัมประสิทธิ์สำหรับประมาณค่าความเร่งสูงสุดของพื้นดินและสเปคตรัมการตอบสนองของความเร่งเทียม (Ambraseys และคณะ, 2005)

งพาตุภาวะหราย เวยอาตุย

Period (sec)	a_1	a_2	<i>a</i> ₃	a_4	a_5	a_6	<i>a</i> ₇	a_8	a_9	a_{10}	$\sigma_{_{1}}$	$\sigma_{_2}$
0.380	1.236	0.071	-2.534	0.227	6.7	0.247	0.1	-0.010	0.106	-0.018	$0.803 – 0.080 \ M_{_{ m W}}$	$0.250 – 0.025 \ M_w$
0.400	1.07	0.091	-2.474	0.219	6.3	0.256	0.097	-0.013	0.115	-0.020	$0.793 – 0.078 \ M_w$	$0.244-0.024 \ M_w$
0.420	0.998	0.096	-2.469	0.22	5.9	0.259	0.1	-0.021	0.116	-0.024	$0.757 – 0.072 \ \mathrm{M_w}$	$0.233-0.022 \ M_w$
0.440	1.045	0.085	-2.540	0.231	6.3	0.269	0.114	-0.016	0.114	-0.028	$0.787 – 0.077 \; \rm M_w$	$0.241 – 0.024 \ M_w$
0.460	0.98	0.093	-2.564	0.234	6.3	0.278	0.122	-0.011	0.108	-0.029	$0.766 0.074 \ \mathrm{M_w}$	$0.238-0.023 \ M_w$
0.480	0.874	0.103	-2.530	0.231	6.2	0.286	0.13	0.001	0.118	-0.024	0.778–0.076 ${\rm M}_{\rm w}$	$0.240 – 0.023 \ M_w$
0.500	0.624	0.139	-2.410	0.212	6.1	0.289	0.133	0.004	0.126	-0.026	$0.798 0.079 \text{ M}_{_{\rm W}}$	$0.246-0.024 \ M_w$
0.550	0.377	0.174	-2.317	0.196	6.1	0.293	0.137	-0.004	0.118	-0.035	$0.841 0.085 \text{ M}_{_{\rm W}}$	$0.268 – 0.027 \ M_w$
0.600	0.359	0.158	-2.343	0.206	5.4	0.311	0.136	0.008	0.118	-0.028	0.919 – $0.099 \ M_w$	$0.308 – 0.033 \ M_w$
0.650	0.13	0.182	-2.294	0.202	5	0.318	0.149	0.005	0.107	-0.031	$0.867 0.090 \ \mathrm{M_w}$	$0.301 – 0.031 \ M_w$
0.700	-0.014	0.198	-2.305	0.205	4.8	0.327	0.154	-0.011	0.105	-0.032	$0.803 – 0.080 \ M_w$	$0.298 – 0.030 \ M_w$
0.750	-0.307	0.236	-2.201	0.191	4.7	0.318	0.148	-0.001	0.114	-0.032	0.774 – $0.076 {\rm M}_{\rm w}$	$0.278 – 0.027 \ M_w$
0.800	-0.567	0.279	-2.083	0.17	5.2	0.332	0.178	-0.003	0.083	-0.062	0.661–0.059 M _w	0.240–0.021 M _w
0.850	-0.519	0.262	-2.177	0.186	4.9	0.341	0.183	0.005	0.085	-0.070	0.694–0.064 M _w	0.253–0.023 M _w
0.900	-0.485	0.249	-2.246	0.199	4.5	0.354	0.191	-0.003	0.072	-0.082	0.714–0.067 M _w	0.263–0.025 M _w

ตารางที่ ข.19 (ต่อ) ค่าสัมประสิทธิ์สำหรับประมาณค่าความเร่งสูงสุดของพื้นดินและสเปคตรัมการตอบสนองของความเร่งเทียม (Ambraseys และคณะ, 2005)

