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The computer simulation and experimental studies are conducted to investigate the
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CHAPTER |
INTRODUCTION

1.1 Background and Motivation

The dynamic axle load and gross weight of vehicles are important factors for
consideration in the design of new bridges and pavements, the rating and fatigue life
assessments of existing bridges and pavements as well as the design code calibration
and overweight vehicle control of highway regulations. Road and bridge design live
loads are mainly dominated by heavy vehicles such as buses, trucks and trailers as
they cause large impact loading, resulting in damage to pavement and highway
structures. Although vehicle weight and axle load are specified in weight limit
regulations, the weigh station can only measure the static axle load and the gross
vehicle weight (GVW). Moreover, the weighing requires the vehicle to stop, requiring
a long time for each vehicle to go through the process. Vehicle queuing at the
entrance of the weigh station also induces traffic congestion, which means the
weighing cannot be observed and carried out thoroughly. Besides, the dynamic axle
loads of vehicles are very difficult to measure directly and their configurations differ
according to each vehicle category. Therefore, to obtain this significant loading
information without traffic disturbance, the Weigh-In-Motion (WIM) system was
adopted and developed to indirectly measure the time-histories of vehicle axle loads.

In the past twenty years, many countries have utilized WIM technology to
reduce delays and increase enforcement of overweight vehicles. The WIM system is
defined by the American Society for Testing and Materials (ASTM) as the process of
estimating a moving vehicle’s gross weight and the portion of that weight carried by
each wheel, axle, or axle group, or combination thereof, by measurement and analysis
of dynamic vehicle tire forces. Through WIM technology, the vehicles can be
weighed in time domain without disturbing their traveling speeds.

Although WIM has improved weighing station operations, there are various
types of WIM scales with various levels of accuracy. As weighing accuracy
decreases, the number of vehicles that must proceed to the static scale increases in
order to ensure that all potential overweight vehicles are weighed on the static scale.
Additionally, if the WIM system underestimates a vehicle’s weight, violating trucks

could then go through the system without being stopped.



The existing technologies for WIM scales use bending plates and piezoelectric
stripes as load cell sensors. However, these technologies are based on weighing
detectors embedded in the pavement and thereby disturb the traffic during their
installation and maintenance. Therefore, a new alternative system employing a bridge
called Bridge Weigh-In-Motion (B-WIM) has been developed since the 1990s. The B-
WIM systems deal with an existing instrumented bridge or culvert from the road
network and estimate the acting load by converting the measured bridge response.
The advantages of this system are that it can be installed and maintained without
disturbing the traffic flow and that the drivers passing over the bridge cannot notice
the vehicle loads being detected. Additionally, the cost of installation and
maintenance of the B-WIM system are lower than the existing WIM. Hence, the
identification of dynamic axle loads from bridge responses becomes more attractive
since it is much cheaper and easier to install and maintain. However, the accuracy in
the axle load identification of B-WIM systems is dependent on the efficiency of
hardware and software.

Over the last decade, there have been studies carried out on moving load
identification using bridge responses. Based on vehicle-bridge interaction models, the
dynamic axle loads of a vehicle moving on a bridge can be identified from the
bridge’s strains, displacements, accelerations or bending moments by the load-
deformation relationship. Many theoretical and experimental studies have been
proposed to identify the moving loads. Although early studies found that the
identification methods are reliable, the identified dynamic axle loads are noise
sensitive and also numerically ill-conditioned, particularly when using acceleration
response. However, one drawback of these studies is that they are limited to single-
vehicle load identification. The reality is that quite often multiple vehicles are present
on the bridge at the same time especially on long-span bridges or continuous bridges.
This research study therefore investigates the axle load identification of multiple

vehicles moving on bridges.

1.2 Problem Statement

As stated, in this research, the identification of multiple vehicles moving on
bridges is studied. The multiple presence of heavy vehicles moving on the bridge at
the same time is considered. Using only a single-span bridge for signal measurement

as commonly proposed would not be sufficient to observe the variation of axle loads



because the measured time-histories are too short if the vehicles move at high speed.
Therefore, the identification of moving loads using a continuous bridge is also
considered.

This research presents the analytical and experimental study of the axle load
identification of multi-axle and multiple vehicles moving on single-span simply
supported bridges and multi-span continuous bridges.

Theoretically, the interaction forces or the axle loads acting upon the bridge
can be transformed to the bridge responses using the load-deformation relationship
employing vehicle-bridge interaction or moving loads-bridge interaction together with
the data concerning the vehicle and bridge properties. Using the bridge responses,
axle spacings and vehicle speeds as the input data, the predicted or unknown axle
loads can be identified from the optimization process between the measured responses
and the analytically reconstructed responses.

Regarding the axle load identification process, the identified loads are the
values inducing the least optimization residual error from the objective function.
Early research in this area found that the identified loads with simple least square
optimization exhibit a large fluctuation and risk causing ill-conditioning when the
vehicle passes the bridge supports. Hence, a regularization technique is necessarily
adopted in the optimization to decrease the chance of an unrealistic oscillatory
solution.

However, mathematically, the solution identified by the above process tends to
provide a large identification error in cases when a higher number of unknown
loadings are predicted, such as multi-axle vehicles traveling on the bridge at
independent velocities. Therefore, this research aims to develop the accuracy and
effectiveness of axle load identification depending on how the vehicles are traveling
including short headway following, overtaking and side-by-side movements.
Additionally, based on the results from previous studies employing regularization
techniques, it has been observed that difficulty in assigning an appropriate or optimal
regularization parameter is followed. Moreover, ill-conditioning and poor accuracy of
determined axle loads at the internal bridge supports found in multi-span continuous
bridges identified by existing identification methods need to be corrected. Thus,
accuracy improvement in identifying the axle loads of multiple vehicles traveling on a

multi-span bridge will be carried out.



1.3 Research Objectives
According to the problems outlined in the above section, the objectives of this
study are:

1. To propose the identification method for the dynamic axle loads of multiple
vehicles moving on single-span simply supported and multi-span continuous
bridges.

2. To study the influences of various parameters on load identification such as
axle-spacing-to-span ratio, bridge surface roughness, vehicle configurations,
moving formation of vehicles and regularization parameter.

3. To evaluate the effectiveness of identification accuracy and robustness of the
identification method using an analytical study by computer simulation.

4. To verify the obtained analytical results using an experimental study with
scaled models and to experimentally investigate the feasibility of the

proposed method toward real application.

1.4 Methodology

The methodology of this research is schematically described as shown in
Figure 1.1. The research consists of analytical and experimental studies. A numerical
study based on computer simulation is conducted to investigate the influence of
related system parameters and also as a preliminary study for experimental design.
The experimental study is carried out in order to verify and evaluate the effectiveness
of the identification method previously investigated in the numerical study. Thus, a
comparison of the identified results from both numerical and experimental studies are
presented and discussed to summarize the effectiveness of the proposed identification

method.

1.5 Scope of Research

The scope of the research study mainly consists of two parts, including the
scope of the analytical study conducted via numerical simulation on the computer and
the scope of the experimental study conducted via scaled model testing carried out in

the laboratory.
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Figure 1.1 Diagram of research methodology

1.5.1 Scope of Analytical Study

1.

Vehicle axle load identification for moving vehicles not exceeding two
vehicles is considered.

The considered vehicle models used in the theoretical and computer
simulation studies are four degrees-of-freedom models.

A single-span simply supported bridge and a three-span continuous bridge
are considered.

The measurement signal used in load identification is the sectional bending
moment of the bridges.

The numerical approach adopted in load identification is an optimization

with the least square objective function with Tikhonov regularization.



1.5.2 Scope of Experimental Study

1. The vehicle-bridge system is tested using a small-scale model.

2. The scaled model bridge is a three-span continuous bridge made of steel
plate with uniform cross section.

3. The two model vehicles used in the experiment have two axles, non-
articulated frames with rubber tires and spring suspensions.

4. The sectional bending moment used in identification is converted from the
strain signal directly measured from bridge responses induced by the travel
of model vehicles.

1.6 Dissertation Organization

This dissertation consists of seven chapters. Chapter Il reviews previous
research related to vehicle-bridge interaction, weigh-in-motion system, moving load
identification methods and numerical techniques adopted in this field. Chapter IlI
describes the theoretical background used in the formulation of vehicle-bridge
interaction, the relationship between moving loads and bridge responses, the
optimization statement for moving load identification and the accuracy improvement
technique used in this research. Chapter 1V presents a numerical study in moving load
identification using computer simulation with a parametric study and an effectiveness
comparison of existing and proposed identification methods. Chapter V presents the
experimental investigation of the proposed identification method by testing with the
scaled model. Chapter VI presents the evaluation on tolerance and accuracy
robustness of the identification method by conducting identification with incomplete
measurement information. Finally, Chapter VII summarizes the obtained results,
discusses the limitations of the proposed identification method and provides
recommendations for further study and application to the real situation.



CHAPTER Il
LITERATURE REVIEW

2.1 General

In this chapter, relevant previous studies including those on vehicle-bridge
interaction, weigh-in-motion system and moving load identification are reviewed.
Research works relating to theoretical and experimental studies of moving load
identification, and numerical techniques used in mathematical models are covered.
Based on the useful information in this chapter, the appropriate theoretical and
experimental approaches will be applied to the research methodology to achieve the

research objectives.

2.2 Weigh-In-Motion

The Weigh-in-Motion (WIM) system has been in use for over 40 years, having
first been used for the weight data collection of trucks and their axles for statistical
purposes required for pavement design and maintenance. Pavement and bridge
structural designs are based on the weight of heavy vehicles traveling on highways. In
the 1970s, the first semi-automatic weighing stations consisting of pre-selection WIM
scales and downstream axle weighbridges for enforcement in rest or parking areas
were designed and built to protect the road infrastructure from damage and to reduce
wear and tear. They have continued to be in operation until today. For many years the
purpose of weigh stations has been to ensure that trucks do not exceed the legal
weights of the localities that are being traveled through. Unfortunately, as the amount
of trucks on highways increases, the queue lengths at the weigh stations also increase.
When weigh station queues spill back on to the mainline travel lanes, the weigh
stations are generally closed and violators can potentially go through the network. As
a way of speeding up the process of weighing these heavy vehicles, WIM systems
have been installed in many places to screen overweight vehicles. The WIM system
provides highway planners and designers with traffic volume and classification data.
In addition, WIM equipment also provides planners and designers with equivalent
single axle loadings (ESAL) that heavy vehicles place on pavements. Road vehicle
enforcement officers use heavy truck axle load data to plan enforcement activities. In

summary, the uses of traffic and truck weight data include enforcement, pavement and



bridge design, and legislative and regulatory issues. The use of WIM data should
determine the approach chosen in developing the WIM data collection site and the
resources required to maintain the site over the expected site design life. The WIM
system can be further divided into two systems, which are (1) traditional WIM based
on load transformation of the vehicle weight using load cells or other measurements
embedded into the roadway pavement, and (2) bridge WIM measuring bridge

response for the vehicle load transformation.

2.2.1 Traditional Weigh-In-Motion

Traditional WIM is a weight estimation system employing an instrumented
pavement of the roadway surface. Some of the existing measurement technologies for
WIM sensors started with load cells, steel plates with strain gauges and were
supplemented with low cost sensors using piezo materials, crystal or optical fiber
technology (Jacob, 1999) embedded into the roadway surface. Recently, research has
also been conducted in determining vehicle weight by pavement strain; however, this
technology has not been widely utilized. In each of the systems, a site processor is
used to sort and analyze the information obtained from the WIM sensors. Thus, a
communication device such as a modem is used to transfer the information to outside
locations for further calculation and to ensure that the system is operating properly.
Operating software must also be used to interpret the signals from the WIM sensors
and be able to generate files that can be used and analyzed by monitoring agencies
(McCall et al., 1997).

Due to the high infrastructure and operation costs of these semi-automatic
weighing stations, investigations into fully automatic overload enforcement systems
have been initiated in recent years: WIM sites with multiple integrated sensor
technologies were built and special algorithms were applied to the measurement data
with the expectation to achieve higher weight accuracies than with single sensor
technology (Sainte-Marie et al., 1998; Stergioulias et al., 1998; Cebon, 1999;
Dolcemascolo et al., 2002; Labry et al., 2004). Test sites with Multiple Sensor (MS)
WIM arrays were built with different sensor technologies in France (Dolcemascolo,
1999), Germany (Balz/Opitz, 2002), UK, the Netherlands and many other countries.

One benefit of operating the traditional WIM system is that of the aspect of
computational time since the vehicle weight can be calculated directly from the load-

measurement conversion. However, this system allows large vehicle weight errors to



occur when a vehicle travels quickly. This is because the duration of the vehicle
passage on the weighing pad is very short. Moreover, the maintenance cost of this
approach is very expensive as the instruments are embedded into the pavement,
requiring the instrumented route to be closed for the repairs and replacement of the

SENSOrs.

