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CHAPTER  I 
INTRODUCTION 

1.1 The problem 

Computer graphics have developed from two dimensions to three 

dimensions, allowing for versatile usage, such as for design. There are many methods of 

data representation in three-dimensional computer graphics. However, different 

representations are often inherently non-interchangeable, due to the storage of different 

data to represent the object’s shape. For example, a wireframe (Figure 1, upper left) 

generally stores information on the edges that comprise the structure, while Baumgart’s 

winged-edge structure [1] (upper right) stores the faces and edges that are adjacent to 

each edge. Other representations include surface models (bottom left) and solid models 

(bottom right). Therefore, methods to convert between various representations are 

required. 

 

 
Figure 1. Examples of data representations

Among the many representations of three-dimensional computer 

graphics that have been developed is the “Three-dimensional Cell List” format by 

Kovalevsky [2]. This structure has the property of being able to efficiently represent 
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topological data, which is useful in some applications such as product design. This 

structure will be the output of this research. 

1.2 Purpose of the research 

In this research, we will describe a method to create a solid in Three-

dimensional Cell List format from a wireframe. We will also describe two algorithms 

based on this new format, one to determine the thinnest points of a solid represented in 

the format, and another to make the solid smoother by re-defining the edges as cubic 

and quadratic curves. 

1.3 Limitations 

The wireframes used for this algorithm comprise entirely of straight 

edges, have a genus of 0, and do not represent shapes overlapping each other. We 

have not accounted for any of these anomalies. 

1.4 Expected benefits 

1) To learn about finding topological data from wireframe information 

2) To provide a method for converting wireframe information into Three-

dimensional Cell List format 

3) To create applications for the Three-dimensional Cell List format 

1.5 Outline 

This research is outlined as follows: We describe related research in 

Chapter II, and background research in Chapter III. We described the algorithms we 

have developed in Chapters IV-VI. We describe our experiments and results for each 

algorithm in Chapter VII, and we discuss the results in Chapter VIII. 



                                                                                                              

 

CHAPTER  II 
RELATED WORKS 

In this chapter, we will discuss a selection of previous research related to 

the research on the algorithms presented in this paper. We will describe methods to 

convert 2D wireframes into 3D solids, find curvilinear structures in 3D images, and 

model solids with points. 
 
2.1 2D Wireframe to 3D Solid Conversion (Shpitalni and Lipson, etc.) 

In 1996, Shpitalni and Lipson [3] developed an algorithm for converting a 

2D wireframe drawing into a 3D shape, as shown in Figure 2, with these steps: 

 

1. Converting the drawing into a graph 

2. Finding possible faces, by finding every circuit in the graph without any 

intersecting edges 

3. Removing faces comprised of two smaller ones from consideration 

4. Using a face adjacency theorem to reduce the faces for searching: two faces 

can co-exist in a volume only if their common edge has a continuous first 

derivative  

5. Calculating the maximum rank, that is, the maximum number of faces that are 

adjacent to each edge or vertex, using geometrical principles 

6. Finding the best arrangement of faces, using a function consisting of the 

absolute difference between the calculated values and the actual values  

7. Searching in a tree to find the result with the best value from the above function 

8. Extra considerations, if necessary, such as skewed orthography 
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Figure 2. Converting a 2D wireframe drawing into 3D solid 

Shpitalni and Lipson’s algorithm was improved on by later research. Liu 

and Lee [4] developed a depth first search algorithm for finding faces, and an algorithm 

for finding the best arrangement based on finding the maximum weight clique. Oh and 

Kim [5] enhanced the algorithm by splitting faces into 3 categories, and using “sketch 

order analysis” (i.e., determining which faces were most likely to have been drawn first). 

However, while these algorithms produce accurate results, the main limitation of these 

algorithms is that they were designed to work on 2D drawings, rather than actual 3D 

wireframes. 

2.2 Finding Curvilinear Structures in Images (Koller et al., Danielsson and Lin) 

Koller et al. [6] described using multiscale linear filtering to detect 

curvilinear structures in 2D and 3D images. Danielsson and Lin [7] also described a 

method to achieve a similar goal using Hessian matrices and spherical harmonics. In 

both works, the researchers cited detection of blood vessels in MRA (magnetic 

resonance angiography) data as a possible application for detecting curvilinear 

structures in 3D, as seen in Figure 3. However, it concentrates solely on curvilinear 

structures, rather than just finding thin points. 
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Figure 3. Detecting blood vessels in MRA data 

2.3 Point Sampled Cell Complexes (Adamson and Alexa) 

Adamson and Alexa [8] proposed a model to define a piecewise smooth 

surface using point samples, by projecting a surface on to the samples and using 

connectivity information to glue surface patches to curves and curves to points 

(vertices). They also described methods for interpolating tangents across cell 

boundaries to create tangential continuity. Figure 4 shows an example of this model. 

However, the limitation of this model is that it requires uniform sampling for best results. 

Also, due to the use of point sampling, the model may be more unstable. 
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Figure 4. An example of a Point sampled cell complex 

2.4 Modeling Using Cellular Structured Space (Charussuriyong and Kanongchaiyos, 
2005) 

Charussuriyong and Kanongchaiyos [9] described a method to create 

3D objects using the cellular structured space model. It uses topology features to check 

the validity of the model, such that invariant and some topological properties are 

preserved. The model also lends well to being used to find similarities between 3D 

objects in a multimedia database. Figure 5 shows a teacup being modeled. However, 

Charussuriyong and Kanongchaiyos' paper describes mainly methods to create an 

object in this model from scratch, rather than to convert from other models. 

 
Figure 5. A teacup in cellular structured space model 
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2.5 Conclusions 

The previous research in converting 2D drawings to 3D solids, while 

useful as an approach, is limited by its use of 2D drawings, rather than 3D wireframes, 

as input. The previous work in modeling 3D objects using cellular structured space 

model is designed for creating objects from scratch, rather than converting from other 

forms (such as wireframe). Lastly, the other research works, while similar in concept to 

those presented in this paper, are not fully compatible: the curvilinear structure research 

is designed to search for long thin lines rather than just thin points, while tangent 

interpolation on point samples to smooth out the represented figure is less stable than 

interpolation using the method we will describe. 



  
                                                                                                              

 

 

CHAPTER  III 
THEORETICAL BACKGROUND 

In this chapter, we will discuss previous research that provides a 

background to the algorithms presented in this paper. We will describe a cell-based 

data structure, the Three-dimensional Cell List, and an application of a similar structure 

in product design. 
 

3.1 Three-dimensional Cell List (Kovalevsky) 

Kovalevsky [2] explained the requirements for a data structure to 

efficiently store 3D solid topology: that there is sufficient topological data to find the 

relationships between various parts of the structure without a search, and that it can 

correctly represent non-proper complexes, which contain much less elements than the 

corresponding proper complex, and are often used in topological investigation for that 

reason. 

Kovalevsky demonstrated his concepts for abstract cellular complex 

data structures that satisfy these requirements, the Two-dimensional Cell List and the 

Three-dimensional Cell List (abbreviated from this point as 3DCL). The latter is designed 

for 3D structures, and is comprised of lists of vertices, edges, faces, and volumes, as 

well as the relations between various elements, e.g., the edges that are adjacent to a 

given vertex. Figure 6 shows an example of a 3DCL on a figure with two vertices, two 

edges, two faces, and two volumes, explaining the structure of the 3DCL. 

 

 



  
                                                                                                              

 

 

 
Figure 6. An example of a Three-dimensional cell list 

 
3.2 Cellular Design System (Matsumoto and Kunii, 2002) 

Matsumoto and Kunii [10] described an application of cellular-based 

data structures: Using them to design soft and varied-sized objects. One advantage of 

using cellular-based data structures for designing such objects is that the configuration 

of the object can be changed by simply changing the attributes needed, as shown in 

Figure 7. Matsumoto and Kunii used the design of bags to illustrate their new system. 

 
Figure 7. Changing a bag’s design in the cellular design system



                                                                                             
                                                                                             

 

 

CHAPTER  IV 
3D CELLULAR STRUCTURE CONVERSION ALGORITHM 

In this chapter, we will explain the proposed algorithms we have devised 

for converting wireframes to Three-dimensional Cell Lists. The steps of the algorithms 

are as follows: we read in the vertices and edges (as described in section 4.1), we 

detect the faces from the data we have read (described in section 4.2), then we reduce 

the circuits found to unique circuits (described in section 4.3) before reducing to the 

most plausible faces (described in section 4.4), and then we select the faces that 

produce the most likely shape (described in section 4.5) and perform some extra 

processing on the faces (described in section 4.6), before detecting objects and 

volumes (described in section 4.7), finding the relations between the various elements 

(described in section 4.8), and finally outputting all the data found (described in section 

4.9). Figure 8 describes the process as a flowchart. 

 

Figure 8. Flowchart of the 3D cellular structure conversion algorithm
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4.1 Reading vertices and edges 

Converting a wireframe to a Three-dimensional Cell List begins with 

obtaining the data of each vertex and edge. We read each edge in, and record the 

coordinates of its two vertices. If a vertex is not already in the list, it is added. At the end 

of this step, we have a list of vertices in the shape. This list will be sorted according to 

the x, y and z coordinates of each vertex, that is, a vertex with a lower x value will 

appear earlier in the list, and each vertex will then be labeled according its list position. 

Next, we compare the vertices of each edge with the list we have 

obtained, and store for each vertex the coordinates of the vertex, the edges adjacent to 

the vertex, and the direction of the edge in relation to the vertex. For each edge, we 

store the start and end vertices of the edge. Figure 9 shows a simple example with three 

vertices and two edges. 

 

 
Figure 9. Results from reading in the edges 

 

4.2 Face detection 

The first major step is finding the faces, by tracing along various edges 

and finding circuits. We store the path we trace as a series of edges and direction 

values (Boolean): if the value associated with a given edge is true, the path runs from 

the start vertex to the end vertex of that edge; if it is false, the path runs in the opposite 
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direction. We begin processing each edge by selecting the vertex that is adjacent to the 

lesser number of edges. If both vertices have the same number of edges, we select the 

edge’s end vertex by default. After one vertex is selected, we initialize the path by 

starting with the current edge, and setting the direction value so that the path runs from 

the opposite end to the selected vertex. 

In each step, we process each non-circuit path in the array, by finding 

the latest vertex of the path (from the latest edge and its associated direction value), 

attaching each edge adjacent to this vertex (besides those already part of the path), 

and storing the new path in a new array. For example, if there are two edges (besides 

the latest edge in the current path) adjacent to the latest vertex, we will put two new 

paths into the new array. Figure 10 shows an example of tracing. 

From the new array, we remove paths with circuits within the path (as 

opposed to being the whole path), and any path starting with the same two edges as a 

found circuit. Figure 11 shows these two methods of path removal. 

We repeat the process with the new array until there are no changes in 

the array, and then write the array to a file. This method of searching is equivalent to a 

breadth-first search in a tree. 
 

 
Figure 10. Tracing paths 
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Figure 11. Removing paths 

4.3 Reducing to unique circuits 

When processing each edge, we will most likely find the same circuit by 

tracing from each of the different edges that comprise that circuit (see Figure 12 for an 

example). Therefore, after all edges have been processed, we reduce the file down to 

unique circuits, by reading in each circuit, and comparing it to the previously read 

circuits stored in a table. We search each circuit in the table for the first edge of the 

circuit. If the first edge of the circuit is not in a given circuit in the table, then it can be 

ignored, since it is definitely different from the current circuit. If the edge is in the circuit 

in the table, we then check the direction values associated with the edge in both 

circuits. If the direction values are the same, we traverse both circuits in the same 

direction. If they are opposite, we traverse the circuits in opposite directions. If we return 

to the initial edge without finding any different edges, the circuits are the same. 

Example (as shown in Figure 13): 

ACABDF
ACDBAF
 )(  )(  )(  )( :
 )(  )(  )(  )( :

2

1

βγαδ
γβδα

+−−+
+−−+  

The first edge of F1 is +α. We find -α in F2. Since these are in opposite 

directions, we traverse these circuits in opposite directions: 

• F1: +α (→), F2: –α (←) 

• F1: –δ (→), F2: +δ (loop back to the end) 
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• F1: –β (→), F2: +β (←) 

• F1: –γ (loop back to the start), F2: +γ (←) 

• F1: +α, F2: –α (initial edge) 

We have returned to the initial edge without finding any different edges. 

Therefore, F1 = F2. 

 

 

 

 

 
Figure 12. Identical circuits from different traces 

 

 
Figure 13. Two different paths representing the same face 
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If the circuit we have read does not match any previous circuit in the 

table, it will be added. After all the circuits have been read, we sort the circuits. We 

index the circuits by the vertex in the circuit with the smallest-numbered label, then the 

vertex adjacent to this vertex with the smaller-numbered label, and the rest of the 

vertices in order. Figure 14 shows circuits being sorted. 

 

→
 

Figure 14. Circuit ordering 

4.4 Face reduction 

After obtaining all the possible faces, we need to reduce them to just 

likely faces. To do this, we first find the area of each face by splitting the shape into 

triangles, and summing their areas. Figure 15 shows two examples. To split a face, we 

find the axis with the largest range (the difference between the coordinates of any two 

vertices), and then find the vertex with the smallest coordinate on that axis (the leftmost 

vertex in both examples). We calculate vectors from this vertex to the other vertices of 

the face, and search for a vertex with a corresponding vector that lies between the 

vectors from the selected vertex to the ones adjacent to it. If we find such a vertex, we 

split the shape along a line from the selected vertex to the found vertex (left). Otherwise, 

we split between the vertices adjacent to the selected vertex (right). 
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Figure 15. Face splitting to find area 

Then, we find the flatness of the face, by considering each of its corners. 

We take a vector from a corner to the other vertices of the edges adjacent to the corner, 

and find the cross product. After all the cross products have been obtained, we find the 

two cross products whose dot product results in the smallest (absolute) cosine value, 

and use that value as the flatness. Figure 16 shows an example. 

 

 
Figure 16. Calculating flatness  

 

With the required information obtained, we then start to reduce the faces 

down to the most plausible ones. For this purpose, we have designated each face with a 

number, based on its position in the sorted table. 
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For each face, we find faces that come after it in the sorted table and are 

adjacent to its edges. We take each adjacent face and combine it with the current face, 

and compare the sum with all the other faces in the list. If a face is found that matches 

this sum, and its area is more than each of the two constituent faces, that face is marked 

unusable. We also combine the sum with another face that comes after both of the two 

constituent faces in the table, and do the same. 

If two faces share the same 2 edges, the larger face is designated as a 

secondary face. All other faces are designated primary faces. 

4.5 Face arrangement 

The next step is to arrange the faces into the most likely shape. We begin 

by looking for smooth entity chains. Given the limitations of our program in using only 

straight edges, this will be limited to finding adjacent edges that comprise a single 

straight line. This is achieved by simply adding together the lengths of the edges, and 

comparing to the distance between the start and end vertices of the chain. 

After finding smooth entity chains, we then calculate the maximum rank. 

Rank is the number of faces that are adjacent to a given vertex or edge. We use the 

equations used by Shpitalni and Lipson in their research [3]: 

( )[ ]1)()(
2

1
)( −×≤ vdvdvR  

[ ] 1)2(),1(min)( −≤ vdvdeR  

∑= )(
2

1
)( eRvR  

[ ])2(),1(min)( vRvReR ≤  

[ ] 12)(,2)(min)( +∑ −∑ −≤ RnRvdLnLvdeR  
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In the first four equations: 

• R(v) is the number of faces adjacent to the vertex v. 

• R(e) is the number of faces adjacent to the edge e. 

• d(v) is the number of edges adjacent to the vertex v. 

• v1 and v2 are the vertices that comprise the edge e. 

The last equation is for the smooth entity chains we had found earlier, 

where vL is the nL vertices to the left of edge e, including the left end of e, and vR is the 
nR vertices to the right of edge e, including the right end of e. 

We store the faces that are adjacent to each edge and vertex, to use in 

face arrangement. Figure 17 shows an example. 

 
Figure 17. Storing faces adjacent to each edge and vertex 

In arranging faces, we start by picking the smallest primary faces, with a 

flatness value of at least 0.9, adjacent to each edge and vertex. If none exists, we pick 

the smallest such secondary face, if available. 

After the selections are made, if there are more faces adjacent to any 

edge or vertex than its calculated maximum rank, we will remove the largest face 

adjacent to it. 
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We then add the unselected faces in, checking ranks after adding each 

face, and removing faces as necessary. 

4.6 Extra face processing 

The next step is to do some extra face processing. First, we find faces 

that were not found in the first tracing (for example, when tracing a cone, the base of the 

cone is not found). We find edges adjacent to one face at most (with the edge also 

being adjacent to less faces than its maximum rank). We use these edges to trace for 

more faces, and add the faces that can be added. 

We also remove overlapping faces. We combine two adjacent faces, and 

if the combined face has a flatness value of more than 0.9, we find other faces that 

share at least two edges with this combined face, and remove such faces if the center of 

the combined face lies within the other face. 

4.7 Object and volume detection 

The next step is to detect objects and volumes. We will use lists of 

vertices, edges and faces. We start from a given edge, and put it into the edge list. We 

check every edge in the edge list, and put every face adjacent to each edge into the 

face list, as well as putting the edges and vertices of each such face into the edge list 

and vertex list respectively. We repeat this process until there are no changes in any of 

the lists, with the faces in the face list comprising one object. If there are faces 

remaining to be used, the process is repeated with the remaining faces. Figure 18 

shows a simplified progress of this algorithm. 

 
Figure 18. Tracing an object 
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The next step is to find the volumes. Objects may consist of many 

volumes. For example, two cubes sharing one face, while detected as one object, 

enclose two volumes. Therefore, finding the volumes uses a more complex procedure. 

We will also use lists of vertices, edges, and faces for the procedure. Figure 19 explains 

the process as a flowchart. 

 
Figure 19. Flowchart of finding volumes 

To find volumes, we start by finding the leftmost face, as shown in Figure 

20. To find this face, we find the vertex with the smallest (x, y, z) coordinates, and then 

find the edge adjacent to this vertex that has the least angle with the z-axis. From the 

edge, we calculate vectors from the middle of the edge to the centers of the faces 
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adjacent to the edge. The face that produces the vector with the least angle with the y-

axis is the leftmost face. 
  

 
Figure 20. Finding the leftmost face 

After obtaining the leftmost face (as well as its edges and vertices), we 

put it into a list of the volume’s faces, and put its edges and vertices into the appropriate 

lists. 

As per Baumgart’s winged-edge structure [1], each edge is adjacent to 

two faces in a volume. Therefore, in finding the volumes, if we find an edge that is 

adjacent to one selected face, and two available faces are adjacent to the edge (i.e., 

there is only one adjacent face remaining to be added), we will pick the other available 

face (along with its edges and vertices). We repeat the process until no faces can be 

added, or the Euler-Poincaré equation 2=+− FEV  has been satisfied. 

If no faces can be added with the above method, the equation 
2=+− FEV  has not yet been satisfied, and there are faces available to add, another 

method for adding faces is used. Starting from an edge e with at least three available 

faces attached (with one already selected), we create a chain of edges from edges 

adjacent to one selected face. To obtain the “turn direction”, we calculate the vector v 

from the center of e to the center of the chain of edges. For convenience, we then 

calculate a vector that lies on the same plane as e and v, and perpendicular to e: 

evevn ××= )(  
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For each face F adjacent to the edge, we take two vectors fs and fe from 

the center of face F to the start and end vertices of e respectively, and calculate a vector 

that lies on the same plane as fs and fe, and perpendicular with e: 

effFv esf ××= )()(  

All of the vectors produced are then scaled down to a length of 1, for 

ease of calculation. 

One of the faces adjacent to e (notated here as FS) has already been 

selected. Based on vn and the vf calculated for each face, we select the face with the 

smallest dihedral angle from the selected face in the turn direction we have determined. 

On the left of Figure 21, we have selected face a, and we then pick face b if the center 

of the edge chain is at β, and face d if the center of the edge chain is at α. On the right, 

we have selected face a, and with the edge chain center at α, we pick face b as the 

next face. 
 

 
Figure 21. Determining the next face with turn direction  

To determine the correct faces to pick, there are two cases that we need 

to consider. Each case is illustrated in Figures 22 and 23. 

Case 1: ( ) ( ) 0)()()(: >×⋅×∃ FvFvvFvF fSfnSf  

Find the face F with the above property that produces the maximum 

value for ( ))()( FvFv fSf × . 



                                                                                                              

                                                                                                                                                              23 

 

 

 
Figure 22. For case 1 

 

Explanation: In this case, there exists at least one face where, in the 

direction of the rotation from the selected face (a) to the center of the edge chain (α), the 

angle from a’s vf to the given face’s vf is less than 180 degrees. Therefore, from such 

faces, we will select the one with the largest cosine value (i.e., smallest angle) between 

itself and a. 

Case 2: ( ) ( ) 0)()()(: <×⋅×∀ FvFvvFvF fSfnSf  

Find the face F with the above property that produces the minimum 

value for ( ))()( FvFv fSf × . 

 

 
Figure 23. For case 2 

Explanation: In this case, in the direction of the rotation from a to α, the 

angles from a’s vf vector to all the other faces’ vf vectors are more than 180 degrees. 
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Therefore, we will select the face with the smallest cosine value (i.e., largest angle) 

between itself and a. 

We use this method in conjunction with the above method, and repeat 

until 2=+− FEV  has been satisfied, or no available faces remain. 

After we have obtained the faces that comprise the volume, we need to 

remove some of the faces from future consideration. For this purpose, we then also 

search for the outside surface of the object using the same procedure (i.e., finding the 

leftmost face and adding adjacent faces), except selecting the face with the largest 

dihedral angle from the selected face in the turn direction, when using the edge chain 

method to add faces. After the results has been obtained, we remove the faces that are 

both part of the volume and part of the outside surface, and repeat the process as 

necessary. 

A potential flaw in both the closed volume and surface finding algorithms 

is that the algorithm calls for calculating a vector that is perpendicular to the currently 

selected edge and lies on the same plane as the edge's adjacent face, as well as 

calculating another vector between the centre of the selected edge and the centre of the 

chain of edges starting from that edge. There is a possibility of those two vectors being 

in the same direction (resulting in a zero vector as their cross product), which would 

create difficulties in properly tracing surfaces and closed volumes, since the program 

cannot determine the proper turn direction in this case. Currently, the program solves 

this issue by testing different edges instead, and if all the edges produce this same 

result (which is most likely when there is just one selected face, or when the selected 

faces form a single plane), the program modifies the vector from the centre of the edge 

to centre of the edge chain, by adding to the x (and y, if necessary) values of the actual 

vector.  The use of this special case solution is due to how both finding algorithms start 

at the leftmost face. This solution is shown in Figure 24. 
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Figure 24. Special case solution 

 

4.8 Finding relations 

The next step is to find the relations between the faces, volumes and 

edges. We start at the leftmost face again, and calculate the normal vector of the face 

(by averaging the cross products between 2 vectors from the center of the face and the 

two vertices of each edge). If the x coordinate of the normal vector is more than 0 (i.e. 

the vector is pointing to the right), the face is facing towards the volume. If the x 

coordinate is less than 0 (pointing to the left), then it is facing away. 

We store the normal vector, or its inverse, in an array, so that the vector 

stored in the array (hereby referred to as the “outward pointer”) points away from the 

volume. 

To find the outward pointer of each face, we consider a face with a 

known outward pointer (at the beginning, this will just the leftmost face) and an adjacent 

face without a known outward pointer. We connect the centers of the two faces with a 

vector c. With a as the face with the known outward pointing vector, we can determine 

the unknown outward pointing vector from b, with 3 cases to consider, as illustrated in 

Figure 25. 

00(c)
00(b)
00(a)

>⋅→=⋅
<⋅→>⋅
>⋅→<⋅

baca
cbca
cbca
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Figure 25. Determining a face’s outward pointer from that of an adjacent face 

 

The next step is to analyze the edges. This is because Kovalevsky’s data 

structure calls for each edge to contain the information on the faces and volumes 

adjacent to the edge in right-hand rotation order. Figure 26 shows a few examples of 

this. 

For each edge, we select a face that is not adjacent to two volumes (or 

just pick a random face if none is available), and put it into a list. To pick the faces and 

volumes in order, we will generally pick an element that is adjacent to the previous 

element and has not been put into the list yet, but there is a special case where there 

are no other volumes adjacent to the most recently-added face, with faces and volumes 

still remaining to be added. In this case, we will then measure the angles between the 

various faces, and select the one with the least angle in the same turning direction for 

the list (while indicating that there is no volume between the two faces). When all the 

faces and volumes have been picked, we will invert the list if necessary, and find the 

relationship between the right hand rotation and the normal vector of each involved face, 

and store that information as well. This is because Kovalevsky’s original structure calls 

for this. 
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Figure 26. Right hand rotation around edge a 

4.9 Output 

The last step is storing the data that has been obtained in the previous 

steps to create the finished 3DCL. Since we have obtained all the data that we require, 

we will output it in this order:  

• Vertex: Coordinates, adjacent edges (with direction indicated) 

• Edge: Start and end vertices, faces and volumes adjacent to the 

edge in right-hand rotation order 

• Face: The adjacent volumes (with direction indicated), its vertices 

and edges (in right hand rotation order around its normal vector)  

• Volume: The volume’s faces (with direction indicated) 



                                                                                             
                                                                                             

 

 

CHAPTER  V 
THIN POINT FINDING ALGORITHM 

After the development of a method for converting a wireframe into a 

Three-dimensional Cell List, we began to develop algorithms that utilize the 3DCL as its 

input, in order to prove that the proposed converting algorithm is correct. This chapter 

describes the first algorithm, finding the thinnest points in a solid represented as a 

3DCL. This differs from Koller and Danielsson’s works, which emphasize on searching 

for long, thin, curvilinear structures, rather just thin points. 

To define mathematically, a thin point is a point where a sphere inscribed 

in a solid tangent to the point has the smallest radius in the locality. Here, we will actually 

search for a series of connected edges which produce the smallest total in the locality. 

Finding the thin points starts by pre-processing and then finding the 

central axis of the solid (as described in section 5.1), obtaining and processing 

selections (described in section 5.2), and using the obtained values to determine the 

thin points (described in section 5.3). We also describe the thresholding method that 

allows the user to set the accuracy of the algorithm (in section 5.4). Figure 27 shows the 

flowchart of the process. 

 
Figure 27. Flowchart of the Thin Point Finding Algorithm
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5.1 Pre-processing and finding central axis 

The program starts with reading in the Three-dimensional Cell List as 

input. While reading in the edges, we pre-calculate the lengths of each edge. This will 

be useful later. 

To find the thinnest point(s) of each 3D solid, we start by finding its 

central axis. We find the average of the coordinates of all the volume’s vertices, to find 

its approximate center, and the center point of every face of the volume.  

After that, we split the shape into a number of parts (we have decided to 

use 20), by splitting the vertices into groups according to the x-value of the vertex. To do 

this, we find the vertices with the largest x-value (xmax) and the smallest x-value (xmin), 

and find the difference of those two values. We then determine which group each vertex 

falls under using this equation: 

)19,
)(

)(
20min()(

minmax

min
⎥
⎦

⎥
⎢
⎣

⎢
−

−
×=

xx
xx

xF  

We then find the averages of all vertices in each group, and then find the 

straight line that fits the 20 averages best using linear regression. 

We repeat this process with the y- and z-values instead of the x-value. 

We obtain 3 lines, and we determine which line is the best, by finding the distance 

between the line and the average values. 

After we have obtained the best line, we split the shape’s vertices into 

groups with this line as the axis. To split the vertices into groups using an arbitrary line 

(a, b, c) as the axis, we take each vertex’s coordinates (x, y, z), and insert it in to this 

function: 

czbyaxzyxG ++=),,(  
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We determine which vertices produce the minimum and maximum values 

of G(x, y, z), and then substitute G(x, y, z) for the x values in the equation for F(x). 

Having split the vertices into groups, we average the coordinates of the 

vertices in each group, and find a new line with linear regression. Figure 28 shows an 

example of this. We repeat until the new axis deviates from the old axis by less than 0.1 

degrees. In the case that the axis does not converge, we will average the most recent 

values after a certain amount of adjustments have been made. Figure 29 shows the 

process as a flowchart. 

 
Figure 28. Determining axes using averages 
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Figure 29. Flowchart of axis finding 

 

After obtaining the axis, we calculate the centers of each face, and pick 

the one that is furthest from the center of the solid. We do this by finding the face whose 

center produces the highest absolute value of the G(x, y, z) function. 

With the face we have picked, we create a “selection”, stored as an array 

of Boolean values where the faces that have been selected have a value of true. 

5.2 Obtaining and processing selections 

We now process the selections iteratively to determine thin points. We 

begin by taking each face adjacent to each selection to create new selections. At first, 

there is just one selection, consisting of the face picked in the previous step. We create 

a new selection by taking the current selection, and adding a face in the volume 

adjacent to the selection (setting that face’s value to true). Figure 30 shows a selection 

being used to generate new selections. 
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Figure 30. Creating new selections 

 

To save processing time, we pick only the faces that are adjacent to the 

most faces in the current selection. For example, in Figure 31, out of the unselected 

faces adjacent to the selection, there are faces adjacent to 3 faces in the selection, and 

none adjacent to 4, so we pick only those faces adjacent to 3 selected faces. 

 

 
Figure 31. Face adjacency 

We then compare the result to the selections that have been previously 

measured and stored. If it is not the same as any of the previous selections, we total up 

the lengths of each edge that is adjacent to one face in the selection (by summing the 

previously measured lengths). To determine which edges are adjacent to one face in the 
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selection, we store lists of edges adjacent to one face (L1) and two faces (L2). We insert 

the faces’ edges into the lists as necessary. That is, if an edge is not in either list, we 

insert it into L1. If it is already in L1, we move it to L2. These arrays are stored with the 

selection, along with the total sums of the lengths of the edges in L1 (hereby referred to 

as the “total length” of the selection). Figure 32 illustrates this. 

 
Figure 32. Keeping track of edges with lists 

To determine the total length of the edges in L1, we use two separate 

lists to keep track of the edges that are added and removed from the list. We retrieve the 

total length we stored during the previous execution. We subtract from the total length 

the lengths of the edges that have been removed from L1, and add the lengths of the 

edges that have been added to L1, before storing the total length with the selection. This 

uses less time than simply directly summing up the lengths of each edge in L1, 

especially when there are thousands of edges in the list, because it requires less 

arithmetic operations. 

For example, L1a: {a, c, d, e, f, g} and L1b: {a, c, d, f, g, h, i, j}. We have 

already stored x as the sum of the edges in L1a. We compare the two methods of 

calculating L1b: 

Direct: We retrieve the lengths of each edge in L1b and sum them. This 

requires 8 values to retrieve, and 7 arithmetic operations to perform. 
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Quick: We take x, retrieve the length of e and subtract it from x, and 

retrieve the lengths of h, i, and j and add them to x - e. This requires 5 values to retrieve, 

4 arithmetic operations to perform. 

In practice, this method saves a noticeable amount of time when large 

numbers of loops are being processed. 

After obtaining the selections, we insert them into an array, and then we 

remove the selections with a total length longer than a given threshold. This threshold is 

determined from the selection with the least total length, with the threshold at 1.1 times 

of this total length. This makes the algorithm a greedy algorithm. 

This process will have the same number of cycles as the number of 

faces in the volume, and in each cycle, the number of faces that have been selected in 

each selection is the same as the number of cycles that have been completed. After 

each cycle, we store the least total length in an array, along with the corresponding 

edges in L1 that produce that length (hereby referred to as a “loop”). Figure 33 explains 

the whole process as a flowchart. 
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Figure 33. Flowchart of selection processing 

 

5.3 Determining thin points from obtained values 

After this step has finished, we adjust the least length values we have 

stored so that the selections that are not too near the start and end of processing have 

an advantage. The equation used for adjustment is: 

i
i l

ifiv ),min( −
=  
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i is the number of the current loop, f is the number of the faces in the 

volume, and li is the length of the current loop. 

In some cases, we may need to “smooth out” the values obtained from 

the above equation, by averaging adjacent values. This is only done if the values have a 

tendency to alternate between going up and down, such as in volumes with triangular 

faces. 

Next, we create a new array of averages. We average the values in a 

range of 5 (at most) values in either direction. For example, as shown in Figure 34, the 

100th value in the new array is the average of the 95th to 105th values in the original array, 

and the 3rd value in the new array is the average of the 1st to 8th values.  

 

 
Figure 34. Averaging 

With these new values, we compare the values in the original array, with 

the average of the 5 values on either side in the new array, as well as the adjacent 

values in the original. For example, we compare the 100th value of the original array with 

the average of the 95th to 99th values in the new array, the average of the 101st to 105th 
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values in the new array, the 99th value in the original array, and the 101st value in the 

original array. 

If the value is higher than all of the values we compare it with, we then 

store the product of the two averages of adjacent new array values and the 

corresponding new array value. 

Lastly, we output the loops where the value obtained from the process is 

more than 1/50 of the largest value from the process, and there are no higher values 

within 10% of the number of total cycles. 

5.4 Thresholding 

The algorithm allows the user to set the number of selections that remain 

after each cycle, with a minimum of 1, and a maximum of 1000. After the selections with 

a total length exceeding 1.1 times the length of the selection with the least total length 

are cut, if there are still more selections than the set value, the program sets a new 

length limit:  

)95.0,min(1.00
c

t

n
n

t ×=  

 

with nt as the set value, and nc as the number of selections remaining. The program will 

remove selections with a length longer than (1+t0) times the least total length. 

If the number of selections that remain are still higher than the set value, 

we re-adjust the length limit: 
 

)95.0,min(1
c

t
ii n

n
tt ×= −  

 

After the length limit has been adjusted 20 times, if there are still more 

selections remaining than the set value, the program sorts the total length of each 

selection to find the selections with the least total length. For example, if we require 40 

selections, we take the first 40 selections after sorting to obtain the least length.  
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A large value for the number of selections remaining produces more 

accuracy, at the cost of more execution time. A small value for this number uses less 

execution time, at the cost of potentially less accuracy. 



                                                                                             
                                                                                             

 

 

CHAPTER  VI 
EDGE SMOOTHING ALGORITHM 

Inspired by Adamson and Alexa’s method of tangential interpolation to 

smooth out point sampled models, we developed another algorithm for the 3DCL. The 

algorithm is designed to smooth out a solid represented as a 3DCL comprised entirely 

of straight edges, by converting edges into cubic or quadratic curves. We determine the 

continuous surface of each volume, and from the normal vectors of the surface’s faces, 

we interpolate the normals of the surface’s edges, and then those of the vertices. We 

use these values to redefine the surface’s edges as curves, by repeatedly readjusting all 

the values until they converge. Figure 35 shows the flowchart of this algorithm. 

 
Figure 35. Flowchart of edge smoothing algorithm
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6.1 Pre-processing and finding continuous surface 

We begin by taking the 3DCL as input, and, for each volume, find the 

normal vector of each face of the volume, and use the 3DCL data to determine the 

vector that points away from the volume, and then unitize the vector. 

After obtaining the outward pointing vector of each face, we find the 

continuous surface of each volume, starting at a given face in the volume, and then 

considering the faces adjacent to it. We maintain a list of faces F, and two lists of edges: 

L1 for edges adjacent to one face in F, and L2 for edges adjacent to two faces in F. We 

calculate the angles between the outward pointers of adjacent faces. If the angle is less 

than a value set by the user (between 0 and 90 degrees), we add that face into F, and 

update the edge lists. We repeat the process by considering the edges in L1 in the 

same manner, until all the faces in the volume have been listed, or no more new faces 

can be added to F.  

6.2 Obtaining data to smooth surface 

Having obtained faces of the continuous surface (Figure 36, left) as well 

as the edges adjacent to two such faces (middle), we then find the vertices where every 

edge adjacent to the vertex is in L2 (right). Such vertices are adjacent only to faces that 

are part of the current surface, and thus will be absolutely unaffected by other surfaces. 

 
Figure 36. Faces, edges, and vertices used to smooth the surface 
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The data to be used to smooth out the continuous surface are: the faces 
of the surface (F), the edges adjacent to two faces in the surface (L2), and the vertices 

exclusively adjacent to edges in L2. 

6.3 Find normal vectors 

With all the necessary data obtained, we begin smoothing out the 

surface by with determining the normal vectors of the edges. For each edge, we 

calculate the weighted average of the normal vectors of its two adjacent faces, using the 

distance from the midpoint of the edge to the center of each face. In Figure 37, A is the 

distance between the center of face a to the midpoint of edge x, and B is the distance 

between the center of face b to the midpoint of edge x. Therefore, the normal vector of 

edge x is defined thusly: 
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Figure 37. Determining the normal vector of an edge from its adjacent faces 

After determining the normal vectors of each edge, we also find the 

normal vectors of the vertices adjacent to such edges, also using weighted averages, as 

illustrated in Figure 38. Where ei is an edge adjacent to vertex p and di is the distance 

between the midpoint of ei and p, the normal vector of p is defined thusly: 
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Figure 38. Determining the normal vector of a vertex from its adjacent edges 

6.4 Redefining edges as curves 

The next step is to smooth out the edges of the surface by redefining 

them as curves, by considering the start and end vertices of each edge, and the 

associated normal vectors of these two vertices, where available. There are three 

possible cases, depending on how many of the edge’s vectors have associated normal 

vectors. 

First case: Both vertices have normal vectors 

The edge between the two vertices is a cubic curve, as a function of the 

axis with the largest range (i.e., difference between the start and end vertices). 

Suppose that axis in question is x. We obtain the equations: 
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We have: 

• Start vertex s: ),,( zyx sss  

• End vertex e: ),,( zyx eee  

• Vector from s to e: v 

• Normal vector of s: ),,( zyxs nsnsnsn =
r

 

• Normal vector of e: ),,( zyxe nenenen =
r

 

Since the preceding equations require the use of the derivative of the 

curve, we determine the derivative from the normal vector with these equations: 
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Figure 39 illustrates the logic behind these equations. 

 
Figure 39. Obtaining derivatives from normal vectors 
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These equations result from the above steps: 
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Second case: Only one vertex has a normal vector 

The edge between these two vertices will be a quadratic curve, once 

again as a function of the axis with the largest range. 

Using x as the axis, we obtain: 
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If the start vertex has the normal vector, these equations are obtained: 
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If the end vertex has the normal vector, these equations are substituted 

for the 3rd and 6th equations above: 
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Third case: Neither vertex has a normal vector 

The edge between these two vertices is straight, and can be rendered as 

linear functions. No calculation of derivatives is required. 
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We solve the equations obtained above with a matrix, so as to find the 

best curve that fits the given data. We consider the two remaining axes separately, 

resulting in a curve (or straight edge), represented as the start and end points on the 

axis with the largest range, and equations for the other axes. 
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6.5 Readjusting midpoints 

If the edge is not a straight line, the next step is to adjust the midpoint of 

each edge (which originally is the average of the start and end vertices’ coordinates). 

For each edge being considered, we start determining the midpoint by finding the point 

on the edge between the start and end vertices which is closest to a line L passing 

through the previous midpoint and parallel to the normal vector. We do this by placing 7 

points on the curve, spacing them equally on the axis with the largest range. We next 

determine which of these points are closest to L. To find the distance between each 

point and L, we use a simple method. 

P (xp, yp, zp) is the point, M (xm, ym, zm) is the midpoint, and ),,( nnn zyxN rrrr
 

is the normal vector of the edge. We desire to find the distance d between P and a line 

passing through M parallel to N
r

.  

First we create a third point M’: (xm+ nx
r , ym+ ny

r , zm+ nzr ). MM’ is a line 

segment of L. The three points P, M and M’ form a triangle. Finding the distance 

between P and L (here, MM’) now simply involves finding the area of the triangle PMM’ 

(which we will call A):  
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Thus, from the more conventional method of finding the area of a 

triangle: 
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After finding the distance for each point, we find which point produces 

the smallest result. If that particular point is the start or end vertex of the curve, we 

recursively search between that vertex and the point next to it. For the other spots, we 

recursively search between the two points next to it (in Figure 40, the 3rd point is closest; 

therefore, we search between the 2nd and 4th points). When the search area is below a 

set limit, the new midpoint has been obtained. 
 

 
Figure 40. Determining the new midpoint of an edge 

 

Having obtained the new midpoints, we adjust the vertices’ normal 

vectors using the same equations as earlier, due to the change of distance between the 

vertex and the midpoint of the curve. After obtaining the new normal vectors of the 

vertices, we adjust the curves and their midpoints again to match the new vectors. We 

repeat this process until none of the edges’ midpoints change by more than .001 units 

(when an edge’s midpoint changes by less than .001 units, it is no longer adjusted), or 

until a number of cycles have passed where the same number of midpoints continues to 

change by more than this threshold (in that case, we simple average the most recent 

results). Having completed the current surface, we then search for more surfaces from 

the unused faces, and repeat the process. 

After all the surfaces have been processed, we consider the remaining 

unprocessed edges as straight edges, and we output a file to define each curve in the 

terms of the axis with the largest range, the limits of the edge on that axis, and the 

equations of the other two axes. For example, an edge represented in the file as “0, 0, 
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0.38, -0.0123, 0.0021, -0.1043, 1.95, 0.0384, 0.0121, -0.0102, -9.81” has the information 

thusly: 

• The axis with the largest range: x (0 = x, 1 = y, 2 = z) 

• Limits of edge on x: 0 to 0.38 

• Edge’s y coordinates as a cubic equation: -0.0123x3 + 0.0021x2 + -

0.1043x + 1.95 

• Edge’s z coordinates as a cubic equation: 0.0384x3 + 0.0121x2 + -

0.0102x + -9.81 

(For display purposes, we also redefine each curve as 15 short line 

segments in a separate file.) 



                                                                                             
                                                                                             

 

 

CHAPTER  VII 
EXPERIMENTAL RESULTS 

In this section, we describe the experimentation for each of the 

algorithms, and explain the results. We also analyze the execution time. 

7.1 Tools for experimentation 

For the implementation of the various algorithms, we use Microsoft Visual 

Basic .NET. For testing and timing the execution, we use a computer running on a 

Pentium with 996 MHz. 

7.2 Wireframe to Three-dimensional Cell List Conversion 

For testing this algorithm, we prepared 6 examples, three simple 

examples (Figure 41), and three complex examples (Figure 42). 

 

 
Figure 41. Simple examples 

 

Figure 42. Complex examples
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These are the results from the three simple examples: 

 

Sample shape 1 2 3 

Initial read:    

Time 7520 ms 761 ms 1221 ms 

Vertices 66 16 24 

Edges 128 28 40 

Face finding:    

Finding faces 22422 ms 4155 ms 5337 ms 

Reducing to unique faces 1842 ms 3725 ms 1211 ms 

Faces found 128 16 23 

Face reduction:    

Area calculation  1742 ms 370 ms 430 ms 

Processing 3214 ms 640 ms 771 ms 

Remaining faces 64 16 19 

Secondary faces 0 0 0 

Face selection:    

Processing  420 ms 811 ms 340 ms 

Faces selected 64 16 19 

Face analysis:    

Analysis  480 ms 731 ms 370 ms 

Faces 66 16 19 

Volume analysis:    

Manifold analysis  1972ms 1602 ms 1061 ms 

Processing 54358ms 6909 ms 11997 ms 

Total volumes 2 3 2 

Cell list assembly  12287 ms 2293 ms 1812 ms 

Table 1. Results of the simple examples 
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Sample  

shape 
Results Volumes 

1 

 

 

2 

  

3 

 

 

Table 2. Visual results of the simple examples 
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These are the results from the three complex examples: 

 

Sample shape 4 5 6 

Initial read:    

Time 51333 ms 47788 ms 152258 ms 

Vertices 483 466 710 

Edges 1024 944 2124 

Face finding:    

Finding faces 294072 ms 326148 ms 1332035ms 

Reducing to unique faces 18806 ms 15652 ms 87765 ms 

Faces found 1533 1412 7584 

Face reduction:    

Area calculation  24044 ms 19938 ms 121945 ms 

Processing 76630 ms 56320 ms 366256 ms 

Remaining faces 597 488 1464 

Secondary faces 51 8 24 

Face selection:    

Processing  27579 ms 10595 ms 413394 ms 

Faces selected 544 480 1440 

Face analysis:    

Analysis  4576 ms 5698 ms 84872 ms 

Faces 544 480 1428 

Volume analysis:    

Manifold analysis  24795 ms 30103 ms 68768 ms 

Processing 349031 ms 329613 ms 1497543 ms 

Total volumes 2 1 13 

Cell list assembly  79514 ms 75037 ms 225804 ms 

Table 3. Results of the complex examples 
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Sample 

shape 
Results Volumes 

4 

 

 

5 

 

(Single volume) 

6 

 

 

 
Table 4. Visual results of the complex examples 

 



                                                                                                              

                                                                                                                                                              54 
 

 

By plotting the execution times against the size of the input and 

analyzing the algorithms themselves, these most plausible time complexity results for 

average cases are obtained in relation to the numbers of edges (e) and faces (f): 

Initial read: O(e log e), due to the sorting algorithm. 

Face finding: Due to the use of tree searching, the worst case is 

exponential time complexity. However, on well-defined wireframes, we have observed a 

time complexity of O(e log e), due to most faces being comprised of a low number of 

edges (3-4), and the removal non-plausible alternatives during tracing. 

Area calculation: O(f), due to faces usually having 3 or 4 edges, and 

thus requiring at most one split. 

Face processing: O(f log f), due to the use of sorting to determine the 

order of faces to remove or add. 

Volume analysis processing: O(f log3 f) has been observed. However, 

the execution time for this algorithm is mostly dependent on whether there are extra 

faces to be found. 

Cell list assembly: O(f log f) has been observed. However, the execution 

time for the algorithm is also dependent on the number of volumes found.  

7.3 Finding Thin Points in 3DCL 

For this experiment, we have prepared 6 solids, each in two versions: 

quadrangular faces (Figure 43, top) and triangular faces (bottom). We also tested on 

two thresholds, 40 and 100. 
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Figure 43. Examples for thin point finding 

 

Ex. 
Faces 
(Quad.) 

Time 
(Threshold 

40) 

Time 
(Threshold 

100) 

Faces 
(Tri.) 

Time 
(Threshold 

40) 

Time 
(Threshold 

100) 

1 240 12.648 s 11.807 s 216 26.298 s 182.532 s 

2 240 12.318 s 12.748 s 216 56.511 s 105.732 s 

3 480 47.759 s 27.810 s 456 317.176 s 1711.090 s 

4 480 34.309 s 33.809 s 456 160.731 s 584.390 s 

5 240 12.167 s 19.708 s 222 23.864 s 58.795 s 

6 720 34.089 s 31.325 s 696 284.699 s 1676.851 s 

Table 5. Time to find thin points 
 

In Table 6, the result from a threshold of 40 is above the line, while the 

result from a threshold of 100 is below the line. 
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Ex. 

Result 
(Top: 40 

Bottom: 100) 
Ex. 

Result 
(Top: 40 

Bottom: 100) 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

Table 6. Visual results for thin points 

 

We also tested the program with a standard model, the Stanford Bunny, 

using the smallest threshold possible (a 1 threshold, i.e., taking only the selection with 

the smallest length in each cycle for the next cycle’s processing). The execution took 

83629223 ms. The result of the processing is shown in Figure 44. While the algorithm 

has found the area around the ears, the other results are still not very good. This is 
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possibly a result of using such a low threshold, and even with such a low threshold, the 

execution time is still high, and would be even more so with a higher threshold. 

 

Figure 44. Stanford Bunny 

It should be noted that quadrangular faces take advantage of the face 

adjacency time-saver more than triangular faces (and thus are practically unaffected by 

the increase in threshold), and are also somewhat less prone to inaccurate results. 

However, the program still produces some extraneous results, even on quadrangular 

faces, and more so for triangular faces. There are also some cases where it still does not 

detect thin points well, especially with the Stanford Bunny example. 

Also, for solids with triangular faces, the execution time tends towards 

exponential time complexity in relation to the number of faces (although the actual 

execution time depends on the solid). 
 

7.4 Smoothing out 3DCL 

We have tested three different single solids represented as a Three-

dimensional Cell List on a 996 MHz Pentium, using 45° as the cut-off for continuous 

surface detection. The results in Table 7 suggest that the program produces reasonably 
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smooth solids which are an improvement on the original. Analysis of the execution time 

suggests a O(n log2 n) time complexity relative to the number of edges in the shape. 

However, execution time is dependent on the number of surfaces found in the shape. 

 

Test figure Edges Time Original Smoothed 

1 120 24515 ms 

  

2 468 100234 ms 

  

3 336 40298 ms 

  

4 944 186558 ms 

  
Table 7. Results for 3DCL smoothing 



                                                                                             
                                                                                             

 

 

CHAPTER  VIII 
CONCLUSIONS AND FUTURE IMPROVEMENT 

In this chapter, we discuss the conclusions we have obtained from the 

experiments. We also outline possible improvements for further research. 

8.1 Conclusions 

Wireframe to Three-dimensional Cell List Conversion 

As tested, the algorithm produces reasonably accurate results. The 

algorithm has potential applications in areas where 3D topological information is useful, 

such as product design. 

However, there are some cases where extra faces are found and 

included, from close and adjacent edges. This skews the volume computation, and 

results in additional spurious volumes (usually in the form of pyramids). Also, there are 

some processes that could be improved. For example, reading in the edges and 

vertices requires two passes of the file currently.  

Finding Thin Points in 3DCL 

The method for determining which loops are suitable as thin points still 

needs improvement, as it produces good results on some sets of data and bad results 

on others. Other methods are currently being tested.  

Also, the execution time for finding thin points is high (exponential in the 

worst case), especially with solids with triangular faces, due to the fact that such solids 

do not take as much advantage of the face adjacency time-saver as much as 

quadrangular faces. 
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Smoothing out 3DCL 

The method for smoothing out the solids by rendering them as curves 

produces reasonably realistic results, even on less-faceted figures, and the execution 

time, dependent on the number of surfaces found, also seems to be reasonable. 

8.2 Future improvement 

Wireframe to Three-dimensional Cell List Conversion 

Possible future improvement to the algorithm includes reducing the 

spurious faces detected and thus the extra volumes found (as seen in example 6 in 

Table 4), and finding a better solution to the potential flaw mentioned in section 4.7. 

Other improvements include streamlining processes to reduce execution time without 

negatively affecting the algorithm’s accuracy (for example, in section 4.1, we read the 

input file twice). 

Finding Thin Points in 3DCL 

Further research is necessary in order to determine the best method to 

accurately determine thin points from the data. Another part of the research that also 

needs improvement is the speed of the algorithm, as its execution time is still 

unreasonably high in some cases. One possible method of speed improvement would 

be to consider faces in clusters, rather than individually as we have done in this 

research. This would prove useful especially with figures with a very high number of  

faces, such as the Stanford Bunny model in Figure 44. 
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Smoothing out 3DCL 

The algorithm currently considers edges that were not analyzed during 

the processing (i.e., edges that border multiple surfaces) as straight edges. Therefore, 

objects like cylinders will not be smoothed well, as it will consider the top, bottom, and 

sides as separate surfaces, and edges that border either the top or bottom and the 

sides will not be processed. Future improvement may include analyzing these edges as 

well, to improve the smoothness of the shape.  
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