งพาตุ<u>มเารณหาเราเธาตุธ</u>

Period (sec)	a_1	a_2	<i>a</i> ₃	a_4	a_5	a_6	<i>a</i> ₇	<i>a</i> ₈	a_9	a_{10}	$\sigma_{_{1}}$	$\sigma_{_2}$
0.950	-1.133	0.369	-1.957	0.143	5.5	0.353	0.204	-0.025	0.024	-0.109	0.309	0.121
1.000	-1.359	0.403	-1.848	0.124	6	0.357	0.211	-0.013	0.024	-0.101	0.305	0.12
1.100	-1.675	0.437	-1.711	0.108	5.5	0.373	0.213	-0.029	-0.007	-0.108	0.306	0.118
1.200	-1.982	0.477	-1.636	0.095	5.4	0.389	0.226	-0.014	-0.017	-0.095	0.297	0.12
1.300	-2.226	0.511	-1.605	0.089	5.5	0.395	0.215	-0.004	-0.025	-0.085	0.296	0.119
1.400	-2.419	0.533	-1.541	0.08	6	0.408	0.237	0.028	-0.040	-0.091	0.29	0.115
1.500	-2.639	0.55	-1.443	0.074	4.9	0.405	0.229	0.02	-0.053	-0.133	0.292	0.111
1.600	-2.900	0.587	-1.351	0.06	5.2	0.387	0.216	0.019	-0.056	-0.131	0.296	0.114
1.700	-2.695	0.564	-1.564	0.086	6.5	0.38	0.212	0.001	-0.081	-0.141	0.302	0.117
1.800	-3.209	0.63	-1.410	0.069	5.4	0.391	0.174	0.012	-0.035	-0.154	0.291	0.128
1.900	-3.313	0.647	-1.424	0.067	5.9	0.386	0.175	0.03	-0.033	-0.145	0.29	0.133
2.000	-3.063	0.586	-1.372	0.07	4.2	0.421	0.177	0.008	-0.019	-0.174	0.282	0.134
2.100	-3.043	0.578	-1.435	0.08	4.3	0.404	0.171	0.002	-0.026	-0.164	0.281	0.134
2.200	-3.068	0.575	-1.448	0.083	4.2	0.394	0.16	-0.007	-0.034	-0.169	0.283	0.136
2.300	-3.996	0.74	-0.829	-0.025	5.1	0.349	0.135	-0.010	-0.031	-0.125	0.282	0.137

ตารางที่ ข.19 (ต่อ) ค่าสัมประสิทธิ์สำหรับประมาณค่าความเร่งสูงสุดของพื้นดินและสเปคตรัมการตอบสนองของความเร่งเทียม (Ambraseys และคณะ, 2005)

งพาตุ<u>มเารณหาเราเธาตุธ</u>

Period (sec)	a_1	<i>a</i> ₂	<i>a</i> ₃	a_4	a_5	a_6	<i>a</i> ₇	a_8	a_9	a_{10}	$\sigma_{\scriptscriptstyle 1}$	σ_{2}
2.400	-4.108	0.758	-0.755	-0.038	5.3	0.338	0.119	-0.024	-0.050	-0.147	0.284	0.137
2.500	-4.203	0.768	-0.714	-0.044	5.1	0.325	0.103	-0.026	-0.063	-0.155	0.285	0.137

ตารางที่ ข.19 (ต่อ) ค่าสัมประสิทธิ์สำหรับประมาณค่าความเร่งสูงสุดของพื้นดินและสเปคตรัมการตอบสนองของความเร่งเทียม (Ambraseys และคณะ, 2005)

ตารางที่ ข.20 ค่าสัมประสิทธิ์สำหรับประมาณค่าสเปกตรัมการตอบสนองของความเร่งเทียมที่ความหน่วง 5 % (Boore และคณะ, 1997)

