

การแปลงแบบจําลองโครงลวดสามมิติใหเปนแบบจาํลองปริภูมิโครงสรางเซลล

นาย วรากร อ้ึงวิเชยีร

วิทยานิพนธนี้เปนสวนหนึง่ของการศึกษาตามหลกัสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต

สาขาวิชาวิศวกรรมคอมพิวเตอร ภาควิชาวิศวกรรมคอมพิวเตอร

คณะวิศวกรรมศาสตร จุฬาลงกรณมหาวทิยาลยั

ปการศึกษา 2549

ลิขสิทธิ์ของจฬุาลงกรณมหาวทิยาลยั

CONVERTING THREE DIMENSIONAL WIREFRAME MODEL TO

CELLULAR STRUCTURED SPACE MODEL

Mr. Varakorn Ungvichian

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering Program in Computer Engineering

Department of Computer Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2006

Copyright of Chulalongkorn University

vi

Acknowledgements

First of all, I will thank my thesis advisor, Dr. Pizzanu Kanongchaiyos, for

his useful advice and research suggestions, as well as the thesis committee for this

project: Assoc. Prof. Dr. Somchai Prasitjutrakul, Dr. Atiwong Suchato, Dr. Chakrit

Watcharophas, and Mr. Pinyo Jinuntuya. They have provided me with much useful

feedback. For these I am very grateful.

I also thank all the members of the Computer Graphics and Animation

laboratory (CG&A), especially Mr. Rungvit Laichuthai, for their additional support.

I also thank the Graduate School of Chulalongkorn University for

providing me with financial support to present my research at various conferences,

namely the Computer Aided Design and Applications Conference 2006 at Phuket

between June 19-23 2006, and the 15th International Conference in Central Europe on

Computer Graphics, Visualization and Computer Vision 2007 in the Czech Republic

between January 29-February 2 2007.

Lastly, I also have to thank my family for their love and support through

all my years of education.

Contents

Chapter Page

Abstract (Thai) ... iv

Abstract (English) ... v

Acknowledgements ... vi

Contents...vii

I. Introduction .. 1

1.1 The problem .. 1

1.2 Purpose of the research .. 2

1.3 Limitations.. 2

1.4 Expected benefits.. 2

1.5 Outline ... 2

II. Related Research and Background .. 3

2.1 2D Wireframe to 3D Solid Conversion .. 3

2.2 Finding Curvilinear Structures in Images... 4

2.3 Point Sampled Cell Complexes .. 5

2.4 Modeling Using Cellular Structured Space ... 6

2.5 Conclusions ... 7

III. Background .. 8

3.1 Three-dimensional Cell List .. 8

3.2 Cellular Design System.. 9

IV. 3D Cellular Structure Conversion Algorithm ... 10

4.1 Reading vertices and edges .. 11

4.2 Face detection... 11

4.3 Reducing to unique circuits... 13

4.4 Face reduction... 15

4.5 Face arrangement ... 17

4.6 Extra face processing.. 19

4.7 Object and volume detection .. 19

4.8 Finding relations .. 25

Chapter Page

viii

4.9 Output.. 27

V. Thin Point Finding Algorithm... 28

5.1 Pre-processing and finding central axis .. 29

5.2 Obtaining and processing selections .. 31

5.3 Determining thin points from obtained values ... 35

5.4 Thresholding.. 37

VI. Edge Smoothing Algorithm... 39

6.1 Pre-processing and finding continuous surface .. 40

6.2 Obtaining data to smooth surface ... 40

6.3 Find normal vectors ... 41

6.4 Redefining edges as curves.. 42

6.5 Readjusting midpoints ... 46

VII. Experimentation and Results .. 49

7.1 Tools for experimentation ... 49

 7.2 Wireframe to Three-dimensional Cell List Conversion 49

 7.3 Finding Thin Points in 3DCL .. 54

 7.4 Smoothing out 3DCL.. 57

VIII. Conclusions and future improvement .. 59

8.1 Conclusions .. 59

 8.2 Future improvement... 60

References.. 62

Vita.. 63

Figures

Figure Page

ix

1. Examples of data representations .. 1

2. Converting a 2D wireframe drawing into 3D solid .. 4

3. Detecting blood vessels in MRA data... 5

4. An example of a Point sampled cell complex... 6

5. A teacup in cellular structured space model .. 6

6. An example of a Three-dimensional cell list ... 9

7. Changing a bag’s design in the cellular design system... 9

8. Flowchart of the 3D cellular structure conversion algorithm..................................... 10

9. Results from reading in the edges.. 11

10. Tracing paths.. 12

11. Removing paths.. 13

12. Identical circuits from different traces .. 14

13. Two different paths representing the same face .. 14

14. Circuit ordering... 15

15. Face splitting to find area ... 16

16. Calculating flatness .. 16

17. Storing faces adjacent to each edge and vertex.. 18

18. Tracing an object.. 19

19. Flowchart of finding volumes .. 20

20. Finding the leftmost face .. 21

21. Determining the next face with turn direction ... 22

22. For case 1... 23

23. For case 2... 23

24. Special case solution.. 25

25. Determining a face’s outward pointer from that of an adjacent face 26

26. Right hand rotation around edge a... 27

27. Flowchart of the Thin Point Finding Algorithm... 28

28. Determining axes using averages .. 30

Figure Page

x

29. Flowchart of axis finding ... 31

30. Creating new selections ... 32

31. Face adjacency .. 32

32. Keeping track of edges with lists.. 33

33. Flowchart of selection processing .. 35

34. Averaging ... 36

35. Flowchart of edge smoothing algorithm ... 39

36. Faces, edges, and vertices used to smooth the surface.. 40

37. Determining the normal vector of an edge from its adjacent faces 41

38. Determining the normal vector of a vertex from its adjacent edges 42

39. Obtaining derivatives from normal vectors ... 43

40. Determining the new midpoint of an edge.. 47

41. Simple examples .. 49

42. Complex examples ... 49

43. Examples for thin point finding ... 55

44. Stanford Bunny ... 57

Tables

Table Page

xi

1. Result of the simple examples.. 50

2. Visual results of the simple examples... 51

3. Results of the complex examples ... 52

4. Visual results of the complex examples ... 53

5. Time to find thin points.. 55

6. Visual results for thin points .. 56

7. Results for 3DCL smoothing ... 58

CHAPTER I
INTRODUCTION

1.1 The problem

Computer graphics have developed from two dimensions to three

dimensions, allowing for versatile usage, such as for design. There are many methods of

data representation in three-dimensional computer graphics. However, different

representations are often inherently non-interchangeable, due to the storage of different

data to represent the object’s shape. For example, a wireframe (Figure 1, upper left)

generally stores information on the edges that comprise the structure, while Baumgart’s

winged-edge structure [1] (upper right) stores the faces and edges that are adjacent to

each edge. Other representations include surface models (bottom left) and solid models

(bottom right). Therefore, methods to convert between various representations are

required.

Figure 1. Examples of data representations

Among the many representations of three-dimensional computer

graphics that have been developed is the “Three-dimensional Cell List” format by

Kovalevsky [2]. This structure has the property of being able to efficiently represent

 2

topological data, which is useful in some applications such as product design. This

structure will be the output of this research.

1.2 Purpose of the research

In this research, we will describe a method to create a solid in Three-

dimensional Cell List format from a wireframe. We will also describe two algorithms

based on this new format, one to determine the thinnest points of a solid represented in

the format, and another to make the solid smoother by re-defining the edges as cubic

and quadratic curves.

1.3 Limitations

The wireframes used for this algorithm comprise entirely of straight

edges, have a genus of 0, and do not represent shapes overlapping each other. We

have not accounted for any of these anomalies.

1.4 Expected benefits

1) To learn about finding topological data from wireframe information

2) To provide a method for converting wireframe information into Three-

dimensional Cell List format

3) To create applications for the Three-dimensional Cell List format

1.5 Outline

This research is outlined as follows: We describe related research in

Chapter II, and background research in Chapter III. We described the algorithms we

have developed in Chapters IV-VI. We describe our experiments and results for each

algorithm in Chapter VII, and we discuss the results in Chapter VIII.

CHAPTER II
RELATED WORKS

In this chapter, we will discuss a selection of previous research related to

the research on the algorithms presented in this paper. We will describe methods to

convert 2D wireframes into 3D solids, find curvilinear structures in 3D images, and

model solids with points.

2.1 2D Wireframe to 3D Solid Conversion (Shpitalni and Lipson, etc.)

In 1996, Shpitalni and Lipson [3] developed an algorithm for converting a

2D wireframe drawing into a 3D shape, as shown in Figure 2, with these steps:

1. Converting the drawing into a graph

2. Finding possible faces, by finding every circuit in the graph without any

intersecting edges

3. Removing faces comprised of two smaller ones from consideration

4. Using a face adjacency theorem to reduce the faces for searching: two faces

can co-exist in a volume only if their common edge has a continuous first

derivative

5. Calculating the maximum rank, that is, the maximum number of faces that are

adjacent to each edge or vertex, using geometrical principles

6. Finding the best arrangement of faces, using a function consisting of the

absolute difference between the calculated values and the actual values

7. Searching in a tree to find the result with the best value from the above function

8. Extra considerations, if necessary, such as skewed orthography

 4

Figure 2. Converting a 2D wireframe drawing into 3D solid

Shpitalni and Lipson’s algorithm was improved on by later research. Liu

and Lee [4] developed a depth first search algorithm for finding faces, and an algorithm

for finding the best arrangement based on finding the maximum weight clique. Oh and

Kim [5] enhanced the algorithm by splitting faces into 3 categories, and using “sketch

order analysis” (i.e., determining which faces were most likely to have been drawn first).

However, while these algorithms produce accurate results, the main limitation of these

algorithms is that they were designed to work on 2D drawings, rather than actual 3D

wireframes.

2.2 Finding Curvilinear Structures in Images (Koller et al., Danielsson and Lin)

Koller et al. [6] described using multiscale linear filtering to detect

curvilinear structures in 2D and 3D images. Danielsson and Lin [7] also described a

method to achieve a similar goal using Hessian matrices and spherical harmonics. In

both works, the researchers cited detection of blood vessels in MRA (magnetic

resonance angiography) data as a possible application for detecting curvilinear

structures in 3D, as seen in Figure 3. However, it concentrates solely on curvilinear

structures, rather than just finding thin points.

 5

Figure 3. Detecting blood vessels in MRA data

2.3 Point Sampled Cell Complexes (Adamson and Alexa)

Adamson and Alexa [8] proposed a model to define a piecewise smooth

surface using point samples, by projecting a surface on to the samples and using

connectivity information to glue surface patches to curves and curves to points

(vertices). They also described methods for interpolating tangents across cell

boundaries to create tangential continuity. Figure 4 shows an example of this model.

However, the limitation of this model is that it requires uniform sampling for best results.

Also, due to the use of point sampling, the model may be more unstable.

 6

Figure 4. An example of a Point sampled cell complex

2.4 Modeling Using Cellular Structured Space (Charussuriyong and Kanongchaiyos,
2005)

Charussuriyong and Kanongchaiyos [9] described a method to create

3D objects using the cellular structured space model. It uses topology features to check

the validity of the model, such that invariant and some topological properties are

preserved. The model also lends well to being used to find similarities between 3D

objects in a multimedia database. Figure 5 shows a teacup being modeled. However,

Charussuriyong and Kanongchaiyos' paper describes mainly methods to create an

object in this model from scratch, rather than to convert from other models.

Figure 5. A teacup in cellular structured space model

 7

2.5 Conclusions

The previous research in converting 2D drawings to 3D solids, while

useful as an approach, is limited by its use of 2D drawings, rather than 3D wireframes,

as input. The previous work in modeling 3D objects using cellular structured space

model is designed for creating objects from scratch, rather than converting from other

forms (such as wireframe). Lastly, the other research works, while similar in concept to

those presented in this paper, are not fully compatible: the curvilinear structure research

is designed to search for long thin lines rather than just thin points, while tangent

interpolation on point samples to smooth out the represented figure is less stable than

interpolation using the method we will describe.

CHAPTER III
THEORETICAL BACKGROUND

In this chapter, we will discuss previous research that provides a

background to the algorithms presented in this paper. We will describe a cell-based

data structure, the Three-dimensional Cell List, and an application of a similar structure

in product design.

3.1 Three-dimensional Cell List (Kovalevsky)

Kovalevsky [2] explained the requirements for a data structure to

efficiently store 3D solid topology: that there is sufficient topological data to find the

relationships between various parts of the structure without a search, and that it can

correctly represent non-proper complexes, which contain much less elements than the

corresponding proper complex, and are often used in topological investigation for that

reason.

Kovalevsky demonstrated his concepts for abstract cellular complex

data structures that satisfy these requirements, the Two-dimensional Cell List and the

Three-dimensional Cell List (abbreviated from this point as 3DCL). The latter is designed

for 3D structures, and is comprised of lists of vertices, edges, faces, and volumes, as

well as the relations between various elements, e.g., the edges that are adjacent to a

given vertex. Figure 6 shows an example of a 3DCL on a figure with two vertices, two

edges, two faces, and two volumes, explaining the structure of the 3DCL.

Figure 6. An example of a Three-dimensional cell list

3.2 Cellular Design System (Matsumoto and Kunii, 2002)

Matsumoto and Kunii [10] described an application of cellular-based

data structures: Using them to design soft and varied-sized objects. One advantage of

using cellular-based data structures for designing such objects is that the configuration

of the object can be changed by simply changing the attributes needed, as shown in

Figure 7. Matsumoto and Kunii used the design of bags to illustrate their new system.

Figure 7. Changing a bag’s design in the cellular design system

CHAPTER IV
3D CELLULAR STRUCTURE CONVERSION ALGORITHM

In this chapter, we will explain the proposed algorithms we have devised

for converting wireframes to Three-dimensional Cell Lists. The steps of the algorithms

are as follows: we read in the vertices and edges (as described in section 4.1), we

detect the faces from the data we have read (described in section 4.2), then we reduce

the circuits found to unique circuits (described in section 4.3) before reducing to the

most plausible faces (described in section 4.4), and then we select the faces that

produce the most likely shape (described in section 4.5) and perform some extra

processing on the faces (described in section 4.6), before detecting objects and

volumes (described in section 4.7), finding the relations between the various elements

(described in section 4.8), and finally outputting all the data found (described in section

4.9). Figure 8 describes the process as a flowchart.

Figure 8. Flowchart of the 3D cellular structure conversion algorithm

 11

4.1 Reading vertices and edges

Converting a wireframe to a Three-dimensional Cell List begins with

obtaining the data of each vertex and edge. We read each edge in, and record the

coordinates of its two vertices. If a vertex is not already in the list, it is added. At the end

of this step, we have a list of vertices in the shape. This list will be sorted according to

the x, y and z coordinates of each vertex, that is, a vertex with a lower x value will

appear earlier in the list, and each vertex will then be labeled according its list position.

Next, we compare the vertices of each edge with the list we have

obtained, and store for each vertex the coordinates of the vertex, the edges adjacent to

the vertex, and the direction of the edge in relation to the vertex. For each edge, we

store the start and end vertices of the edge. Figure 9 shows a simple example with three

vertices and two edges.

Figure 9. Results from reading in the edges

4.2 Face detection

The first major step is finding the faces, by tracing along various edges

and finding circuits. We store the path we trace as a series of edges and direction

values (Boolean): if the value associated with a given edge is true, the path runs from

the start vertex to the end vertex of that edge; if it is false, the path runs in the opposite

 12

direction. We begin processing each edge by selecting the vertex that is adjacent to the

lesser number of edges. If both vertices have the same number of edges, we select the

edge’s end vertex by default. After one vertex is selected, we initialize the path by

starting with the current edge, and setting the direction value so that the path runs from

the opposite end to the selected vertex.

In each step, we process each non-circuit path in the array, by finding

the latest vertex of the path (from the latest edge and its associated direction value),

attaching each edge adjacent to this vertex (besides those already part of the path),

and storing the new path in a new array. For example, if there are two edges (besides

the latest edge in the current path) adjacent to the latest vertex, we will put two new

paths into the new array. Figure 10 shows an example of tracing.

From the new array, we remove paths with circuits within the path (as

opposed to being the whole path), and any path starting with the same two edges as a

found circuit. Figure 11 shows these two methods of path removal.

We repeat the process with the new array until there are no changes in

the array, and then write the array to a file. This method of searching is equivalent to a

breadth-first search in a tree.

Figure 10. Tracing paths

 13

Figure 11. Removing paths

4.3 Reducing to unique circuits

When processing each edge, we will most likely find the same circuit by

tracing from each of the different edges that comprise that circuit (see Figure 12 for an

example). Therefore, after all edges have been processed, we reduce the file down to

unique circuits, by reading in each circuit, and comparing it to the previously read

circuits stored in a table. We search each circuit in the table for the first edge of the

circuit. If the first edge of the circuit is not in a given circuit in the table, then it can be

ignored, since it is definitely different from the current circuit. If the edge is in the circuit

in the table, we then check the direction values associated with the edge in both

circuits. If the direction values are the same, we traverse both circuits in the same

direction. If they are opposite, we traverse the circuits in opposite directions. If we return

to the initial edge without finding any different edges, the circuits are the same.

Example (as shown in Figure 13):

ACABDF
ACDBAF
)()()()(:
)()()()(:

2

1

βγαδ
γβδα

+−−+
+−−+

The first edge of F1 is +α. We find -α in F2. Since these are in opposite

directions, we traverse these circuits in opposite directions:

• F1: +α (→), F2: –α (←)

• F1: –δ (→), F2: +δ (loop back to the end)

 14

• F1: –β (→), F2: +β (←)

• F1: –γ (loop back to the start), F2: +γ (←)

• F1: +α, F2: –α (initial edge)

We have returned to the initial edge without finding any different edges.

Therefore, F1 = F2.

Figure 12. Identical circuits from different traces

Figure 13. Two different paths representing the same face

 15

If the circuit we have read does not match any previous circuit in the

table, it will be added. After all the circuits have been read, we sort the circuits. We

index the circuits by the vertex in the circuit with the smallest-numbered label, then the

vertex adjacent to this vertex with the smaller-numbered label, and the rest of the

vertices in order. Figure 14 shows circuits being sorted.

→

Figure 14. Circuit ordering

4.4 Face reduction

After obtaining all the possible faces, we need to reduce them to just

likely faces. To do this, we first find the area of each face by splitting the shape into

triangles, and summing their areas. Figure 15 shows two examples. To split a face, we

find the axis with the largest range (the difference between the coordinates of any two

vertices), and then find the vertex with the smallest coordinate on that axis (the leftmost

vertex in both examples). We calculate vectors from this vertex to the other vertices of

the face, and search for a vertex with a corresponding vector that lies between the

vectors from the selected vertex to the ones adjacent to it. If we find such a vertex, we

split the shape along a line from the selected vertex to the found vertex (left). Otherwise,

we split between the vertices adjacent to the selected vertex (right).

 16

Figure 15. Face splitting to find area

Then, we find the flatness of the face, by considering each of its corners.

We take a vector from a corner to the other vertices of the edges adjacent to the corner,

and find the cross product. After all the cross products have been obtained, we find the

two cross products whose dot product results in the smallest (absolute) cosine value,

and use that value as the flatness. Figure 16 shows an example.

Figure 16. Calculating flatness

With the required information obtained, we then start to reduce the faces

down to the most plausible ones. For this purpose, we have designated each face with a

number, based on its position in the sorted table.

 17

For each face, we find faces that come after it in the sorted table and are

adjacent to its edges. We take each adjacent face and combine it with the current face,

and compare the sum with all the other faces in the list. If a face is found that matches

this sum, and its area is more than each of the two constituent faces, that face is marked

unusable. We also combine the sum with another face that comes after both of the two

constituent faces in the table, and do the same.

If two faces share the same 2 edges, the larger face is designated as a

secondary face. All other faces are designated primary faces.

4.5 Face arrangement

The next step is to arrange the faces into the most likely shape. We begin

by looking for smooth entity chains. Given the limitations of our program in using only

straight edges, this will be limited to finding adjacent edges that comprise a single

straight line. This is achieved by simply adding together the lengths of the edges, and

comparing to the distance between the start and end vertices of the chain.

After finding smooth entity chains, we then calculate the maximum rank.

Rank is the number of faces that are adjacent to a given vertex or edge. We use the

equations used by Shpitalni and Lipson in their research [3]:

()[]1)()(
2

1
)(−×≤ vdvdvR

[] 1)2(),1(min)(−≤ vdvdeR

∑=)(
2

1
)(eRvR

[])2(),1(min)(vRvReR ≤

[] 12)(,2)(min)(+∑ −∑ −≤ RnRvdLnLvdeR

 18

In the first four equations:

• R(v) is the number of faces adjacent to the vertex v.

• R(e) is the number of faces adjacent to the edge e.

• d(v) is the number of edges adjacent to the vertex v.

• v1 and v2 are the vertices that comprise the edge e.

The last equation is for the smooth entity chains we had found earlier,

where vL is the nL vertices to the left of edge e, including the left end of e, and vR is the
nR vertices to the right of edge e, including the right end of e.

We store the faces that are adjacent to each edge and vertex, to use in

face arrangement. Figure 17 shows an example.

Figure 17. Storing faces adjacent to each edge and vertex

In arranging faces, we start by picking the smallest primary faces, with a

flatness value of at least 0.9, adjacent to each edge and vertex. If none exists, we pick

the smallest such secondary face, if available.

After the selections are made, if there are more faces adjacent to any

edge or vertex than its calculated maximum rank, we will remove the largest face

adjacent to it.

 19

We then add the unselected faces in, checking ranks after adding each

face, and removing faces as necessary.

4.6 Extra face processing

The next step is to do some extra face processing. First, we find faces

that were not found in the first tracing (for example, when tracing a cone, the base of the

cone is not found). We find edges adjacent to one face at most (with the edge also

being adjacent to less faces than its maximum rank). We use these edges to trace for

more faces, and add the faces that can be added.

We also remove overlapping faces. We combine two adjacent faces, and

if the combined face has a flatness value of more than 0.9, we find other faces that

share at least two edges with this combined face, and remove such faces if the center of

the combined face lies within the other face.

4.7 Object and volume detection

The next step is to detect objects and volumes. We will use lists of

vertices, edges and faces. We start from a given edge, and put it into the edge list. We

check every edge in the edge list, and put every face adjacent to each edge into the

face list, as well as putting the edges and vertices of each such face into the edge list

and vertex list respectively. We repeat this process until there are no changes in any of

the lists, with the faces in the face list comprising one object. If there are faces

remaining to be used, the process is repeated with the remaining faces. Figure 18

shows a simplified progress of this algorithm.

Figure 18. Tracing an object

 20

The next step is to find the volumes. Objects may consist of many

volumes. For example, two cubes sharing one face, while detected as one object,

enclose two volumes. Therefore, finding the volumes uses a more complex procedure.

We will also use lists of vertices, edges, and faces for the procedure. Figure 19 explains

the process as a flowchart.

Figure 19. Flowchart of finding volumes

To find volumes, we start by finding the leftmost face, as shown in Figure

20. To find this face, we find the vertex with the smallest (x, y, z) coordinates, and then

find the edge adjacent to this vertex that has the least angle with the z-axis. From the

edge, we calculate vectors from the middle of the edge to the centers of the faces

 21

adjacent to the edge. The face that produces the vector with the least angle with the y-

axis is the leftmost face.

Figure 20. Finding the leftmost face

After obtaining the leftmost face (as well as its edges and vertices), we

put it into a list of the volume’s faces, and put its edges and vertices into the appropriate

lists.

As per Baumgart’s winged-edge structure [1], each edge is adjacent to

two faces in a volume. Therefore, in finding the volumes, if we find an edge that is

adjacent to one selected face, and two available faces are adjacent to the edge (i.e.,

there is only one adjacent face remaining to be added), we will pick the other available

face (along with its edges and vertices). We repeat the process until no faces can be

added, or the Euler-Poincaré equation 2=+− FEV has been satisfied.

If no faces can be added with the above method, the equation
2=+− FEV has not yet been satisfied, and there are faces available to add, another

method for adding faces is used. Starting from an edge e with at least three available

faces attached (with one already selected), we create a chain of edges from edges

adjacent to one selected face. To obtain the “turn direction”, we calculate the vector v

from the center of e to the center of the chain of edges. For convenience, we then

calculate a vector that lies on the same plane as e and v, and perpendicular to e:

evevn ××=)(

 22

For each face F adjacent to the edge, we take two vectors fs and fe from

the center of face F to the start and end vertices of e respectively, and calculate a vector

that lies on the same plane as fs and fe, and perpendicular with e:

effFv esf ××=)()(

All of the vectors produced are then scaled down to a length of 1, for

ease of calculation.

One of the faces adjacent to e (notated here as FS) has already been

selected. Based on vn and the vf calculated for each face, we select the face with the

smallest dihedral angle from the selected face in the turn direction we have determined.

On the left of Figure 21, we have selected face a, and we then pick face b if the center

of the edge chain is at β, and face d if the center of the edge chain is at α. On the right,

we have selected face a, and with the edge chain center at α, we pick face b as the

next face.

Figure 21. Determining the next face with turn direction

To determine the correct faces to pick, there are two cases that we need

to consider. Each case is illustrated in Figures 22 and 23.

Case 1: () () 0)()()(: >×⋅×∃ FvFvvFvF fSfnSf

Find the face F with the above property that produces the maximum

value for ())()(FvFv fSf × .

 23

Figure 22. For case 1

Explanation: In this case, there exists at least one face where, in the

direction of the rotation from the selected face (a) to the center of the edge chain (α), the

angle from a’s vf to the given face’s vf is less than 180 degrees. Therefore, from such

faces, we will select the one with the largest cosine value (i.e., smallest angle) between

itself and a.

Case 2: () () 0)()()(: <×⋅×∀ FvFvvFvF fSfnSf

Find the face F with the above property that produces the minimum

value for ())()(FvFv fSf × .

Figure 23. For case 2

Explanation: In this case, in the direction of the rotation from a to α, the

angles from a’s vf vector to all the other faces’ vf vectors are more than 180 degrees.

 24

Therefore, we will select the face with the smallest cosine value (i.e., largest angle)

between itself and a.

We use this method in conjunction with the above method, and repeat

until 2=+− FEV has been satisfied, or no available faces remain.

After we have obtained the faces that comprise the volume, we need to

remove some of the faces from future consideration. For this purpose, we then also

search for the outside surface of the object using the same procedure (i.e., finding the

leftmost face and adding adjacent faces), except selecting the face with the largest

dihedral angle from the selected face in the turn direction, when using the edge chain

method to add faces. After the results has been obtained, we remove the faces that are

both part of the volume and part of the outside surface, and repeat the process as

necessary.

A potential flaw in both the closed volume and surface finding algorithms

is that the algorithm calls for calculating a vector that is perpendicular to the currently

selected edge and lies on the same plane as the edge's adjacent face, as well as

calculating another vector between the centre of the selected edge and the centre of the

chain of edges starting from that edge. There is a possibility of those two vectors being

in the same direction (resulting in a zero vector as their cross product), which would

create difficulties in properly tracing surfaces and closed volumes, since the program

cannot determine the proper turn direction in this case. Currently, the program solves

this issue by testing different edges instead, and if all the edges produce this same

result (which is most likely when there is just one selected face, or when the selected

faces form a single plane), the program modifies the vector from the centre of the edge

to centre of the edge chain, by adding to the x (and y, if necessary) values of the actual

vector. The use of this special case solution is due to how both finding algorithms start

at the leftmost face. This solution is shown in Figure 24.

 25

Figure 24. Special case solution

4.8 Finding relations

The next step is to find the relations between the faces, volumes and

edges. We start at the leftmost face again, and calculate the normal vector of the face

(by averaging the cross products between 2 vectors from the center of the face and the

two vertices of each edge). If the x coordinate of the normal vector is more than 0 (i.e.

the vector is pointing to the right), the face is facing towards the volume. If the x

coordinate is less than 0 (pointing to the left), then it is facing away.

We store the normal vector, or its inverse, in an array, so that the vector

stored in the array (hereby referred to as the “outward pointer”) points away from the

volume.

To find the outward pointer of each face, we consider a face with a

known outward pointer (at the beginning, this will just the leftmost face) and an adjacent

face without a known outward pointer. We connect the centers of the two faces with a

vector c. With a as the face with the known outward pointing vector, we can determine

the unknown outward pointing vector from b, with 3 cases to consider, as illustrated in

Figure 25.

00(c)
00(b)
00(a)

>⋅→=⋅
<⋅→>⋅
>⋅→<⋅

baca
cbca
cbca

 26

Figure 25. Determining a face’s outward pointer from that of an adjacent face

The next step is to analyze the edges. This is because Kovalevsky’s data

structure calls for each edge to contain the information on the faces and volumes

adjacent to the edge in right-hand rotation order. Figure 26 shows a few examples of

this.

For each edge, we select a face that is not adjacent to two volumes (or

just pick a random face if none is available), and put it into a list. To pick the faces and

volumes in order, we will generally pick an element that is adjacent to the previous

element and has not been put into the list yet, but there is a special case where there

are no other volumes adjacent to the most recently-added face, with faces and volumes

still remaining to be added. In this case, we will then measure the angles between the

various faces, and select the one with the least angle in the same turning direction for

the list (while indicating that there is no volume between the two faces). When all the

faces and volumes have been picked, we will invert the list if necessary, and find the

relationship between the right hand rotation and the normal vector of each involved face,

and store that information as well. This is because Kovalevsky’s original structure calls

for this.

 27

Figure 26. Right hand rotation around edge a

4.9 Output

The last step is storing the data that has been obtained in the previous

steps to create the finished 3DCL. Since we have obtained all the data that we require,

we will output it in this order:

• Vertex: Coordinates, adjacent edges (with direction indicated)

• Edge: Start and end vertices, faces and volumes adjacent to the

edge in right-hand rotation order

• Face: The adjacent volumes (with direction indicated), its vertices

and edges (in right hand rotation order around its normal vector)

• Volume: The volume’s faces (with direction indicated)

CHAPTER V
THIN POINT FINDING ALGORITHM

After the development of a method for converting a wireframe into a

Three-dimensional Cell List, we began to develop algorithms that utilize the 3DCL as its

input, in order to prove that the proposed converting algorithm is correct. This chapter

describes the first algorithm, finding the thinnest points in a solid represented as a

3DCL. This differs from Koller and Danielsson’s works, which emphasize on searching

for long, thin, curvilinear structures, rather just thin points.

To define mathematically, a thin point is a point where a sphere inscribed

in a solid tangent to the point has the smallest radius in the locality. Here, we will actually

search for a series of connected edges which produce the smallest total in the locality.

Finding the thin points starts by pre-processing and then finding the

central axis of the solid (as described in section 5.1), obtaining and processing

selections (described in section 5.2), and using the obtained values to determine the

thin points (described in section 5.3). We also describe the thresholding method that

allows the user to set the accuracy of the algorithm (in section 5.4). Figure 27 shows the

flowchart of the process.

Figure 27. Flowchart of the Thin Point Finding Algorithm

 29

5.1 Pre-processing and finding central axis

The program starts with reading in the Three-dimensional Cell List as

input. While reading in the edges, we pre-calculate the lengths of each edge. This will

be useful later.

To find the thinnest point(s) of each 3D solid, we start by finding its

central axis. We find the average of the coordinates of all the volume’s vertices, to find

its approximate center, and the center point of every face of the volume.

After that, we split the shape into a number of parts (we have decided to

use 20), by splitting the vertices into groups according to the x-value of the vertex. To do

this, we find the vertices with the largest x-value (xmax) and the smallest x-value (xmin),

and find the difference of those two values. We then determine which group each vertex

falls under using this equation:

)19,
)(

)(
20min()(

minmax

min
⎥
⎦

⎥
⎢
⎣

⎢
−

−
×=

xx
xx

xF

We then find the averages of all vertices in each group, and then find the

straight line that fits the 20 averages best using linear regression.

We repeat this process with the y- and z-values instead of the x-value.

We obtain 3 lines, and we determine which line is the best, by finding the distance

between the line and the average values.

After we have obtained the best line, we split the shape’s vertices into

groups with this line as the axis. To split the vertices into groups using an arbitrary line

(a, b, c) as the axis, we take each vertex’s coordinates (x, y, z), and insert it in to this

function:

czbyaxzyxG ++=),,(

 30

We determine which vertices produce the minimum and maximum values

of G(x, y, z), and then substitute G(x, y, z) for the x values in the equation for F(x).

Having split the vertices into groups, we average the coordinates of the

vertices in each group, and find a new line with linear regression. Figure 28 shows an

example of this. We repeat until the new axis deviates from the old axis by less than 0.1

degrees. In the case that the axis does not converge, we will average the most recent

values after a certain amount of adjustments have been made. Figure 29 shows the

process as a flowchart.

Figure 28. Determining axes using averages

 31

Figure 29. Flowchart of axis finding

After obtaining the axis, we calculate the centers of each face, and pick

the one that is furthest from the center of the solid. We do this by finding the face whose

center produces the highest absolute value of the G(x, y, z) function.

With the face we have picked, we create a “selection”, stored as an array

of Boolean values where the faces that have been selected have a value of true.

5.2 Obtaining and processing selections

We now process the selections iteratively to determine thin points. We

begin by taking each face adjacent to each selection to create new selections. At first,

there is just one selection, consisting of the face picked in the previous step. We create

a new selection by taking the current selection, and adding a face in the volume

adjacent to the selection (setting that face’s value to true). Figure 30 shows a selection

being used to generate new selections.

 32

Figure 30. Creating new selections

To save processing time, we pick only the faces that are adjacent to the

most faces in the current selection. For example, in Figure 31, out of the unselected

faces adjacent to the selection, there are faces adjacent to 3 faces in the selection, and

none adjacent to 4, so we pick only those faces adjacent to 3 selected faces.

Figure 31. Face adjacency

We then compare the result to the selections that have been previously

measured and stored. If it is not the same as any of the previous selections, we total up

the lengths of each edge that is adjacent to one face in the selection (by summing the

previously measured lengths). To determine which edges are adjacent to one face in the

 33

selection, we store lists of edges adjacent to one face (L1) and two faces (L2). We insert

the faces’ edges into the lists as necessary. That is, if an edge is not in either list, we

insert it into L1. If it is already in L1, we move it to L2. These arrays are stored with the

selection, along with the total sums of the lengths of the edges in L1 (hereby referred to

as the “total length” of the selection). Figure 32 illustrates this.

Figure 32. Keeping track of edges with lists

To determine the total length of the edges in L1, we use two separate

lists to keep track of the edges that are added and removed from the list. We retrieve the

total length we stored during the previous execution. We subtract from the total length

the lengths of the edges that have been removed from L1, and add the lengths of the

edges that have been added to L1, before storing the total length with the selection. This

uses less time than simply directly summing up the lengths of each edge in L1,

especially when there are thousands of edges in the list, because it requires less

arithmetic operations.

For example, L1a: {a, c, d, e, f, g} and L1b: {a, c, d, f, g, h, i, j}. We have

already stored x as the sum of the edges in L1a. We compare the two methods of

calculating L1b:

Direct: We retrieve the lengths of each edge in L1b and sum them. This

requires 8 values to retrieve, and 7 arithmetic operations to perform.

 34

Quick: We take x, retrieve the length of e and subtract it from x, and

retrieve the lengths of h, i, and j and add them to x - e. This requires 5 values to retrieve,

4 arithmetic operations to perform.

In practice, this method saves a noticeable amount of time when large

numbers of loops are being processed.

After obtaining the selections, we insert them into an array, and then we

remove the selections with a total length longer than a given threshold. This threshold is

determined from the selection with the least total length, with the threshold at 1.1 times

of this total length. This makes the algorithm a greedy algorithm.

This process will have the same number of cycles as the number of

faces in the volume, and in each cycle, the number of faces that have been selected in

each selection is the same as the number of cycles that have been completed. After

each cycle, we store the least total length in an array, along with the corresponding

edges in L1 that produce that length (hereby referred to as a “loop”). Figure 33 explains

the whole process as a flowchart.

 35

Figure 33. Flowchart of selection processing

5.3 Determining thin points from obtained values

After this step has finished, we adjust the least length values we have

stored so that the selections that are not too near the start and end of processing have

an advantage. The equation used for adjustment is:

i
i l

ifiv),min(−
=

 36

i is the number of the current loop, f is the number of the faces in the

volume, and li is the length of the current loop.

In some cases, we may need to “smooth out” the values obtained from

the above equation, by averaging adjacent values. This is only done if the values have a

tendency to alternate between going up and down, such as in volumes with triangular

faces.

Next, we create a new array of averages. We average the values in a

range of 5 (at most) values in either direction. For example, as shown in Figure 34, the

100th value in the new array is the average of the 95th to 105th values in the original array,

and the 3rd value in the new array is the average of the 1st to 8th values.

Figure 34. Averaging

With these new values, we compare the values in the original array, with

the average of the 5 values on either side in the new array, as well as the adjacent

values in the original. For example, we compare the 100th value of the original array with

the average of the 95th to 99th values in the new array, the average of the 101st to 105th

 37

values in the new array, the 99th value in the original array, and the 101st value in the

original array.

If the value is higher than all of the values we compare it with, we then

store the product of the two averages of adjacent new array values and the

corresponding new array value.

Lastly, we output the loops where the value obtained from the process is

more than 1/50 of the largest value from the process, and there are no higher values

within 10% of the number of total cycles.

5.4 Thresholding

The algorithm allows the user to set the number of selections that remain

after each cycle, with a minimum of 1, and a maximum of 1000. After the selections with

a total length exceeding 1.1 times the length of the selection with the least total length

are cut, if there are still more selections than the set value, the program sets a new

length limit:

)95.0,min(1.00
c

t

n
n

t ×=

with nt as the set value, and nc as the number of selections remaining. The program will

remove selections with a length longer than (1+t0) times the least total length.

If the number of selections that remain are still higher than the set value,

we re-adjust the length limit:

)95.0,min(1
c

t
ii n

n
tt ×= −

After the length limit has been adjusted 20 times, if there are still more

selections remaining than the set value, the program sorts the total length of each

selection to find the selections with the least total length. For example, if we require 40

selections, we take the first 40 selections after sorting to obtain the least length.

 38

A large value for the number of selections remaining produces more

accuracy, at the cost of more execution time. A small value for this number uses less

execution time, at the cost of potentially less accuracy.

CHAPTER VI
EDGE SMOOTHING ALGORITHM

Inspired by Adamson and Alexa’s method of tangential interpolation to

smooth out point sampled models, we developed another algorithm for the 3DCL. The

algorithm is designed to smooth out a solid represented as a 3DCL comprised entirely

of straight edges, by converting edges into cubic or quadratic curves. We determine the

continuous surface of each volume, and from the normal vectors of the surface’s faces,

we interpolate the normals of the surface’s edges, and then those of the vertices. We

use these values to redefine the surface’s edges as curves, by repeatedly readjusting all

the values until they converge. Figure 35 shows the flowchart of this algorithm.

Figure 35. Flowchart of edge smoothing algorithm

 40

6.1 Pre-processing and finding continuous surface

We begin by taking the 3DCL as input, and, for each volume, find the

normal vector of each face of the volume, and use the 3DCL data to determine the

vector that points away from the volume, and then unitize the vector.

After obtaining the outward pointing vector of each face, we find the

continuous surface of each volume, starting at a given face in the volume, and then

considering the faces adjacent to it. We maintain a list of faces F, and two lists of edges:

L1 for edges adjacent to one face in F, and L2 for edges adjacent to two faces in F. We

calculate the angles between the outward pointers of adjacent faces. If the angle is less

than a value set by the user (between 0 and 90 degrees), we add that face into F, and

update the edge lists. We repeat the process by considering the edges in L1 in the

same manner, until all the faces in the volume have been listed, or no more new faces

can be added to F.

6.2 Obtaining data to smooth surface

Having obtained faces of the continuous surface (Figure 36, left) as well

as the edges adjacent to two such faces (middle), we then find the vertices where every

edge adjacent to the vertex is in L2 (right). Such vertices are adjacent only to faces that

are part of the current surface, and thus will be absolutely unaffected by other surfaces.

Figure 36. Faces, edges, and vertices used to smooth the surface

 41

The data to be used to smooth out the continuous surface are: the faces
of the surface (F), the edges adjacent to two faces in the surface (L2), and the vertices

exclusively adjacent to edges in L2.

6.3 Find normal vectors

With all the necessary data obtained, we begin smoothing out the

surface by with determining the normal vectors of the edges. For each edge, we

calculate the weighted average of the normal vectors of its two adjacent faces, using the

distance from the midpoint of the edge to the center of each face. In Figure 37, A is the

distance between the center of face a to the midpoint of edge x, and B is the distance

between the center of face b to the midpoint of edge x. Therefore, the normal vector of

edge x is defined thusly:

BA
AbNBaNxN

+
+

=
)()()(

rr
r

Figure 37. Determining the normal vector of an edge from its adjacent faces

After determining the normal vectors of each edge, we also find the

normal vectors of the vertices adjacent to such edges, also using weighted averages, as

illustrated in Figure 38. Where ei is an edge adjacent to vertex p and di is the distance

between the midpoint of ei and p, the normal vector of p is defined thusly:

∑

∑
=

i i

i i

i

d

d
eN

pN
1

)(

)(

r

r

 42

Figure 38. Determining the normal vector of a vertex from its adjacent edges

6.4 Redefining edges as curves

The next step is to smooth out the edges of the surface by redefining

them as curves, by considering the start and end vertices of each edge, and the

associated normal vectors of these two vertices, where available. There are three

possible cases, depending on how many of the edge’s vectors have associated normal

vectors.

First case: Both vertices have normal vectors

The edge between the two vertices is a cubic curve, as a function of the

axis with the largest range (i.e., difference between the start and end vertices).

Suppose that axis in question is x. We obtain the equations:

GFxExz
CBxAxy

HGxFxExz
DCxBxAxy

++=
++=

+++=
+++=

23'
23'

2

2

23

23

 43

We have:

• Start vertex s:),,(zyx sss

• End vertex e:),,(zyx eee

• Vector from s to e: v

• Normal vector of s:),,(zyxs nsnsnsn =
r

• Normal vector of e:),,(zyxe nenenen =
r

Since the preceding equations require the use of the derivative of the

curve, we determine the derivative from the normal vector with these equations:

))('),('),('()()('
))('),('),('()()('

evevevnvnev
svsvsvnvnsv

zyxee

zyxss

=××=
=××=

rrrr

rrrr

Figure 39 illustrates the logic behind these equations.

Figure 39. Obtaining derivatives from normal vectors

 44

These equations result from the above steps:

GFsEs
ev
ev

GFsEs
sv
sv

HGeFeEee

HGsFsEss

CBsAs
ev
ev

CBsAs
sv
sv

DCeBeAee

DCsBsAss

xx
x

z

xx
x

z

xxxz

xxxz

xx
x

y

xx
x

y

xxxy

xxxy

++=

++=

+++=

+++=

++=

++=

+++=

+++=

23
)('
)('

23
)('
)('

23
)('
)('

23
)('
)('

2

2

23

23

2

2

23

23

Second case: Only one vertex has a normal vector

The edge between these two vertices will be a quadratic curve, once

again as a function of the axis with the largest range.

Using x as the axis, we obtain:

GFxz
CBxy

HGxFxz
DCxBxy

+=
+=

++=
++=

2'
2'

2

2

 45

If the start vertex has the normal vector, these equations are obtained:

GFs
sv
sv

HGeFee

HGsFss

CBs
sv
sv

DCeBee

DCsBss

x
x

z

xxz

xxz

x
x

y

xxy

xxy

+=

++=

++=

+=

++=

++=

2
)('
)('

2
)('
)('

2

2

2

2

If the end vertex has the normal vector, these equations are substituted

for the 3rd and 6th equations above:

GFe
ev
ev

CBe
ev
ev

x
x

z

x
x

y

+=

+=

2
)('
)('

2
)('
)('

Third case: Neither vertex has a normal vector

The edge between these two vertices is straight, and can be rendered as

linear functions. No calculation of derivatives is required.

HGee
HGss
DCee
DCss

xz

xz

xy

xy

+=
+=
+=
+=

We solve the equations obtained above with a matrix, so as to find the

best curve that fits the given data. We consider the two remaining axes separately,

resulting in a curve (or straight edge), represented as the start and end points on the

axis with the largest range, and equations for the other axes.

 46

6.5 Readjusting midpoints

If the edge is not a straight line, the next step is to adjust the midpoint of

each edge (which originally is the average of the start and end vertices’ coordinates).

For each edge being considered, we start determining the midpoint by finding the point

on the edge between the start and end vertices which is closest to a line L passing

through the previous midpoint and parallel to the normal vector. We do this by placing 7

points on the curve, spacing them equally on the axis with the largest range. We next

determine which of these points are closest to L. To find the distance between each

point and L, we use a simple method.

P (xp, yp, zp) is the point, M (xm, ym, zm) is the midpoint, and),,(nnn zyxN rrrr

is the normal vector of the edge. We desire to find the distance d between P and a line

passing through M parallel to N
r

.

First we create a third point M’: (xm+ nx
r , ym+ ny

r , zm+ nzr). MM’ is a line

segment of L. The three points P, M and M’ form a triangle. Finding the distance

between P and L (here, MM’) now simply involves finding the area of the triangle PMM’

(which we will call A):

)')(')((
2

''

PMsMMsPMssA

PMMMPMs

−−−=

++
=

Thus, from the more conventional method of finding the area of a

triangle:

'
2

'
2
1

MM
Ad

dMMA

=

×=

 47

After finding the distance for each point, we find which point produces

the smallest result. If that particular point is the start or end vertex of the curve, we

recursively search between that vertex and the point next to it. For the other spots, we

recursively search between the two points next to it (in Figure 40, the 3rd point is closest;

therefore, we search between the 2nd and 4th points). When the search area is below a

set limit, the new midpoint has been obtained.

Figure 40. Determining the new midpoint of an edge

Having obtained the new midpoints, we adjust the vertices’ normal

vectors using the same equations as earlier, due to the change of distance between the

vertex and the midpoint of the curve. After obtaining the new normal vectors of the

vertices, we adjust the curves and their midpoints again to match the new vectors. We

repeat this process until none of the edges’ midpoints change by more than .001 units

(when an edge’s midpoint changes by less than .001 units, it is no longer adjusted), or

until a number of cycles have passed where the same number of midpoints continues to

change by more than this threshold (in that case, we simple average the most recent

results). Having completed the current surface, we then search for more surfaces from

the unused faces, and repeat the process.

After all the surfaces have been processed, we consider the remaining

unprocessed edges as straight edges, and we output a file to define each curve in the

terms of the axis with the largest range, the limits of the edge on that axis, and the

equations of the other two axes. For example, an edge represented in the file as “0, 0,

 48

0.38, -0.0123, 0.0021, -0.1043, 1.95, 0.0384, 0.0121, -0.0102, -9.81” has the information

thusly:

• The axis with the largest range: x (0 = x, 1 = y, 2 = z)

• Limits of edge on x: 0 to 0.38

• Edge’s y coordinates as a cubic equation: -0.0123x3 + 0.0021x2 + -

0.1043x + 1.95

• Edge’s z coordinates as a cubic equation: 0.0384x3 + 0.0121x2 + -

0.0102x + -9.81

(For display purposes, we also redefine each curve as 15 short line

segments in a separate file.)

CHAPTER VII
EXPERIMENTAL RESULTS

In this section, we describe the experimentation for each of the

algorithms, and explain the results. We also analyze the execution time.

7.1 Tools for experimentation

For the implementation of the various algorithms, we use Microsoft Visual

Basic .NET. For testing and timing the execution, we use a computer running on a

Pentium with 996 MHz.

7.2 Wireframe to Three-dimensional Cell List Conversion

For testing this algorithm, we prepared 6 examples, three simple

examples (Figure 41), and three complex examples (Figure 42).

Figure 41. Simple examples

Figure 42. Complex examples

 50

These are the results from the three simple examples:

Sample shape 1 2 3

Initial read:

Time 7520 ms 761 ms 1221 ms

Vertices 66 16 24

Edges 128 28 40

Face finding:

Finding faces 22422 ms 4155 ms 5337 ms

Reducing to unique faces 1842 ms 3725 ms 1211 ms

Faces found 128 16 23

Face reduction:

Area calculation 1742 ms 370 ms 430 ms

Processing 3214 ms 640 ms 771 ms

Remaining faces 64 16 19

Secondary faces 0 0 0

Face selection:

Processing 420 ms 811 ms 340 ms

Faces selected 64 16 19

Face analysis:

Analysis 480 ms 731 ms 370 ms

Faces 66 16 19

Volume analysis:

Manifold analysis 1972ms 1602 ms 1061 ms

Processing 54358ms 6909 ms 11997 ms

Total volumes 2 3 2

Cell list assembly 12287 ms 2293 ms 1812 ms

Table 1. Results of the simple examples

 51

Sample

shape
Results Volumes

1

2

3

Table 2. Visual results of the simple examples

 52

These are the results from the three complex examples:

Sample shape 4 5 6

Initial read:

Time 51333 ms 47788 ms 152258 ms

Vertices 483 466 710

Edges 1024 944 2124

Face finding:

Finding faces 294072 ms 326148 ms 1332035ms

Reducing to unique faces 18806 ms 15652 ms 87765 ms

Faces found 1533 1412 7584

Face reduction:

Area calculation 24044 ms 19938 ms 121945 ms

Processing 76630 ms 56320 ms 366256 ms

Remaining faces 597 488 1464

Secondary faces 51 8 24

Face selection:

Processing 27579 ms 10595 ms 413394 ms

Faces selected 544 480 1440

Face analysis:

Analysis 4576 ms 5698 ms 84872 ms

Faces 544 480 1428

Volume analysis:

Manifold analysis 24795 ms 30103 ms 68768 ms

Processing 349031 ms 329613 ms 1497543 ms

Total volumes 2 1 13

Cell list assembly 79514 ms 75037 ms 225804 ms

Table 3. Results of the complex examples

 53

Sample

shape
Results Volumes

4

5

(Single volume)

6

Table 4. Visual results of the complex examples

 54

By plotting the execution times against the size of the input and

analyzing the algorithms themselves, these most plausible time complexity results for

average cases are obtained in relation to the numbers of edges (e) and faces (f):

Initial read: O(e log e), due to the sorting algorithm.

Face finding: Due to the use of tree searching, the worst case is

exponential time complexity. However, on well-defined wireframes, we have observed a

time complexity of O(e log e), due to most faces being comprised of a low number of

edges (3-4), and the removal non-plausible alternatives during tracing.

Area calculation: O(f), due to faces usually having 3 or 4 edges, and

thus requiring at most one split.

Face processing: O(f log f), due to the use of sorting to determine the

order of faces to remove or add.

Volume analysis processing: O(f log3 f) has been observed. However,

the execution time for this algorithm is mostly dependent on whether there are extra

faces to be found.

Cell list assembly: O(f log f) has been observed. However, the execution

time for the algorithm is also dependent on the number of volumes found.

7.3 Finding Thin Points in 3DCL

For this experiment, we have prepared 6 solids, each in two versions:

quadrangular faces (Figure 43, top) and triangular faces (bottom). We also tested on

two thresholds, 40 and 100.

 55

Figure 43. Examples for thin point finding

Ex.
Faces
(Quad.)

Time
(Threshold

40)

Time
(Threshold

100)

Faces
(Tri.)

Time
(Threshold

40)

Time
(Threshold

100)

1 240 12.648 s 11.807 s 216 26.298 s 182.532 s

2 240 12.318 s 12.748 s 216 56.511 s 105.732 s

3 480 47.759 s 27.810 s 456 317.176 s 1711.090 s

4 480 34.309 s 33.809 s 456 160.731 s 584.390 s

5 240 12.167 s 19.708 s 222 23.864 s 58.795 s

6 720 34.089 s 31.325 s 696 284.699 s 1676.851 s

Table 5. Time to find thin points

In Table 6, the result from a threshold of 40 is above the line, while the

result from a threshold of 100 is below the line.

 56

Ex.

Result
(Top: 40

Bottom: 100)
Ex.

Result
(Top: 40

Bottom: 100)

1

2

3

4

5

6

Table 6. Visual results for thin points

We also tested the program with a standard model, the Stanford Bunny,

using the smallest threshold possible (a 1 threshold, i.e., taking only the selection with

the smallest length in each cycle for the next cycle’s processing). The execution took

83629223 ms. The result of the processing is shown in Figure 44. While the algorithm

has found the area around the ears, the other results are still not very good. This is

 57

possibly a result of using such a low threshold, and even with such a low threshold, the

execution time is still high, and would be even more so with a higher threshold.

Figure 44. Stanford Bunny

It should be noted that quadrangular faces take advantage of the face

adjacency time-saver more than triangular faces (and thus are practically unaffected by

the increase in threshold), and are also somewhat less prone to inaccurate results.

However, the program still produces some extraneous results, even on quadrangular

faces, and more so for triangular faces. There are also some cases where it still does not

detect thin points well, especially with the Stanford Bunny example.

Also, for solids with triangular faces, the execution time tends towards

exponential time complexity in relation to the number of faces (although the actual

execution time depends on the solid).

7.4 Smoothing out 3DCL

We have tested three different single solids represented as a Three-

dimensional Cell List on a 996 MHz Pentium, using 45° as the cut-off for continuous

surface detection. The results in Table 7 suggest that the program produces reasonably

 58

smooth solids which are an improvement on the original. Analysis of the execution time

suggests a O(n log2 n) time complexity relative to the number of edges in the shape.

However, execution time is dependent on the number of surfaces found in the shape.

Test figure Edges Time Original Smoothed

1 120 24515 ms

2 468 100234 ms

3 336 40298 ms

4 944 186558 ms

Table 7. Results for 3DCL smoothing

CHAPTER VIII
CONCLUSIONS AND FUTURE IMPROVEMENT

In this chapter, we discuss the conclusions we have obtained from the

experiments. We also outline possible improvements for further research.

8.1 Conclusions

Wireframe to Three-dimensional Cell List Conversion

As tested, the algorithm produces reasonably accurate results. The

algorithm has potential applications in areas where 3D topological information is useful,

such as product design.

However, there are some cases where extra faces are found and

included, from close and adjacent edges. This skews the volume computation, and

results in additional spurious volumes (usually in the form of pyramids). Also, there are

some processes that could be improved. For example, reading in the edges and

vertices requires two passes of the file currently.

Finding Thin Points in 3DCL

The method for determining which loops are suitable as thin points still

needs improvement, as it produces good results on some sets of data and bad results

on others. Other methods are currently being tested.

Also, the execution time for finding thin points is high (exponential in the

worst case), especially with solids with triangular faces, due to the fact that such solids

do not take as much advantage of the face adjacency time-saver as much as

quadrangular faces.

 60

Smoothing out 3DCL

The method for smoothing out the solids by rendering them as curves

produces reasonably realistic results, even on less-faceted figures, and the execution

time, dependent on the number of surfaces found, also seems to be reasonable.

8.2 Future improvement

Wireframe to Three-dimensional Cell List Conversion

Possible future improvement to the algorithm includes reducing the

spurious faces detected and thus the extra volumes found (as seen in example 6 in

Table 4), and finding a better solution to the potential flaw mentioned in section 4.7.

Other improvements include streamlining processes to reduce execution time without

negatively affecting the algorithm’s accuracy (for example, in section 4.1, we read the

input file twice).

Finding Thin Points in 3DCL

Further research is necessary in order to determine the best method to

accurately determine thin points from the data. Another part of the research that also

needs improvement is the speed of the algorithm, as its execution time is still

unreasonably high in some cases. One possible method of speed improvement would

be to consider faces in clusters, rather than individually as we have done in this

research. This would prove useful especially with figures with a very high number of

faces, such as the Stanford Bunny model in Figure 44.

 61

Smoothing out 3DCL

The algorithm currently considers edges that were not analyzed during

the processing (i.e., edges that border multiple surfaces) as straight edges. Therefore,

objects like cylinders will not be smoothed well, as it will consider the top, bottom, and

sides as separate surfaces, and edges that border either the top or bottom and the

sides will not be processed. Future improvement may include analyzing these edges as

well, to improve the smoothness of the shape.

References

[1] Baumgart, B. Winged edge polyhedron representation. Artificial Intelligence

Project Memo AIM-179 (CS-TR-74-320), Stanford University, 1972.

[2] Kovalevsky, V. Algorithms and Data Structures for Computer Topology. Digital

and Image Geometry, 38-58. Springer, 2000.

[3] Shpitalni, M. and Lipson, H. Identification of Faces in a 2D Line Drawing

Projection of a Wireframe Object. IEEE Transactions On Pattern Analysis And

Machine Intelligence, 18, 10 (1996): 1000-1012.

[4] Liu, J. and Lee, Y. T. A Graph-Based Method for Face Identification from a

Single 2D Line Drawing. IEEE Transactions on Pattern Analysis and Machine

Intelligence 23, 10 (2001): 1106-1119.

[5] Oh, B. S. and Kim, C. H. Progressive reconstruction of 3D objects from a single

free-hand line drawing. Computers and Graphics 27, 4 (2003): 581-592.

[6] Koller, Th. M., Gerig G., Székely, G. and Dettwiler, D. Multiscale detection of

curvilinear structures in 2-D and 3-D image data. ICCV '95: Proceedings of the

Fifth International Conference on Computer Vision, 864-869. Washington: IEEE

Computer Society, 1995.

[7] Danielsson, P.-E., and Lin., Q. Efficient detection of second-degree variations on

2D and 3D images. Journal of Visual Communication and Image

Representation, 12 (2001): 255-305.

[8] Adamson, A. and Alexa, M. Point-sampled cell complexes. SIGGRAPH '06: ACM

SIGGRAPH 2006 Papers, 671-680. New York: ACM Press, 2006.

[9] Charussuriyong N. and Kanongchaiyos P., 3D Object Modeling Method for

Multimedia Using Cellular Structured Space. ICCIMA '05: Proceedings of the

Sixth International Conference on Computational Intelligence and Multimedia

Applications, 247-252. Washington: IEEE Computer Society, 2005.

[10] Matsumoto, K. and Kunii, T. A Cellular Design System for Soft- and Varied

Sized- Objects. Proceedings of the First International Symposium on Cyber

Worlds (CW ’02), 386-393. IEEE Computer Society Press, 2002.

 63

VITA

Varakorn Ungvichian was born on 22 May, 1983. Ungvichian graduated

with a Bachelor of Engineering (B.Eng.), 2nd class honours, in Computer Engineering

from the Faculty of Engineering, Chulalongkorn University in 2005, and entered the

Master of Engineering curriculum at the Department of Computer Engineering, Faculty of

Engineering, Chulalongkorn University in 2005.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Chapter I Introduction
	1.1 The problem
	1.2 Purpose of the research
	1.3 Limitations
	1.4 Expected benefits
	1.5 Outline

	Chapter II Related Works
	2.1 2D Wireframe to 3D Solid Conversion
	2.2 Finding Curvilinear Structures in Images
	2.3 Point Sampled Cell Complexes
	2.4 Modeling Using Cellular Structured Space
	2.5 Conclusions

	Chapter III Theoretical Background
	3.1 Three-dimensional Cell List
	3.2 Cellular Design System (Matsumoto and Kunii, 2002)

	Chapter IV 3D Cellular Structure Conversion Algorithm
	4.1 Reading vertices and edges
	4.2 Face detection
	4.3 Reducing to unique circuits
	4.4 Face reduction
	4.5 Face arrangement
	4.6 Extra face processing
	4.7 Object and volume detection
	4.8 Finding relations
	4.9 Output

	Chapter V Thin point Finding Algorithm
	5.1 Pre-processing and finding central axis
	5.2 Obtaining and processing selections
	5.3 Determining thin points from obtained values
	5.4 Thresholding

	Chapter VI EDGE Smoothing Algorithm
	6.1 Pre-processing and finding continuous surface
	6.2 Obtaining data to smooth surface
	6.3 Find normal vectors
	6.4 Redefining edges as curves
	6.5 Readjusting midpoints

	Chapter VII Experimental Results
	7.1 Tools for experimentation
	7.2 Wireframe to Three-dimensional Cell List Conversion
	7.3 Finding Thin Points in 3DCL
	7.4 Smoothing out 3DCL

	Chapter VIII Conclusions and Future Improvement
	8.1 Conclusions
	8.2 Future improvement

	References
	Vita

