การใช้เซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมจากเศษผ้าฝ้ายเป็นสารตัวเติมในฟิล์มพีวีซี

นางสาวศีริวรรณ สุอุทัย

สถาบนวิทยบริการ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาวิทยาศาสตร์พอลิเมอร์ประยุกต์และเทคโนโลยีสิ่งทอ ภาควิชาวัสดุศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2549 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย ISBN 974-14-1824-8 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

USE OF MICROCRYSTALLINE CELLULOSE PREPARED FROM WASTE COTTON FABRIC AS FILLER IN PVC FILM

Miss Siriwan Su-uthai

สถาบนวิทยบริการ

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Applied Polymer Science and Textile Technology Department of Materials Science Faculty of Science Chulalongkorn University Academic Year 2006 ISBN 974-14-1824-8

หัวข้อวิทยานิพนธ์	พนธ์ การใช้เซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมจากเศษผ้าฝ้าเ	
	เป็นสารตัวเติมในฟิล์มพีวีซี	
โดย	นางสาวศีริวรรณ สุอุทัย	
สาขาวิชา	วิทยาศาสตร์พอลิเมอร์ประยุกต์และเทคโนโลยีสิ่งทอ	
อาจารย์ที่ปรึกษา	รองศาสตราจารย์ เสาวรจน์ ช่วยจุลจิตร์	
อาจารย์ที่ปรึกษาร่วม	ผู้ช่วยศาสตราจารย์ ดร. สีรีรัตน์ จารุจินดา	

คณะวิทยาศาสตร์จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็นส่วน หนึ่งของการศึกษาตา**มหลักสูตรบริญญ**ามหาบัณฑิต

ปใน Dr. คณบดีคณะวิทยาศาสตร์

(ศาสตราจารย์ คร. เปี่ยมศักดิ์ เมนะเศวต)

คณะกรรมการสอบวิทยานิพนธ์

7mm Inter ประธานกรรมการ

(รองศาสตราจารย์ ไพพรรณ สันติสุข)

เพื่อเจา ไขช่องร์ อาจารย์ที่ปรึกษา

(รองศาสตราจารย์ เสวารร์ ช่วยจุลจิตร์)

_____ อาจารย์ที่ปรึกษาร่วม

จารุจินดา)

.....ารรมการ

.. กรรมการ

รองศาสตราจารย์ ดร. ประณัฐ โพธิยะราช)

ศรีววรรณ สุอุทัย : การใช้เซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมจากเศษผ้าฝ้ายเป็นสารตัวเติม ในฟิล์มพีวีซี. (USE OF MICROCRYSTALLINE CELLULOSE PREPARED FROM WASTE COTTON FABRIC AS FILLER IN PVC FILM) อ. ที่ปรึกษา : รศ. เสาวรจน์ ช่วยจุลจิตร์, อ. ที่ปรึกษาร่วม : ผศ. ดร. สิรีรัตน์ จารุจินดา, 131 หน้า. ISBN 974-14-1824-8

ในงานวิจัยนี้ เซลลูโลสแบบผลึกระดับจุลภาคถูกเตรียมได้จากการไฮโดรไลซ์เศษผ้าฝ้ายด้วย กรดไฮโดรคลอริกความเข้มข้น 2.5 นอร์แมล ที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 30 นาที แล้ว นำไปตรวจสอบโครงสร้างทางเคมี ขนาดอนุภาค สัณฐานวิทยา และสมบัติทางความร้อน จากนั้นนำ เซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้มาผสมกับพีวีซีคอมพาวด์ในปริมาณ 0 5 10 15 20 25 และ 30 ส่วนโดยน้ำหนักต่อพีวีซีเรซิน 100 ส่วน ด้วยวิธีรีดเรียบให้เป็นฟิล์ม แล้วนำไปตรวจสอบสมบัติ เชิงกล สมบัติทางความร้อน สัณฐานวิทยา การดูดซึมน้ำ และความสามารถในการย่อยสลายได้ทาง ชีวภาพ

ผลการวิจัยแสดงให้เห็นว่าอนุภาคของเซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้มีรูปร่าง เป็นเส้นใย และมีขนาดอนุภาคโดยเฉลี่ยประมาณ 40 ไมโครเมตร จากการทดสอบสมบัติเชิงกลของ ฟิล์มพีวีซี พบว่า ความต้านแรงดึงและยังส์มอดุลัสของฟิล์มมีค่าเพิ่มขึ้นเมื่อปริมาณเซลลูโลสแบบผลึก ระดับจุลภาคเพิ่มขึ้น นอกจากนี้ ความต้านแรงฉีกขาดมีค่าเพิ่มขึ้นเช่นกันเมื่อปริมาณเซลลูโลสแบบ ผลึกระดับจุลภาคเพิ่มขึ้น แต่กลับลดลงเมื่อผสมเซลลูโลสแบบผลึกระดับจุลภาคเข้าไปในปริมาณ มากกว่า 20 ส่วน และจาก TGA เทอร์โมแกรม แสดงให้เห็นว่าการเติมเซลลูโลสแบบผลึกระดับจุลภาค มีผลต่อพฤติกรรมทางความร้อนของฟิล์มพีวีซีน้อยมาก ในขณะที่การดูดซึมน้ำและความสามารถใน การย่อยสลายทางชีวภาพเพิ่มขึ้นเมื่อปริมาณเซลลูโลสแบบผลึกระดับจุลภาคเพิ่มขึ้น จากผลการ ทดลองเหล่านี้ชี้ให้เห็นว่าเซลลูโลสแบบผลึกระดับจุลภาคทำหน้าที่เป็นตัวเติมเสริมแรงสำหรับฟิล์มพีวีซี และยังมีบทบาทสำคัญในการเร่งการย่อยสลายทางชีวภาพของฟิล์มพีวีซี ซึ่งเมื่อพิจารณาจากความ ยากง่ายในการขึ้นรูป สมบัติเชิงกล และการย่อยสลายทางชีวภาพแล้ว พบว่า ไม่ควรใช้ปริมาณ เซลลูโลสแบบผลึกระดับจุลภาคมากกว่า 20 ส่วน

ภาควิชาวัสดศาสตร์	ลายมือชื่อนิสิต สีริจวรถง สอกับ
สาขาวิชาวิทยาศาสตร์พอลิเมอร์ประยุกต์และเทคโนโลยีสิ่งทอ	ลายมือชื่ออาจารย์ที่ปรึกษา. <i>ไม่งงงม์ ใว เว</i> ณ <i>ึง</i>
ปีการศึกษา 2549	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม. 20 การ Ly-e

4772501723 : MAJOR APPLIED POLYMER SCIENCE AND TEXTILE TECHNOLOGY
KEY WORD: PVC FILM / MICROCRYSTALLINE CELLULOSE / FILLER / WASTE COTTON FABRIC
SIRIWAN SU-UTHAI : USE OF MICROCRYSTALLINE CELLULOSE PREPARED FROM
WASTE COTTON FABRIC AS FILLER IN PVC FILM : THESIS ADVISOR : ASSOC. PROF.
SAOWAROJ CHUAYJULJIT, THESIS COADVISOR : ASSIST. PROF. SIREERAT
CHARUCHINDA, Ph.D. 131 pp. ISBN 974-17-3876-5.

In this research, microcrystalline cellulose (MCC) was prepared by hydrolyzing waste cotton fabric with 2.5 N HCl at 100 °C for 30 min. The chemical structure, particle size, morphology and thermal property of the MCC were investigated. The obtained MCC was blended with PVC compound at the amount of 0, 5, 10, 15, 20, 25, and 30 parts per hundred of PVC resin (phr). The mixtures were processed by calendering method into a film form. The effects of MCC on the mechanical properties, thermal behaviors, morphology, water absorption and biodegradability of the blend films were investigated.

The fibrous-shaped particle of MCC was found to possess average particle size of about 40 μ m. It was found that the tensile strength and Young's modulus of PVC films increased with the increasing amount of MCC. The tear strength also increased with the increasing amount of MCC. However, it decreased as the amount of MCC was higher than 20 phr. In addition, TGA thermogram showed that the thermal behavior of PVC film was insignificantly affected by the addition of MCC. Water absorption and biodegradability of PVC film were enhanced as the amount of MCC was increased. These results indicated that MCC behaves as reinforcing filler in PVC film and also plays an important role in accelerating the biodegradation of PVC film. By considering the ease of processing, the mechanical properties and the biodegradability, the amount of MCC in PVC film should not exceed 20 phr.

Department Materials Science	Student's signature.	Siriwan	Su-utrai
Field of study Applied Polymer Science and Textile Technology	Advisor's signature.	1j ch	
Academic year 2006	Co-advisor's signature	Sirent (Kauchide

กิตติกรรมประกาศ

วิทยานิพนธ์ฉบับนี้สำเร็จลุล่วงตามวัตถุประสงค์ที่ตั้งไว้ได้อย่างสมบูรณ์นั้น เป็นเพราะ ได้รับคำแนะนำด้านวิชาการ ความเอื้อเฟื้อด้านเครื่องมือ วัตถุดิบ และสถานที่สำหรับทำงานวิจัย อีกทั้งยังได้รับความช่วยเหลือ และแนะแนวทางในการทำวิทยานิพนธ์จากผู้ทรงคุณวุฒิในด้าน ต่างๆ เป็นอย่างดี ข้าพเจ้าจึงใคร่ขอขอบพระคุณบุคคลและหน่วยงานที่เกี่ยวข้อง ซึ่งมีรายนาม ต่อไปนี้

 รศ.เสาวรจน์ ช่วยจุลจิตร์ อาจารย์ที่ปรึกษาวิทยานิพนธ์ และ ผศ. ดร.สิรีรัตน์ จารุจินดา อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม ที่ได้ให้คำแนะนำและแก้ปัญหาในการทำวิทยานิพนธ์ และการทำวิทยานิพนธ์ฉบับสมบูรณ์

 รศ.ไพพรรณ สันติสุข ประธานกรรมการสอบวิทยานิพนธ์และ รศ.อรอุษา สรวารี และ รศ. ดร. ประณัฐ โพธิยะราช กรรมการสอบวิทยานิพนธ์ ที่ได้ให้คำแนะนำและตรวจสอบการ จัดทำวิทยานิพนธ์ฉบับสมบูรณ์

 บริษัทไทยนามพลาสติก จำกัด ที่ให้ความอนุเคราะห์พีวีซีคอมพาวด์และขึ้นรูป ชิ้นงานที่ใช้ในการทดสอบ

4. บริษัท K World Textile จำกัด ที่ให้ความอนุเคราะห์ผ้าฝ้ายและส่วนอุตสาหกรรม สิ่งทอ กระทรวงอุตสาหกรรมที่ให้ความอนุเคราะห์เส้นใยรามี

5. อ. ดร.ดุจฤหัย พงษ์เก่า และ อ. ดร.พรนภา สุจริตวรกุล ที่ให้ความอนุเคราะห์และ ให้คำปรึกษาเกี่ยวกับการวิเคราะห์ชิ้นทดสอบด้วยเครื่อง XRD

 ศูนย์วิจัยเครื่องมือวิทยาศาสตร์จุฬาลงกรณ์มหาวิทยาลัย ที่ให้ความอนุเคราะห์ ช่วยเหลือในการวิเคราะห์และทดสอบ

สุดท้ายนี้ขอกราบขอบพระคุณ บิดา มารดา พี่สาว ที่ให้การสนับสนุนและคอยเป็น กำลังใจให้ข้าพเจ้าผ่านพ้นอุปสรรคต่างๆ และขอขอบคุณเพื่อนและพี่ ภาควัสดุศาสตร์ที่ให้ความ ช่วยเหลือทั้งกำลังกายกำลังใจ ในการทำวิทยานิพนธ์จนสำเร็จลุล่วงไปได้ด้วยดี อีกทั้งอาจารย์ทุก ท่านที่เคยประสิทธิ์ประสาทวิชาความรู้ให้แก่ข้าพเจ้า จนสามารถสร้างสรรค์วิทยานิพนธ์ฉบับนี้ได้ สำเร็จลุล่วงไปด้วยดี

สารบัญ

หน้า

บทคัดย่อ (ภาษาไทย)	٩
บทคัดย่อ (ภาษาอังกฤษ)	৭
กิตติกรรมประกาศ	น
สารบัญ	บ
สารบัญตาราง	j
สารบัญรูป	ຕິ ມ

บทที่

1	บทนำ1
2	วารสารปริทัศน์
	2.1 การสลายตัวด้วยกระบวนการทางธรรมชาติ
	2.2 การย่อยสลายทางชีว <mark>ภาพ</mark> 5
	2.3 ผลึกเซลลูโลสระดับจ <mark>ุลภาค</mark> 10
	2.4 การเตรียมเซลลูโลสแบบผลึกระดับจุลภาค
	2.4.1 การไฮโดรไลซ์ด้วยเอนไซม์
	2.4.2 การไฮโดรไลซ์ด้วยสารเคมี
	2.5 พอลิไวนิลคลอไรด์หรือพีวีซี
	2.6 การผสมผลึกเซลลูโลสระดับจุลภาคในพลาสติก
	2.7 งานวิจัยที่เกี่ยวข้อง

3 วิธีการทดลอง
3.1 วัสดุและสารเคมี
3.2 อุปกรณ์และเครื่องมือที่ใช้เตรียมเซลลูโลสแบบผลึกระดับจุลภาค
3.3 เครื่องมือขึ้นรูปฟิล์มพีวีซี
3.4 เครื่องที่ใช้ในการวิเคราะห์
3.5 ขอบเขตการการทดลอง
3.5.1 การเ <mark>ตรียมผลึก</mark> เซลลูโลสร <mark>ะดับจุลภาค</mark>
3. <mark>5.1.1 การเตรียมผลึกเซลลูโลสระดับจุ</mark> ลภาคจากเศษผ้าฝ้ายและ
เส้นใยรามี
3.5.2 การวิเคราะห์ผลึกเซลลูโลสระดับจุลภาค
3.5.2.1 การวิเคราะห์ด้วยเทคนิคอินฟราเรดสเปกโทรสโคปี (IR)
3. <mark>5.2.2 การวิเคราะห์ด้วยเทคนิค X-ray d</mark> iffraction (XRD)
3.5. <mark>2</mark> .3 การวัดขนาดอนุภาคขของเซลลูโลสแบบผลึกระดับจุลภาค 37
3.5.3 การขึ้นรูปฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาค
3.5.4 การทดสอ <mark>บสมบัติของฟิล์มพีวี</mark> ซีที่ผสมเซลลูโลสแบบผลึกระดับจุลภาค 39
3.5.4.1 การทดสอบสมบัติเชิงกลของฟิล์ม
3.5.4.2 การวิเคราะห์สมบัติทางความร้อน
3.5.4.3 การทดสอบความสามารถในการย่อยสลายทางชีวภาพ
3.5.5 การตรวจสอบสัณฐานวิทยาด้วยเทคนิค SEM44
4. ผลการทดลองและวิจารณ์ผลการทดลอง45
ลักษณะของเซลลูโลสแบบผลึกระดับจุลภาค
4.2 เปอร์เซ็นต์ผลได้ของเซลลูโลสแบบผลึกระดับจุลภาค
and hone en

ทโดจากการโฮโดรโลซเศษผาฝาย	45
การวิเคราะห์เซลลูโลสแบบผลึกระดับจุลภาค	46

5	1		
4.3.1 การวิเคราะห์โครงส	งร้างทางเคมีด้วย	เทคนิค FT-IR	 46
4.3.2 การวิเคราะห์โครงส	งร้างผลึกด้วยเทค	นิค XRD	 47

4.3.2 การวเคราเราหเคราสราจพลาดวยเทคนค XRD	47
4.3.3 การตรวจสอบสัณฐานวิทยาด้วยเทคนิค SEM	48

บทที่

	641
บทที่	หน้า
4.3.4 การวัดขนาดอนุภาคด้วยเทคนิค Laser Light Scattering	49
4.3.5 การทดสอบสมบัติทางความร้อนด้วยเทคนิค DSC	50
4.3.6 การทดสอบสมบัติทางความร้อนด้วยเทคนิค TGA	51
4.4 ลักษณะทางกายภาพของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาค	52
4.5 การตรวจสอบสัณฐานวิทยาด้วยเทคนิค SEM	53
4.6 การทดสอบสมบัติต้าน <mark>ความต้านแรงดึง</mark>	55
4.6.1 ความ <mark>ต้านแรงดึ</mark> ง (Tensile strength)	. 55
4.6.2 ยังส์มอดุลัส (Young's modulus)	56
4.6.3 ความต้านแรงฉีกขาด (Tear strength)	58
4.7 การทดสอบสมบัติทางความร้อนด้วยเทคนิค TGA	59
4.8 สมบัติการย่อยสลายทางชีวภาพของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาค.	64
4.8.1 การดูดความชื้น	62
4.8.2 การหาน้ำหนักที่หายไปภายหลังการฝังดิน	65
4. <mark>8.3 การตรวจสอบสัณฐานวิทยาด้วย</mark> เทคนิค SEM	65
4.8.4 การทดสอบด้านความต้านแรงดึง	73
4.8.4 <mark>.1 ความต้านแรงดึง</mark> (Tensile strength)	73
4.4.2.2 ยังส์มอดุลัส (Young's modulus)	76
4.4.3.3 ความต้านแรงฉีกขาด (Tear strength)	. 79
5 สรุปผลการวิจัยและข้อเสนอแนะ	82
5.1 สรุปผลการทดลอง	82
5.2 ข้อเสนอแนะ	83
รายการอ้างอิง	84
ภาคผนวก	87

		9
٩	I٧	1V

สารบัญตาราง

ตาราง	หน้า
ตารางที่ 21 ความทนทานต่อการย่อยสลายด้วยจุลินทรีย์ของพลาสติกประเภทต่างๆ	7
ตารางที่ 2.2 การเจริญเติบโตของจุลินทรีย์บนชิ้นพลาสติกประเภทต่างๆ	8
ตารางที่ 2.3 ค่าความถี่จาก IR spectra ของ crystalline polysaccharide	14
ตารางที่ 2.4 ลักษณะเด่นของพีวีซีชนิดแข็งและชนิดยื _่ ดหยุ่น	28
ตารางที่ 4.1 ลักษณะทางกา <mark>ยภาพของ</mark> ฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับ	53
ตารางที่ 4.3 อุณหภูมิการสลาบตัวของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับ	61

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

สารบัญรูป

รูปประกอบ	หน้า
รูปที่ 2.1 กลไกการย่อยสลายแป้งในพลาสติก	6
รูปที่ 2.2 การหายไปของเม็ดแป้งในพลาสติก	6
รูปที่ 2.3 โครงสร้างของเซลลูโลส	10
รูปที่ 2.4 แสดงการเรียงตัวของโครงสร้างเซลลูโลส	11
รูปที่ 2.5 แสดงโครงสร้างของ <mark>ผลึกเซลลู</mark> โลส I	.12
รูปที่ 2.6 แสดงโครงสร้างของผลึกเซลลูโลส II	13
รูปที่ 2.7 แสดงผลของ XRD ของเซลลูโลสแบบผลึก I และ II และเซลลูโลสอสัณฐาน	15
รูปที่ 2.8 การแตกหักตรงบริเวณที่เป็นอสัณฐาน	16
รูปที่ 2.9 ผลของอุณหภูมิในการไฮโดรไลซ์เซลลูโลสต่อ degree of polymerization	.17
รูปที่ 2.10 แสดงโครงสร้างของพีวีซี	18
รูปที่ 2.11 ปฏิกิริยาการสังเคราะห์พีวีซี	18
รูปที่ 2.12เปรียบเทียบพีวีซีกับพอลิเมอร์ชนิดอื่น ๆ ในการเกิดมลพิษต่อสิ่งแวดล้อม	.28
รูปที่ 2.13 แสดงลักษณะเครื่อง (two-roll mill)	.29
รูปที่ 3.1 เครื่อง FT-IR	35
รูปที่ 3.2 ส่วนประกอบที่สำคัญของเครื่อง XRD	36
รูปที่ 3.3 ส่วนประกอบของเครื่อง Laser Light Scattering	.37
รูปที่ 3.4 เครื่อง unive <mark>rs</mark> al testing machine ของ LLOYD รุ่น LR 100K plus	.39
รูปที่ 3.5 ลักษณะและขนาดของชิ้นทดสอบความต้านการฉีกขาด	.40
รูปที่ 3.6 แสดงลักษณะของเครื่อง TGA รุ่น METTLER TOLEDO TGA/SDTA 851°	41
รูปที่ 3.7 แสดงลักษณะของเครื่อง DSC รุ่น DSC 822 [°]	.42
รูปที่ 3.8 แสดงลักษณะของเครื่อง SEM รุ่น JSM-6400	.44

	ฑ
รูปประกอบ	หน้า
รูปที่ 4.1 ลักษณะของเซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้	45
รูปที่ 4.2 FT-IR สเปกตรัมของเซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้จากเศษผ้าฝ้าย	46
รูปที่ 4.3 XRD ดิฟแฟรกโทแกรมของเซลลูโลสแบบผลึกระดับจุลภาค	
ที่เตรียมจากการไฮโดรไลซ์เศษผ้าฝ้ายและเส้นใยรามี	47
รูปที่ 4.4 สัณฐานวิทยาของเซลลูโลสแบบผลึกระดับจุลภาคที่กำลังขยาย	
(ก) 100เท่า (ข) 500 เท่า และ (ค) 2,000 เท่า	48
รูปที่ 4.5 การกระจายขนาดอ <mark>นุภาคของ</mark> เซลลูโลสแบบผลึกระดับจุลภาค	
ที่ตรวจสอบด้วยเครื่อง Laser Light Scattering	49
รูปที่ 4.6 DSC ดิฟแฟรกโทแกรมของเซลลูโลสแบบผลึกระดับจุลภาค	50
รูปที่ 4.7 TGA เทอร์โมแกรมของเซลลูโลสแบบผลึกระดับจุลภาค	51
รูปที่ 4.8 ลักษณะฟิล์มผสมเซลลูโลสแบบผลึกระดับจุลภาค	52
รูปที่ 4.9 สัญฐานวิทยาของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาค	54
รูปที่ 4.10 ความต้านแร <mark>งดึงของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุ</mark> ลภาค	
ตามแนว (ก) MD และ (ข) TD	56
รูปที่ 4.11 ค่ายังส์มอดุลัสขอ <mark>ง</mark> ฟิล์ม <mark>พีวีซีผสมเซลลูโลส</mark> แบบผลึกระดับจุลภาค	
ตามแนว (ก) MD และ (ข) TD	57
รูปที่ 4.12 ความต้านแรงฉีกขาดของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาค	
ตามแนว (ก) MD และ (ข) TD	58
รูปที่ 4.13 TGA เทอร์โ <mark>มแ</mark> กรมของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาค	60
รูปที่ 4.14 การดูดความชื้นของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาค	
ปริมาณต่างๆ กัน	62
รูปที่ 4.15 เปอร์เซ็นต์น้ำหนักที่หายไปภายหลังการฝังดิน	65
รูปที่ 4.16 สัญฐานวิทยาของฟิล์มพีวีซีก่อนและหลังฝังดินเป็นเวลา	
ๆ (ก) 0 สัปดาห์ (ข) 2 สัปดาห์ (ค) 4 เส้ปดาห์ (ง) 6 สัปดาห์ (จ) 8 สัปดาห์	66
รูปที่ 4.17 สัญฐานวิทยาของฟิล์มพีวีซีผสมเซลลูโลสระดับจุลภาค (5 phr)	
ก่อนและหลังฝังดินเป็นเวลา (ก) 0 สัปดาห์ (ข) 2 สัปดาห์)	
(ค) 4 เส้ปดาห์ (ง) 6 สัปดาห์ (จ) 8 สัปดาห์	

LØ
รูปประกอบ หน้า
รูปที่ 4.18 สัญฐานวิทยาของฟิล์มพีวีซีผสมเซลลูโลสระดับจุลภาค (10 phr)
ก่อนและหลังฝังดินเป็นเวลา (ก) 0 สัปดาห์ (ข) 2 สัปดาห์)
(ก) 0 สัปดาห์ (ข) 2 สัปดาห์ (ค) 4 เส้ปดาห์ (ง) 6 สัปดาห์ (จ) 8 สัปดาห์
รูปที่ 4.19 สัญฐานวิทยาของฟิล์มพีวีซีผสมเซลลูโลสระดับจุลภาค (15 phr)
ก่อนและหลังฝังดินเป็นเวลา (ก) 0 สัปดาห์ (ข) 2 สัปดาห์)
(ก) 0 สัปดาห์ (ข) 2 สัปดาห์ (ค) 4 เส้ปดาห์ (ง) 6 สัปดาห์ (จ) 8 สัปดาห์
รูปที่ 4.20 สัญฐานวิทยาของฟิล์มพีวีซีผสมเซลลูโลสระดับจุลภาค (20 phr)
ก่อนและหลัง <mark>ฝังดินเป็นเวลา</mark> (ก) 0 สัป <mark>ดาห์ (ข) 2 สัปด</mark> าห์)
(ก) 0 สัปดาห์ (ข) 2 สัปดาห์ (ค) 4 เส้ปดาห์ (ง) 6 สัปดาห์ (จ) 8 สัปดาห์
รูปที่ 4.21 สัญฐานวิทยาของฟิล์มพีวีซีผสมเซลลูโลสระดับจุลภาค (25 phr)
ก่อนและหลังฝังดินเป็นเวลา (ก) 0 สัปดาห์ (ข) 2 สัปดาห์)
(ก) 0 สัปดาห์ (ข) 2 สัปดาห์ (ค) 4 เส้ปดาห์ (ง) 6 สัปดาห์ (จ) 8 สัปดาห์
รูปที่ 4.22 สัญฐานวิทยาของฟิล์มพีวีซีผสมเซลลูโลสระดับจุลภาค (30 phr)
ก่อนและหลังฝัง <mark>ดินเป็นเวลา (ก) 0 สัปดาห์ (ข)</mark> 2 สัปดาห์)
(ก) 0 สัปดาห์ (ข) <mark>2 สัปดาห์ (ค) 4 เส้ปดาห์</mark> (ง) <mark>6</mark> สัปดาห์ (จ) 8 สัปดาห์
รูปที่ 4.23 ความต้านแรงดึงของฟิล์มพีวีซีผสมเซลลู <mark>โล</mark> สแบบผลึกระดับจุลภาค
ตามแนว (ก) MD และ (ข) 73
รูปที่ 4.24 เปอร์เซ็นต์การลดลงของค่าความต้านแรงดึงของฟิล์มพีวีซี
ผสมเซลลูโล <mark>ส</mark> แบบผลึกระดับจุลภาค
รูปที่ 4.25 ค่ายังส์มอดุลัสของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาค
ตามแนว (ก) MD และ (ข) TD 77
รูปที่ 4.26 เปอร์เซ็นต์การลดลงของค่ายังส์มอดุลัสของฟิล์มพีวีซี
ผสมเซลลูโลสแบบผลึกระดับจุลภาค78
รูปที่ 4.27 ค่าความต้านแรงฉีกขาดของฟิล์มพีวีซี
ผสมเซลลูโลสแบบผลึกระดับจุลภาค
รูปที่ 4.28 เปอร์เซ็นต์การลดลงของค่าความต้านแรงฉีกขาดของฟิล์มพีวีซี
ผสมเซลลูโลสแบบผลึกระดับจุลภาค

บทที่ 1 บทนำ

้ปัจจุบันพอลิเมอร์เป็นวัสดุที่ได้ถูกนำไปใช้งานอย่างแพร่หลายในชีวิตประจำวัน ทั้งที่อยู่ ในรูปของผลิตภัณฑ์สิ่งทอและพลาสติก โดยอัตราการใช้วัสดุพอลิเมอร์ได้เพิ่มขึ้นอย่างรวดเร็ว เนื่องจากความก้าวหน้าของเทคโนโลยีและอุตสาหกรรมทำให้การพัฒนาวัสดุพอลิเมอร์ เจริญก้าวหน้าอย่างต่อเนื่อง จนทำให้ได้ผลิตภัณฑ์ที่มีสมบัติเด่นเหนือวัสดุอื่นๆ หลายประการ เช่น ้น้ำหนักเบา ขึ้นรูปง่าย แข็งแรงทนท<mark>าน ทนกรด ทนด่</mark>าง เป็นฉนวนความร้อนและไฟฟ้า และทนต่อ สภาพดินฟ้าอากาศ เป็นต้น อีกทั้งมีราคาถูก ทำให้มีสีสันได้ตามต้องการ และมีให้เลือกมากมาย หลายชนิด จึงถูกนำไปใช้ทดแทนวัสดุอื่นๆ เช่น ไม้ ขนและหนังสัตว์ โลหะ และแก้ว ได้อย่างมี ประสิทธิภาพ ผลจากการเพิ่มการผลิตนี้ทำให้ปริมาณขยะของวัสดุพอลิเมอร์เพิ่มขึ้นอย่างเห็นได้ ชัด จนกลายเป็นสาเหตุสำคัญที่ก่อให้เกิดปัญหาด้านสิ่งแวดล้อม ทั้งนี้เนื่องจากพอลิเมอร์เป็น ้วัสดุที่ถูกย่อยสลายได้ยากด้วยกระบวนการทางธรรมชาติ และขณะนี้ยังไม่มีวิธีกำจัดขยะจาก ้วัสดุพอลิเมอร์ที่มีประสิทธิภาพเพียงพอ โดยขยะเหล่านี้อาจแบ่งได้เป็น 2 ประเภท คือ ขยะที่เกิด จากการใช้งานในอาคารบ้านเรือนหรือสำนักงาน และขยะที่เกิดจากโรงงานอุตสาหกรรม ซึ่งไม่ สามารถถูกกำจัดได้ทันกับปริมาณที่เพิ่มมากขึ้นอย่างต่อเนื่องและรวดเร็ว จนกลายเป็นการสร้าง ้ปัญหาให้กับสิ่งแวดล้อมที่นับวันจะทวีความรุนแรงมากขึ้น ไม่เฉพาะกับประเทศไทยเท่านั้น ประเทศต่างๆ ทั่วโลกก็กำลังเผชิญกับปัญหานี้เช่นเดียวกัน โดยปัญหาสิ่งแวดล้อมที่สำคัญของโลก ในปัจจุบันมาจาก 5 สาเหตุ คือ

