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CHAPTER I

INTRODUCTION

1.1 Introduction

Ice factories produce block-ices for commercial using in different industrial applications. Such an ice

factory usually consumes a huge amount of electricity in the manufacturing process. Thus, there has

been a need to seek an efficient control strategy to save energy and electricity cost. In this thesis, we

present an application of optimal control design to block-ice production process by using dynamic

programming. Figure 1.1 provides a schematic diagram of the components of a typical ice factory [1].

Figure 1.1: Block-ice production process.

The main components of an ice factory are as follows.

� Compressor.

� Condenser is a heat transfer surface which employs air or water as the condensing medium.

� Expansion valve controls the supply and demand relation between the condenser and evapora-

tor.

� Evaporator is used as heat transfer surface in which a volatile liquid is vaporized for the purpose

of removing heat from refrigerated space.

� Chilling tank contains the coils of evaporator which are equally distributed throughout the

tank and are submerged in brine. The brine in the tank acts as a medium of contact only, the
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refrigerant evaporating in the coils absorbs the heat from the brine, which again absorbs the

heat of the water in the moulds.

In this cycle, a circulating refrigerant such as Ammonia or Freon enters the compressor as

a vapor. The vapor is compressed. This raises the vapor’s pressure and temperature. Then, the

vapor travels through the condenser in which it dissipates its heat and condensed into liquid. When

liquid refrigerant flows through the expansion valve, it moves from a high-pressure zone to a low-

pressure zone, so it expands and evaporates. That results in a mixture of liquid and vapor at a lower

temperature and pressure. The cold liquid-vapor mixture then travels through the evaporator coils

and is completely vaporized by cooling the brine (which again extracts the heat of the water in the

moulds). The resulting refrigerant vapor returns to the compressor. The cycle then repeats.

1.2 Literature review

1.2.1 System identification

Constructing models from observed data is a fundamental element in science. Several methodologies

and nomenclatures have been developed in different applications areas. In the control area, the tech-

niques are known under the term System Identification. System identification is the art and science

of building mathematical models of dynamic systems from observed input-output data [2–4]. This

term has been coined by Zadeh in 1956 [5] for the model estimation problem of dynamic systems in

the control community. There were two main avenues for the development of the theory and method-

ology [4]. The first one is the realization avenue that starts from the theory how to realize linear

state space models from impulse responses, Ho and Kalman [6] followed by Akaike [7], leading to

so-called subspace methods. The other avenue is the prediction-error approach, more in line with sta-

tistical time-series analysis and econometrics. This approach and all its basic themes were outlined

in the pioneering paper Aström and Bohlin [8]. It is also the main perspective in [3].

Three types of models are common in the field of system identification, which have been color-

coded as follows [9]:

1. White Box models: This is the case when a model is perfectly known and it has been possible

to construct it entirely from prior knowledge and physical insight.

2. Grey Box models: This is the case when some physical insight is available, but several param-

eters remain to be determined from observed data. It is useful to consider two sub-cases:

� Physical Modeling: A model structure can be built on physical grounds, which has a

certain number of parameters to be estimated from data. This could, e.g., be a state space

model of given order and structure.

� Semi-physical modeling: Physical insight is used to suggest certain nonlinear combina-

tions of measured data signal. These new signals are then subjected to model structures

of black box character.
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3. Black Box models: No physical insight is available or used, but the chosen model structure

belongs to families that are known to have good flexibility and have been “successful in the

past”.

One could build a white box model, e.g. a model for a physical process from the Newton equa-

tions, but in many cases such models will be overly complex and possibly even impossible to obtain

in reasonable time due to the complex nature of many systems and processes [10]. Therefore, a much

more common approach, black box models are used in most system identification algorithms. In this

work, we use both linear and nonlinear black-box identification techniques to construct mathematical

models for block-ice production process.

1.2.2 Dynamic programming

In mathematics and computer science, dynamic programming is a method of solving complex prob-

lems by breaking them down into simpler steps. It refers to simplifying a complicated problem by

breaking it down into simpler subproblems in a recursive manner. The term was originally used in the

1940s by the mathematician Richard Bellman to describe the process of solving problems where one

needs to find the best decisions one after another [11, 12]. The first paper on dynamic programming

was published in 1952 [12].

The principle of optimality is the basis of dynamic programming. An optimal sequence of

decisions in a multistage decision process problem has the property that whatever the initial stage,

state, and decision, the remaining decisions must constitute an optimal sequence of decisions for the

remaining problem, with the stage and state resulting from the first decision considered as initial

conditions [13].

Figure 1.2: Dynamic programming concepts are illustrated by a simple example (left diagram) and

its solution (right diagram).

A typical application of dynamic programming is the problem of traveling from point A to

point B in Figure 1.2 (left diagram) [14]. Movement is only allowed from left to right and the cost of
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traveling from one point on the grid to the another is given by the number at the edge connecting the

two points. The goal is to find the path from A to B that minimizes the total cost.

The number by each point in the grid in Figure 1.2 (right diagram) is the cost of the lowest-cost

path from that point to B. These numbers are obtained recursively by moving backward from B to

A and applying the principle of optimality. The arrows in Figure 1.2 (right diagram) indicate the

direction to be taken from each point to minimize the total cost of getting to B. The best path from

A to B is seen to have a cost of 13. The path moves udduud, where u denotes up to the right and d

denotes down to the right.

1.2.3 Model predictive control

Model Predictive Control, or MPC, is an advanced method of process control that has been in use in

the process industries such as chemical plants and oil refineries since the late seventies. MPC is a

form of control in which the current control action is obtained by solving on-line, at each sampling

instant, a finite horizon open-loop optimal control problem, using the current state of the plant as the

initial state; the optimization yields an optimal control sequence and the first control in this sequence

is applied to the plant [15, 16].

Although the ideas of receding horizon control and model predictive control can be traced back

to the 1960s [17], interests in this field started to surge only in the 1980s after publication of the first

paper on Dynamic Matrix Control and the first comprehensive exposition of Generalized Predictive

Control. The MPC scheme is nowadays very popular in the oil refining and petrochemical process

industry and has adequately proved its usefulness in practice [18].

1.3 Objectives

The purposes of this thesis are fourfold.

1. To obtain suitable mathematical models for block-ice production process. There are two kinds

of models: linear and nonlinear models. In the system identification literature there is a number

of methods to deal with each kind of models. This work examines the models for block-ice

process in which we pay attention to using the black-box identification techniques. At first, the

linear ARX models are constructed. Then the nonlinear models based on feedforward neural

networks are constructed using the same regressors with the best linear models. Afterward,

these neural network models are pruned with Optimal Brain Surgeon (OBS) method [19].

2. To construct a demand predictor of number of block-ices for an ice factory. The predictor

is constructed by using time series models. In this work, we consider the weekly-based and

daily-based models for the demand prediction.

3. To develop an optimal control design for block-ice production process by using dynamic pro-

gramming. The main objective is to minimize the electricity cost which incurs from the usage

of electrical energy of compressors. The optimal control strategy is obtained by employing
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dynamic programming in solving the optimization problem. In addition, numerous factors in

the design procedure will be analyzed with respect to the electricity cost.

4. To develop a MPC strategy for block-ice production process in which the set of future control

signals is calculated by minimizing the electricity cost at every time step over a finite look-ahead

time. The first actions of this set are executed and the process is repeated at the following time

step.

1.4 Scope of thesis

The scope of this thesis is specified as follows.

1. To construct mathematical models including linear models and neural network models for

block-ice production process.

2. To build a demand predictor of number of block-ices which is a time series model for an ice

factory.

3. To design an optimal controller for block-ice production process by using dynamic program-

ming. Moreover, numerous factors in the design procedure will be analyzed with respect to the

electricity cost.

4. To develop a MPC strategy for block-ice production process.

1.5 Organization of the thesis

The thesis is organized as follows. The application of system identification techniques for block-ice

production process is shown in Section II. Section III is devoted to the optimal control design for

block-ice production process. Then in Section IV, we deal with the model predictive control for such

an ice factory. Finally, concluding remarks and future work are shown in Section V.



CHAPTER II

SYSTEM IDENTIFICATION

2.1 The black-box parametric identification

The black-box identification consists of inferring a relationship between inputs and outputs of a sys-

tem based on experimental data. It represents an alternative to the analytical modeling when no

physical insight is available or used or when the model based on physical insight contains a number

of unknown parameters. There are two main types of model structures that can be used in the black-

box identification: non-parametric and parametric models. Some examples of non-parametric models

are step response, impulse response and frequency response [2]. In this work only parametric models

have been considered.

Let � and � be the input and output of the system, respectively. The black-box identification

through parametric methods is to find a mapping from past data to the space of the output. This

mapping has the general structure [3]

������� � ������� �� (2.1)

where � is the parameter vector and ���� are input-output measurements of the system available at

time �� �

���� � ������ ����� � ������ ����� � ��� � ��� ���� ��� (2.2)

The function � in (1) could be considered as a combination of two mappings: one that takes

the past observations �� and maps them into a vector ���� of fixed dimension, and one that takes this

vector to the space of the outputs

������� �� � ����� �� (2.3)

where

���� � ������� (2.4)

The measured outputs and components of vector ���� (regressors) form a set of regressor-

output pairs �� called estimation data set

�� � ������� ������� � �� � �� (2.5)

The goal of the identification is then to determine a mapping from the estimation data set ��

to the set of possible parameters � so that the model will produce output ����� which in some sense

are close to the true values ����. A leading guideline for estimating � will be to minimize the error

between the output of the model and the measured output [9]

�� ��� �
� � �

�

�

��
���

������ �������  (2.6)
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The parameters are found as

�� � 	
���
�
�� ��� �

�� (2.7)

Finally, the derived model is validated on a fresh set of data called validation data set. To know

how well the result is, the fit is introduced

���� � ���� ���
�� � ���

�� � ���
� (2.8)

where

�� �
�

�

��
���

���� (2.9)

2.2 Linear identification

In this work linear ARX model is used. An ARX model is described by the following equation [20]

���������� � ���������� ��� � ���� (2.10)

where � is the output of the dynamic model, � is the input, � is the disturbance or noise, ��� is the

shift operator, �� is the dead time of the system and

������ � � � ���
�� � � ����

���

������ � �� � ���
�� � � ����

��� � �
(2.11)

where �� is equal to the number of poles, �� � � is the number of zeros.

In this case, the Least Squares Method (LSM) is employed to estimate the parameters. The

estimation of the parameters using LSM is straightforward but the problem is how to choose the

optimal structure of the model. A simple approach is to consider various structures, use the estimation

data set to estimate the parameters, and choose the model that produces the best fit when it is applied

to the validation data set.

2.3 Neural network identification

The results with the simpler model give some guidelines how the structural parameters should be

chosen in a more complex model. It is common to start with a linear ARX model. The delay and

number of delayed inputs and outputs give a good initial guess how the structure should be chosen

for the more complex NNARX model. In addition, many nonlinear systems can be described fairly

well by linear models. Therefore, it is a good idea to use insight from the best linear model to select

the regressors for the neural network models [21].

The NNARX models are built using a Multi-Layer Perceptron network with a single hidden

layer. The choice of this network is based on the previous experience [22] for its ability to model

simple and complex functional relationships. Moreover, only hidden neurons with hyperbolic tangent

function have been considered.
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The weights in 2.7 are found by an iterative scheme of the following kind [21]

������� � ����� � ���
��
� 	 ��� (2.12)

where ����� is the parameter estimate after � iterations, �� is step size, 	 ��� is an estimate of the gradient

�
�

� �
������ , �� is a matrix that modifies the search direction. A large number of training algorithms

exist. In this work, the Levenberg-Marquardt algorithm is used because of its rapid convergence

properties and robustness [23]. The performance function used in this algorithm is chosen as the

mean squared error.

The minimization of �� ��� ��� in 2.6 has to be done by numerical search procedure because

there is no analytic solution to this problem. However, �� ��� �� � may have several local minima

where local search algorithms may get caught. Since the initialization of the parameters is taken

randomly, it is necessary to process the identification several times in order to obtain acceptable

results.

In the scheme 2.12, the iterations can be run until there is no further improvement in the perfor-

mance function. It is noted that if the model is evaluated on validation data, the validation error first

decreases with the number of iterations, but then starts to increase with increasing number of iterations

(although the estimation error continues to decrease). This phenomenon is called overtraining [9].

To deal with this phenomenon the early stopping method [23] is employed. When the overtraining

happens, the validation error typically begins to rise. When the validation error increases for a spec-

ified number of iterations, the training is stopped, and the weights and biases at the minimum of the

validation error are returned.

The NNARX model obtained from training process is then pruned using OBS method. The

network pruning is used to remove unimportant weights from a trained network. Its goals are to

improve generalization, simplify networks, and increase the speed of further training [19]. Let 	 and

� be the error and weights corresponding to this trained network. The functional Taylor series of the

error with respect to weights is

Æ	 �

�
�	

��

�	

�� �
�

�
��	��� ��������� (2.13)

where � � ��	���� is the Hessian matrix. The main idea of OBS method is to set one of

the weights to zero (called �
 ) but the increase in error in 2.13 is smallest. For a network trained to

a local minimum in error, the first term in 2.13 vanishes, and we can ignore the third and all higher

order terms. The task now becomes to solve

��


���
��

�
�

�
��	������	
 Æ� � �
 � �� (2.14)

where �
 is the unit vector in weight space corresponding to weight �
. The optimal weight change

and resulting change in error are as follows [19]

�� � �
�


�����


����
 and �
 �

�

�

��

�����



(2.15)

Also in [19] the OBS procedure is given
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1. Train a “reasonably large” network to minimum error.

2. Compute ���.

3. Find the � that gives the smallest �
 � ��
�����
���

�. If this candidate error increase is much

smaller than 	 , then the �� weight should be deleted, and we proceed to step 4; otherwise go

to step 5.

4. Use the � from step 3 to update all weights Æ� � ��
�
���
���

���

. Go to step 2.

5. No more weights can be deleted without large increase in 	.

In our study, the NNARX models are pruned using OBS method: compute the inverse Hessian

matrix, find the weight that gives the smallest �
 � ��
�����
���

� and delete this weight, update

all weights, and retrain the network; This process is repeated until there are two weights left (the

minimum of weights).

In this work, our approach to construct the neural network models is as follows.

� Construct the linear ARX models.

� Use the regressors from best linear ARX models for the construction of NNARX models based

on feedforward neural networks.

� The NNARX models are then pruned using OBS method.

� Validate the best NNARX models.

2.4 Numerical results

The case study is to find models for block-ice process of a local ice factory. From the block-ice

process in Section I, the whole system consists of two parts as illustrated in Figure 2.1.

�� Energy transfer
between

brine and water

. � � � ��

Part 1 Part 2

Energy transfer
between

��� ����

Ice
refrigerant and brine

Compressor

Figure 2.1: Block diagram of the block-ice system.

The available data taken from [24] include:

� The electric energy consumption (kWh) of the compressors.

� The average brine temperature (degree Celsius).
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� The number of block-ice are ready for sales (unit).

The electric energy consumption and the average brine temperature are acquired by measure-

ment while the number of block-ice ready for sales is achieved by simulation [24].

We divide the data into two sets, namely, data set 1 and data set 2. The data are shown in

Figure 2.2 and 2.3. In each data set, there are 336 values for each variable. We divide the data into

two subsets:

� A training (or estimation) set starts from the ��� to the ���� value.

� A test (or validation) set consists of the ���� to the ���� value.

In the linear ARX identification, we vary �� and �� from 1 to 10, fix �� � � and use LSM for

estimation parameters. As a result, we obtain the linear models, some of the models that yield high

fit are shown in Table 2.1.

Table 2.1: Performances of the linear ARX models.

Part
Data set 1 Data set 2

�� �� �� Fit(%) �� �� �� Fit(%)

1

1 5 1 85.35 4 3 1 82.63

1 4 1 85.19 4 2 1 82.63

2 2 1 84.94 2 2 1 81

2

1 3 1 84.74 1 7 1 70.69

3 3 1 84.25 1 6 1 70.38

2 2 1 84.14 2 2 1 68.8

From results in Table 2.1, we choose the linear ARX models for part 1 and 2 with �� � �,

�� � �, �� � � because of their simple structure and high fit.

The NNARX models are then constructed using the same regressors with the linear ARX mod-

els, i.e., the regression vector is ���� � ���� � ��� ��� � ��� ��� � ��� ��� � ��� . First, we use 10

neurons in the hidden layer, after that the number of hidden neurons is decreased. Each model has

been processed several times, the best results obtained with NNARX models are shown in Table 2.2.

The NNARX models with the highest fit are chosen to prune with OBS method. In part 1 with

data set 1 and 2 are the models containing 9 hidden neurons (labeled model 1 and 2, respectively),

in part 2 with data set 1 is the model containing 6 hidden neurons (labeled model 3), in part 2 with

data set 2 is the model containing 8 hidden neurons (labeled model 4). Using OBS method some

weights are eliminated. After each weight elimination, the network is retrained. During the pruning

process, the test error is also calculated so that it can be subsequently used for pointing out the optimal

network. We will select the network with the smallest test error as the final one. The pruning process

for model 1, 2, 3 and 4 are illustrated in Figure 2.4, 2.5, 2.6 and 2.7, respectively.
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Figure 2.2: Data set 1 including electric energy consumption of compressors, brine temperature, and

number of block-ice.
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Figure 2.3: Data set 2 including electric energy consumption of compressors, brine temperature, and

number of block-ice.
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Figure 2.4: The error during pruning process of model 1.
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Figure 2.5: The error during pruning process of model 2.
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Figure 2.6: The error during pruning process of model 3.
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Figure 2.7: The error during pruning process of model 4.
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Table 2.2: Performances of the NNARX models.

Part
Data set 1 Data set 2

Hidden neurons Fit(%) Hidden neurons Fit(%)

1

10 82.89 10 85.68

9 86.32 9 86.65

8 85.64 8 85.45

7 85.66 7 86.40

6 85.35 6 84.68

2

10 81.77 10 68.02

9 83.85 9 68.03

8 83.23 8 69.63

7 83.27 7 66.59

6 84.47 6 63.81

Figure 2.4, 2.5, 2.6 and 2.7 should be read from right to left. The training error and test error of

each of intermediate networks are displayed in these figures. These figures reveal that the minimum

of the test error of the model 1, 2, 3 and 4 occurs when there are 55, 55, 2, and 49 weights left in

the network, respectively. Comparing to the number of original weights of the model 1, 2, 3 and 4,

it is seen that after pruning the model 1, 2 and 4 do not change, and the number of weights of model

3 decreases from 37 to 2. The results (i.e, the fit) obtained with pruned NNARX models, original

NNARX models and linear ARX models are summarized in Table 2.3.

Table 2.3: Comparison between ARX and NNARX models.

Part

Data set 1 Data set 2

ARX
Original NNARX Pruned NNARX

ARX
Original NNARX Pruned NNARX

Fit(%) Weights Fit(%) Weights Fit(%) Weights Fit(%) Weights

1 84.94 86.32 55 86.32 55 81 86.65 55 86.65 55

2 84.14 84.47 37 86.46 2 68.8 69.63 49 69.63 49

The results in Table 2.3 show that the performance of both linear and neural network models

are very good. In particular, the NNARX models give better results in terms of the fit compared to

the corresponding linear ARX models. The measured and one-step ahead predicted model output for

NNARX model 1, 2, 3 and 4 (after pruning) are shown in Figure 2.8, 2.9, 2.10 and 2.11, respectively.
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Figure 2.8: The measured and predicted output of NNARX model 1.
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Figure 2.9: The measured and predicted output of NNARX model 2.
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Figure 2.10: The measured and predicted output of NNARX model 3.
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Figure 2.11: The measured and predicted output of NNARX model 4.
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2.5 Ice demand predictor

We build an ice demand predictor for an ice factory based on time series models. A time series is

one or more measured output channels with no measured input [20]. In this work, linear AR model is

used. The AR model is given by the following equation [20].

���������� � ���� (2.16)

where � is the output of the dynamic model, � is the disturbance or noise, ��� is the shift operator,

and

������ � � � ���
�� � � ����

���  (2.17)

Similar to ARX models, the Least Squares Method (LSM) is used to estimate the parameters

for AR models and the fit is used as prediction performance measurement. The data used for building

the predictor is shown as Figure 2.12 [24].
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Figure 2.12: The demand of block-ices in one month.

2.5.1 Weekly-based models

The data are divided into four weeks, namely, week 1, 2, 3 and 4 starting from the ��� to the ����

value, from the ���� to the ���� value, from the ���� to the ���� value, and from ���� to the

���� value, respectively.
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At first, we build the linear AR model then the nonlinear NNAR models are constructed based

on the regression of the best AR model. Using different sets of estimation and validation data, we

have results as shown in Table 2.4. The results indicate that the performance of NNAR models are

much better than the performance of linear AR models in terms of the model fit.

Table 2.4: Performances of weekly-based models.

Estimation data Validation data
Linear AR NNAR

Models Fit(%) Hidden neurons Fit(%)

Week 1 Week 2 ar2 10.31 10 27.04

Week 2 Week 3 ar2 9.21 10 26.10

Week 3 Week 4 ar2 1.58 9 19.17

Week 1 + 2 Week 3 + 4 ar2 5.18 10 19.38

Let NNAR1 2, NNAR2 3, NNAR3 4 and NNAR12 34 be the names of NNAR models in

which the estimation data are week 1, week 2, week 3, week 1 + 2 and validation data are week 2,

week 3, week 4, week 3 + 4, respectively. Figures 2.13, 2.14, 2.15, and 2.16 show the measured and

predicted output for these NNAR models.

In Chapter 3 and 4, we will use the NNAR1 2 model where week 1 is estimation data and

week 2 is validation data for optimal control design. The weights of this model are shown in Equa-

tion (2.18) and (2.19).

 � �

�
���������������

������ ����� �����
����� ����� �����
����� ����� ������
����� ����� ������
������ ������ �����
������ ����� ������
������ ����� ������
������ ����� ������
����� ����� ������
������ ������ ������

�
��������������	

(2.18)

 � � ������� ����� ����� � ����� ����� � �����

������ ����� ����� ����� ������ (2.19)

2.5.2 Daily-based models

The data are divided into 28 days, each day contains 24 hour of data. Some of the daily-based models

with high fit are shown in Table 2.5. The results show that the NNAR models are far better than linear

AR models.
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Figure 2.13: The measured and predicted output of NNAR1 2.
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Figure 2.14: The measured and predicted output of NNAR2 3.
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Figure 2.15: The measured and predicted output of NNAR3 4.
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Figure 2.16: The measured and predicted output of NNAR12 34.
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Table 2.5: Performances of daily-based models.

Estimation data Validation data
Linear AR NNAR

Models Fit(%) Hidden neurons Fit(%)

Day 17 Day 18 ar2 22.3 10 60.43

Day 24 Day 25 ar2 28.88 9 50.41

Day 16 + 17 Day 18 + 19 ar2 15.86 6 38.49

Day 22 + 23 + 24 Day 25 + 26 + 27 ar2 10.23 8 32.74

2.6 Conclusion

In this chapter, we have applied the system identification technique for block-ice production process.

We construct two parametric models which are linear and neural networks models. Linear models

are built with Auto-Regressive model with exogenous inputs structure. Nonlinear models based on

feedforward neural networks are constructed using the regressors provided by the best linear ARX

models. Then the OBS method is used to prune the neural network models. Numerical results show

that the performance of both linear ARX and NNARX models are very good, howerver, the NNARX

models yield slightly better results in terms of the model fit than linear ARX models. In addition to

constructing models for block-ice production process, we also build the ice demand predictors based

on time series models.



CHAPTER III

OPTIMAL CONTROL DESIGN

3.1 Problem formulation

A previous section has examined different models of block-ice production process. Experiments

with real data indicate that linear models yield reasonably good results in terms of the model fit. In

this section, we use a linear mathematical model to describe the dynamical behavior of block-ice

production process. This model consists of two parts with a series connection and has a high fit in

both parts, namely, ����� and �����, respectively. Figure 3.1 and 3.2 show the measured and

predicted model output for this model.

The discrete-time model of block-ice process is given as follows.


��! � �� � ���
��!�� ���������!�

��! � �� � �����
��!� � ����
��!�

(3.1)

where ��!� is the electric energy consumption of the compressors (kWh), 
��!� is the average brine

temperature (Celsius), 
��!� is the number of block-ices ready for sales (unit), and ! is time index.

The control objective is to minimize the monthly electricity cost which consists of the cost of

peak electrical demand (kW) and the cost of electrical energy (kWh).

Thus, the cost function using TOU tariff is defined as

� �

��
���

"����max�� �
���

�

��
���

��
���

"����!���!� (3.2)

and the cost function using TOD tariff is defined as

� � "����max�� � "����	� ��max�� � �max��� ��

�
���

�

��
���

��
���

"����!���!�
(3.3)

where # is equal to � for off-peak, � for on-peak, and � for partial-peak period, "��� is the demand

charge in period #, �max�� is peak demand in period #, � is the time duration, and "��� is the energy

charge in period #.

The system is subjected to a number of the constraints on the control input and state variables.

First, the brine temperature is kept within an appropriate bound in order to maintain the operating

point and store block-ices in the tank. Second, the number of block-ices in the tank is limited by

the maximum capacity and there should be enough for sale according to the predicted demand. In

this thesis, we build a block-ice demand predictor based on time series models. The measured and

predicted demand of number of block-ices used in the thesis are shown as Figure 2.13, the model fit is
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Figure 3.1: The measured and predicted model output for part 1.
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Figure 3.2: The measured and predicted model output for part 2.
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� � �����. Third, the control input is limited by the electrical rated power of compressors. Lastly,

compressors are kept working continuously within a period of time. In view of a previous study of

local block-ice factory [24], the constraints are specified as follows.

���
���

���ÆC 
 
��!� 
 ��ÆC
�$�!� units 
 
��!� 
 ���� units
� kWh 
 ��!� 
 ��� kWh
��!� is unchanged over a time interval ��

(3.4)

where �$�!� is the predicted demand of number of block-ice at time !.

3.2 Dynamic programming

The optimal control strategy in our work is the sequence of control inputs that minimizes the cost

function (energy cost) of the block-ice process over a finite-time horizon.

�� � ��������    � ����� �

��
���

��
���

"����!���!� (3.5)

The task of minimizing energy cost �� is framed as a sequential decision-making process of decision

variables �����    � ����. The optimization technique called dynamic programming is commonly

used for this type of problems.

Consider a discrete-time dynamic system


��� � ���
�� ��� ���� ! � �� �� � � � �� (3.6)

where the state 
� is an element of a space %�, the control �� is an element of a space &�, the

disturbance �� is an element of a space '�.

The constraint is �� � (��
�� � &� for all 
� � %� and !.

We consider the class of policies (also called control laws)

) � ���� � ����� �

where �� � ���
�� � (��
�� for all 
� � %�. Such policies are called admissible.

Given an initial state 
� and an admissible policy ) � ���� � �����, the state 
� and distur-

bance �� are random variables defined through the system equation


��� � ���
�� ���
��� ���� ! � �� �� � � � � (3.7)

Denote ���
�� ��� ��� is the cost incurred at time !, so the expected cost of ) starting at 
� is

���
�� � 	

�
�� �
� � �

����
���

���
�� ���
��� ���

�
(3.8)

where the expectation is taken over the random variables �� and 
�.
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An optimal policy )� is one that minimizes this cost

����
�� � ��
��	
���
���

where � is the set of all admissible policies.

The optimal cost depends on 
� and is denoted by ���
��, that is

���
�� � ��
��	
���
��

The most important concept of dynamic programming, the Principle of Optimality [13], is

stated as: Let )� �
�
���� � �

�

���

�
be an optimal policy for the basic problem. Consider the sub-

problem whereby we are at 
� at time � and wish to minimize the “cost-to-go” from time � to time

�

	

�
�� �
� � �

����
���

���
�� ���
��� ���

�
 (3.9)

Then the truncated policy
�
��� � �

�

���� � �
�

���

�
is optimal for this subproblem.

In other words, an optimal policy has the property that whatever the initial state and initial de-

cision are, the remaining decisions must constitute an optimal policy with regard to the state resulting

from the first decision.

Also in [13] the dynamic programming algorithm is given: For initial state 
�, the optimal cost

���
�� of the basic problem is equal to ���
�� which proceeds backward in time from period � � �

to period �

�� �
� � � �� �
� �� (3.10)

���
�� � ��
���������

	�� ����
�� ��� ��� � ��������
�� ��� ����� ! � �� �� � � � � (3.11)

Applying dynamic programming [25], the iterative procedure for calculating optimal control

inputs is as follows.

1. Set the stopping or final conditions �� �
� � for all states. Thereby, the importance of one

particular state over another at the end of the process at � can be reflected.

2. Consider a quantized state 
��� at � � �: Apply each of the admissible control inputs �����
and determine the cost of the applied control over next stage

*�
� � �����
���� �

�
���� (3.12)

for all + � �� �, where, is the number of quantized controls. The next state at stage �

becomes


�� � �����
���� �
�
���� (3.13)

for all+ � �� �, .
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3. If 
�� does not assume one of the quantized states, values of minimal cost at state 
�� are

interpolated by values of minimal cost at quantized states 
�

�� �

�
� � � ��
�� � �� �
� �� (3.14)

where � is the interpolation of order �. For the given problem, linear interpolation � between

values of �� �
� � is considered sufficient.

4. Calculate the total cost of applying ����� at state 
��� from

������
���� � *
�
� � �� �


�
� � (3.15)

Compare this cost for all, controls to find

�����
���� � ��
��
���

�����������

�
�����
���� �

�
���� � �� �


�
� �
�

(3.16)

The control input that makes this cost minimal is the optimal control input in that state-stage

pair.

5. Repeat steps 2-4 for each of the quantized states at stage � � �. Set� � � � � and go to step

2.

This procedure is illustrated as in Figure 3.3. In practice, the optimal control inputs are determined

when starting from one of the quantized state-stage pairs.

3.3 Simulation results

Due to large energy consumption, many ice factories in Thailand use the Schedule 4: Large General

Service [26]. And normally such an ice factory purchases the electricity at 22-33 kV. This research

employs the demand charge and energy charge based on both TOU tariff and TOD tariff. Table 3.1

and 3.2 show the monthly tariff and the applicable time for Schedule 4, respectively. State 
�, state


� and control signal � are quantized by ��� ���� and �, respectively.

Table 3.1: Monthly tariff of Schedule 4.

Tariffs
Demand charge (Baht/kW) Energy charge (Baht/kWh)

Off-peak On-peak Partial-peak Off-peak On-peak Partial-peak

TOD 0 285.05 58.88 1.7034 1.7034 1.7034

TOU 0 132.93 1.1914 2.6950

The feasible regions for the final condition are as follows.��
��

Case 1: � �� ÆC 
 
� 
 ��� ÆC� ��� units 
 
� 
 ���� units

Case 2: � �� ÆC 
 
� 
 ��� ÆC� ��� units 
 
� 
 ���� units

Case 3: � �� ÆC 
 
� 
 �� ÆC� � units 
 
� 
 ���� units

(3.17)



27

Figure 3.3: The iterative procedure for calculating optimal control inputs.

Table 3.2: Applicable time of Schedule 4.

Tariffs Off-peak On-peak Partial-peak

TOD
09.30 p.m.–08.00 a.m. 06.30 p.m.–09.30 p.m. 08.00 a.m.–06.30 p.m.

everyday everyday everyday

TOU the rest of time
9 a.m.–10 p.m.

Monday-Friday
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Figures 3.4, 3.5, 3.6 show the optimal control and corresponding state variables for block-

ice production process over a period of two days when the final condition is set to Case 1, 2 and

3, respectively. The simulation results based on the assumptions that the initial condition is 
� �

��� ÆC� 
� � ���� units, and the time interval is �� � �.
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Figure 3.4: Optimal control and state variables for block-ice process (Case 1).

3.3.1 Effect of final condition

The effect of final condition is summarized in Table 3.3. In all cases, we fix the initial condition


� � ��� ÆC� 
� � ���� units, time interval �� � � and the cost is assigned zero in the feasible

region and a very high value otherwise. The results show that the cost is minimum if the whole region

is feasible (Case 3) and the cost is increased if the feasible region is more restricted.

3.3.2 Effect of initial condition

Figure 3.7 depicts the effect of the initial condition to the electricity cost, when using TOU tariff, with

the assumptions that the final condition is Case 1 and �� � �. It is clearly seen that the cost will be

minimum if we start from the smallest value of brine temperature and the largest value of block-ices

in the storage. When using TOD tariff, the obtained result also possesses the same property.
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Figure 3.5: Optimal control and state variables for block-ice process (Case 2).
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Figure 3.6: Optimal control and state variables for block-ice process (Case 3).
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Table 3.3: Effect of final condition to electrical energy and electricity cost using optimal control

design.

Final conditions
Electrical energy (kWh) Electricity cost (Baht)

Off-peak On-peak Partial-peak Total Demand Energy Total

TOU

Case 1 104,650 78,260 182,910 69,124 335,591 404,715

Case 2 44,590 32,760 77,350 17,281 141,413 158,694

Case 3 34,580 32,760 67,340 17,281 129,487 146,768

TOD

Case 1 79,625 20,475 73,710 173,810 126,174 296,068 422,242

Case 2 31,395 9,555 30,940 71,890 37,057 122,457 159,514

Case 3 21,385 9,555 30,940 61,880 37,057 105,406 142,463
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Figure 3.7: Effect of initial condition to electrical energy and electricity cost using optimal control

design.



31

3.3.3 Effect of ��

Table 3.4 shows the effect of time interval ��. The results are obtained with final condition Case

1 and initial condition 
� � ��� ÆC� 
� � ���� units. First, the backward process in dynamic

programming is executed with time interval �� � �. The control signal is then calculated from the

initial condition using the forward process. In the cases �� � �� �� the control signals are calculated

by taking the average values of the optimal control signals with �� � � in the consecutive 2 and 3

hours, respectively. Using the obtained control signal and the initial condition, the state variables of

the system are simulated using the model of block-ice production process. It is observed that the total

energy of all cases in Table 3.4 is unchanged but there is a slight difference in the off-peak and on-

peak energy. The results suggest that, when using TOU tariff, the cost is increased if the time interval

is increased. And when using TOD tariff, the cost is decreased if the time interval is increased.

Figures 3.8, 3.9 show the control signal and state variables for block-ice production process when

time interval �� � �� and �, respectively. When �� � � the control signal and state variables are

shown in Figure 3.4.

Table 3.4: Effect of �� to electrical energy and electricity cost using optimal control design.

��
Electrical energy (kWh) Electricity cost (Baht)

Off-peak On-peak Partial-peak Total Demand Energy Total

TOU

1 104,650 78,260 182,910 69,124 335,591 404,715

2 104,650 78,260 182,910 69,124 335,591 404,715

3 91,000 91,910 182,910 60,483 356,115 416,598

TOD

1 80,990 19,110 73,710 173,810 148,226 296,068 444,294

2 79,625 20,475 73,710 173,810 126,174 296,068 422,242

3 80,990 19,110 73,710 173,810 109,023 296,068 405,091

3.3.4 Effect of brine temperature

The brine temperature is varied in the way that either the upper bound or the lower bound is changed

each time. Varying the bounds of the brine temperature appeared in the first constraint in Equation

(3.4) affects the energy consumption and the electricity cost. The results in Table 3.5 are obtained

using the final condition Case 1 and initial condition 
� � ��� ÆC� 
� � ���� units. It is clearly

observed that the cost is decreased if the brine temperature is restricted in a wider range. In addition,

the cost is increased if the bounds of brine temperature are pushed lower.
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Figure 3.8: Control signal and state variables for block-ice process: �� � �.
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Figure 3.9: Control signal and state variables for block-ice process: �� � �.
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Table 3.5: Effect of brine temperature to electrical energy and electricity cost using optimal control

design.

-� (Celsius) Electrical energy (kWh) Electricity cost (Baht)

Lower Upper Off-peak On-peak Partial-peak Total Demand Energy Total

TOU

-11 -4 116,480 91,910 208,390 60,483 386,472 446,955

-11 -2 104,650 78,260 182,910 69,124 335,591 404,715

-11 0 111,020 70,980 182,000 69,124 323,560 392,684

-9 -2 110,110 78,260 188,370 69,124 342,096 411,220

-13 -2 104,650 78,260 182,910 69,124 335,591 404,715

TOD

-11 -4 73,255 20,475 99,190 192,920 118,824 328,620 447,444

-11 -2 79,625 20,475 73,710 173,810 126,174 296,068 422,242

-11 0 75,530 29,120 61,880 166,530 148,226 283,667 431,893

-9 -2 76,440 20,930 79,170 176,540 133,525 300,718 434,243

-13 -2 78,715 19,110 75,985 173,810 104,123 296,068 400,191

3.4 Conclusion

We have presented an optimal control design for block-ice production process in this chapter. First,

the problem is formulated in which the system is subjected a number of the constraints on the control

input and state variables such as brine temperature, the number of block-ices in the tank; and the

control objective is to minimize the monthly electricity cost of an ice factory. The procedure based

on dynamic programming for calculating optimal control inputs is then proposed. Furthermore, a

number of factors are analyzed with respect to the energy consumption and the electricity cost. It is

seen that the final condition and initial condition have the most significant effect on the electricity

cost.



CHAPTER IV

MODEL PREDICTIVE CONTROL DESIGN

4.1 Model Predictive Control

In this section basic knowledge on Model Predictive Control, or MPC, is briefly reviewed.

4.1.1 MPC strategy

The term Model Predictive Control does not designate a specific control strategy but a very ample

range of control methods which make an explicit use of a model of the process to obtain the control

signal by minimizing an objective function.

The various MPC algorithms are based on the same idea only differ amongst themselves in the

model used to represent the process and the cost function to be minimized. The methodology of all

the controllers belonging to the MPC family is characterized by the following strategy, represented in

Figure 4.1 [15]:

Figure 4.1: MPC Strategy.

1. The future outputs for a determined horizon��, called the prediction horizon or output horizon,

are predicted at each instant ! using the process model. These predicted outputs ���! � ��!� for

! � �� �� � �� depend on the known values up to instant ! (past inputs and outputs) and on

the future control signals ��!� ��!�, ! � �� � ����, which are those to be sent to the system

and to be calculated.
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2. The set of future control signals is calculated by optimizing the objective function. This objec-

tive function usually takes the form of a quadratic function of the errors between the predicted

output signal and the reference trajectory. The control effort is also included in the objective

function in most cases.

3. The control signal ��!�!� is sent to the process while the next control signals calculated are

rejected.

In order to implement this strategy, the basic structure is used as shown in Figure 4.2. A model

is used to predict the future plant outputs, based on past and current values and on the proposed

optimal future control actions. These actions are calculated by the optimizer taking into account the

cost function as well as the constraints.

Figure 4.2: Basic structure of MPC.

4.1.2 MPC elements

All the MPC algorithms possess common elements which are:

� Prediction model

� Objective function

� Obtaining the control law

1. Prediction model

Practically every possible form of modeling a process appears in MPC. It can be impulse re-

sponse, step response, transfer function, state space, nonlinear models.
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2. Objective function

The general aim is that the future output on the considered horizon should follow a determined

reference signal and, at the same time, the control effort necessary for doing so should be

penalized.

3. Obtaining the control law

An analytical solution can be obtained for the quadratic objective function if the model is linear

and there are no constraints, otherwise an iterative method of optimization should be used.

4.2 Problem formulation

In this section, we use the linear discrete-time model of block-ice process as given in Equation (3.1).

The objective function is the electricity cost over the prediction horizon ��. We want to min-

imize this cost which consists of the cost of peak electrical demand (kW) and the cost of electrical

energy (kWh).

Thus, the cost function using TOU tariff is defined as

� �
��

���

"����max�� �
��

���

���
���

"����!���!� (4.1)

and the cost function using TOD tariff is defined as

� � "����max�� � "����	� ��max�� � �max��� ���

��
���

���
���

"����!���!� (4.2)

where # is equal to � for off-peak, � for on-peak, and � for partial-peak period, "��� is the demand

charge in period #, �max�� is peak demand in period # over the prediction horizon, �� is the prediction

horizon, and "��� is the energy charge in period #.

The monthly electricity cost when using MPC strategy is calculated similarly as in Equations

(3.2) and (3.3).

In addition, the system is subjected to constraints on the control input and state variables stated

as in Equation (3.4).

4.3 MPC using dynamic programming

The cost function in Equations 4.1 and 4.2 is different to the cost function of a typical MPC which

usually takes the form of a quadratic function. As a result, we use dynamic programming for solving

the optimization problem as we do in the previous chapter. Applying dynamic programming, the

procedure for calculating control inputs in MPC is as Figure 4.3.

4.4 Simulation results

Similarly to Chapter 3, both TOU tariff and TOD tariff are used in this simulation. State 
�, state 
�

and control signal � are still quantized by ��� ���� and �, respectively. Figures 4.4, 4.5 and 4.6 show
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Figure 4.3: The procedure for calculating control inputs in MPC strategy.
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the control signal and corresponding states obtained by MPC for block-ice production process over a

period of 84 hours. Case 1, 2 and 3 represent the MPC at which we update the control signal every one

hour, two hours and three hours, respectively. The simulation results based on the assumptions that the

initial condition is 
� � ��� ÆC� 
� � ���� units, the final condition is ��� ÆC 
 
� 
 ��� ÆC,

��� units 
 
� 
 ���� units and the prediction horizon is �� � ��. The monthly electricity cost

using MPC strategy is summarized in Table 4.1. It can be seen that the MPC strategy using TOU

tariff is more effective than that using TOD tariff in terms of cost reduction.
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Figure 4.4: Control signal and state variables by MPC for block-ice process (Case 1).

4.4.1 Effect of prediction horizon

Table 4.2 represents the effect of the prediction horizon. The results are obtained by using MPC Case

2 with the initial condition 
� � ��� ÆC� 
� � ���� units and the final condition ��� ÆC 
 
� 


��� ÆC, ��� units 
 
� 
 ���� units. It is seen that, when using both TOU tariff and TOD tariff,

we can reduce the cost by using longer prediction horizon.

4.4.2 Effect of ��

The effect of time interval �� is summarized in Table 4.3. In all cases, we fix the initial condition


� � ��� ÆC� 
� � ���� units, the final condition ��� ÆC 
 
� 
 ��� ÆC, ��� units 
 
� 


���� units and the prediction horizon �� � ��. When the time interval �� � �� �, and �� the control
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Figure 4.5: Control signal and state variables by MPC for block-ice process (Case 2).
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Figure 4.6: Control signal and state variables by MPC for block-ice process (Case 3).
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Table 4.1: Electrical energy and electricity cost using model predictive control design.

MPC
Electrical energy (kWh) Electricity cost (Baht)

Off-peak On-peak Partial-peak Total Demand Energy Total

TOU

Case 1 110,240 72,280 182,520 69,123 326,135 395,258

Case 2 108,680 73,320 182,000 69,124 327,079 396,203

Case 3 112,320 71,240 183,560 69,124 325,810 394,934

TOD

Case 1 78,000 21,840 72,280 172,120 148,226 293,189 441,415

Case 2 79,040 21,320 72,280 172,640 148,226 294,075 442,301

Case 3 81,120 18,200 72,800 172,120 148,226 293,189 441,415

Table 4.2: Effect of prediction horizon (Case 2) to electrical energy and electricity cost using model

predictive control design.

MPC
Electrical energy (kWh) Electricity cost (Baht)

Off-peak On-peak Partial-peak Total Demand Energy Total

TOU

�� � � 114,400 95,160 209,560 69,124 392,752 461,876

�� � �� 108,680 73,320 182,000 69,124 327,079 396,203

�� � �� 98,800 76,440 175,240 69,124 323,716 392,840

TOD

�� � � 79,560 18,720 101,920 200,200 148,226 341,021 489,247

�� � �� 79,040 21,320 72,280 172,640 148,226 294,075 442,301

�� � �� 79,040 20,800 72,280 172,120 148,226 293,189 441,415

Table 4.3: Effect of �� to electrical energy and electricity cost using model predictive control design.

��
Electrical energy (kWh) Electricity cost (Baht)

Off-peak On-peak Partial-peak Total Demand Energy Total

TOU

1 110,240 72,280 182,520 69,123 326,135 395,258

2 110,760 75,920 186,680 64,803 336,564 401,367

3 100,187 81,293 181,480 66,243 338,448 404,691

TOD

1 78,000 21,840 72,280 172,120 148,226 293,189 441,415

2 84,240 21,060 72,020 177,320 148,226 302,047 450,273

3 79,387 20,280 74,013 173,680 148,226 295,847 444,073
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signals at each step are calculated by using the optimal control design with the corresponding time

interval (see Section 3.3.3) and we update the control signal every 1, 2, and 3 hours, respectively. The

results suggest that, when using TOU tariff, the cost is increased when the time interval increases.

Figures 4.7, 4.8 show the control signal and state variables for block-ice production process when

time interval �� � �, and �, respectively (�� � � see Figure 4.4).
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Figure 4.7: Control signal and state variables by MPC for block-ice process: �� � �.

4.5 Comparison of control strategies

In this section, we compare three control strategies, namely, MPC, optimal control and conventional

control. In the conventional control strategy, the compressors are simply run at the maximum ca-

pacity all days except for three hours off at the end of each day. Figure 4.9 shows the conventional

control strategy of the local block-ice factory in one week [24]. The electric energy consumption of

compressors and the average brine temperature are acquired by measurement whereas the number of

ready for sales block-ices is achieved by simulation.

In Figures 4.10 and 4.11, the optimal control strategy and MPC strategy calculated in the first

84 hours using both TOU and TOD tariffs are compared to the conventional control strategy. All

strategies start with the same initial condition 
� � ��� ÆC� 
� � ���� units, and end with nearby

final conditions as in Table 4.4.

From Figures 4.10 and 4.11 it is easily seen that the compressors using the optimal control
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Figure 4.8: Control signal and state variables by MPC for block-ice process: �� � �.
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Figure 4.9: Conventional control strategy.
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Figure 4.10: Comparison between optimal and conventional control strategies.
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Figure 4.11: Comparison between MPC and conventional control strategies.
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Table 4.4: Final conditions of compared control strategies.

Control strategies
Final condition


� (degree Celsius) 
� (unit)

Optimal TOU -6.3 440

Optimal TOD -6.6 434

MPC TOU -7.2 446

MPC TOD -7.1 438

Conventional -7.6 410

strategy and MPC strategy consume less energy than those using the conventional control strategy.

Table 4.5 shows the benefit of the optimal control strategy and MPC strategy over the conventional

control strategy in saving the energy consumption and reducing the electricity cost. The result reveals

that the optimal control strategy using TOU tariff is the most effective. In particular, it is calculated

that we can save the amount of money up to 26.15 percent when moving from conventional control

strategy using TOD to the optimal control strategy using TOU and the percentage will be 37.21 if we

move from conventional control strategy using TOU to the optimal control strategy using TOU.

Table 4.5: Electricity cost of compared control strategies.

Control strategies
Electrical energy (kWh) Electricity cost (Bath)

Off-peak On-peak Partial-peak Total Demand Energy Total

Optimal TOU 106,600 66,560 173,160 69,123 306,382 375,505

Optimal TOD 67,340 17,940 77,480 162,760 148,226 277,245 425,471

MPC TOU 110,240 72,280 182,520 69,123 326,135 395,258

MPC TOD 78,000 21,840 72,280 172,120 148,226 293,189 441,415

Conventional TOU 151,420 128,629 280,049 71,017 527,058 598,075

Conventional TOD 136,640 0 143,410 280,050 31,456 477,036 508,492

4.6 Conclusion

In this chapter, we have investigated the MPC application for block-ice production process. The MPC

strategy is constructed in which an optimal control strategy based on the framework in Chapter 3 is

planned at every time step over a finite look-ahead time. The first actions of the optimal control

sequence are executed and the process is repeated at the following time step. In addition, the effects

of the length of the prediction horizon and the time interval were investigated and it was found that

longer horizon and shorter time interval can reduce the cost. Then we compare the MPC, the optimal

control and the conventional control strategies. The result indicates that the optimal control strategy
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using TOU tariff is the most effective in terms of operation cost.



CHAPTER V

CONCLUSIONS

5.1 Summary of results

An application of optimal control design to a block-ice production process is presented in this thesis.

First, mathematical models for block-ice production process are built by using system identification

techniques. Two parametric models, linear and neural network models, have been considered. Non-

linear models based on feedforward neural networks are constructed using the regressors provided

by the best linear ARX models. The NNARX models are then pruned using OBS method. Com-

paring the results obtained from the ARX and NNARX models, it is shown that the performance of

both linear ARX and NNARX models are very good. With the obtained models, we then examine

the suitability of using TOU tariff and TOD tariff for an ice factory. We develop an optimal control

design and a MPC design for block-ice production process which employs dynamic programming

for solving the optimization problem. The optimal control strategy aims to minimize the operating

cost for block-ice process over the finite-time horizon. In addition, a number of factors are analyzed

to see how they affect the operating cost. It is observed that the initial and final conditions would

affect the operating cost the most. The optimal controller and MPC strategy are then compared to

the conventional control strategy. It is shown that the proposed optimal controller and MPC strategy

have better performance than the conventional control strategy in terms of energy consumption and

the operation cost. In particular, the optimal control strategy using TOU tariff can significantly reduce

the operation cost when comparing to the conventional control strategy.

5.2 Further improvements

There are some improvements that can be considered to obtain better mathematical models and an ice

demand predictor for block-ice production process.

1. In Section 2.5, although the NNAR models are much better than linear AR models but they still

give poor performances in terms of the model fit. We can improve the results by choosing more

complicated regressors in Equation (2.4), such as

���� � ������ ��� ����� ��� ��� � ��� ����� ��� ���� ������ ��� (5.1)

and apply the nonlinear black-box identification technique.

2. When doing system identification with neural network models in Section 2.4, we can take

further improvements by different choices of the estimation and validation sets, by processing

the data more times or by the use of recurrent neural networks.
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5.3 Future works

1. In Section 2.5, we have considered the ice demand predictor using to predict the number of

block-ices for sales in the next hours. To improve the performance of the system, it is possible

to apply Demand Side Management (DSM) [27] to the number of block-ices on demand. An-

alyzing different patterns of the demand based on the real demand, we can find a suitable one

which leads to the reduction in the operation cost.

2. In this research, we have developed a MPC strategy for block-ice production process in which

the model of the process does not change over time. Future work could consider the MPC

design with the process model is updated every time step.

3. Dynamic programming is sometimes thought to be of limited applicability in terms of compu-

tation due to the fact that the computation grows exponentially with the number of states. This

is called the curse of dimensionality [12]. In future work we will look at more details about

this.
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