Period (sec)	b_{1SS}	$b_{_{1RV}}$	$b_{_{1ALL}}$	b_2	b ₃	b_5	b_{v}	V_A	h	$\sigma_{_1}$	$\sigma_{_c}$	$\sigma_{_r}$	$\sigma_{_e}$	$\sigma_{\ln Sa}$
0.00	-0.313	-0.117	-0.242	0.527	0.000	-0.778	-0.371	1396.000	5.570	0.431	0.226	0.486	0.184	0.520
0.10	1.006	1.087	1.059	0.753	-0.226	-0.934	-0.212	1112.000	6.270	0.440	0.189	0.479	0.000	0.479
0.11	1.072	1.164	1.130	0.732	-0.230	-0.937	-0.211	1291.000	6.650	0.437	0.200	0.481	0.000	0.481
0.12	1.109	1.215	1.174	0.721	-0.233	-0.939	-0.215	1452.000	6.910	0.437	0.210	0.485	0.000	0.485
0.13	1.128	1.246	1.200	0.711	-0.233	-0.939	-0.221	1596.000	7.080	0.435	0.216	0.486	0.000	0.488
0.14	1.135	1.261	1.208	0.707	-0.230	-0.938	-0.228	1718.000	7.180	0.435	0.223	0.489	0.000	0.489
0.15	1.128	1.264	1.204	0.702	-0.228	-0.937	-0.238	1820.000	7.230	0.435	0.230	0.492	0.000	0.492
0.16	1.112	1.257	1.192	0.702	-0.226	-0.935	-0.248	1910.000	7.240	0.435	0.235	0.495	0.000	0.495
0.17	1.090	1.242	1.173	0.702	-0.221	-0.933	-0.258	1977.000	7.210	0.435	0.239	0.497	0.000	0.497
0.18	1.063	1.222	1.151	0.705	-0.216	-0.930	-0.270	2037.000	7.160	0.435	0.244	0.499	0.002	0.499
0.19	1.032	1.198	1.122	0.709	-0.212	-0.927	-0.281	2080.000	7.100	0.435	0.249	0.501	0.005	0.501

Period (sec)	b_{1SS}	$b_{_{1RV}}$	$b_{_{1ALL}}$	b_2	b_3	b_5	b_{V}	V _A	h	$\sigma_{_{1}}$	$\sigma_{_c}$	$\sigma_{_r}$	$\sigma_{_e}$	$\sigma_{\ln Sa}$
0.20	0.999	1.170	1.089	0.711	-0.207	-0.924	-0.292	2118.000	7.020	0.435	0.251	0.502	0.009	0.502
0.22	0.925	1.104	1.019	0.721	-0.198	-0.918	-0.315	2158.000	6.830	0.437	0.258	0.508	0.016	0.508
0.24	0.847	1.033	0.941	0.732	-0.189	-0.912	-0.338	2178.000	6.620	0.437	0.262	0.510	0.025	0.511
0.26	0.764	0.958	0.861	0.744	-0.180	-0.906	-0.360	2173.000	6.390	0.437	0.267	0.513	0.032	0.514
0.28	0.681	0.881	0.780	0.758	-0.168	-0.899	-0.381	2158.000	6.170	0.440	0.272	0.517	0.039	0.518
0.30	0.598	0.803	0.700	0.769	-0.161	-0.893	-0.401	2133.000	5.940	0.440	0.276	0.519	0.048	0.522
0.32	0.518	0.725	0.619	0.783	-0.152	-0.888	-0.420	2104.000	5.720	0.442	0.279	0.523	0.055	0.525
0.34	0.439	0.648	0.540	0.794	-0.143	-0.882	-0.438	2070.000	5.500	0.444	0.281	0.526	0.064	0.530
0.36	0.361	0.570	0.462	0.806	-0.136	-0.877	-0.456	2032.000	5.300	0.444	0.283	0.527	0.071	0.532
0.38	0.286	0.495	0.385	0.820	-0.127	-0.872	-0.472	1995.000	5.100	0.447	0.286	0.530	0.078	0.536
0.40	0.212	0.423	0.311	0.831	-0.120	-0.867	-0.487	1954.000	4.910	0.447	0.288	0.531	0.085	0.538
0.42	0.140	0.352	0.239	0.840	-0.113	-0.862	-0.502	1919.000	4.740	0.449	0.290	0.535	0.092	0.542
0.44	0.073	0.282	0.169	0.852	-0.108	-0.858	-0.516	1884.000	4.570	0.449	0.292	0.536	0.099	0.545
0.46	0.005	0.217	0.102	0.863	-0.101	-0.854	-0.529	1849.000	4.410	0.451	0.295	0.539	0.104	0.549
0.48	-0.058	0.151	0.036	0.873	-0.097	-0.850	-0.541	1816.000	4.260	0.451	0.297	0.540	0.111	0.551