- การเกิดสภาวะเรือนกระจก (green house effect)
- การทำลายชั้นบรรยากาศโอโซน
- การลดลงของพื้นที่ป่าเขตร้อน
- การเกิดฝนกรด (acid rain)
- การเพิ่มขึ้นอย่างรวดเร็วของขยะมูลฝอย

ดังนั้น การกำจัดและลดปริมาณของขยะวัสดุพอลิเมอร์อย่างมีประสิทธิภาพ และทำให้ เกิดประโยชน์สูงสุด ย่อมเป็นส่วนหนึ่งของการแก้ปัญหาสิ่งแวดล้อม ซึ่งการกำจัดและลดปริมาณ ขยะวัสดุพอลิเมอร์เป็นปัญหาสำคัญที่หลายๆ ประเทศ รวมทั้งประเทศไทยให้ความสนใจ และ พร้อมที่จะทำการวิจัยและพัฒนาให้ได้ผลดียิ่งขึ้น การกำจัดขยะเหล่านี้มีหลายวิธีซึ่งอาจแตกต่าง กันไปในแต่ละประเทศ ทั้งนี้ขึ้นกับสภาพสังคม เช่น ความหนาแน่นของประชากร ความสนใจใน เรื่องสิ่งแวดล้อมของประชาชน และการรับรู้เรื่องของเทคโนโลยี รวมทั้งสภาพเศรษฐกิจภายใน ประเทศ ซึ่งการกำจัดและลดปริมาณเศษขยะวัสดุพอลิเมอร์ทั้งที่อยู่ในรูปของผลิตภัณฑ์พลาสติก และสิ่งทออย่างมีประสิทธิภาพ ได้แก่ การนำผลิตภัณฑ์ที่ผ่านการใช้งาน หรือเศษที่เหลือทิ้งใน ขั้นตอนการแปรรูปไปผ่านการรีไซเคิลด้วยเทคนิคต่างๆทั้งวิธีทางกายภาพหรือทางเคมีเพื่อที่จะนำ กลับมาใช้ประโยชน์ได้ใหม่อีกซึ่งนอกจากเป็นการช่วยลดปริมาณขยะแล้ว ยังเป็นการประหยัด ทรัพยากรธรรมชาติอีกด้วย และนอกจากการรีไซเคิลแล้ว การเตรียมผลิตภัณฑ์พลาสติกที่สามารถ ้ย่อยสลายได้ทางชีวภาพ ยังเป็นอีกทางเลือกหนึ่งในการแก้ไขปัญหาดังกล่าว และวิธีเพิ่มความ สามารถในการย่อยสลายทางชีวภาพอย่างตรงไปตรงมาที่สุด คือ การใช้วัสดุพอลิเมอร์จาก ธรรมชาติที่สิ่งมีชีวิตสามารถย่อยสลายได้ เช่น การใช้เซลลูเฟน (ผลิตภัณฑ์จากเซลลูโลส) แทน พอลิเอทิลีนในการทำบรรจุภัณฑ์ นอกจากนี้ การนำพอลิเมอร์จากธรรมชาติ (natural polymers) เช่น แป้ง (starch) เซลลูโลส และโปรตีน เป็นต้น มาใช้เป็นสารตัวเติมในพอลิเมอร์สังเคราะห์ เพื่อให้สามารถเกิดการย่อยสลายทางชีวภาพได้ ซึ่งสารตัวเติมเหล่านี้เมื่อถูกจุลินทรีย์ที่มีอยู่ใน ธรรมชาติบริโภคจะเพิ่มพื้นที่ผิวให้กับพอลิเมอร์สังเคราะห์ ทำให้จุลินทรีย์สามารถแทรกเข้าไปใน เนื้อของผลิตภัณฑ์ได้ง่ายขึ้น โดยจุลินทรีย์จะหลั่งเอนไซม์ที่สามารถทำให้โมเลกุลของพอลิเมอร์ แตกออก เป็นส่วนย่อยๆ ซึ่งเอนไซม์เป็นโปรตีนที่โมเลกุลมีขนาดใหญ่ และประกอบด้วยหมู่ที่ ชอบน้ำ ได้แก่ หมู่ –COOH, –OH และ –NH, และเมื่อพอลิเมอร์ถูกทำให้แตกเป็นโมเลกุลขนาด เล็กที่มีน้ำหนักโมเลกุลระดับ 500-800 ก็จะถูกบริโภคโดยจุลินทรีย์ เนื่องจากเป็นแหล่งคาร์บอนที่ เป็นอาหารของจุลินทรีย์

ปัจจุบันเศษผ้าฝ้ายที่เหลือจากการตัดเย็บเสื้อผ้าสำเร็จรูปจะมีตกค้างอยู่ภายในโรงงาน เป็นจำนวนมาก ซึ่งการพัฒนาหรือหาแนวทางในการนำเศษผ้าฝ้ายเหล่านี้กลับมาใช้ให้เกิด ประโยชน์ได้อีก นอกจากจะเป็นการเพิ่มมูลค่าให้กับเศษผ้าฝ้าย ยังสามารถลดปริมาณขยะและช่วย ประหยัดทรัพยากรธรรมชาติได้อีกหนทางหนึ่งด้วย ซึ่งงานวิจัยนี้ได้นำเศษผ้าฝ้ายซึ่งเป็น วัสดุพอลิเมอร์มาทำการไฮโดรไลซ์ด้วยกรดไฮโดรคลอริกเพื่อเตรียมเป็นเซลลูโลสแบบผลึกระดับ จุลภาค แล้วนำไปใช้เป็นสารตัวเติมให้กับพลาสติกพีวีชี เพื่อปรับปรุงสมบัติทางกายภาพ และเพิ่ม ความสามารถในการย่อยสลายทางชีวภาพของพลาสติกพีวีชี ซึ่งพีวีซีเป็นเทอร์โมพลาสติกที่มีการ ผลิตและการใช้งานมากเป็นอันดับสองรองจากพอลิเอทิลีน โดยเป็นพลาสติกที่มีการนำไปใช้ ประโยชน์กันมากในการพัฒนาประเทศ โดยสามารถพบเห็นการใช้งานของพีวีซีอยู่ทั่วไปในกิจกรรม รอบๆ ตัว ไม่ว่าจะเป็นในโรงงานอุตสาหกรรม อุปกรณ์ไฟฟ้า ของใช้ในบ้าน บรรจุภัณฑ์ต่างๆ และ ผลิตภัณฑ์หนังเทียม เป็นต้น นอกจากนี้ ยังใช้ประโยชน์ทั้งในงานก่อสร้าง งานด้านกีฬา และ งานด้านการเกษตรอีกด้วย ซึ่งในขณะนี้การผลิตฟิล์มพีวีซีมีบทบาทสำคัญต่อสังคมและการ ดำรงชีวิตของมนุษย์เป็นอย่างมาก เพราะสามารถอำนวยประโยชน์ทั้งในด้านการเกษตร การถนอม อาหาร การห่อสินค้า และทำสิ่งของเครื่องใช้ต่างๆ หากแต่การรีไซเคิลพีวีซี ยังมีขอบเขตจำกัด อยู่มาก เนื่องจากพีวีซีจะปลดปล่อยแก๊สไฮโดรเจนคลอไรด์เมื่อได้รับความร้อน ซึ่งทำให้เกิด การระคายเคืองต่อระบบทางเดินหายใจอย่างรุนแรง

ดังนั้น งานวิจัยนี้จึงสนใจนำเซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้จากเศษผ้าฝ้ายซึ่ง เป็นวัสดุเหลือทิ้งในโรงงานตัดเย็บเสื้อผ้าสำเร็จรูปมาใช้พัฒนาฟิล์มพีวีซีให้สามารถย่อยสลายได้ ด้วยกระบวนการทางชีวภาพ เพื่อช่วยแก้ไขปัญหาการกำจัดและทำลายขยะของวัสดุพอลิเมอร์ ซึ่งหากงานวิจัยนี้ประสบผลสำเร็จ ย่อมทำให้ฟิล์มพีวีซีที่เตรียมได้มีสมบัติทางกายภาพดีขึ้น และยัง เป็นมิตรกับสิ่งแวดล้อมอีกด้วย

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

บทที่ 2 วารสารปริทัศน์

2.1 การสลายตัวด้วยกระบวนการทางธรรมชาติ

การสลายตัวของวัสดุพอลิเมอร์ด้วยกระบวนการทางธรรมชาติอาจจำแนกได้ ดังนี้

การสลายตัวโดยสภาวะแวดล้อม (Environmental degradation) คือ การที่
 วัสดุ พอลิเมอร์เกิดการสลายตัวอย่างช้าๆ เป็นผลเนื่องมาจากสภาวะแวดล้อม เช่น แสงอาทิตย์
 ความร้อน น้ำ สภาพอากาศ และจุลินทรีย์ เป็นต้น

2. การสลายตัวด้วยแสง (Photo degradation) คือ การที่วัสดุพอลิเมอร์เกิดการ สลาย ตัวอย่างช้าๆ เมื่อได้รับแสงอาทิตย์หรือรังสีอัลตราไวโอเลต ซึ่งวัสดุพอลิเมอร์ต้องได้รับ แสงอาทิตย์โดย ตรงในช่วงระยะเวลาหนึ่งจึงจะเสื่อมสภาพ เช่นที่พบกับพลาสติกที่ใช้ทาง การเกษตร โดยแผ่นหรือฟิล์มพลาสติกที่ใช้คลุมดินสำหรับการเพาะปลูกเมื่อผ่านพ้นฤดูกาล เพาะปลูกแล้ว พลาสติกนี้จะเปราะและแตกเป็นชิ้นเล็กๆ โดยเฉพาะการใช้พลาสติกประเภท พอลิโอเลฟินส์ และพอลิไอโซบิวทิลีนออกไซด์ในการคลุมดิน และผลิตภัณฑ์ที่ผ่านการย่อยสลาย ด้วยแสงนี้ไม่มีผลต่อวัฏจักรของคาร์บอนในดิน

3. **การสลายตัวโดยปฏิกิริยาออกซิเดชัน (Oxidation degradation)** คือ การที่ วัสดุพอลิเมอร์เกิดปฏิกิริยาทางเคมีกับออกซิเจนหรือโอโซนในอากาศ

4. การย่อยสลายทางชีวภาพ (Biodegradation) คือ การที่วัสดุพอลิเมอร์เกิดการ สลายตัวเนื่องการย่อยสลายธาตุคาร์บอนในโมเลกุลโดยจุลินทรีย์ (microorganism) เช่น แบคทีเรีย (bacteria) และเชื้อรา (fungi) เป็นต้น ซึ่งอาจทำได้โดยการเติมสารอินทรีย์ที่เป็นอาหารของ จุลินทรีย์ลงในขั้นตอนการผลิตพลาสติก เพื่อให้จุลินทรีย์ย่อยสลายโดยการปล่อยน้ำย่อยหรือ เอนไซม์ (enzyme) ออกมาย่อยสลายสารที่เป็นอาหาร ซึ่งต้องมีความชื้น อุณหภูมิ และอากาศที่ เหมาะสม ซึ่งอาจใช้เวลาในการย่อยสลาย 2-3 ปี จากการทดลองย่อยสลายพลาสติกด้วย กระบวนการทางชีวภาพ โดยการพ่นเชื้อจุลินทรีย์ (Aspergillus niger, Pennicillium funicolosum, Chaetonium globosum, Gliocaldium vireus, Aureobasidium pullulans) บนชิ้นพลาสติกซึ่งวาง อยู่บนก้อนวุ้นเลี้ยงเชื้อที่มีสารอื่นๆ ครบถ้วน ยกเว้นสารอาหารที่เป็นธาตุคาร์บอน แล้วทำการ เพาะเลี้ยงที่อุณหภูมิ 28-30 องศาเซลเซียส เป็นเวลา 21 วัน พบว่าเชื้อเจริญเติบโตได้ดีที่สุดบนชิ้น พลาสติกประเภทพอลิเอสเทอร์ที่เตรียมจากอะลิฟาติกเอสเทอร์ไดออล และเจริญได้บ้างบน พลาสติกประเภทพอลิเอทิลีน และพีวีซีที่ใช้น้ำมันถั่วเหลืองเป็นพลาสติไซเซอร์

2.2 การย่อยสลายทางชีวภาพ [1-6]

พอลิเมอร์ต่างๆ ที่เกิดขึ้นตามธรรมชาติ เช่น เซลลูโลส แป้ง และโปรตีน เป็นพอลิเมอร์ที่ สิ่งมีชีวิตเช่นจุลินทรีย์สามารถย่อยสลายได้ แต่พอลิเมอร์สังเคราะห์ส่วนใหญ่ไม่ถูกย่อยสลายทาง ชีวภาพได้ เนื่องจากสารสังเคราะห์เหล่านี้เพิ่งเกิดขึ้นมาไม่นานมานี้ ซึ่งเป็นช่วงเวลาที่ยังไม่นาน พอที่สิ่งมีชีวิตจะเกิดวิวัฒนาการเพื่อให้มีความสามารถในการย่อยสลายได้ ดังนั้น การเพิ่ม ความสามารถของการถูกย่อยสลายให้มากขึ้นที่นิยมกันใช้กันมาก ได้แก่

 การใช้พอลิเมอร์ธรรมชาติ (Natural polymer) แทนพลาสติกสังเคราะห์ เนื่องจาก สามารถถูกย่อยสลายได้ด้วยกระบวนการทางธรรมชาติ เช่น การใช้เซลโลเฟน (cellophane) ซึ่ง เป็นผลิตภัณฑ์จากเซลลูโลสแทนพอลิเอทิลีนในการห่อสิ่งของ แต่เซลโลเฟนยังขาดสมบัติ บางอย่าง เช่น สมบัติในการกันและเก็บความชื้น ความสามารถเชื่อมให้ติดกันด้วยความร้อน มี ความแข็งแรงต่ำ และมีอายุการใช้งานสั้น

2. สังเคราะห์พอลิเมอร์ชนิดใหม่ๆ ที่สามารถย่อยสลายทางชีวภาพได้ ซึ่งมีหลาย ชนิดเช่น acrolein-acrylic acid polymers, polyamidotriazoles, polyphosphazenes พอลิเมอร์ เหล่านี้ได้มาจาก amino acid ester และ acrylonitrile copolymer ที่ถูกไฮโดรไลซ์แล้ว

3. การใช้พอลิเมอร์ผสม โดยนำพอลิเมอร์ธรรมชาติผสมกับพลาสติก เพื่อให้ได้ ผลิตภัณฑ์ที่สามารถสลายตัวได้ทางชีวภาพ ซึ่งพอลิเมอร์ธรรมชาติที่นิยมใช้ ได้แก่ แป้ง เซลลูโลส และโปรตีน เป็นต้น โดยการนำมาใช้เป็นสารตัวเติมในพอลิเมอร์สังเคราะห์เพื่อให้พลาสติก สามารถย่อยสลายทางชีวภาพได้ ซึ่งเมื่อสารเหล่านี้ถูกจุลินทรีย์ที่มีในธรรมชาติบริโภคไปจะเป็น การเพิ่มพื้นที่ผิวของพอลิเมอร์ ทำให้จุลินทรีย์สามารถแทรกซึมเข้าไปในพอลิเมอร์สังเคราะห์นั่นเอง

การย่อยสลายทางชีวภาพเป็นกระบวนการที่เป็นผลจากการที่วัสดุถูกทำลายโดย จุลินทรีย์ที่เรียกว่า microbial degradation โดยจุลินทรีย์จะผลิตเอนไซม์หลากหลายชนิดที่ สามารถเข้าทำปฏิกิริยากับพอลิเมอร์ธรรมชาติและพอลิเมอร์สังเคราะห์ การทำลายพอลิเมอร์ด้วย เอนไซม์จัดเป็นกระบวนการทางเคมี ซึ่งถูกเหนี่ยวนำด้วยจุลินทรีย์เพื่อให้ได้อาหาร เนื่องจาก พอลิเมอร์เป็นแหล่งคาร์บอนสำหรับจุลินทรีย์ ซึ่งพอลิเมอร์ธรรมชาติที่นิยมนำมาผสมกับพลาสติก คือ แป้ง โดยแป้งจะแทรกตัวอยู่ในโครงสร้างของพลาสติก ซึ่งกลไกการย่อยสลายตัวของพลาสติก ในขั้นแรกจุลินทรีย์จะปล่อยเอนไซม์อะไมเลส (amylase) เข้าย่อยสลายแป้งในพลาสติกผ่าน ตัวกลางที่เป็นน้ำ ทำให้แป้งมีโมเลกุลเล็กลงจนสามารถเข้าสู่เซลล์ของจุลินทรีย์ได้ ดังแสดงใน รูปที่ 2.1 และ 2.2

(A คือ การแพร่ของอะไมเลสไปยังแป้ง, B คือ การแพร่ของแป้งที่ถูกย่อยไปยังจุลินทรีย์)

รูปที่ 2.1 กลไกการย่อยสลายแป้งในพลาสติกโดยจุลินทรีย์ [2, 3]

รูปที่ 2.2 การหายไปของเม็ดแป้งในพลาสติก [2, 3]

เมื่อเม็ดแป้งหายไปจากเนื้อของพลาสติกทำให้พลาสติกนิ่มลงและมีพื้นที่ผิวเพิ่มขึ้น ต่อจากนั้น โลหะและน้ำที่อยู่ในดินจะเกิดปฏิกิริยา Auto-oxidation ได้สารเปอร์ออกไซด์ ซึ่งอัตรา การย่อยสลาย ขึ้นกับสภาวะแวดล้อม เช่น ความชื้น อุณหภูมิ ปริมาณออกซิเจน ความเป็นกรด-ด่าง และชนิดของจุลินทรีย์ที่อยู่ในดิน รวมถึงความหนาของพลาสติกด้วย

จากการศึกษาพบว่าพลาสติกแต่ละชนิดมีความทนทานต่อการย่อยสลายด้วยจุลินทรีย์ที่ แตกต่างกันดังแสดงในตารางที่ 2.1 และตารางที่ 2.2 แสดงการเจริญเติบโตของจุลินทรีย์บนชิ้น พลาสติกประเภทต่างๆ

พอลิเมอร์	การใช้งาน	ความทนทานต่อจุลินทรีย์ [*]
polyethylene	Packaging film, insulation container	VH
Polypropylene	Packaging film	VH
poly (vinyl alcohol)	Packaging film of high chemical stability	VH
Poly (vinylidene chloride)	Packaging film, varnish, fabric	Н
poly(vinyl acetate)	Packaging film, varnish, fabric	М
Poly(vinyl alcohol)	Packaging film	Н
Polystyrene	Film, foam	Н
Poly(methyl methacrylate)	Plexiglas	Н
Polytetrafluoroethylene	Insulation	Н
Polytrifluorochloroethylene	Insulation	Н
Cellulose acetate	Acetate rayon	Н
Polyamide	Fabric	L
Poly(ethylene terephthalate)	Fabric	Н
Silicone	Coating	Н
Phenol formaldehyde	Insulation	Н
Urea formaldehyde	Insulation	Н

ตารางที่ 2.1 ความทนทานต่อการย่อยสลายด้วยจุลินทรีย์ของพลาสติกประเภทต่างๆ[5]

* VH = very high, H = high, M = moderate, L= low, F= fair

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Polymer	Growth rating *
1. Polyethylene (household wrap)	2
2. PVC-epoxidized soybean oil plasticizer	3
3. Polypropylene	1
4. Polystyrene	1
5. Poly(vinylidene chloride)	1
6. Acrylonitrile-butadiene-styrene copolymer (ABS)	0
7. ABS-polycarbonate blend	0
8. Butadiene-acrylonitrile rubber	0
9. Styrene-acrylonitrile copolymer	0
10. Rubber-modified polystyrene	0
11. Styrene-butadiene block copolymer	1
12. Poly(methyl methacrylate)	0
13. Poly(ethylene terephthalate)	0
14. Poly(cylohexanedimethanol terephthalate)	0
15. Bisphenol A polycarbonate	0
16. Poly-4 methyl-1-pentene	0
17. Polyisobutylene	0
18. Chlorosulfonated polyethylene	0
19. Cellulose acetate or butyrate	0
20. Nylon-6, nylon-66, nylon-12	0
21. Polyurethane (polyester)	4
22. Caprolactone polyester	4
23. Caprolactone polyester urethane	d 4
24. Poly(vinyl butyral)	0
25. Polyformaldehyde	0
26. Polyvinyl ethyl ether	0
27. Poly(vinyl acetate)	1

ตารางที่ 2.2 การเจริญเติบโตของจุลินทรีย์บนชิ้นพลาสติกประเภทต่างๆ [6]

*0 : none, 1 : trace of growth (<10%), 2 : light growth (10-30%),

3 : medium growth (30-60%), 4 : heavy growth (60% to complete coverage)

ปัจจุบันได้มีการศึกษาถึงพอลิเมอร์ที่มีความว่องไวต่อการย่อยสลายโดยจุลินทรีย์จะ ปลดปล่อยเอนไซม์ซึ่งสามารถทำให้พอลิเมอร์แตกออกเป็นส่วนเล็กๆ ซึ่งเอนไซม์เป็นโปรตีนที่มี ขนาดโมเลกุลใหญ่ และมีหมู่ที่ชอบน้ำ ได้แก่ –COOH, -OH และ –NH₂ เป็นองค์ประกอบ และเมื่อ พอลิเมอร์ถูกทำให้แตกออกเป็นโมเลกุลขนาดเล็กที่มีน้ำหนักโมเลกุลระดับ 500 ถึง 800 ก็จะ สามารถถูกกินโดยเชื้อจุลินทรีย์ การแตกตัวประเภทนี้เกิดขึ้นได้ภายใต้สภาวะแวดล้อมดังต่อไปนี้

- 1. มีเชื้อจุลินทรีย์ เช่น เชื้อรา หรือเชื้อแบคทีเรีย
- มีออกซิเจน ความชื้น และธาตุอาหาร
- 3. มีอุณหภูมิประมาณ 30-60 องศาเซลเซียส
- 4. มี pH ประมาณ 5-8

ปัจจุบันได้มีการพัฒนาอย่างกว้างขวางทั้งด้านเทคโนโลยีและการตลาดของพลาสติกที่ สามารถ ถูกย่อยสลายได้หมด ปัญหาก็คือวัสดุเหล่านี้มีราคาแพงมากเมื่อเทียบกับพลาสติกที่ใช้ทำ บรรจุภัณฑ์ ทั่วไป แต่ยังควรนำไปใช้งานในหลายประเภท เช่น ผลิตภัณฑ์ที่จะไปทำให้เกิดเป็นขยะ ในทะเล หรือพลาสติกที่ใช้ในการเกษตร เช่น ถุงใส่ปุ๋ย หมุดรองตีกอล์ฟ บรรจุภัณฑ์อาหาร แผ่นฟิล์มทำผ้าอ้อม แคปซูลยา และเครื่องมือทางการแพทย์ที่ใช้แล้วทิ้ง เป็นต้น

ตัวอย่างของวัสดุที่ใช้ทำบรรจุภัณฑ์แล้วสามารถย่อยสลายโดยธรรมชาติได้หมด

- 1. Warner Lambert's Noven เป็น starch-based polymer
- 2. Cargill ผลิต polylactic acid จากข้าวโพด
- 3. Ecochem ซึ่งเป็นบริษัทร่วมทุนระหว่าง Dupont กับ Con Agra พัฒนา polylactic based homo และ copolymer
- Polyhydroxybutyl valerate aliphatic polyester โดยบริษัท ICI ประเทศ อังกฤษ ใช้ชื่อทางการค้าว่า Biopol
- 5. Novamont's Master ซึ่งเป็นแป้ง 60% ซึ่งได้รับการยอมรับจาก FDA
- 6. Union Carbide ผลิต polycaprolactone
- Air Product ผลิต polyvinyl alcohol vinnex resin ซึ่งละลายได้ในน้ำ และ สามารถสลายตัวได้ทั้งในน้ำและคาร์บอนไดออกไซด์ ในสภาวะที่มีความชื้น และแบคทีเรียในดิน

2.3 ผลึกเซลลูโลสแบบผลึกระดับจุลภาค (microcrystalline cellulose) [7-15]

เซลลูโลส เป็น คาร์โบไฮเดรตชนิดพอลิแซคคาไรด์ (polysaccharide) ที่เกิดจาก มอนอเมอร์ ชื่อ แอนไฮโดรกลูโคไพราโนส (anhydroglucopyranose) ที่ประกอบด้วยหน่วยย่อย ของ D-glucose ในรูป β-D-glucopyranose มาเชื่อมต่อกันเป็นสายยาวด้วยพันธะไกลโคซิดิก (glycosidic linkage) ที่คาร์บอนอะตอมตำแหน่งที่ 1 กับคาร์บอนอะตอมตำแหน่งที่ 4 ในโมเลกุล ถัดไป ซึ่งการจัดเรียงตัวของหน่วยย่อย D-glucose จะอยู่ในลักษณะ chair form ดังแสดงในรูปที่ 2.3 แต่ละโมเลกุลของเซลลูโลสยึดกันด้วยพันธะไฮโดรเจนระหว่างหมู่ไฮดรอกซิล (hydroxyl group) ที่ C ตำแหน่งที่ 3 กับ O ที่อยู่ในวงแหวนของโมเลกุลถัดไป และระหว่างหมู่ไฮดรอกซิล (hydroxyl ตำแหน่งที่ 6 กับ O ที่เชื่อมระหว่างโมเลกุลของ D-glucose ในอีกโมเลกุลหนึ่ง ดังแสดงในรูปที่ 2.4 จากการจัดเรียงตัวเช่นนี้ ทำให้โมเลกุลของเซลลูโลสเรียงตัวขนานกันอย่างมีระเบียบ เรียกว่า บริเวณที่เป็นผลึก (crystalline region) ส่วนบริเวณที่มีการจัดเรียงโมเลกุลไม่เป็นระเบียบ เรียกว่า บริเวณที่เป็นอลัณฐาน (amorphous region)

รูปที่ 2.3 โครงสร้างของเซลลูโลส [11]

รูปที่ 2.4 แสดงการเรียงโมเลกุลของเซลลูโลส [11]

โครงสร้างผลึกของเซลลูโลส โดยทั่วไปมี 2 แบบ คือ ผลึกเซลลูโลส I และผลึกเซลลูโลส

II ซึ่งเซลลูโลส I มี 2 แบบ คือ เซลลูโลส I_{α} โดยมีค่า a = 8.2⁷ A, b = 10.3⁸ A, c = 7.8⁵ A, β = 96.3 A และเซลลูโลส I_{β} โดยมีค่า a = 8.02 A, b = 10.42 A, c = 7.44 A, β = 98.33 A ซึ่ง โครงสร้างของเซลลูโลส I_{α} มีความเสถียรน้อยกว่าเซลลูโลส I_{β} จึงทำให้พบเซลลูโลส I_{β} ใน ธรรมชาติมากกว่า เช่น ฝ้าย และรามี โดยมีโครงสร้างดังแสดงในรูปที่ 2.5 และผลึกเซลลูโลส II ได้ จากการดัดแปรเซลลูโลส I คือ เซลลูโลสที่ได้จากการคืนสภาพ (regenerated cellulose) เช่น ไล โอเซลล์ (lyocell) หรือวิสโคส(viscose) โดยมีค่า a = 8.0² A, b = 10.42 A, c = 7.44 A, β = 98.33[°], γ = 116.8[°] ซึ่งโครงสร้างของเซลลูโลส I มีระดับโครงสร้างสูงกว่าโครงสร้างของเซลลูโลส II แต่ผลึกของเซลลูโลส II มีความแข็งแรงมากกว่าผลึกของเซลลูโลส I โดยมีโครงสร้างดังแสดงในรูป ที่ 2.6 [11-13]

จุฬาลงกรณมหาวทยาลย

รูปที่ 2.5 แสดงโครงสร้างของผลึกเซลลูโลส I_β [12,13]

รูปที่ 2.6 แสดงโครงสร้างของผลึกเซลลูโลส II [13]

เนื่องจากลักษณะการเชื่อมต่อพันธะของโครงสร้างผลึกที่แตกต่างกันระหว่างผลึก เซลลูโลส I และผลึกเซลลูโลส II ทำให้เกิดการดูดซับลำแสงคลื่นอินฟราเรด (IR) ที่แตกต่างกัน ดังแสดงในตารางที่ 2.3 และทำให้เกิดการหักเหของแสงที่แตกต่างกัน เมื่อตรวจสอบด้วยเทคนิค XRD ดังแสดงรูปที่ 2.7

Frequency (cm ⁻¹)	Assignment	Component
3488	-OH stretching intramolecular hydrogen bonds	Cellulose II
3447	-OH stretching intramolecular hydrogen bonds	Cellulose II
3405	-OH stretching intramolecular hydrogen bonds	Cellulose I
3350	-OH stretching intramolecular hydrogen bonds	Cellulose I and II
3175	-OH stretching intramolecular hydrogen bonds	Cellulose II
2970	CH stretching	Cellulose I and II
2945	CH stretching	Cellulose I (2945), Cellulose II (2955)
2900	CH stretching	Cellulose I and II
2853	CH ₂ asymmetric stretching	Cellulose I and II
1635	-OH of water absorbed from cellulose	Cellulose I (1630), Cellulose II (1620)
1455	-OH in plane bending	Cellulose I (1455), Cellulose II (1470)
1420	CH ₂ symmetric bending	Cellulose I and II
1375	CH bending	Cellulose I and II
1335	-OH in plane bending	Cellulose I (1336), Cellulose II (1335)
1315	CH ₂ wagging	Cellulose I (1317), Cellulose II (1315)
1278	CH bending	Cellulose I (1282), Cellulose II (1278)
1200	-OH in plane bending	Cellulose I (1205), Cellulose II (1200)
1155	C-O-C asymmetric stretching	Cellulose I (1155), Cellulose II (1162)
1111	Ring asymmetric stretching	Cellulose I (1111), Cellulose II (1007)
1055	C-O stretching	Cellulose I and II
1035	Stretching C-O	Cellulose I and II
893	Group C ₁ frequency	Cellulose I (895), Cellulose II (893)

ตารางที่ 2.3 ค่าความถี่จาก IR spectra ของ crystalline polysaccharide [15]

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

รูปที่ 2.7 XRD ดิฟแฟรกโตแกรมของผลึกเซลลูโลส I และ II และเซลลูโลสอสัณฐาน [16]

2.4 การเตรียมเซลลูโลสแบบผลึกระดับจุลภาค [2, 7,10]

การเตรียมผลึกเซลลูโลสระดับจุลภาคเป็นการย่อยสลายส่วนที่เป็นอสัณฐานของ เซลลูโลสออกจากเส้นใยเซลลูโลสให้เหลือแต่ส่วนที่เป็นผลึกในระดับจุลภาค ซึ่งการเตรียม โดยทั่วไปนิยมใช้ 2 วิธี คือ

2.4.1. การไฮโดรไลซ์ด้วยเอนไซม์ (Enzymatic hydrolyze)

เป็นการย่อยสลายสารประกอบเซลลูโลสด้วยเอนไซม์ซึ่งส่วนใหญ่ได้จากเชื้อราและ แบคทีเรีย เนื่องจากปฏิกิริยาเกิดที่สภาวะไม่รุนแรง (อุณหภูมิห้อง และความดันปกติ) จึงต้องใช้ เวลาในการย่อยสลายเป็นเวลาหลายชั่วโมงถึงหลายวันจึงจะได้ผลึกเซลลูโลสระดับจุลภาค แต่การ ใช้เอนไซม์มีข้อดี คือ เอนไซม์มีความเจาะจงในการเข้าทำปฏิกิริยา โดยไม่ทำปฏิกิริยากับสารอื่นที่ ไม่ใช่เซลลูโลส จึงทำให้ได้ผลิตภัณฑ์ที่ค่อนข้างบริสุทธิ์ แต่การใช้เอนไซม์ต้องใช้ต้นทุนสูงจึงไม่ค่อย นิยมใช้

2.4.2 การไฮโดรไลซ์ด้วยสารเคมี (Chemical hydrolyze) [3, 10]

เป็นการย่อยสลายสารประกอบเซลลูโลสด้วยกรด โดยการนำกรดไปไฮโดรไลซ์เซลลูโลส ให้สั้นลง เป็นวิธีที่นิยมใช้มากกว่า เนื่องจากทำให้ได้ผลึกเซลลูโลสระดับจุลภาคได้อย่างรวดเร็ว โดยกรดมีราคาไม่แพงและหาได้ง่าย เหมาะสมในทางอุตสาหกรรมมากกว่าการไฮโดรไลซ์ด้วย เอนไซม์ ซึ่งการไฮโดรไลซ์ด้วยกรด มีกลไกลดังนี้

เกิดการแตกสลายในสายโซ่โมเลกุลของเซลลูโลส (Cellulose depolymerization) โดยมีการแตกหักของพันธะที่อ่อนแอของหมู่ที่ถูกออกซิไดซ์ได้ง่ายภายใน โครงสร้างของเซลลูโลส

 เกิดการแตกหักของพันธะ β 1,4-glycosidic บนสายโซ่เซลลูโลสในบริเวณที่ มีการจัดเรียงตัวไม่เป็นระเบียบ (amorphous region) ทำให้เกิดเป็นสายสั้นๆ ดังแสดงในรูปที่ 2.8

รูปที่ 2.8 การแตกหักตรงบริเวณที่เป็นอสัณฐาน [3, 10]

3. เกิดการแตกหักของพันธะ β-1,4 glycosidic บนสายโซ่เซลลูโลสในบริเวณที่มี การจัดเรียงตัวเป็นระเบียบ (crystalline region) ซึ่งเกิดเมื่อขั้นที่ 2 เกิดเสร็จสมบรูณ์แล้ว

ปัจจัยที่มีผลต่อการไฮโดรไลซ์เซลลูโลสด้วยกรด ได้แก่

1. ชนิดของกรด : การไฮโดรไลซ์ด้วยกรดที่แรงจะทำให้พันธะ β-1,4 glycosidic
 บนสายโซ่เซลลูโลสแตกออกเป็นสายที่สั้นมากๆ และใช้เวลาในการไฮโดรไลซ์น้อยกว่าการใช้กรด
 อ่อน

2. **อุณหภูมิ** : การใช้อุณหภูมิสูงทำให้การไฮโดรไลซ์เกิดง่ายขึ้น ได้สายโซ่ เซลลูโลสที่สั้นมาก ดังแสดงในรูปที่ 2.9

2.5 พอลิไวนิลคลอไรด์หรือพีวีซี [Poly(vinyl chloride) or PVC] [17-26]

พีวีซีเป็นพลาสติกที่มีการผลิตเป็นอันดับสองรองจากพอลิเอทิลีน เนื่องจากสามารถ นำไปใช้ประโยชน์ได้ทั้งในด้านงานก่อสร้าง อุปกรณ์ไฟฟ้า ของใช้ในบ้าน งานบรรจุภัณฑ์ งานทำ หนังเทียม และงานด้านเกษตรกรรม เป็นต้น นอกจากนี้ อุตสาหกรรมการผลิตฟิล์มพีวีซียังมี บทบาทสำคัญต่อสภาพสังคมและการดำรงชีวิตในปัจจุบัน เพราะสามารถอำนวยประโยชน์ทั้งด้าน การเกษตรการถนอมอาหาร การห่อสินค้า และทำเป็นสิ่งของเครื่องใช้อื่นๆ อีกมากมาย

พีวีซีเป็นเทอร์โมพลาสติกอสัณฐานที่มีความเป็นผลึก 5-10% ซึ่งสามารถผลิตให้มีความ เป็นผลึก 35-40% ได้ที่อุณหภูมิต่ำมากๆ (<-25°C) ซึ่งพีวีซีโดยทั่วไปมีการจับตัวแบบ head-*to*-tail ดังแสดง ในรูปที่ 2.10 และมีโครงสร้างเป็นอะแทกติก (atactic) แต่ถ้าพอลิเมอไรซ์ที่อุณหภูมิต่ำๆ ความเป็นผลึกจะเพิ่มขึ้น โดยมีโครงสร้างเป็นซินดิโอแทกติก (syndiotactic) มากขึ้น แต่ไม่มีตัวเร่ง ปฏิกิริยาที่เหมาะสมในการทำเป็นแบบไอโซแทกติก (isotactic) ซึ่งปฏิกิริยาการสังเคราะห์แสดงใน รูปที่ 2.11

พีวีซีเป็นผลิตผลที่ได้จากแก๊สธรรมชาติและเกลือ โดยแก๊สเอทิลีนทำปฏิกิริยากับคลอรีน ที่ได้จากเกลือโซเดียมคลอไรด์ ได้เป็นเอทิลีนไดคลอไรด์ (ethylene dichloride, EDC) แล้วเปลี่ยน ต่อไปเป็นไวนิลคลอไรด์มอนอเมอร์ (vinyl chloride monomer, VCM) และเมื่อนำ VCM ไปผ่าน กระบวนการพอลิเมอไรเซชันจะได้ผงพีวีซีที่บริสุทธิ์

พีวีซีที่ยังไม่ได้ใส่สารเติมแต่งใดๆ มีสมบัติดังนี้

- แข็ง เปราะ แตกง่าย เป็นพลาสติกอสันฐาน
 - ไม่มีสี และใส
 - มีความหนาแน่นประมาณ 1.4 g/cm³
 - มี T_g = 87 องศาเซลเซียส และ T_m = 212 องศาเซลเซียส
 - เมื่อติดไฟจะสามารถดับได้ด้วยตัวเอง
 - สลายตัวได้ง่ายเมื่อได้รับความร้อนและแสงแดด จึงต้องใส่สารเพิ่มเสถียรภาพ

กระบวนการผลิตพีวีซีเรซินโดยทั่วไป มี 4 แบบ ดังนี้

1. **การผลิตแบบแขวนลอย (Suspension polymerization)** พีวีซีส่วนใหญ่ถูก ผลิตด้วยกระบวนการนี้ และพีวีซีที่ได้มีขนาดเหมาะกับการใช้งานทั่วไป (general purpose) ใน ระบบของกระบวนการพอลิเมอไรเซชันประกอบด้วย

- น้ำ

- มอนอเมอร์ (VCM) ที่ไม่ละลายน้ำ (water-insoluble monomer)
- สารเริ่มปฏิกิริยา (initiator) ที่ละลายในมอนอเมอร์ (oil-soluble

initiator)

- สารช่วยกระจายตัว (dispersing agent) พร้อมการกวนอย่างรวดเร็ว จะทำให้มอนอเมอร์กระจายเป็นหยดเล็กๆ และป้องกันการรวมตัวของมอนอเมอร์

ปฏิกิริยาเกิดในระบบที่ VCM แขวนลอยอยู่ในน้ำที่เป็นตัวกลาง ลักษณะคล้ายน้ำมันที่ ถูกกวนอยู่ในน้ำ โดยน้ำเป็นตัวกลางระบายความร้อนที่เกิดจากปฏิกิริยา และปฏิกิริยาจะเกิด ภายในหยดมอนอเมอร์ที่อุณหภูมิ 50-90 องศาเซลเซียส จนกลายเป็นอนุภาคของพอลิเมอร์ โดย แต่ละหยดเป็นอิสระต่อกันตลอดปฏิกิริยา และเมื่อสิ้นสุดปฏิกิริยาผลิตภัณฑ์ที่ได้มีลักษณะเป็น slurry ที่มีอนุภาคของพีวีซีแขวนลอยในน้ำ และจะตกตะกอนแยกตัวลงมาอย่างรวดเร็วถ้าไม่มีกวน น้ำถูกกำจัดโดยการกรอง สารช่วยกระจายตัวถูกล้างออกโดยใช้น้ำล้างที่ผิวหน้า พีวีซีที่ได้มีอนุภาค ขนาดใหญ่ (40-150 m) ถ้าจับดูจะเป็นเม็ดที่ไม่ละเอียดมากนัก ใช้ในการขึ้นรูปโดยวิธีการรีด ด้วยลูกกลิ้ง (calendering)

2. การผลิตแบบอิมัลชั้น (Emulsion polymerization) เหมาะกับงานเคลือบ เช่น การทำหนังเทียม ในระบบของกระบวนการพอลิเมอไรเซชันประกอบด้วย

- น้ำ
- มอนอเมอร์ (VCM)
- สารเริ่มปฏิกิริยาที่ละลายน้ำ (water-soluble initiator)

- อิมัลซิฟายเออร์ (emulsifier) เป็นสารลดแรงตึงผิว ซึ่งโครงสร้างมีทั้ง ส่วนที่ชอบน้ำ (hydrophilic) และไม่ชอบน้ำ (hydrophobic)

ปฏิกิริยาพอลิเมอไรเซชันแบบอิมัลชันจะใช้สารอิมัลซิฟายเออร์ทำให้เกิดสารข้นๆ ภายใน ถังปฏิกรณ์ เมื่อสิ้นสุดปฏิกิริยาจะได้ลาเท็กซ์ที่ประกอบด้วยอนุภาคเล็กๆ ของพีวีซีกระจายในน้ำ เรียกว่า Primary particle ซึ่งมีอนุภาคขนาดเล็กมาก (ประมาณ 0.2-1.5 m) เมื่อเทียบกับแบบ แขวนลอย ถ้านำไปอบแห้งจะได้ผงที่มีลักษณะคล้ายแป้งเด็กเนื้อละเอียด เมื่อผสมกับพลาสติไซ-เซอร์จะได้ paste ลักษณะคล้ายแป้งเปียกข้นๆ ข้อเสีย คือ ความบริสุทธิ์ค่อนข้างต่ำ ค่าใช้จ่ายสูง

 การผลิตแบบ microsuspension polymerization เป็นเทคนิคกึ่ง emulsion และ suspension ซึ่งวัตถุดิบที่ใช้มีดังนี้

- ตัวกลางในการแพร่กระจาย : น้ำ
- มอนอเมอร์ : VCM
- อิมัลซิฟายเออร์
- สารเริ่มปฏิกิริยาที่ละลายในมอนอเมอร์

วัตถุดิบทั้งหมดจะถูกผสมในหม้อนึ่งอัดไอ (autoclave) ที่เตรียมไว้สำหรับการผสม ซึ่งใช้ แรง กลอัดเพื่อที่จะได้หยด VCM ที่มีขนาดเล็กมากๆ ในน้ำ (ขนาด 0.05-1.5 m) ซึ่งภายในหยด มอนอเมอร์ จะมีสารเริ่มปฏิกิริยาละลายอยู่ เมื่อสิ้นสุดปฏิกิริยาจะได้ลาเท็กซ์ซึ่งมีการกระจาย ขนาดของ primary particle ที่สม่ำเสมอขนาดประมาณ 0.05 -1.5 m

4. การผลิตแบบบัลค์ (Bulk polymerization) ตอนเริ่มต้นจะมีเพียงมอนอเมอร์ และสารเริ่มปฏิกิริยาเท่านั้น เป็นวิธีแบบง่ายๆ ผลผลิตที่ได้มีความบริสุทธิ์สูง และไม่มีสารอื่นเจือ ปน หากแต่มีข้อเสีย คือ ควบคุมอุณหภูมิของปฏิกิริยาพอลิเมอไรเซชันได้ยาก ซึ่งเมื่อเกิดพอลิเมอร์ มากขึ้นทำให้มีความหนืดสูง เป็นผลทำให้ความสามารถในการระบายความร้อนลดลง นอกจากนี้ ยังควบคุมขนาดของพีวีซีได้ยาก และการกำจัด VCM ที่เหลือตกค้างทำได้ยาก

พีวีซีที่ได้เป็นผงสีขาว ยังไม่เหมาะกับการใช้งาน จำเป็นต้องปรับปรุงให้มีความทนความ ร้อน เพราะเมื่อได้รับความร้อนระดับ150-200 องศาเซลเซียส ในระหว่างการขึ้นรูปจะแตกสลายได้ ง่าย และเปลี่ยนจากสีขาวเป็นเหลือง ส้ม น้ำตาล และดำ ซึ่งสามารถแก้ไขด้วยการเติมสารเพิ่ม เสถียรภาพความร้อน (heat stabilizer) เพื่อให้พีวีซีคงสภาพ เมื่อได้รับความร้อนเป็นเวลานานๆ ในระหว่างกระบวนการผลิต นอกจากนี้ ยังมีการใช้สารเติมแต่งอื่นๆ เพื่อปรับสมบัติของพีวีซีให้ได้ ตามต้องการ การผสมพีวีซีกับสารเติมแต่งอื่นๆ เรียกว่า "compounding" และเม็ดพีวีซีที่ได้เรียกว่า "PVC compound" ซึ่งประกอบด้วย

- พีวีซีเรซิน
- สารเพิ่มเสถียรภาพหรือสเตบิไลเซอร์
- พลาสติไซเซอร์
- สารหล่อลื่น
- ผงสี หรือสีสำเร็จรูป
- อื่นๆ เช่น สารห<mark>น่วงไฟ และสา</mark>รเพิ่มความต้านแรงกระแทก เป็นต้น

<u>พีวีซีเรซิน</u> (PVC resin)

เป็นผงละเอียดสีขาวคล้ายผงซักฟอก การแบ่งเกรดพีวีซีเรซิน จะแบ่งตามความหนืดเมื่อ ละลายในตัวทำละลาย ซึ่งโดยมากใช้ cyclohexanone แล้ววัดความหนืด โดยมีมาตรฐาน กำหนดค่าแทนความหนืด เรียกว่า "K value" ซึ่งเป็นตัวเลขไม่มีหน่วย แต่มีตารางเปรียบเทียบ Kvalue กับค่าความหนืดสัมพัทธ์ (relative viscosity) ค่า K เป็นค่าที่ชี้ให้เห็นถึงน้ำหนักโมเลกุล และคำนวณได้จากสูตรซึ่งมีความสัมพันธ์กับความหนืดสัมพัทธ์ (relative viscosity) ดังนี้ [19]

$$(\text{Log }\eta_{\text{rel}})/\text{C} = 75\text{K}^2/(1 + 1.5 \text{ KC}) + \text{K}$$

โดย

η_{rel} = ความหนืดสัมพัทธ์ C = ความเข้มข้นของสารละลาย

ถ้าพีวีซีเรซินมีค่า K สูง แสดงว่ามีน้ำหนักโมเลกุลสูง ถ้าค่า K ต่ำ จะมีน้ำหนักโมเลกุลต่ำ ซึ่งค่า K ยังแสดงถึงอุณหภูมิที่จะใช้ในการขึ้นรูปผลิตภัณฑ์ด้วย กล่าวคือ ถ้ามีค่า K สูง ต้องใช้ อุณหภูมิสูงในการขึ้นรูปผลิตภัณฑ์ และค่า K ยังบอกถึงความนิ่มแข็ง และความแข็งแรงของ ผลิตภัณฑ์อีกด้วย ถ้ามีค่า K สูง ผลิตภัณฑ์มีความแข็งแรงสูงและมีความนิ่มน้อย ถ้ามีค่า K ต่ำ จะมีความแข็งแรงต่ำ และมีความนิ่มมาก ซึ่งการแบ่งพีวีซีเรซินตามค่า K จะเป็นดังนี้

พีวีซีเรซินที่มีค่า K ต่ำ	คือ ต่ำกว่า 60
พีวีซีเรซินที่มีค่า K ปานกลาง	คือ 60-70
พีวีซีเรซินที่มีค่า K สูง	คือ ตั้งแต่ 70 ขึ้นไป

ในการขึ้นรูปพีวีซีเรซินนั้น ค่า K มีความสำคัญ เพราะถ้าผลิตภัณฑ์เป็นพีวีซีชนิดแข็ง (rigid PVC) จะเลือกใช้พีวีซีที่มีค่า K 59-60 เพราะต้องการค่า K สูงพอที่จะให้ได้ผลิตภัณฑ์ที่มี ความแข็งแรง แต่ถ้าค่า K สูงมากกว่านี้จะขึ้นรูปไม่ได้ เพราะพีวีชีชนิดแข็งจะไม่มีการใส่ พลาสติไชเซอร์ลงไป หรือถ้าใส่ก็จะน้อยมาก ซึ่งทำให้ต้องใช้อุณหภูมิในการขึ้นรูปสูง และทำให้มี แรงเฉือนเกิดขึ้นมาก จะทำให้พีวีซีเกิดการสลายตัว (decompose) เสียก่อน ส่วนพีวีซีชนิดยืดหยุ่น (flexible PVC) มีการใช้พีวีซีเรซินที่มีค่า K แตกต่างกันไปอีก ทั้งนี้ขึ้นกับว่าต้องการนำพีวีซีเรซินไป ทำผลิตภัณฑ์ประเภทไหน ถ้าต้องการนำไปทำชั้นฟองน้ำ จะใช้พีวีซีเรซินที่มีค่า K ต่ำ คือ ประมาณ 60 เพราะชั้นฟองน้ำไม่ต้องการความแข็งแรงมากนัก แต่ต้องการความนิ่มมาก และ ต้องการให้พีวีซีเรซินหลอมตัวพอดี ซึ่งพีวีซีเรซินที่มีค่า K อยู่ระหว่าง 55-70 จะนิยมใช้งานกันมาก เนื่องจากมีความแข็งแรงพอเหมาะและสามารถขึ้นรูปได้ง่าย

<u>สารเพิ่มเสถียรภาพ</u> (Stabilizer) [21]

เป็นสารเติมแต่งซึ่งผสมกับพีวีซีเรซิน เพื่อปรับปรุงให้สามารถทนความร้อน (heat stabilizer) และแสง (light stabilizer) โดยเฉพาะความร้อนในระหว่างการผลิต และรังสี อัลตราไวโอเลตในแสงอาทิตย์ ซึ่งมีพลังงาน (71-95 kJ/mol) เพียงพอที่จะทำให้พันธะ C-C, C-CI, C-H แตกออก ซึ่งพีวีซีจะสลายตัวโดยสูญเสียอะตอมของคลอรีนไปเป็น HCI (แก๊สของกรดเกลือ) และถ้าสูญเสียมากๆ จะค่อยๆ เป็นสีเหลือง → น้ำตาล → ดำ การป้องกันทำได้โดยเติมสารเพิ่ม เสถียรภาพพวกเกลือของโลหะหนัก (heavy metal) หรือสบู่ของโลหะหนัก (heavy metal soap) เป็นตัวจับ HCI ที่หลุดออกจากโมเลกุล ทำให้มีเสถียรภาพเพิ่มขึ้น ซึ่งมีให้เลือกหลายชนิดตาม ราคา และความปลอดภัยในการใช้ ได้แก่ สารประกอบตะกั่ว ดีบุก และกลุ่มแคดเมียม แบเรียม แคลเซียม เช่น Ca-stearate, Zn-stearate, tribasic lead sulphate ปริมาณการใช้สารเพิ่ม เสถียรภาพในสูตรจะประมาณ 1-5%

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

<u>พลาสติไซเซอร์</u> (Plasticizer) [21, 22]

เป็นสารช่วยเพิ่มความยืดหยุ่นให้กับพีวีซี และทำให้ T_g ลดต่ำกว่าอุณหภูมิห้อง โดยเข้า ไปลดแรงดึงดูดระหว่างโมเลกุลของพีวีซี ทำให้มีความยืดหยุ่นเพิ่มขึ้น พลาสติไซเซอร์ต้องมีจุด เดือดสูงเพื่อไม่ให้ระเหยได้ง่าย และต้องเข้ากับพอลิเมอร์ได้ดี ซึ่งสามารถแบ่งได้เป็นสองชนิดคือ พลาสติไซเซอร์แท้จริงหรือพลาสติไซเซอร์ปฐมภูมิ (true plasticizer or primary plasticizer) และ พลาสติไซเซอร์เสริมหรือพลาสติไซเซอร์ทุติยภูมิ (secondary plasticizer)

พลาสติไซเซอร์ปฐมภูมิ (true plasticizer or primary plasticizer) สามารถแบ่งเป็น หลายประเภท ดังนี้ :

1. ฟทาเลตเอสเทอร์ (Phthalate ester) นิยมใช้กันมาก (มากกว่า 50%).ในพีวีซีได้แก่

- ได-2-เอทิลเฮกซิลฟทาเลต [Di(2-ethylhexyl) phthalate, DEHP หรือ Dioctyl phthalate, DOP] เป็นที่นิยมใช้กันมากที่สุดกับพีวีซี เนื่องจากมีอัตราการระเหยปานกลาง, มี เสถียรภาพทางความร้อนและความทนน้ำดี และช่วยให้ผลิตภัณฑ์มีความอ่อนตัว ณ อุณหภูมิต่ำ ได้ดี แต่มีผลอ่อนๆ ต่อการทำให้เกิดโรคมะเร็ง

- ไดไอโซโนนิลฟทาเลต (Di-isononyl phthalate, DINP) เมื่อเปรียบกับ DOP สาร ชนิดนี้มีการรวมตัวกับพีวีซีได้ต่ำกว่า และทำให้ผลิตภัณฑ์มีความอ่อนตัว ณ อุณหภูมิต่ำกว่า แต่ การระเหยน้อยกว่าและความหนาแน่นต่ำกว่า จึงทำให้ DINP ที่ผลิตส่วนใหญ่สามารถนำมาใช้ใน ผลิตภัณฑ์ที่ต้องสัมผัสกับอาหาร

- บิวทิลเบนซิลฟทาเลต (Butyl benzyl phthalate, BBP) เมื่อเปรียบกับ DOP สาร ชนิดนี้มีการรวมตัวกับพีวีซีได้ดีมาก มีอัตราการระเหยต่ำกว่า DBP และประสิทธิภาพต่ำกว่า DOP

- ไดบิวทิ<mark>ล</mark>ฟทาเลต (Dibutyl phthalate, DBP) การรวมตัวกับพีวีซีและอนุพันธ์ของ เซลลูโลส แต่การระเหยค่อนข้างง่าย จึงมีข้อจำกัดในการนำไปใช้

- ไดไอโซดีซิลฟทาเลต (Di-isodecyl phthalate, DIDP) เมื่อเปรียบกับ DOP สารชนิดนี้มีการรวมตัวกับพีวีซีได้ต่ำกว่า แต่การระเหยน้อยกว่า

2. พลาสติไซเซอร์ชนิดในผลิตภัณฑ์ที่สามารถใช้ได้ที่อุณหภูมิต่ำ (Low temperature type plasticizer) คือ จะให้ความยืดหยุ่นแม้ที่อุณหภูมิต่ำได้แก่ พวกอะลิฟติกไดคาร์บอซิลิก แอซิลิกเอสเทอร์ เช่น อะดิเพต (adipates)
3. พลาสติไซเซอร์ชนิดพิเศษ Special plasticizer ได้แก่

3.1 ฟอสเฟตเอสเทอร์ (Phosphate ester) เช่น ไตรครีซิลฟอสเฟต tricrecyl phosphate (มีพิษและราคาแพง)

3.2 พอลิเมอริกพลาสติไซเซอร์ (Polymeric plasticizer) ซึ่งให้สมบัติ inextractable (ถูกสกัดออกไม่ได้)

พลาสติไซเซอร์เสริมหรือพลาสติไซเซอร์ทุติยภูมิ (secondary plasticizer) หรือ เอกซ์-เทนเดอร์ (extenders) เป็นสารที่ช่วยลดต้นทุนการผลิต ได้แก่

- อะลิฟาติกไฮโดรคาร์บอน (Aliphtic Hydrocarbon)
- คลอริเนเตดไฮโดรคาร์บอน (Chlorinated Hydrocarbons)
- อีพอกซีพลาสติไซเซอร์ (Epoxy plasticizer)

<u>สารหล่อลื่น</u> (Lubricant) [20, 23]

เป็นสารเติมแต่งที่ใส่เข้าไปในพีวีซีเรซิน เพื่อป้องกันไม่ให้พีวีซีติดกับผนังของเครื่องจักร ในขณะผ่านกระบวนการผลิต ช่วยลดความเสียดทาน (friction) ช่วยให้ไหลง่ายขึ้น มีความสำคัญ มากกับงานอัดรีด (extrusion) นอกจากนี้ยังหล่อลื่นระหว่างเนื้อพีวีซีกับพีวีซีด้วยกันเอง เพื่อ ควบคุมอัตราการหลอมตัว และควบคุมการไหลของพีวีซีในเครื่องจักร สารเพิ่มเสถียรภาพบางชนิด ทำหน้าที่เป็นสารหล่อลื่นใน PVC compound ได้ด้วย