2.2.2 Bridge Weigh-In-Motion

In order to overcome the problem of large weight estimation errors and the
expensive maintenance costs found in the traditional WIM system, an alternative
approach based on an indirect weight estimation by returning the bridge responses
into the acting load known as bridge Weigh-In-Motion (B-WIM) has been developed.
Moses et al. (1979) developed the concept of using bridges as scales to weigh trucks
in motion. In Australia, a similar system appeared a few years later but was replaced
by another that used culverts (Peters, 1986). In the nineties, new bridge WIM (B-
WIM) systems were developed independently in Slovenia (Znidaric et al., 1991) and
in Ireland (Dempsey et al., 1995). In 1999, a European specification concerning the
WIM of roads and vehicles called COST 323 was presented as the recommendations
and references for site selection, installation, operation, calibration and assessment by
testing of the WIM system. Then further research on the COST 323 project by the
European Commission (WAVE, 2001) was continued for the system development of
many actions such as weighing capacity, weighing accuracy and standard calibration.

The B-WIM systems deal with an existing instrumented bridge or culvert from
the road network as illustrated in Figure 2.1. The instruments are installed in the
bridge or culvert structure and the strains measured to provide information about its
behavior under moving vehicles. In addition, the axle or vehicle detectors are installed
on the pavement to provide data about vehicle type, velocity and axle spacing. Strains
are recorded during the time the whole vehicle passes over the structure and such
redundant data yields useful information when the influence of dynamic effects due to

vehicle-bridge interaction is taken into account.
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Figure 2.1 B-WIM system

2.2.3 Accuracy Classification of WIM

Several accuracy classes for individual measurements have been defined. Four
main criteria are considered. These classes are defined by the confidence intervals of
the relative errors with respect to the static loads or weights as shown in Table 2.1.

To date, no multiple-sensor WIM system has been reported to have achieved
Class A(5) accuracy but has reached class B+(7) — in accordance with the COST 323
specification. The accuracy of a multiple-sensor WIM array is related to the accuracy
of the individual sensors. Moreover, the choice of WIM site also has a great influence
on the accuracy, the reliability and the durability of any WIM system. The sites are
classified according to the road geometry and the pavement characteristics. Table 2.2

represents the classification and criteria of WIM sites provided by COST 323.

Table 2.1 Width of the accuracy classes (COST 323).

I Accuracy Classes:

gg;iﬂ?e(r:\);?ﬁ)m Domain of use Confidence interval width (%)
AG) | B+(7) | B(0) | C(15) | D+(20) [ D(25) E

1. Gross weight | Gross weight >3.5t 5 7 10 15 20 25 >25
Axle load: Axle load > 1t
2. group of axles 7 10 13 18 23 28 >28
3. single axle 8 11 15 20 25 30 >30
4. axleofa
group 10 14 20 25 30 35 >35
Speed V >30 km/h @ 2 3 4 6 10 10 | >10
Axle spacing 2 3 4 6 10 10 >10
Total flow 1 1 1 3 5 5 >5

(1) For sensors which do not work statically or at very low speed



Table 2.2 Classification and criteria of WIM sites (COST 323)
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WIM site classes
| I 1
Excellent Good Acceptable
gumrlgbeam) Rut depth max. (mm) <4 <7 <10
Semi-rigid Mean deflection (10-2 mm) <15 <20 <30
Deflection Pavements | Left/Right difference (10-2 mm) +3 +5 +10
(quasi-static) | All bitumen | Mean deflection (10-2 mm) <20 <35 <50
Pavements | Left/Right difference (10-2 mm) +4 +8 +12
(13t-axle) | Flexible Mean deflection (10-2 mm) <30 <50 <75
Pavements | Left/Right difference (10-2 mm) +7 +10 +15
Semi-rigid Mean deflection (10-2 mm) <10 <15 <20
Deflection Pavements | Left/Right difference (10-2 mm) +2 +4 +7
(dynamic) All bitumen | Mean deflection (10-2 mm) <15 <25 <35
Pavements | Left/Right difference (10-2 mm) +3 +6 +9
(5t-axle) Flexible Mean deflection (10-2 mm) <20 <35 <55
Pavements | Left/Right difference (10-2 mm) 5 7 +10

The rutting and deflection values are given for the temperature below or equal 20°C and suitable

drainage conditions.

The American Society for Testing and Materials’ (ASTM) *“Standard
Specification for Highway Weigh-in-Motion (WIM) Systems with User Requirements
and Test Methods” (ASTM Designation: E 1318-02) classifies four types of WIM
systems by different speed range, type of application, and data gathering capabilities.
Table 2.3 shows the information for the four types of systems. Table 2.4 shows the
functional performance requirements for WIM systems (McCall et al., 1997 and
ASTM E 1318-02).

From the classification and specifications listed in the tables above, it is
noticed that the accuracy of the system is at its smallest only 5% of the static gross
weight of the vehicle.

Although the WIM or the B-WIM systems can estimate the static gross weight
of the vehicle accurately, the parameter directly affecting the structural health of the
bridge is the dynamic loading from moving vehicles which induces dynamic impact to
the pavement. To monitor this action, the WIM systems with static gross weight or
static axle loads of the vehicle are inadequate. Therefore, the time-history of moving
axle loads is necessary. Additionally, the accuracy in axle load identification of B-
WIM systems is dependent on the efficiency of hardware and software, and the cost
of installation and maintenance for WIM and B-WIM is very expensive. Hence, the
identification of dynamic axle loads from bridge responses becomes a more attractive

alternative since it is much cheaper and easier to install and maintain.



12

Table 2.3 ASTM WIM system classification

Classification

Type | Type Il Type Il Type IV

Speed Range 10-70 mph 10-70 mph 15-50 mph 0-10 mph
(16-113 km/h) | (16-113 km/h) | (24-80 km/h) (0-16 km/h)
I Traffic data Traffic data Weight Weight
Application collection collection enforcgment enforcgment
station station

Number of Lanes Up to four Up to four Up to two Up to two
Wheel Load X X X
Axle Load X X X X
Axle-Group Load X X X X
Gross Vehicle Weight X X X X
Speed X X X X
Center-to-Center Axle Spacing X X X X
Vehicle Class X X
Site Identification Code X X X X
Lane and Direction of Travel X X X
Data and Time of Passage X X X
Sequential Vehicle Record X X X X
Number
Wheelbase X X
Equivalent Single-Axle Load X X
Violation Code X X X X

Table 2.4 Functional performance requirements for WIM systems

Tolerance for 95% Probability of Conformity
Function Type | Type Il Type Il Type IV
Value > Ib (kg) * Ib (kg)
Wheel Load T25% T20% 5000 (2300) 250 (100)
Axle Load 20 % 130 % +15% 12,000 (5400) 500 (200)
Axle-Group Load T15% +20% T10% 25,000 (11,300) 1200 (500)
Gross-Vehicle Weight T10% T15% 6% 60,000 (27,200) 2500 (1100)
Speed * 1 mph (2km/h)
Axle-Spacing + 0.5 ft (150 mm)

2.3 Vehicle-Bridge Interaction

The major objective of the WIM system is to identify the axle loads of
vehicles. Therefore, the behavior of the dynamic interaction between vehicle and
bridge is an important part of a moving load identification system. A method to
estimate the fundamental frequency of the vibration behavior of the bridge has been
developed. Many approaches such as an empirical method based on span length have
a simple function as f =100/L.

However, Cantieni (1983) concluded that this equation yields fundamental
frequencies that are definitely too low, while Billing and Green (1984) cited

f =110/L as a useful preliminary design estimate only.
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From the single beam analogy, the natural frequencies of a simply supported
beam were given by Clough and Penzien (1975) as

2
L L 2.1)
27\ pA

Over the past 30 years, several researchers have investigated the correlation

between the observed natural frequencies of bridges and theoretical estimates based
on the beam analogy. A method that has been used extensively to estimate the
fundamental frequency of mechanical systems is the Rayleigh energy method
(Rayleigh, 1877). With an iterative procedure, the initial step often yields a
sufficiently accurate result. The initial assumption required for the method is the
mode shape, and further interactions converge on a more accurate mode shape.

According to the above mentioned frequency estimation methods, Memory et
al. (1994) comparatively studied the free vibration analysis of bridges. The results
showed that a bridge with single beam idealization is accurate for a straight, non-
skewed bridge and for some continuous superstructures. Many other bridges require
an eigenvalue analysis through the finite element method to obtain the correct
solution.

The simulation of bridge dynamic response under moving load has been
studied and used to investigate the effectiveness of identification methods. Fryba
(1973) investigated the vibration of a simply supported beam subjected to various
moving loadings. Lin et al. (1990) proposed the finite element method of discrete
system for dynamic response analysis, and the accurate model has been studied
against the degree of discretization of the structure for a moving load analysis (Rieker
JR et al, 1996). It was found that beams with various support boundary conditions
subject to a moving load system with general movement profile can be successfully
analyzed.

Hwang and Nowak (1991) developed a procedure for calculation of the
dynamic load for bridges. Trucks, road surface roughness and bridges were analyzed
using the developed model to obtain their dynamic interaction. The two-axle truck
and tractor-trailer models were simulated with rigid body in mass, and the
suspensions and tires were assumed as vertical springs. The equation motion of the
system can be formulated from the vertical and rotational equilibriums. Road profiles

were simulated using a stochastic process (power spectral density function). A bridge
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was treated as a prismatic beam. The analysis was performed for a single truck and for
two trucks side by side. The results revealed that the dynamic loads for heavier trucks
are lower and that this is also true for two trucks. The simulation deflection indicated
that the dynamic component does not correlate with the static component. Therefore,
the dynamic loads are usually lower for heavier trucks as well as the dynamic load for
the two trucks is lower than a single truck.

Green and Cebon (1997) studied the bridge-vehicle interaction with a vehicle
model with lumped masses supported by springs and dampers using an iterative
method. The dynamic interaction between dynamic responses of bridges to dynamic
wheel loads is presented. Figure 2.2 is a schematic diagram of bridge-vehicle
interaction. The roughness input to the vehicle is the sum of the initial surface profile
of the bridge and the dynamic deflection of the bridge. This input excites the vehicle
and results in dynamic tire forces. These forces are in turn applied to the bridge and
cause larger dynamic displacements of the bridge. This feedback mechanism of
interaction forces couples the dynamic responses of the bridge with that of the
vehicle. From the diagram, the vehicle-bridge interaction is obtained from the
comparison of the bridge responses in an iterative manner.

Yang et al. (1995, 1999 and 2001) developed some vehicle-bridge interaction
elements to solve the dynamic coupling problem. The equations of motion were
written for the vehicle and bridge. The vehicle equations were first reduced to
equivalent stiffness equations using Newmark’s discretization scheme. Then the
vehicle degrees of freedom were condensed to those of beam elements in contact. The
effects of some parameters, such as bridge length, speed were discussed by using
mass-spring-dashpot and beam elements (Yang et al., 1995).

Initial Surface Dynamic Surface
Roughness ¥ Roughness . Vehicle
Input to the vehicle Dynamics
Dynamic
Tire Forces
Bridge
Dynamic Bridge Dynamics
Deflection

Figure 2.2 Schematic block diagram of dynamic bridge-vehicle interaction (Green and
Cebon, 1997)
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Henchi et al. (1997) presented an exact dynamic stiffness element under the
framework of finite element approximation to study the dynamic response of a multi-
span structure under a convoy of moving loads. The multi-span bridge was modeled
as a multi-span continuous beam. Using a weak formulation of the virtual work of the
Bernoulli-Euler beam model, the dynamic stiffness matrix was obtained. A dynamic
model coupled with a discrete FFT algorithm was developed. With the proposed
method, using only one element per span, exact frequencies and vibration modes
could be obtained.

Henchi et al. (1998) proposed an efficient method to analyze the dynamic
interaction problem between a bridge, discretized by a three-dimensional finite
element model, and a dynamic system of vehicles running at a prescribed speed. The
resolution is performed using a step-by-step solution technique employing a central
difference scheme to solve the coupled equation system. In general, there are two
approaches to simulate the dynamic vehicle-bridge interaction. The first is based on
the uncoupled iteration method, in which each system (vehicles and bridge) is solved
separately and an iterative process in each time step is performed to find the
equilibrium between bridge and vehicle tires. The other approach to simulate the
dynamic interaction between vehicles and bridge consists of solving the super system
fully coupled, and the solution is given at each time step without iteration. This non-
iteration approach has some advantages that reduce the computational time and
compact numerical implementation easily. However, the disadvantages are as follows:
modal projection in subspace is indispensable, and if the high frequencies of the
bridge participate in the response this will create a problem in the dynamic response;
this method is well adapted only for a few number of vehicles present on the bridge at
the same time (this remark also applies to the uncoupled modal iterative method).

Marchesiello et al. (1999) presented an analytical approach to the dynamics of
multi-span continuous straight bridges subject to multi-degree-of-freedom moving
vehicle excitation. The continuous bridge was modeled as a multi-span isotropic plate
with its response to external loads being defined by applying the mode superposition
principle and taking into account both flexural and torsional mode shapes. The plate
was considered proportionally damped and its modes were computed by means of the
Rayleigh-Ritz method. The determination of the bridge dynamic response involves an
integral equation and therefore requires the iterative procedure. The three-dimensional

analysis of bridge-vehicle interaction was implemented including both flexural and
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torsional modes of structure, and roughness of the road. The numerical examples were
found to be in good agreement with the finite element model thus giving confidence
to the analytical results.

Chan et al. (2003) presented the formulation of a bridge-vehicle system with
validation using field data. The three-dimensional vehicle model including pitching
and twisting motion was considered. For the tire-suspension system, the effect of
interleaf friction is represented by a bilinear diagram of the hysteretic type (Veletsos
and Huang, 1970). The bridge was modeled using shell elements. The interaction
responses were solved using the Newmark method. The obtained responses were
validated from the test data and showed that the prediction was valid and feasible. By
converting the bridge responses using FFT, the fundamental frequency of the test
bridge can be obtained. The parametric study was also presented in terms of
dimensionless parameters i.e. mass ratio, speed parameter, frequency ratio and axle
spacing parameter. The results showed that the impact factor increases as the
frequency ratio increases and decreases as the span length increases. For the mass
ratio, the impact factor generally decreases as the mass ratio increases. However, for a
low frequency ratio, the impact factor stays almost constant with the mass ratio. In the
case of the axle spacing parameter (ASP), the impact factor as well as the ASP
increases. The impact factor varies with the vehicle speed but there is no obvious
trend. For the same axle spacing parameter, the impact factor increases with the
vehicle speed.

Law and Zhu (2005) studied the dynamic behavior of bridge responses under
moving vehicles by considering the effect of road surface roughness and the braking
of a vehicle. The vehicle was modeled as a tractor-trailer with 7 degrees of freedom.
Each vehicle axle had stiffness and damping from the suspensions and tires. The
bridge was modeled as a multi-span continuous Bernoulli-Euler beam with a non-
uniform cross-section on linear spring supports with large stiffness to simulate bridge
piers which are practically not perfectly rigid. The tires were assumed to remain in
contact with the bridge surface at all times. The interaction between vehicle and
bridge was solved by modal analysis through road surface roughness with an iterative
method by checking the tolerance of the calculated responses. The different classes of
road roughness as specified in the 1SO-8606 from classes A to E were studied. The
amplitude of braking force in relative percentage of the gross weight of vehicle,

braking rise time, and braking position of the vehicle on the bridge was varied. The
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results from numerical examples showed that a vehicle traveling at low speed over a
high amplitude of roughness or poor road roughness may experience excitations at
frequencies close to its own natural frequencies, generating a large excitation force on
the bridge and leading to a large impact factor. Moreover, the suspension system of
the vehicle has a significant effect on the dynamic responses, particularly to the
braking of the vehicle, of which the pitching action creates large oscillations in the
responses at the pitching frequency of the vehicle. It was also observed that the
impact factor in the first span of a multi-span bridge is smaller than those in other
spans because of the smaller initial conditions of the vehicle at entry on the bridge.
Finally, the vehicle braking generates an equivalent impulsive force covering a wide
range of frequencies. A large number of vibration modes is therefore required in the

computation for higher accuracy of the dynamic responses.

2.4 Moving Load Identification

As previously introduced in section 2.2, the conventional WIM system cannot
provide thorough data on the dynamic behavior of vehicle loadings. However, the
time-history of axle loads is vital information to the health monitoring of bridges. In
the last decade, a series of moving load identification methods has been presented.
Most of these methods are based on an inverse problem of vehicle-bridge interaction
by using bridge responses as input. Much research conducted on theoretical,
experimental or field studies on vehicle weight or axle load determination and some

accuracy improvement methods are outlined as follows.

2.4.1 Single-Span Simply Supported Bridge

Thater et al. (1998) proposed the equivalent dynamic filter technique for
identification of gross vehicle weight on a bridge. This method separated the dynamic
and pseudo-static response by Fast Fourier Transform. The example applications of
the proposed method are shown by using computer simulation. It was found that this
method is fast and improves the predicted gross truck weight up to 5% of actual
weight. However, this method cannot predict the axle load of a truck. Moreover, in
the case of a high-speed vehicle or short-span bridge, the vibration frequency of the
bridge from the moving vehicle is close to the natural frequency of the bridge.

Therefore, the filter technique cannot be used accurately.
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Law et al. (1997) proposed the time-domain identification method for axle
loads on the bridge by using a set of second order differential equations and identified
the axle load histories by convolution in time domain. The identified moving loads
were assumed to be a group of point loads with constant spacing. The solution can be
obtained by performing a direct inverse of the relationship between measured
responses and unknown acting loads. The study concluded that it is possible to use
measured responses to identify moving forces in the time domain with good
agreement between measured and calculated responses. However, the identified
solution incurs large error at the times when axles approach and leave the bridge.

The frequency-time domain method was proposed by Law et al. (1999). This
method identifies axle loads from only the vibration responses induced by the point
loads as the input without knowledge of the vehicle characteristics. This method
performs the Fourier transformation of the load-response relationship and identifies
the axle load histories by using a least-square method. It was found that the maximum
error of this method is up to 20 % when both measured bending moment and
acceleration are used.

Chan et al. (1999) proposed a closed-form solution method to identify moving
dynamic loads on bridges using the bridge responses caused by such loads. The
closed-form solution can be obtained to identify the time-varying moving loads. The
set of equations that led to the solution was based on Euler’s beam equation, and a
two-axle vehicle model was developed to generate the theoretical responses and the
corresponding interactive forces. The identification error was calculated from the
percentage error between the generated interactive forces and the identified force. The
study found that the bridge responses used can be the bending moment as obtained
from strain gauges or displacement as obtained from linear transducers. The
identification from the bending moment gives better results compared with using
displacement. Besides, although the problem is contaminated with noise, the
acceptable solution can be obtained by performing noise filtering.

Chan et al. (2000a and 2001) theoretically and experimentally conducted
comparative studies on moving force identification. A laboratory study using bridge
strain responses as input in the identification was presented. A comparative study of
interpretive, time-domain and frequency-time domain methods was discussed. The
parametric study on related measurements and input parameters i.e. sampling

frequency, number of used modes, vehicle speed level and number of sensors were
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conducted to obtain the most appropriate method corresponding to the accuracy and
computational time. The study concluded that the best method was the time-domain
method which is the most robust method to identify the problem with higher accuracy
and also capable of identifying the axle loads of high speed vehicles. Moreover, the
computational time for the time-domain method is shorter than other methods.

Chan et al. (2000b) studied the moving force identification by using a pre-
stressed concrete bridge test. A two-axle heavy vehicle was hired for the calibration
test of the field measurement. The dynamic bending moments caused by both hired
and in-service vehicles were acquired. Dynamic axle forces were identified by means
of the time-domain method. Gross weights were obtained by summing up the
equivalent static axle load of each axle calculated by performing pseudo-static load
test, and were compared with those measured at the static weigh station. Results show
that the axle forces can be identified with the error in results less than 10 % for both
hired and in-service vehicles.

Law and Zhu (2000) conducted a comparative study on different beam models
in moving force identification. The Tikhonov regularization technique was employed
in the least-square formulation to provide bounds to the ill-conditioned results in the
identification problem. The calculation of the optimal regularization parameter can be
obtained by plotting an L-Curve as proposed by Hansen (1992). Although the
problem is noise sensitivity, the obtained results from experimental testing in
laboratory identified by improved algorithm were less sensitive to noise and provided
satisfactory accuracy. The results also indicated that the Timoshenko beam model was
found to be better than the Euler-Bernoulli beam model.

Zhu and Law (2000) presented a method to identify moving loads on a bridge
deck modeled as an orthotropic rectangular plate. The dynamic behavior of the bridge
deck under moving loads was analyzed using the orthotropic plate theory and modal
superposition principle, and the Tikhonov regularization procedure was applied to
provide bounds to the identified forces in the time domain. The identified results
using a beam model and a plate model of the bridge deck were compared, and the
conditions under which the bridge deck could be simplified as an equivalent beam
model were discussed. Computer simulations and laboratory tests showed the
effectiveness and the validity of the proposed method in identifying forces traveling

along the central line or at an eccentric path on the bridge deck. However, an
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appropriate regularization parameter needs to be used for the accuracy of
identification.

Law, Chan and Zeng (2001) studied the identification procedure using the
regularization technique. The accuracy of moving load identification was influenced
by the regularization parameter. Therefore, an appropriate regularization parameter
was required to accurately identify the loads. However, there were problems with this
parameter because it depended on vehicle properties such as the vehicle mass, moving
speed, vehicle configuration and it also involved significant effort and a long
computing time to determine the optimal regularization parameter.

Law and Fang (2001) presented a new method of moving force identification
by using the dynamic programming technique with a regularization parameter. The
forces in the state-space formulation of the dynamic system are identified in the time
domain using a recursive formula based on several distributed measurements of the
responses of the structure. The results from the simulation study and laboratory work
show great improvements over the previous methods in both accuracy and time
consumption of identification. Similar to the previous research, it was found that the
accuracy of identification depended on the appropriate regularization parameter.

European Commission DG VII — Transport: WAVE (2001) developed another
identification technique for moving loads on bridge using the least-square method
with optimization technique. Since the axle loads are assumed to be constants on the
bridge, the parameters in the optimization become velocity, number of axles, axle
spacing and total weight. A two-dimensional bridge model was used to study the
effect of the eccentricity of the bridge. A field test was carried out to verify the
accuracy of identification. The results show that the static load of a vehicle has error
in the range of + 10 %.

Zhu and Law (2002) presented a time domain method to identify moving loads
on a continuous beam from the measured structural vibration response. The
regularization technique was used to provide bounds on the solution. Numerical
examples demonstrated that a larger number of modes should be included in the
identification when accelerations are used instead of strains. An appropriate
regularization can reduce the effect of noise. This method can be used with moving
load identification by time domain method and frequency-time domain method by
using singular value decomposition (SVD). It was found that the regularization

parameter is found to have a very important function in reducing the noise effect and
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it may also be used to reduce the errors in the time domain method and frequency-
time domain method.

Yu and Chan (2002) measured the bending moment responses of a bridge by
using a scaled model in a laboratory. The time domain method (TDM) and frequency-
time domain method (FTDM) were used for identifying the two moving wheel loads
of a vehicle moving across a bridge. The pseudo-inverse matrix (Pl) technique and
singular value decomposition technique (SVD) were adopted for solving the over-
determined system equation in the TDM and FTDM. The effects of bridge and vehicle
parameters on the TDM and FTDM were also investigated. The results showed that
the SVD technique can effectively improve accuracy of identification when using
TDM and FTDM. However, the variation of the regularization parameter has more
influence on the identification accuracy.

Zhu and Law (2002) conducted a parametric study on moving force
identification as the practical aspects. The limitations and merits of two identification
methods were presented. One was based on the exact solution method (ESM) and the
other was based on the finite element method (FEM) with orthogonal function
expression. Through simulation and laboratory, the effect of different influencing
factors was studied. It was found that identification using FEM can more effectively
reduce identification error than ESM due to measurement noise. In the case of the
modal truncation, the FEM requires a smaller number of vibration modes than ESM at
the same noise level. Both ESM and FEM provide the same order of identification
error when six sensors or more are used but the error from ESM is much larger than
FEM with respect to increasing noise levels. As well as other mentioned parameters,
at the same sampling rate, FEM also provides lower identification error than ESM at
the same noise level.

Zhu and Law (2003) applied the proposed identification method to identify
moving loads on a bridge deck. The dynamic behavior of the bridge deck was
analyzed using the orthotropic plate theory and mode superposition technique. The
regularization technique was again employed to stabilize the computations. It was
found that the method can identify moving loads with a small eccentricity and fail to
identify loads with a large eccentricity. The torsional modes were found to be very
important in the identification even when the group of loads was moving along the

centerline of the bridge deck.
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Law et al. (2004) proposed a moving load identification method based on
finite element method and condensation technique. Numerical simulations and
experimental results demonstrated the efficiency and accuracy of the method to
identify a system of general moving loads or interaction forces between the vehicle
and the bridge deck. The number of master degrees-of-freedom of the system selected
should be smaller than or equal to the number of measured points, and the identified
results are relatively not sensitive to the sampling frequency, velocity of vehicle,
measurement noise level and road surface roughness when a minimum of eight beam
elements are used to model the bridge with measured information from three
measuring points.

Yu and Chan (2004) applied the time-domain and frequency-time domain
methods to identify the multi-axle vehicle loads from bridge bending moment
responses. Two direct solutions including the pseudo inverse and singular value
decomposition methods used for over-determined set of equations were adopted. A
three-axle vehicle model was designed and constructed in the laboratory for validation
tests. The results showed that the identified multi-axle vehicle loads were reasonable
and acceptable for both the articulated and nonarticulated vehicles. The moving force
identification system could correctly identify the multi-axle vehicle loads even if the
middle axle of the nonarticulated vehicles was hanging in the air. Three different
types of suspension systems, i.e. rigid connection, sprung connection, and pre-
compressed sprung connection between vehicle frame and axle respectively, were
incorporated in the vehicle models. Results showed that the suspension systems made
an obvious impact on the dynamic characteristics of vehicles and identification
accuracy.

From all the mentioned methods it can be concluded that the effective moving
load identification methods need an optimal regularization parameter. To obtain the
appropriate parameter, significant computation effort and time are required.
Moreover, it has been found that the optimal regularization parameter depends greatly
on vehicle properties such as vehicle mass, velocity, vehicle configuration, etc.
Therefore, in actual application, only the sub-optimal regularization parameter can be
determined. To overcome this problem, a regularization method with an iterative
technique called the updated static component (USC) technique was proposed
(Akarawittayapoom, 2003; Pinkaew, 2006). This method decomposes the axle loads

into static and dynamic components and keeps updating the static component through
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the regularization of the associated dynamic component until the convergent solution
is achieved.

Akarawittayapoom (2003) studied the moving load identification method
using the dynamic programming method and improved the accuracy by adopting the
USC technique. Computer simulation and a scaled model test in laboratory were
employed to investigate the accuracy of this method and the effect of the variables to
the identification method. It was found that the velocity and the roughness of the
surface have more influence than other variables. The obtained results show that the
accuracy of static weight identification is within the range of £5 %.

Asnachinda (2004) and Pinkaew and Asnachinda (2007) studied the dynamic
programming method to identify the truck weight using a scaled model test in the
laboratory. The test investigated the effects of various factors including mass and
velocity of truck, roughness of bridge surface, transverse position of truck, type of
bridge support e.g. simple support and continuous bridges, and number of truck axles.
Moreover, the dynamic axle loads of the truck model were measured in order to study
their characteristics. It was found that using the strain obtained from averaging strains
in the same section can significantly reduce the torsional effect of the bridge due to
the transverse position of the truck. The identification error increases as the roughness
level increases. The effect of support conditions was considered. The one-span bridge
with simple supports yields better weight identification results than those from the
continuous bridge. It was also found that a weight error of about +5% is achieved
when a two-axle truck moves on a one-span simple support bridge with a smooth
surface. However, this error becomes as high as + 20% for the fixed end bridge with a
high surface roughness.

Foongsook (2005) studied moving truck weight identification by actual field
testing using the dynamic programming method with USC technique. The study
considered the effects of mass, velocity, the moving path of the truck and the surface
roughness of the bridge. A prestressed concrete bridge spanning 9.43 meters in length
and 14 meters in width was chosen. A 10-wheel truck weighing between 20-26 tons
was used. The 36 strain gauges were installed to record the strain signals during the
passages of the truck for use in moving load identification. After 51 truck passages, it
was found that by averaging the section strain with the weighing procedure to identify

the truck weight provided sufficient identification accuracy. In general, the
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identification results exhibited identification errors within =50 %, + 10 %, + 6% for

front axle weight, rear axle weight and total weight, respectively.

2.4.2 Multi-Span Continuous Bridge

Zhu and Law (1999) studied a continuous bridge modeled as a multi-span
continuous Timoshenko beam with non-uniform cross-section. The vibration behavior
of the beam under moving loads was analyzed according to Hamilton’s principle with
the intermediate point constraints represented by a very stiff linear spring. An
identification method based on the modal superposition and least-square technique
with non-negative damping coefficient was developed to identify the moving forces in
time domain. The obtained computer simulation results showed that the identification
error is acceptable when the number of measuring points is not less than the number
of vibration modes. Moreover, the damped least-square method is better than the least
squares method in suppressing the unbounded ill-conditioned forces.

Zhu and Law (2001) presented analytical vibration mode shapes with the
orthogonal function to obtain the derivatives of the bridge modal responses used in
moving loads identification on a multi-span bridge. This method was proposed since
using assumed mode shapes often leads to unnecessary errors due to their inherent
inaccuracy. The unknown moving loads were predicted from the least-square
regularization method where the optimal regularization parameter was determined
from the GCV method. The simulation found that the method was effective for
identifying the moving loads in time domain. Acceptable solutions were obtained with
some errors particularly concerning the interior supports of the multi-span bridge
where the identified loads were close to zero. It was therefore suggested that more
mode shapes should be used to identify the moving forces at locations close to the
supports.

Zhu and Law (2003) presented a study on the effect of the moving speed of
the vehicle in interaction forces identification. The time-history of a vehicle’s position
on the bridge is part of the required information for input in the identification system.
However, in a real situation, the vehicle may not cross the bridge at a constant speed.
The effect of incomplete velocity information was therefore considered. A multi-span
bridge was adopted to investigate the problem. Based on the mode superposition
method in response analysis and the least-square regularization method, the identified

loads were determined from bridge strain and acceleration responses. The results
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showed that the method can identify individual axle loads traveling at non-uniform
speed with small error on both single and multi-span bridges. The accurate weight of
the vehicle was also obtained for the vehicle braking on top of the bridge. In addition,
it was observed that the identified results from multi-span continuous bridges are
more sensitive to the noise level than those from single span bridges. There are large
errors in the identified loads near the supports because of the ill-conditioning of the
problem with zero force at the support. A smaller regularization parameter was
suggested for use for the time duration near the support.

Zhu and Law (2005) developed a moving load identification method for a
multi-span continuous bridge with elastic supports. A method based on modal
superposition and regularization technique was adopted. The vertical translation and
rotational springs were included in the model to simulate the elastic bearings and to
support the fixity conditions of the bridge. The results from numerical examples
indicated that the proposed method could identify the moving loads accurately on the
multi-span bridge with elastic restraints from strain or acceleration measurements.
The identification from acceleration responses is less sensitive to the measurement
noise than those from strains. Vertical support stiffness has a large influence on
identification error, particularly when the flexural stiffness of the beam is small.
Similar to past studies, the identified forces around internal bridge supports were
subject to large error with high fluctuation.

Chan and Ashebo (2006) theoretically and experimentally studied the
identification of moving force on a continuous bridge. The bridge was analyzed using
modal superposition satisfying all boundary conditions. The forces were identified
from the least-square method without regularization through the singular value
decomposition method to avoid difficulty in determination of the optimal
regularization parameter and to provide robust solutions. The number and location of
sensors used in the identification system were studied. The results indicated that it is
possible to identify the moving load on a continuous bridge with bending moment
responses. However, the identified forces around bridge supports provide large
identification errors. Identification using a target span was then considered and it was
found that the accuracy was improved but the time-history of the force for all systems
was not completed.
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2.5 Summary

From the previous research, it is found that many approaches of moving load
identification have been studied and developed. The vehicle-bridge system can be
solved either through modal analysis using mode superposition through the exact
solution method or the finite element method. It was found that moving load
identification based on system formulation employing the finite element method is
more robust to noise level and appropriate for practice than the exact solution method.
The simple least-square objective function has been widely used in the optimization
procedure. The regularization technique has been adopted to overcome this noise
sensitivity problem. The difficulty in assigning an optimal regularization can be
solved through use of an updated static component (USC) technique.

Drawing on the above information summarized from early studies, this
research study proposes the axle load identification of multiple vehicles traveling on a
multi-span continuous bridge. The structural modeling of the vehicles and the
continuous bridges employs the finite element method. The least-square function with
regularization term is used as an objective function in the optimization of axle load
identification. The singular value decomposition (SVD) method is adopted in order to
improve solution robustness. The updated static component (USC) technique is
adopted as an accuracy improvement procedure. Moreover, another contribution of
this study is the consideration of multiple vehicle identification. Discussion on
identification accuracy affected by different vehicle categories and various travel
scenarios between two vehicles are presented through numerical study. In addition, an
effectiveness investigation of the proposed method is presented through the

experimental results from scaled model testing.



CHAPTER I
THEORY OF VEHICLE-BRIDGE INTERACTION AND MOVING
LOADS IDENTIFICATION SYSTEM

3.1 General

This chapter explains the theoretical formulation adopted in this research. The
related theoretical background of this problem mainly consists of the following three
parts: (1) the vehicle-bridge interaction, (2) the identification part using the
optimization method and (3) the additional modification part for accuracy
improvement using a numerical technique. Initially, from the physical characteristic
information of vehicles and bridge, the mathematical model for describing their
dynamic interaction is simulated. Then the relationship between the moving loads and
bridge responses is formulated to obtain the theoretical bridge responses induced by
the passage of heavy vehicles used in the optimization against the measured
responses. Later, assigning vehicles axle spacing, moving speed and measured
responses as the input, the optimization process is used to identify the most feasible
moving loads producing least residual error in the objective function. Finally, an
accuracy improvement technique is adopted in order to overcome the mathematical

weakness of the solution.

3.2 Dynamics of Vehicle-Bridge Interaction System

To construct the mathematical model of the vehicle-bridge system, it is
essential to understand the behavior of the interaction between the vehicles and the
bridge to depict its principal characteristics. Generally, there are two approaches to
simulating the dynamic interaction response between bridge and vehicle. The first is
solved by the uncoupled iteration method. The bridge and vehicle system is solved
separately and uses an iterative process in each time step to find the equilibrium
between the bridge and vehicle interaction. The other approach to simulate the
vehicle-bridge interaction is to solve the fully coupled system of bridge and vehicle.
In this research, the latter approach is employed to simulate the dynamic interaction
response because it can assemble the bridge and vehicle into one coupled system

which can be simultaneously solved at each time step without any iteration.
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3.2.1 Finite Element Method of Structural Formulation

The vehicle-bridge system can be simulated in the modal decomposition
analysis method but is subject to modal truncation error in the dynamic response.
Besides, it is difficult to apply a method based on the continuous system and modal
superposition technique to complicated structures. Therefore, the dynamic response
analysis for discrete system is preferred in this research since the bridge structure is
complicated, especially when the multi-span continuous bridges are considered. The
finite element method is then adopted in the vehicle-bridge interaction model of the
simulation system and also in the bridge model of the identification system.

Modeling accuracy has been studied against the degree discretization of the
structure for a moving load analysis (Reiker et al., 1996). It was noted that beams with
various boundary conditions, including intermediate supports, and subjected to a
moving load system with a general movement profile and external excitation can be
successfully analyzed with accurate responses compared to those obtained from
modal superposition analysis (Lin and Trethewy, 1990). In addition, the simulated
responses are relatively not sensitive to the sampling frequency and number of data
(Zhu and Law, 2004).

3.2.2 Assumptions concerning the Dynamics System
The following assumptions are made concerning the dynamics system of the
vehicle-bridge model.

1. The bridge behavior under acting loads is assumed as linear elastic.

2. The changes in the system characteristics such as stiffness, damping and
mass matrices of the vehicle and the bridge during the passage of vehicles
are negligible.

Structural damping is included in the analysis.
The bridge structure may not be at rest before the application of loads.

There is no restriction on the type of force history to be identified.

o g ~ w

The Euler-Bernoulli beam model is used with the shear effect neglected.

3.2.3 Vehicle Model
Figure 3.1 shows a vehicle-bridge model in which a vehicle moves over a
bridge at a speed v(t). The four degree-of-freedoms vehicle models consisting of

vertical displacement, rotation of vehicle mass, vertical displacement of front and rear
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axle suspension mass presented by Mulcahy (1983) are studied. The equation of the

motion of the vehicle can be derived using the equilibrium of the vehicle system in

each degree-of-freedom as shown in Figure 3.2.
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Figure 3.1 Vehicle-bridge system of n-span continuous bridge
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mass of the vehicle

mass rotational moment of inertia of the vehicle
mass of front axle suspension

mass of rear axle suspension

suspension stiffness of front and rear axle
suspension damping of front and rear axle

tire stiffness of front and rear axle

tire damping of front and rear axle

axle spacing
span length of bridge

positions of the front and rear axle respectively at time t
front and rear axle force respectively at time t

velocity of vehicle

rotation of vehicle mass
vertical displacement of vehicle

vertical displacement of front and rear suspension mass
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w(t) =  vertical dynamic deflection of bridge
r(x) =  road surface roughness at the location x
a,,a, = center of gravity ratio of vehicle from front and rear axle.
T
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Yv + &IaZS X

f31
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Figure 3.2 Free body diagram of vehicle-bridge system

Consider the vertical force equilibrium of vehicle mass:
YF=my, ;  —fy-f,=mj, (3.1)
where
fu = Ka(y, - 6,28 - y,) +Cy (¥, ~ 6,25 - ;)
f,=K,(y,+6,aS-Y,)+C,(y,+6,aS-Y,).

Substituting f,, f,, in Eq. (3.1), the equilibrium of vertical motion of vehicle

mass becomes:
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mvy.v + (Csl +Csz)yv + (Ksl + KSZ)yV
+(-Cya,S + Cszazs)év +(-KyaS +K,,8,5)0, (3.2)

+(_Csl) yl + (_Ksl)yl + (_Csz)yz + (_Ksz) Y, = 0

Consider rotation of vehicle mass at center of gravity:
Z Mc = Ivév ’ fslaiS - staZS = Ivév (33)
Substituting f,, f,, in Eq. (3.3), the equilibrium of rotation of vehicle mass

becomes:

Ivév + (_Cslais + Csza‘ZS)yv + (_Kslais + KsZaZS)yv
+(Csla1282 +C52a2282)0'v + (Kslaizs2 + KSZaZZSZ)Hv (34)

+(CyaS)Y, +(Kya,S)y, +(-Cy,a,5) Y, + (-K,a,S)y, =0
Consider the vertical equilibrium of suspension mass m, :
z F=my, ; fo—fa=my, (3.5)
where

ftl = Ktl(yl - Al) + Ctl(yl - Al)
Ay = (W (X (1), 1) +r(x (1)) (3.6)
Al = (W, (X, (1), 1) + 7 (X, (1))

Substituting f,, f,, in Eq. (3.5), the equilibrium of vertical motion of

suspension mass m, becomes:

m,, +(~Cy)Y, +(=Ky)Y, +(C,a8)6, +(Kas)e,

(3.7)
HCY +(Ky)y, =—T,
Consider the vertical equilibrium of suspension mass m, :
z F= mzyz ; fsz - ft2 = mzyz (3-8)

where



32

fo =K (Y, = 4,) +Cp, (¥, _Az)
A, = (Wy (X, (1), ) +r (X, (1) (3.9)

AZ = (Wl(xr (t)!t) + r‘.(Xr (t)))
Substituting f,, f, in Eq. (3.8), the equilibrium of vertical motion of
suspension mass m, becomes:
m,y, +(-C,) ¥, + (=K,)y, + (_Cszazs)év +(-K,a,5)0,
(3.10)
+(C,,)Y, +(K,,)y, =—f,

Thus, the equations of motion for the vehicle can be written in matrix form
based on Eq. (3.2), (3.4), (3.7) and (3.10) as follows:

M, Y (t)+C,Y (t)+K,Y(t)=P,(t) (3.11)
where
m 0 0 O
01, 0 0
M, =
0 0 m O
0 0 0 m,
Csl + C (_Cslal + Cszaz)s _Csl _Csz
( Cslal+C52a' )S (Csla12 +C52a22)3 Cslais _Cszazs
Cslals Csl 0
-C,,a,S 0 C,,
Ka + K, (—Kga +K,,)S  —Ky -Kg
( Kslal + Ksza )S (Ksla12 + Kszazz)s Ksla18 _KSZaZS
KaaS K 0
-K,,a,S 0 K.,

: yv ‘9v t yl(t) Y, (t)}T

is the force terms containing the interaction force vector and static force

\

vector as follows:
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P (1) = (fi () + N = Ky (5 (1) = A (1) +Co (3 (1) = A (1) + N
R (t) = (fy, (t)+ N,) =K (Y, (t)_Az (t))+Ct2(y2 (t)_Az (t))"' N,
N =(m +a,m,)g

Nr = (m2 +a1mv)g

3.2.4 Bridge Model

The bridge structure is considered as an n-spans continuous bridge and is
discretized by the finite element method using beam elements as shown in Figure 3.2.
The finite beam element has 2 nodes with respect to 4 degree-of-freedoms in vertical

displacement and rotational displacement at both ends as shown in Figure 3.3.

u, (t) U, (t)
u(x,t) A
u, (t) Ug ()
Node + ' AE I p ) + Node
X

Figure 3.3 A finite beam element with 4 degree-of-freedoms

Where

A = cross-section area of beam element

E = modulus of elasticity of beam element
I = moment of inertia of beam element

P = mass per unit length of beam element

I = length of beam element
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Let u(x,t) is the deflection of the bridge at distance x at time t. Thus, the

governing equation of beam at position x and at time t can be expressed by:

a[@lwao} 0. (3.12)
ox? OX

For the bridge having constant El , Eq. (3.12) can be rewritten as:

o*u(x,t)
=0 3.13
ox* (3.13)
The solution of Eq. (3.13) can be expressed in polynomial form as:
u(x,t) = ¢, (t)x* + ¢, (t)x* +c,(t)x +c, (t) (3.14)

where ¢, (t) is the coefficient of the polynomial form with constant value.

The boundary conditions of beam element are:

u(0,t) =u,(t) u(l,t) =u,(t)
ou(Ot) _ oudl,t) _
= %O = (3.15)

Substituting (3.15) in Eq. (3.14), the constant values become:
c, (1) = uy(t)
C;(t) =u,(t)

c,(t) = 2[3(u -1(2u, +u,)]

X0 =|13[2<u1—u3>—|<u2 ). (3.16)

Substituting (3.16) in Eq. (3.14), the displacement equation of beam element

at position x and at time t can be expressed as follows:

u(x,t) = {1—%+2X}1a> F—Zl—i ,X:}uz(t)

{SILZZ_ZI_?}UN) +I[—)I(—22+)I(—j}u4(t)

It is noted that the coefficient terms in front of u, (t) are the shape functions of

(3.17)

the displacements of the beam element.
The mass matrix of the beam element can be formulated by introducing Eqg.

(3.17) into the Kinetic energy equation as:
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T() =%Ij pA{%} dx (3.18)

Thus, Eq. (3.18) can be rewritten in the form:
T(t)= %UTMU (3.19)

The matrix M is the elemental mass matrix and U is the time derivative of the

elemental displacement vector u(t) defined as:

uy ()
u, (t)
Uy (t)
u, (t)

u(t) = (3.20)

Equating Eq. (3.18) to Eq. (3.19) with help of Eq. (3.20), the elemental mass
matrix of beam element is:
156 221 54 -13I
pAl| 221 417 13 -3I°
T 420| 54 131 156 22l
131 317 221 4I°

(3.21)

The stiffness matrix can be determined by replacing Eq. (3.17) into strain

energy equation:

1L Touxt) ]
V(t)==|El —~ | dx 3.22
0)=> j { v (322)
The Eq. (3.22) can be rewritten as:
V() = %UT Ku. (3.23)

u(t) is defined in (3.20), The stiffness matrix of the beam element becomes:

12 6 -12 6l

Ell 61 42 —6l 2
"TFl-12 -6l 12 -6l
6l 202 —6l 4l

(3.24)

The elemental damping matrix of the bridge system is derived by the free
vibration system as follows:
Mi+Cu+Ku=0 (3.25)
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Multiplying both sides by the inverse of mass matrix, M ™, the Eq.(3,25)

yields:
U+Cl+Ku=0 (3.26)
where
c=M7C
K=MK,

Transforming u to modal coordinate vector, q, as :
u=\Vq (3.27)
In which, the vector V is the eigenvector of matrix K.

Substituting Eq. (3.27) into Eq. (3.26) and multiplying by V™, it is found that:

1§+ VCVg+VKVg=0 (3.28)
1§+Cq+K'q=0 (3.29)
where
K" =V'KV
o 0 0
o0 @ e (3.30)
0 0

Assuming C” has an orthogonality property like matrix K*, yields:

C =V'CVv
25w, 0 0
0 25w, . : (3.31)
I 0
0 0 2% m,
where
& = damping ratio of the corresponding i ™ mode shape
o = natural frequency of the corresponding i " mode shape.

Thus, the matrices C and C” can be obtained as follows:
c=VvCcVv? (3.32)
C=MC (3.33)
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Therefore, the equation of motion for the bridge can be written as:

M,R(t)+C,R(t)+K,R(t)=P,(t) (3.34)
where M, = assembled mass matrix of the bridge
C, = assembled damping matrix of the bridge
K, = assembled stiffness matrix of the bridge

R(t) = global response vector of the bridge

and P, (t) = external acting load vector of the bridge

The external acting load vector of the bridge is the interaction force
transformed to be the nodal loads of the bridge’s degree-of-freedoms.

R (1) R, (1)

M, (1) A\ | A\Mm)
Node i’ ¢ " ¢ Node j+1

i

A
L

Figure 3.4 Nodal loads from external load

Figure 3.4 shows the beam element with an acting load and its equivalent

nodal loads

where 7, (t) = the distance of the external acting load P, (t) from the left node of the

beam element.

The nodal loads from external load as shown in Figure 3.4 can be expressed as:

R (t) =[1—3’7i ()", 2n (t)S}P ()

|2 I°
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Vi, (t)=[ﬂ—ﬂ]e(t> @39)

where

R (t),R,,(t) = vertical load of node i and i+1" of the element respectively

PN+
M, M, = bending moment of node i" and i+1" of the element

respectively.
From the above equations, the shape function of the " element used to

transform the external acting load to the nodal load vector can be written as:

clg] o A T e

In case of the global external load shape function, the Eq. (3.36) can be

expanded in the following form

0 0 0 H, 0
H,=¢0 - 0 - H - 0 - 0 (3.37)
0 Hy, 0 0 0
where
H, = an NN x N, matrix with zero entries except at the degree-of-
freedoms corresponding to the nodal displacements of the beam
elements on which the load is acting,
NN = the number of degree-of-freedoms of the bridge after considering the
boundary condition
and N, = the number of external acting loads.

From the Eq. (3.37), the interaction force between the vehicle and the bridge
can be transformed to be the nodal loads by using the relationship between the nodal

load and the global load as follows:
Py (1) = He (x(1))- Puc (1) (3.38)

Poc (1) ={R(8) R (1), P (1)) (3.39)
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transformation vector from external loads to nodal loads

3]
—~
>
~—~

~—
~—
~~—
1

vehicle-bridge interaction force vector with respect to number

-9
=
—~~
~+
N—"
1

of axles.

Therefore, the equation of motion of the bridge can be rewritten as:

M,R(t)+C,R(t)+K,R(t)=H,(x(t))P, () (3.40)

3.2.5 Bridge Surface Roughness

In this research, the road surface roughness as given in the 1SO-8606
specification is adopted. It is often related to the vehicle speed which is described by
the velocity power spectrum density (PSD) and the displacement PSD. The general

form of the displacement PSD of the road roughness surface is given as:

5,(f)= sd(fo)(fij (3.41)

0
where f; is the reference spatial frequency (= 0.1 cycles/m); « is an exponent of the
PSD, and f is the spatial frequency (cycles/m). Eq. (3.41) gives an estimate on the
degree of the roughness of the road by the S,(f,) value. This classification is made

by assuming a constant vehicle velocity PSD and taking « =2. The ISO specification
also gives the PSDs for different classes of roads.
Based on this ISO specification, the road surface roughness in the time domain

can be simulated by applying the inverse fast Fourier transformation on S,(f,) as

follows:

r(x):i,MS(fi)Af cos(2z fx+6) (3.42)

where f. =iAf is the spatial frequency, Af =1/(NA), A is the distance interval

between successive ordinates of the surface profile, N is the number of data points,

and @, is a set of independent random phase angles uniformly distributed between 0

and 2r.

3.2.6 Vehicle-Bridge Interaction
To formulate the vehicle-bridge interaction as the equation of motion of the
vehicle-bridge system, all degree-of-freedoms, both for vehicle and bridge, must be
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solved simultaneously. Therefore, the equation of motion of the vehicle-bridge system
is the combination of mass, damping, stiffness and interaction force terms
corresponding to all degree-of-freedoms.

From the equation of motion of the vehicle and the bridge, in the case of the

number of axles, N, = 2, recalling the interaction force vector as:

P (t)
" 0-{50f
_{Ku(yl(t)—wl(xf (£),8) =1 (%, (1)) + Ca (¥ () =i (%, (1),8)=F(x, (1))
Ko (2 (£) =W (%, (£). 1) =1 (3%, (1)) + Coa (¥ (1) =i, (x, (£).1) =¥ (x, (1))
+{(mﬁazmv)g}

(m2 + aimv ) g
(3.43)

It is noticed that the above interaction force term consists of degree-of-
freedoms for both vehicle and bridge. Thus the equation of motion of the vehicle and

bridge must be rearranged as follows:

Once the response of the bridge, R (t) is obtained, the deflection of the bridge
at position x and at time t can be calculated from:
w(x,t)=H. (x(t))-R(t) (3.44)

The time derivative of the bridge’s deflection is

W(x,t):%;(t))-l?(t)-x(tﬁ H.' (x(t))-R(). (3.45)

Substituting Eqg. (3.44) and (3.45) in Eq. (3.43) yields
P, (t) = Ktl(yl(t)—HCT (%, (1)-R(t)-r(x, (t)))
+cu[yl<t>w-R(t>~v<t>HJ (x <t>)~R(t>]+<ml+a2mv>g

OX

P (t) =Ko (¥2 ()= H. (% (1)-R(t)=r(x (1))

+Ct2(y2 ('[)—Gl_ICT(g—XXr(t)-R(t)-v(t)—HCT (%, (t))-l?(t)}+(m2 +am,)g

(3.46)
The Eq. (3.46) can be rewritten in matrix form as:
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I I i i Sl
o (1)
1 x| "

OX

ot (0] [ 05 ] sy
[Ctz'HCT (Xr(t))} {R(t)} {KtZ'r(Xr(t))} {(m2+a1mv) g}

(3.47)

Introducing Eq. (3.47) into the vehicle’s equation of motion (3.11), the
equilibrium for the vehicle’s degree-of-freedoms becomes

[0 0 0] 0 | 0 0 ,
o[mM, o0 {E}Jr 0 C. Cu {5}
Y T Y
0 0 M, —C-H (X) Con CptC
0 | 0 0 0
R .
* 0 Ko K {—}: 0
T T Y
—K,-H" =C,-v-8H" (x)/ox K., + K, —K,-r(x)

where

C =
Vi1 _(_Csla1+C52a2)s (C51312+C52a2)82

[ —C -C -C S
Cv12: sl s2 i|’ o1 = |: sl sla1 :|

C,+C,, (-C4a,+C,,a,)S }

L SlalS Csza S _CSZ Csza S

I K +K (_ sla1+Ksza2)S
Cie = ) Ne2 |’

L slai + KsZa S (Ksla1 + K52a2 )S

S
Kv12 — K sl slal :
. 51618 Ksza S K, -K.,a5

_Ksl Ky O
KV22 = lCt Kt = ,
L O 52 0 CIZ 0 K12

A
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Similar to Eq. (3.48), introducing Eq. (3.47) into the bridge’s equation of
motion Eq. (3.40), the equilibrium for the bridge’s degree-of-freedoms becomes

M,| 0 Of,. Cb+H(x)-Ct-HT(x)| 0 —H(x)-C|, .
0100 {5}+ 0 ‘ 0 0 {E}
Y Y
0 0 0
Ky, +H(x) K -H (x)| 0 —H(x)-K,-v-0H(x)/ox-C

K o Y]
r(x)+H(x)-M

S

(3.49)
where

M :{(mﬁazmv)g}
© (my+am,)g
From the combination of Eq. (3.48) and Eq. (3.49), the global equation of

motion of vehicle-bridge interaction system is expressed as follows:

M, | 0 0 & Cb+H(X)-Ct-HT(X)| 0 —H(X)-Ct ’
0 ‘ le 0 {7}"‘ 0 ‘ Cvll Cv12 {7}
0 0 M, -C, - H' (X) C. C,,+C,
Ky +H(x) K -H' ()| 0 -H(x)-K-v-0H(x)/x-C,

+ 0 ‘ Ko K E}

_Kt 'HT (X) Kv21 szz + Kt v

—H(x)-K,-r(x)+H(x)-M,

= 0

—Kt-l’(X)

(3.50)

Eq. (3.50) is the vehicle-bridge interaction equation, and Eq. (3.47) is the front
and rear axle load equations which are composed of the static load of the vehicle and
the dynamic interaction force between the vehicle and the bridge. The vehicle-bridge
interaction equation can be solved step-by-step using either a direct integration

method such as Newmark’s £ method or a discretization method by state-space

formulation.
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For the multiple vehicles system, in the case of two 2-axle vehicles as shown
in Figure 3.5, the equation of motion of two vehicles / bridge system is expressed as:

M, 0 0 ]/R| [C+H-Ci-H' -H.C, -H-C, ||R
0 M, 0 [iVY;t+| -C,-HT C,+Cy 0 Y,
0 0 M, Y2 _Ctz'HT 0 Cv2+Ct2 Y2
K, +H-Kg-HT —H-K, v, (t)-0H/ax-C; —H-K,,-V,(t)-0H/éx-C,, | [ R
+ K HT K,+Ky 0 Y,
K, -HT 0 K, +Ki, Y,
_H‘Ktt'r+H'Ms
- Ky r
K, r
(3.51)
where the mass, damping and stiffness matrices of i™ vehicle are represented as
follows:
m; 0 0 O (m, +a,m,)g
M. = 0 I, 0 0 _J(my+a,m,)g
" 0 0 rnli O , ) (ran+a22mV2)g ,
0 0 0 m, (my, +a,m,,)g
Cyi +Csy (-Cqidy +Cay)S;  —Cg —Cy,i
C, = (-Caydy; +Cipay)S;  (Cyiaf +Cia3)Si  CyidySi —CopayS, :
—Cyi CariyS; Cyi 0
—Cy,i —Ci8y5; 0 Csoi
Kai + Koz (-Kaay +Kpay)S  —Kg Ky
K, = (-Kaay +Kpay)S  (Kgag +Kpaz)s  KgagS —KgayS, :
—Kgi Ki8yS; Kyi 0
Ky, —K2i85;S; 0 Ksai
00 0 O 00 0O O
oo o oy, |00 0O 0
Cu 00C,; O K 00 Ky; 0
00 0 Cy 00 0 K,
r(X, (1))
'C, O K, 0 r(x,(t))
C.=| 1 ;K — t1 r= rl )
70 Ctj t {0 KJ r(X, (1)

r(x.,(t)
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Figure 3.5 Multiple vehicles-bridge system of n-span continuous bridge

3.3 Relationship of Axle Loads and Bridge Bending Moments
The strain occurring at any measuring point at the bottom surface of the beam

element in Figure 3.6 can be determined from:

| 9°w(x,1)

g;(x;, 1) =—, NG (3.52)

X=X,
J
where ~; is the distance between the bottom surface of the bridge and the neutral axis

of the bridge section at the measuring location ;.

Pi (1)
X
|
i e B e 7 B B B e
}) = KOy }) Q&
Xj ‘1
L »
Ua (1) Ue (1)
U@ us (1), 1
Node ¢ 7% Node
L]
&, (t), m;(t)
B, ‘
|- I .

Figure 3.6 Measuring point in the beam element
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Substituting w(x,t) into Eg. (3.52) yields

Sj(ﬂi,t) = -

% (@028, —6l)u, (t) +1(63, — 4N, (t) — (123, — 61)u, (t) +1(63, — 21)u, (1))

(3.53)

From the relationship between bending moment rﬁj(t) and strain ¢;(t), Eq.

(3.53) can be converted into bending moment as:

, (t) =E1 -2 i (3.54)
7
Therefore, Eq. (3.54) can be rewritten in the following form:
u, (t)

- _ [ ] b(t)
M, (8;,1) =—| = [{@25; —61) 1(68,—4l) —(123;—-6l) 1(68 —2|)}

ud (t)
(3.55)

where u,(t), u,(t), u.(t) and u,(t) are the nodal displacements of the corresponding
beam element and 3, is the local location of the measuring point determined from the

global location x;.

3.4 Moving Load Identification

In a load identification system, the interaction between external acting loads
and bridge responses is considered. The problem is to identify the external loading in
time histories without investigation of other vehicle properties such as mass or
suspension characteristics, etc. The input for the identification system is only the
measured bridge responses (bending moments) and location of moving axles on the
bridge with respect to time.

Figure 3.7 represents the system of multiple moving load-bridge interaction
used in the identification system. The vehicle axle loads can be considered as a group
of time-varying moving concentrated loads. The vehicle properties can be omitted in
the identification system because the identified loads are the interaction forces,

P... (t) from Eq. (3.43). Hence, the dynamics of vehicle properties such as vehicle

mass and suspension or tire properties are already taken into account. Therefore,

system simplification by considering only the equation of motion of the bridge is
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conducted in the identification system. However, this consideration can be made since
the vehicle mass and the bridge mass are very different and the duration of vehicle-
bridge interaction is very short. As a result, the interactive behavior between vehicles
and bridge becomes less influential. Therefore, the simplification of the identification
system by considering only the bridge structure and assuming the vehicle axle loads

as a group of time varying concentrated loads is capable.

Xy (t) P1(t)

X2 (t) P2 (t)

xi () Pi(t)

Xy (0) Pn ()

Figure 3.7 Multiple moving loads—bridge system used in axle loads identification

According to the bridge’s equation of motion referred to in Eqg. (3.40), the
force term of the equation is then replaced by the unknown acting load vector

expressed as:

M,R(t)+C,R(t)+K,R(t)=P,(t) (3.56)
where P, (t) is the unknown external nodal load vector which can be rewritten as
P, (t)=H. (x(t)) P (1) (357)

in which I5(t) isa N x1 vector of the unknown applied loads.

In order to determine the bridge response from Eq. (3.56) into a step by step of
the time history, the state-space formulation is utilized in the conversion of Eq. (3.56)
from a second order differential equation into a set of first order differential equations

as follows:

X(t)=K"X(t)+P(t) (3.58)
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R(t . 0 |
where X(t):{ : ( )} , K :{ 4 9 } .
R(t) 2NNxL -M, K, -M,"C, 2NNx2NN

. (3.59)

) __MblHC:|2NN><Np | P(t)Nle

where X represents a vector of state variables of length twice the total degree-of-
freedoms of the bridge (2NN) containing the displacements and velocities of the

nodes, and N is the number of acting loads. These differential equations are then

rewritten as discrete equations using the standard exponential matrix representation.

X1 (1) =FX; (1) +G . (1)P; (1), (3.60)
F=e<", (3.61)
G=K" (F-1), (3.62)

where matrix F is the exponential matrix, and together with matrix G represents the
dynamics of the system, j+1 denoted the value at the j+1" time step of computation,

the time step h represents the time difference between the variable states X;and X, ,

in the computation, and G is a matrix relating the forces to the system.
Substituting Eq. (3.59) and (3.62) into Eq. (3.60), yields:

X (t)=FX;(1)+ G, ()P (1), (3.63)
where G=G { 0 } (3.64)
= Y 2NNx2NN A .
_Mb HC 2NNxN,,
The matrix F can be obtained using exponential expansion as follows:
* h2 2 8 3
F=e"=1+hK +—K" +—K" +.-- (3.65)
2! 3!
where K'=VAV™. (3.66)

Substituting Eq. (3.66) into Eq. (3.65) becomes
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X 2 3
F=e“"=VV'+hVAV '+ %VAV1VAV1 + %VAV1VAV1VAV1 +..

2 3
=VV'+hVAV™ +h—VA2V’l +%VA3V1 +...

21 (3.67)

h? h®
=v[| +hA +—A? +—A3+...jV‘1
21 3!

=VeMVv!

According to Eq. (3.63), the bridge response in terms of the state variable of

the next time step j+1 can be calculated from the state variable of the present time step
j. The relationship between the identified acting load vector I5(t) and the bridge

response R can be formulated.

3.4.1 Problem Statement
The objective of this problem is to find the unknown forcing term I5(t). Since

the input of the identification system are measured bridge responses and location of
the moving loads on the structure, the goal of this problem is to find the time histories
of moving force that cause the system described in Eq. (3.50) or Eq. (3.51) to best
match the measurement data.

In this research, the sectional bending moment is adopted as the measurement

data. Let Z(t) be the measured bending moment vector at k number of selected

measuring points, which is expressed as:

Z,O={m ® m, O -~ m Of (3.68)

where m,. (t) is the k™ station of the measured bending moment of the bridge at the j"
time step.

While the corresponding predicted bending moment vector Z(t) at the same

sections are estimated by solving the equation of motion of the bridge. In practice, it
is not possible to measure all the displacements and velocities, and only certain
combinations of the variables X are required. The measurement equation used in

predicted bending moment formulation is then given as:
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2,0, =, 0 B0 - & ©)
=QX,

(3.69)

where

rﬁ,ﬁ (t) is the k™ station of the predicted bending moment of the bridge at the

j™ time step
and Q is a kx2NN selection matrix used to transform the predicted
measurements to state variable response vector X.

It is noted that the number of measured variables k is usually much less than
the number of state variables (or twice of degree-of-freedoms) but greater than or
equal to the number of unknown applied loads, Np.

From the state-space formulation as of Eq. (3.63), the relationship between the

state variables and applied loads can be formulated as follows:

X0 (F,®) 6 0o o o o]k
X, ()| |FX,(t)] | FG, G, 0 0 0 ||P(t)
Xy ()= F*X, (t)+| FFG1  FG, G, 0 |4 B,(t) (- (3.70)
: : : : : 0 :
X;(t)] |F'X,(t)] |F"G, F*G, FG, SHIEMG
T )"(* T T
0 P

In case of the system being started at rest, the initial condition term is assumed

as a vector containing all zero entries and the term )A(o is then vanished. Eq. (3.70)
can be rewritten as:

X' =TP (3.71)
where

X" isa 2N-NN x1 state variable vector of total N time step,

—

is a 2N-NN><N~Np transformation matrix between total residual

state variable vector (X* - XO*) and the total applied load vector,

gy

P isa N-N_ x1 applied load vector of total N time step.

From Eg. (3.71), the relationship between measurements and applied loads is

then represented as:
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Z,(t)| T Qc, 0 0 0 0 |R(t)
Z,(t)| | QFG,  QG, 0 0 0 ||PR(t)
23(t) =| QF’'G1 QFG, QG, 0 AZ (t) (3.72)
: : : : 0 :
Zj (t) _QFHGl QFJ—ZG2 QFG3 QGJ__ |Sj_1 (t)
= T i
z P
which can be expressed in the simple form as:
Z'=TP (3.73)

where Z° isa k- N x1 measurement vector of total N time step,

*

T is a k-N><N-Np coefficient matrix between total residual

measurement vector Z~ and total applied load vector P

Regarding Eq. (3.73), the relationship between the applied load vector P"and

the measurement vector Z”is expressed as a linear relationship. Therefore, the applied
load vector can be identified based on the inverse problem of Eq. (3.73).

However, practically, it is impossible to obtain an exact match of the model
with measured data. This is due to the fact that all measurements have some level of

noise. Hence, the solution of this problem cannot be obtained accurately by replacing
Zj(t) with Z,(t) and directly inversing Eq. (3.73). Therefore, the optimization

method is employed to obtain the best match of the measurements by minimizing
residual the error between measured and predicted responses (bending moments). The

simple least-square method criterion on the error between the measured bending

moments, Z(t), and the predicted bending moments, Z(t), is given as follows:

E=(Z-Z) Az -7)
; (3.74)

=(z-TP) A(Z-TP)
where A isa symmetric positive-definite weighting matrix providing the

flexibility of weighting the measurements term.

3.4.2 Optimization with Tikhonov Regularization
The least square criterion stated in Eq. (3.74) can be employed but it is found

to be not sufficient. This is because the problem is noise sensitivity and the obtained
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solution usually exhibits large fluctuations corresponding to the level of measurement
noises. In order to avoid this phenomenon, the smoothening term is added to the least-
squares error. Then the moving loads can be identified through the minimization of
the square error of the bending moments of the bridge, E with the regularization term.
This non-linear least square problem called the “Tihonov regularization” method was
presented by Tihonov (1963) to overcome the ill-conditioning usually found in the ill-
posed problems. This conventional regularization can be expressed in time-

discretization form as:
E=(Z-TP) A(Z -TP")+P DP (3.75)

where the additional term P*' DP” is a smoothening term known as the regularization
and the method is called the Tikhonov regularization method. Matrix D is a diagonal
matrix with positive definite, represented as:
D=l (3.76)
where A is a regularization parameter.
Substituting Eq. (3.76) into Eq. (3.75), the objective function becomes
E=(Z —T*P*)T A(Z -TP )+ PP (3.77)
A small value of A causes the solution to match the data closely but produces
large oscillatory deviations while a large value produces smooth forces that may not
match the data well. When A is zero, the solution becomes that for the least square
problem.
Expanding Eq. (3.77), yields
E=Z"AZ —-Z"ATP —P TTAZ + P "TTATP + AIP" P’ (378)
=Z"AZ - 2Z" ATP +P TTATP + AP P’
From Eq. (3.78), the unknown applied loads can be obtained using
minimization with the derivation of the least square error with respect to the force

vector as follows:

OF 7 AT 4 2P TTTAT 42417
oP (3.79)
0 = —Z AT +P7(TTAT +.I)

Thus, the unknown applied load vector can be determined from

P'=(TTAT +11) 'T7AZ". (3.80)
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When the weighting matrix A is an identity matrix and the regularization

parameter is removed, the solution becomes the pseudo-inverse solution

PP=TZ=(T"T) T2 (3.81)

3.4.3 Loads ldentification Using Singular Value Decomposition

According to load identification using the least-square regularization method
referred to in section 3.4.2, the solutions solved by Eqg. (3.80) or Eqg. (3.81) are not
sufficient as the coefficient matrix T~ is rank deficient, or close to rank deficient.
Therefore, to overcome this ranking deficiency, and when the problem is a linear
algebra, the singular value decomposition (SVD) method (Golub and Kahan, 1965) is
adopted.

From the considered rank deficient matrix, when the number of measurements

is equal or larger than the number of unknown applied loads (k > N ), the coefficient

matrix T~ can be decomposed its singular values using singular value decomposition
as follows:
T=U.ZI7 (3.82)
where
U isa k-Nxk-N orthogonal matrix in which U={U,,U,,---,U, \}
)y isa k-NxN-N_  diagonal matrix containing the singular value of the
decomposed matrix orderly arranged from the largest to the smallest
value,

r isa N- N, xN-N_ orthogonal matrix in which T’ :{Fl,Fz,---,FN,Np}.

Substituting Eq. (3.82) into Eq. (3.72), becomes

Z =UZIP" . (3.83)
Multiplying the measured and predicted bending moment by U™ becomes

Z=U'Z (3.84)

Z'=U'Z=3x1"pP". (3.85)

Formulating the least square objective function of Eq. (3.84) and Eq. (3.85)
yields

E=(U'Z —2r"P) A(U'Z [P+ 1P P (3.86)
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Expanding Eq. (3.86), the objective function can be rewritten as:
E=Z"UAU'Z —Z UAZI"P" —P'TZAU'Z + P TEAZ["P" + AIP" P’ (387)
—Z"UAU'Z —2Z"UASI" P + P TZASIP" + 1P P’
Since the above equation has some terms containing singular value matrices,
and if the weighting matrix A is an identity matrix, the Eq. (3.87) can be rewritten in

the discrete formula as follows:

N-N,

== 3|, (1P)- (07

i=1 i=N-

=

-k 2 N-N,
+ (U7zZ) +2X [P
=1

+1

2 2

(3.88)

P

Again, the unknown applied loads can be obtained using minimization with

the derivation of the least square error with respect to the force vector as follows:

oE N Tp* T—* T ~ TP T

o =2 3 o (P )-(Uz )\ajrj +2/1jZ=; TP
NN, NN,

0 = > |oy(rP)-(U;Z ) oy + 2 [P (3.89)
i=1 j=1

0 = 5 (¢, +2) (1P )=0,(U;'Z")
j=1

Finally, the predicted moving loads can be obtained as:

*_N~Np 7, .
= LI @0

When 1 =0, P" is the least square solution and the noise effect will be

amplified when ¢,<U "Z". When 4 > 0, this formulation can reduce the influence of

the components corresponding to those singular values ajz which are smaller than 1,

so that the solution is less noise sensitive.

3.4.4 Accuracy Improvement with Updated Static Component (USC) Technique
It is found that the regularization method outlined in the previous section
requires an optimal regularization parameter, A, to identify the axle loads accurately.
This optimal parameter is rather difficult to pre-assign in real applications because it
depends on the configuration, speed and weight of the identified vehicle. The L-curve
method (Hansen, 1992) or generalized cross-validation (Golub et al., 1979) might be

employed to determine this optimal parameter, but large computing time is required.
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Moreover, the obtained parameter is a sub-optimal value which does not guarantee
accurate identification results. To overcome such a difficulty and to enhance
identification accuracy, regularization with the updated static component (USC)
technique (Pinkaew, 2006) is adopted. Since the bridge responses are composed of
two components, which are the static (quasi-static) and the dynamic components, they
theoretically require different values of optimal regularization parameters. Therefore,
the USC technique decomposes the bridge responses into static and dynamic
components. The static component is identified separately, while only the dynamic
component remains in the regularization process. With iteration, the regularization
method using dynamic programming is employed to identify the dynamic component.
Then, the obtained identified result is used to update the associated static component
until the convergent solution is achieved. The computational diagram of the proposed
regularization with the updated static component technique is shown in Figure 3.6. It
is noted that the static component of the time-varying quantity is simply calculated
using time averaging.

To investigate the accuracy of the identified results, the identification error

is defined as:

[Po-PO|
POl

where || is the Euclidean norm of a vector. P(t) and P(t) are the actual and

Identification error = x100% (3.91)

the identified axle loads of the vehicle for either the front or rear axle, respectively.
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Steps of computation for USC technique

(1) Load identification using optimization of Eq. (3.90).

(2) Load decomposition to obtain the static component (quasi-static)
by time-averaging.

(3) calculate the corresponding static strain component.

(4) Compute the remaining dynamic strain component.

(5) Repeat the load identification using optimization as in step (1)
by inputting only dynamic strain component from step (4).

(6) Update the identified result from the combination of the previous
and the latest identified result.

(7) Load decomposition to obtain the updated static component
(quasi-static) by time-averaging.

(8) Determine the rate of convergence of the updated result.

Figure 3.8 Computational procedures of load identification through regularization

with the updated static component (USC) technique

Where

o>

S

N>

Q.-U)

is the static load component obtained by time-averaging of identified

load,

is the static bending moment constructed from the static load

component,

is the dynamic bending moment obtained from subtracting the static

bending moment from the measured bending moment,

is the dynamic load component obtained from the identification of the

remaining dynamic bending moment, and

is the iterative error between the updated and previous identified load.



CHAPTER IV
NUMERICAL STUDY OF AXLE LOAD IDENTIFICATION
USING COMPUTER SIMULATION

4.1 General

This chapter numerically studies moving load identification using computer
simulation in order to investigate the effectiveness of the proposed method explained
in Chapter I11. The problems are mainly divided into two parts, namely identification
of multi-axle loads moving on a single-span simply supported bridge, and
identification of multi-axle loads moving on a multi-span continuous bridge. Besides
the consideration of a vehicle as a moving dynamic multi-degree-of-freedom system,
the simpler model of the vehicle using moving concentrated loads is also considered.
The comparison of identification approaches for effectiveness and accuracy
evaluation is carried out and discussed. Influences of various parameters such as
number and position of response measurements, measurement noise level, sampling
frequency, structural discretization, vehicle mass, moving speed, axle-spacing-to-span
ratio, axle weight ratio, bridge surface roughness and regularization parameter are
considered. The parametric study of the regularization parameter is also conducted. In
addition, the information obtained from these studies will be used as guidance for the
experimental study and future improvement of the identification approach. Based on
extensive numerical examples, the identification accuracy, robustness and reliability

of the proposed method can be systematically investigated.

4.2 Accuracy of Moving Load Identification

Since moving load identification has been studied and developed upon for
decades, the identification methods have been adopted and modified to obtain a better
solution for both accuracy and robustness. Therefore, to propose an appropriate
method for this research problem, an accuracy comparison of the existing and the
proposed methods is performed. Three selected identification methods including (1)
conventional identification without regularization, (2) identification with optimal
regularization and (3) identification with USC regularization are comparatively
studied.
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In this section, the bridge models used in this study are a single-span simply
supported bridge with a span length of 30 m and a three-span continuous bridge with
equal span lengths of 20 m. The bridge properties are listed in Table 4.1. The number
of elements used in both the response simulation and load identification comes to 8

elements per bridge span.

Table 4.1 Parameters of the bridge used in the numerical study

Single-span simply supported bridge Three-span continuous bridge
L=30m L=3@20m

pA=5000 kg/m pA=4000 kg/m

El = 2.5x10" N-m? El = 8.0x10° N-m?

& =0.02 for all modes £ =0.02 for all modes

To check the correctness of the identification methods, time varying
concentrated loads are employed in which the effects of mass and stiffness of the
acting loads are not taken into account. Hence, two time varying concentrated loads

moving at a constant speed of 20 m/s are used as a vehicle’s axle loads as follows:
p, (t)=61.5[1.0+0.1sin (107t)+0.05sin (407t) | kN,
p,(t)=121.0[1.0-0.1sin (107t )+0.05sin (507t) | kN, (4.1)
S, =4.27 m.
In the case of the axle load identification of two vehicles, the load functions

for the second vehicle are assumed as p,(t), p,(t) with the same axle spacing of
4.27m as follows:

P, (t)=61.5[1.0+0.1cos(10xt)+0.05cos(40xt) | kN,

p, (t)=121.0[1.0-0.1cos(10zt)+0.05cos (507t) | kN, (4.2)
S,=4.27m.

The vehicles move along the bridge with the same constant speed of 20 m/s
with a 15 m headway distance. For both response simulation and load identification,
the sampling frequency of 100 Hz is used for all cases.

Measured bending moment responses from nine measurement stations
consisting of three stations at the locations of L/4, L/2 and 3L/4 for each bridge span

are used in the identification.
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4.2.1 Conventional Moving Loads Identification

The simplest identification method of the problem was an optimization, the
objective function of which is formulated using least square as Eq. (3.59). The
solution of this problem is called a pseudo-inverse solution as Eq. (3.75) with the
absence of the regularization parameter 4. Applying singular value decomposition can
eliminate the ill-condition due to the rank deficiency of the coefficient matrix. The

typical figure of identified loads is shown graphically in Figure 4.1.
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Figure 4.1 Typical identified axle loads of two vehicles’ axle load identification from
the conventional method: (a) front axle load of 1% vehicle, (b) rear axle load of 1%

vehicle, (c) front axle load of 2" vehicle and (d) rear axle load of 2" vehicle

It is observed that identification using the conventional method provides an
exact solution when the measurement data is not contaminated with noise, and the
number of elements used in the simulation and identification systems is equivalent.
However, it is impossible to avoid measurement noise in practice. The effect of
measurement noise is therefore investigated as the main parameter in selection of the

identification approach. According to the solution in Figure 4.1, the conventional
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method is observed to be very sensitive to measurement noise. Therefore, it is

concluded that this approach is not appropriate for use in practice.

4.2.2 Moving Load Identification with Optimal Regularization

As mentioned in section 4.2.1, it is found that the conventional identification
method fails to identify the correct solution when the measurement noise is added
particularly when the noise level is larger than 5%. In addition, it is found to be very
sensitive to measurement noise. Therefore, this identification method cannot be
adopted in practice to obtain accurate load time histories. To overcome this problem,
the regularization method is applied in the optimization as Eq. (3.60) then the solution
can be obtained from Eq. (3.75). With the presence of the regularization parameter A

the solution becomes robust to noise. The typical figure of identified loads is shown

graphically in Figure 4.2.
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Figure 4.2 Typical identified axle loads of two vehicles’ axle load identification from
the optimal regularization method: (a) front axle load of 1* vehicle, (b) rear axle load

of 1% vehicle, (c) front axle load of 2™ vehicle and (d) rear axle load of 2" vehicle
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Compared to the conventional identification method, the results show that the
accuracy of the identified solution with noise is better and more robust to
measurement noise. It is observed that using regularization, the obtained axle loads
exhibit less oscillation than the conventional method without smoothening term.
However, this solution of identifying axle loads at the duration when they pass the
bridge supports is found to be inaccurate, particularly at the higher level of
measurement noise. Moreover, determination of the optimal regularization parameter

by plotting an L-curve is necessary to obtain an accurate solution.

4.2.3 Moving Load Identification with USC Regularization

According to the solution from conventional least square and least square with
optimal regularization, as explained above, the problem is noise sensitivity and
requires the optimal regularization parameter Aopiima, Which is difficult to obtain.
Thus, the updated static component technique regularization is presented. The typical
figure of identified loads is shown graphically in Figure 4.3. Table 4.2 and Table 4.3
show the comparison of the identification results of two moving loads and four
moving loads, respectively. The results show that the identification error increases
relatively in approximate proportion to the increase in the additional noise level when

the number of elements used in simulation and identification is equivalent.

Table 4.2 Comparison of RPE (%) of two functional moving loads identification from

various identification methods

Noise  Moving RPE (%). . . .
level load 1-span simply supported bridge 3-span continuous bridge
Conv. Opt. Reg.  Reg. USC Conv. Opt. Reg.  Reg. USC
1% pu(t) 4.89 4.89 7.14 2.40 2.31 6.70
P, (t) 2.06 2.06 2.46 0.92 0.89 2.90
- Py (t) 21.81 16.08 9.45 10.67 8.93 7.42
P, (t) 10.28 12.06 4.54 4.63 4.80 3.55
10% E)l(t) 42.96 23.98 11.51 21.01 16.23 8.89
P, (t) 20.56 18.74 6.01 9.25 9.70 4.63

Note: Conv. = Conventional method (4 = 0)
Opt. Reg. = Optimal regularization method (4 = A optimar)
Reg. USC = Regularization method with USC (1= A ysc optimar)
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Figure 4.3 Typical identified axle loads of two vehicles’ axle load identification from

the regularization method with USC technique: (a) front axle load of 1% vehicle, (b)

rear axle load of 1% vehicle, (c) front axle load of 2" vehicle and (d) rear axle load of

2" vehicle

Table 4.3 Comparison of RPE (%) of four functional moving loads identification from

various identification methods

RPE (%)

::\C;'esie :\c/)l;;/mg 1-span simply supported bridge 3-span continuous bridge
Conv. Opt. Reg. Reg. USC Conv. Opt. Reg. Reg. USC
P, (t) 14.34 10.37 7.32 4.44 3.90 6.50
1% E)z(t) 6.76 6.92 3.49 2.45 2.18 3.46
P, (t) 13.36 11.76 4.98 4.27 4.28 6.04
P, (t) 8.80 6.23 2.65 1.76 1.60 3.12
p, (t) 69.08 20.02 8.45 22.22 13.11 7.32
- E)z t) 33.79 19.20 4.90 12.23 10.26 3.99
P, (t) 66.81 28.40 7.59 21.36 17.76 7.56
P, (t) 44.02 16.48 4.08 8.80 8.90 3.97
P, (t) 137.51 26.65 9.44 44.44 24.98 9.01
10% ;:)2 (t) 67.58 24.26 5.69 24.46 19.86 5.01
P, (t) 133.61 36.70 10.46 42.73 27.72 9.46
P, (t) 88.04 21.19 5.32 17.60 17.74 5.07
Note: Conv. = Conventional method (4 = 0)

Opt. Reg. = Optimal regularization method (4 = A optimar)

Reg. USC = Regularization method with USC (1= A ysc optimar)
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The results show that the USC technique substantially improves the accuracy
of identification. The weakness of the other methods at the time when the axle loads
are approaching and leaving the bridge, and passing the internal bridge supports is
obviously eliminated. The identification error still slightly increases with noise level
but is not sensitive. In addition, the identified axle loads match the actual loads
accurately. The results of axle load identification for a single vehicle and two vehicles

are shown in Table 4.4 and Table 4.5, respectively.

Table 4.4 Comparison of RPE (%) of single-vehicle axle load identification from

various identification methods

Noise RPE (%). . . .
level Axle load 1-span simply supported bridge 3-span continuous bridge
Conv. Opt. Reg.  Reg. USC Conv. Opt. Reg. Reg. USC
1% Front 941 8.79 8.88 11.34 8.31 5.72
Rear 16.88 9.18 6.63 28.86 10.38 6.78
506 Front 17.91 15.23 10.46 13.91 10.64 6.86
Rear 24.82 11.77 8.29 28.99 11.83 7.87
10% Front 31.06 20.59 12.81 19.51 13.83 7.96
Rear 36.38 17.42 11.77 30.46 15.28 9.39

Note: Conv. = Conventional method (4 = 0)
Opt. Reg. = Optimal regularization method (4 = A gptimar)
Reg. USC = Regularization method with USC (1 = 4 ysc optimal)

Table 4.5 Comparison of RPE (%) of two-vehicle axle load identification from

various identification methods

Noise RPE (%). . . .
level Axle load 1-span simply supported bridge 3-span continuous bridge
Conv. Opt. Reg. Reg. USC Conv. Opt. Reg. Reg. USC
1* Front 20.01 10.40 9.73 16.62 9.29 7.71
1% 1% Rear 40.81 12.19 8.11 31.07 12.02 8.87
2" Front 15.41 14.97 9.42 17.35 14.41 7.73
2" Rear 27.74 9.93 7.31 43.50 12.20 7.08
1* Front 62.24 17.80 11.76 19.78 12.24 7.69
506 1% Rear 80.07 20.45 10.52 35.22 15.35 10.12
2" Front 39.41 23.82 12.30 23.40 17.73 8.33
2" Rear 79.68 16.89 9.51 47.45 14.60 8.09
1* Front 118.14 22.42 13.73 25.27 16.90 8.61
10% 1% Rear 131.41 25.54 11.96 47.25 21.00 1161
2" Front 76.91 29.39 13.25 36.16 22.90 9.65
2" Rear 146.26 21.36 10.50 55.64 20.29 9.44

Note: Conv. = Conventional method (1=0)
Opt. Reg. = Optimal regularization method (4 = 4 gptimar)
Reg. USC = Regularization method with USC (1= A4 ysc optimar)

According to the solutions from Tables 4.4 and 4.5, they clearly indicate that the
proposed regularization method with USC technique can identify the axle loads of
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multiple vehicles accurately for both the single-span simply supported bridge and the
three-span continuous bridge. The identification error in every axle is drastically
decreased when the USC algorithm is applied.

However, since the comparisons presented in Tables 4.2 to 4.5 are conducted
with the optimal regularization parameter for both optimal regularization and USC
regularization methods, to demonstrate the effectiveness and convenience of applying
the identification approaches in the practical aspect of selecting the appropriate
regularization parameter, plots of the identification error at various order of
regularization parameter are required. Figure 4.4 represents RPE of identified loads at
various orders of regularization of four concentrated loads identification traveling on
a single-span simply supported and a three-span continuous bridges at measurement

noise level of 5%.

100
90 -
80 4 —e— 15tj0ad (conv. regularization)
70 3 —— 2" jpad (conv. regularization)
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Figure 4.4 RPE of identified loads of four concentrated loads identification with

various orders of regularization parameter at measurement noise level of 5%: (a)

single-span simply supported bridge and (b) three-span continuous bridge
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It is observed from Figure 4.4 that identification with the USC regularization
method allows better solution accuracy that the conventional regularization method.
Moreover, the most accurate results obtained from the USC regularization method
perform at the same order of regularization parameter in the range of 0.1 to 10
approximately for both single-span and three-span bridges while the optimal
parameters of the conventional regularization method perform within a different
range. This is very important for the real application of the identification system
because the difficulty of determining the appropriate regularization parameter directly
affects the computational time. Therefore, the regularization method with USC is
proposed as the identification approach for this dissertation.

4.3 The Study of Related Parameters Affecting Axle Load Identification

In this section, the parameters affecting moving load identification system is
studied. The three groups of parameters consist of measurement parameters, modeling
parameters and physical parameters. The effects of measurement parameters such as
the number and location of sensors, measurement noise level and sampling frequency
of the data acquisition system are firstly considered. Once the effects of measurement
parameters are understood, the proper measurement parameters for the load
identification are suggested. Then the modeling parameters and physical parameters
are investigated. In this section, the assumed vehicle axle loads are simulated using a
vehicle model of which the vehicle properties measured from a real truck (Mulcahy,
1983) are listed in Table 4.6. Moreover, in order to analyze the obtained numerical
results in the practical aspect, the measurement noise level of 5% is taken into account

for every study case.

Table 4.6 Parameter of vehicle model used in vehicle-bridge interaction

Vehicle properties

I, = 1.47x10° kgm* m, = 17735 kg m, = 1500 kg m, = 1000 kg
k., = 2.47x10° N/m k., = 4.23x10° N/m k, = 3.74x10° N/m k., = 4.60x10° N/m
c,, = 3.00x10* N/m c,, = 4.00x10* N/m ¢, = 3.90x10° N/m ¢, = 4.30x10° N/m

S=427Tm a; =0.519 a,=0.481
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4.3.1 Regularization Parameter

The study of the effect of the regularization parameter is very essential and
needs to be first conducted in the parametric study. In order to overcome the difficulty
of regularization parameter selection to obtain the accurate solution for various
conditions of vehicle passages, the range of appropriate regularization parameters
assigned in the USC algorithm is determined. Again, the number of beam elements,
sampling rate and number of measurement stations similar to section 4.2 are used.
Figure 4.5 shows the identification error with a different order of regularization
parameters from various vehicle configurations. The optimal regularization parameter
for each case and the acceptable range for parameter selection can be observed.

It can be noticed from Table 4.7 that the optimal regularization parameter is
nearly the same for every case except when the vehicle mass and bridge surface
roughness is different. Variation of vehicle speed, weight distribution between front
and rear axles or axle spacing of the vehicle do not affect the optimal regularization
parameter while the effects of vehicle mass and bridge surface roughness have a
significant effect. The optimal regularization parameter tends to be larger when the
vehicle mass is heavier or the bridge surface is smoother.

It is noticed that the Aopiimar fOr €ach case usually lies in the range between 0.01
and 1.00. Table 4.6 demonstrates the identification errors at the lower and upper
bound of the regularization parameter range, and also their least errors at the Agptimal. It
is observed that the identification errors for every case are within 30% at the lower
and upper bounds of the regularization parameter. For the moderate order of vehicle
parameters in single-vehicle identification, the maximum identification error is within
12% and the optimal regularization is close to 0.10 for every case. However, the most
appropriate value of regularization parameter assigned for every vehicle category and
multiple vehicle passage is found to be 1.00. Therefore, the regularization parameter

of 1.00 is simply adopted for every following investigation.
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Figure 4.5 Plots of identification error of vehicle axle loads from various orders of
regularization parameters: (a) vehicle mass, (b) vehicle speed, (c) FGR, (d) ASSR, (e)

bridge surface roughness and (f) two-vehicle axle load identification



67

Table 4.7 Identification error from different influence parameters at va