ตารางที่ ข.20 (ต่อ) ค่าสัมประสิทธิ์สำหรับประมาณค่าสเปกตรัมการตอบสนองของความเร่งเทียมที่ความหน่วง 5 % (Boore และคณะ, 1997)

งพาตุ<u>มายสุมพายาตุย</u>

Period (sec)	b_{1SS}	$b_{_{1RV}}$	$b_{\scriptscriptstyle 1ALL}$	b_2	b ₃	b_5	b_{V}	V _A	h	$\sigma_{_{1}}$	$\sigma_{_c}$	$\sigma_{_r}$	$\sigma_{_{e}}$	$\sigma_{_{\ln Sa}}$
0.50	-0.122	0.087	-0.025	0.884	-0.090	-0.846	-0.553	1782.000	4.130	0.454	0.299	0.543	0.115	0.556
0.55	-0.268	-0.063	-0.176	0.907	-0.078	-0.837	-0.579	1710.000	3.820	0.456	0.302	0.547	0.129	0.562
0.60	-0.401	-0.203	-0.314	0.928	-0.069	-0.830	-0.602	1644.000	3.570	0.458	0.306	0.551	0.143	0.569
0.65	-0.523	-0.331	-0.440	0.946	-0.060	-0.823	-0.622	1592.000	3.360	0.461	0.309	0.554	0.154	0.575
0.70	-0.634	-0.452	-0.555	0.962	-0.053	-0.818	-0.639	1545.000	3.200	0.463	0.311	0.558	0.166	0.582
0.75	-0.737	-0.562	-0.661	0.979	-0.046	-0.813	-0.653	1507.000	3.070	0.465	0.313	0.561	0.175	0.587
0.80	-0.829	-0.666	-0.760	0.992	-0.041	-0.809	-0.666	1476.000	2.980	0.467	0.315	0.564	0.184	0.593
0.85	-0.915	-0.761	-0.851	1.006	-0.037	-0.805	-0.676	1452.000	2.920	0.467	0.320	0.567	0.191	0.598
0.90	-0.993	-0.848	-0.933	1.018	-0.035	-0.802	-0.685	1432.000	2.890	0.470	0.322	0.570	0.200	0.604
0.95	-1.066	-0.932	-1.010	1.027	-0.032	-0.800	-0.692	1416.000	2.880	0.472	0.325	0.573	0.207	0.609
1.00	-1.133	-1.009	-1.080	1.036	-0.032	-0.798	-0.698	1406.000	2.900	0.474	0.325	0.575	0.214	0.613
1.10	-1.249	-1.145	-1.208	1.052	-0.030	-0.795	-0.706	1396.000	2.990	0.477	0.329	0.579	0.226	0.622
1.20	-1.345	-1.265	-1.315	1.064	-0.032	-0.794	-0.710	1400.000	3.140	0.479	0.334	0.584	0.235	0.629
1.30	-1.428	-1.370	-1.407	1.073	-0.035	-0.793	-0.711	1416.000	3.360	0.481	0.338	0.588	0.244	0.637
1.40	-1.495	-1.460	-1.483	1.080	-0.039	-0.794	-0.709	1442.000	3.620	0.484	0.341	0.592	0.251	0.643

ตารางที่ ข.20 (ต่อ) ค่าสัมประสิทธิ์สำหรับประมาณค่าสเปกตรัมการตอบสนองของความเร่งเทียมที่ความหน่วง 5 % (Boore และคณะ, 1997)