สารหล่อลื่นแบ่งเป็น 2 ชนิด คือ

- สารหล่อลื่นภายใน (internal lubricant) ช่วยลดแรงเสียดทานระหว่าง โมเลกุล
- สารหล่อลื่นภายนอก (external lubricant) ช่วยลดแรงเสียดทานระหว่าง
 โมเลกุลและเครื่องจักรที่พีวีซีไหลผ่าน

จุฬาลงกรณ่มหาวิทยาลัย

<u>สารตัวเติมหรือฟิลเลอร์</u> (Filler) [22, 24]

เป็นสารเติมแต่งที่เป็นของแข็งที่ใช้ใส่ในพอลิเมอร์เพื่อลดต้นทุนการผลิตหรือปรับปรุง สมบัติเชิงกลของพอลิเมอร์ ซึ่งฟิลเลอร์ที่ใช้เพื่อเพิ่มเนื้อผลิตภัณฑ์และลดต้นทุนการผลิตเป็นหลัก เรียกว่า เอกซ์เทนเดอร์ (extender) หรือ inert filler ส่วนฟิลเลอร์ซึ่งใช้เพื่อปรับปรุงสมบัติเชิงกล หรือสมบัติอื่นๆ เช่น การนำไฟฟ้า, การนำความร้อน เรียกว่า ฟังก์ชันแนลฟิลเลอร์ (functional fillers) หรือ active filler และฟิลเลอร์เสริมแรง เรียกว่า (reinforcing filler or reinforcement)

ฟิลเลอร์ที่ใช้ในพอลิไวนิลคลอไวด์

- แคลเซียมคาร์บอเนต (calcium carbonate) มีความหนาแน่นประมาณ 2.7 g/cm³ ซึ่งอาจมีชนิดที่เคลือบด้วย stearic acid ไว้บนผิว (เรียกว่า activated whiting) การ เติม calcium carbonate มากเกินไปเพื่อลดต้นทุนการผลิต จะทำให้คุณภาพของท่อพีวีซีต่ำลง โดยเฉพาะสมบัติทางกายภาพจะเลียไป

- เคาลิน (Kaolin) เป็น aluminium silicate (มีความหนาแน่นประมาณ 2.2 g/cm³) ส่วนใหญ่ใช้กับพีวีซีที่ทำฉนวนหุ้มสายไฟ

- ซิลิกา (silica) มีความหนาแน่น 2.2-2.3 g/cm³ .มีสมบัติช่วยในการเสริมแรง, เพิ่มความเสถียรภาพทางรูปร่างอุณหภูมิสูง, ช่วยลดการหดตัวและเกิดรอยแตก, ช่วยเพิ่มสมบัติ ทางความร้อน

- ทัลค์ (talc) มีความหนาแน่น 2.5-2.8 g/cm³ เป็น magnesium silicate มี สมบัติช่วยในการเสริมแรง , มีสมบัติผลักน้ำ (repellency) และ ลื่น (good slip property) , ช่วย เพิ่มความเฉื่อยต่อเคมีภัณฑ์, ความร้อนและความชื้น

- ใยหิน (asbestos) มีความหนาแน่น 2.2-2.3 g/cm³ เป็น Ca/Mg silicate มี สมบัติช่วยในการเสริมแรง ,เพิ่มความเสถียรภาพทางรูปร่างอุณหภูมิสูง

วอลลาสโทไนต์ (Wollastonite, CaSiO₃) มีความหนาแน่น 2.9 g/cm³ มีสมบัติ
 ช่วยในการเสริมแรง ,เพิ่มความเสถียรภาพทางรูปร่างอุณหภูมิสูง และมีสมบัติเป็นฉนวนไฟฟ้า
 เพิ่มขึ้น

- คาร์บอนแบล็ก (Carbon black) มีความหนาแน่น 2.04-2.25 g/cm³ มีสมบัติ ช่วยในการเสริมแรง ,ช่วยเพิ่มสมบัติการนำไฟฟ้า และมีความสามารถในการดูดกลืนแสงยูวีได้

- อะลูมิเนียมไฮดรอกไซด์ (Aluminium Hydroxide) มีความหนาแน่น 2.4 g/cm³ช่วยเพิ่มสมบัติทนไฟ

ผงไม้ ช่วยลดต้นทุนการผลิต ลดการหดตัวของผลิตภัณฑ์และเพิ่มความตึงผิว

<u>ผงสีหรือสีสำเร็จรูป</u> (pigment or dye) [20]

ผสมในพีวีซีเพื่อให้มีสี เนื่องจากมาตรฐานผลิตภัณฑ์ท่อพีวีซีแข็งของสำนักงาน มาตรฐานผลิตภัณฑ์อุตสาหกรรม กระทรวงอุตสาหกรรมได้กำหนดสีตามประเภทของการใช้งาน เช่น สีฟ้า สีเหลือง และสีเทา เป็นต้น นอกจากนี้ ผลิตภัณฑ์พีวีซีอื่นๆ ก็ผสมผงสีเพื่อให้มีสีตาม ต้องการ ซึ่งจะแบ่งเป็น ผงสีอินทรีย์ (Organic pigment) และผงสีอนินทรีย์ (Inorganic pigment) เช่น TiO, ให้สีขาวและช่วยให้ทึบแสง ช่วยให้ใช้งานกลางแจ้งได้

การผสมผง PVC กับสารเติมแต่งต่างๆ มีด้วยกัน 3 แบบ ดังนี้

 Compound มีลักษณะเป็นเม็ดทรงกระบอกหรือลูกบาศก์เล็กๆ ที่ได้จากการ ผสมผงพีวีซีและสารเติมแต่งต่างๆ แล้วป้อนเข้าเครื่องอัดรีด และตัดเป็นชิ้นเล็กๆ

2. Premix เป็นของผสมที่มีลักษณะเป็นผงชื้น เกิดจากการผสมเรซินและ สารเติมแต่งโดยใช้ mixer กวนด้วยความเร็วสูง

3. Paste หรือ plastisol มีลักษณะเป็นของเหลวหนืด ผงพีวีซีที่ใช้ส่วนใหญ่เป็น ประเภท emulsion PVC ผสมกับพลาสติไซเซอร์ และสารเติมแต่งอื่นๆ เพื่อให้เหมาะกับการใช้งาน

นับตั้งแต่เริ่มค้นพบ VCM ซึ่งเป็นวัตถุดิบในการผลิตพลาสติกพีวีซี และวิวัฒนาการของ กระบวนการการผลิตพีวีซีจนปัจจุบัน พีวีซีได้ถูกนำมาทำเป็นผลิตภัณฑ์ต่างๆ มากมาย โดย สามารถแบ่งผลิตภัณฑ์ตามวิธีการขึ้นรูปได้ดังนี้ [24]

1. ผลิตภัณฑ์จากการอัดรีด (Extrusion) : การอัดรีดจะได้ผลิตภัณฑ์ที่ยาว ต่อเนื่องกัน โดยมีเกลียวทำการอัดหลอม และดันผ่านหัวได (die) รูปทรงต่างๆ ผลิตภัณฑ์ที่ขึ้นรูป ด้วยเครื่องอัดรีด (extruder) ได้แก่ ท่อน้ำ ท่อประปา หลอด กรอบประตูและหน้าต่าง กรอบสำหรับ ตกแต่ง (edging profile) ฉนวนและเปลือกนอกหุ้มสายไฟฟ้า ฉนวนหุ้มสายโทรศัพท์ ฟิล์มยืด (stretch film) สำหรับห่ออาหาร เป็นต้น นอกจากนี้ ผลิตภัณฑ์ที่เป็นแผ่นยังสามารถนำไปขึ้นรูป ต่อด้วยความร้อน แล้วอัดเข้าแม่แบบด้วยแรงกลสุญญากาศ หรือลมอัด ได้แก่ แผ่นลอนใสมุง หลังคา และแผ่นเสียง เป็นต้น

 2. ผลิตภัณฑ์จากการฉีดแบบ (Injection molding) : พีวีซีจะถูกหลอมและดัน ผ่านหัวฉีดเข้าไปในแม่แบบ และถอดแบบออกเมื่อชิ้นงานแข็งตัว ผลิตภัณฑ์ที่ผลิตโดยวิธีนี้ ได้แก่ ข้อต่อท่อ (fitting) ชิ้นส่วนปั๊ม เครื่องใช้ในบ้านและสำนักงาน รองเท้า เป็นต้น ผลิตภัณฑ์จากการเป่าแบบ (Blow molding) : พีวีซีจะถูกอัดรีดเป็นสายท่อ (parison) เข้าไปภายในแม่แบบกลวงสองฝาประกบกัน ซึ่งสายท่อจะพองโตเต็มช่องว่างของแม่แบบ ผลิตภัณฑ์จากการเป่าแบบ ได้แก่ ขวดพีวีซีสำหรับใส่น้ำมันพืช แชมพู น้ำดื่ม และของเหลวอื่นๆ

 4. ผลิตภัณฑ์จากการรีดแผ่นด้วยลูกกลิ้ง (Calendering) : การอัดรีดแผ่นด้วย ลูกกลิ้งร้อน 2 ตัว หรือมากกว่า เพื่อให้ได้แผ่นฟิล์มที่มีความหนาตามต้องการ ผลิตภัณฑ์จากการอัด รีดแผ่นด้วยลูกกลิ้ง ได้แก่

- soft film/sheet ได้แก่ แผ่นพลาสติกทั้งแบบใส ขุ่น และแบบสี ใช้ในการ ปูรองบ่อน้ำเพื่อการชลประทาน ผ้าปูโต๊ะ ห่อปกหนังสือ หรือนำไปตัดเย็บเป็นผลิตภัณฑ์ต่างๆ เช่น เสื้อกันฝน ตู้เสื้อผ้า ม่านห้องน้ำ ฯลฯ หรือนำไปอัดเป็นชั้น (laminating) เช่น เสื่อน้ำมัน เป็นต้น

> - rigid film/sheet คือ แผ่นพลาสติกแบบแข็ง ส่วนใหญ่จะใส ใช้หุ้มแผ่น งาม หรือทำบรรจุภัณฑ์โดยใช้ความร้อนและแรงอัด หรือสุญญากาศ ning)

สินค้าให้สวยงาม (thermoforming)

- artificial leather คือ การเคลือบผิวหน้าผ้าด้วยพีวีซี

5. **ผลิตภัณฑ์จากการขึ้นรูปด้วยแรงเหวี่ยง** (Rotational molding) : ใช้เตรียม ผลิตภัณฑ์ที่กลวง โดยจะหมุนแม่แบบใน 2 ทิศทาง อย่างสม่ำเสมอ จะได้ผลิตภัณฑ์ที่กลวง เช่น ตุ๊กตา ลูกบอล ภาชนะต่างๆ ถังน้ำมัน และถังใส่น้ำแข็ง เป็นต้น

6. ผลิตภัณฑ์จากการเคลือบผิว (Coating) : เป็นการเคลือบพลาสติกให้ติดกับ substrate ด้วยการทา โดย substrate จะเคลื่อนที่อยู่ภายใต้เหล็กปาดซึ่งจะเกลี่ยทา paste PVC ให้เคลือบติดกับ substrate อย่างสม่ำเสมอ ซึ่ง substrate อาจเป็นผ้า ใยสังเคราะห์ หรือกระดาษ เช่น หนังเทียม ผ้าใบ วอลล์เปเปอร์ (wall paper) หรืออาจเคลือบผิวโลหะก็ได้ การเคลือบผิวอีกวิธี หนึ่งทำได้โดยการจุ่ม (dip coating) โดย substrate จะจุ่มลงไปในอ่างพีวีซีเหลว ผลิตภัณฑ์ ลักษณะนี้ เช่น ถุงมือ และโลหะเคลือบ นอกจากนี้ ยังสามารถนำไปพ่นเคลือบผิวโลหะ (spraying) ได้ดังที่ใช้ในการพ่นใต้ท้องรถกันสนิม

พีวีซีโดยทั่วไปมี 2 เกรด คือ พีวีซีชนิดแข็ง (rigid PVC) และพีวีซีชนิดยืดหยุ่น (flexible PVC) โดยพีวีซีชนิดแข็งจะถูกใช้ทำเป็นแผ่น ท่อ กรอบหน้าต่าง และซิ้นส่วนต่างๆ ส่วนพีวีซีชนิด ยืดหยุ่นได้จากการใส่พลาสติไซเซอร์เข้าไปในพีวีซี หรือที่เรียกว่า พลาสติไซด์พีวีซี (plasticized PVC) ใช้ทำฉนวนหุ้มสายไฟ หนังเทียมหุ้มเบาะเก้าอี้ ทำกระเป๋า กระเบื้องยางปูพื้น ฟิล์ม กระดาษ ปิดผนัง และสายยาง เป็นต้น ตารางที่ 2.4 แสดงลักษณะเด่นของพีวีซีชนิดแข็งและชนิดยืดหยุ่น

พีวีซีชนิดแข็ง	พีวีซีชนิดยืดหยุ่น		
1. ต้านทานการกัดกร่อน สารเคมี น้ำมัน และอากาศ	1. ทนทานต่อสภาวะดินฟ้าอากาศ		
2. ผลิตง่าย	2. ป้องกันการซึมผ่านของแก๊สออกซิเจน		
3. น้ำหนักเบา (1/5 เท่า ของเหล็ก หรือ 1/10 เท่าของตะกั่ว)	3. นิ่มและหักงอได้		
4. ซะลอการติดไฟและไม่ติดไฟด้วยตัวเอง	4. ทนทานต่อการฉีกขาด		
5. เป็นฉนวนไฟฟ้าที่ดีมาก	5. มีความยืดหยุ่นดีเยี่ยม		
6. ทาสีง่ายและพิมพ์สีต่างๆ ได้มากมาย	6. มีความใสและเป็นมันวาว		
7. สามารถเลือกผลิตภัณฑ์ที่มีความใส กึ่งใส หรือทึบแสงได้			
ตามแต่การนำไปใช้งาน			

ตารางที่ 2.4 ลักษณะเด่นของพีวีซีชนิดแข็งและชนิดยืดหยุ่น [26]

ในการเลือกใช้พีวีซีคุณภาพต่างๆ นั้น โดยทั่วไปแล้ว ผู้ใช้มักคำนึงถึงสมบัติพื้นฐาน เช่น ค่า K ความหนาแน่น และขนาดอนุภาค เป็นต้น ซึ่งจะส่งผลต่อสมบัติของผลิตภัณฑ์และ กระบวนการขึ้นรูป ทั้งนี้ยังมีสมบัติสำคัญอีกประการหนึ่ง ซึ่งผู้ผลิตที่เกี่ยวข้องกับอาหารและยา โดยตรงจะทราบดี นั่นคือ ปริมาณมอนอเมอร์ตกค้าง (residual VCM) ซึ่งผู้ผลิตพีวีซีต้องควบคุมให้ มีปริมาณต่ำกว่า 1 ppm ก่อนส่งมอบให้แก่ผู้ทำการขึ้นรูป ทั้งนี้เพื่อประโยชน์ทั้งในด้านความ ปลอดภัยและด้านสิ่งแวดล้อม

ในมาตรฐาน European Council of Vinyl Manufacturers (ECVM) ซึ่งผู้ผลิตพีวีซีในกลุ่ม ยุโรปกำหนดมาตรฐานการควบคุมปริมาณมอนอเมอร์ตกค้างในผงพีวีซี คือ

- ไม่เกิน 5 ppm สำหรับพีวีซีที่ใช้ทั่วไป
- ไม่เกิน 1 ppm สำหรับพีวีซีที่เกี่ยวข้องกับอาหารและยา

เนื่องจากพีวีซีเป็นพอลิเมอร์ที่มีส่วนประกอบของคลอรีนและสารเติมแต่งที่ปริมาตรสูง จึงทำให้เป็นปัญหาสิ่งแวดล้อมได้มากกว่าเมื่อเปรียบเทียบพอลิเมอร์ชนิดอื่น ดังแสดงในรูปที่ 2.12

รูปที่ 2.12 เปรียบเทียบพีวีซีกับพอลิเมอร์อื่นๆ ในการเกิดมลพิษต่อสิ่งแวดล้อม

การรีไซเคิลผลิตภัณฑ์พีวีซียังมีขอบเขตจำกัดมาก เนื่องจากจะมีการปลดปล่อยแก๊ส ไฮโดรเจนคลอไรด์เมื่อได้รับความร้อนซึ่งทำให้เกิดการระคายเคืองต่อระบบทางเดินหายใจอย่าง รุนแรง ดังนั้นงานวิจัยนี้จึงสนใจที่จะนำผลึกเซลลูโลสระดับจุลภาคที่เตรียมได้จากการไฮโดรไลซ์ เศษผ้าฝ้ายที่ได้จากโรงงานตัดเย็บเสื้อผ้าสำเร็จรูปด้วยกรดไฮโดรคลอริกมาใช้เป็นสารตัวเติมแต่ง ในพลาสติกพีวีซี เพื่อเพิ่มความสามารถในการย่อยสลายพีวีซีด้วยกระบวนการทางชีวภาพ

2.6 การผสมเซลลูโลสแบบผลึกระดับจุลภาคในพลาสติก [5]

การผสมเซลลูโลสแบบผลึกระดับจุลภาคในพลาสติกที่นิยมใช้กันมี 2 วิธี คือ

2.6.1 **การผสมทางเคมี (Chemical blending)** โดยการผสมแบบสารละลาย (solution blending) เช่น การผสมกับ poly (ethylene-co-acrylic acid) (EAA) และพอลิเอทิลีนชนิดความ หนาแน่นต่ำ (LDPE) เป็นต้น

2.6.2 **การผสมทางกายภาพ (Physical blending)** เช่น การผสมด้วยเครื่องผสมแบบ 2 ลูกกลิ้ง (two-roll mill) ดังแสดงในรูปที่ 2.13

รูปที่ 2.13 เครื่องผสมแบบ 2 ลูกกลิ้ง (two-roll mill)

เครื่องผสมแบบ 2 ลูกกลิ้ง เป็นเครื่องผสมระบบเปิด ประกอบด้วยลูกกลิ้ง 2 ลูก วางใน แนวนอน สามารถปรับระยะห่างระหว่างลูกกลิ้งได้ตามต้องการ บริเวณหัวท้ายของลูกกลิ้งมีแผ่นยึด (guide) ช่วยควบคุมปริมาณพลาสติกในขณะผสม และช่วยกันไม่ให้พลาสติกเปื้อนน้ำมันหล่อลื่นที่ ปลายลูกกลิ้ง ซึ่งลูกกลิ้งที่ใช้บดพลาสติกทำจากเหล็กหล่อที่มีผิวหน้าเรียบ อีกทั้งต้องมีระบบหล่อ เย็นโดยจะผ่านน้ำเข้าไปในกลิ้งเพื่อป้องกันไม่ให้พลาสติกไหม้ และในการทำงานนั้นลูกกลิ้งทั้งสอง จะหมุนเข้าหากัน โดยขนาดและความเร็วของลูกกลิ้งจะมีผลต่อการกระจายตัวของผลึกเซลลูโลส ระดับจุลภาคในพลาสติก ซึ่งมีผลต่อสมบัติทางกายภาพของพลาสติก

2.7 งานวิจัยที่เกี่ยวข้อง

งานวิจัยที่เกี่ยวกับการนำเศษผ้าฝ้ายมาทำการไฮโดรไลซ์ด้วยกรดเพื่อเตรียมเซลลูโลส แบบผลึกระดับจุลภาค ได้แก่ งานวิจัยของ Battista และคณะ [2] ซึ่งศึกษาเกี่ยวกับกระบวนการ ไฮโดรลิซิสและการเกิดผลึกของเซลลูโลส โดยเน้นการหาผลของเวลาที่ใช้ในการทดลองต่อน้ำหนัก ที่สูญหายไปและระดับของการเกิดผลึกของเซลลูโลส โดยใช้ภาวะการทดลองทั้งแบบที่ไม่รุนแรง (กรดไฮโดรคลอริก 5.0 N ที่อุณหภูมิ 5, 18 และ 40 องศาเซลเซียส) และภาวะที่รุนแรง (กรดไฮโดร คลอริก 2.5 และ 5.0 N ที่อุณหภูมิ 5, 18 และ 40 องศาเซลเซียส) และภาวะที่รุนแรง (กรดไฮโดร คลอริก 2.5 และ 5.0 N ที่จุดเดือด) กับชิ้นทดลองที่ได้จากฝ้ายบริสุทธิ์ ฝ้ายที่ผ่านการฟอกสี เยื่อ ไม้ และเรยอน ซึ่งเขาพบว่าการใช้กรดไฮโดรคลอริกความเข้มข้น 2.5 N ที่อุณหภูมิ 105 องศา เซลเซียส เป็นเวลา 15 นาที เป็นภาวะที่เหมาะสมในการเตรียมเซลลูโลสแบบผลึกระดับจุลภาค

งานวิจัยที่เกี่ยวกับการเตรียมพอลิเมอร์ที่ย่อยสลายได้ด้วยกระบวนการทางชีวภาพส่วน ใหญ่เป็นการใช้แป้งหรือแป้งดัดแปรเป็นสารตัวเติมในพลาสติก ได้แก่ งานวิจัยของ Sung และ คณะ [3] ซึ่งได้ทดลองเตรียมฟิล์มพอลิเอทิลีนผสมแป้งข้าวโพดประมาณ 5% โดยน้ำหนัก โดย ฟิล์มที่เตรียมได้มี 2 แบบ คือ แบบที่ใส่และไม่ใส่สารเติมแต่งประเภท prooxidant ซึ่งการใช้แป้ง เพื่อเร่งการย่อยสลายทางชี่วภาพทำโดยใช้สารละลาย Bacillus sp. lpha-amylase ขณะที่การย่อย สลายพอลิเอทิลีนด้วยปฏิกิริยา ออกซิเดชันถูกเร่งด้วยการบ่มฟิล์มพอลิเอทิลีน/แป้งในเตาอบ ที่ อุณหภูมิ 70 องศาเซลเซียส ผลของการย่อยสลายแสดงในรูปของการเปลี่ยนแปลงทางกายภาพ และทางเคมี โดยการทดสอบสมบัติความต้านแรงดึง การยืดตัว และตรวจสอบด้วยเทคนิค GPC, IR และ SEM ซึ่งจากการทดลอง พบว่า ฟิล์มที่ไม่ใส่สาร prooxidant มีการเปลี่ยนแปลงไม่มากนัก เมื่อได้รับความร้อน ส่วนฟิล์มที่ใส่สาร prooxidant จะสูญเสียสมบัติทางกายภาพหลังจากให้ ความร้อนเป็นเวลา 20 วัน ส่วนการตรวจสอบการสลายตัวทางชี่วภาพ พบว่า แป้งถูกย่อยสลายไป 10 ถึง 50% โดยน้ำหนักของปริมาณแป้งเริ่มต้น ซึ่งแป้งที่ถูกไฮโดรไลซ์ด้วย lpha-amylase มี ความสัมพันธ์โดยตรงกับสมบัติทางกายภาพของฟิล์มพอลิเอทิลีน โดยจุดประสงค์ของการพัฒนา PE-starch blend ก็เพื่อเพิ่มการย่อยสลายของพอลิเอทิลีนเมื่อถูกทิ้งอยู่ในสิ่งแวดล้อมที่มี เสื้อจุลินทรีย์ซึ่งการย่อยสลายแป้งในระยะแรกจะช่วยเพิ่มพื้นที่ผิวของฟิล์ม เพื่อให้โซ่โมเลกุลของ พอลิเมอร์เกิดการขาดออกด้วยปฏิกิริยาออกซิเดชัน ตามด้วยการย่อยด้วยเชื้อจุลินทรีย์อีกครั้ง และ ้จากงานวิจัยนี้และงานวิจัยของผู้อื่น พบว่า ประมาณ 10% โดยน้ำหนักของแป้งที่อยู่ในฟิล์มสูญ หายไปด้วยการย่อยสลายด้วยกระบวนการทางชีวภาพ ซึ่งส่วนใหญ่แป้งที่ใส่เข้าไปในฟิล์มจะมาก และการใส่แป้งมากถึง 25% ไม่มีผลทำให้แป้งถูกย่อยสลายเพิ่มขึ้น ที่สุดประมาณ 10% ้นอกจากนี้ การใส่สาร prooxidant มีความจำเป็นเพราะจะกระตุ้นให้ PE เกิดการย่อยสลาย จึง อาจกล่าวได้ว่าทั้ง prooxidant และแป้งช่วยเสริมให้เกิดการย่อยสลายได้เร็วขึ้น

Mothe และคณะ [4] ได้ทดลองเตรียมพอลิเมอร์ผสมจากเอทิลีนไวนิลอะซีเตตโคพอลิ เมอร์ (EVA) ที่เหลือทิ้งในโรงงานทำรองเท้ากับพอลิแซกคาไรด์ด้วยวิธีผสมแบบหลอมเหลว (melt blending) บนลูกกลิ้งซึ่งหมุนด้วยความเร็ว 20 รอบ/นาที อุณหภูมิ 80 องศาเซลเซียส เป็นเวลา 10 นาที แล้วนำฟิล์มที่เตรียมได้ไปวิเคราะห์สมบัติทางความร้อนด้วยเทคนิค TGA, DTG และ DSC ตรวจสอบสัณฐานวิทยาด้วยเทคนิค SEM ทั้งก่อนและหลังจากฟิล์มถูกย่อยสลายด้วยจุลินทรีย์ แล้วรายงานผลในด้านเสถียรภาพทางความร้อน และความสามารถในการถูกย่อยสลายด้วย กระบวนการทางชีวภาพ ซึ่งผลที่ได้แสดงให้เห็นว่าฟิล์ม EVA ที่เติมพอลิแซกคาไรด์ถูกย่อยสลาย ด้วยจุลินทรีย์อย่างเห็นได้ชัด

งานวิจัยที่เกี่ยวกับการใช้เซลลูโลสแบบผลึกระดับจุลภาคเป็นสารเติมแต่งในพลาสติก ได้แก่ งานวิจัยของ มุทิตา พงษ์มาลา และคณะ [6] ซึ่งได้ทดลองเตรียมฟิล์มพอลิเอทิลีนชนิดความ หนาแน่นต่ำ (LDPE) ที่สามารถย่อยสลายได้ด้วยกระบวนการทางชีวภาพ โดยใช้เซลลูโลสแบบ ผลึกระดับจุลภาคที่เตรียมจากการไฮโดรไลซ์กระดาษที่ผ่านการถ่ายเอกสารแล้ว ด้วยกรดไฮโดร คลอริกความเข้มข้น 2.5 N ที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 30 นาที เป็นสารตัวเติมใน ฟิล์ม LDPE ปริมาณ 10-50 phr พบว่า เมื่อปริมาณเซลลูโลสแบบผลึกระดับจุลภาคเพิ่มขึ้น ฟิล์มที่ ได้มีความต้านแรงดึงและการยืดตัวลดลง ในขณะที่การดูดซึมน้ำเพิ่มขึ้น ดังนั้น จึงมีแนวโน้มที่ สามารถย่อยสลายได้ด้วยกระบวนการทางชีวภาพเมื่ออยู่ในสภาวะที่เหมาะสม

Helbert และคณะ [7] ได้ทดลองใช้เซลลูโลสแบบผลึกระดับจุลภาคที่มีขนาดอนุภาค ประมาณ 5 x 150-300 nm ที่เตรียมได้จากฟางข้าวสาลีเป็นสารตัวเติมเสริมแรงใน เทอร์โมพลาสติกเมทริกซ์ โดยการใช้เซลลูโลสแบบผลึกระดับจุลภาค 0-30% โดยน้ำหนัก สาร แขวนลอยของเซลลูโลสแบบผลึกระดับจุลภาคในน้ำถูกผสมกับลาเท็กซ์ของ poly(styrene-cobutyl acrylate) แล้วทำให้แห้งด้วยการแช่แข็งในแม่แบบ จากการทดลอง พบว่า เซลลูโลสแบบ ผลึกระดับจุลภาคเหล่านี้มีผลต่อการเสริมแรงที่อุณหภูมิสูงกว่าอุณหภูมิกลาสแทรนซิชัน (T_g) ของ เมทริกซ์เป็นอย่างมาก และยังช่วยปรับปรุงเสถียรภาพทางความร้อนของวัสดุเชิงประกอบที่เตรียม ได้อีกด้วย

บทที่ 3

วิธีการทดลอง

3.1 วัสดุและสารเคมี

- 1. เศษผ้าฝ้ายดิบ จากบริษัท K World Textile จำกัด
- 2. เส้นใยรามี จากส่วนอุตสาหกรรมสิ่งทอ กระทรวงอุตสาหกรรม
- 3. พีวีซีคอมพาวด์ จากบริษัทไทยนามพลาสติก จำกัด
 - พีวีซีเรซิน
 - ไดไอไซโนนิลฟทาเลต (Di-isononylphthalate, DINP) เป็นพลาสติไซเซอร์ปฐมภูมิ
 - พลาสติไซเซอร์ทุติยภูมิ
 - เกลือโลหะ Ca/Zn เป็นสารเพิ่มเสถียรภาพทางความร้อน
 - สารหล่อลื่น
- 4. สารละลายกรดไฮโดรคลอริก 0.25 N (AR Grade จากบริษัท J.T. Baker)
- สารละลายแอมโมเนียมไฮดรอกไซด์ความเข้มข้นร้อยละ 5
- 6. น้ำกลั่น

3.2 อุปกรณ์และเครื่องมือที่ใช้เตรียมเซลลูโลสแบบผลึกระดับจุลภาค

- 1. อุปกรณ์เครื่องแก้ว
- 2. เทอร์โมมิเตอร์
- 3. แท่นให้ความร้อน (hot plate)
- 4. กระดาษลิตมัส
- 5. เดซิเคเตอร์
- 6. ตู้อบ
- 7. เครื่องบดละเอียด ของ Fritsch รุ่น 14.702

3.3 เครื่องมือขึ้นรูปฟิล์มพีวีซี

1. เครื่องบดแบบสองลูกกลิ้ง (Two-rolls mill, ของ Lab Tech รุ่น LRM 110)

3.4 เครื่องมือที่ใช้ในการวิเคราะห์

1. เครื่องเอกซ์เรย์ดิฟแฟรกโตมิเตอร์ (X-ray diffractometer, XRD) ของ Bruker รุ่น D8

2. เครื่องฟูเรียร์ทรานสฟอร์มอินฟราเรดสเปกโทรโฟโตมิเตอร์ (FT-IR) ของ Nicolet รุ่น Impact 400D

3. เครื่อง Universal Testing Machine ของ LLOYD รุ่น LR 100K plus

4. เครื่องเทอร์โทกราวิเมทริกแอนาไลเซอร์ (Thermogravimetric Analyzer, TGA) ของ METTLER TOLEDO รุ่น TGA/SDTA 851[°]

5. เครื่องดิฟเฟอร์เวนเชียลสแกนนิงแคลอริมิเตอร์ (Differential Scanning Calorimeter, DSC) ของ METTLER TOLEDO รุ่น DSC822°

6. กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscope, SEM) ของ JEOL รุ่น JSM-6400

7. เครื่องเลเซอร์ไลท์สแกทเทอริง (Laser Light Scattering) ของ Malvern รุ่น Mastersizer S

3.5 ขอบเขตการทดลอง

การทดลองแบ่งเป็น 4 ส่วน คือ

- การเตรียมเซลลูโลสแบบผลึกระดับจุลภาคจากเศษผ้าฝ้าย
- การวิเคราะห์เซลลูโลสแบบผลึกระดับจุลภาค
- การขึ้นรูปฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาค
- การทดสอบสมบัติของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาค

จุฬาลงกรณ่มหาวิทยาลัย

3.5.1 การเตรียมเซลลูโลสแบบผลึกระดับจุลภาค

3.5.1.1 การเตรียมเซลลูโลสแบบผลึกระดับจุลภาคจากเศษผ้าฝ้าย

1. นำเศษผ้าฝ้ายดิบที่ได้ตัดเป็นชิ้นเล็กๆ ประมาณ 1 x 2 เซนติเมตร

- ขั้งเศษผ้าฝ้ายดิบที่ตัดแล้ว และนำมาไฮโดรไลซ์ด้วยกรดไฮโดรคลอริกความเข้มข้น
 2.5 นอร์แมล ที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 30 นาที
 - 3. นำผลิตภัณฑ์ที่ได้มาทำให้เป็นกลางด้วยสารละลายแอมโมเนียมไฮดรอกไซด์
- กรองเซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้ แล้วนำไปอบที่อุณหภูมิ 70-80
 องศาเซลเซียส เป็นเวลา 5 ชั่วโมง
 - 5. นำเซลลูโล<mark>สแบบผลึกระ</mark>ดับจุลภา<mark>คที่ผ่านการอบ</mark>แล้วไปบดด้วยเครื่องบดละเอียด

 นำเซลลูโลสแบบผลึกระดับจุลภาคที่ผ่านการบดแล้วไปชั่งน้ำหนัก เพื่อหาร้อยละ ของเซลลูโลสแบบผลึกระดับจุลภาคที่ไฮโดรไลซ์ได้ ซึ่งสามารถหาได้จากสมการที่ 3.1

3.5.1.2 การเตรียมเซลลูโลสแบบผลึกระดับจุลภาคจากเส้นใยรามี

เมือ

 นาเส้นใยรามี นามาไฮโดรไลซ์ด้วยกรดไฮโดรคลอริกความเข้มข้น 2.5 นอร์แมล ที่ อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 30 นาที

2. นำผลิตภัณฑ์ที่ได้มาทำให้เป็นกลางด้วยสารละลายแอมโมเนียมไฮดรอกไซด์

กรองเซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้ แล้วนำไปอบที่อุณหภูมิ 70-80
 องศาเซลเซียส เป็นเวลา 5 ชั่วโมง

4. นำเซลลูโลสแบบผลึกระดับจุลภาคที่ผ่านการอบแล้วไปบดด้วยเครื่องบดละเอียด

5. นำเซลลูโลสแบบผลึกระดับจุลภาคที่ผ่านการบดแล้วไปชั่งน้ำหนัก เพื่อหาร้อยละ ของเซลลูโลสแบบผลึกระดับจุลภาคที่ไฮโดรไลซ์ได้ ซึ่งสามารถหาได้จากสมการที่ 3.1

$$\% MC = W_1/W_0 \times 100$$
 (3.1)

W₀ = น้ำหนักเศษผ้าฝ้ายดิบหรือเส้นใยรามีที่ใช้ในการไฮโดรไลซ์ W₁ = น้ำหนักเซลลูโลสแบบผลึกระดับจุลภาคที่ได้จากการไฮโดรไลซ์

3.5.2 การวิเคราะห์เซลลูโลสแบบผลึกระดับจุลภาค

3.5.2.1 วิเคราะห์ด้วยเทคนิคอินฟราเรดสเปกโทรสโคปี (IR)

นำเซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้ไปอัดเม็ดกับผงโปแตสเซียมโบรไมด์ (KBr) แล้วนำไปวิเคราะห์ด้วยเครื่องฟูเรียร์ทรานสฟอร์มอินฟราเรดสเปกโทรโฟโตมิเตอร์ (FT-IR) ดังแสดงในรูปที่ 3.1 โดยทั่วไปอินฟราเรดสเปกตรัมทั้งของเซลลูโลส และเซลลูโลสแบบผลึกระดับ จุลภาคจะปรากฏแถบการดูดกลืนในช่วงความถี่ 3600-2800 ซม⁻¹ และช่วง 1600–850 ซม⁻¹ ดังนั้น ในการวิเคราะห์สามารถทำได้โดยดูแถบการดูดกลืนในช่วงความถี่ดังกล่าว (แสดงว่าเป็นเซลลูโลส เหรือ II) โดยเปรียบเทียบกับความถี่ในตารางที่ 2.3

รูปที่ 3.1 เครื่อง FT-IR ของ Nicolet รุ่น Impact 400D

3.2.2 วิเคราะห์ด้วยเทคนิค X-ray diffraction (XRD)

ขั้นตอนการเตรียมตัวอย่างมีดังนี้

น้ำแผ่นยึดตัวอย่าง (sample holder) ดังแสดงในรูปที่ 3.2 มาประกอบให้

เรียบร้อย

- 2. นำผงตัวอย่างที่บดละเอียดแล้วมาโรยลงบนแผ่นยึดตัวอย่าง แล้วกดเบาๆ
- 3. ปาดผงตัวอย่างส่วนเกินออกจาแผ่นยึดตัวอย่าง
- 4. นำฝาหลังปิดเข้ากับแผ่นยึดตัวอย่าง
- 5. แล้วนำแผ่นยึดตัวอย่างที่ประกอบเรียบร้อยแล้วเสียบกับแกนยึดตัวอย่าง ของเครื่อง XRD ดังแสดงในรูปที่ 3.3 โดยระวังมิให้นิ้วสัมผัสบริเวณที่มีผงตัวอย่าง
 - 6. ทำการวัดที่ค่ามุม 2 $extsf{0}$ ตั้งแต่ 10-50°

ร**ูปที่ 3.2** เครื่อง XRD ของ Bruker รุ่น D8

3.5.2.3 การวัดขนาดอนุภาคของเซลลูโลสแบบผลึกระดับจุลภาค

นำเซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้มาละลายน้ำแล้วนำมาวัดขนาดของ อนุภาคด้วยเครื่อง Laser Light Scattering โดยส่วนประกอบของเครื่อง แสดงไว้ในรูปที่ 3.4

รูปที่ 3.3 ส่วนประกอบของเครื่อง Laser Light Scattering ของ Malvern รุ่น Mastersizer S

3.5.3 การขึ้นรูปฟิล์มพีวีซีผสมเซลลูโลแบบผลึกระดับจุลภาค

1. เตรียมพีวีซีคอมพาวด์จากส่วนผสมต่างๆ ด้วยปริมาณดังนี้

ผงพีวีซีเรซิน	100	กรัม
DINP (พลาสติไซเซอร์ปฐมภูมิ)	38	กรัม
พลาสติไซเซอร์ทุติยภูมิ	2	กรัม
สารเพิ่มความเสถียรทางความร้อน (heat stabilizer)	2	กรัม
สารหล่อลื่น (lubricant)	0.2	กรัม

น้ำพีวีซีคอมพาวด์ที่เตรียมได้ไปผสมกับเซลลูโลสแบบผลึกระดับจุลภาคในปริมาณ 0,
 5, 10, 15, 20, 25, 30 phr

น้ำของผสมที่เตรียมแล้วไปขึ้นรูปเป็นฟิล์มให้มีความหนา 0.3-0.35 มิลลิเมตร ด้วย
 เครื่องบดผสมแบบสองลูกกลิ้ง (two roll mill) ดังแสดงในรูปที่ 2.13 ที่อุณหภูมิ 130 องศาเซลเซียส
 น้ำฟิล์มที่ได้ไปตัดเป็นชิ้นทดสอบตามรูปร่างและขนาดที่ต้องการเพื่อใช้ทดสอบสมบัติ
 ต่างๆ ของ ฟิล์มในขั้นตอนต่อไป

3.5.4 การทดสอบสมบัติของฟิล์มพีวีซีที่ผสมเซลลูโลสแบบผลึกระดับจุลภาค

3.5.4.1 การทดสอบสมบัติเชิงกลของฟิล์ม

ในงานวิจัยได้ทำการทดสอบความแข็งแรงของฟิล์มที่เตรียมได้ โดยทดสอบความต้าน แรงดึง (tensile strength), ความต้านแรงฉีกขาด (tear strength) ตามมาตรฐาน ASTM D882 และ ASTM D624 ตามลำดับ ด้วยเครื่อง universal testing machine ของ LLOYD รุ่น LR 100K plus ดังแสดงในรูปที่ 3.5 โดยมีรายละเอียด ดังนี้

<u>การทดสอบความต้านแรงดึง</u> (Tensile strength)

ขั้นตอนการทดสอบความต้านแรงดึงตามมาตรฐาน ASTM D882 มีดัง

 ตัดชิ้นทดสอบจากแผ่นฟิล์มให้มีขนาด 5 x 100 มิลลิเมตร ตามมาตรฐาน ASTM D882 โดยตัดทั้งตามแนวเครื่องจักร (machine direction, MD) และตามแนวขวาง (transverse direction, TD)

- 2. วัดความหนาของชิ้นทดสอบที่ตำแหน่งต่างๆ 5 แห่ง
- เลือกตัวจับ (grip) ที่ใช้ยึดชิ้นทดสอบ โดยคำนึงถึงลักษณะและความหนาของชิ้น ทดสอบ

4. น้ำหนักเซลล์ (load cell) ที่ใช้ทดสอบเท่ากับ 100 นิวตัน โดยกำหนดระยะ ระหว่างหัวจับ (gauge length) เท่ากับ 50 มิลลิเมตร และความเร็วในการดึงเท่ากับ 10 มิลลิเมตร/นาที

5. ยึดปลายทั้งสองของชิ้นทดสอบไว้กับตัวจับและทำการดึงจนกระทั่งชิ้น ทดสอบขาด

รูปที่ 3.4 เครื่อง universal testing machine ของ LLOYD รุ่น LR 100K plus

<u>การทดสดสอบความต้านแรงฉีกขาด</u> (Tear strength)

์ขั้นตอนการทดสอบความต้านแรงฉีกขาดตามมาตรฐาน ASTM D624 มีดังนี้

1. ตัดชิ้นทดสอบจากแผ่นฟิล์มด้วยหัวตัดชนิด C ที่มีรูปร่างลักษณะดังแสดงในรูปที่ 3.7 โดยตัดทั้งตามแนวเครื่องจักรและแนวขวางเครื่องจักร

- 2. วัดความหนาของชิ้นทดสอบที่ตำแหน่งต่างๆ 5 แห่ง
- 3. เลือกตัวจับ (grip) ที่ใช้ยึดชิ้นทดสอบโดยคำนึงถึงลักษณะและความหนาของชิ้น

ทดสอบ

 น้ำหนักเซลล์ที่ใช้ทดสอบเท่ากับ 100 นิวตัน โดยกำหนดระยะระหว่างหัวจับ เท่ากับ 25 มิลลิเมตร และความเร็วในการดึงเท่ากับ 500 มิลลิเมตร/นาที

5. ยึดปลายทั้งสองของชิ้นทดสอบไว้กับตัวจับและทำการดึงจนกระทั่งชิ้นทดสอบขาด

	Dimension	Millimetres		Inches	
		value	Tolerance	Value	Tolerance
ຊໍ	A	102	± 0.50	4.0	± 0.02
	В	19	± 0.05	0.75	± 0.002
	С	19	± 0.05	0.75	± 0.002
	D	12.7	± 0.05	0.5	± 0.002
		25	± 0.05	1.0	± 0.002
	F	27	± 0.05	1.061	± 0.002
	G	28	± 0.05	1.118	± 0.002
	Н	51	± 0.25	2.0	± 0.01

3.5.4.2 การวิเคราะห์สมบัติทางความร้อน

ในงานวิจัยได้ทำการวิเคราะห์สมบัติทางความร้อนของฟิล์มที่เตรียมได้ด้วยเทคนิค TGA และ DSC โดยมีรายละเอียด ดังนี้

<u>การวิเคราะห์ด้วยเทคนิค TGA</u>

การวิเคราะห์สมบัติทางความร้อนด้วยเทคนิค TGA เป็นการศึกษาเสถียรภาพทางความ ร้อน และอุณหภูมิการสลายตัวของผงเซลลูโลสแบบผลึกระดับจุลภาค และฟิล์มพีวีซีที่ผสมและไม่ ผสมเซลลูโลสแบบผลึกระดับจุลภาค ด้วยเครื่อง TGA ของ METTLER TOLEDO รุ่นTGA/SDTA 851° ดังแสดงในรูปที่ 3.8 โดยนำตัวอย่างทดสอบหนักประมาณ 10 มิลลิกรัม บรรจุใน ถาดอะลูมิเนียม (aluminium pan) อุณหภูมิที่ใช้ในการวิเคราะห์อยู่ในช่วง 30 ถึง 1,000 องศาเซลเซียส โดยทำการเพิ่มอุณหภูมิด้วยอัตรา 20 องศาเซลเซียส/นาที และทำการทดสอบ ภายใต้บรรยากาศไนโตรเจน

รูปที่ 3.6 เครื่อง TGA ของ METTLER TOLEDO รุ่น TGA/SDTA 851°

<u>การวิเคราะห์ด้วยเทคนิค DSC</u>

การวิเคราะห์สมบัติทางความร้อนด้วยเทคนิค DSC เพื่อศึกษาหาอุณหภูมิกลาล-แทรนซิชัน (T_g) ของฟิล์มพีวีซีทั้งที่ผสมและไม่ผสมเซลลูโลสแบบผลึกระดับจุลภาค และอุณหภูมิ หลอมเหลว (T_g) ของผลึกเซลลูโลสระดับจุลภาค ด้วยเครื่อง DSC ของ METTLER TOLEDO รุ่น DSC 822° ดังแสดงในรูปที่ 3.9 โดยนำตัวอย่างทดสอบหนักประมาณ 10 มิลลิกรัม บรรจุใน ถาดอะลูมิเนียม อุณหภูมิที่ใช้ในการวิเคราะห์หาอุณหภูมิกลาสแทรนซิชันอยู่ในช่วง 140 ถึง 125 องศาเซลเซียส โดยทำการเพิ่มอุณหภูมิด้วยอัตรา 10 องศาเซลเซียส/นาที และทำการทดสอบ ภายใต้บรรยากาศในโตรเจน ส่วนอุณหภูมิที่ใช้วิเคราะห์หาอุณหภูมิหลอมเหลวของเซลลูโลสแบบ ผลึกระดับจุลภาคอยู่ในช่วง 30 ถึง 260 องศาเซลเซียส โดยทำการเพิ่มอุณหภูมิด้วยอัตรา 10 องศาเซลเซียส/นาที และทำการทดสอบภายใต้บรรยากาศไนโตรเจน

รูปที่ 3.7 เครื่อง DSC ของ METTLER TOLEDO รุ่น DSC 822[°]

จุฬาลงกรณ์มหาวิทยาลย

3.5.4.3 การทดสอบความสามารถในการย่อยสลายทางชีวภาพ

ในงานวิจัยได้ทำการทดสอบความสามารถในการย่อยสลายทางชีวภาพโดยวิธีการฝัง ดินและทดสอบความสามารถในการดูดความชื้นของชิ้นทดสอบ โดยมีรายละเอียด ดังนี้

<u>ทดสอบโดยวิธีการฝังดิน</u>

นำฟิล์มพีวีซีที่ผสมและไม่ผสมเซลลูโลสแบบผลึกระดับจุลภาคมาชั่งเพื่อหาน้ำหนักที่ แน่นอน แล้วฝังลงในดินลึกประมาณ 5 เซนติเมตร ในกระบะที่บรรจุดินอยู่เต็ม (กระบะต้องมีรู สำหรับระบายน้ำส่วนเกิน) แล้วรดน้ำบนดินให้ชุ่ม จากนั้นนำกระบะดินไปตั้งไว้กลางแจ้ง ทิ้งไว้ ตามเวลาที่กำหนด (ทั้งหมด 8 สัปดาห์) เมื่อครบระยะเวลา 2, 4, 6 และ 8 สัปดาห์ ให้นำชิ้น ทดสอบออกจากดินอย่างระมัดระวัง ล้างดินออกเบาๆ ด้วยน้ำกลั่น จากนั้นนำชิ้นทดสอบไปอบให้ แห้งที่อุณหภูมิประมาณ 60 องศาเซลเซียส จนน้ำหนักชิ้นทดสอบคงที่ แล้วทำการชั่งเพื่อหา ปริมาณร้อยละของน้ำหนักที่เปลี่ยนไป ซึ่งคำนวณได้จากสมการดังนี้

> ร้อยละของน้ำหนักที่ลดลง = <u>W₂ - W₁</u> x 100 W₁

เมื่อ W₁ = น้ำหนักชิ้นทดสอบเริ่มต้น

W₂ = น้ำหนักชิ้นทดสอบเมื่อระยะเวลาผ่านไปตามกำหนด

นอกจากนี้ ยังนำชิ้นทดสอบที่ฝังดินเป็นเวลา 2, 4, 6 และ 8 สัปดาห์ ไปทดสอบสมบัติ ความต้านแรงดึง และความต้านแรงฉีกขาดด้วยวิธีที่ได้กล่าวมาแล้ว เพื่อเปรียบเทียบกับสมบัติ ก่อนการฝังดิน

<u>ทดสอบการดูดความชื้น</u>

การทดสอบความสามารถในการดูดซึมความชื้น เป็นการหาน้ำหนักของชิ้นทดสอบที่ เพิ่มขึ้นในภาวะที่ควบคุมความชื้น โดยนำชิ้นทดสอบที่เป็นแผ่นฟิล์มพีวีซีที่ผสมและไม่ผสม เซลลูโลสแบบผลึกระดับจุลภาคไปอบที่อุณหภูมิ 50 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง แล้วทิ้งไว้ ในเดซิเคเตอร์เป็นเวลา 24 ชั่วโมง หลังจากนั้นจึงนำชิ้นทดสอบไปชั่งเพื่อหาน้ำหนักที่แน่นอน จากนั้นนำชิ้นทดสอบไปวางบนตะแกรงในตู้ควบคุมที่มีความชื้นสัมพันธ์ร้อยละ 50 เป็นเวลา 24 ชั่วโมง แล้วนำไปชั่งน้ำหนักอีกครั้ง เพื่อหาปริมาณร้อยละของน้ำหนักที่เพิ่มขึ้นจากสมการ ดังนี้

ร้อยละของน้ำหนักที่เพิ่มขึ้น = $\frac{M_2 - M_1}{M_1} \times 100$ เมื่อ $M_1 =$ น้ำหนักชิ้นทดสอบเริ่มต้น

M₂ = น้ำหนักชิ้นทดสอบเมื่อเวลาผ่านไปตามกำหนด

3.5.5 การตรวจสอบสัณฐานวิทยาด้วยเทคนิค SEM

การตรวจสอบด้านสัณฐานวิทยาของเซลลูโลสแบบผลึกระดับจุลภาค และฟิล์มพีวีซี ที่ผสมและไม่ผสมเซลลูโลสแบบผลึกระดับจุลภาค ทั้งก่อนและหลังฝังดินด้วยกล้องจุลทรรศน์ อิเล็กตรอนแบบส่องกราดของ Jeol รุ่น JSM-6400 ดังแสดงในรูปที่ 3.10 เพื่อตรวจสอบพื้นผิวและ ภาคตัดขวางของชิ้นทดสอบ โดยตัดฟิล์มขนาด 1 x 4 เซนติเมตร ไปจุ่มในไนโตรเจนเหลวแล้วหัก ฟิล์มนำส่วนที่หักไปตรวจสอบในภาพตัดขวาง ส่วนภาพพื้นผิวโดยฟิล์มขนาด 1 x 1 เซนติเมตร ติดกับแผ่น SEM เพื่อตรวจดูการย่อยสลายทางชีวภาพของฟิล์ม โดยนำชิ้นทดสอบเตรียมไว้ ข้างต้นไปเคลือบผิวด้วยทองคำ ก่อนทำการตรวจสอบด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่อง กราดที่ใช้ศักย์ไฟฟ้า 15 kV และพื้นผิว

รูปที่ 3.8 เครื่อง SEM ของ JEOL รุ่น JSM-6400

จุฬาลงกรณ์มหาวิทยาลย

บทที่ 4

ผลการทดลองและวิจารณ์ผลการทดลอง

4.1 ลักษณะของเซลลูโลสแบบผลึกระดับจุลภาค

เซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้จากการไฮโดรไลซ์เศษผ้าฝ้ายดิบด้วย กรดไฮโดรคลอริกมีลักษณะเป็นผงละเอียดสีเหลืองอมน้ำตาล ดังแสดงในรูปที่ 4.1

รูปที่ 4.1 ลักษณะของเซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้

4.2 เปอร์เซ็นต์ผลได้ของเซลลูโลสแบบผลึกระดับจุลภาคที่ได้จากการไฮโดรไลซ์เศษ ผ้าฝ้ายดิบ

เปอร์เซ็นต์ผลได้โดยเฉลี่ยของเซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้จากเศษผ้าฝ้าย ดิบโดยการไฮโดรไลซ์ด้วยกรดไฮโดรคลอริก เท่ากับ 90.3

4.3 การวิเคราะห์เซลลูโลสแบบผลึกระดับจุลภาค4.3.1 การวิเคราะห์โครงสร้างทางเคมีด้วยเทคนิค FT-IR

เมื่อนำเซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้มาวิเคราะห์โครงสร้างผลึกด้วยเทคนิค FT-IR และเปรียบเทียบสเปกตรัมของผลึกพอลิแซกคาไรด์ที่แสดงประเภทของโครงสร้างผลึก เซลลูโลส I และ II ดังแสดงในรูปที่ 2.4 พบว่าเซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้ แสดงพีก ที่อาจเป็นทั้งโครงสร้างผลึกประเภทเซลลูโลส I ซึ่งพบในเซลลูโลสที่มีอยู่ในธรรมชาติ และ เซลลูโลส II ซึ่งเป็นโครงสร้างของผลึกที่ได้จากการดัดแปรเซลลูโลส I

ร**ูปที่ 4.2** FT-IR สเปกตรัมของเซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้จากเศษผ้าฝ้าย

4.3.2 การวิเคราะห์โครงสร้างผลึกด้วยเทคนิค XRD

เนื่องจากเทคนิค FT-IR ที่นำมาใช้วิเคราะห์โครงสร้างผลึกเซลลูโลสสำหรับงานวิจัยนี้ ได้ผลการวิเคราะห์แบบของผลึกเซลลูโลสที่อาจเป็นทั้งแบบเซลลูโลส I และ II ดังกล่าวมาแล้ว ข้างต้น ดังนั้นเพื่อเป็นการยืนยันประเภทของโครงสร้างผลึกของเซลลูโลสที่เตรียมได้ให้ชัดเจนขึ้น ซึ่งเราสามารถใช้เทคนิค XRD ในการตรวจวิเคราะห์ความแตกต่างระหว่างผลึกเซลลูโลส I และ II และในการวิเคราะห์โครงสร้างผลึกเซลลูโลสด้วยเทคนิค XRD ได้นำผลึกเซลลูโลสระดับจุลภาค ที่ไฮโดรไสซ์จากเส้นใยรามีมาใช้เปรียบเทียบกับผลึกเซลลูโลสระดับจุลภาคที่ไฮโดรไลซ์จากเศษผ้า ฝ้าย เนื่องจากเส้นใยรามีเป็นเส้นใยเซลลูโลสที่มีความเป็นผลึกสูง

รูปที่ 4.3 แสดง XRD ดิฟแฟรกโทแกรมของเซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้ จากการไฮโดรไลซ์เศษผ้าฝ้ายและเส้นใยรามี พบว่าทั้งเซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้ จากเส้นใยรามีและเศษผ้าฝ้ายปรากฏพีกเพียงพีกเดียวที่มุม 2**0** เท่ากับ 22 แสดงว่าผลึกทั้งสอง ชนิดมีโครงสร้างที่เป็นผลึกแบบเซลลูโลส ([15] แต่ผลึกที่เตรียมจากเศษผ้าฝ้ายมีระดับความเป็น ผลึกต่ำกว่าที่เตรียมจากเส้นใยรามี

รูปที่ 4.3 XRD ดิฟแฟรกโทแกรมของเซลลูโลสแบบผลึกระดับจุลภาค ที่เตรียมจากการไฮโดรไลซ์เศษผ้าฝ้ายและเส้นใยรามี

4.3.3 การตรวจสอบสัณฐานวิทยาด้วยเทคนิค SEM

รูปที่ 4.4 (ก) – (ค) แสดงสัณฐานวิทยาของเซลลูโลสแบบผลึกระดับจุลภาคจากผ้าฝ้าย ที่ตรวจสอบด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดที่กำลังขยาย 100, 500 และ 2000 เท่า ตามลำดับ พบว่า เซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้มีอนุภาคที่มีรูปร่างเป็นเส้นใยแต่จะมี ขนาดอนุภาคที่แตกต่างกันกระจายอยู่ทั่วไป

(ก)

(ป)

(A)

รูปที่ 4.4 สัณฐานวิทยาของเซลลูโลสแบบผลึกระดับจุลภาคที่กำลัง ขยาย (ก) 100 เท่า (ข) 500 เท่า และ (ค) 2,000 เท่า

4.3.4 การวัดขนาดอนุภาคด้วยเทคนิค Laser Light Scattering

รูปที่ 4.4 แสดงขนาดอนุภาคของเซลลูโลสแบบผลึกระดับจุลภาคที่ตรวจสอบด้วยเครื่อง Laser Light Scattering ซึ่งพบว่าเซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้มีขนาดอนุภาค ด้านยาวเฉลี่ยประมาณ 40 µm และมีค่า aspect ratio ประมาณ 8

รูปที่ 4.5 การกระจายขนาดอนุภาคของเซลลูโลสแบบผลึกระดับจุลภาค ที่ตรวจสอบด้วยเครื่อง Laser Light Scattering

4.3.5 การทดสอบสมบัติทางความร้อนด้วยเทคนิค DSC

รูปที่ 4.5 แสดง DSC เทอร์โมแกรมของเซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้ ซึ่งพบว่าเซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้มีอุณหภูมิการหลอมเหลว (T_m) เท่ากับ 213 องศาเซลเซียส

รูปที่ 4.6 DSC เทอร์โมแกรมของเซลลูโลสแบบผลึกระดับจุลภาค

4.3.6 การทดสอบสมบัติทางความร้อนด้วยเทคนิค TGA

รูปที่ 4.6 แสดง TGA เทอร์โมแกรมของเซลลูโลสแบบผลึกระดับจุลภาค ซึ่งพบว่า เซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้มีอุณหภูมิเริ่มการสลายตัว (T_d) ที่ 320.7 องศาเซลเซียส

ร**ูปที่ 4.7** TGA เทอร์โมแกรมของเซลลูโลสแบบผลึกระดับจุลภาค

4.4 ลักษณะของทางกายภาพของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาค

เมื่อนำเซลลูโลสแบบผลึกระดับจุลภาคมาผสมกับพีวีซีคอมพาวด์ด้วยอัตราส่วนต่างๆ แล้วนำไปขึ้นรูปเป็นฟิล์มด้วยเครื่องบดผสมแบบสองลูกกลิ้ง (two roll mill) ได้ฟิล์มที่มีลักษณะ ทางกายภาพมีความหนาประมาณ 0.34 มิลลิเมตร ดังแสดงในรูปที่ 4.8 และตารางที่ 4.1 พบว่า ฟิล์มที่เตรียมได้มีสีเหลืองที่เข้มขึ้น และมีความอ่อนตัวลดลงเมื่อปริมาณของเซลลูโลสแบบผลึก ระดับจุลภาคเพิ่มขึ้น นอกจากนี้ลักษณะพื้นผิวของฟิล์มพีวีซียังมีความหยาบกระด้างเพิ่มขึ้นอีก ด้วย และเมื่อพิจารณาความยากง่ายในการขึ้นรูป พบว่าเมื่ออัตราส่วนของเซลลูโลสแบบผลึก ระดับจุลภาคเกิน 15 phr แล้วจะทำให้ขึ้นรูปเป็นฟิล์มได้ยากขึ้นโดยฟิล์มจะขาดง่ายในระหว่าง กระบวนการขึ้นรูป

อัตราส่วนของเซลลูโลสแบบผลึกระดับจุลภาค	ลักษณะทางกายภาพ		
(phr)			
0	ใส พื้นผิวเรียบ ความอ่อนตัวดี		
5	มีสีเหลืองขุ่น พื้นผิวหยาบเพิ่มขึ้น ความอ่อนตัว		
	ରଜରଏ		
10	มีเหลืองขุ่นเข้มขึ้น พื้นผิวหยาบเพิ่มขึ้น ความ		
	อ่อนตัวลดลง		
15	มีเหลืองขุ่นเข้มขึ้น พื้นผิวหยาบเพิ่มขึ้น ความ		
	อ่อนตัวลดลง		
20	มีเหลืองขุ่นเข้มขึ้น พื้นผิวหยาบเพิ่มขึ้น ความ		
	อ่อนตัวลดลง		
25	มีเหลืองขุ่นเข้มขึ้น พื้นผิวหยาบเพิ่มขึ้น ความ		
	ี อ่อนตัวล <mark>ด</mark> ลง		
30	มีเหลืองขุ่นเข้มขึ้น พื้นผิวหยาบเพิ่มขึ้น ความ		
	อ่อนตัวลดลง		

ตารางที่ 4.1 ลักษณะทางกายภาพของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาค

4.5 การตรวจสอบสัณฐานวิทยาด้วยเทคนิค SEM

รูปที่ 4.16 แสดงสัณฐานวิทยาของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้ ที่อัตราส่วนต่างๆ กัน พบว่าเมื่อปริมาณของเซลลูโลสแบบผลึกระดับจุลภาคเพิ่มขึ้น ความสามารถใน การเข้ากันระหว่างพีวีซีกับเซลลูโลสแบบผลึกระดับจุลภาคจะลดลง

จุฬาลงกรณ์มหาวิทยาลัย

ภาคตัดขวาง

ลักษณะพื้นผิว

รูปที่ 4.9 สัณฐานวิทยาของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้

4.6 การทดสอบด้านความต้านแรงดึง

4.6.1 ความต้านแรงดึง (Tensile strength)

รูปที่ 4.10 แสดงค่าความต้านแรงดึงตามแนว MD และ TD ตามลำดับของชิ้น ทดสอบพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาคที่อัตราส่วนต่างๆ กัน จากผลการทดสอบแสดง ให้เห็นว่าความต้านแรงดึงของชิ้นทดสอบทุกอัตราส่วนผสมตามแนว MD มีค่าสูงกว่าตามแนว TD เล็กน้อย ทั้งนี้เนื่องจากการขึ้นรูปฟิล์มด้วยกระบวนการรีดแผ่น (calendering) มีผลต่อการจัดเรียง โมเลกุลของพีวีซีและเซลลูโลสแบบผลึกระดับจุลภาคไม่มากนัก ความต้านแรงดึงตามแนว MD และ TD ทุกอัตราส่วนผสมของเซลลูโลสแบบผลึกระดับจุลภาค มีค่าเพิ่มขึ้นไปในทิศทางแนว เดียวกันและเมื่อพิจารณาผลของเซลลูโลสแบบผลึกระดับจุลภาคต่อความต้านแรงดึงของฟิล์ม พีวีซีพบว่า เมื่อใส่เซลลูโลสแบบผลึกระดับจุลภาคเข้าไปผสมกับพีวีซีคอมพาวด์ ค่าความต้านแรง ดึงของของชิ้นทดสอบมีแนวโน้มสูงขึ้นตามปริมาณเซลลูโลสแบบผลึกระดับจุลภาคที่เพิ่มขึ้น เนื่องจากเซลลูโลสแบบผลึกระดับจุลภาคซึ่งมีรูปร่างเป็นเส้นใยได้ทำหน้าที่เสมือนเป็นตัวเสริมแรง ้อยู่ในเนื้อพีวีซี จึงส่งผลให้ความต้านแรงดึงของฟิล์มพีวีซีเพิ่มขึ้น อย่างไรก็ตาม เมื่อปริมาณของ เซลลูโลสแบบผลึกระดับจุลภาคเพิ่มมากกว่า 10 phr พบว่าอัตราการเพิ่มขึ้นของความต้านแรงดึง มีค่าเพิ่มขึ้นเพียงเล็กน้อยเท่านั้น หรือมีค่าเปลี่ยนแปลงไม่มากนัก โดยมีความต้านแรงดึงสูงสุดเมื่อ มีเซลลูโลสแบบผลึกระดับจุลภาคผสมอยู่ในอัตราส่วน 25 phr จากนั้นมีแนวโน้มลดลงเมื่อมี เซลลูโลสแบบผลึกระดับจุลภาคผสมอยู่ในอัตราส่วน 30 phr หรือมากกว่า 25 phr ดังนั้น เซลลูโลสแบบผลึกระดับจุลภาคมีผลช่วยเพิ่มความต้านแรงดึงของฟิล์มพีวีซีได้และสูงสุดที่ อัตราส่วน 25 phr

4.6.2 ยังส์มอดุลัส (Young's modulus)

รูปที่ 4.11 แสดงค่ายังส์มอดุลัสตามแนว MD และ TD ของชิ้นทดสอบพีวีซีผสมเซลลูโลส แบบผลึกระดับจุลภาคที่อัตราส่วนต่างๆ กัน ผลจากการทดสอบแสดงให้เห็นว่าค่ายังส์มอดุลัส ของชิ้นทดสอบทุกอัตราส่วนผสมตามแนว MD มีค่าสูงกว่าตามแนว TD เพียงเล็กน้อยและเมื่อ พิจารณาผลของเซลลูโลสแบบผลึกระดับจุลภาคต่อค่ายังส์มอดุลัสของฟิล์มพีวีซีพบว่า เมื่อใส่ เซลลูโลสแบบผลึกระดับจุลภาคเข้าไปผสมกับพีวีซีคอมพาวด์ที่อัตราส่วนตามแนว MD และ TD ไม่มากกว่า 10-15 phr พบว่าค่ายังส์มอดุลัสไม่เปลี่ยนแปลง แต่เมื่อผสมเซลลูโลสแบบผลึกระดับ จุลภาคในอัตราส่วนมากกว่า 15 phr ในอัตราส่วนที่ 20 phr, 25 phr, 30 phr พบว่าค่า ยังส์มอดุลัสจะเพิ่มขึ้น และเพิ่มขึ้นในอัตราที่สูงขึ้นอย่างเห็นได้ชัดเมื่อผสมเซลลูโลสแบบผลึกระดับ จุลภาคที่อัตราส่วน 25 และ 30 phr แสดงว่าฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาคมี ความแข็งตึงมากขึ้นเมื่อปริมาณเซลลูโลสแบบผลึกระดับจุลภาคผสมมากกว่า 20 phr นั่นคือที่ อัตราส่วนดังกล่าวจะทำให้พีวีซีแข็งหักงอยาก จึงไม่เหมาะจะนำไปผลิตเป็นผลิตภัณฑ์ที่มีรูปร่าง โค้งงอ

รูปที่ 4.11 ค่ายังส์มอดุลัสของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาค ตามแนว MD และ TD

4.6.3 ความต้ำนแรงฉีกขาด (Tear strength)

รูปที่ 4.12 แสดงค่าความต้านแรงฉีกขาดตามแนว MD และ TD ของชิ้นทดสอบพีวีซี ผสมเซลลูโลสแบบผลึกระดับจุลภาคทุกอัตราส่วนมีรูปแบบการสลายที่เหมือนกัน แสดงให้เห็นว่า ฟิล์มพีวีซีที่ทั้งไม่ผสมและผสมเซลลูโลสแบบผลึกระดับจุลภาคทุกอัตราส่วนให้ผลการทดสอบ แสดงให้เห็นว่าความต้านแรงฉีกขาดของชิ้นทดสอบทุกอัตราส่วนผสมตามแนว MD มีค่าสูงกว่า ตามแนว TD เล็กน้อย และพิจารณาผลของเซลลูโลสแบบผลึกระดับจุลภาคต่อความต้านแรงฉีก ขาดของฟิล์มพีวีซี พบว่าเมื่อใส่เซลลูโลสแบบผลึกระดับจุลภาคเข้าไปผสมกับพีวีซีคอมพาวด์ ค่าไม่เกิน 25 phr ค่าความต้านแรงฉีกขาดจะเพิ่มขึ้น แต่เมื่อผสมเซลลูโลสแบบผลึกระดับจุลภาค ในอัตราส่วน 25 และ 30 phr พบว่าค่าความแรงฉีกขาดจะลดลง ทั้งนี้อาจเนื่องจากเซลลูโลสแบบ ผลึกระดับจุลภาคที่ทำหน้าที่เป็นฟิลเลอร์ที่เพิ่มมากขึ้นทำให้ชิ้นทดสอบมีความแข็งเพิ่มขึ้น จึง ส่งผลให้ความเหนียวหรือความต้านแรงฉีกขาดลดลง

ตามแนว (ก) MD และ (ข) TD

4.7 การทดสอบสมบัติทางความร้อนด้วยเทคนิค TGA

รูปที่ 4.13 (ก) - (ซ) และตารางที่ 4.2 แสดง TGA เของฟิล์มพีวีซีที่ไม่ได้ผสมเซลลูโลส แบบผลึกระดับจุลภาค พบว่าเทอร์โมแกรมของฟิล์มมีการเปลี่ยนแปลงเมื่อได้รับความร้อน ประกอบด้วย 2 ช่วง โดยในช่วงแรกที่อุณหภูมิประมาณ 270 องศาเซลเซียส แสดงอุณหภูมิเมื่อ ได้รับความร้อนเกิดการสลายตัวให้แก๊สไฮโดรเจน เรียกว่า dehydrochlorination เกิดโครงสร้าง แบบคอนจูเกตจำนวนมาก สำหรับช่วงที่สอง ที่อุณหภูมิ 430 องศาเซลเซียส เป็นอุณหภูมิ ที่โมเลกุลของพีวีซีขาดออกเป็นส่วนๆและระเหยกลายเป็นไอ [26] แสดงดังสมการ 4.1

$$\begin{array}{c} CI & CI & CI & CI & CI \\ -\left(CH_{2}-CH-CH_{2}-CH-CH_{2}-CH-CH_{2}-CH-CH_{2}-CH\right)_{n} \\ \end{array}$$

$$\begin{array}{c} CI & CI & CI & CI \\ -\left(CH_{2}-CH-CH_{2}-CH-CH_{2}-CH-CH_{2}-CH-CH=CH\right)_{n} \\ + HCI \\ \end{array}$$

$$\begin{array}{c} CI & CI & CI \\ -\left(CH_{2}-CH-CH_{2}-CH-CH_{2}-CH-CH=CH-CH=CH\right)_{n} \\ + HCI \\ \end{array}$$

$$\begin{array}{c} T \\ + HCI \\ \end{array}$$

$$\begin{array}{c} T \\ + HCI \\ \end{array}$$

$$\begin{array}{c} T \\ + HCI \\ \end{array}$$

นอกจากนี้การที่อุณหภูมิการสลายตัวช่วงที่ 1 และช่วงที่ 2 ของฟิล์มพีวีซีผสมเซลลูโลส แบบผลึกระดับจุลภาคที่ปริมาณ 0, 5, 10, 15, 20, 25 และ 30 phr มีค่าใกล้เคียงกับฟิล์มพีวีซีที่ไม่ ผสมเซลลูโลสแบบผลึกระดับจุลภาค สันนิษฐานว่าการผสมเซลลูโลสแบบผลึกระดับจุลภาคที่ อัตราส่วนต่างๆ มีผลต่อเสถียรภาพทางความร้อนของฟิล์มน้อยมาก

จุฬาลงกรณ์มหาวิทยาลัย

(ข) 5 phr

60

(ง) 15 phr

61

(ข) 25 phr

(ฃ) 30 phr

รูปที่ 4.13 TGA เทอร์โมแกรมของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาค

a	9	~	90	ada	\$	2
ตารางท / 2	ดกเหกเการสง	จายตาของ	99/ @91	พาตยาสา	าแสดดโดสระ	^ดา เฉล กา ค
VI 10 INVI 7.2			1110101	1 9 TM 91	И В Пририротого с	

อัตราส่วนของเซลลูโลสแบบผลึ <mark>ก</mark>	อุณหภูมิการสลายตัว (องศาเซลเซียส)			
ระดับจุลภาค (phr)	T onset 1	T onset 2		
0	273.6	436.4		
5	275.2	430.5		
10	274.7	433.2		
15	284.9	430.8		
20	269.7	428.4		
25	265.8	431.0		
30	271.3	428.9		

4.8 สมบัติการย่อยสลายทางชีวภาพของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาค

4.8.1 การดูดความชื้น

รูปที่ 4.14 แสดงเปอร์เซ็นต์การดูดความชื้นของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับ จุลภาค ซึ่งพบว่าฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาคสามารถดูดความชื้น เมื่อปริมาณ เพิ่มขึ้นตามปริมาณของเซลลูโลสแบบผลึกระดับจุลภาคเพิ่มขึ้น ทั้งนี้เนื่องจากโครงสร้างของ เซลลูโลสแบบผลึกระดับจุลภาคมีหมู่ไฮดรอกซิล ซึ่งเป็นหมู่ที่ชอบน้ำอยู่เป็นจำนวนมาก จึงสามารถดูดความชื้นได้ดี และมีการดูดความชื้นมากที่สุดเมื่อใส่เซลลูโลสแบบผลึกระดับ จุลภาคปริมาณ 30 phr ส่งผลให้การย่อยสลายพีวีซีด้วยกระบวนการทางชีวภาพมีแนวโน้ม เพิ่มขึ้น โดยน้ำจะเป็นตัวกลางที่พาเอนไซม์ที่ถูกปลดปล่อยออกจากจุลินทรีย์ที่มีอยู่ในดินเข้าไปใน ฟิล์มพีวีซีที่ผสมแล้ว ทำการย่อยสลายเซลลูโลสแบบผลึกระดับจุลภาคนั่นเอง

รูปที่ 4.14 การดูดความชื้นของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาคที่อัตราส่วนต่างๆ

จุฬาลงกรณ์มหาวิทยาลัย

4.8.2 การหาน้ำหนักที่หายไปภายหลังการฝังดิน

รูปที่ 4.15 แสดงเปอร์เซ็นต์ของน้ำหนักที่หายไปของชิ้นทดสอบพีวีซีผสมเซลลูโลสแบบ ผลึกระดับจุลภาคภายหลังการฝังดินเป็นระยะเวลาต่างๆ กัน ผลจากการทดสอบแสดงให้เห็นว่า เปอร์เซ็นต์น้ำหนักที่หายไปของชิ้นทดสอบเพิ่มขึ้น เมื่อปริมาณเซลลูโลสแบบผลึกระดับจุลภาคใน ฟิล์มพีวีซีเพิ่มขึ้น และน้ำหนักที่หายไปเพิ่มขึ้นเมื่อเวลาผ่านไป ทั้งนี้อาจเนื่องจากเซลลูโลสแบบ ผลึกระดับจุลภาคในเนื้อฟิล์มถูกย่อยสลายด้วยจุลินทรีย์ที่อยู่ในดิน ทำให้ฟิล์มมีความพรุนตัวและ น้ำหนักลดลง

รูปที่ 4.15 เปอร์เซ็นต์น้ำหนักที่หายไปของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาค ที่อัตราส่วนต่างๆภายหลังการฝังดิน

4.8.3 การตรวจสอบสัณฐานวิทยาด้วยเทคนิค SEM

รูปที่ 4.16 - 4.22 แสดงสัณฐานวิทยาของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาคที่ อัตราส่วนต่างๆ (0, 5, 10, 15, 20, 25 และ 30 phr) ทั้งก่อนและหลังฝังดินเป็นเวลา 2, 4, 6 และ 8 สัปดาห์ โดยทำการตรวจสอบภาคตัดขวางของชิ้นทดสอบที่กำลังขยาย 500 เท่า และตรวจสอบ ลักษณะพื้นผิวของชิ้นทดสอบที่กำลังขยาย 1500 เท่า

ภาคตัดขวาง

ที่ 0 สัปดาห์

รูปที่ 4.16 สัณฐานวิทยาของฟิล์มพีวีซีก่อนและหลังฝังดินเป็นเวลา (ก) 0 สัปดาห์ (ข) 2 สัปดาห์ (ค) 4 สัปดาห์ (ง) 6 สัปดาห์ และ (จ) 8 สัปดาห์

ลักษณะพื้นผิว

ภาคตัดขวาง

ลักษณะพื้นผิว

ที่ 2 สัปดาห์

รูปที่ 4.17 สัณฐานวิทยาของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาค 5 phr ก่อนและหลังฝังดินเป็นเวลา (ก) 0 สัปดาห์ (ข) 2 สัปดาห์ (ค) 4 สัปดาห์ (ง) 6 สัปดาห์ และ (จ) 8 สัปดาห์

รูปที่ 4.18 สัณฐานวิทยาของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาค 10 phr ก่อนและหลังฝังดิน เป็นเวลา (ก) 0 สัปดาห์ (ข) 2 สัปดาห์ (ค) 4 สัปดาห์ (ง) 6 สัปดาห์ และ (จ) 8 สัปดาห์

ภาคตัดขวาง

ที่ 0 สัปดาห์

ที่ 2 สัปดาห์

ที่ 4 สัปดาห์

ที่ 6 สัปดาห์

ที่ 8 สัปดาห์

ร**ูปที่ 4.20** สัณฐานวิทยาของฟิล์มพีวีชีผสมเซลลูโลสแบบผลิกระดับจุลภาค 20 phr ก่อนและหลังฝังดิน เป็นเวลา (ก) 0 สัปดาห์ (ข) 2 สัปดาห์ (ค) 4 สัปดาห์ (ง) 6 สัปดาห์ และ (จ) 8 สัปดาห์

ภาคตัดขวาง

ที่ 0 สัปดาห์

ลักษณะพื้นผิว

ร**ูปที่ 4.21** สัณฐานวิทยาของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาค 25 phr ก่อนและหลังฝังดิน เป็นเวลา (ก) 0 สัปดาห์ (ข) 2 สัปดาห์ (ค) 4 ลัปดาห์ (ง) 6 สัปดาห์ และ (จ) 8 สัปดาห์ ที่ 0 สัปดาห์

ลักษณะพื้นผิว

รูปที่ 4.22 สัณฐานวิทยาของฟิล์มพีวีชีผสมเซลลูโลสแบบผลึกระดับจุลภาค 30 phr ก่อนและหลังฝังดิน เป็นเวลา (ก) 0 สัปดาห์ (ข) 2 สัปดาห์ (ค) 4 สัปดาห์ (ง) 6 สัปดาห์ และ (จ) 8 สัปดาห์

จากรูปที่ 4.16 -4.22 แสดงให้เห็นว่าสัณฐานวิทยาของชิ้นทดสอบภายหลังการฝังดินมี รูพรุนเกิดขึ้นในภาพถ่ายของชิ้นทดสอบภาคตัดขวาง ซึ่งขนาดและปริมาณรูพรุนเพิ่มขึ้นตาม ปริมาณของเซลลูโลสแบบผลึกระดับจุลภาคและระยะเวลาของการฝังดิน นอกจากนี้ ภาพถ่ายของ ลักษณะพื้นผิวของชิ้นทดสอบยังแสดงให้เห็นการบวมตัวของเซลลูโลสแบบผลึกระดับจุลภาค รวมทั้งตำหนิและรอยแตกบนพื้นผิวชิ้นทดสอบที่เพิ่มขึ้นตามปริมาณของเซลลูโลสแบบผลึกระดับ จุลภาคและระยะเวลาของการฝังดินเช่นเดียวกัน

4.4.4 การทดสอบด้านความต้านแรงดึง 4.4.4.1 ความต้านแรงดึง (Tensile strength)

รูปที่ 4.23 แสดงค่าความต้านแรงดึงตามแนว MD และ TD ของชิ้นทดสอบพีวีซีผสม เซลลูโลสแบบผลึกระดับจุลภาคที่อัตราส่วนต่างๆ กัน ผลการทดลองแสดงให้เห็นว่าความต้านแรง-ดึงของชิ้นทดสอบทุกอัตราส่วนผสมตามแนว MD มีค่าสูงกว่าตามแนว TD เล็กน้อย ทั้งนี้เนื่องจาก การขึ้นรูปฟิล์มด้วยกระบวนการรีดแผ่น (Calendering) มีผลต่อการจัดเรียงโมเลกุลของพีวีซีและ เซลลูโลสแบบผลึกระดับจุลภาคไม่มากนัก อย่างไรก็ตามความต้านแรงดึงของชิ้นทดสอบที่ผสม เซลลูโลสแบบผลึกระดับจุลภาคไม่มากนัก อย่างไรก็ตามความต้านแรงดึงของชิ้นทดสอบที่ผสม เซลลูโลสแบบผลึกระดับจุลภาคมีค่าสูงกว่าฟิล์มพีวีซีที่ไม่ได้ผสมเซลลูโลสแบบผลึกระดับจุลภาค และมีค่าเพิ่มเมื่อปริมาณเซลลูโลสแบบผลึกระดับจุลภาคเพิ่มขึ้นและมีค่าสูงสุดเมื่อใส่ในปริมาณ 2 phr

รูปที่ 4.23 ความต้<mark>านแรงดึงของฟิล์มพีวีซีผสมเซ</mark>ลลูโลสแบบผลึกระดับจุลภาค

ตามแนว (ก) MD และ (ข) TD

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย รูปที่ 4.23 แสดงให้เห็นว่าเซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมจากเศษผ้าฝ้ายนี้ สามารถใช้เป็นสารเสริมแรงให้กับพีวีซีได้ นอกจากนี้ยังพบว่าเมื่อระยะเวลาการฝังดินเพิ่มขึ้นความ ต้านแรงดึงของชิ้นทดสอบมีแนวโน้มลดลง และลดลงมากที่สุดเมื่อผสมเซลลูโลสแบบผลึกระดับ จุลภาคปริมาณ 30 phr สำหรับเปอร์เซ็นต์การลดลงของค่าความต้านแรงดึงแสดงไว้ในรูปที่ 4.24 ซึ่งแสดงให้เห็นว่าชิ้นทดสอบมีแนวโน้มที่จะเกิดการย่อยสลายด้วยกระบวนการทางชีวภาพเพิ่มขึ้น เมื่อเวลาผ่านไป

รูปที่ 4.24 เปอร์เซ็นต์การลดลงของค่าความต้านแรงดึงของฟิล์มพีวีซีผสมเซลลูโลส แบบผลึกระดับจุลภาค ตามแนว (ก) MD และ (ข) TD

4.4.4.2 ยังส์มอดุลัส (Young's modulus)

รูปที่ 4.25 แสดงค่ายังส์มอดุลัสตามแนว MD และ TD ของชิ้นทดสอบพีวีซีผสมเซลลูโลส แบบผลึกระดับจุลภาคปริมาณต่างๆ กัน ผลจากการทดลองแสดงให้เห็นว่าค่ายังส์มอดุลัสของชิ้น ทดสอบทุกอัตราส่วนผสมตามแนว MD มีค่าสูงกว่าตามแนว TD เล็กน้อย เช่นเดียวกับค่าความ ต้านแรงดึง นอกจากนี้ ค่ายังส์มอดุลัสของชิ้นทดสอบที่ผสมเซลลูโลสแบบผลึกระดับจุลภาคมีค่า สูงกว่าฟิล์มพีวีชีที่ไม่ได้ผสมเซลลูโลสแบบผลึกระดับจุลภาค และมีค่าเพิ่มขึ้นเมื่อปริมาณเซลลูโลส แบบผลึกระดับจุลภาคเพิ่มขึ้น และมีค่าเพิ่มขึ้นอย่างเห็นได้ชัดเมื่อใส่ในปริมาณ 25 phr และ 30 phr

ตามแนว (ก) MD และ (ข) TD

แสดงให้เห็นว่าเซลลูโลสแบบผลึกระดับจุลภาคที่ใส่เข้าไปในพีวีซีมีผลทำให้ชิ้นทดสอบมี ความแข็งเพิ่มขึ้นการยืดตัวของฟิล์ม จึงเกิดได้ยากทั้งนี้เพราะการใส่ฟิลเลอร์มีผลทำให้ค่า ยังส์มอดุลัสสูงขึ้น [20] นอกจากนี้ ยังพบว่าเมื่อระยะเวลาการฝังดินเพิ่มขึ้น ค่ายังส์มอดุลัสของชิ้น ทดสอบมีแนวโน้มลดลง และลดลงมากที่สุดเมื่อผสมเซลลูโลสแบบผลึกระดับจุลภาคปริมาณ 30 phr สำหรับเปอร์เซ็นต์การลดลงของค่ายังส์มอดุลัสแสดงไว้ในรูปที่ 4.26 ซึ่งแสดงถึงแนวโน้ม ของการถูกย่อยสลายด้วยกระบวนการทางชีวภาพเพิ่มขึ้นเมื่อเวลาผ่านไป

รูปที่ 4.26 เปอร์เซ็นต์การลดลงของค่ายังส์มอดุลัสของฟิล์มพีวีซีผสมเซลลูโลส แบบผลึกระดับจุลภาค ตามแนว (ก) MD และ (ข) TD

จุฬาลงกรณมหาวทยาลย

4.4.4.3 ความต้านแรงฉีกขาด (Tear strength)

รูปที่ 4.27 แสดงค่าความต้านแรงฉีกขาดตามแนว MD และ TD ของชิ้นทดสอบพีวีซีผสม เซลลูโลสแบบผลึกระดับจุลภาคปริมาณต่างๆ กัน ผลการทดลองแสดงให้เห็นว่าความต้านแรงฉีก ขาดของชิ้นทดสอบทุกอัตราส่วนผสมตามแนว MD มีค่าสูงกว่าตามแนว TD เล็กน้อย เช่นเดียวกับ ค่าความต้านแรงดึง นอกจากนี้ ความต้านแรงฉีกขาดของชิ้นทดสอบมีค่าเพิ่มขึ้นเมื่อปริมาณ เซลลูโลสแบบผลึกระดับจุลภาคเพิ่มขึ้นจนถึง 20 phr และลดลงเมื่อใส่ในปริมาณ 25 และ 30 phr ทั้งนี้อาจเนื่องจากปริมาณฟิลเลอร์ที่เพิ่มมากขึ้นทำให้ชิ้นทดสอบมีความแข็งเพิ่มขึ้น จึงส่งผลให้ ความเหนียวหรือความต้านแรงฉีกขาดลดลง

รูปที่ 4.27 ความต้านแรงฉีกขาดของฟิล์มพีวีชีผสมเซลลูโลสแบบผลึกระดับจุลภาค ตามแนว (ก) MD และ (ข) TD

จากรูปที่ 4.27 แสดงให้เห็นว่าค่าความต้านแรงฉีกขาดของชิ้นทดสอบพีวีซีผสมเซลลูโลส แบบผลึกระดับจุลภาคมีแนวโน้มลดลงเมื่อระยะเวลาการฝังดินเพิ่มขึ้น โดยเฉพาะเมื่อผสม เซลลูโลสแบบผลึกระดับจุลภาคปริมาณ 30 phr สำหรับเปอร์เซ็นต์การลดลงของค่าความต้าน-แรงฉีกขาดแสดงไว้ในรูปที่ 4.28 ซึ่งอาจกล่าวได้ว่าชิ้นทดสอบมีแนวโน้มที่จะถูกย่อยสลายด้วย กระบวนการทางชีวภาพเพิ่มขึ้นเมื่อเวลาผ่านไป

จุฬาลงกรณ์มหาวิทยาลย

45

รูปที่ 4.28 เปอร์เซ็นต์การลดลงของค่าความต้านแรงฉีกขาดของฟิล์มพีวีซี ผสมเซลลูโลสแบบผลึกระดับจุลภาค ตามแนว (ก) MD และ (ข) TD

บทที่ 5

สรุปผลการทดลองและข้อเสนอแนะ

5.1 สรุปผลการทดลอง

5.1.1 เซลลูโลสแบบผลึกระดับจุลภาคที่เตรียมได้จากการไฮโดรไลซ์เศษผ้าฝ้ายด้วย กรดไฮโดรคลอริกมีลักษณะเป็นผงละเอียดสีเหลืองอมน้ำตาล มีเปอร์เซ็นต์ผลได้ประมาณ 90% มี ขนาดอนุภาคด้านยาวโดยเฉลี่ย 40 µm และ aspect ratio ประมาณ 8, T_m ประมาณ 213 องศาเซลเซียส และมี T_dประมาณ 320 องศาเซลเซียส

5.1.2 การเติมเซลลูโลสแบบผลึกระดับจุลภาคในฟิล์มพีวีซี ส่งผลให้ฟิล์มมีความ-ต้านแรงดึงและยังส์มอดุลัสเพิ่มขึ้น โดยมีค่าสูงที่สุดเมื่อใส่ในปริมาณเพิ่มขึ้น

5.1.3 ความต้านแรงฉีกขาดของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาคมี ค่าเพิ่มขึ้น และกลับลดลงเมื่อปริมาณเซลลูโลสแบบผลึกระดับจุลภาคมากกว่า 20 phr

5.1.4 การดูดความชื้นของฟิล์มพีวีซีผสมเซลลูโลสแบบผลึกระดับจุลภาคมีค่าเพิ่มขึ้น ตามปริมาณเซลลูโลสแบบผลึกระดับจุลภาคที่เพิ่มขึ้น

5.1.5 ภายหลังการฝังดินเป็นระยะเวลา 8 สัปดาห์ สมบัติเชิงกลของฟิล์มพีวีซีผสม เซลลูโลสแบบผลึกระดับจุลภาคมีค่าลดลง ในขณะที่การดูดความชื้นและน้ำหนักที่หายไปของ ฟิล์มมีค่าเพิ่มขึ้น

5.1.6 ผลการตรวจสอบสัณฐานวิทยาด้วยเทคนิค SEM ของฟิล์มพีวีซีผสมเซลลูโลส แบบ-ผลึกระดับจุลภาคแสดงให้เห็นถึงการย่อยสลายของฟิล์มด้วยกระบวนการทางชีวภาพ ซึ่งให้ผลสอดคล้องกับการทดสอบสมบัติเชิงกล การดูดซึมน้ำ และน้ำหนักของฟิล์มที่หายไป

เมื่อพิจารณาโดยรวมแล้วพบว่า การผสมเซลลูโลสแบบผลึกระดับจุลภาคในฟิล์มพีวีซี มีผลทำให้สมบัติเชิงกลสูงขึ้น ในขณะเดียวกันฟิล์มเหล่านี้สามารถถูกย่อยสลายด้วยกระบวนการ ทางชีวภาพได้ จึงมีแนวโน้มที่จะเป็นมิตรกับสิ่งแวดล้อม อย่างไรก็ตามไม่ควรผสมเซลลูโลส-แบบผลึกระดับจุลภาคในปริมาณที่มากเกินไป เพราะจะทำให้การขึ้นรูปยากขึ้น อีกทั้งความเข้า กันได้ระหว่างพีวีซีและเซลลูโลสแบบผลึกระดับจุลภาคลดลง

5.2 ข้อเสนอแนะ

5.2.1 ควรศึกษาการเตรียมเซลลูโลสแบบผลึกระดับจุลภาคจากวัสดุเหลือใช้อื่นๆ เช่น ขี้ เลื่อย เป็นต้น

5.2.2 ควรศึกษาถึงการนำเซลลูโลสแบบผลึกระดับจุลภาคไปผสมกับพลาสติกชนิดอื่น เช่น พอลิเอทิลีน พอลิโพรพิลีน และพอลิสไตรีน เป็นต้น เพื่อนำไปทำผลิตภัณฑ์ที่สามารถย่อย สลายได้ด้วยกระบวนการทางชีวภาพ

5.2.3 ควรศึกษาความเป็นไปได้ในการขึ้นรูปซิ้นทดสอบในรูปแบบอื่น เช่น การฉีดขึ้นรูป เพื่อนำไปประยุกต์เป็นผลิตภัณฑ์ที่ใช้ในชีวิตประจำวัน และเป็นมิตรกับสิ่งแวดล้อม

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

รายการอ้างอิง

- Aminabhavi, T.M., and R.H., Balundai. (1990) "A Review On Biodegradable Plastics" <u>Polym.-plast. Technol. Eng</u>, 29(3), 235-262.
- มุทิตา พงษ์มาลา และ กฤษณา รุจิพงศ์ภัทร์. (2542) "การเตรียมพลาสติกที่สามารถย่อย สลายได้ด้วยกระบวนการทางชีวภาพโดยใช้เซลลูโลสวิสเกอร์ที่ได้จากกระดาษ ที่ใช้แล้ว", ภาควัสดุศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.
- Wei, Sung., and Zivko, L., Nikolov, (1992) "Accelerated Degradation Studies of Starch- Filled Polyethylene Films", <u>Ind. Eng. Chem. Res</u>, 31, 2332-2339.
- Chella, G., Moth, Maria., and Ines, B., Thvares. (1997) "Study of recycling and biodegradegradability of ethylene-co-vinyl acetate reject by thermal analysis", <u>Polym.-plast.Degradation and Stability</u>, 57,183-186.
- 5. นรศิษฏ์ จันทรกูล. (2547) "การเตรียมพอลิเมอร์ผสมระหว่างแป้งข้าวเหนียวดัดแปรกับ พอลิเอทิลีนชนิดความหนาแน่นต่ำ", <u>วิทยานิพนธ์ปริญามหาบัณฑิต</u>, ภาควัสดุศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.
- อุบลทิพย์ ราวีทิพย์. (2546) "อิพอกซีเรซินดัดแปรด้วยพีวีซีพลาสติซอล", <u>วิทยานิพนธ์ปริญญา</u> <u>มหาบัณฑิต</u>, ภาควัสดุศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.
- ชุลีพร จูงสาย. (2535) "การศึกษาเอนไซม์เซลลูเลสจากเชื้อรา", <u>วิทยานิพนธ์ปริญา</u> <u>มหาบัณฑิต</u>, คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.
- 8. Battista, O.A., Sc.D. (1975) <u>Microcrystal Polymer Science</u>, MeGRAW-HILL COMPANY.
- 9. Kroon-Batenburg, L.M.J., and Kroon, J. (1997) "The crystal and molecular structure of cellulose I and I", <u>Glycoconjugate Journal</u>, 14, 667-690.
- 10. O.A. Battista. (1950) "Hydrolysis and Crystallization, Industrial and Engineering Crystallization", Industrial and Engineering Chemistry, 42(3), 502 507.
- 11. structure cellulose. [ออนไลน์]. เข้าถึงได้จาก

http://www.Google.com, 2006.

 จินตนา สิริพิทยานานนท์, (2537) "การวิเคราะห์โครงสร้างผลึก", <u>เอกสารประกอบการสอน</u>, มหาวิทยาลัยเชียงใหม่. 13. cellulose II&I. [ออนไลน์]. เข้าถึงได้จาก

http://www. Google.com. "Acceley. Atomistic modling of the complex interactions cellulose I&II polymorphs", 14.06.2006.

14. cellulose II&I. [ออนไลน์]. เข้าถึงได้จาก

http://www. Google.com. cellulose II&I. 10.06.2006.

- 15. Carrillo, F., Colom, X., Sunol, J.J., and Saurina, J. (1999) "Structure FT- IR analysis thermal characterisation of lyocell and viscose-type fiber" <u>Thermal character</u> <u>European Polymer Journal</u>, 40, 2229-2234.
- Weimer, P.J., French, A.D. and Calamari, T. A. (1997) "Differential Fermentation of Cellulose Allomorphs by Ruminal Cellulolytic Bacteria" <u>American Society for</u> <u>Microbiology</u>, 14, 667-690.
- 17. Kiyoshi Endo. (2002) "Synthesis and structure of poly(vinyl chloride)", <u>Prog. Polym.</u> <u>Sci</u>, 27, 2021 - 2054.
- 18. เสาวรจน์ ช่วยจุลจิตร์. "Selected Topic in Polymer Science. Part I", <u>เอกสารประกอบการ</u> <u>สอน</u>, ภาควัสดุศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.
- 19. Jesse Edenbaum. (1987) "Fundamentals of Polymers and Formulation", 17-77.
- 20. วิทูรย์ ศิริไพบูลย์. (2535) "ขวดโพลิไวนิลคลอไรด์ (พีวีซี)", <u>วารสารพลาสติก</u>, 9(1), พฤษภาคม-มิถุนายน, 15-18.
- 21. สุวารี ศุภโชคชัย. (2537) "พีวีซีซิ่นในงานพลาสติโซล", <u>วารสารพลาสติก</u>, 11(3), พฤศจิกายน, 15-18.
- 22. อรอุษา สรวารี. (2546) "สารเติมแต่งพอลิเมอร์ เล่ม1", โรงพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย. กรุงเทพฯ.
- 23. เสาวรจน์ ช่วยจุลจิตร์. "สมบัติของพอลิเมอร์", <u>เอกสารประกอบการสอน</u>, ภาควัสดุศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.
- 24. บรรเลง ศรนิล. (2536) "สารเพิ่มเนื้อและสารเสริมแรงในเทอร์โมพลาสติก", <u>วารสารพลาสติก</u>, 10(3) พฤศจิกายน, 25-32.
- 25. วิฑูรย์ ศิริไพบูลย์. (2537) "PVC อนาคตที่ก้าวไกล",<u>วารสารพลาสติก</u>, ปีที่ 8 ฉบับที่ 2 กรกฎาคม-สิงหาคม , 26-34.

- 26. วิฑูรย์ ศิริไพบูลย์. (2536) "พีวีซีอนาคตไกล", <u>วารสารพลาสติก</u>. 10(1), กรกฎาคม-สิงหาคม,
 45-52.
- 27. Laser Light Scattering. [ออนไลน์]. เข้าถึงได้จาก

http://www. Google.com. Laser Light Scattering, 2006.

Nekane, Ganzalez, Agurlzane, Mugica, and Fernandez-Berridi, M., Jose. (2006)
 "Application of high resolution thermogravimetry to the study of thermal stability of poly(vinyl chloride) resins", <u>Polymer Degradation and Stability</u>, 91, 629-633.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

ภาคผนวก

ภาคผนวก ก

ก.1 ผลการไฮโดรไลซ์จากเศษผ้าฝ้ายเส้นใยรามี

ตารางที่ ก.1.1

วัตถุดิบ	น้ำหนักเซลลูโลสแบบผลึก ที่ไฮโดรไลซ์ได้ (กรัม)	เปอร์เซนต์เซลลูโลสแบบผลึก ระดับจุลภาคที่ไฮโดรไลซ์ได้
เศษผ้าฝ้ายดิบ	36.1175	90.2977
เส้นใยรามี	0.3241	32.41

รูปที่ ก.1.1 ลักษณะเศษผ้าฝ้ายและเซลลูโลสแบบผลึกระดับจุลภาคจากเศษผ้าฝ้าย

รูปที่ ก.1.2 ลักษณะเส้นใยรามีและเซลลูโลสแบบผลึกระดับจุลภาคจากเศษเส้นใยรามี

Result Statistics							
Beam Length 2	.40 mm	Obscuration 16.1%		Residual 0.306 %			
Distribution Typ	e Volume	Concentration = 0.0098 %vol		Density = 1.000 (g/cub.cm	Specific.S.A = 23.7	′576 sq. m/g
Mean Diameter		D (v, 0,1) = 0.07	μm	D (v, 0,5) = 19.09	9μm	D (v, 0,9) = 100.44	μm
D [4, 3]= 39.69	μm	D (3,2) = 0.25 µr	n				
Size Low (µm)	In%	Size High (µm)	Under%	Size Low (µm)	In%	Size High (µm)	Under%
0.05	4.83	0.06	4.83	6.63	0.95	7.72	36.11
0.06	6.77	0.07	11.59	7.72	1.23	9.00	37.34
0.07	6.25	0.08	17.84	9.00	1.61	10.48	38.94
0.08	4.51	0.09	22.35	10.48	2.09	12.21	41.03
0.09	2.73	0.11	25.07	12.21	2.67	14.22	43.70
0.11	1.51	0.13	26.58	14.22	3.29	16.57	46.99
0.13	0.83	0.15	27.41	16.57	3.85	19.31	50.34
0.15	0.50	0.17	27.91	19.31	4.25	22.49	55.05
0.17	0.35	0.20	28.26	22.49	4.46	26.20	59.55
0.20	0.28	0.23	28.54	26.20	4.50	30.53	64.04
0.23	0.24	0.27	28.78	30.53	4.41	35.56	68.45
0.27	0.21	0.31	28.99	35.56	4.24	41.43	72.69
0.31	0.18	0.36	29.17	41.43	4.03	48.27	76.73
0.36	0.15	0.42	29.32	48.27	3.79	56.23	80.51
0.42	0.14	0.49	29.46	56.23	3.39	65.23	83.90
0.49	0.14	0.58	29.75	65.51	2.94	76.32	86.84
0.58	0.15	0.67	29.61	76.32	2.49	88.91	89.33
0.67	0.16	0.78	29.75	88.91	2.08	103.58	91.41
0.78	0.18	0.91	30.10	103.58	1.75	120.67	93.16
0.91	0.21	1.06	30.31	120.67	1.45	140.58	94.61
1.06	0.23	1.24	30.55	140.58	1.20	163.77	95.81
1.24	0.24	1.44	30.79	163.77	1.00	190.80	96.81
1.44	0.26	1.68	31.05	190.80	0.84	222.28	97.65
1.68	0.28	1.95	31.33	222.28	0.71	258.95	98.36
1.95	0.30	2.28	31.63	258.95	0.58	301.65	98.95
2.28	0.34	2.65	31.97	301.68	0.46	351.46	99.41
2.65	0.38	3.09	32.35	351.46	0.33	409.45	99.73
3.09	0.42	3.60	32.77	409.45	0.20	477.01	99.92
3.60	0.47	4.19	33.25	477.01	0.07	555.71	100.00
4.16	0.53	4.88	33.78	555.71	0.00	647.41	100.00
4.88	0.62	5.89	34.40	647.41	0.00	754.23	100.00
5.69	0.76	6.63	35.16	754.23	0.00	878.67	100.00

ก.2 ผลการตรวจวัดขนาดอนุภาคด้วยเทคนิค Laser Light scattering (ครั้งที่ 1)

Result Statistics							
Beam Length 2.40 mm Obscuration 16.1%			6.1%	Residual 0.304 %			
Distribution Typ	e Volume	Concentration =	0.0098 %vol	Density = 1.000 g	g/cub.cm	Specific.S.A = 24.0	104 sq. m/g
Mean Diameter		D (v, 0,1) = 0.07	μm	D (v, 0,5) = 19.09)µm	D (v, 0,9) = 94.46 µm	
D [4, 3]= 37.62	μm	D (3,2) = 0.25 µr	n				
Size Low (µm)	In%	Size High (µm)	Under%	Size Low (µm)	In%	Size High (µm)	Under%
0.05	5.04	0.06	5.05	6.63	0.94	7.72	36.12
0.06	6.96	0.07	12.00	7.72	1.22	9.00	37.33
0.07	6.29	0.08	18.29	9.00	1.60	10.48	38.93
0.08	4.42	0.09	22.72	10.48	2.08	12.21	41.01
0.09	2.61	0.11	25.33	12.21	2.67	14.22	43.69
0.11	1.41	0.13	26.74	14.22	3.30	16.57	46.98
0.13	0.77	0.15	27.50	16.57	3.87	19.31	50.86
0.15	0.46	0.17	27.97	19.31	4.28	22.4	55.14
0.17	0.33	0.20	28.29	22.49	4.48	26.20	59.62
0.20	0.27	0.23	28.56	26.20	4.50	30.53	64.12
0.23	0.24	0.27	28.80	30.53	4.40	35.56	68.51
0.27	0.21	0.31	29.01	35.56	4.22	41.43	72.73
0.31	0.18	0.36	29.18	41.43	3.99	48.27	76.72
0.36	0.15	0.42	29.33	48.27	3.73	56.23	80.45
0.42	0.16	0.49	29.47	56.23	3.34	65.23	83.79
0.49	0.19	0.58	29.62	65.51	2.89	76.32	86.69
0.58	0.22	0.67	29.76	76.32	2.45	88.91	89.14
0.67	0.24	0.78	29.93	88.91	2.06	103.58	91.20
0.78	0.25	0.91	30.11	103.58	1.74	120.67	92.94
0.91	0.26	1.06	30.33	120.67	1.46	140.58	94.40
1.06	0.24	1.24	30.57	140.58	1.21	163.77	95.61
1.24	0.25	1.44	30.81	163.77	1.02	190.80	96.63
1.44	0.26	1.68	31.07	190.80	0.86	222.28	97.49
1.68	0.28	1.95	31.35	222.28	0.73	258.95	98.22
1.95	0.31	2.28	31.66	258.95	0.60	301.65	98.83
2.28	0.34	2.65	32.00	301.68	0.48	351.46	99.31
2.65	0.38	3.09	32.38	351.46	0.36	409.45	99.66
3.09	0.42	3.60	32.80	409.45	0.23	477.01	99.89
3.60	0.47	4.19	33.27	477.01	0.11	555.71	100.00
4.16	0.53	4.88	33.81	555.71	0.00	647.41	100.00
4.88	0.62	5.89	34.43	647.41	0.00	754.23	100.00
5.69	0.75	6.63	35.18	754.23	0.00	878.67	100.00

Result Statistics								
Beam Length 2	.40 mm	Obscuration 16	6.0%	Residual 0.286 %				
Distribution Type Volume		Concentration =	Concentration = 0.0098 %vol		Density = 1.000 g/cub.cm		Specific.S.A = 23.7576 m/g	
Mean Diameter		D (v, 0,1) = 0.07	μm	D (v, 0,5) = 19.0	9 µm	D (v, 0,9) = 100.44 µm		
D [4, 3]= 39.69	μm	D (3,2) = 0.25 µr	n					
Size Low (µm)	In%	Size High (µm)	Under%	Size Low (µm)	In%	Size High (µm)	Under%	
0.05	4.95	0.06	4.95	6.63	0.93	7.72	35.81	
0.06	6.85	0.07	11.81	7.72	1.21	9.00	37.01	
0.07	6.23	0.08	18.03	9.00	1.58	10.48	38.59	
0.08	4.41	0.09	22.44	10.48	2.05	12.21	40.64	
0.09	2.62	0.11	25.06	12.21	2.62	14.22	43.26	
0.11	1.42	0.13	26.48	14.22	3.24	16.57	46.50	
0.13	0.78	0.15	27.26	16.57	3.80	19.31	50.30	
0.15	0.47	0.17	27.73	19.31	4.20	22.49	54.50	
0.17	0.33	0.20	28.05	22.49	4.41	26.20	58.91	
0.20	0.27	0.23	28.32	26.20	4.44	30.53	63.36	
0.23	0.24	0.27	28.56	30.53	4.35	35.56	67.71	
0.27	0.21	0.31	28.77	35.56	4.19	41.43	71.89	
0.31	0.17	0.36	28.94	41.43	3.97	48.27	75.87	
0.36	0.15	0.42	29.09	48.27	3.73	56.23	79.59	
0.42	0.14	0.49	29.23	56.23	3.34	65.23	82.93	
0.49	0.14	0.58	29.37	65.51	2.90	76.32	85.83	
0.58	0.14	0.67	29.51	76.32	2.47	88.91	88.30	
0.67	0.16	0.78	29.67	88.91	2.10	103.58	90.40	
0.78	0.18	0.91	29.86	103.58	1.79	120.67	92.18	
0.91	0.21	1.06	30.07	120.67	1.52	140.58	93.70	
1.06	0.23	1.24	30.30	140.58	1.29	163.77	94.99	
1.24	0.24	1.44	30.55	163.77	1.10	190.80	96.09	
1.44	0.25	1.68	30.08	190.80	0.95	222.28	97.04	
1.68	0.28	1.95	31.08	222.28	0.82	258.95	97.87	
1.95	0.30	2.28	31.38	258.95	0.69	301.65	98.56	
2.28	0.33	2.65	31.71	301.68	0.56	351.46	99.11	
2.65	0.38	3.09	32.09	351.46	0.43	409.45	99.54	
3.09	0.42	3.60	32.51	409.45	0.30	477.01	99.84	
3.60	0.47	4.19	32.98	477.01	0.16	555.71	100.00	
4.16	0.53	4.88	33.51	555.71	0.00	647.41	100.00	
4.88	0.62	5.89	34.12	647.41	0.00	754.23	100.00	
5.69	0.75	6.63	34.87	754.23	0.00	878.67	100.00	

ภาคผนวก ข

ข.1 แสดงสมบัติเชิงกลของฟิล์มที่ผสมเซลลูโลสที่ผสมเซลลูโลสระดับจุลภาคที่ 0-30 เปอร์เซ็นต์ และที่สัปดาห์ต่างๆ

ข.1.1 สมบัติการทนแรงดึง (Tensile)

0 week

% MC	Tensile		Tensile	
	(MD)		(TD)	
0%	12.644		<mark>11</mark> .994	
	12.125		11.913	
	13.106		12.126	
	12.862	N 26-72 (4)	12.085	
	12.616		11.845	
Average	12.6706	± 0.3631	11.9908	± 0.1155
		22221		
5%	15.425	Gelle String	15.117	
	15.284	WWWWWW	14.561	
	15.548		15.061	
	14.984		14.874	
	14.987		13.897	
Average	15.2456	± 0.2551	14.702	± 0.4996
616	า เบน	JAIRI		3
10%	17.375	- - - -	16.568	
NN 16	16.958	เน่นท	16.703	1951
9	17.025		16.753	
	16.945		16.012	
	16.832		16.987	
Average	17.027	± 0.20653	16.6046	± 0.3641

% MC	Tensile		Tensile	
	(MD)		(TD)	
15%	16.987		15.661	
	17.115		15.896	
	16.997		16.017	
	16.612		15.589	
	16.832		15.987	
Average	16.9086	± 0.1939	15.83	± 0.194
20%	17.335		16.184	
	17.085		16.081	
	17.897		16.987	
	17.598		16.012	
	17.166		16.837	
Average	17.4162	± 0.3328	16.419	± 0.4548
		ANGLOW ALLAND		
25%	18.581		17.283	
C	18.183		18.012	
	18.646		17.346	
	19.112		17.587	
	17.955		17.854	
Average	18.4954	± 0.4471	17.6164	± 0.3154
010				2
30%	18.096		17.106	
9	18.019		16.897	
	18.089		17.348	
	18.087		16.894	
	18.023		16.789	
Average	18.0628	± 0.03833	17.0068	± 0.2227

2 week

% MC	Tensile		Tensile	
	(MD)		(TD)	
0%	13.035		11.585	
	12.434		11.964	
	12.508		11.532	
	12.569		11.608	
	12.347		12.086	
Average	12.5786	± 0.26829	11.7556	± 0.252722
5%	14.868.		13.656	
	14.977	8 <u>60</u> 4	13.672	
	15.085		13.619	
	15.235		14.192	
	15.364	TALALA C	14.396	
Average	15.1058	± 0.198072	13.9694	± 0.0323
	S.C.S.	2112112		
10%	16.756	P P V LAN	15.987	
	16.823		16.094	
	17.114		16.462	
	16.457		16.262	
ត្ត	17.034	วทยา	15.851	
Average	16.7968	± 0.20653	16.1312	± 0.2383
29/122	2220	201010	2000	D D D L

% MC	Tensile		Tensile	
	(MD)		(TD)	
15%	16.585		15.498	
	16.179		15.372	
	16.656		14.878	
	16.765		15.554	
	16.858		14.924	
Average	16.6086	± 0.2617	15.2452	± 0.32146
20%	17.034		15.458	
	17.278		15.743	
	16.883		16.012	
	16.782		15.312	
	16.854		15.911	
Average	16.9662	± 0.197	15.6872	± 0.29664
25%	17.968		16.945	
C	17.549		16.627	
	18.237		17.087	
	17.752		16.833	
	17.721		16.374	
Average	17.8454	± 0.26478	16.7732	± 0.2794
010	ПОМ			
30%	17.152		15.175	าลย
9	17.059		15.551	
	17.325		16.043	
	17.074		15.976	
	17.231		15.452	
Average	17.1682	± 0.1113	15.6394	± 0.3656

4 week

% MC	Tensile		Tensile	
	(MD)		(TD)	
0%	12.331		11.366	
	12.172		11.457	
	12.464		11.369	
	12.687		11.288	
	12.739		11.798	
Average	12.4786	± 0.2383	11.4556	± 0.2
5%	14.922		13.315	
	14.846		13.356	
	15.089		13.508	
	1 <mark>4</mark> .612		13.739	
	14.808	Electron de la compañía de la	13.179	
Average	14.8554	± 0.1736	13.4194	± 0.21372
(
10%	16.556		15.082	
	16.535		15.387	
	16.389		15.775	
ลเ	16.299		15.678	5
	16.189	σ	15.804	e e
Average	16.387	± 0.20653	15.5452	± 0.0.2938
% MC	Tensile		Tensile	
---------	---------	------------	---------	-----------
	(MD)		(TD)	
15%	16.155		15.011	
	16.188		14.491	
	15.918		14.515	
	15.723		14.244	
	16.059	Alla.	14.355	
Average	16.0086	± 0.191	14.5232	± 0.2938
20%	15.611		14.589	
	15.665		14.125	
	16.349	4 G 4	15.086	
	15.182		15.355	
	16.274	16222	14.528	
Average	15.8162	± 0.49	14.7366	± 0.4857
25%	17.012	Renterran	15.788	
C	16.521	20433ac	15.587	
	16.415		15.348	
	16.744		15.655	
	16.785		15.238	
Average	16.6954	± 0.023434	15.5232	± 0.2256
010	пои			0
30%	15.608	าไขเห	14.098	าลย
9	15.754		14.248	
	15.817		13.715	
	15.604		13.867	
	15.558		14.556	
Average	15.6682	± 0.1111	14.0968	± 0.32875

6 week

% MC	Tensile		Tensile	
	(MD)		(TD)	
0%	12.773		11.343	
	12.455		11.198	
	12.374		11.014	
	12.138		10.898	
	12.028		11.325	
Average	12.3536	± 0.29115	11.1556	± 0.19494
5%	14.581		13.035	
	14.371	3 50 4	12.541	
	14.493	TO A	13.131	
	14.635		12.973	
	14.822	RIZIZ I	12.667	
Average	14.58	± 0.16795	12.8694	± 0.2526
	See.	20 2 ANIA		
10%	15.791		14.932	
	16.066		15.047	
	15.544		15.147	
	15.537		14.874	
ล์เ	16.122	วทยา	14.656	
Average	15.812	± 0.27771	14.9312	± 0.1864
ลหาวล	งงกรร	891910	779/18	าลย

% MC	Tensile		Tensile	
	(MD)		(TD)	
15%	15.107		13.287	
	15.284		13.785	
	15.362		13.711	
	15.243		13.548	
	15.042		13.895	
Average	15.2076	± 0.13	13.6452	± 0.2366
20%	14.482		13.634	
	14.346		13.561	
	14.074		13.422	
	14.241		13.345	
	14.438		13.471	
Average	14.3162	± 0.163958	13.4866	± 0.11372
25%	14.839		13.987	
C	15.358		14.072	
	15.204		14.253	
	14.962		13.776	
	15.614		13.587	
Average	15.1954	± 0.30953	13.935	± 0.2593
010	ПОМ			
30%	13.619		11.777	าลย
9	13.451		12.099	
	13.551		11.878	
	13.721		11.978	
	13.999		12.252	
Average	13.6682	± 0.2094	11.9968	± 0.18597

8 week

% MC	Tensile		Tensile	
	(MD)		(TD)	
0%	12.358		10.381	
	12.352		10.204	
	12.025		10.711	
	12.478		10.431	
	11.805		10.301	
Average	12.2036	± 0.27925	10.4056	± 0.19111
5%	14.146		12.401	
	14.269	3 500 4	12.113	
	14.425	NO A	12.031	
	14.354		12.348	
	13.948	RIA IS	12.454	
Average	14.2304	± 0.18979	12.2694	± 0.18632
	13 C)	MAN WAY		
10%	15.562		14.076	
	14.935		13.988	
	15.152		14.345	
	15.277		13.869	
	14.884	วทยเ	14.128	
Average	15.162	± 0.2748	14.0812	± 0.17741
394776	างกรร	2010	779/10	าลย

% MC	Tensile (MD)		Tensile	
			(TD)	
15%	14.371		12.147	
	14.102		11.987	
	14.257		12.891	
	14.082		12.672	
	13.97 <mark>6</mark>		12.529	
Average	14.1576	± 0.15588	12.4452	± 0.37285
20%	11.764		11.787	
	11.872		11.874	
	12.083		11.248	
	12.155		11.511	
	12.207		12.013	
Average	12.0162	± 0.16395	11.6866	± 0.11372
25%	13.912		11.851	
	13.871		11.615	
	13.598		11.121	
	13.612		11.012	
	13.487		11.517	
Average	13.696	± 0.185487	11.4232	± 0.25933
011	помо	700	01110	0
30%	10.161		8.547	
9	11.056		8.787	
	10.764		8.655	
	10.346		8.127	
	10.514		8.364	
Average	10.5682	0.35157	8.496	± 0.25794

ข 1.2 ผลความแข็งแรงยังมอดุลัส (Young's modulus)

% MC	Young's modulus	Young's modulus
	(MD)	(TD)
0%	34.743	33.744
	34.528	33.307
	34.2 <mark>55</mark>	33.116
	35.383	33.047
	35.516	33.526
Average	34.885 ± 0.5455	33.348 ± 0.28922
5%	35.812	33.965
	34.964	34.121
	35.295	33.786
	34.286	33.656
	35.328	32.287
Average	35.137 ± 0.2340	33.563 ± 0.7476
C		
10%	35.378	33.565
	35.657	33.303
	35.055	33.748
สร	34.753	33.872
616	34.932	34.087
Average	35.155 ± 0.3616	33.715 ± 0.2984
9		

% MC	Young's modulus		Young's modulus	
	(MD)		(TD)	
15%	38.317		33.976	
	38.185		33.796	
	37.937		33.043	
	38.366		34.394	
	38.455		34.281	
Average	38.252	± 0.2013	34.098	± 0.2402
20%	42.431		40.274	
	42.172		40.496	
	42.996		40.586	
	42.763		39.997	
	42.278		40.309	
Average	42.528	± 0.3438	40.309	± 0.2366
	ANACC	ALLA I		
25%	62.404		60.586	
C	62.212		60.183	
	62.396		60.654	
	62.557		60.212	
	62.856		60.955	
Average	62.485	± 0.2407	60.518	± 0.3240
010				
30%	75.096		73.156	
9	75.389		72.897	
	75.249		73.348	
	75.268		73.395	
	75.313		73.469	
Average	75.263	± 0.1078	73.253	± 0.2302

2 Week

% MC	Young's modulus		Young's modulus	
	(MD)		(TD)	
0%	34.568		33.385	
	34.814		32.182	
	34.672		32.796	
	34.397	12.	32.372	
	34.474		32.255	
Average	34.585	± 0.1642	32.998	± 0.4130
5%	34.899		33.216	
	34.975		32.681	
	34.767	5.11	32.482	
	34.233		32.783	
	34.324		33.163	
Average	34.637	± 0.3370	32.815	± 0.2096
10%	34.046	2222-2	32.941	
	34.123		32.864	
	34.465		32.647	
	34.527		33.062	
র	34.614	เยาริ	32.561	
Average	34.355	± 0.2540	32.812	± 0.2073

งหาลงกรณมหาวทยาลย

% MC	Young's modulus		Young's modulus	
	(MD)		(TD)	
15%	37.366		32.753	
	37.089		32.463	
	37.173		32.952	
	37.668		32.617	
	37.964		32.455	
Average	37.052	± 0.2597	32.648	± 0.2096
20%	41.027		38.358	
	41.208		38.182	
	41.123		38.858	
	41.025		38.673	
	40.757		38.224	
Average	41.028	± 0.1694	38.459	± 0.2945
		ALS A		
25%	59.875		57.934	
C	60.199		57.828	
	60.274		58.083	
	59.698		58.261	
	59.879		58.484	
Average	59.985	± 0.2423	58.118	± 0.2615
010	IIUMOT			
30%	72.082		69.263	
9	71.879		69.431	
	71.585		69.313	
	71.484		69.826	
	71.785		69.432	
Average	71.763	± 0.2372	69.453	± 0.2212

% MC	Young's modulus		Young's modulus	
	(MD)		(TD)	
0%	34.091		32.371	
	34.394		32.367	
	34.193		32.366	
	33.685		32.288	
	34.062		32.598	
Average	34.085	± 0.2587	32.398	± 0.11706
5%	33.922		32.128	
	33.746		32.331	
	34.056		31.907	
	34.216		31.818	
	34.835		32.141	
Average	34.055	± 0.1557	32.065	± 0.2040
10%	33.776		31.282	
	33.415		32.191	
	33.299		32.094	
	33.039		31.654	
র	33.189		31.604	
Average	33.355	± 0.2639	31.765	± 0.32668

จุฬาลงกรณ์มหาวิทยาลย

% MC	Young's modulus		Young's modulus	
	(MD)		(TD)	
15%	33.369		31.389	
	33.468		31.481	
	33.842		30.884	
	33.952		30.958	
	33.629		31.028	
Average	33.652	± 0.2452	31.148	± 0.2688
20%	39.301		36.151	
	39.444		36.247	
	39.132		36.356	
	3 <mark>8.8</mark> 51		36.571	
	38.912		36.461	
Average	39.128	± 0.2515	36.359	± 0.1667
25%	57.212		55.088	
	57.131		55.167	
	57.265		54.748	
	57.085		54.654	
	56.732		54.433	
Average	57.085	± 0.2093	54.818	± 0.3060
0				,
30%	67.566		65.592	
9	68.148		65.335	
	68.057		64.765	
	67.606		65.822	
	67.448		65.251	
Average	67.763	± 0.3167	65.353	± 0.3979

6 week

% MC	Young's modulus		Young's modulus	
	(MD)		(TD)	
0%	33.443		31.542	
	33.528		31.498	
	33.343		31.671	
	33.638		32.095	
	33.223		31.684	
Average	33.435	± 0.1607	31.698	± 0.2360
5%	33.321		31.035	
	33.182		31.121	
	33.041		30.981	
	33.388		30.671	
	32.253		31.267	
Average	33.037	± 0.4581	31.015	± 0.2205
	The second	Stand A		
10%	31.991		30.932	
C C	32.132		30.326	
	32.043		30.667	
	32.252		30.156	
	32.357		30.494	
Average	32.155	± 0.1501	30.515	± 0.3008

จุฬาลงกรณ์มหาวิทยาลัย

% MC	Young's modulus		Young's modulus	
	(MD)		(TD)	
15%	34.307		30.187	
	34.278		29.485	
	33.647		29.231	
	34.816		28.997	
	34.212		29.095	
Average	34.052	± 0.3005	29.398	± 0.4750
20%	36.039		33.834	
	36.458		33.621	
	35.784		33.917	
	35.977		34.082	
	35.882		34.341	
Average	36.028	± 0.2590	33.959	± 0.2705
	ANGLAS	ALL STATE		
25%	53.832		50.947	
C	54.466		51.022	
	54.099		50.814	
	53.891		51.041	
	53.637		51.266	
Average	53.985	± 0.3153	51.018	± 0.1648
010				
30%	64.019		60.628	
9	63.432		60.046	
	63.502		60.438	
	63.373		60.947	
	63.489		60.706	
Average	63.563	± 0.2599	60.553	± 0.3370

% MC	Young's modulus	Young's modulus
	(MD)	(TD)
0%	32.558	30.681
	32.662	30.493
	32.477	30.741
	32.393	30.984
	32.585	30.841
Average	32.535 ± 0.1033	30.748 ± 0.18296
5%	31.946	29.501
	32.169	29.713
	32.248	30.741
	31.554	30.984
	32.258	30.841
Average	32.035 ± 0.2967	30.748 ± 0.1829
10%	30.762	29.053
	30.935	28.848
	30.343	28.757
	30.401	28.179
র	30.884	29.238
Average	59.665 ± 0.2755	29.015 ± 0.2076

จุฬาลงกรณ์มหาวิทยาลย

% MC	Young's modulus	Young's modulus
	(MD)	(TD)
15%	32.381	27.197
	32.102	27.064
	32.252	27.348
	31.704	27.586
	31.821	27.295
Average	33.052 ± 0.2851	27.298 ± 0.1939
20%	33.553	31.557
	33.475	31.487
	33.381	31.315
	33.061	30,797
	33.215	30.889
Average	33.328 ± 0.2151	31.209 ± 0.3470
25%	49.072	46.351
C	49.891	46.565
	49.663	45.945
	49.495	45.862
	48.804	46.367
Average	49.385 ± 0.4418	46.218 ± 0.3006
010		
30%	58.261	54.577
9	57.764	54.887
	57.956	54.755
	58.536	54.582
	57.808	54.464
Average	58.063 ± 0.3282	54.653 ± 0.1671

ข 1.3 สมบัติการทนแรงฉี่กขาด

% MC	Tear		Tear	
	(MD)		(TD)	
0%	25.385		24.745	
	24.984		24.544	
	25.238		24.924	
_	24.879		24.689	
	25.316		25.014	
Average	25.1184	± 0.2185	24.7844	± 0.1875
5%	26.096		25.587	
	25.998		25.615	
	26.173		25.312	
	25.724		24.987	
	26.224		25.715	
Average	26.096	± 0.3568	25.4432	± 0.2955
0	2320434	and and a second	0	
10%	26.573		25.987	
	26.212		26.012	
	26.471		25.874	
ักาบั	26.654		25.745	
161 I U	26.742		25.874	
Average	26.5736	± 0.18533	25.8984	± 0.1066

% MC	Tear		Tear	
	(MD)		(TD)	
15%	26.093		27.547	
	26.279		27.041	
	27.951		27.382	
	28.198		27.941	
	27.895		27.824	
Average	28.0832	± 0.16163	27.547	± 0.3588
20%	29.874		29.741	
	29.994		29.412	
	30.291		29.354	
	30.547		26.634	
	30.784		29.147	
Avera <mark>g</mark> e	30.02	± 0.2117	29.4576	± 0.2349
25%	24.178		23.145	
0	23.872		23.987	
CA.	24.284		23.541	
	23.698		23.414	
0.7	24.389		23.621	
Average	24.0842	± 0.28979	23.5416	± 0.3075
30%	22.258		21.541	
	22.185		21.471	
	22.484		21.687	
	22.397		21.012	
	22.561		21.312	
Average	22.377	± 0.15507	21.4046	± 0.2576
	% MC 15% Average 20% 20% 20% Average 25% 30% Average 30%	% MC Tear (MD) 15% 26.093 26.279 27.951 28.198 27.895 Average 28.0832 20% 29.874 20% 29.874 20% 29.874 30.291 30.291 30.547 30.784 25% 24.178 25% 24.178 23.872 24.284 23.698 24.389 Average 24.389 Average 22.185 30% 22.258 22.185 22.484 22.397 22.561	% MC Tear (MD) 15% 26.093 26.279 27.951 28.198 28.198 27.895 28.0832 Average 28.0832 ± 0.16163 20% 29.874 29.994 20% 29.874 29.994 20% 29.874 29.994 30.291 30.547 30.547 30.547 30.784 23.698 25% 24.178 23.872 25% 24.178 23.698 24.389 20.28979 30% 30% 22.258 22.185 22.484 22.397 22.561 4verage 22.397 22.561	% MC Tear (MD) Tear (TD) 15% 26.093 27.547 26.279 27.041 27.951 27.382 28.198 27.941 27.895 27.824 Average 28.0832 ± 0.16163 27.547 20% 29.874 29.741 20% 29.874 29.412 30.291 29.412 30.291 29.354 30.547 26.634 29.147 20% 29.374 29.147 20% 29.374 29.354 30.547 26.634 29.147 20% 24.178 23.145 25% 24.178 23.145 25% 24.178 23.61 25% 24.178 23.61 23.698 23.414 23.69 23.698 23.414 23.621 Average 24.284 21.541 22.485 21.541 21.471 22.484 21.687 21.471 <t< th=""></t<>

% MC	Tear		Tear	
	(MD)		(TD)	
0%	25.38		24.547	
	24.951		24.417	
	24.965		24.214	
	25.101		24.074	
	24.701		24.314	
Average	24.9602	± 0.1589	24.3132	± 0.1819
5%	25.874		24.987	
	25.674		24.874	
	25.917		24.745	
	26.198		24.321	
	26.279		24.547	
Averag <mark>e</mark>	25.5824	± 0.2476	24.6948	± 0.26532
	EDENNENSING	and the second		
10%	26.078		25.741	
	26.141		25.441	
	26.578		25.354	
. v	26.245		25.185	
ถาบ	26.351		25.021	
Average	26.017	± 0.1969	25.3484	± 0.2723

% MC	Tear		Tear	
	(MD)		(TD)	
15%	28.032		26.241	
	27.541		26.541	
	27.865		26.041	
	27.784		26.741	
	27.562		26.381	
Average	27.6321	± 0.2334	26.389	± 0.2692
20%	29.184		28.124	
	29.592		28.421	
	29.845		28.147	
	29.451		28.321	
	29.987		28.687	
Average	29.618	± 0.3179	28.34	± 0.2298
25%	23.845		22.412	
C	23.784		22.147	
	23.621		22.213	
	23.097		22.517	
	23.517		22.741	
Average	23.3842	± 0.2960	22.406	± 0.2392
61.6	ПОМ			0
30%	22.107		21.247	เาล้ย
9	21.741		20.412	
	21.571		20.217	
	21.647		21.114	
	21.961		20.994	
Average	21.8044	± 0.2232	20.7966	± 0.4545

% MC	Tear		Tear	
	(MD)		(TD)	
0%	24.603		23.541	
	24.214		23.871	
	24.546		23.541	
	24.158		23.215	
	24.638		23.417	
Average	24.4354	± 0.22763	23.517	± 0.12385
5%	24.987		24.546	
	25.392		24.741	
	24.485		24.147	
	25.187		23.896	
	25.241		24.063	
Average	25.094	± 0.1792	24.2786	± 0.4996
-	EDEN VILL	il par		
10%	25.197		24.857	
	25.323		23.874	
- A	24.986		23.751	
	24.897		24.145	
เลาบ	25.304		24.097	
Average	25.1414	± 0.1913	24.0158	± 0.1949

% MC	Tear		Tear	
	(MD)		(TD)	
15%	25.894		24.587	
	25.549		24.025	
	25.189		24.187	
	25.699		24.879	
	25.879		24.287	
Average	25.642	± 0.2901	24.393	± 0.3401
20%	28.287		27.012	
	28.459		26.841	
	28.371		27.514	
	28.561		27.412	
	28.285		27.374	
Average	28.3926	± 0.1182	27.2306	± 0.2886
25%	20.815		19.541	
0	20.898		19.321	
CA.	20.658		19.645	
	21.104		19.124	
0.4	20.539		19.094	
Average	20.8028	± 0.2182	19.345	± 0.23.92
30%	19.141		18.012	
	18.507		18.372	
	19.041		18.112	
	19.207		17.802	
	19.312		17.621	
Average	19.0416	± 0.3147	17.9838	± 0.2883

6 Week

% MC	Tear		Tear	
	(MD)		(TD)	
0%	23.699		23.012	
	23.914		22.874	
	24.074		22.994	
	24.102		22.748	
	23.758		22.688	
Average	23.9094	± 0.1812	22.8632	± 0.1443
5%	24.589		23.547	
	24.687		23.687	
	24.749		23.354	
	24.178		23.114	
	24.798		23.098	
Averag <mark>e</mark>	24.5062	± 0.2665	23.36	± 0.2603
	493904184			
10%	24.278		23.214	
	24.547		23.478	
	24.017		23.304	
9	24.124		22.997	
ลลาเ	24.354	เปรก	22.887	
Average	24.0264	± 0.20554	23.176	± 0.23957

	% MC	Tear		Tear	
		(MD)		(TD)	
	15%	24.878		23.471	
		24.667		23.074	
		24.278		23.641	
		24.347		23.395	
		25.097		23.504	
	Average	24.6534	± 0.3472	23.417	± 0.2114
	20%	27.395		26.305	
		27.587		26.045	
		27.154		26.124	
		27.689		26.241	
		27.154		26.674	
	Avera <mark>g</mark> e	27.3958	± 0.24446	26.2778	± 0.2433
	25%	19.841		18.012	
	0	19.657		18.457	
	CA.	19.478		18.099	
		19.308		18.241	
	0.7	19.242		17.998	
1	Average	19.5052	± 0.2473	18.1614	± 0.1914
0				6	
~	30%	17.938		16.784	
		17.541		16.541	
		17.614		16.214	
		18.278		16.874	
		18.097		16.174	
	Average	17.8936	± 0.3136	16.5174	± 0.3196

% MC	Tear		Tear	
	(MD)		(TD)	
0%	23.454		22.781	
	23.543		22.642	
	23.142		22.451	
	23.612		22.636	
	23.014		22.012	
Average	23.3538	± 0.26189	22.5044	± 0.2991
5%	23.945		22.988	
	23.714		22.741	
	23.568		22.874	
	23.898		22.514	
	24.154		22.389	
Aver <mark>age</mark>	22.8558	± 0.22449	22.7012	± 0.24806
		2		
10%	22.394		21.574	
	22.456		21.816	
	22.574		21.108	
	22.781		21.224	
<u> </u>	21.841		21.085	
Average	22.4092	± 0.35023	21.3614	± 0.3206

จุฬาลงกรณมหาวทยาลย

Tear		Tear	
(MD)		(TD)	
23.374		22.074	
23.189		21.874	
22.876		22.242	
22.704		21.901	
23.571	1	22.014	
23.1428	± 0.3544	22.021	± 0.1480
26.147		25.014	
25.874		25.714	
25.751		25.217	
26.241		24.828	
26.317		24.812	
26.066	± 0.2430	25.117	± 0.3728
AVALANA I			
18.784		17.651	
18.641	and the second sec	17.546	
18.374		17.091	
19.471		17.402	
19.254		17.104	
18.9048	± 0.4495	17.3588	± 0.2544
		6	
16.245	หาวิท	15.019	
16.841		14.865	
15897		14.626	
16.021		14.712	
16.314		15.279	
16.1778	± 0.21292	14.9002	± 0.2595
	Tear (MD) 23.374 23.189 22.876 22.704 23.571 23.1428 26.147 25.874 25.751 26.241 26.317 26.066 18.784 18.9048 16.245 16.841 15897 16.021 16.314	Tear (MD) 23.374 23.374 23.189 22.876 22.704 23.571 23.571 23.1428 ± 0.3544 26.147 25.874 25.751 26.241 26.317 26.066 ± 0.2430 18.784 18.641 18.374 19.471 19.254 16.245 16.841 15.897 16.021 16.1778 ± 0.21292	Tear (MD) Tear (TD) 23.374 22.074 23.189 21.874 22.876 22.242 22.704 21.901 23.571 22.014 23.1428 ± 0.3544 22.021 26.147 25.014 25.874 25.714 25.751 25.217 26.241 24.828 26.317 24.812 26.317 24.812 26.317 24.812 26.317 24.812 26.317 24.812 26.317 24.812 26.317 24.812 26.317 24.812 26.317 24.812 26.317 24.812 18.784 17.651 18.784 17.651 18.784 17.091 19.471 17.402 19.254 17.104 18.9048 ± 0.4495 17.3588 16.245 15.019 16.841 14.865 15897

ค.1. ผลการทดสอบสมบัติการย่อยสลาย

ค.1.1 ผลการทดสอบสมบัติการดูดซึมของฟิล์มพีวีซีเติมเซลลูโลสแบบผลึกระดับจุลภาค

%MC	%Moisture	
%	0.01	
	0.0095	
	0.008	
	0.0105	
	0.012	
verage	0.01	± 0.00145
5%	0.05	
	0.0437	
	0.66	
	0.0342	
	0.04	
verage	0.04678	± 0.01218
0%	0.09	1.4.
	0.8	
	0.064	
	0.179	
	0.1354	
Average	0.10968	± 0.046962

%MC	%Moisture	
15%	0.31	
	0.12	
	0.21	
	0.104	
	0.207	
Average	0.1902	± 0.0827
20%	0.292	
	0.152	
	0.215	
	0.39	
	0.104	
Average	0.2306	± 0.1136
25%	0.31	
	0.332	
	0.445	
	0.214	
12 m	0.201	
Average	0.3004	± 0.09917
30%	0.45	
	0.54	
	0.25	
	0.31	
PANIQ	0.201	
Average	0.3502	± 0.14133

ค 1.2 สมบัติความสามารถในการย่อยสลาย

2 week

% MC	% weight loss		% weight loss	
	(MD)		(TD)	
0%	0.0097		0.009	
	0.008		0.075	
	0.0126		0.011	
	0.01		0.0148	
	0.097		0.008	
Average	0.01	± 0.001654	0.01006	± 0.0.0297
5%	0.333		0.362	
	0.312		0.3631	
	0.3141		0.283	
	0.282		0.3175	
	0.372		2.285	
Average	0.32262	± 0.033096	0.32212	± 0.039368
(3		6	
10%	0.772		0.7545	
	0.7476		0.765	
	0.7085		0.757	
ลี่เ	0.7909		0.7345	
	0.691		0.699	
Average	0.742	± 0.04197	0.742	± 0.02653
9				

% MC	% weight loss		% weight loss	
	(MD)		(TD)	
15%	1.2532		1.1405	
	1.10114		1.021	
	1.0148		1.2145	
	1.107		1.0435	
	1.129		1.2	
Average	1.1236	± 0.08519	1.1239	± 0.0.0884
		9		
20%	1.741		1.7735	
	1.7425		1.674	
	1.707		1.85	
	1.8034		1.9325	
	1.7611		1.523	
Average	1.751	± 0.0352	1.7506	± 0.15903
25%	3.14		3.186	
C	2.998		2.9775	
	2.8175		3.0875	
	3.216		2.85	
	2.7995		2.871	
Average	2.9942	± 0.1868	2.994	± 0.0.14295
010	I I U KO			
30%	3.35		3.38	
9	3.146		3.274	
	2.82		3.03	
	2.6991		2.6471	
	3.076		2.7589	
Average	3.01822	± 0.26	3.018	± 0.3167

4 week

% MC	% weight loss		% weight loss	
	(MD)		(TD)	
0%	0.1215		0.1251	
	0.103		0.097	
	0.906		0.086	
	0.11		0.17	
	0.121		0.0724	
Average	0.1103	± 0.0.1115	0.1101	± 0.03868
5%	1.108		0.9015	
	0.7225		0.672	
	0.824		0.8615	
	0.9165		1.02	
	1.03		1.146	
Average	0.9202	± 0.15466	0.9202	± 0.17772
	A SHOW	Nilder -		
10%	1.714		1.68	
	1.54		1.856	
	1.0145		1.4595	
	1.7432		1.2672	
	1.604		1.356	
Average	1.5231	± 0.29596	1.52374	± 0.24129

% MC	% weight loss		% weight loss	
	(MD)		(TD)	
15%	2.162		2.147	
	2.0136		2.0744	
	2.2113		2.1377	
	2.125		2.155	
	2.3	112.	2.2784	
Average	2.15857	± 0.03842	2.1585	± 0.0742
20%	2.2443		2.3427	
	2.1125		2.0744	
	2.348		2.1377	
	2.25		2.155	
	2.3	2	2.2784	
Average	2.2907	± 0.1224	2.9094	± 0.0.1173
	ANGLA			
25%	4.0115	11.41	4.1247	
0	3.925	1242-2	4.056	
	4.14		3.774	
	3.796		3.76	
	3.9525		4.113	
Average	3.965	± 0.1256	3.96554	± 0.18316
0101	ТОКОТ			
30%	4.747	าเหาวั	4.677	
	4.82		4.874	
	4.6645		4.62	
	4.9		5.02	
	4.6345		4.576	
Average	4.7532	± 0.109554	4.7534	± 0.0.18756

% MC	% weight loss		% weight loss	
	(MD)		(TD)	
0%	0.236		0.191	
	0.13		0.1985	
	0.2		0.217	
	0.208		0.185	
	0223		0.2058	
Average	0.1994	± 0.04119	0.19946	± 0.01254
5%	2.755		2.965	
	2.9353		2.88	
	2.82		2.6537	
	2.49		2.597	
	2.9		2.8	
Average	2.78006	± 0.17666	2.77914	± 0.15334
		11 states		
10%	3.3847		3.3856	
	3.663		3.532	
	3.51		3.5	
	3.255		3.85	
ລເ	3.7		3.245	
Average	3.50254	± 0.187	3.50252	± 0.2245
AW 16			ทยาลย	
⁹ 15%	3.64		3.755	
	3.5		3.635	
	3.85		3.554	
	3.693		3.82	
	3.246		3.279	
Average	3.52106	± 0.2353	3.521	± 0.19152

% MC	% weight loss		% weight loss	
	(MD)		(TD)	
20%	3.927		4.37	
	4.28		3.9734	
	4.207		4.196	
	4.068		4.068	
	4.3		4.2	
Average	4.1564	± 0.15724	4.16148	± 0.15022
25%	5.12		4.749	
	4.769		4.847	
	4.8165		4.95	
	5.06		5.108	
	5.2		5.31	
Average	4.9931	± 0.0.19026	4.9928	± 0.02215
30%	6.185		6.405	
	5.9925		6.1	
	6.084		6.288	
	6.26		6.1215	
	6.355		5.961	
Average	4.1753	± 0.14257	4.1751	± 0.17317

จุฬาลงกรณ์มหาวิทยาลย

% MC	% weight loss		% weight loss	
	(MD)		(TD)	
0%	0.1478		0.1428	
	0.155		0.147	
	0.2		0.174	
	0.12		0.117	
	0.128		0.17	
Average	0.15	± 0.0312	0.15	± 0.0223
5%	3.0455		3.0581	
	3.2		3.15	
	3.321		3.283	
	3.36		3.084	
	3.146		3.5	
Average	3.21506	± 0.12922	3.21502	± 0.18155
	and the second s	1000 A		
10%	4.761		4.831	
	4.8548		4.5115	
	4.468		4.52	
	4.87		4.73	
600	4.6		4.961	
Average	4.71076	± 0.173082	4.7107	± 0.195922
1900 M	5050			
15%	6.21		6.7827	
	6.5		6.6	
	6.841		6.5698	
	6.9445		6.45	
	6.453		6.562	
Average	6.5897	± 0.2999	6.5929	± 0.1203
% MC	% weight loss		% weight loss	

ุลถาบนวทยบรการ จุฬาลงกรณ์มหาวิทยาลัย

	(MD)		(TD)	
20%	6.85		6.885	
	6.24		7.542	
	6.431		4.8	
	6.579		7.351	
	6.9		7.135	
Average	6.6	± 0.2.7888	6.6	± 0.2723
		1122		
25%	7.5168		7.484	
	7.357		7.542	
	7.754		7.8	
	7.23		7.351	
	7.4545		7.135	
Average	7.46246	± 0.19568	7.4624	± 0.24514
	3 500	as a		
30%	9.25		9.263	
	9.137		9.324	
	9.3		9.215	
	9.135		9.1623	
	9.2425		9.1	
Average	9.2129	± 0.073601	9.21286	± 0.08683

ประวัติผู้เขียนวิทยานิพนธ์

นางสาวศีริวรรณ สุอุทัย เกิดเมื่อวันที่ 26 สิงหาคม พ.ศ. 2519 สำเร็จการศึกษาระดับ ปริญญาตรีวิทยาศาสตร์บัณฑิต สาขาวิชาเคมี คณะวิทยาศาสตร์และเทคโนโลยี สถาบันราชภัฏ พระนครศรีอยุธยา ปีการศึกษา 2541 หลังจากนั้น จึงเข้าศึกษาต่อในหลักสูตรวิทยาศาสตร์มหาบัณฑิต สาขาวิชาวิทยาศาสตร์พอลิเมอร์ประยุกต์และเทคโนโลยีสิ่งทอ ภาควิชาวัสดุศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย เมื่อภาคต้นของปีการศึกษา 2547และสำเร็จการศึกษาในภาคต้นปี การศึกษา 2549 รวมระยะเวลาในการศึกษา 2 ปี

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย