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Proportional-integral-derivative (PID) controllers have been widely used in automatic

control systems. In this thesis, we consider the problem of synthesizing PID controllers

which guarantee robust stability and performance for single-input single-output (SISO) plants

in the presence of model uncertainty. It is previously shown that this problem can be trans-

lated to simultaneous stabilization of the closed-loop characteristic polynomial and a family

of complex polynomials. For a fixed proportional gain, integral and derivative gain values

can be constructively determined using linear programming. The most important feature of

this method is that it computationally characterizes the entire set of the admissible PID gain

values.

This research work also provides an algorithm of polynomial stabilization. In partic-

ular, MATLAB programs are developed to design appropriate PID parameters. We verify

design results on sample problems spanning from nominal stability to to robust stability and

performance. The computer programs employ the unified and systematic approach using

polynomial stabilization. Subsequently, we apply the developed programs to design PID

controllers for a laboratory-scale belt conveyor system. Based on the dynamical model and

its uncertainties, we characterize admissible regions satisfying nominal stability and robust

performance. The admissible regions of PID gains are shown both in 2D plot at specified

value of ��, and in 3D plot for various values of ��. The computer simulations confirm that

the chosen PID robust controller yields satisfactory nominal and robust performance. Com-

paring the design result with the well-known Ziegler-Nichols method. it is observed that the

PID controller by Ziegler-Nichols method is quite close to the boundary of the admissible

region obtained from this work. Hence, the developed computer programs provide a viable

and practical means for robust PID tuning.

Department . . . . . . . . . . . . . . . . . . . . . . .Electrical Engineering Student’s signature . . . . . . . . . . . . . . . . . . . .

Field of study . . . . . . . . . . . . . . . . . . . . .Electrical Engineering Advisor’s signature . . . . . . . . . . . . . . . . . . .

Academic year . . . . . . . . . . . . . . . . . . .2004



vi

Acknowledgments

First, I would like to thank my principal advisor, Professor David Banjerdpongchai

while working on this thesis. He always made his time available to discuss my research.

Working with him has been exhilarating experience; I also thank him for his constant guid-

ance and support, both in my academic life and outside. I consider it my great fortune and

privilege to have the opportunity to work with him and to have excellent research environ-

ment to work.

I am indebted to Professor Manop wongsaisuwan and Professor Naebboon Hoonchareon

for being my orals and reading committee. Their inputs, helpful suggestions, and comments

on the proposal exam are invaluable for the next step of my research

My thanks go to Jitkomut Songsiri, with some helpfil parts on the work described in

this thesis. My thanks dued to colleagues who had given technical helps while this research

was ongoing. In particular, I would like to thanks Sun and Aid for numerous discussion

related to the programming. Special thanks to Pao, who seem always have “four hands” for

helping me. I truly enjoy Boat and Sungwan’s friendship and hospitality. Interacting with

Warit, Khett, Kang, Aoy, Na, Pee, Pick, Manachai, Nat, Pink, Pupus, Lychek, and Tu Anh

has been an educational and enjoyable experience. Special thanks for Michal Kvasnica and
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Chapter 1

Introduction

1.1 Motivation

The majority of control systems in this world are operated by PID controllers. Indeed, it

has reported that 	�� of the control loops in the pulp and paper industries are controlled by

SISO PI controllers [1] and that in the process control applications, more than 95� of the

controllers are of the PID type [2]. Similar statistic holds in the motion control and aerospace

industries.

Given the widespread industrial use of PID controllers, it is clear that even a small

percentage improvement in PID design could have a tremendous impact worldwide. Despite

this, it is unfortunate that currently there is not much theory dealing with PID design. Indeed,

most of the industrial PID designs are still carried out using only empirical techniques, and

the mathematically elegant and sophisticated theories developed in the context of modern

optimal control cannot be applied to them. Meanwhile, belt conveyor systems have been

used in many industrial applications, especially in manufacture industries for transporting

material. Because of these reasons, we are interested in doing research in synthesis of robust

PID controllers for conveyor system, by the method which is simple and computationally

efficient so that it can be applied in real applications.

1.2 Literature Review and Previous Work

PID controller is the most widely used controller structure in industrial applications. Its

structural simplicity and sufficient ability of solving many practical control problem have

greatly contributed to this wide acceptance. Over past decades, many PID design techniques

have been proposed for industrial use. Collection of these various methods can be found in

the book by Åström and Hägglund [2]. Most of these control techniques are based on simple

characterization of process dynamics, such as the characterization by a first order model

with a time delay. In spite of this, for plants having higher order, there exist few generally

accepted design methods.

When dealing with mathematical model, the problem that always facing by the control

system engineer is model uncertainty which can bring us to the robust stability and robust

performance problem. Robust control methods in [3, 4, 5] can be used for solving this prob-
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lem. The problem of robust performance design is to synthesize a controller for which the

closed-loop system is internally stabilized and the desired performance specifications are

satisfied despite of plant model uncertainty. �� and �-synthesis techniques have been suc-

cessfully applied to solve the problem of robust performance design. �� control aims to

guarantee the worst case performance of the uncertain system, and �� controllers are ob-

tained from the solution of two coupled Riccati equations. One of the methods in the class

of�� control is loop shaping method [6]. The idea of�� loop shaping method is to design

a controller that minimizes the signal transmission from load disturbances and measurement

noise to plant input and output by expressed�� norm. After that, we shape open loop trans-

fer function of the system which will meet our design performance and robustness by using

precompensator and post compensator, in high and low frequency, then the final controller is

constructed by combining �� controller with the shaping functions of precompensator and

post compensator.

Many papers dealt with �� control for their PID parameters design. In [7], they cast

problem for finding �� loop shaping into the non-convex optimization problem. In [8],

they used �� loop shaping for design PID controller for lower order plant with time delay.

In [9], they derived one order system with time delay for finding PID parameter based on

�� theory. For application in the power system [10],�� control is used to control a boiler-

turbine unit. The paper [11] presented an application of �� theory for a conveyor system

with the tracking specification. They setup experiment for various speed of the conveyor

system, test their controller, and also suggest a method for compensating the saturation.

In this thesis, we focus on the problem of synthesizing a stabilizing PID controller, if

any, for which the disturbance rejection design specification is achieved for a plant with mul-

tiplicative uncertainty. In the papers [12, 13, 14], based on the generalized Hermite-Biehler

theorem [15, 16, 17], a computational characterization of all stabilizing PID controllers was

given for an arbitrary nominal polynomial plant. This solution of the PID stabilization is an

essential first step to any rational design of PID controllers. Recently, an extension of PID

stabilization to the case of complex polynomials was developed in [18, 19, 20, 21] and it was

shown that such an extension could be exploited to carry out many �� robust stability PID

design problems. In this thesis, we show that the results from [18, 19, 20, 21] can be also

used to provide a computational characterization of all admissible PID controllers for robust

performance. Such a characterization for all admissible PID controllers involves the solution

of linear programming problems. Accordingly, an efficient algorithm has been developed

for generating the parametric space of entire admissible PID gain values. Then in order to

implement this algorithm, we develop MATLAB program for synthesizing PID controllers.

Finally, we will use this approach for finding PID controller for belt conveyor system.
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1.3 Objective

The primary objective of this research is to synthesize proportional-integral-derivative (PID)

controllers for single-input single-output (SISO) plants in the presence of model uncertainty.

The secondary objective is that these robust PID controllers are designed and applied to belt

conveyor systems.

1.4 Scope of Thesis

1. Construct the design method for tuning robust PID controller.

2. Implement a computer program for tuning robust PID controller.

1.5 Research Procedure

1. Study related literature on PID controller and robust PID controller.

2. Study the model of belt conveyor system.

3. Solve the design problem within the framework of robust PID controller.

4. Develop a computer program for tuning robust PID controller.

5. Compare the result with other methods.

6. Apply the PID design technique to belt conveyor system.

7. Write the thesis and organize all documents.

1.6 Contribution

1. Robust PID controllers for belt conveyor systems.

2. A computational tool for robust PID tuning.
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1.7 Thesis Outline

The organization of the thesis is as follows. In chapter 2, we briefly summarize the basic

system theories which will be used to formulate design problem. We will present the defini-

tion of nominal performance. Then, we will present the multiplicative uncertainty which is a

model to represent our model uncertainty. We will continue the discussion on robust stability

and robust performance. We will also give the graphical interpretation of the Nyquist plot on

the important equations.

In chapter 3, we will discuss the algorithm for finding the PID gain which can make

a given nominal plant stable. The derivation of the procedure leads into real polynomial

stabilization. The outcome of our procedure is the whole region of PID gains which can make

the nominal system stable. Next, we consider the uncertainty in the model, and expect that

PID controller can stabilize the system and satisfy performance specification. Fortunately,

we can still use the basic idea in real polynomial stabilization and generalize our algorithm

to cope with robust control. As we will see later, this generalization leads to the problem of

complex polynomial stabilization.

Some numerical examples on this method can be found in chapter 4. Step-by-step

implemetations of the algorithm given in chapter 3 is presented in this chapter. Examples on

PID stabilization for nominal system can be found here. The proof of its nominal stability

and the comparison result with the well-known Ziegler-Nichols method will be presented

in this chapter. Moreover, we will give an example for PID controller synthesis of nominal

system satisfying a performance in form of �� norm. Finally, a numerical example for

robust PID controller synthesis satisfying robust performance specification will be given.

In chapter 5, we will present mathematical models of servo-driven belt conveyor sys-

tem. The discussion starts with a nominal model of servo-driven belt conveyor and model

uncertainty of this system. Then, we find the PID controller gains which stabilize the servo-

driven belt conveyor. Next, we carry on the procedure for finding robust PID controller

satisfying our design performance specification. Some tests and computer simulations are

performed.

In chapter 6, we present the conclusions of this research. The approach of polynomial

stabilization is applicable to the other open control applications. Moreover, some suggestions

on extensions to the algorithm and potential topics for future research are presented.



Chapter 2

Mathematical Preliminaries

This chapter briefly summarizes the basic system theories which are used in this thesis. In

the section 	2.1, we present the definition of nominal performance. Then in 	2.2, we present

the multiplicative uncertainty, which is the model to represent model uncertainty of belt

conveyor system. We continue discussion to the robust stability in 	2.3. Finally, we discuss

about robust performance in 	2.4. In some sections, we also give the graphical interpretation

based on the Nyquist plot for important equations.

2.1 Nominal Performance

Consider the block diagram follow:

�

���� � ���
�

�

� 	 


�

�

�

�

�

�

Figure 2.1: Unity-feedback system.

Let � denote the loop transfer function, � �� �. The transfer function from the

reference input � to tracking error 	 is

� ��
�

� � �
�

called the sensitivity function. The name sensitivity function comes from the following idea.

Let � denote the transfer function from � to �:

� �
�

� � �
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One way to quantify how sensitive � is to variations in  is to take the limiting ratio of a

relative perturbation in � (i.e.,��� ) to a relative perturbation in  (i.e.,� ). Thinking

of  as a variable and � as a function of it, we get

���
����

���

�
�
��

�



�
�

The right-hand side is easily evaluated to be �. In this way, � is the sensitivity of the closed-

loop transfer function � to an infinitesimal perturbation in  .

Now we have to decide on a performance specification, a measure of tracking perfor-

mance. This decision depends on two factors: what we know about � and what measure

we choose to assign to the tracking error. Usually, � is not known in advance� few control

systems are designed for one and only one input. Rather, a set of possible �s will be known

or at least postulated for the purpose of design.

Let us first consider sinusoidal inputs. Suppose that � can be any sinusoid of amplitude


 � and we want 	 to have amplitude � �. Then the performance specification can be

expressed succinctly as

������ � ��

The maximum amplitude of 	 equals the �� norm of the transfer function. Or if we define

the weighting function����� � ���, then the performance specification is �������� � �.

There is a nice graphical interpretation of the norm bound �������� � �. Note that

�������� � � ��

���� ������

� � �����

���� � �� ��

�� � ������ ��� � � ����� �� ���

The last inequality says that at every frequency, the point ����� on the Nyquist plot lies

outside the disk of center ��, radius � ������ �. See Fig. 2.2.

2.2 Multiplicative Perturbation

Consider Fig. 2.3, suppose that the nominal plant transfer function is  and consider per-

turbed plant transfer function of the form � � ������ . Here�� is a fixed stable trans-

fer function, named as the uncertainty weight, and  is a variable stable transfer function

satisfying ����� 
 �. Furthermore, it is assumed that no unstable poles of  are canceled

in forming of � (Thus,  and � have the same unstable poles). Such a perturbation  is

said to be allowable.

The idea behind this uncertainty model is that �� is normalized plant perturbation

away from 1:
�


� � � ���
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��

��

�� � ��
���

Figure 2.2: Graphical interpretation of nominal performance.

Hence if ����� 
 �, then �����
� ����

 ����
� �

����� 
 ��������� ���

so, �������� provides the uncertainty profile. This inequality describes a disk with center �,

radius ����. Typically, ������� is a (roughly) increasing function of �, uncertainty increases

with increasing frequency. The main purpose of is to account for phase uncertainty and to

act as a scaling factor on the magnitude of the perturbation, i.e., �� is varies between 0 and

1.

2.3 Robust Stability

The notion of the robustness can be described as follows. Suppose that the plant transfer

function  belongs to set  . Consider some characteristic of the feedback system, for ex-

ample, that is internally stable. A controller � is robust with respect to this characteristic if

this characteristic holds for every plant in  . Notion of robustness therefore requires a con-

troller, a set of plants, and some characteristic of the system. For us, the two most important

�

�

�

�

���� � ���

����� ����

�

��

�

Figure 2.3: Multiplicative perturbation
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variations of this notion are robust stability, treated in this section, and robust performance,

treated in the next.

A controller � provides robust stability if it provides internally stability for every plant

in  . We might like to have a test for robust stability, a test involving � and  . Or if  has

an associated size, the maximum size such that � stabilizes all of  might be a useful notion

of stability margin.

The Nyquist plot gives information about stability margin. Note that the distance from

the critical point�� to the nearest point on the Nyquist plot of � equals ��������:

distance from �� to Nyquist plot � ���
�
� ��� ����� �

� ���
�
� � � ����� �

�

�
���
�

�

� � � ����� �

���
� �������� �

Thus if ������ � �, the Nyquist plot comes to the critical point, and the feedback system is

nearly unstable.

Now we look at a typical robust stability test, one for the multiplicative perturbation

model. Assume that the nominal feedback system (i.e., with  � �) is internally stable for

controller �. Bring in again the complementary sensitivity function

� � �� � �
�

� � �
�

�

� � �
�

Theorem 2.1 (Multiplicative uncertainty model) C provides robust stability if and only if

����� ��� � ��

The proof of this theorem can be found in [3].

The condition ����� ��� � � also has a nice graphical interpretation. Note that

����� ��� � ��

���������������

� � �����

���� � �� ��

�� � ����������� ��� � � ����� �� ���

The last inequality says that at every frequency, the critical point, ��, lies outside the disk

of center �����, radius � ����������� �. See Fig. 2.4.

2.4 Robust Performance

Now, we look into performance of the perturbed plant. Suppose that the plant transfer func-

tion belong to a set  . The general notion of the robust performance is that internal stability
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��

Figure 2.4: Graphical interpretation of robust stability.

and performance, of a specified type, should hold for all plants in  . Again we focus on

multiplicative perturbations.

Recall that when the nominal feedback system is internally stable, the nominal perfor-

mance condition is �������� � � and the robust stability condition is ����� ��� � �. If  is

perturbed to �� � ��� , � is perturbed to

�

� � �� � ��� ��
�

�

� � ���
�

Clearly, the robust robust performance condition should therefore be

����� ��� and

����
���� ���

� � ���

����
����
�

� �� ��

Here  must be allowable. The next theorem gives a test for robust performance in terms of

the function

� �� ������������ ������� ���� �

which is denoted as ������ ���� � �

Theorem 2.2 A necessary and sufficient condition for robust performance is

�� ������ ���� � ��� � �� (2.1)

The proof of this theorem can be found in [3].

Test (2.1) also has a nice graphical interpretation. For each frequency �, construct two

disks: one with center��, radius ��������; the other with center�����, radius �������������.

Then (2.1) holds if and only if for each � these two disks are disjoint. See Fig. 2.5.
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Figure 2.5: Graphical interpretation of robust performance.

2.5 Summary

Chapter 2 outlines some of the key definitions and the mathematical preliminaries which

useful for setup our problem formulation. In this thesis, we consider the plant model uncer-

tainty in the form of multiplicative uncertainty. The graphical interpretation norm of bound

�������� � �, representing the nominal performance specification of the system, is that at

every frequency, the point ����� on Nyquist plot lies outside the disk of center ��, radius

��������. The norm bound of robust stability ����� ��� � � has the graphical meaning that

at every frequency, the critical point(��) on the Nyquist plot, lies outside the disk of center

�����, radius �������������. The robust performance criterion is the combination of nom-

inal performance and robust stability criterion in the form of �� ������ ���� � ��� � � also

has graphical interpretation is that disk with center ��, radius ��������; and the other disk

with center �����, radius �������������, are disjoint.



Chapter 3

Controller Design via Simultaneous Polynomial

Stabilization

In this chapter, we will discuss the algorithm for finding the PID gain which stabilizes a

given nominal plant. The derivation of the procedure can lead us into real polynomial sta-

bilization. The outcome of our procedure is the whole region of PID gains which can make

the nominal system stable. If we put some performances in system, and also consider about

the uncertainty in the model, and expect that PID controller can make the system stable and

satisfy our design specification, then we will deal with robust control problem. Fortunately,

we can still use the basic idea in real polynomial stabilization and generalize our algorithm

to cope with robust control. As we will see later, this generalization leads us into the problem

of complex polynomial stabilization.

The organization of this chapter is as follows. In 	3.1, we will discuss about PID

stabilization for a nominal plant. Later on, in 	3.2 we will extend our works on synthesis

PID controller for the plant which has uncertainty in the model, as well as satisfid a given

performance. The algorithm for finding PID gain on each case will be also presented.

3.1 PID Stabilization for a Nominal Plant

We would like to present a generalization of the Hermite-Biehler theorem for the case co-

efficients of the polynomial are real. This theorem is useful later on as stability condition

for our PID stabilization. The complete and detail works on this theorem can be found

in [22, 15, 17]. First, we introduce the standard signum � � ���� �� �� defined by

������ �

���
��
�� if � � �

� if � � �

� if � � �.

Let

Æ��� � Æ� � Æ�� � ���� Æ��
�

be a given real polynomial of degree �. We write

Æ��� � Æ���
�� � �Æ	��

��
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The control objective is to determine the values of ��� �� and �� for which the closed-loop

characteristic polynomial Æ��� ��� ��� ��� is Hurwitz. That is, Æ��� ��� ��� ��� has all roots in

the open left half plane.

Controller Plant

�
���� ����

� � �

�

Figure 3.1: Feedback control system.

We observe that for Æ��� ��� ��� ���, controller parameters ��� ��� �� are distributed on

����, so that it causes difficulty for finding all stabilizing PID controllers. We will consider

the following procedure for solving our design problem. First, we consider the even-odd

decompositions of

���� � ����
�� � ��	��

��

 ��� �  ���
�� � � 	��

��

and define

����� � ����� � ����
��� ��	��

���

To achieve parameter separation, we multiply Æ��� ��� ��� ��� by ����� to obtain

!��� � Æ��� ��� ��� ����
����

� �������
�� 	��

��� ���
���	��

��� � ��� � ���
�������

������
������	��

���	��
���

� �� ���
������

��� �� 	��
���	��

�� � �������
������

��� ���	��
���	��

�����

Let ��" be the degrees of Æ��� ��� ��� ��� and ����, respectively. Next, we substitute � with

�� in !���, and decompose !��� into “real-imaginary” decomposition. We get

!���� � Æ���� ��� ��� ����
����� � ���� ��� ��� � ����� ���

where

���� ��� ��� � ����� � ��� � ���
�������

���� ��� � ����� � �������

����� � ���������
�� 	���

��� ����
���	���

���

����� � �����
�������

�� � ���	���
���	���

���

����� � �� ����
�������

�� � �� 	���
���	���

���

����� � �������
�������

�� � ���	���
���	���

����
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Note that polynomial !���� exhibits parameter separation, that is, �� appears in the imag-

inary term (or � term) only, while �� and �� appear in the real term (or � term) only.

Æ��� ��� ��� ��� is Hurwitz if and only if !��� has exactly the same number of closed RHP

zeros as �����.

Let ��� ��� ��� ���� ���� denote the real, nonnegative distinct roots of ���� ��� of odd mul-

tiplicity, where

� � �� � �� � �� � ��� � ����

and define �� ��. By using Theorem 3.1, the stability condition is that:

������������������� �

��������������
�������������

��������������� ������
����� � ������
����� � ���

� �������������
������� � ����
������
 ������

� ����������������

if"� � is even

��������������� ������
����� � ������
����� � ���

� �������������
�������� � ����
������������

if"� � is odd

(3.1)

From the stability condition in (3.1), a necessary condition is that ���� ��� has at least�
�������������������

�
for"� � even

�������������������	�
�

for"� � odd
(3.2)

real, nonnegative, distinct roots of odd multiplicity. The ranges of �� satisfying this condition

are called allowable. For every fixed �� in � term, we can determine stabilizing values for ��
and �� in � term, by the following step:

First, define

�����
����� � #� for $ � �� �� ���� %�

we can construct sequences of number #�� #�� ���� #� by following rule:

� If ������� � � for some $ � �� �� ���� %� �, then define

#� � ��

� for all other, $ � �� �� �� ���� %,

#� � ��� or ���

With #�� #�� ��� defined in this way, define the set &���� i.e., the set of all admissible string,

satisfying stability condition (3.1), as

&���� �

�
�#�� #�� ���� #�� if" � � is even

�#�� #�� ���� #���� if" � � is odd
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Next, we determine admissible string of � � �#�� #�� ���� #���or #�� in &���� which satisfies the

stability condition (3.1). We note that, each member of set in �, i.e., �#�� #�� ���� #���or #��, is

associated with the sign of � evaluated at associated frequency �, or mathematically, we can

write as the following linear inequality:

������� � ��� � ���
�
� �������� � �� �$ � �� �� �� ���� %� � or % if #� � �

������� � ��� � ���
�
� �������� � �� �$ � �� �� �� ���� %� � or % if #� � �

(3.3)

The set of stabilizing ��� �� is obtained from intersection of the feasible region of �� and ��
satisfying linear inequalities (3.3) for the admissible string �. In other word, each string � in

&���� is one family of the linear inequality problem which can be solved efficiently by linear

programming tools. Suppose that we have admissible strings ��� ��� ���� �� in &���� which is

associated with feasible regions of ��� �� denoted by ��� ��� ���� ��, The set of all stabilizing

�� and �� corresponding to the fixed �� is given by

����� � ��
������

As �� is varied within allowable value of ��, we will have the whole feasible region of

stabilizing ��� ��� ��.

To summarize our discussion, we make the following algorithm for finding PID con-

trollers for stabilization of a given nominal plant.

Step 1. For the given ���� and  ���, compute the corresponding ������ ������ �����, and

�����.

Step 2. Determine the allowable ranges of ��, denote this ranges as � for # � �� �� ���� �. The

resulting ranges of �� are the only ranges of �� for which stabilizing ���� ��� values

may exist.

Step 3. If there is no �� satisfying 2 then output NO SOLUTION and EXIT.

Step 4. Initialize � � � and  � �.

Step 5. Pick a range ���� ��� in  and initialize �� � ��.

Step 6. Pick the number of the rigid points� and set step � �
�	�

��� � ���.

Step 7. Increase �� as follows: �� � �� � step. If �� � �� the GOTO 14.

Step 8. For fixed �� in step 7, solve for the real, nonnegative, distinct finite zeros of ���� ���

with odd multiplicities and denote them by � � �� � �� � �� � ��� � ����� Also

define �� ��.
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3.2 Robust PID Tuning for Uncertain System

�

�

�

�

�

����

�����

�

���������

����
�

�
�

Figure 3.2: Feedback control system with multiplicative uncertainty.

Consider the SISO feedback control system shown in Fig. 3.2. Here, � is the command

signal, � is output, and � is energy-bounded disturbance. ���� � ����� ��� is the plant to

be controlled, where���� and ��� are coprime polynomials. ��� is any stable and proper

transfer function with ����� 
 �. The weights ����� and ����� describe the frequency-

domain characteristics of the performance specifications and model uncertainty, respectively.

���� is PID controller in the form of

���� � �� �
��
�
� ��� �

�� � ���� ���
�

�
�

The closed-loop characteristic polynomial is as follows.

'��� ��� ��� ��� � � ��� � ��� � �� � ���
�������

Then, the complementary sensitivity function is

� ��� �
��������

� � ��������

and the sensitivity function is

���� �
�

� � ��������
�

Especially, we consider the problem of the disturbance rejection for the plant with

multiplicative uncertainty. This problem can be formulated as the following condition:

����������� � � ������� ��� ���� � (3.4)

where ����� � ������ ���� and ����� � ������ ����, and ������  ����� ����� and

 ���� are some real polynomials.
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Our control objective is to design PID controllers that stabilize system and satisfy the

robust condition given in (3.4). In order to achieve stability of the nominal system, we need

the roots of characteristic equation lies on the left half plane, i.e.,

'��� ��� ��� ��� � � ��� � ��� � �� � ���
������ is Hurwitz. (3.5)

It is obvious that our procedure in previous section could be applied to solve stabilization

problem. But, for satisfying robust performance condition in (3.4), we will need the follow-

ing lemma to convert (3.4) into simultaneous polynomial stabilization.

Lemma 3.1 Let
&���

(���
�
)� � )��� ���� )��

�

$� � $��� ���� $���

and
*���

+ ���
�
	� � 	��� ���� 	��

�

�� � ���� ��� � ����

be stable and proper rational functions with $� �� � and �� �� �. Then����
����&���(���

�����
����*���+ ���

����
����
�

� � (3.6)

if and only if

a) �)��$��� �	����� � �;

b) (���+ ��� � 	��&���+ ��� � 	��*���(��� is Hurwitz for all , and - � ��� �.�.

Proof: Necessity. Suppose that (3.6) holds. Then, condition a) is obvious. The necessity of

condition b) is established in the following way. Since����&����(����

�����
����*����+ ����

���� � �	��&����+ ������ �	��*����(�����

�(����+ �����

it follows that

�(����+ ����� � �	��&����+ ���� � 	��*����(������

Because(��� and + ��� are Hurwitz, using Rouche’s Theorem [23], we conclude that(���+ ����

	��&���(��� � 	��*���(��� is Hurwitz for all , and - � ��� �.��

Sufficiency. Proceeding by contradiction, we assume that conditions a) and b) are true, but����
����&���(���

�����
����*���+ ���

����
����
�

� ��

Since �&�����(������ �*�����+ ����� is a continuous function of � and

���
���

�����&����(����

�����
����*����+ ����

����
�
�

����)�$�
�����

����	���
���� � �
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then there must exist at least one �� � � such that����&�����(�����

���� �
����*�����+ �����

���� � �&�����+ ������� �*�����(������

�(�����+ ������
� ��

Therefore, it implies that there exist ,� and ,� � ��� �.� such that

(�����+ ����� � 	
���&�����+ ����� � 	

���*�����(����� � �

and this obviously contradicts condition b). �

If we fit the robust performance condition in (3.4) into the criterion (3.6), we will easily

find that the following condition must hold.

������������ ������� ���� � � (3.7)

Define

/��� ��� ��� ��� ,� �� � � ���� ���� ��� � 	
�������� ���� ���

� ����
� � ���� ���� ���� �������� � 	

�� ���������������

The criterion (3.6) also implies that:

/��� ��� ��� ��� ,� �� is Hurwitz for all , and � � ��� �.�� (3.8)

Then, for solving our robust PID tuning problem, we have to satisfy three conditions simul-

taneously given in (3.5), (3.7), and (3.8), i.e.,

a) '��� ��� ��� ��� is Hurwitz;

b) /��� ��� ��� ��� ,� �� is Hurwitz for all , and � � ��� �.�;

c) ���������� � � ������� ��� �� �.

In condition b), we will have the problem for stabilizing complex polynomial. The fol-

lowing procedure describes how we find stabilizing PID controllers for complex polynomial.

Consider the complex polynomial of the form

/��� ��� ��� ��� ,� �� � ���� � ����
� � ���� ���0��� (3.9)

Set

���� � � ���� ���� ��� � 	
�������� ���� ���

and

0��� �  ���� �������� � 	
�� ��������������
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Let

���� � �)�� �$����)�� �$���� �����)���� �$�����
�����)�� �$���

�� with )�� �$� �� �

0��� � �1��������1�������������1�����������
�����1�������

�� with 1����� �� ��

If � � ��, we can consider the following “real-imaginary” decomposition of ���� and0���:

���� � ����� � �����

0��� �0���� �0����

where

����� � )� � �$��� )��
� � �$��

� � ���

����� � �$� � )��� �$��
� � )��

� � ���

0���� � 1� � ����� 1��
� � ����

� � ���

0���� � ��� � 1��� ����
� � 1��

� � ����

Define

0���� �0�����0�����

Also, let ��" be the degrees of /��� ��� ��� ��� ,� �� and 0���, respectively. Multiplying

/��� ��� ��� ��� ,� �� by0���� and evaluating the resulting polynomial at � � ��, we obtain

/��� ��� ��� ��� ,� ��0
����� � ���� ��� ��� � ����� ���

where
���� ��� ��� � ����� � ��� � ���

�������

���� ��� � ����� � �������

����� � ������0������ ������0�����

����� �0
�
������0

�
� ����

����� �
�

�
�������0������ ������0������

����� � ��0
�
������0

�
� ������

Also, define

�
��� ��� �
���� ���

�� � ���
���
�

�

Let"��� �
 ��� ��� be as already defined. Denote 2 as leading coefficient of

/��� ��� ��� ��� ,� ��0
�����
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For a given fixed ��, let �� � �� � ���� ���� be the real, distinct finite zeros of �
��� ��� with

odd multiplicities. Also define �� � �� and �� � ��. Define a sequence of numbers

#�� #�� #�� ���� #� as

&�� ��

�������
������

�#�� #�� ���� #�� if"� � is even and 2 is purely real, or

"� � is odd and 2 is purely imaginary�

�#�� #�� ���� #���� if"� � is even and 2 is not purely real, or

"� � is odd and 2 is not purely imaginary�

where

for $ � �� �� ���� %� #� �

�
���� ��� if ��� is not a �� axis root of0 ����

���� otherwise�

Let string � � �#�� #�� ���� #�� or �#�� #�� ���� #���� in &����. Next, we lets 3��� denote the

signature associated with the string � as

3��� ��

������������
�����������

�

�
�#� � ����

��� � �
���	
���

#� � ����
����� � #�� � �������� �����

if" � � is even and 2 is purely real, or" � � is odd and 2 is purely imaginary.

�

�
��

���	
���

#� � ����
������ � �������� �����

if" � � is even and 2 is not purely real, or" � � is odd and 2 is not purely imaginary.

The set of strings in &����, with a prescribed signature 3 � / is denoted by &�����/�.

For a given fixed ��, we also define set of admissible strings for the complex PID stabilization

problem as

+ ����� � &������ � ��"
�������

Theorem 3.2 The extended PID stabilization problem, with a fixed ��, is solvable for given

complex polynomial ���� and0��� if and only if the following conditions hold:

a) + ����� is not empty, i.e., at least one feasible string exists and

b) There exists a string �, either � � �#�� #�� ���� #�� or �#�� #�� ���� #���� � + �����, and values

of �� and �� such that either �% � �� �� ���� � or �� �� ���� �� � for which0 ����� �� �

������� � ��� � ���
�
� ��������#� � �� (3.10)

Furthermore, if there exist values of �� and �� such that the above condition is satisfied

for the feasible strings ��, ��,..., � � + �����, then the set of stabilizing ���� ��� values

corresponding to the fixed ���� is the union of the ���� ��� values satisfying (3.10) for

��, ��,..., �.
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The following algorithm summarizes our discussion for finding PID controllers in the

case of complex polynomial.

Step 1. For the given ���� and 0���, compute the corresponding ������ ������ ����� and

�����.

Step 2. Determine the range of �� such that ���� ��� has at least�������
������

� � � ��0����� � ��� if" � � is even and 2 is purely real,

or" � � is odd and 2 is purely imaginary

� �� ��0����� �� if" � � is even and 2 is not purely real,

or" � � is odd and 2 is not purely imaginary

real, distinct finite zeros with odd multiplicities. The resulting ranges of �� for which

stabilizing ���� ��� values may exist. These ranges one called allowable ranges and

denote these ranges as  . After that, define these ranges of �� as �� # � �� �� ���� �.

Step 3. If there is no �� satisfying Step 2 then output NO SOLUTION and EXIT.

Step 4. Initialize � � � for  � �.

Step 5. Pick a range ���� ��� in  and initialize �� � ��.

Step 6. Pick the number of grid points� and set step� �
�	�

��� � ���.

Step 7. Increase �� as follows: �� � ���step. If �� � �� then GOTO Step 14.

Step 8. For fixed �� in Step 7, solve for the real, distinct finite zeros of ���� ��� with odd

multiplicities and denote them by �� � �� � ���� ���� and �� � �� and �� ��.

Step 9. Construct sequences of number #� for $ � �� �� �� ���� % as follows:

� If ������� � � for some $ � �� �� ���� %� �, then define #� � �

else

#� � ���� ��, for all other $ � �� �� ���� %� �

� If " � � is even and 2 is purely real, or " � � is odd and 2 is purely imaginary

then define #� and #� � ���� ��,

else define #� � � and #� � �.

With #�� #�� ���� #� defined in this way, define the set&���� as &���� �� �#�� #�� ���� #��
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Step 10. Determine the admissible strings � � �#�� #�� ���� #�� � &���� such that the following

equality holds

3��� ��

���������������
��������������

�

�
�#� � ����

��� � �
���	
���

#� � ����
����� � #�� � �������� �����

if" � � is even and 2 is purely real, or"� � is odd and 2 is purely imaginary.

�

�
��

���	
���

#� � ����
������ � �������� �����

if" � � is even and 2 is not purely real, or" � � is odd and

2 is not purely imaginary.

If there is no admissible string then GOTO Step 7.

Step 11. For an admissible string � � �#�� #�� ���� #��, determine the set of ���� ��� values that

simultaneously satisfy the string of linear inequalities

������� � ��� � ���
�
� ��������#� � �

�$ � �� �� ���� % for which #� �� �.

Step 12. Repeat Step 11 for all admissible strings ��� ��� ���� �� to obtain the correspond-

ing admissible ���� ��� sets ��� ��� ���� ��. The set of all stabilizing ���� ��� values

coressponding to the fixed �� is then given by

��� � ��
������

Step 13. GOTO Step 7.

Step 14. Set � � � � � and  � �. If � 
 � GOTO Step 5; else, terminate the algorithm.

3.3 Root Locus Technique to Narrow the Sweeping Range for ��

Consider the problem of determining the root locus of 4��� � �5 ��� � �, where 4���

and 5 ��� are real coprime polynomial and � varies from �� to �. Then, we make the

following observations:

1. The real breakaway points on the root loci of 4��� � �5 ��� � � correspond to real

multiple root and must, therefore, satisfy

�



� ���
����

�
��

� �
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i.e
4����� ���

��
� 5 ��������

��

4����
� �

the real breakaway points are real zeros of the above equation.

2. Let �� � �� � ��� � � be the distinct, finite values of � corresponding to the real

breakaway points ��, # � �� �� ���� 6 on the root loci of 4��� � �5 ��� � �. Also

define �� � �� and � 	� � �. Then ��, # � �� �� ���� 6 are multiple real roots of

4��� � �5 ��� � � and the corresponding �’s are the ��’s. We note that for � �

���� �� � ��, the real roots of 4��� � �5 ��� � � are simple and the number of real

roots of 4��� � �5 ��� � � is invariant.

3. If 4��� � �5 ��� �� � for all � � ���� ��	��, then the distribution of the real roots of

4��� � �5 ��� � � with respect to the origin is invariant over this range of � values.

The following procedure illustrates how the above observations can be used to deter-

mine the distribution of the real roots of 4��� � �5 ��� � � with respect to the origin as �

varies from �� to �.

Let

4��� � ���� � �	� � ����� � 
��� � �

and

5 ��� � � � �� � ��� � �

4����� ���
��

� 5 ��������
��

4����
� �

The breakaway points ��, which are the real zeros of the above expression, are:

�� � �� �� � ������� �� � �����
� �� � ��
���

and the corresponding finite ��’s (arranged in ascending order of magnitude)

�� � ����
���� �� � �������
� �� � �������

Furthermore, 4��� � �5 ��� has a root at the origin when

� � �� � �

Now, for � � ���� ��	�� and �� �� ���� ��	��, the distribution of the real roots of 4��� �

�5 ��� � � with respect to the origin is invariant. Thus, we can simply check an arbitrary

� � ���� ��	�� and determine the real root distribution of 4��� � �5 ��� � � with respect to

the origin, and this distribution is valid for all � in that interval.
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The real root distribution, with respect to the origin of 4���� �5 ��� � � for � belonging to

the different intervals is given below:

� � ��������
���� � 1 positive simple root

� � �����
�����������
� � 3 positive simple roots

� � ��������
��������� � 5 positive simple roots

� � ��������� �� � 3 positive simple roots

� � ����� � 2 positive simple roots

3.4 Summary

It has been shown that for finding the stabilizing PID gains for nominal plant, we need to

solve the problem in real polynomial stabilization. If we extend our problem for the case of

robust control, we need to solve three polynomial equations simultaneously, consist of real

polynomial stabilization, complex polynomial stabilization, and one condition equation. By

employing the procedure in this chapter, linear programming provides all admissible PID

controllers which stabilize system and satisfy robust performance specification. The most

important feature of this procedure is that it computationally characterizes the entire set of

the admissible PID gain values. The root locus technique can be used for reducing the search

are for finding the admissble ��, so that it will be make the computation time shorter.



Chapter 4

Numerical Examples

In this chapter, we will provide some numerical examples how to implement our procedure

in different control setup problem. We will present the numerical examples as consecutive

order from nominal control case to the robust control case.

In 	4.1, we will show the procedure for finding PID controller to make a given nominal

plant stable. In this section, for the reason of clarity, step by step procedure for finding PID

controller will be given explicitly. We will also compare the result with the well-known

Ziegler-Nichols method. Discussion in this section will be followed by the problem for

finding PID controller satisfy performance in the form of �� norm. In 	4.2, synthesis of

PID controller for a given plant with the presence of uncertainty in the model and satisfy a

given performance, will be given. The admissible set of PID gain ���� ��� ��� � will be shown

in 2D and 3D plot.

4.1 PID Stabilization for Nominal Plant

4.1.1 Step by Step Example

Controller Plant

�
���� ����

� � �

�

Figure 4.1: Nominal feedback control system.

Consider the problem of determining stabilizing PID gains for the plant ���� � ���
!��

where

���� � �� � ��� � �� �

 ��� � �� � ��� � ���� � ���� � ���� � ��� ��

The closed-loop characteristic polynomial is

Æ��� ��� ��� ��� � � ��� � ��� � ���
������ � ��������
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Thus � � 
 and" � �. Also

����
�� � ������� �	��

�� � �����  ���
�� � ���������������  	��

�� � �����������

and

����� � ����� � ��� ���� � ���

Multiply Æ��� ��� ��� ��� with � ����. Therefore, we obtain

Æ��� ��� ��� ����
����� �������� � ���� � �
�� � ���� � 	� � ��� � ���

������ � ��� � ��� � ���

� ������� � �	�� � ����� � 
��� � �� � �����
� � ��� � ��� � ���

so that

Æ���� ��� ��� ����
������ � ������ � ��� � ���

�������� � ������� � ��������

where

����� � �
�� � ���� � �
�� � ���� � 	��

����� � �
� � ��� � ��� � �

����� � ���� � �	� � ����� � 
��� � �

����� � �
 � �� � ��� � �

For instance, �� � ���, we have

�������� � ������ �������

� ���� � 
�� � ����� � ��	�� � �	��

Then the real, non-negative, distinct finite zeros of �
 ������� with odd multiplicities are

�� � �� �� � ����	�� �� � ������� �� � ������� �� � �������

Also define �� ��. Since"� � � �� which is even, and ������� � � and ������� � �,

�������� ������� � �

and

�������������������� � ���

it follows from Step 10 that every admissible string

� � �#�� #�� #�� #�� #�� #��

must satisfy

�#� � �#� � �#� � �#� � �#� � #������� � ��
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Hence the admissible strings are

�� � ���������� ����� ��

�� � ���� �� �� ����� ��

�� � ���� ����������� ��

�� � ���� ����� �� �� ��

�� � ��� ����� ���������

From Step 11, for 7� it follows that the stabilizing ���� ��� values corresponding to �� � ���

must satisfy the string of inequalities:

����������
���������

������ � ��� � ���
�
�������� � �

������ � ��� � ������������ � �

������ � ��� � ������������ � �

������ � ��� � ������������ � �

������ � ��� � ������������ � �

������ � ��� � ���
�
�������� � ��

Substituting for ��� ��� ��� ��� �� and �� in the above expressions, we obtain��������
�������

�� � �

�� � ����		�� � �������

�� � �������� � �����
	


�� � �������� � ��	��

�� � ����


�� � ���������

The set of values of ���� ��� for which last condition holds can be solved by linear program-

ming and is denoted by ��.

For 7�, we have ��������
�������

�� � �

�� � ����		�� � �������

�� � �������� � �����
	


�� � �������� � ��	��

�� � ����


�� � ���������

The set of values of ���� ��� for which the last condition holds can be solved by linear pro-

gramming and is denoted by ��.

Similarly, we obtain ���
��
�� � � for ��
�� � � for ��
�� � � for ��.
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Figure 4.2: The stabilizing set of ���� ��� values when �� � ���.

Then, the stabilizing set of ���� ��� values when �� � ��� is given by

������ � ��
�����

� �� � ���

The set ������ and the corresponding �� and �� are shown in Fig. 4.2.

By sweeping over different �� values and repeating the above algorithm at each stage,

we can generate the set stabilizing ���� ��� ��� values. This set is shown in Fig. 4.3.
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Figure 4.3: The set of stabilizing ���� ��� ���.
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4.1.2 Comparison with Ziegler-Nichols Method

Consider the problem of choosing stabilizing PID gains for the plant ���� � ���
!��

where

���� � ���� �

 ��� � ����� � ����� �

and ���� transfer function of PID controller, in the of

���� � �� �
�#

�
� ����

The closed-loop characteristic polynomial is

Æ��� ��� ��� ��� � � ��� � ��� � ���
������ � ��������

The task is to determine those values of ��, �� and ��, if any, for which Æ��� ��� ��� ���

is Hurwitz. To do so, first using the root locus technique presented in section 3.3, the sweep-

ing range of �� values is narrowed down to �� � ���� ����. Then by sweeping over

�� � ���� ���� and using the procedure in section 3.1, we obtain the stabilizing set of

���� ��� ��� values in Fig. 4.4.
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Figure 4.4: The stabilizing region of ���� ��� ���.

Now let us examine where in this plot, the parameters obtained from the Ziegler-

Nichols frequency response design would be located. For the plant of this example the

ultimate gain 8� � ���� and the ultimate period �� � ��	��. Hence, using the Ziegler-

Nichols frequency response formulas, we obtain �� � ����, �� � �����, and �� � ����	�.

Now for �� fixed at 0.63, the set of stabilizing ���� ��� values can be obtained from Fig. 4.4.
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This set is shown in Fig. 4.5. From Fig. 4.5, it is clear that for this example, the PID con-

troller parameters which is obtained by the Ziegler-Nichols frequency response method are

outside of the stabilizing region. It leads to closed-loop instability.
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PID via Ziegler−Nichols
PID via polynomial stabilization

Figure 4.5: The stabilizing set of ���� ��� values when �� � ����.

Again, we consider PID settings using the Ziegler-Nichols frequency response method

for the plant ���� where

���� �
�

�� � 	�� � �	�� � 
�� �
�

For this plant, the ultimate gain 8� � ���
�� and the ultimate period �� � 
�����. Hence,

using the Ziegler-Nichols frequency response formulas, we obtain �� � ��	��
, �� � ���
��,

and �� � ����
�. For �� � ��	��
, using idea in section 3.1, we are able to obtain the set

of all stabilizing ���� ��� values. This stabilizing set is shown in Fig. 4.6. From Fig. 4.6, it

shows that the PID controller parameters obtained by the Ziegler-Nichols frequency response

method are closed to the stability boundary. In this case, the resulting PID controller can be

destabilized by small perturbations in the controller coefficient model.
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Figure 4.6: The stabilizing set of ���� ��� values when �� � ��	��
.

4.1.3 PID Controller Synthesis Satisfying a Performance Specification

�

�

� ���

��������
� �

�

�

�

Figure 4.7: Feedback control system with a given performance.

Consider the plant ���� � ���
!��

where

���� � �� �

 ��� � �� � ����� ����

In this example, we consider the problem of determining the admissible PID controller gain

values for which ��� ���� ������ � �, where � ��� is the complementary sensitivity function:

� ��� �
����

� � ���� ������ ��

���� � ����� ���� � ����� � ���� ������ ��

and the weight� ��� is chosen as a high pass transfer function:

� ��� �
�� ���

� � �
�
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The difference from section 3.2 problem setup is that, in this case we only have one weighting

function, so that we only deal with one complex polynomial. Before we state condition for

solving our problem, let state the following lemma.

Lemma 4.1 Let + ��� � �� ��
!� ��

be a stable and proper rational function, where �" ��� and

 " ��� are polynomials with �����" ���� � 9. Then ��+ ������ � � if and only if

a) ��#� � ��#�;

b)  " ��� � 	
���" ��� is Hurwitz for all , � ��� �.�.

where �# and �# are the leading coefficients of �" ��� and " ���, respectively.

To represent various robustness specifications, define �$���� ��� ��� ��� as:

�$���� ��� ��� ��� �
&��� � ����

� � ��� � ���(���

� ��� � ����� � ���� �������

for some real polynomial &��� and (���. Define the�� optimization criteria to be

��� ����$���� ��� ��� ������ � �

where � ��� is stable weighting function. Let the weighting function� ��� � %���
%���

, where

����� and ����� are coprime polynomials; moreover, ����� is Hurwitz. For notational

simplicity, we write the closed-loop characteristic polynomial

'��� ��� ��� ��� � � ��� � ��� � �� � ���
������

and

/��� ��� ��� ��� ,� �� � ������� ����	
�������&���������

��������������������	
�������(�����

Let

���� � ������ ��� � 	
�������&���

and

0��� � ��������� � 	
�������(����

Based on Lemma 4.1, we are already in the position to recast synthesis of �� PID con-

troller into the simultaneous polynomial stabilization. Given a weighted closed-loop transfer

function of the form

� ����$���� ��� ��� ��� �
�����

�����

&��� � ����
� � ���� ���(���

� ��� � ����� � ���� �������
�
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Using the Lemma 4.1 and the same idea which already present in section 3.2, we know that

the admissible ���� ��� ��� values exist if and only if the following conditions hold

a) '��� ��� ��� ��� is Hurwitz;

b) /��� ��� ��� ��� ,� is Hurwitz for all , � ��� �.�;

c) � � ����$���� ��� ��� ��� �� �.

Substitute the values with our numerical example equations, we get

a) '��� ��� ��� ��� � ���� � ����� ���� � ����� � ���� ������ �� is Hurwitz;

b) /��� ��� ��� ��� ,� � ��� � ����� � ���� � ���� � ����� � ��� � ������ � ���� � �� �

	����� ������� ��� is Hurwitz for all , � ��� �.�;

c) �� ���� ���� �
��� ��
��	�

��� � �.
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Figure 4.8: The admissible ���� ��� of ���� ������.

For condition �)�, with a fixed ��, for instance �� � �����, and by setting ���� � ���� �

����� ���� and0��� � �� �, and using algorithm in section 3.2, we obtain the admissible

set ���� ������ for which the closed-loop system is stable. ���� ������ is shown in Fig. 4.8.

Now fixing �� � �����, setting ���� � ��� � ���� � �� and 0��� ,� � �� � ���� � �� �

	����� ������� ��, sweeping over , � ��� �.� and using the algorithm is section 3.2 at each

stage, we obtain the admissible set ���� ����� is shown in Fig. 4.9. The condition ��� gives the

constraint that �� � ����. Hence the admissible set ���� ����� is given by

���� ����� � ����� ��� � �� � �� �� � ������
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Figure 4.9: The admissible ���� ��� of ���� ������ .

For �� � �����, the admissible set of ���� ��� values for which ��� ���� ������ � � is the

intersection of ���� �����, ���� �����, and ���� �����. The solution region for this intersection is

the Fig. 4.9 itself. By using root locus technique in section 3.3, it determine that a necessary

condition for existance of stabilizing ���� ��� values is that �� � ������ � ����. Thus,

by sweeping over �� � ������ � ����, and repeating the above procedure, we obtain the

admissible ���� ��� ��� values for which ��� ���� ������ � �. The entire admissible set is

shown in Fig. 4.10.
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Figure 4.10: The set of admissible ���� ��� ���.
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4.2 Robust PID Tuning for Uncertain System

�

�

�

�

�

����

�����

�

���������

����
�

�
�

Figure 4.11: Feedback control system for a given uncertain model and robust performance.

Consider the plant ���� � ���
!��

where

���� � �� ��

 ��� � �� � �� ��

The weighting functions are chosen as:

����� �
���

�� ���

����� �
�� ���

�� �
�

Then, the sensitivity function and complementary sensitivity function are

���� ��� ��� ��� �
���� � �� ��

���� � �� �� � ����� � ���� ������ ���

� ��� ��� ��� ��� �
����

� � ���� ������ ���

���� � �� �� � ����� � ���� ������ )��

The admissible ����� � ��� � ��� values exist if and oly if the following conditions hold

a) '��� ��� ��� ��� � ���� � ����� ���� � ����� � ���� ������ ��� is Hurwitz;

b) /��� ��� ��� ��� ,� �� � ���� ������� ����� � �� �� � 	����������� ����� � �� �� �

����
�� ���� ������������������� ���� 	������������������� ���� is Hurwitz

for all , and � � ��� �.�;

c) � ��������� ��� ��� ��� � � � ������ ��� ��� ��� ��� �� �.

With a fixed ��, for instance �� � ����, and using procedure in 3.2, we obtain

the admissible set ������� sketch in Fig. 4.12. By using root locus technique, we can de-
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4.3 Summary

In this chapter, for the sake of clarity, we have shown the step-by-step implementation of

real polynomial stabilization algorithm. We also compared the result with PID tuning based

on Ziegler-Nichols method. On this comparison we showed that, the Ziegler-Nichols PID

sometimes gives fragile controller, and even cause the system to be unstable. However, for

PID tuning via polynomial stabilization, we will have the all admissible region that stabilze

the system, so that we have freedom of choose PID gain which is not fragile controller.

We also presented numerical examples on sample problems. These numerical exam-

ples could be solved by the polynomial stabilization method after some modification on

problem formulation. First, we faced the problem for finding admissible PID gains satisfy-

ing the nominal performance in the form of �� norm. Second, we dealt with the problem

for finding admissible PID gains satisfying the robust performance. By using polynomial

stabilization approach, we can characterize the all admissible PID gains satisfying nominal

and robust performance.



Chapter 5

Robust PID Controller Synthesis for Belt Conveyor System

In this chapter, we will discuss about mathematical model of servo-driven belt conveyor

system. The physical plant is the laboratory-scale device for experiment activity in Control

System Research Laboratory of Chulalongkorn University. Our discussion in this chapter

will begin with the nominal model of servo-driven belt conveyor system in 	5.1. After that in

	5.2, we will come out with result of weighting function represent uncertainty of the model.

Then, we will apply our PID tuning procedure for belt conveyor system. The objective of

our design is to make the system stable and satisfy a given performance, in spite of there

is exist the uncertainty of the model. First in 	5.3 We will carry explicitly the procedure to

find PID gains that can stabilize the system. In section 	5.4 we would like to find the robust

PID tuning satisfy a given robust performance and plant uncertainty. The solution of this

procedure needs us fulfill three given condition.

5.1 Nominal Model of Servo-Driven Belt Conveyor System

Figure 5.1: Physical components of belt conveyor system.

Consider the belt conveyor system depicted in Fig. 5.1, which consists of the belt lying on the

iron plate with two shafts at the end. A DC motor is used to drive the belt through the shaft to

transfer a load mass to the desired position. The system dynamics of belt conveyor systems

can be divided into two mutual parts which are the motor and belt dynamic. Therefore, in

this work, we consider the belt dynamic the feedback loop from the motor angle to the motor
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torque itself as shown in Fig. 5.2, where the input 
 is the voltage and the output � is the

motor angle. The uncertainty is considered either of the following.

� Parametric uncertainty of motor

� Zero-pole uncertainty of load

� Unmodelled dynamics uncertainty of load

� The existence of nonlinearities such as friction.

�
�

�

�$

� �

�

� 	
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Figure 5.2: The belt conveyor system diagram including model uncertainty and friction.

We can simplify the model of belt conveyor systems on Fig. 5.2 into Fig. 5.3, where ��

is nominal model, �� is the uncertainty weighting function. The complete works on this

section can be found in [25]. The motor parameters are the data from a manufacturer [26]

��

	

�

�

�

�
�

Figure 5.3: Plant model with multiplicative uncertainty.

;� � ���  � �� � ����� ��
�� mH,

:� � ���� ��
�� kg ���� (� � ���� ��

�� N �m � s, (5.1)

8�
� � ����� ��

�� N �m/A, 8�
� � ����� ��

�� V/rad/s.

According to the parameter values in (5.1), the closed-loop transfer function from 
 to �

without load is

��� �
���	�� ���

�� � ����
�� � 
�	�	� ����
�
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Suppose that, the load dynamic transfer function is

�� �
���� ��

�� � ���� ���
�

Therefore, the transfer function including the load dynamic is

� �
������� ������ � �	�
��� ������ ������� ����

�� � 
�
���� � ������� ������ � ������������� � ������� ������ ���	��� ����
� (5.2)

Many various identification methods are applied to belt conveyor system where the last trans-

fer function is assumed as the plant transfer function [25]. After system identification, we

get model of belt conveyor with load in form of the state space expression.

� �

�
�������

� � � � �

� � � � �

� � � � �

� � � � �

������� � ��� ������� � ��� ������� � ��� ������� � ��� �����	���

�
�������

� �
�

�	�� � ������ � ��� ������ � ��� � ��	��� � ��� ������ � ����

�&

� � �� � � � ��� � � ��

(5.3)

5.2 Model Uncertainty of Belt Conveyor System

In this section, we will consider only the uncertain model of the belt conveyor system. The

model uncertainty is determined under the various conditions as follow.

� Parametric uncertainty of motor: all parameters of the motor are varied by ����.

� Zero-pole uncertainty of load: zeroes and poles of transfer function of the load dy-

namic are varied by ����.

� Unmodelled dynamics uncertainty of load: The load transfer function is multiplied by

the first-order unmodelled dynamic.

� The existence of the nonlinearity such as friction.

We calculate the parametric uncertainty of the system by varying motor parameters,;��� :�8�� 8�

����. Therefore, the parameters are in the form

; � ;��� � ��� � � ���� � ���

: � :��� � ��� ( � (��� � ���

8� � 8���� � ��� 8���� � ���
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where � is a real uncertainty such that ��� � ���. After we proceed to find weighting
function for uncertainty of model, we get

�� �
�������  �������  ����
	 � ������  ���	� � ������  ����	 � ���� ������ � ���

��  ����
��  
�����  ���
�� � ������  ���	�
 � ����� ���
� � ��
�

5.3 PID Stabilization for Nominal Model of Belt Conveyor System

Consider our problem setup

Belt ConveyorPID Controller

���� ����
� � �

�

�

Figure 5.4: Control configuration of stabilizing belt conveyor system.

The transfer function of belt conveyor system (including the load dynamic), denoted as  is

given as (5.3). If we change the state space representation in (5.3) into polynomial transfer

function

� �
����

 ���

�
����� � ������ � ������� ������ � �����
� ����� ������ ���

�� � ������� � ������� ������ � �����	� ������ � ������� ������ ��

� ���
�

The closed-loop characteristic polynomial is

Æ��� ��� ��� ��� � � ��� � ��� � ���
������ � ��������

Thus � � � and" � �. Also

����
�� � ����� � ������� ������ � ������ ����

�	��
�� � ������� � �����
� ����

 ���
�� � ������� � �����	� ������ � ��

� ����

 	��
�� � �� � ������� ������ � ������� �����

and

����� � ������ � ������� ������ � ������ ����� ��������� � �����
� �����
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Multiply Æ��� ��� ��� ��� with � ���� so that

Æ���� ��� ��� ����
������ � ������ � ��� � ���

�������� � ������� � ��������

where

����� � � ������ � ������� ������ � ����	
�� ������� � ���		��� �������

� ����	�	� �������

����� � ������� � ������
� ����� � ���	��� ������� � �	�
��������

� ���������

����� � ���	��	� ������� ������	� ����� � �������� ������� � �����
� �������

� �	����������

����� � ������� � ������
��� � ������� ������� � �	�
��� �������

� ������� ������

The range of allowable �� is determined by using root loci technique to be ����
���� ��������.

For instance, �� � ���, we have

���� ���� � ����� � ��������

� ���	���� ������ � �����
�� ����� � ����
��� ������� � �������� �������

� ����

	� ������

Then the real, non-negative, distinct finite zeros of �
 ��� ���� with odd multiplicities are

�� � �� �� � ������� �� � �������

Also define �� ��. Since"� � � �� which is even, and ������� � � and ������� � �,

�������� ������� � �

and

��������������� ����� � ��

it follows from Step 10 that every admissible string

� � �#�� #�� #�� #��

must satisfy

�#� � �#� � �#� � #������ � ��
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Hence the admissible string is

������ �����

From Step 11, for �� it follows that the stabilizing ���� ��� values corresponding to �� � ��

must satisfy the string of inequalities:

�����
����
������ � ��� � ������������ � �

������ � ��� � ������������ � �

������ � ��� � ������������ � �

������ � ��� � ������������ � �

Substituting for ��� ��� ��� �� in the above expressions, we obtain�����
����

�� � �

�� � ������	� ��
���� � �����


�� � ���		��� ��
���� � �������� ��

�

��� � ����
���

The set of values of ���� ��� for which last condition holds can be solved by linear program-

ming and is denoted by ��. The set stabilizing ���� ��� ��� and the corresponding �� are

shown in Fig. 5.5.
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Figure 5.5: The set of ���� ��� gains of conveyor system satisfy condition (a), when �� � ���.
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Figure 5.6: The stabilizing ���� ��� ��� gains of belt conveyor system.

By sweeping over different �� values and repeating the algorithm at each stage, we

can generate the set stabilizing ���� ��� ��� values. This set is shown in Fig. 5.6. To prove

our controller gives us the right answer, we will pick the one point inside and ouside the

stabilizing region of PID. The chosen point inside the region is ��� � ���� �� � ��� �� � ����.

The closed-loop poles of this stable system is shown in Fig. 5.7. The chosen point outside

the region is ��� � ���� �� � ���� �� � �����. The closed-loop poles of this unstable system

is shown in Fig. 5.8.
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Figure 5.7: The closed-loop poles of belt nominal conveyor system when �� � ���� �� �

��� �� � ���.
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Figure 5.8: The closed-loop poles of nominal belt conveyor system when �� � ���� �� �

���� �� � ����.

Our belt conveyor system has ultimate gain 8� � ������, and ultimate period �� � �����.

Hence, by using Zieler-Nichols formula, we obtain �� � 	������ �� � 

����, and �� �

������. We compare the Ziegler-Nichols PID gain with the PID obtained by polynomial

stabilization at the same value of ��, shown in the Fig. 5.9. We can see that PID gain from

the Zieler-Nichols method closed to unstable region, so that the controller is fragile when

there is uncertainty of the plant model.
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Figure 5.9: Comparison PID controllers via polynomial stabilization and via Ziegler-Nichols

for belt conveyor system.
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5.4 Robust PID Tuning for Belt Conveyor System

Consider our problem setup in Fig. 5.10.

PID Controller Belt Conveyor

�

�

����

�����

�

����

����

�����

�

� �
��

�

Figure 5.10: Control configuration of robust performance for belt conveyor system.

We raise again transfer function of belt conveyor system:

� �
����

 ���

�
����� � ������ � ������� ������ � �����
� ����� ������ ���

�� � ������� � ������� ������ � �����	� ������ � ������� ������ ��

� ���
�

and the weighting function represent uncertainty of the system (��):

�� �
��

��

�
�������  �������  ����
	 � ������  ���	� � ������  ����	 � ���� ������ � ���

��  ����
��  
�����  ���
�� � ������  ���	�
 � ����� ���
� � ��
�

We set our performance specification as follows:

� First-order system.

� DC gain is 1.

� Time constant is 1 sec.

Therefore, our weighting function�� has the form of:

�� �
��

 �
�

�

�� �
�

The procedure for determining the set of ���� ��� ��� values satisfy condition (a), (b),

and (c) is already presented in section 3.2. By using root loci technique, it is determined that a

necessary condition for existence of stabilizing ���� ��� values is that �� � ����
���� ��������.
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For any fixed �� � ����
���� ��������, we use algorithm in section 3.1 to solve condition (a)

and algorithm in section 3.2 to solve condition (b). Then for a fixed ��, we obtain the set of

all ���� ��� values for which �� ���������� ��� ��� ����� ������� ��� ��� ��� ���� ��� � �

by taking intersection of the set ���� ��� values satisfying condition (a), (b), and (c). If fixing

�� � ���, for condition (a) we get the solution which is the same with solution for stabiliz-

ing ���� ��� ��� when �� � ���, see Fig. 5.5. For condition (b) we can see the solution in

Fig. 5.11.
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Figure 5.11: The set of ���� ��� gains satisfy condition (b), when �� � ���.

The intersection condition (a) with (b) is sketched in Fig.5.12, and we can conclude

that the solution of of our PID gains when �� � ��� is actually the solution for condition (b)

alone. Remark on this result is the computation time for obtaining the solution region via
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Figure 5.12: Intersection of condition (a) and (b), when �� � ���.
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polynomial stabilization increases exponentially with the increasing of the order of polyno-

mial and resolution of , and � (i.e., how many points between � and �. that are sampled).

Ideally, condition (b) indicates every , and � � ��� �.� is Hurwitz, we should take resolution

small enough for this purpose. The smaller the resolution is, the finer the solution region that

we will have. To test whether our resolution point small enough, we can test by choosing

some points within the solution region, and checking whether they satisfy our robust perfor-

mance. Here, the test of robust performance condition is that the magnitude of frequency

response must be less than 1 for all frequencies. If these controller gains satisfy our robust

performance test, we can guarantee that our chosen resolution gives us the actual solution

region; if not, we should take finer resolution.

In this calculation, the resolution of , is chosen as � � �.��� � �. and that of �

with the same amount, then computation time was approximately four hours. We obtain

the admissible PID region plotted in Fig. 5.11. . The post design test in frequency domain

shows that not all the points satisfy robust performance condition. In particular, most gains

satisfy robust performance condition, for example, a PID controller having ��� � ���� �� �

����� �� � �� passes the frequency response test as shown in Fig. 5.13. The step response of

the closed-loop system based on the chosen PID controller is illustrated in Fig. 5.14. The plot

shows that the settling time of the closed-loop system is faster than the design specification.

Note that the time response is closely related to the fact that there are some poles which are

far away from imanigary axis, and the others which are near the imaginary axis. The control

signal at ��� � ���� �� � �� �� � �����, is shown in Fig. 5.15. The control input signal is not

exceed ��� Volt, so it is quite reasonable to implement this control input. Note that there are

certain gains in the admissible region which do not satisfy the robust performance condition.

Hence, it is recommended to have a finer resolution of , and � for the complex polynomial

stabilization.
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Figure 5.15: Control input from PID controller at �� � ���� �� � �� �� � ����.

To test the robustness our controller, we perturb the parameters in (5.2) to����, and����.

and perform the frequency response test which is shown in Fig. 5.16. Here, we observe

that the peak magnitue of frequency response is less than � for all frequencies. The step

responses of the perturbed systems are displayed in Fig. 5.17. The perturbed systems have

faster settling time which is close to the design specification. The control inputs from the

perturbed system together with nominal model and model from system identification, are

shown Fig. 5.18. Our control inputs are bounded within acceptable range.
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Figure 5.16: Frequency responses of the nominal and perturbed systems at �� � ���� �� �

�� �� � ����.
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Figure 5.17: Step responses of the nominal and perturbed systems at �� � ���� �� � �� �� �
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Figure 5.18: Control input from PID controller for the nominal and perturbed systems at

�� � ���� �� � �� �� � ����.

5.5 Summary

In this chapter, we designed nominal and robust PID controllers for belt conveyor systems.

For the nominal system, we characterized all stabilizing PID gains for the belt conveyor sys-
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tem. We plot the admissible region of PID controllers both in 2D and 3D. It is observed that

the Ziegler-Nichols PID controller is quite near unstable region. Subsequently, we use the

nominal model and uncertainty of the system to obtain the admissible PID gains satisfying

the robust performance. A PID controller is chosen from the admissib le PID region and

we conduct robustness tests in the frequency and time domain for the nominal and perturbed

systems. The frequency responses indicate that robust performance condition is achieved,

whereas the step responses show that the performance is reasonably following the design

criteria. In addition, the PID controller gives acceptable control inputs. It is remarked that

the computation time for sovling complex polynomial is much longer than solving real poly-

nomial. This computation time will increase exponentially with respect to an increase in the

plant’s order and the finer resolution of , and �.



CHAPTER VI

CONCLUSIONS

6.1 Summary of Results

In this thesis, we deal with the problem to design PID controllers that stabilize the dynami-

cal system subject to uncertainty. In Chapter 2, the system performance has been defined in

terms of
�� norm and we have reviewed the conditions for nominal performance, robust sta-

bility and performance. In addition, we have provided theirgraphical interpretations based

on the Nyquist plots. In Chapter 3, we have explained the polynomial stabilization approach

and provided a systematic algorithm of polynomial stabilization. It hase been showed that

finding the stabilizing PID gains for a nominal plant is equivalent to solving the real poly-

nomial stabilization problem. Extending the result to the case of robust conntroller design,

we need to solve three conditions simultaneously, involving real and complex polynomials.

By employing the mathematical procedure, linear programming provides admissible PID

controllers which not only stabilize the uncertain systemsbut also achieve specified robust

performance specification. The important aspect of this approach is that the computational

technique characterizes the set of admissible PID gain values.

Chapter 4 includes a number of numerical examples on polynomial stabilization. We

have developed MATLAB programs and shown step-by-step procedure to determine stabiliz-

ing PID controllers for real and complex polynomials. Then,we compare the design results

with the PID parameters obtained by the Zigler-Nichols method. It is clearly seen that the

PID gains from the Ziegler-Nichols method are quite fragileand sometimes cannot stabilize

the system under small perturbation. Because solving the polynomial stabilization yields

the admissible region of stabilizing PID gains, we have freedom to choose appropriate PID

gains so that to avoid fragile gains. Another example aims toobtain controllers satisfying

nominal performance and involving three simultaneous conditions. These conditions consist

of real polynomial (for obtaining stability of nominal system), and the complex polynomial

and additional condition (for meeting nominal performance). The resulting PID gains were

presented in both 2D and 3D plots. The final example dealt withperformance for the uncer-

tain system, so the design problem is to find the PID gains satisfying the robust performance.

Like previous example, this robust performance problem canalso be solved using three si-

multaneous equations. There is a small difference between the second and third problems.

That is the forms of real and complex polynomials.
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In Chapter 5, we have described the mathematical model of belt conveyor system as

well as its uncertainty. Then, we applied the MATLAB programs to solve the real polynomial

stabilization and obtained the stabilizing PID controller for nominal condition. It is observed

that PID gains from the Zieger-Nichols method is rather close to boundary of the admissible

PID region . Subsequently, we applied the design approach to search for robust PID con-

trollers. Using the real and complex polynomial stabilization, robust PID gains are obtained

at specified value of ��. Note that a finer resolution of , and � will ensure the satisfaction of

robust performance.

6.2 Recommendations for Future Works

� Extension to Multi-Input-Multi-Output (MIMO) system:

In this thesis, we have shown how to design nominal/robust PID controllers for a class

of SISO systems. However, in many practical systems, there are many problems re-

lated to MIMO systems. The question how to generalize the procedure of MIMO

polynomial stabilization is still open.

� Extensions to arbitrary fixed order controllers:

We have shown a technique to design nominal and robust PID controllers. It is inter-

esting to extend the research to design controllers having the form of arbitrary order of

controllers. As a result, there will be many more candidates which satisfy the design

specification.

� Extension of other polynomial stabilizations:

We have the systematic ways to PID controller synthesis for polynomial stabilization.

This fact can bring us to other applications related to polynomials, such as synthesis

of PID controller for discrete time systems. We may also consider synthesis of PID

controllers for continuous-time systems with time delay. Another example is minimum

decay rate problem, i.e., that is to find PID controllers that make the closed-loop poles

to the left half plane with a specified value of the negative axis. There are many

problems that can be dealt within this approach, as long as we can convert the problems

in form of polynomial stabilization. Some papers deal with this issue can be found

in [27, 28, 29, 30, 31], and [1].

� Programming efficiency:

In this work, the computational time was rather long when a high order of polynomial

was considered. Therefore, there is a need to develop a more efficient programming,

or an intermediate process which can reduce the order of system polynomial before

coping with the stabilization problems.
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