งพาตุ<u>มายสุมพายาตุย</u>

Period (sec)	b_{1SS}	$b_{_{1RV}}$	$b_{_{1ALL}}$	b_2	b ₃	b_5	b_{V}	V _A	h	$\sigma_{_1}$	$\sigma_{_c}$	σ_{r}	$\sigma_{_{e}}$	$\sigma_{\ln Sa}$
1.50	-1.552	-1.538	-1.550	1.085	-0.044	-0.796	-0.704	1479.000	3.920	0.486	0.345	0.596	0.256	0.649
1.60	-1.598	-1.608	-1.605	1.087	-0.051	-0.798	-0.697	1524.000	4.260	0.488	0.348	0.599	0.262	0.654
1.70	-1.634	-1.668	-1.652	1.089	-0.058	-0.801	-0.689	1581.000	4.620	0.490	0.352	0.604	0.267	0.660
1.80	-1.663	-1.718	-1.689	1.087	-0.067	-0.804	-0.679	1644.000	5.010	0.493	0.355	0.607	0.269	0.664
1.90	-1.685	-1.763	-1.720	1.087	-0.074	-0.808	-0.667	1714.000	5.420	0.493	0.359	0.610	0.274	0.669
2.00	-1.699	-1.801	-1.743	1.085	-0.085	-0.812	-0.655	1795.000	5.850	0.495	0.362	0.613	0.276	0.672

ตารางที่ ข.20 (ต่อ) ค่าสัมประสิทธิ์สำหรับประมาณค่าสเปกตรัมการตอบสนองของความเร่งเทียมที่ความหน่วง 5 % (Boore และคณะ, 1997)

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

ภาคผนวก ค

ค่า System sensitivity ของเครื่องมือตรวจวัดแผ่นดินไหวในระบบเครือข่ายตรวจวัด แผ่นดินไหวระบบใหม่ระยะที่ 2

ตารางที่ ค.1 ก่า System sensitivity ของเกรื่องมือตรวจวัดแผ่นดินไหวในระบบเกรือข่ายตรวจวัด แผ่นดินไหวระบบใหม่ระยะที่ 2

Component	Sensor Sensitivity	LSB	System Sensitivity
name	(V/ground motion)	$(\mu V/count)$	(μ m/count)
Si	hort-period seismic stations	(Geotech S-13) and Accelere	ometer (PA-23)
1. PHIT เบื่อน	แควน้อย จ.พิษณุ โลก		
SHZ	634.000	3.200	0.005047
SHN	622.000	3.200	0.005145
SHE	631.000	3.200	0.005071
HNZ	0.063	0.400	6.349206
HNN	0.063	0.400	6.349206
HNE	0.063	0.400	6.349206
2. SUKH อ่างเ	ก็บน้ำห้วยท่าแพร่ จ.สุโขทัย	Sector States	
SHZ	631.000	3.200	0.005071
SHN	631.000	3.200	0.005071
SHE	631.000	3.200	0.005071
HNZ	0.063	0.400	6.349206
HNN	0.063	0.400	6.349206
HNE	0.063	0.400	6.349206
3 .UTTA เงื่อเ	มสิริกิต จ.อุตรดิตถ์	ົ້າເພດວິດກາ	228
SHZ	630.000	3.200	0.005079
SHN	628.000	3.200	0.005096
SHE	624.000	3.200	0.005128
HNZ	0.063	0.400	6.349206
HNN	0.063	0.400	6.349206
HNE	0.063	0.400	6.349206

Component	Sensor Sensitivity	LSB	System Sensitivity
name	(V/ground motion)	$(\mu V/count)$	(µm/count)
Si	hort-period seismic stations	(Geotech S-13) and Accele	erometer (PA-23)
4. LAMP เขื่อา	นกิ่วลม จ.ลำปาง		
SHZ	630.000	3.200	0.005079
SHN	634.000	3.200	0.005047
SHE	631.000	3.200	0.005071
HNZ	0.063	0.400	6.349206
HNN	0.063	0.400	6.349206
HNE	0.063	0.400	6.349206
5. NAN ฝ่ายน้ำ	้ากอน จ.น่าน	12 B	
SHZ	628.000	3.200	0.005096
SHN	633.000	3.200	0.005055
SHE	631.000	3.200	0.005071
HNZ	0.063	0.400	6.349206
HNN	0.063	0.400	6.349206
HNE	0.063	0.400	6.349206
6. PAYA อ่างเ	ก็บน้ำแม่ปืม		
SHZ	630.000	3.200	0.005079
SHN	631.000	3.200	0.005071
SHE	624.000	3.200	0.005128
HNZ	0.063	0.400	6.349206
HNN	0.063	0.400	6.349206
HNE	0.063	0.400	6.349206
7. UMPA สถา	เนื้อุตุนิยมวิทยาอุ้มผาง จ.ตาก	l	
SHZ	634.000	3.200	0.005047
SHN	631.000	3.200	0.005071
SHE	624.000	3.200	0.005128
HNZ	0.063	0.400	6.349206

ตารางที่ ค.1 (ต่อ) ค่า System sensitivity ของเครื่องมือตรวจวัดแผ่นดินไหวในระบบเครือข่าย ตรวจวัดแผ่นดินไหวระบบใหม่ระยะที่ 2

Component	Sensor Sensitivity	LSB	System Sensitivity	
name	(V/ground motion)	$(\mu V/count)$	$(\mu m/count)$	
Short-period seismic stations (Geotech S-13) and Accelerometer (PA-23)				
HNN	0.063	0.400	6.349206	
HNE	0.063	0.400	6.349206	
8. UTHA เขื่อา	นทับเสลา จ.อุทัยธานี		· ·	
SHZ	633.000	3.200	0.005055	
SHN	631.000	3.200	0.005071	
SHE	630.000	3.200	0.005079	
HNZ	0.063	0.400	6.349206	
HNN	0.063	0.400	6.349206	
HNE	0.063	0.400	6.349206	
9. PHET อ่างเร	ก็บน้ำแก่ง <mark>กระจาน</mark>		·	
SHZ	611.000	3.200	0.005237	
SHN	627.000	3.200	0.005104	
SHE	627.000	3.200	0.005104	
HNZ	0.063	0.400	6.349206	
HNN	0.063	0.400	6.349206	
HNE	0.063	0.400	6.349206	
10. PATY สถ	านีอุตุนิยมวิทยาพัทยา จ.ชลา	រុទី		
SHZ	605.000	3.200	0.005289	
SHN	627.000	3.200	0.005104	
SHE	625.000	3.200	0.005120	
HNZ	0.063	0.400	6.349206	
HNN	0.063	0.400	6.349206	
HNE	0.063	0.400	6.349206	
11. CHAI อ่าง	เก็บน้ำช่อระกา จ.ชัยภูมิ			
SHZ	631.000	3.200	0.005071	
SHN	622.000	3.200	0.005145	

ตารางที่ ค.1 (ต่อ) ค่า System sensitivity ของเครื่องมือตรวจวัดแผ่นดินไหวในระบบเครือข่าย ตรวจวัดแผ่นดินไหวระบบใหม่ระยะที่ 2

Component	Sensor Sensitivity	LSB	System Sensitivity		
name	(V/ground motion)	(μ V/count)	(<i>µ</i> m/count)		
Short-period seismic stations (Geotech S-13) and Accelerometer (PA-23)					
SHE	634.000	3.200	0.005047		
HNZ	0.063	0.400	6.349206		
HNN	0.063	0.400	6.349206		
HNE	0.063	0.400	6.349206		
12. KHON สถ	าานีอากาศเ <mark>กษตรท่าพระ</mark> จ.ข	อ <mark>นแก่น</mark>			
SHZ	630.000	3.200	0.005079		
SHN	630.000	3.200	0.005079		
SHE	622.000	3.200	0.005145		
HNZ	0.063	0.400	6.349206		
HNN	0.063	0.400	6.349206		
HNE	0.063	0.400	6.349206		
13. SURI อ่างเ	้ก็บน้ำอำปืม จ <mark>.สุรินทร์</mark>	(Colling)			
SHZ	624.000	3.200	0.005128		
SHN	610.000	3.200	0.005246		
SHE	628.000	3.200	0.005096		
HNZ	0.063	0.400	6.349206		
HNN	0.063	0.400	6.349206		
HNE	0.063	0.400	6.349206		
14. SRAK อ่างเก็บน้ำห้วยยาง จ.สระแก้ว					
SHZ	628.000	3.200	0.005096		
SHN	628.000	3.200	0.005096		
SHE	610.000	3.200	0.005246		
HNZ	0.063	0.400	6.349206		
HNN	0.063	0.400	6.349206		
HNE	0.063	0.400	6.349206		

ตารางที่ ค.1 (ต่อ) ค่า System sensitivity ของเครื่องมือตรวจวัดแผ่นดินไหวในระบบเกรือข่าย ตรวจวัดแผ่นดินไหวระบบใหม่ระยะที่ 2

ตารางที่ ค.1 (ต่อ) ค่า System sensitivity ของเครื่องมือตรวจวัดแผ่นดินใหวในระบบเครือ	งข่าย
ตรวจวัดแผ่นดินไหวระบบใหม่ระยะที่ 2	

Component	Sensor Sensitivity	LSB	System Sensitivity	
name	(V/ground motion)	(μ V/count)	(μ m/count)	
Si	hort-period seismic stations	(Geotech S-13) and Accelero	ometer (PA-23)	
15. KRAB อ่าง	งเก็บน้ำบางกำปรัด จ.กระบี่			
SHZ	630.000	3.200	0.005079	
SHN	634.000	3.200	0.005047	
SHE	634.000	3.200	0.005047	
HNZ	0.063	0.400	6.349206	
HNN	0.063	0.400	6.349206	
HNE	0.063	0.400	6.349206	
Bro	adband seismic stations (Ge	otech KS-2000M) and Accele	erometer (PA-23)	
16. PHRA อ่าง	มเก็บน้ำสอง จ.แพร่			
BHZ	1,987.000	3.200	0.001610	
BHN	2,020.000	3.200	0.001584	
BHE	2,047.000	3.200	0.001563	
HNZ	0.063	0.400	6.349206	
HNN	0.063	0.400	6.349206	
HNE	0.063	0.400	6.349206	
17. CRAI อ่างเกี่บน้ำห้วยช้าง จ.เชียงราย				
BHZ	2,036.000	3.200	0.001572	
BHN	2,063.000	3.200	0.001551	
BHE	2,042.000	3.200	0.001567	
HNZ	0.063	0.400	6.349206	
HNN	0.063	0.400	6.349206	
HNE	0.063	0.400	6.349206	
18. CMAI สถานีอุตุฯดอยอ่างขาง จ.เชียงใหม่				
BHZ	1,992.000	3.200	0.001606	
BHN	2,056.000	3.200	0.001556	
BHE	1,989.000	3.200	0.001609	

Component	Sensor Sensitivity	LSB	System Sensitivity
name	(V/ground motion)	(μ V/count)	$(\mu m/count)$
Bro	adband seismic stations (Geo	tech KS-2000M) and Accele	rometer (PA-23)
HNZ	0.063	0.400	6.349206
HNN	0.063	0.400	6.349206
HNE	0.063	0.400	6.349206
19. PRAC เปื้อ	นปราณบุรี จ. <mark>ประจวบคีร</mark> ีขันห	ď	
BHZ	2,059.000	3.200	0.001554
BHN	2,012.000	3.200	0.001590
BHE	1,937.000	3.200	0.001652
HNZ	0.063	0.400	6.349206
HNN	0.063	0.400	6.349206
HNE	0.063	0.400	6.349206
20. SRIT อ่างเ	ก็บน้ำคลองคินแ <mark>ค</mark> ง จ.นครศรี	ธรรมราช	
BHZ	1,982.000	3.200	0.001615
BHN	2,101.000	3.200	0.001523
BHE	2,014.000	3.200	0.001589
HNZ	0.063	0.400	6.349206
HNN	0.063	0.400	6.349206
HNE	0.063	0.400	6.349206
21. SURA HIE	ยเก็บน้ำท่าทอง จ.สุราษฎร์ธานี	a l	
BHZ	2,027.000	3.200	0.001579
BHN	2,026.000	3.200	0.001579
BHE	2,059.000	3.200	0.001554
HNZ	0.063	0.400	6.349206
HNN	0.063	0.400	6.349206
HNE	0.063	0.400	6.349206
22. NONG อ่า	งเก็บน้ำห้วยเปลวเหงือก จ.หเ	นองคาย	
BHZ	1,980.000	3.200	0.001616

ตารางที่ ค.1 (ต่อ) ค่า System sensitivity ของเครื่องมือตรวจวัดแผ่นดินไหวในระบบเครือข่าย ตรวจวัดแผ่นดินไหวระบบใหม่ระยะที่ 2

Component	Sensor Sensitivity	LSB	System Sensitivity	
name	(V/ground motion)	$(\mu V/count)$	(µm/count)	
Bro	adband seismic stations (G	eotech KS-2000M) and Accel	lerometer (PA-23)	
BHN	1,978.000	3.200	0.001618	
BHE	1,979.000	3.200	0.001617	
HNZ	0.063	0.400	6.349206	
HNN	0.063	0.400	6.349206	
HNE	0.063	0.400	6.349206	
23. PANO อ่าง	งเก็บน้ำห้วยแคน จ.นครพน	ນ		
BHZ	2,003.000	3.200	0.001598	
BHN	2,013.000	3.200	0.001590	
BHE	1,939.000	3.200	0.001650	
HNZ	0.063	0.400	6.349206	
HNN	0.063	0.400	6.349206	
HNE	0.063	0.400	6.349206	
24. NAYO อ่า	งเก็บน้ำคลองท่าค่าน จ.นคร	รันายก	•	
BHZ	2,010.000	3.200	0.001592	
BHN	2,015.000	3.200	0.001588	
BHE	1,983.000	3.200	0.001614	
HNZ	0.063	0.400	6.349206	
HNN	0.063	0.400	6.349206	
HNE	0.063	0.400	6.349206	
25. LOEI อ่างเก็บน้ำห้วยน้ำหนาม จ.เลย				
BHZ	2,038.000	3.200	0.001570	
BHN	2,006.000	3.200	0.001595	
BHE	1,995.000	3.200	0.001604	
HNZ	0.063	0.400	6.349206	
HNN	0.063	0.400	6.349206	
HNE	0.063	0.400	6.349206	

ตารางที่ ค.1 (ต่อ) ค่า System sensitivity ของเครื่องมือตรวจวัดแผ่นดินไหวในระบบเครือข่าย ตรวจวัดแผ่นดินไหวระบบใหม่ระยะที่ 2

ตารางที่ ค.1 (ต่อ) เ	ก่า System sensitivity ปล	องเครื่องมือตรว	จวัดแผ่นดินไ	หวในระบบเครื	อข่าย
ſ	ตรวจวัดแผ่นดินไหวระ ง	บบใหม่ระยะที่ 2	2		

Component	Sensor Sensitivity	LSB System Sensitiv		
name	(V/ground motion)	$(\mu V/count)$	$(\mu m/count)$	
Broadband seismic stations (Geotech KS-2000M) and Accelerometer (PA-23)				
TMDA กรมอุ	<i>ลุ</i> นิยมวิทยาบางนา			
HLZ	0.063	0.400	6.349206	
HLN	0.062	0.400	6.451613	
HLE	0.063	0.400	6.349206	
HNZ	0.063	0.400	6.349206	
HNN	0.064	0.400	6.250000	
HNE	0.061	0.400	6.557377	
TMDB กรมอุง	จุนิยมวิทยาบางนา	2020		
SHZ	1,973.000	3.200	0.001622	
SHN	2,008.000	3.200 0.001594		
SHE	1,981.000	3.200	0.001615	
Naming Conv	ention:	a solution and a solution of the		
1. Band Code	(instrument sampling rate, 1	response band)		
Band type		ample rate (Hz)	Corner period (s)	
S = Short period		≥ 10 to < 80	< 10	
H = High Broad Band		≥ 80	≥ 10	
B = Broad Band		≥ 10 to < 80	≥ 10	
2. Instrument Code				
H = High Gain	n Seismometer			
N = Accelerometer				
3. Instrument Code				
Z N E = Trad	itional (Vertical, North-Sou	th, East-West)		

ประวัติผู้เขียนวิทยานิพนธ์

นายวิษณุ หัตถา เกิดเมื่อวันที่ 10 กันยายน พ.ศ. 2525 ณ จังหวัดหนองคาย และได้สำเร็จ การศึกษาระดับปริญญาวิศวกรรมศาสตรบัณฑิต สาขาวิชาวิศวกรรมโยธา ภาควิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีมหานคร ในปี พ.ศ. 2547 และเข้าศึกษาต่อใน หลักสูตรวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมโยธา ที่จุฬาลงกรณ์มหาวิทยาลัย ในปี พ.ศ. 2549

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย