การพัฒนาระบบนำส่งยาที่ควบคุมการปลดปล่อยด้วยระบบออสโมซิสโดยใช้แคปซูลเจลาตินแข็ง ชนิดครอสลิงก์และไม่ครอสลิงก์

นางสาว นิจรัตน์ วิเชียรประสิทธิ์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต สาขาวิชาเภสัชอุตสาหกรรม ภาควิชาวิทยาการเภสัชกรรมและเภสัชอุตสาหกรรม คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2552 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

DEVELOPMENT OF OSMOTICALLY CONTROLLED DRUG DELIVERY SYSTEM USING CROSSLINKED AND NON-CROSSLINKED HARD GELATIN CAPSULES

Miss Nijarat Wichianprasit

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Pharmacy Program in Industrial Pharmacy Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmaceutical Sciences Chulalongkorn University Academic Year 2009 Copyright of Chulalongkorn University

Thesis Title	DEVELOPMENT OF OSMOTICALLY CONTROLLED
	DRUG DELIVERY SYSTEM USING CROSSLINKED
	AND NON-CROSSLINKED HARD GELATIN CAPSULES
Ву	Miss Nijarat Wichianprasit
Field of Study	Industrial Pharmacy
Thesis Advisor	Associate Professor Poj Kulvanich, Ph.D.

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

(Associate Professor Pintip Pongpech, Ph.D.)

THESIS COMMITTEE

Kraisri Carprey Chairman

(Associate Professor Kraisri Umprayn, Ph.D.)

P. Icwanid Thesis Advisor

(Associate Professor Poj Kulvanich, Ph.D.)

2 Chatchawalsaisin Examiner

(Jittima Chatchawalsaisin, Ph.D.)

Phanghu Wattanaarrah Examiner

(Phanphen Wattanaarsakit, Ph.D.)

Sunty. Commetweeport External Examiner

(Associate Professor Sontaya Limmatvapirat, Ph.D.)

นิจรัตน์ วิเขียรประสิทธิ์ : การพัฒนาระบบนำส่งยาที่ควบคุมการปลดปล่อยด้วยระบบ ออสโมซิสโดยใช้แคปซูลเจลาตินแข็งขนิดครอสลิงก์และไม่ครอสลิงก์. (DEVELOPMENT OF OSMOTICALLY CONTROLLED DRUG DELIVERY SYSTEM USING CROSSLINKED AND NON-CROSSLINKED HARD GELATIN CAPSULES) อ.ที่ปรึกษาวิทยานิพนธ์หลัก : รศ. ดร. พจน์ กุลวานิซ, 172 หน้า.

วัตถุประสงค์ของงานวิจัยนี้เพื่อศึกษาลักษณะการปลดปล่อยยา จากระบบนำส่งยาที่ควบคุมการ ปลดปล่อยด้วยระบบออสโมซิสที่ใช้เปลือกแคปฐลเจลาตินแข็งขนิดครอสลิงก์ และไม่ครอสลิงก์ โดยใช้ยาดิล ไทอะเซมไฮโด่รคลอไรด์ซึ่งเป็นยาที่มีค่าการละลายน้ำสูง และยาละลายน้ำโพรพราโนลอลไฮโดรคลอไรด์ เป็น ยาต้นแบบ สารก่อแรงดันออสโมติกใช้โซเดียมคลอไรด์ โดยมีแล็กโทสเป็นสารเพิ่มปริมาณ การเตรียมครอสดิงก์ แคปฐลใช้การรมแคปฐลด้วยไอฟอร์มาลดีไฮด์ เตรียมระบบน้ำส่งยาโดยบรรจุผงผสมของด้วยาและสารช่วยลงใน แคปชูล เบอร์1 ทำการเคลือบแคปชูลด้วยสารละลายไฮดรอกซีโพรพิลเมทิลเซลลูโลส และเคลือบทับด้วย จากนั้นจึงนำแคปฐลมาเจาะรที่ส่วนหัว สารละลายเขลลูโลสแอขิเตต การปลดปล่อยยาทำการศึกษาใน น้ำ สารละลายโซเดียมคลอไรด์ที่มีความเข้มข้นแตกต่างกัน และลารละลายที่มีความเป็นกรดเบลแตกต่างกัน แต่ มีความแรงไอออนเท่ากัน เวลาเริ่มปลดปล่อยยาของระบบน้ำส่งยาที่ใช้แคปฐลขนิดครอสลิงก์ช้ากว่าระบบที่ใช้ สำหรับระบบนำส่งยาดิลไทอะเรมไฮโดรคลอไรด์ที่ใช้แคปฐลทั้งสองแบบสามารถ แคปฐลชนิดไม่ครอสลิงก์ ปลดปล่อยยาได้นานประมาณ 9 ชั่วโมง และสามารถปลดปล่อยยาใกล้เคียงลำดับศูนย์ (zero-order) ได้ ประมาณร้อยละ 80 ของปริมาณยาทั้งหมด (R²>0.9) อัตราการปลดปล่อยยาจากระบบน้ำส่งยาที่ใช้แคปซูลทั้ง 2 แบบมีลักษณะคล้ายกัน ในส่วนของระบบน้ำส่งยาโพรพราโนลอลไฮโดรคลอไรด์ที่ใช้แคปซลไม่ครอสลิงก์และ ครอสลิงก์สามารถปลดปล่อยยาได้นานประมาณ 9 ชั่วโมง และ 12 ชั่วโมงตามลำดับ และสามารถปลดปล่อยยา ใกล้เคียงลำดับศูนย์ (zero-order) ได้ประมาณร้อยละ 90 ของปริมาณยาทั้งหมด (R²>0.9) พบว่าระบบที่ใช้ แคปฐลครอสลิงก์จะมีอัตราการปลดปล่อยยาโพรพราโนลอลใกล้เคียงลำดับศูนย์มากกว่า และความแปรปรวน ของการปลดปล่อย ณ จุดเวลาต่างๆน้อยกว่า ในขณะที่อัตราการปลดปล่อยยาดิลไทอะเซมไฮโดรคลอไรด์ จาก ระบบที่ใช้แคปซูลทั้งสองแบบมีความคล้ายคลึงกัน อาจเนื่องมาจากค่าการละลายที่สูงกว่าของยาดิลไทอะเซม โดยความแรงไอออนในสารละลายมีผลต่อการปลดปล่อยยา ไฮโดรคลอไรด์ แต่ความเป็นกรดเบสของ สารละลายไม่มีผลต่อการปลดปล่อยยา

ภาควิชา	วิทยาการเกล้ชกรรมและเกล้ชอุตสาหกรรม	ลายมือชื่อนิสิต	โกร์ตน์
สาขาวิชา	เกล้ชอุตสาหกรรม	ลายมือชื่ออ.ที่ปรึกษ	าวิทยานิพนธ์หลัก 🛫
ปีการศึกษ	1. 2552		

5076572633 : MAJOR INDUSTRIAL PHARMACY KEYWORDS : OSMOTICALLY CONTROLLED DRUG DELIVER SYSTEM / HARD GELATIN CAPSULE/ FLUIDIZED BED / CROSSLINKED/ CELLOLUSE ACETATE

NIJARAT WICHIANPRASIT : DEVELOPMENT OF OSMOTICALLY CONTROLLED DRUG DELIVERY SYSTEM USING CROSSLINKED AND NON-CROSSLINKED HARD GELATIN CAPSULES. THESIS ADVISOR : ASSOC. PROF. POJ KULVANICH, Ph.D., 172 pp.

The aim of this study was to explore the release characteristics of an elementary osmotic pump capsule (OPC) by using a crosslinked and a noncrosslinked hard gelatin capsule shell. The influences of drug solubility, film thickness and orifice size on drug release from the system were examined. Diltiazem hydrochloride (freely water soluble drug) and propranolol hydrochloride (water soluble drug) were used as the model drugs. Sodium chloride was used as the osmotic agent. Crosslinked hard gelatin capsules were prepared by controlled exposure to formaldehyde vapours. The OPC was prepared by filling the capsule No. 1 with the mixture of the model drug (90 mg), lactose and sodium chloride. Core capsules were coated using hydroxypropyl methylcellulose as subcoating and cellulose acetate as the semipermeable membrane; then the coated capsule was drilled on the rounded end position. Drug release studies were conducted using water, different ionic strength and pH solutions with isotonicity as the dissolution media. Lag time of drug release from the OPC using the crosslinked capsule was longer than that the non-crosslinked capsule shell. Diltiazem hydrochloride OPC using the non-crosslinked and crosslinked capsules could prolong drug release about 9 hours and closed to zero-order drug release rate up to 80 % of drug release (R²>0.9). Propranolol hydrochloride OPC using a non-crosslinked capsule and a crosslinked capsule could prolong drug release about 9 and 12 hours, respectively. About 90 % of the drug was released as zero-order rate for propranolol hydrochloride OPC ($\mathbb{R}^2 > 0.9$). It was found that propranolol hydrochloride OPC using the crosslinked capsule shell provided less fluctuations of release rate at various time intervals than using the non-crosslinked capsule. But the characteristics of release rate at various time points of diltiazem hydrochloride OPC prepared using different types of capsule shell was apparently similar. This might be attributed to the higher water soluble property of diltiazem hydrochloride. Ionic strength of dissolution media had effect on drug release of OPC. But drug release of OPC was independent of pH of dissolution media.

Department :	Pharmaceutics and Industrial Pharmacy	Student's Signature	มีกรีอาย์
Field of Study :	Industrial Pharmacy	Advisor's Signature	-n
Academic Year :	2009		

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Associate Professor Poj Kulvanich for his advice, guidance and encouragement. His kindness, patience and understanding are also deeply appreciated.

I also wish to express deep appreciation to all members of the thesis committee for spending their times to be on my thesis committee and for their suggestions and comments.

I would like to express my infinite thanks and deepest gratitude to my friends and staff members of the Department of Pharmaceutics and Industrial Pharmacy for their assistance and encouragement.

I would like to acknowledge the Thailand Research Fund and the Graduate School, Chulalongkorn University for financial support through the TRF Master Research Grants (Grant No. MRG-WII525S003) and the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund).

The other special thank to Siam Bheasach Co., Ltd for supplied the active ingredient, diltiazem hydrochloride and CAPSUGEL Co., Ltd for supplied the hard gelatin capsule to my study.

Finally, I would like to express my thanks to my family for their assistance, care cheerfulness and encouragement.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

CONTENTS

Page

THAI ABSTRACT ^{1V}		
ENGLISH ABSTRACT v		
ACKNOWLEDGEMENTS vi		
CONTENTS vii		
LIST OF	TABLES	viii
LIST OF	FIGURES	xix
LIST OF ABBREVIATIONS xx		xxvii
CHAPTI	ER	
Ι	INTRODUCTION	1
II	LITERATURE REVIEW	3
III	EXPERIMENTAL	25
IV	RESULTS AND DISCUSSION	41
V	CONCLUSIONS	88
REFERENCES		90
APPENDICES		95
Ι	APPENDIX A	96
II	APPENDIX B	104
III	APPENDIX C	114
IV	APPENDIX D	115
V	APPENDIX E	156
VITAE.		172

จุฬาลงกรณ์มหาวิทยาลัย

LIST OF TABLES

viii

1	Method of preparation elementary osmotic pump and asymmetric	
	membrane	16
2	Examples of saturated solutions osmotic pressures	18
3	Examples of osmotic pump excipients	19
4	Solubility of diltiazem hydrochloride in different media	23
5	Solubility of propranolol hydrochloride in different media	24
6	Powder mixture formulation for core capsule	28
7	Subcoating solution formulation for 100 core capsules	29
8	Coating solution formulation for 100 core capsules	30
9	Coating parameters for subcoating layer	31
10	Coating parameters for semipermeable membrane layer	31
11	Dissolution parameters of diltiazem hydrochloride OPC	37
12	Dissolution parameters of diltiazem hydrochloride OPC for pH-	
	change method	37
13	Dissolution parameters of propranolol hydrochloride OPC	38
14	Dissolution parameters of propranolol hydrochloride OPC for pH-	
	change method	38
15	Summary of crosslinked capsule characteristics	41
16	Average weight of capsule shell, containing powder and coated	
	membrane weight of diltiazem hydrochloride osmotic pump	
	capsules coating with various amounts of CA solution	43
17	Average weight of capsule shell, containing powder and coated	
	membrane weight of propranolol hydrochloride osmotic pump	
	capsules coating with various amounts of CA solution	44
18	Coated membrane weight per surface area of diltiazem hydrochloride	
	osmotic pump capsules coating with various amounts of CA solution	44
19	Coated membrane weight per surface area of propranolol hydrochloride	
	osmotic pump capsules coating with various amounts of CA solution	45
20	Theoretical average weight of coated layers per capsule	45

21	Percentage of actual coated layers weight per theoretical coated	
	layers weight of diltiazem hydrochloride OPC	46
22	Percentage of actual coated layers weight per theoretical coated	
	layers weight of propranolol hydrochloride OPC	46
23	Percentage of powder loss from various orifice sizes OPC	52
24	Content of diltiazem hydrochloride coating with various amounts of	
	CA solution	53
25	Content of propranolol hydrochloride coating with various amounts	
	of CA solution	53
26	The comparative parameters of diltiazem hydrochloride crosslinked	
	OPC with various CA solution levels including calculated release	
	rate and R ²	56
27	The comparative parameters of diltiazem hydrochloride non-	
	crosslinked OPC with various CA solution levels including calculated	
	release rate and R ²	56
28	The comparative parameters of propranolol hydrochloride	
	crosslinked OPC coating with various CA solution levels including	
	calculated release rate and R ²	59
29	The comparative parameters of propranolol hydrochloride non-	
	crosslinked OPC with various CA solution levels including	
	calculated release rate and R ²	59
30	The comparative parameters of diltiazem hydrochloride crosslinked	
	OPC with various orifice sizes including calculated release rate and R^2	65
31	The comparative parameters of diltiazem hydrochloride non-	
	crosslinked OPC with various orifice sizes including calculated	
	release rate and R ²	65
32	The comparative parameters of propranolol hydrochloride	
	crosslinked OPC with various orifice sizes including calculated	
	release rate and R ²	68

ix Page

34	The comparative parameters of diltiazem hydrochloride crosslinked	
	OPC in deionized water and various concentration sodium chloride	
	solutions including calculated release rate and R ²	73
35	The comparative parameters of diltiazem hydrochloride non-	
	crosslinked OPC in deionized water and various concentration	
	sodium chloride solutions including calculated release rate and R ²	75
36	The comparative parameters of propranolol hydrochloride	
	crosslinked OPC in deionized water and various concentration	
	sodium chloride solutions including calculated release rate and R ²	77
37	The comparative parameters of propranolol hydrochloride non-	
	crosslinked OPC in deionized water and various concentration	
	sodium chloride solutions including calculated release rate and R ²	78
38	Solubility of propranolol hydrochloride in different ionic strength	
	media	79
39	Osmotic pressure of saturated solution of formulation ingredients	80
40	The comparative parameters of diltiazem hydrochloride crosslinked	
	OPC in different pH media with isotonic including calculated	
	release rate and R ²	82
41	The comparative parameters of diltiazem hydrochloride non-	
	crosslinked OPC in different pH media with isotonic including	
	calculated release rate and R ²	84
42	The comparative parameters of propranolol hydrochloride	
	crosslinked OPC in different pH media with isotonicity including	
	calculated release rate and R ²	85
43	The comparative parameters of propranolol hydrochloride non-	
	crosslinked OPC in different pH media with isotonicity including	
	calculated release rate and R ²	87
1(A)	The absorbance of diltiazem hydrochloride in different media at	
	wavelength 237 nm	96
2(A)	The absorbance of propranolol hydrochloride in different media at	
	wavelength 287 nm	97

1(B)	Accuracy data of percentage of analytical recovery of diltiazem
	hydrochloride
2(B)	Accuracy data of percentage of analytical recovery of propranolol
	hydrochloride
3(B)	Within run precision data of diltiazem hydrochloride
4(B)	Within run precision data of propranolol hydrochloride
5(B)	Between run precision data of diltiazem hydrochloride
6(B)	Between run precision data of propranolol hydrochloride
7(B)	The absorbance of hard gelatin capsules shell in deionized water
8(B)	The absorbance of non-active ingredients (Sodium chloride and
	lactose) in deionized water
9(B)	Limited of acceptability and result values of analytical method
	validation parameters of UV/Vis spectrophotometer for diltiazem
	hydrochloride and propranolol hydrochloride
1(C)	Solubility of propranolol hydrochloride in 0.1588 M (0.9 %) NaCl
	solution
2(C)	Solubility of propranolol hydrochloride in 0.5 M NaCl solution
3(C)	Solubility of propranolol hydrochloride in 1 M NaCl solution
1(D)	The diltiazem hydrochloride release from 0.6 mm orifice size
	crosslinked OPC coating with 250 ml CA solution in deionized water
2(D)	The diltiazem hydrochloride release from 0.6 mm orifice size
	crosslinked OPC coating with 290 ml CA solution in deionized water
3(D)	The diltiazem hydrochloride release from 0.6 mm orifice size
	crosslinked OPC coating with 335 ml CA solution in deionized water
4(D)	The diltiazem hydrochloride release from 0.6 mm orifice size
	non-crosslinked OPC coating with 250 ml CA solution in deionized
	water
5(D)	The diltiazem hydrochloride release from 0.6 mm orifice size
	non-crosslinked OPC coating with 290 ml CA solution in deionized
	water

6(D)	The diltiazem hydrochloride release from 0.6 mm orifice size	
	non-crosslinked OPC coating with 335 ml CA solution in deionized	
	water	120
7(D)	The propranolol hydrochloride release from 0.6 mm orifice size	
	crosslinked OPC coating with 290 ml CA solution in deionized water	121
8(D)	The propranolol hydrochloride release from 0.6 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in deionized water	122
9(D)	The propranolol hydrochloride release from 0.6 mm orifice size	
	non-crosslinked OPC coating with 290 ml CA solution in deionized	
	water	123
10(D)	The propranolol hydrochloride release from 0.6 mm orifice size	
	non-crosslinked OPC coating with 335 ml CA solution in deionized	
	water	124
11(D)	The diltiazem hydrochloride release from 0.4 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in deionized water	125
12(D)	The diltiazem hydrochloride release from 0.6 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in deionized water	125
13(D)	The diltiazem hydrochloride release from 0.8 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in deionized water	126
14(D)	The diltiazem hydrochloride release from 0.4 mm orifice size non-	
	crosslinked OPC coating with 335 ml CA solution in deionized water	126
15(D)	The diltiazem hydrochloride release from 0.6 mm orifice size	
	non-crosslinked OPC coating with 335 ml CA solution in deionized	
	water	127
16(D)	The diltiazem hydrochloride release from 0.8 mm orifice size	
	non-crosslinked OPC coating with 335 ml CA solution in deionized	
	water	127
17(D)	The propranolol hydrochloride release from 0.4 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in deionized water	128
18(D)	The propranolol hydrochloride release from 0.6 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in deionized water	128

19(D)	The propranolol hydrochloride release from 0.8 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in deionized water	129
20(D)	The propranolol hydrochloride release from 0.4 mm orifice size	
	non-crosslinked OPC coating with 335 ml CA solution in deionized	
	water	129
21(D)	The propranolol hydrochloride release from 0.6 mm orifice size	
	non-crosslinked OPC coating with 335 ml CA solution in deionized	
	water	130
22(D)	The propranolol hydrochloride release from 0.8 mm orifice size	
	non-crosslinked OPC coating with 335 ml CA solution in deionized	
	water	130
23(D)	The diltiazem hydrochloride release from 0.6 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in deionized water	131
24(D)	The diltiazem hydrochloride release from 0.6 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in 0.9 % NaCl	
	solution	131
25(D)	The diltiazem hydrochloride release from 0.6 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in 0.5 M NaCl	
	solution	132
26(D)	The diltiazem hydrochloride release from 0.6 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in 1 M NaCl	
	solution	132
27(D)	The diltiazem hydrochloride release from 0.6 mm orifice size	
	non-crosslinked OPC coating with 335 ml CA solution in deionized	
	water	133
28(D)	The diltiazem hydrochloride release from 0.6 mm orifice size	
	non-crosslinked OPC coating with 335 ml CA solution in 0.9 %	
	NaCl solution	133
29(D)	The diltiazem hydrochloride release from 0.6 mm orifice size	
	non-crosslinked OPC coating with 335 ml CA solution in 0.5 M	
	NaCl solution	134

xiv
Page

30(D)	The diltiazem hydrochloride release from 0.6 mm orifice size	
	non-crosslinked OPC coating with 335 ml CA solution in 1 M NaCl	
	solution	134
31(D)	The propranolol hydrochloride release from 0.6 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in deionized water	135
32(D)	The propranolol hydrochloride release from 0.6 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in 0.9 % NaCl	
	solution	135
33(D)	The propranolol hydrochloride release from 0.6 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in 0.5 M NaCl	
	solution	136
34(D)	The propranolol hydrochloride release from 0.6 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in 1 M NaCl	
	solution	136
35(D)	The propranolol hydrochloride release from 0.6 mm orifice size	
	non-crosslinked OPC coating with 335 ml CA solution in deionized	
	water	137
36(D)	The propranolol hydrochloride release from 0.6 mm orifice size	
	non-crosslinked OPC coating with 335 ml CA solution in 0.9 %	
	NaCl solution	137
37(D)	The propranolol hydrochloride release from 0.6 mm orifice size	
	non-crosslinked OPC coating with 335 ml CA solution in 0.5 M	
	NaCl solution	138
38(D)	The propranolol hydrochloride release from 0.6 mm orifice size	
	non-crosslinked OPC coating with 335 ml CA solution in 1 M NaCl	
	solution	138
39(D)	The diltiazem hydrochloride release from 0.6 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in 0.1 M HCl pH 1.2	139
40(D)	The diltiazem hydrochloride release from 0.6 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in PBS pH 6.8	139

41(D)	The diltiazem hydrochloride release from 0.6 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in pH-change	
	method	140
42(D)	The diltiazem hydrochloride release from 0.6 mm orifice size non-	
	crosslinked OPC coating with 335 ml CA solution in 0.1 M HCl pH 1.2	140
43(D)	The diltiazem hydrochloride release from 0.6 mm orifice size	
	non-crosslinked OPC coating with 335 ml CA solution in PBS pH 6.8	141
44(D)	The diltiazem hydrochloride release from 0.6 mm orifice size	
	non-crosslinked OPC coating with 335 ml CA solution in pH-	
	change method	141
45(D)	The propranolol hydrochloride release from 0.6 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in 0.1 M HCl pH 1.2	142
46(D)	The propranolol hydrochloride release from 0.6 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in PBS pH 6.8	142
47(D)	The propranolol hydrochloride release from 0.6 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in pH-change	
	method	143
48(D)	The propranolol hydrochloride release from 0.6 mm orifice size non-	
	crosslinked OPC coating with 335 ml CA solution in 0.1 M HCl pH 1.2	143
49(D)	The propranolol hydrochloride release from 0.6 mm orifice size non-	
	crosslinked OPC coating with 335 ml CA solution in PBS pH 6.8	144
50(D)	The propranolol hydrochloride release from 0.6 mm orifice size	
	non-crosslinked OPC coating with 335 ml CA solution in pH-	
	change method	144
51(D)	The diltiazem hydrochloride release rate from 0.6 mm orifice size	
	crosslinked OPC coating with various amounts of CA solution (n=18)	145
52(D)	The diltiazem hydrochloride release rate from 0.6 mm orifice size	
	non-crosslinked OPC coating with various amounts of CA solution	
	(n=18)	145
53(D)	The propranolol hydrochloride release rate from 0.6 mm orifice size	
	crosslinked OPC coating with various amounts of CA solution (n=18)	146

xv Page

54(D)	The propranolol hydrochloride release rate from 0.6 mm orifice size	
	non-crosslinked OPC coating with various amounts of CA solution	
	(n=18)	146
55(D)	The diltiazem hydrochloride release rate from various orifice sizes	
	crosslinked OPC coating with 335 ml CA solution (n=6)	147
56(D)	The diltiazem hydrochloride release rate from various orifice sizes	
	non-crosslinked OPC coating with 335 ml CA solution (n=6)	147
57(D)	The propranolol hydrochloride release rate from various orifice sizes	
	crosslinked OPC coating with 335 ml CA solution (n=6)	148
58(D)	The propranolol hydrochloride release rate from various orifice sizes	
	non-crosslinked OPC coating with 335 ml CA solution (n=6)	148
59(D)	The diltiazem hydrochloride release rate from 0.6 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in deionized	
	water and various concentration NaCl solutions (n=6)	149
60(D)	The diltiazem hydrochloride release rate from 0.6 mm orifice size	
	non-crosslinked OPC coating with 335 ml CA solution in deionized	
	water and various concentration NaCl solutions (n=6)	150
61(D)	The propranolol hydrochloride release rate from 0.6 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in deionized	
	water and various concentration NaCl solutions (n=6)	151
62(D)	The propranolol hydrochloride release rate from 0.6 mm orifice size	
	non-crosslinked OPC coating with 335 ml CA solution in deionized	
	water and various concentration NaCl solution (n=6)	152
63(D)	The diltiazem hydrochloride release rate from 0.6 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in different pH	
	media with isotonicity (n=6)	153
64(D)	The diltiazem hydrochloride release rate from 0.6 mm orifice size	
	non-crosslinked OPC coating with 335 ml CA solution in different	

pH media with isotonicity (n=6).....

xvi Page

151

xvii
Page

65(D)	The propranolol hydrochloride release rate from 0.6 mm orifice size	
	crosslinked OPC coating with 335 ml CA solution in different pH	
	media with isotonicity (n=6)	154
66(D)	The propranolol hydrochloride release rate from 0.6 mm orifice size	
	non-crosslinked OPC coating with 335 ml CA solution in different	
	pH media with isotonicity (n=6)	155
1(E)	Zero-order equations of release profiles of diltiazem hydrochloride	
	from 0.6 mm orifice size crosslinked OPC coating with various	
	amounts of CA solution in deionized water	156
2(E)	Zero-order equations of release profiles of diltiazem hydrochloride	
	from 0.6 mm orifice size non-crosslinked OPC coating with various	
	amounts of CA solution in deionized water	157
3(E)	Zero-order equations of release profiles of propranolol	
	hydrochloride from 0.6 mm orifice size crosslinked OPC coating	
	with various amounts of CA solution in deionized water	158
4(E)	Zero-order equations of release profiles of propranolol	
	hydrochloride from 0.6 mm orifice size non-crosslinked OPC	
	coating with various amounts of CA solution in deionized water	159
5(E)	Zero-order equations of release profiles of diltiazem hydrochloride	
	from various orifice sizes crosslinked OPC coating with 335 ml CA	
	solution in deionized water	160
6(E)	Zero-order equations of release profiles of diltiazem hydrochloride	
	from various orifice sizes non-crosslinked OPC coating with 335 ml	
	CA solution in deionized water	161
7(E)	Zero-order equations of release profiles of propranolol	
	hydrochloride from various orifice sizes non-crosslinked OPC	
	coating with 335 ml CA solution in deionized water	162
8(E)	Zero-order equations of release profiles of propranolol	
	hydrochloride from various orifice sizes non-crosslinked OPC	
	coating with 335 ml CA solution in deionized water	163

9(E)	Zero-order equations of release profiles of diltiazem hydrochloride
	from 0.6 mm orifice sizes crosslinked OPC coating with 335 ml CA
	solution in deionized water and various concentration NaCl solutions
10(E)	Zero-order equations of release profiles of diltiazem hydrochloride
	from 0.6 mm orifice sizes non-crosslinked OPC coating with 335 ml
	CA solution in deionized water and various concentration NaCl
	solutions
11(E)	Zero-order equations of release profiles of propranolol
	hydrochloride from 0.6 mm orifice sizes crosslinked OPC coating
	with 335 ml CA solution in deionized water and various
	concentration NaCl solutions
12(E)	Zero-order equations of release profiles of propranolol
	hydrochloride from 0.6 mm orifice sizes non-crosslinked OPC
	coating with 335 ml CA solution in deionized water and various
	concentration NaCl solutions
13(E)	Zero-order equations of release profiles of diltiazem hydrochloride
	from 0.6 mm orifice sizes crosslinked OPC coating with 335 ml CA
	solution in different pH media with isotonicity
14(E)	Zero-order equations of release profiles of diltiazem hydrochloride
	from 0.6 mm orifice sizes non-crosslinked OPC coating with 335 ml
	CA solution in different pH media with isotonicity
15(E)	Zero-order equations of release profiles of propranolol
	hydrochloride from 0.6 mm orifice sizes crosslinked OPC coating
	with 335 ml CA solution in different pH media with isotonicity
16(E)	Zero-order equations of release profiles of propranolol
	hydrochloride from 0.6 mm orifice sizes crosslinked OPC coating
	with 335 ml CA solution in different pH media with isotonicity

LIST OF FIGURES

Figure

1	A schematic illustration of osmotic phenomena	1
2	Operation principle of Rose-Nelson pump	3
3	Basic components of a Higuchi-Leeper osmotic pump	4
4	Higuchi-Theeuwes design utilising a flexible bag	5
5	Components of the Higuchi-Theeuwes mini-pump	5
6	Schematic of Alzet ® osmotic pump	5
7	The basic concept of the Theeuwes elementary osmotic pump	6
8	Operation of simple elementary osmotic pump	7
9	Schematic diagrams of three modified elementary osmotic pump :	
	tablet-in-tablet (TNT), bilayer or push-pull, and trilayer or	
	sandwiched	8
10	Cross-sectional photographs at various time from a bilayer SCT	
	formulation. A red dye was included in the water swellable	
	compositions	8
11	Schematic diagrams of L-OROS TM and delayed liquid bolus system	9
12	Asymmetric membrane wall cross-section	10
13	Operation of controlled porosity tablets	10
14	Controlled porosity bolus tablet kept in dissolution medium 1, 3	
	and 12 hrs	11
15	Asymmetric membrane capsule with encapsulated excipients	11
16	Phase inversion process for the manufacture of asymmetric	
	membrane capsules	16
17	CARDURA® XL	20
18	CONCERTA®	20
19	DITROPAN® XL	21
20	Structure of diltiazem hydrochloride	22
21	Structure of propranolol hydrochloride	24
22	Photograph of core capsules	29
23	Photograph of coated capsules	31

20

24	Photograph of coated capsules with the orifice	32
25	Schematic diagram of coated capsule	32
26	Photograph of crosslinked (A) and non-crosslinked hard gelatin	
	capsules (B)	42
27	Photograph of partially insoluble hard capsules (A) and insoluble	
	hard capsules (B)	42
28	The photomicrograph (SEM) of cross-section view (x500) and surface	
	view (x1000) of diltiazem hydrochloride crosslinked OPC coated with	
	250 ml [cross-section (A) and surface (B)], 290 ml [cross-section (C)	
	and surface (D)] and 335 ml [cross-section (E) and surface (F)] CA	
	coating solution	47
29	The photomicrograph (SEM) of cross-section view (x500) and surface	
	view (x1000) of diltiazem hydrochloride non-crosslinked OPC coated	
	with 250 ml [cross-section (A) and surface (B)], 290 ml [cross-section	
	(C) and surface (D)] and 335 ml [cross-section (E) and surface (F)] CA	
	coating solution	48
30	The photomicrograph (SEM) of cross-section view (x500) and surface	
	view (x1000) of propranolol hydrochloride crosslinked OPC coated	
	with 290 ml [cross-section (A) and surface (B)] and 335 ml [cross-	
	section (C) and surface (D)] CA coating solution	49
31	The photomicrograph (SEM) of cross-section view (x500) and surface	
	view (x1000) of propranolol hydrochloride non-crosslinked OPC coated	
	with 290 ml [cross-section (A) and surface (B)] and 335 ml [cross-	
	section (C) and surface (D)] CA coating solution	50
32	The photomicrograph (SEM) of various sizes of the orifice that drill	
	with 0.4 mm (A) ,0.6mm (B) and 0.8 mm (C) needle	51
33	Correlation between % powder loss and area of the orifice	52
34	The release profiles of diltiazem hydrochloride from crosslinked	
	OPC (n=18) coating with various amounts of CA solution (250, 290	
	and 335 ml) in deionized water	55

Figure

35	The release profiles of diltiazem hydrochloride from non-crosslinked	
	OPC (n=18) coating with various amounts of CA solution (250, 290	
	and 335 ml) in deionized water.	55
36	The release rate profiles of diltiazem hydrochloride from crosslinked	
	OPC (n=18) coating with various amounts of CA solution (250, 290	
	and 335 ml) in deionized water	57
37	The release rate profiles of diltiazem hydrochloride from non-	
	crosslinked OPC (n=18) coating with various amounts of CA	
	solution (250, 290 and 335 ml) in deionized water	57
38	The release profiles of propranolol hydrochloride from crosslinked	
	OPC (n=18) coating with various amounts of CA solution (290 and	
	335 ml) in deionized water	58
39	The release profiles of propranolol hydrochloride from non-	
	crosslinked OPC (n=18) coating with various amounts of CA	
	solution (290 and 335 ml) in deionized water	58
40	The release rate profiles of propranolol hydrochloride from crosslinked	
	OPC (n=18) coating with various amounts of CA solution (290 and 335	
	ml) in deionized water	60
41	The release rate profiles of propranolol hydrochloride from non-	
	crosslinked OPC (n=18) coating with various amounts of CA solution	
	(290 and 335 ml) in deionized water	60
42	Photograph of broken OPC	62
43	Photograph of cross-section views of crosslinked (A) and non-	
	crosslinked (B) OPC	63
44	The release profiles of diltiazem hydrochloride from crosslinked OPC	
	with various orifice sizes 0.4, 0.6 and 0.8 mm (n=6) in deionized water	64
45	The release profiles of diltiazem hydrochloride from non-crosslinked	
	OPC with various orifice sizes 0.4, 0.6 and 0.8 mm (n=6) in	
	deionized water	64
46	The release rate profiles of diltiazem hydrochloride from crosslinked	
	OPC with various orifice sizes 0.4, 0.6 and 0.8 mm (n=6) in	
	deionized water	66

Page

47		The release rate profiles of diltiazem hydrochloride from non-	
		crosslinked OPC with various orifice sizes 0.4, 0.6 and 0.8 mm (n=6)	
		in deionized water	66
	48	The release profiles of propranolol hydrochloride from crosslinked	
		OPC with various orifice sizes 0.4, 0.6 and 0.8 mm (n=6) in	
		deionized water	67
	49	The release profiles of propranolol hydrochloride from non-	
		crosslinked OPC with various orifice sizes 0.4, 0.6 and 0.8 mm (n=6)	
		in deionized water	67
	50	The release rate profiles of propranolol hydrochloride from	
		crosslinked OPC with various orifice sizes 0.4, 0.6 and 0.8 mm (n=6)	
		in deionized water	69
	51	The release rate profiles of propranolol hydrochloride from non-	
		crosslinked OPC with various orifice sizes 0.4, 0.6 and 0.8 mm (n=6) in	
		deionized water	69
	52	The release profiles of diltiazem hydrochloride from crosslinked	
		OPC (n=6) in deionized water and various concentration NaCl	
		solutions (0.9%, 0.5 M and 1 M)	72
	53	The release rate profiles of diltiazem hydrochloride from crosslinked	
		OPC (n=6) in deionized water and various concentration NaCl	
		solutions (0.9%, 0.5 M and 1 M)	73
	54	The release profiles of diltiazem hydrochloride from non-crosslinked	
		OPC (n=6) in deionized water and various concentration NaCl solutions	
		(0.9%, 0.5 M and 1 M)	74
	55	The release rate profiles of diltiazem hydrochloride from non-	
		crosslinked OPC (n=6) in deionized water and various concentration	
		NaCl solutions (0.9%, 0.5 M and 1 M)	74
	56	The release profiles of propranolol hydrochloride from crosslinked OPC	
		(n=6) in deionized water and various concentration NaCl solutions	
		(0.9%, 0.5 M and 1 M)	76

Page

57	The release rate profiles of propranolol hydrochloride from crosslinked	
	OPC (n=6) in deionized water and various concentration NaCl solutions	
	(0.9%, 0.5 M and 1 M)	76
58	The release profiles of propranolol hydrochloride from non-	
	crosslinked OPC (n=6) in deionized water and various concentration	
	NaCl solutions (0.9%, 0.5 M and 1 M)	77
59	The release rate profiles of propranolol hydrochloride from non-	
	crosslinked OPC (n=6) in deionized water and various concentration	
	NaCl solutions (0.9%, 0.5 M and 1 M)	78
60	The release profiles of diltiazem hydrochloride from crosslinked OPC	
	(n=6) deionized water, 0.9 % NaCl solution and different pH media	
	with isotonicity (HCl pH1.2, PBS pH6.8 and pH-change method)	81
61	The release rate profiles of diltiazem hydrochloride from crosslinked	
	OPC (n=6) in deionized water, 0.9 % NaCl solution and different pH	
	media with isotonicity (HCl pH1.2, PBS pH6.8 and pH-change method)	82
62	The release profiles of diltiazem hydrochloride from non-crosslinked	
	OPC (n=6) in deionized water, 0.9 % NaCl solution and different pH	
	media with isotonicity (HCl pH1.2, PBS pH6.8 and pH-change method)	83
63	The release rate profiles of diltiazem hydrochloride from non-	
	crosslinked OPC (n=6) in deionized water, 0.9 % NaCl solution and	
	different pH media with isotonicity (HCl pH1.2, PBS pH6.8 and pH-	
	change method)	83
64	The release profiles of propranolol hydrochloride from crosslinked OPC	
	(n=6) in deionized water, 0.9 % NaCl solution and different pH media	
	with isotonicity (HCl pH1.2, PBS pH6.8 and pH-change method)	84
65	The release rate profiles of propranolol hydrochloride from crosslinked	
	OPC (n=6) in deionized water, 0.9 % NaCl solution and different pH	
	media with isotonicity (HCl pH1.2, PBS pH6.8 and pH-change method)	85
66	The release profiles of propranolol hydrochloride from non-crosslinked	
	OPC (n=6) in deionized water, 0.9 % NaCl solution and different pH	
	media with isotonicity (HCl pH1.2, PBS pH6.8 and pH-change method)	86

23

24

67	The release rate profiles of propranolol hydrochloride from non-	
	crosslinked OPC (n=6) in deionized water, 0.9 % NaCl solution and	
	different pH media with isotonicity (HCl pH1.2, PBS pH6.8 and pH-	
	change method)	
1(A)	Calibration curve of diltiazem hydrochloride in water at 237 nm	
2(A)	Calibration curve of diltiazem hydrochloride in 0.9 % NaCl solution	
	at 237 nm	
3(A)	Calibration curve of diltiazem hydrochloride in 0.5 M NaCl solution	
	at 237 nm	
4(A)	Calibration curve of diltiazem hydrochloride in 1 M NaCl solution at	
	237 nm	
5(A)	Calibration curve of diltiazem hydrochloride in 0.1 M HCl pH 1.2 at	
	237 nm	
6(A)	Calibration curve of diltiazem hydrochloride in PBS pH 6.8 at 237 nm	
7(A)	Calibration curve of propranolol hydrochloride in water at 287 nm	
8(A)	Calibration curve of propranolol hydrochloride in 0.9 % NaCl	
	solution at 287 nm	
9(A)	Calibration curve of propranolol hydrochloride in 0.5 M NaCl	
	solution at 287 nm	
10(A)	Calibration curve of propranolol hydrochloride in 1 M NaCl solution	
	at 287 nm	
11(A)	Calibration curve of propranolol hydrochloride in 0.1 M HCl pH 1.2	
	at 287 nm	
12(A)	Calibration curve of propranolol hydrochloride in 0.PBS pH 6.8 at	
	287 nm	
1(B)	Calibration curve of diltiazem hydrochloride in deionized water at	
	wavelength 237 nm	
2(B)	Calibration curve of propranolol hydrochloride in water at	
	wavelength 287 nm	

Figure

1(E)	The release profiles of diltiazem hydrochloride from 0.6 mm orifice	
	size crosslinked OPC coating with various amounts of CA solution	
	in deionized water used for calculations of zero-order equation	156
2(E)	The release profiles of diltiazem hydrochloride from 0.6 mm orifice size	
	non-crosslinked OPC coating with various amounts of CA solution in	
	deionized water used for calculations of zero-order equation	157
3(E)	The release profiles of propranolol hydrochloride from 0.6 mm orifice	
	size crosslinked OPC coating with various amounts of CA solution in	
	deionized water used for calculations of zero-order equation	158
4(E)	The release profiles of propranolol hydrochloride from 0.6 mm orifice	
	size non-crosslinked OPC coating with various amounts of CA solution	
	in deionized water used for calculations of zero-order equation	159
5(E)	The release profiles of diltiazem hydrochloride from various orifice	
	sizes crosslinked OPC coating with 335 ml CA solution in deionized	
	water used for calculations of zero-order equation	160
6(E)	The release profiles of diltiazem hydrochloride from various orifice	
	sizes non-crosslinked OPC coating with 335 ml CA solution in	
	deionized water used for calculations of zero-order equation	161
7(E)	The release profiles of propranolol hydrochloride from various	
	orifice sizes non-crosslinked OPC coating with 335 ml CA solution	
	in deionized water used for calculations of zero-order equation	162
8(E)	The release profiles of propranolol hydrochloride from various	
	orifice sizes non-crosslinked OPC coating with 335 ml CA solution	
	in deionized water used for calculations of zero-order equation	163
9(E)	The release profiles of diltiazem hydrochloride from 0.6 mm orifice	
()	sizes crosslinked OPC coating with 335 ml CA solution in deionized	
	water and various concentration NaCl solutions used for calculations	
	of zero-order equation	164
10(E)	The release profiles of diltiazem hydrochloride from 0.6 mm orifice	612
1.(2)	sizes non-crosslinked OPC coating with 335 ml CA solution in	
	deionized water and various concentration NaCl solutions used for	
	calculations of zero-order equation	165
		105

25

Page

Figure

11(E)	The release profiles of propranolol hydrochloride from 0.6 mm	
	orifice sizes crosslinked OPC coating with 335 ml CA solution in	
	deionized water and various concentration NaCl solutions used for	
	calculations of zero-order equation	166
12(E)	The release profiles of propranolol hydrochloride from 0.6 mm	
	orifice sizes non-crosslinked OPC coating with 335 ml CA solution	
	in deionized water and various concentration NaCl solutions used for	
	calculations of zero-order equation	167
13(E)	The release profiles of diltiazem hydrochloride from 0.6 mm orifice	
	sizes crosslinked OPC coating with 335 ml CA solution in different pH	
	media with isotonicity used for calculations of zero-order equation	168
14(E)	The release profiles of diltiazem hydrochloride from 0.6 mm orifice	
	sizes non-crosslinked OPC coating with 335 ml CA solution in different	
	pH media with isotonicity used for calculations of zero-order equation	169
15(E)	The release profiles of propranolol hydrochloride from 0.6 mm orifice	
	sizes crosslinked OPC coating with 335 ml CA solution in different pH	
	media with isotonicity used for calculations of zero-order equation	170
16(E)	The release profiles of propranolol hydrochloride from 0.6 mm orifice	
	sizes crosslinked OPC coating with 335 ml CA solution in different pH	
	media with isotonicity used for calculations of zero-order equation	171

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Page

LIST OF ABBREVATIONS

%	percentage
°C	degree Celsius (centrigrade)
CA	cellulose acetate
cm	centimeter (s)
CV	coefficient of variation
DI	deionized
et.al.	et alli, and others
g	gram(s)
HCl	hydrochlorid acid
hr	hour (s)
М	molarity
mcg	microgram (s)
mg	milligram (s)
min	minute (s)
ml	milliliter (s)
mm	millimeter (s)
NaCl	sodium chloride
nm	nanometer (s)
OPC	osmotic pump capsule (s)
PBS	phosphate buffer solution
рН	the negative logarithm of hydrogen ion concentration
R^2	coefficient of determination
rpm	revolution (s) per minute
RSD	relative standard deviation
SD	standard deviation
SEM	scanning electron microscope

CHAPTER I INTRODUCTION

Osmotic system is one of controlled release delivery systems that provide a uniform concentration of drug result for plasma concentrations within a therapeutic range, which minimizes side effects and also reduces the frequency of administration. Osmotic drug delivery tend to provide zero-order delivery and to deliver a greater percentage of the drug loading.

Osmotic systems utilize the principles of osmotic pressure for the delivery of drugs. Osmosis is phenomena that solvent from lower concentration will move to higher concentration solution across semipermeable membrane, which is permeable to solvent only. The chemical potential of solution in two compartments will be equalized when pressure of the higher concentration solution compartment reaches the osmotic pressure of the solution (Wright and Stevenson, 1999) (Figure 1). Drug release from these systems is independent of pH and other physiological parameters to a large extent and it is possible to modulate the release characteristics by optimizing the properties of drug and system (Theeuwes et al., 1985). Osmotic pumps can be used as experimental tools to determine important pharmacokinetic parameters of new or existing drugs. At the same time, they can also be utilized to deliver drugs at a controlled and predetermined rate.

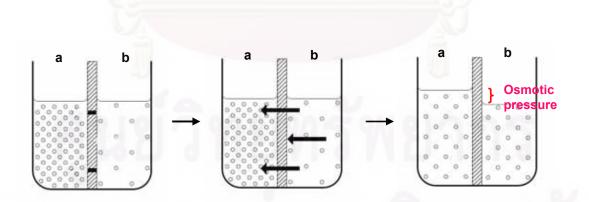


Figure 1 A schematic illustration of osmotic phenomena

Initial commercial oral dug delivery system was OROSTM that use for deliver indomethacin (Theeuwes, 1983). After that several studies investigated about parameters that had effect on delivery of elementary osmotic pump such as

- osmotic agent
- semipermeable membrane polymer
- membrane plasticizer
- thickness of semipermeable membrane
- drug delivery orifice

There are a few studies about using hard gelatin capsules with elementary osmotic pump system. Most osmotic pump capsules (OPC) studies are asymmetric membrane system. This system is made from semipermeable membrane capsule that can form pore when contact with water. Previous studies reported the devolpment of asymmetric membrane OPC that using semipermeable capsules (Thombre *et al.*, 1999). Asymmetric membrane capsule is produced by phase inversion technique. However, the process to produce this system is very complicated and expensive because special equipment use for production of semipermeable capsule. In previous investigation, non-crosslinked hard gelatin capsules had been used and was found the fluctuation of propranolol hydrochloride release (Siroratsakul, 2004). Drug release variation might be caused by disolved gelatin capsule forms a viscous mass inside OPC, therefore, drug release fluctuation should be reduced by crosslinked hard gelatin capsules which are insoluble. Drug solubility might effect on drug delivery from the system.

The purpose of this study was to examine drug release from elementary osmotic pump capsules using crosslinked and non-crosslinked hard gelatin capsules with various parameters such as film thickness and size of drug delivery orifice. In this study, different solubility model drugs were propranolol hydrochloride which is soluble drug in water and diltiazem hydrochloride which is freely soluble drug in water (O'Neil, 2006)

CHAPTER II LITERATURE REVIEW

Controlled release systems can provide drug release prolongation, maintenance of drug levels in plasma in therapeutic range, side effect reduction and reduction of dosing frequency. Osmotically controlled drug delivery system is one of controlled release systems, which utilize osmotic pressure for drug delivery. The osmotic systems developments include contributions such as the Rose-Nelson pump, Higuchi-Leeper pump, Higuchi-Theeuwes pump and Theeuwes elementary osmotic pump.

Rose-Nelson pump

The Rose-Nelson was developed by Rose and Nelson that utilized the principles of osmotic pressure in drug delivery for the first time. This pump consists of three chambers : drug chamber , salt chamber and water chamber. The operation of this system will start when water from water chamber passes semipermeable membrane to salt chamber causes pressure in salt chamber increases then elastic diaphragm will expand and push drug solution out. Operation principle of this pump illustrates in Figure 2 (Rose and Nelson, 1955).

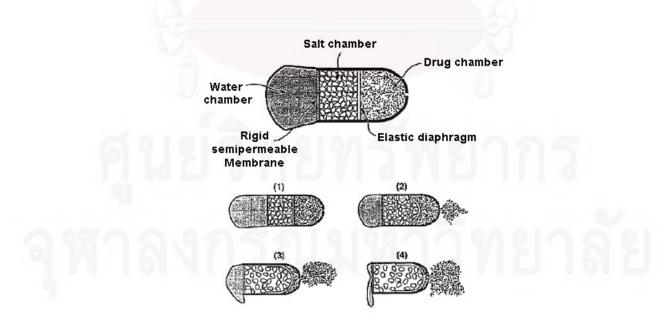
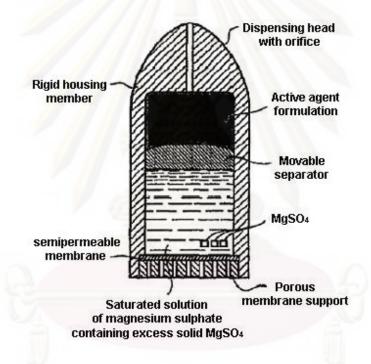



Figure 2 Operation principle of Rose-Nelson pump (Rose and Nelson, 1955).

Higuchi-Leeper pump

The Higuchi-Leeper pump was developed by Takeru Higuchi and Harold M Leeper. In this design, water chamber is removed. Because device, which has water chamber, is difficult to produce. So this system consists of two chambers only: Drug chamber and salt chamber (Figure 3). The operation of this system will start when water from environment passes semipermeable membrane to salt chamber causes pressure in salt chamber increases then movable separator will move and push drug solution out (Higuchi and Leeper, 1973).

Figure 3 Basic components of a Higuchi-Leeper osmotic pump (Higuchi and Leeper, 1973).

Higuchi-Theeuwes pump

The Higuchi-Theeuwes pump was developed by Takeru Higuchi and Felix Theeuwes. This design and operation are similar to Higuchi-Leeper pump. But Higuchi-Theeeuwes pump can deliver semisolid substance (Figure 4) (Higuchi and Leeper, 1976). Higuchi-Theeuwes mini pump is a model of Alzet® osmotic pumps which are well known miniature, implantable pumps used for research in laboratory animals (Figure 5 and 6) (Higuchi and Leeper, 1976 ; DURECT Corporation, 2008).

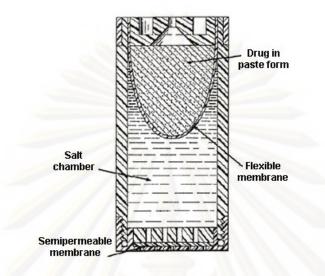


Figure 4 Higuchi-Theeuwes design utilising a flexible bag (Higuchi and Leeper, 1976)

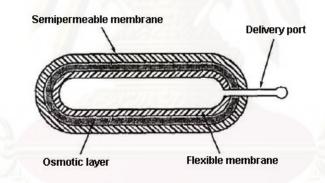


Figure 5 Components of the Higuchi-Theeuwes mini-pump (Higuchi and Leeper, 1976)

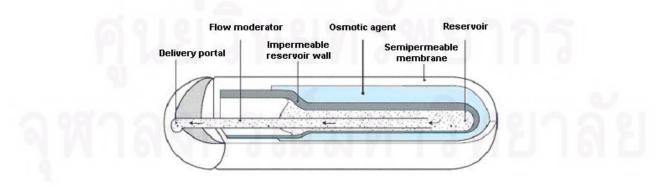
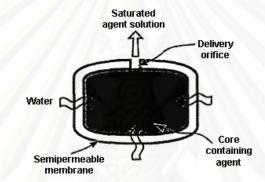



Figure 6 Schematic of Alzet ® osmotic pump (DURECT Corporation, 2008).

Theeuwes elementary osmotic pump

Theeuwes elementary osmotic pump is first oral osmotically drug delivery system which is very simple. In this elementary osmotic pump basic form, drug core is surrounded by semipermeable membrane with a drug delivery orifice (Figure 7). This pump is the most popular that used for oral drug delivery. This system is suitable for moderate to high solubility drugs. Elementary osmotic pump tablet working will start when surrounding water passes membrane and dissolves core containing agent. Then inside tablet pressure increases and drug solution passes through the delivery orifice to reduce pressure in system until pressure outside and inside tablet are equal.

Figure 7 The basic concept of the Theeuwes elementary osmotic pump (Theeuwes and Higuchi, 1974)

Oral Osmotic Drug Delivery

Oral osmotic drug delivery give zero delivery rate and predictable drug release. Drug release of this system is not depending on pH, hydrodynamics of the external dissolution medium and outside agitation. Moreover, It has an excellent in vitro/in vivo correlation (Theeuwes, 1975). Osmotic drug delivery can use for drugs with a broad range of aqueous solubilities (Thombre et al., 2004).

Elementary osmotic pump

Elementary osmotic pump is simply design controlled drug delivery system. This pump can deliver 60–80% of its contents at a constant rate (Theeuwes, 1975) but it has short lag time of 30–60 min as the system hydrates before zero-order delivery (Verma et al., 2000). It need a delivery port to deliver the drug at required rate (Theeuwes et al., 1983). Size of delivery orifice had no effect on drug delivery rate when use low agitation (Ramdan and Tawashi, , 1987). Optimum range of orifice size can control stable drug delivery (Ozdemir and Sahin, 1997; Mohammadi-Samani, 2000). Osmotic pump tablet with non-drilling orifice can be prepared by indent core tablet. This tablet had an orifice which is produced by punch with a needle (Liu and Che, 2006; Liu and Xu, 2008).

1. Simple elementary osmotic pump

Simple elementary osmotic pump is a homogeneous core which is surrounded by semipermeable membrane. It is suitable for moderate to high water soluble drug (Verma et al., 2002). The operation of this pump starts when contacts with water and agent inside osmotic pump draws water passes the semipermeable membrane (Figure 8). Volume in osmotic pump increased caused by the imbibition of water result for the development of pressure inside it. This pressure is relieved by flow of saturated solution out of the device via the delivery orifice. Delivery rate is still constant until the solid substance inside the device has been dissolved and only a solution-filled coating membrane is left. This residual dissolved substance continue to be delivered at decrease rate till osmotic pressure inside and outside the device are equal.

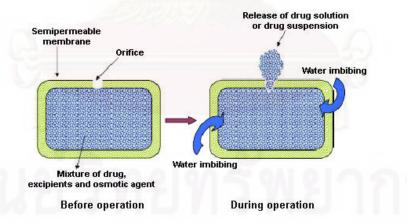
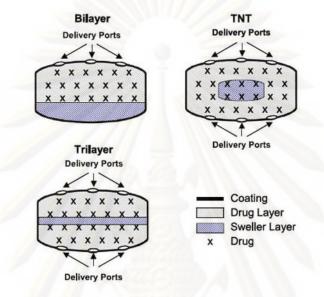



Figure 8 Operation of simple elementary osmotic pump (Shokri et al., 2007).

2 Modified elementary osmotic pump

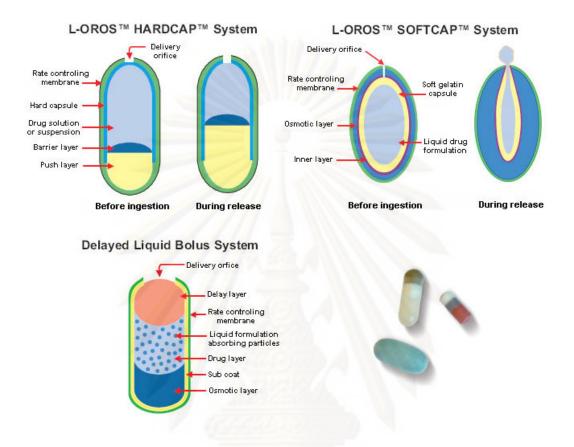

Modified elementary osmotic pump is composed of multilayer core which is surrounded by semipermeable membrane. This system can be applied for poorly water soluble drug to freely water soluble drug (Theeuwes et al., 1983). This pump has various designs. Modified elementary osmotic pump tablets is shown in Figure 9. The operation of this system is similar to simple elementary osmotic pump but it has swellable layer for assisting drug release (Figure 10). L-OROSTM System was modified elementary osmotic system that produced in hard capsules and soft capsules dosage form for liquid or paste preparation delivery (Figure 11).

Figure 9 Schematic diagrams of three modified elementary osmotic pump : tablet-intablet (TNT), bilayer or push-pull, and trilayer or sandwiched (Thombre et al., 2004)

Figure 10 Cross-sectional photographs at various time from a bilayer SCT formulation. A red dye was included in the water swellable compositions (Thombre et al., 2004).

Controlled porosity or asymmetric membrane osmotic pump

Asymmetric membrane is film that thin dense region relatively supported on a thicker porous region. This membrane is prepared by the phase inversion technique (Figure 12) (Thombre et al., 1999). Asymmetric membrane is *In situ* pore formation film (Figure 13 and 14). This system has higher rate of water influx due to the micro porous nature of membrane. It is suitable for poorly water soluble drug (Choudhury et al., 2007). For example, drug delivery of gilpizide was asymmetric membrane capsule with encapsulated excipients. This system was asymmetric membrane capsule filled with drug, additives, mini-tablets of osmogent/solubility modifier and coated mini-tablets of osmogent/solubility modifier that controlled glipizide delivery (Figure 15).

pH-controlling agent (meglumine) was used as osmotic agent and solubility modifier (Thombre et al., 1999). Coudhury et al. (2007) study effect of osmotic agent on flurbiprofen delivery from asymmetric membrane capsule. Asymmetric capsule sustained release of rifampicin and isoniazid can be provided by mixture of hydrophilic polymer and drug (Prabakaran et al., 2004).

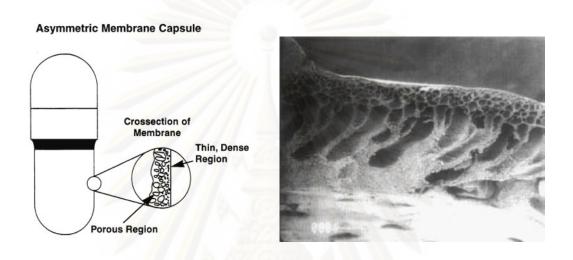


Figure 12 Asymmetric membrane wall cross-section (Thombre et al., 1999).

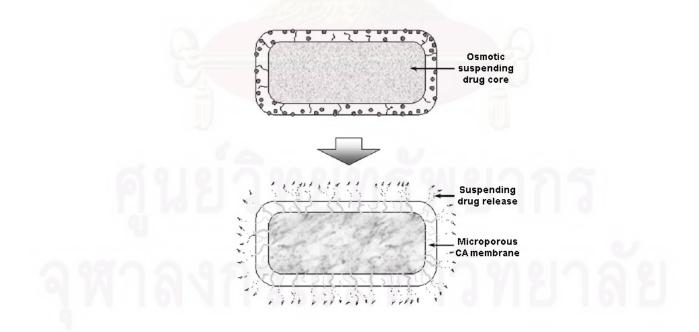
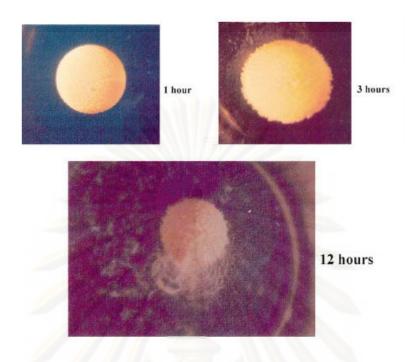
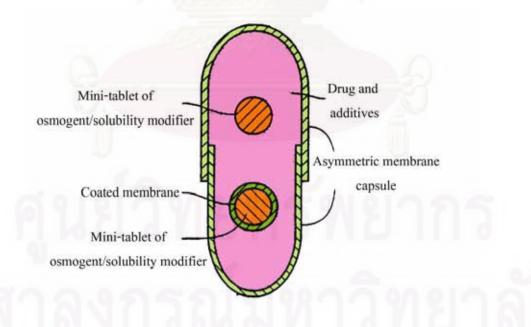




Figure 13 Operation of controlled porosity tablets (Liu et al., 2007).

Figure 14 Controlled porosity bolus tablet kept in dissolution medium 1, 3 and 12 hrs (Makhija and Vavia, 2003)

Figure 15 Asymmetric membrane capsule with encapsulated excipients (Thombre et al., 1999)

Delivery Rate

1. Delivery rate of simple elementary osmotic pump (Theeuwes, 1975)

The delivery of substance from the system is controlled by the water influx across the semipermeable membrane which carries the substance to the outside. Equation 1 (Eq. 1) describes the volume flux (dv/dt) across the semipermeable membrane

$$\frac{dV}{dt} = \frac{A}{h} L_p \left(\sigma \Delta \pi - \Delta P \right)$$
 (Eq. 1)

dV/dt = volume flux

A = membrane area

h = membrane thickness

 L_p = mechanical permeability

 σ = reflection coefficient

 $\Delta \pi$ = osmotic pressure difference

 ΔP = hydrostatic pressure difference

Equation 2 (Eq. 2) describes the solution delivery rate (dm/dt) obtained by pumping through the orifice.

$$\frac{dm}{dt} = \frac{dV}{dt}C$$
(Eq 2)

dm/dt = solute delivery rate

C = concentration of compound in the dispensed fluid

Replacing Eq1 into Eq 2 results in Eq 3.

$$\frac{dm}{dt} = \frac{A}{h} L_p (\sigma \Delta \pi - \Delta P) C$$
 (Eq 3)

As expressed condition $\Delta \pi > \Delta P$, hydrostatic pressure inside the system is minimized (Equation 4).

$$\frac{dm}{dt} = \frac{A}{h} L_p \sigma \Delta \pi C \tag{Eq 4}$$

The osmotic pressure of formulation (π) can be replaced for $\Delta \pi$ when the osmotic pressure of formulation is large compared to the osmotic pressure of environment (Equation 5).

$$\frac{dm}{dt} = \frac{A}{h} L_p \sigma \pi C \tag{Eq 5}$$

 π = osmotic pressure of formulation

Because L_p and σ is constant value. Therefore constant P_w can be replaced for L_p and σ (Equation 6).

$$\frac{dm}{dt} = \frac{A}{h} P_w \pi C \tag{Eq 6}$$

 P_w = water permeability of the semipermeable membrane

For zero-order delivery rate, elementary osmotic pump release rate is zeroorder from t =0 until a time t_z at which time that all of the solid in the core dissolved. Equation 7 describes zero-order delivery rate from the elementary osmotic pump

$$\left(\frac{dm}{dt}\right)_{z} = \frac{A}{h} P_{w} \pi_{s} S$$

(Eq 7)

S = the component solubility

 π_s = osmotic pressure at saturation

From time t =0 to t = t_{z} , the component solubility (S) can replace the concentration (C). Because the single compound rate of dissolution within the system is much larger than the rate of pumping as given by Equation 7.

2. Delivery rate of asymmetric membrane (Ende et al., 2000)

A model expresses drug release from an asymmetric membrane dosage form consists of osmotic and diffusional contributions. The diffusional contribution is derived from the fact that the asymmetric membrane is not perfectly semipermeable membrane, and therefore a portion of drug is released by diffusion, primary through pores in coating. The total mass of drug delivery per unit time, $(dm/dt)_t$, is modeled by Equation 8.

$$\left(\frac{dm}{dt}\right)_{t} = \left(\frac{dm}{dt}\right)_{o} + \left(\frac{dm}{dt}\right)_{d}$$
(Eq 8)

$$\left(\frac{dm}{dt}\right)_{t} = \text{total drug mass of drug delivered per time}$$
$$\left(\frac{dm}{dt}\right)_{o} = \text{mass released by osmotic pumping}$$
$$\left(\frac{dm}{dt}\right)_{d} = \text{mass released due to diffusion}$$

Equation 9 describes the osmotic drug release component. This equation is same as drug release equation of simple elementary osmotic pump.

$$\left(\frac{dm}{dt}\right)_o = \frac{A}{h} P_w \pi C$$

(Eq 9)

A = membrane area

h = membrane thickness

 P_w = water permeability of the semipermeable membrane

C = concentration of compound in the dispensed fluid

Equation 10 describes the diffusional release component.

$$\left(\frac{dm}{dt}\right)_{d} = \frac{P_{d}AC}{h}$$
(Eq 10)

 P_d = drug permeability in the membrane

Equation 11 describes the total drug release profile.

$$\left(\frac{dm}{dt}\right)_{t} = \frac{A}{h}P_{w}\pi C + \frac{P_{d}AC}{h}$$
(Eq 11)

Method of Preparation

1. Elementary osmotic pump

Process to produce elementary osmotic pump tablets or capsules begins with tableting or capsule filling. Then tablets or capsules are coated by semipermeable membrane polymer. Final step, tablets or capsules are drilled by mechanical drilling or laser drilling (Deters et al., 1986).

2. Asymmetric membrane

Process to produce asymmetric membrane tablets are similar to elementary osmotic tablet that begin with tableting by dry or wet granulation or direct compression but tablets are coated by asymmetric membrane polymer.

Asymmetric membrane capsule shells are filled with powder or granule. Then connection area of capsules is sealed. For example, Asymmetric membrane capsule shell is prepared by phase inversion technique. First, a mold pin is dipped in the polymer solution and removed from solution. Polymer are shortly dried after that pin is placed in Aqueous Quench bath to make membrane parcipitation and capsule shell are take off from pin. Dip-coating process is shown in Figure 16.

Difference of preparation method between elementary osmotic pump and asymmetric membrane were represented in Table 1.

Table 1 Method of preparation elementary osmotic pump and asymmetric membrane

Elementary osmotic pump		Asymmetric membrane	
Tablets	Capsules	Tablets	Capsules
Tableting by	Semipermeable	Tableting by	Semipermeable
granulation or direct	membrane capsules	granulation or direct	membrane capsules
compression	preparing	compression	preparing
Coating	Capsule filling	Coating	Capsule filling
Drilling	Capsule banding		Capsule banding
	Drilling		

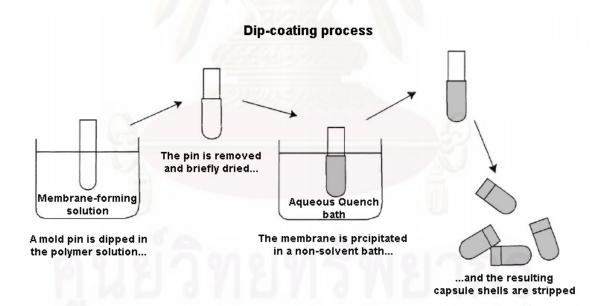


Figure 16 Phase inversion process for the manufacture of asymmetric membrane capsules (Thombre et al., 1999).

Osmotic Pump Excipients

1. Osmotic agent

Sodium chloride and potassium chloride are water soluble salt that widely use as osmotic agent in elementary osmotically drug delivery system (Lindstedt, et al., 1989; Ozdemir and Sahin, 1997; Liu, et al., 2000). Some studies used hydrophilic polymer or expanding agent as osmotic agent such as gum arabic, Polyethylene glycol 6000 (PEG 6000), Hydroxypropyl methylcellulose (HPMC), polyethylene oxide (PEO), polyvinyl pyrrolidine (PVP) and sodium carboxy methyl cellulose (NaCMC) (Liu, et al., 2000; Lu, et al., 2003; Prabakaran, et al., 2003). Table 2 shows example of osmotic pressure of saturated solutions.

2. Semipermeable membrane

Cellulose acetate is widely use semipermeable membrane polymer. A few studies selected ethylcellulose as semipermeable membrane (Lindstedt, et al., 1989; Appel and Zetner, 1991). But ethylcellulose has lower water permeability than celluloase acetate (Bindschaedler, et al., 1986). Zhang, et al. (2003) study two layer osmotic pump tablet. HPMC was used as expanding layer (inner layer) and Eudragit® RS and RL was used as semipermeable membrane. Increasing membrane thickness causes drug delivery reduces when use same coating formulation (Mohammadi-Samani, 2000; Sinchaipanid, et al., 2003; Verma, et al. 2003; Verma, et al., 2004).

3. Plasticizer

Cellulose acetate film with plasticizer (PEG 400) 2 % had softer and less brittle characteristic than plain cellulose acetate film (Ozdemir and Sahin , 1997). Osmotic pump that was coated with semipermeable membrane with hydrophilic plasticizer (PEG 400) has higher delivery rate than osmotic pump that was coated semipermeable membrane using hydrophobic plasticizer (Triacetin) (Liu, et al., 2000). Drug delivery of osmotic pump increased when PEG 400 in film increased but membrane would fragile due to excess of plasticzer (Lu, et al., 2003). Poly(caprolactone triol) was use as plasticizer in system which used paracetamol as model drug.

Compound or mixture	Osmotic pressure (atm)
Lactose-fructose	500
Dextrose-fructose	450
Sucrose-fructose	430
Mannitol-fructose	415
Sodium chloride	356
Fructose	335
Lactose-sucrose	250
Potassium chloride	245
Lactose-dextrose	225
Mannitol-dextrose	225
Dextrose-sucrose	190
Mannitol-sucrose	170
Sucrose	150
Mannitol-lactose	130
Dextrose	82
Potassium sulfate	39
Mannitol	38
Sodium phosphate tribasic \cdot 12 H ₂ O	36
Sodium phosphate dibasic \cdot 7 H ₂ O	31
Sodium phosphate dibasic \cdot 12 H ₂ O	31
Sodium phosphate dibasic anhydrous	29
Sodium phosphate monobasic \cdot H ₂ O	28

Table 2 Examples of saturated solutions osmotic pressures (Zentner et al., 1990)

T 11 3	г 1	C		•••
I able 3	Examples	of osmoti	c pump	excipients
	2	01 000000	• p • · · · · · p	••

unction	Material	Ref.
		Makhija and Vavia (2003),
	Sodium chloride	Ende et al. (2000),
		Liu et al. (2000)
	Gum arabic	Zhang et al. (2003)
	Potassium chloride	Sinchaipanid et al. (2003),
		Lu et al. (2003)
	lactose	Choudhury et al. (2007)
Osmotic agent	Xylitol	Theeuwes and Higuchi (1974)
	HPMC E5	Makhija and Vavia (2003)
	Gum arabic	Zhang et al. (2003)
	Delvethylene evide	Lu et al. (2003),
	Polyethylene oxide	Liu et al. (2000)
	sodium starch glycolate	Theeuwes and Higuchi (1974)
	Croscarmellose sodium	Theeuwes and Higuchi (1974),
	Croseannenose souruni	Liu et al. (2003)
	Polyethylene oxide	Theeuwes and Higuchi (1974)
	Gum arabic	Zhang et al. (2003)
	Million Charles Ch	Sinchaipanid et al. (2003),
	Polyethylene oxide	Lu et al. (2003),
		Theeuwes and Higuchi (1974)
	PVP K-90	Liu et al. (2003)
	Eudragit RS-PO and RL-PO	Makhija and Vavia (2003)
Semipermeable		Zhang et al. (2003),
membrane	Cellulose acetate	Choudhury et al. (2007), Sinchaipanid et al. (2003),
		Lu et al. (2003)
	Ethylcellulose	Liu et al. (2000)
		Makhija and Vavia (2003),
	Triethyl citrate	Sinchaipanid et al. (2003),
		Lu et al. (2003)
	0.1100110	Zhang et al. (2003),
		Choudhury et al. (2007),
Plasticizer	PEG	Sinchaipanid et al. (2003),
	212211419	Lu et al. (2003),
		Liu et al. (2003)
	Diethylphthalate	Choudhury et al. (2007)
	Dibutylphthalate	Choudhury et al. (2007)
	Dibutylsebacate	Choudhury et al. (2007)

Example of Marketed Products

1 CARDURA® XL (Available from : http://www.carduraxl.com)

This product is Doxazosin mesylate extended release tablet. It is used for treatment of benign postural hypotension (BPH). This product used push-pull osmotic pump for controlled drug release.

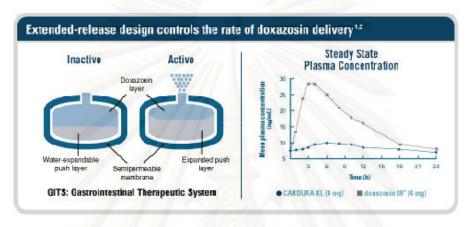


Figure 17 Operation of CARDURA® XL

2 CONCERTA® (Available from : http://www.concerta.net)

CONCERTA® is methylphenidate HCl once-daily tablet. Indication of this product is used for treatment of overactive bladder (OAB). Push-pull osmotic pump is utilized to controlled methylphenidate HCl release.

Figure 18 Operation of CONCERTA®

3 DITROPAN® XL (Available from : http://www.ditropanxl.com)

This product is oxybutynin cholride extended release tablet. This product used push-pull osmotic pump for controlled drug release. DITROPAN® XL is used for treatment of attention deficit hyperactivity disorder (ADHD).

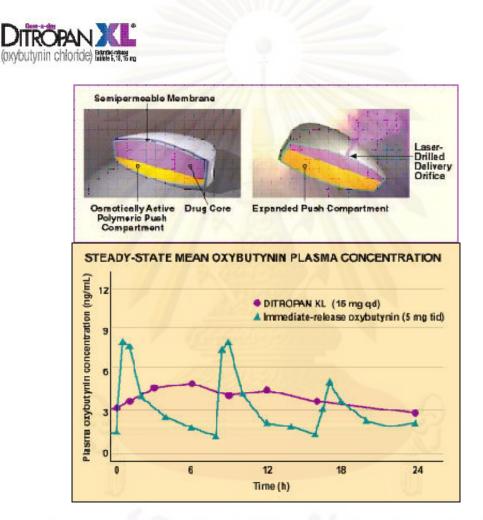


Figure 19 Operation of DITROPAN® XL

จุฬาลงกรณ์มหาวิทยาลัย

Diltiazem hydrochloride

Diltiazem hydrochloride is slow calcium channel blocker or calcium ion influx inhibitor (Reynolds, 1994).

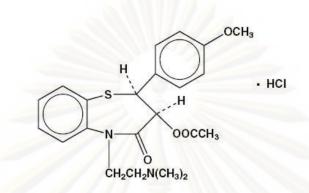


Figure 20 Chemical structure of diltiazem hydrochloride

Empirical name	$C_{22}H_{26}N_2O_4S\cdot HCl$
Chemical name	(2S,3S)-(+)- <i>cis</i> -3-Acetoxy-5-(2- dimethylaminoethyl)-2,3-dihydro-2-(4- methoxyphenyl)-1,5-benzothiazepin-4(5H)-one hydrochloride
Chemical structure	Display in Figure 20
Molecular weight	450.98
Description	white to off white crystalline powder, odorless with a bitter taste
Melting point	207.5 to 212 °C
Dissociation constant (pKa)	7.7
Solubility	Displayed in table 4
Stability	Diltiazem hydrochloride is very stable in solid state but UV light may be affected powder color changing. In aqueous system, diltiazem hydrochloride is stable over a pH range 3-6.

Medium	Solubility (mg/ml)	Reference
Water	> 590	Zentner et al. (1991)
Simulated gastric fluid pH 1.2	636.63±3.41	Prabakaran et al. (2003)
Simulated intestinal fluid pH 6.8	606.38±1.68	Prabakaran et al. (2003)
0.25 M sodium chloride solution	545±12	Zentner et al. (1991)
0.5 M sodium chloride solution	395±29	Zentner et al. (1991)
0.75 M sodium chloride solution	278±10	Zentner et al. (1991)
1 M sodium chloride solution	155±20	Zentner et al. (1991)

Table 4 Solubility of diltiazem hydrochloride in different media

Propranolol hydrochloride

Propranolol hydrochloride is a non-selective β -adrenergic blocking agent (Reynolds, 1994).

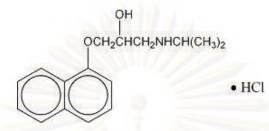


Figure 21 Chemical structure of propranolol hydrochloride

Empirical name	$C_{16}H_{21}NO_2 \cdot HC1$	
Chemical name	(±)-1-Isopropylamino-3-(1-naphthyloxy)propan-2-ol	
	hydrochloride	
Chemical structure	Display in Figure 21	
Molecular weight	295.8	
Description	white to off white crystalline powder, odorless with a	
	bitter taste	
Melting point	163 to 166 °C	
Dissociation constant (pKa)	9.5	
Solubility	Displayed in table 5	
Stability	Propranolol hydrochloride solutions are most stable	
	at pH of 3 and decompose rapidly under alkaline	
	conditions. Light has effect on propranolol	
	hydrochloride.	

Table 5 Solubility of propranolol hydrochloride in different media

Medium	Solubility (mg/ml)	Reference
Water	50	Reynolds (1994)
Simulated gastric fluid pH 1.2	33.79 ± 0.09	Garg et al. (2007)
Simulated intestinal fluid pH 6.8	57.23 ± 1.08	Garg et al. (2007)

CHAPTER III

EXPERIMENTAL

Materials

The materials used and sourced of supply are as follows.

- 1. Model drugs:
 - 1.1 Diltiazem hydrochloride

(Lot No. 08010814755, supplied by Siam Pharmaceutical Co., Ltd, Thailand),

1.2 Propranolol hydrochloride

(Lot No. M0808020, Changzhou Yabang Pharmaceutical Co., Ltd., China)

- 2. Capsule shell and crosslinked agent
 - 2.1 Hard gelatin capsule

(Coni-Snap[®] Capsules, CAPSUGEL®, USA)

2.2 Formaldehyde

(CARLO ERBA, Italy)

- 3. Osmotic agents and filler
 - 3.1 Sodium chloride

(Ajax Finechem, Australia)

3.2 Lactose

(Granulac ® 200, MEGGLE, Germany)

- 4. Film forming agents
 - 4.1 Cellulose acetate (acetyl 39.8%)

(Lot No. AC-01467NF, CA-398-10NF/EP, Eastman Chemical Company, USA)

4.2 Hydroxypropyl methylcellulose

(Lot No. TD 23012406, METHOCELTM E5 Premium, DOW® Chemical Company, USA)

4.3 Polyethylene glycol 6000

(Lot No. AF-401212, Ajax Finechem, Australia)

- 5. Solvents
 - 5.1 Methylene chloride

(Mitsubishi Chemical, Japan)

5.2 Ethanol 95%

(Liquor Distillery Organization, Excise Department, Thailand)

- 6. Dissolution media
 - 6.1 Deionized water
 - 6.2 Hydrochloric acid 37%, AR grade

(J.T. Baker, USA)

6.3 Sodium hydroxide, AR grade

(Merck, Germany)

6.4 Tri-ortho sodium phosphate

(QRëCTM, New Zealand)

Equipment

1. Semiautomatic filling capsule machine

(Yiewheng, Thailand)

2. Fluidized bed coater

(Model Strea1, Niro-aeromatic, Germany)

3. Scanning electron microscope

(Model JSM-5800LV, JEOL, Japan)

4. Dissolution apparatus

(Model VK 7000, VanKel, USA)

5. Ultraviolet/visible spectrophotometer

(Model V-530, Jasco, Japan)

6. Tablet friability tester

(Model TA 3, Erweka, Germany)

7. Shaking incubator

(Model Universal Shaking Incubator, DLabTech, India)

8. pH meter

(Model 210A, Thermo Orion, USA)

9. Osmometer

(Model Osmomat 030, GONOTEC, Germany)

Methods

- 1. Crosslinked Capsule Shells
 - 1.1 Investigate optimum time for preparation of crosslinked capsule shell

Cap and body of clear gelatin capsules were separated and lined on petri dish. Petri dish was placed in dessicator fill with formaldehyde at various length of time. Then capsules were taken to evaluate by visual characterization and determination of weight changed of capsule shell before and after stirred in various medium.

1.2 Preparation of crosslinked capsule shells

Crosslinked hard gelatin capsules were prepared by exposure of hard gelatin capsule shell to formaldehyde vapor for 6 hrs in dessicator filled with formaldehyde solution. Then crosslinked capsules were dried in hot air oven at 35°C for 1 day. Crosslinked capsule shells were kept in dessicator filled with silica gel.

2. Preparation of Core Capsules

The model drug (diltiazem hydrochloride or propranolol hydrochloride), osmotic agent (sodium chloride) and filler (lactose) were passed through a 80 mesh screen and mixed together according to the formulation in Table 6 (Siroratsakul, 2004). Powder mixture was filled in crosslinked and non crosslinked capsule by semiautomatic capsule filling machine and core capsules were stored in dessicator before coating. Figure 22 shows photograph of core capsules.

Ingredients	Amount per capsule
Model drug	90 mg
Sodium chloride	80 mg
Lactose	160 mg
Total	330 mg

Table 6 Powder mixture formulation for core capsules

Core capsules were prepared into 4 groups

- Diltiazem hydrochloride crosslinked capsules
- Diltiazem hydrochloride non-crosslinked capsules
- Propranolol hydrochloride crosslinked capsules
- Propranolol hydrochloride non-crosslinked capsules

Figure 22 Photograph of core capsules

3. Preparation of Coating Solutions

Subcoating and coating solutions were adapted from previous study of Siroratkul (2004). Formulations of both solutions are given in Table 7 and 8.

Table 7 Subcoating solution formulation for 100 core capsules No 1

Ingredients	Amount per 100 caps
HPMC 5 cps	3 g
PEG 6000	3 g
Ethanol 95% : Water = $1:1$ qs to	100 ml

Ingredients	Amount per 100 caps
Cellulose acetate (CA)	3.35 g
PEG 6000	2.35 g
Dichloromethane : Ethanol = 95:5 qs to	335 ml

Table 8 Coating solution formulation for 100 core capsules

HPMC coating solution was prepared as follow : ethanol 95% and water were placed in Erlenmeyer flask and stirred gently for 5 minutes. Then HPMC was added. Five minutes after addition HPMC, PEG 6000 was added. The solution was mixed overnight prior to use.

CA coating solution was prepared as follow : dichloromethane and ethanol 95% were placed in Erlenmeyer flask and stirred. After five minutes, CA was added, and ten minutes after addition of CA, PEG 6000 was added. The solution was mixed overnight prior to use.

4. Coating Core Capsules

A batch size of 60 core capsules and 40 lactose capsules (blank capsules) were placed in chamber of bottom spray fluidized bed coater. Before spray coating solutions, core capsules were heated for five minutes. Then core capsules were coated with HPMC solution and dried in fluidized bed coater for 10 minutes. After completion of subcoating, capsules were coated with CA solution and dried in fluidized bed coater for 5 minutes. The coating conditions are presented in the Table 9 and 10. Coated capsules were kept in dessicator at room temperature. Photograph of coated capsules are presented in Figure 23.

Parameter	Value
Inlet air temperature	: 55°C
Atomizing air pressure	: 1.6-1.8 bar
Pump speed	: 7 rpm
Spray rate	: 3 ml/min
Air brower	: level 10
Drying time	: 10 min

Table 10 Coating parameters for semipermeable membrane (CA) layer

Parameter	Value	
Inlet air temperature	: 55°C	
Atomizing air pressure	: 1.6-1.8 bar	
Pump speed	: 8 rpm	
Spray rate	: 4 ml/min	
Air brower	: level 10	
Drying time	: 5 min	

Figure 23 Photograph of coated capsules

5. Drilling of The Orifice

Coated capsules were drilled by hypodermic needle of 0.4, 0.6 and 0.8 mm before use. Photograph of coated capsules with the orifice and schematic diagram of coated capsules are displayed in Figure 24 and 25, respectively.

Figure 24 Photograph of coated capsules with the orifice

Figure 25 Schematic diagram of coated capsule

6. Evaluation of Coated Capsules

6.1 Capsules weight gain, coated layer weight and coated layer weight per surface area

6.1.1 Capsules weight gain and coated layer weight

Average weight of core capsules (a) = $_$	Weight of 60 core capsules	
	60	
Average weight of subcoating capsules $(b) =$	Weight of 60 subcoating capsules	

60

Average weight of semipermeable = Weight of 60 membrane coating capsules (c) 60

subcoating weight gain per cap (e) = b-a

semipermeable membrane weight gain per cap (f) = c-b

6.1.2 Coated layer weight per surface area

Capsule No. 1 length (h) = 1.9126 cm

Capsule No. 1 diameter (d) = 0.6789 cm

Surface area of the capsule = $\P dh$

Surface area of capsule no.1 = 4.0808 cm²

Amount of subcoating per surface area = e/4.0808 g/cm²

Amount of semipermeable membrane per surface area = f/4.0808 g/cm²

6.2 Theoretical capsule weight gain and percentage of actual coated layer weight per theoretical coated layer weight

Theoretical weight of subcoating material per cap = w g

Theoretical weight of semipermeable membrane material per cap = y g

Percentage of actual subcoating weight = $e/w \ge 100$ per theoretical subcoating weight

Percentage of actual semipermeable weight = $f/y \ge 100$ per theoretical semipermeable weight

6.3 Coated film characterization

Before dissolution test, surface and cross section of coated film were examined using scanning electron microscope.

6.4 Coated film thickness

Coated film thickness in different areas of OPC were measured using SEM.

6.5 Size of the orifice

Morphology and size of the orifice of OPC were examined using SEM photomicrography. Three groups of six capsules were drilled in different size using 0.4, 0.6 and 0.8 mm hypodermic needle at the top end of capsule.

6.6 Powder loss from orifice of coated capsule

Each ten capsules were drilled into 0.4, 0.6 and 0.8 mm orifice size. After that the capsules with different orifice sizes were weighted and tested by tablet friability tester (25 rpm, 4mins). Then capsules were weighted after tested and calculated percentage of powder loss.

% powder loss = (weight before testing-weight after testing) x 100 weight before testing

6.7 Determination of model drugs content in OPC

The OPC (no orifice) were cut and accurate weight of powder was placed in 100 ml volumetric flask. The mixture was dissolved and adjusted to volume with deionized water. Then an aliquot was filtered and diluted to suitable concentration. Then solution was assayed for diltiazem hydrochloride or propranolol hydrochloride by spectrophotometer at wavelength of 237 nm for diltiazem hydrochloride and 287 nm for propranolol hydrochloride.

6.8 Solubility study

Solubility of propranolol hydrochloride was examined in different ionic strength media as follows: 0.154 (0.9 %, isotonic), 0.5 and 1 M sodium chloride solutions. An excess amount of propranolol hydrochloride was added to each medium in amber glass bottles. The bottles were closed and placed in a shaker maintained at 25 °C and rotated at 100 rpm for 30 hrs. Ten milliliters of sample were collected at 24, 27 and 30 hrs. Samples were filtered and prepared to suitable concentration and analyzed for amount of propranolol hydrochloride by spectrophotometer at wavelength 287 nm. Solubility of propranolol hydrochloride in each media was analyzed in triplicate.

6.9 Dissolution study

6.9.1 Calibration curve of model drugs

Twenty milligrams of diltiazem hydrochloride were weighted into a 100 ml volumetric flask. The powder was dissolved and adjusted with each medium. The solution was used as a stock solution. Stock solution of diltiazem hydrochloride 1, 2, 3, 4, 5, 3 and 4 ml were pipetted into 100, 100, 100, 100, 100, 50 and 50 ml volumetric flask, respectively. Then solutions were adjusted to volume with each medium. The final concentrations of each solution were 2, 4, 6, 8, 10, 12 and 16 mcg/ml. The absorbance was measured by spectrophotometer at wavelength 237 nm.

Propranolol hydrochloride 80 mg were weighted into a 100 ml volumetric flask. The powder was dissolved and adjusted with each medium. The solution was used as stock solution. Stock solution of propranolol hydrochloride 1, 2, 3, 4, 5 and 3 ml were pipetted into 100, 100, 100, 100, 100 and 50 ml volumetric flask, respectively. Then solutions were adjusted to volume with each medium. The final concentrations of each solution were 8, 16, 24, 32, 40 and 48 mcg/ml. The absorbance was measured by spectrophotometer at wavelength 287 nm.

Calibration curves of both model drugs were performed in following

deionized water

media

- 0.154 (isotonic), 0.5 and 1 M sodium chloride solution
- 0.1 M hydrochloric acid pH 1.2 adjusted to be isotonic with sodium chloride
- Phosphate buffer pH 6.8 adjusted to be isotonic with sodium chloride

6.9.2 Evaluation of drug release in various media

The diltiazem hydrochloride capsule and propranolol hydrochloride capsule release studies were modified form diltiazem hydrochloride extended-release capsules and propranolol hydrochloride extended release capsule monograph of USP 29. Drug release studies were performed using USP dissolution test apparatus II (paddle method, model VK7000, VanKel,) and operated at 100 rpm in 37 ± 0.5 °C dissolution medium. Ten milliliters sample was withdrawn through filter. After sampling, the same volume of medium was replaced immediately to keep constant volume in vessel through out the experiment. The dissolution parameters were shown in Table 11 to 14.

Table 11 Dissolution parameters of diltiazem hydrochloride OPC

Parameter	value
Paddle speed	100 rpm
Temperature	37±0.5°C
Operating time	9 hrs
Medium volume	900 ml
Sampling volume	10 ml
Sampling time (hours)	0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 7, 8, 9

 Table 12 Dissolution parameters of diltiazem hydrochloride OPC for pH-change

 method

Parameter	value		
Paddle speed	100 грт		
Temperature	37±0.5°C		
Operating time	9 hrs		
Medium volume	750 ml HCl pH1.2 after 2 hr adjusted to 1000 ml PBS pH 6.8 with 250 ml 0.20 M tribasic sodium phosphate		
Sampling volume	10 ml		
Sampling time (hour)	0.5, 1, 1.5, 2, 2.75, 3, 3.5, 4, 4.5, 5, 5.5, 6, 7, 8, 9		

 Table 13 Dissolution parameters of propranolol hydrochloride OPC

Parameter	value
Paddle speed	100 rpm
Temperature	37±0.5°C
Operating time	12 hrs
Medium volume	900 ml
Sampling volume	10 ml
Sampling time (hour)	0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 7, 8, 9, 10, 11, 12

 Table 14 Dissolution parameters of propranolol hydrochloride OPC for pH-change

 method

Parameter	value		
Paddle speed	100 rpm		
Temperature	37±0.5°C		
Operating time	12 hrs		
Medium volume	750 ml HCl pH1.2 after 2 hr adjusted to 1000 ml PBS pH 6.8 with 250 ml 0.20 M tribasic sodium phosphate		
Sampling volume	10 ml		
Sampling time (hour)	0.5, 1, 1.5, 2, 2.75, 3, 3.5, 4, 4.5, 5, 5.5, 6, 7, 8, 9, 10, 11, 12		

Effect of ionic strength and pH on drug release from OPC coating with 335 ml CA solution and 0.6 mm orifice were investigated in various dissolution media as follows :

- 900 ml deionized water
- 900 ml 0.154 (0.9 %, isotonic), 0.5 and 1 M sodium chloride solution
- 900 ml 0.1M hydrochloric acid adjusted ionic strength to isotonic with sodium chloride
- 900 ml Phosphate buffer pH 6.8 adjusted to be isotonic with sodium chloride
- 750 ml 0.1M hydrochloric acid adjusted to be isotonic with sodium chloride after 2 hrs changed to phosphate buffer pH
 6.8 adjusted to be isotonic with sodium chloride by adding
 0.20 M tribasic sodium phosphate 250 ml

Effect of various parameters on drug release from select OPC were investigated using deionized water as dissolution medium

amount of coating materials

orifice size

The sample was prepared to suitable concentration and assayed for the content of diltiazem hydrochloride and propranolol hydrochloride at wavelength of 237 nm and 287 nm, respectively. The amount of model drugs were calculated from equation of standard solution calibration curve of each dissolution medium. A cumulative correction was done for the previously removed sample to determine the total of drug release.

6.9.3 Mathematical treatments

An ideal osmotic system should be able to release as zero-order kinetic. Release data of dissolution study were analyzed by different mathematical parameters. Different parameters were used to evaluate results of dissolution study as follows :

- percentage of drug release at various time points
- release rate of drug release at middle time point of 2 adjacent time points

release rate at middle time point

$$=\frac{Qobs_{tn}-Qobs_{t(n-1)}}{t_n-t_{(n-1)}}$$

 $Qobs_{tn}$ = percentage of drug release at sampling time point

 $Qobs_{t(n-1)}$ = percentage of drug release at previous sampling time point

=

 t_n = sampling time point

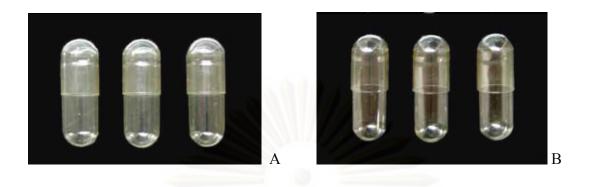
 $t_{(n-1)}$ = previous sampling time point

- calculated zero-order equation from percentage of drug release at various time points
- \circ R square of release data fitted to zero-order equation (R²)

จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER IV

RESULTS AND DISCUSSION


2. Study of Optimum Time for Preparation of Crosslinked Capsule Shells

Gelatin capsules that exposed with formaldehyde vapor for 1, 2, 4, 6, 8 and 24 hrs were subjected to integrity test by immersion with stirring in deionized (DI) water, 0.1 N hydrochloric acid (HCl) pH 1.2 and phosphate buffer (PBS) pH 6.8. Photograph of crosslinked and non-crosslinked hard gelatin capsules are displayed in Figure 26. It was shown that crosslinked and non-crosslinked hard gelatin capsules gave no difference of physical characteristics. The results of crosslinked capsule characteristic are presented in Table 15. It was found that capsules were insoluble in all media when capsules were exposed to formaldehyde vapors for over 6 hrs. Based on the results, 6 hrs was adopted as the least and optimum time for exposure of hard gelatin capsules to formaldehyde vapors. Capsule shell characteristics are displayed in Figure 27.

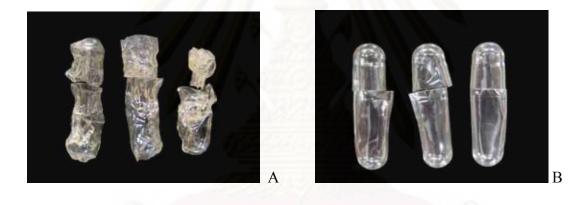

Medium	Time (hrs)	Shell characteristics	Weight
	1	partially insoluble	57 -
	2	partially insoluble	-
Diwatar	4	insoluble	not changing*
DI water	6	insoluble	not changing [*]
	8	insoluble	not changing [*]
	24	insoluble	not changing [*]
0.1 N HCl pH 1.2	4	partially insoluble	งยาลั
0.1 N HCI pH 1.2	6	insoluble	not changing [*]
PBS pH 6.8	6	insoluble	not changing [*]

 Table 15 Summary of crosslinked capsule characteristics

*Not changing = \pm not more than 5 % of initial capsule shell weight

Figure 26 Photograph of crosslinked hard gelatin capsules(A) and non-crosslinked hard gelatin capsules (B)

Figure 27 Photograph of partially insoluble hard capsules (A) and insoluble hard capsules (B) when immersed in media

7. Evaluation of Coated Capsules

7.1 Capsule weight gain, coated membrane weight, theoretical coated membrane weight and coated membrane weight per surface area

As presented in Table 16 and 17, average weight of capsule shell and average weight of mixture powder of diltiazem hydrochloride OPC and propranolol hydrochloride OPC with all levels of coating solution were similar. The results showed that HPMC layer average weights were varies among different OPC groups. Table 16 and 18 show that the average weight of CA layer of diltiazem hydrochloride OPC increased as the amount of coating solution increased, resulting in increment of coated membrane weight per surface area. Nevertheless, there was clear evidence from Table 17 and 19 that the average weight of CA layer of propranolol hydrochloride OPC was independent of the level of CA solution led to an equivalent of coated membrane weight per surface area. In case of propranolol hydrochloride OPC, the preparing procedures were inaccurate because of some deviant coating conditions and coating machine.

 Table 16 Average weight of capsule shell, containing powder and coated membrane

 weight of diltiazem hydrochloride OPC coating with various amounts of CA solution

Amount of		Average weight per cap (mg)*			
coating solution	Capsule type	Capsule shell	Powder	HPMC layer	CA layer
250 ml	Crosslinked	75.50	334.18	39.26	25.04
	Non-crosslinked	75.83	333.64	38.86	28.37
290 ml	Crosslinked	75.83	336.61	41.11	32.61
2,0 111	Non-crosslinked	75.78	337.17	41.39	32.22
335 ml	Crosslinked	75.61	336.37	38.99	39.79
555 m	Non-crosslinked	75.61	336.69	36.00	35.98

*Average weight per cap = (total weight of 60 capsules/60)

Table 17 Average weight of capsule shell, containing powder and coated membrane

 weight of propranolol hydrochloride OPC coating with various amounts of CA

 solution

Amount of		Average weight per cap (mg)*			
coating solution	Capsule type	Capsule shell	Powder	HPMC layer	CA layer
290 ml	Crosslinked	76.00	336.33	42.39	33.67
2,0 111	Non-crosslinked	75.55	336.33	43.83	34.83
335 ml	Crosslinked	75.50	337.52	35.64	33.01
220 111	Non-crosslinked	75.75	337.80	34.74	34.50

*Average weight per cap = (total weight of 60 capsules/60)

Table 18 Coated membrane weight per surface area of diltiazem hydrochloride OPC

 coating with various amounts of CA solution

Amount of	0	Coated membrane weight per surface area (mg/cm ²)		
coating solution		Subcoating (HPMC layer)	Semipermeable membrane (CA layer)	
250 ml	Crosslinked	9.62	6.14	
200 111	Non-crosslinked	9.52	6.95	
290 ml	Crosslinked	10.07	7.99	
	Non-crosslinked	10.14	7.90	
335 ml	Crosslinked	9.55	9.75	
550 111	Non-crosslinked	8.82	8.82	

Amount of		Coated membrane weight per surface area (mg/cm ²)		
coating solution	Capsule type	Subcoating (HPMC layer)	Semipermeable membrane (CA layer)	
290 ml	Crosslinked	10.39	8.25	
	Non-crosslinked	10.74	8.54	
335 ml	Crosslinked	8.73	8.09	
	Non-crosslinked	8.51	8.45	

Table 19 Coated membrane weight per surface area of propranolol hydrochlorideOPC coating with various amounts of CA solution

Theoretical coated membrane weights are presented in Table 20. It was found that actual average weight of coated layers of diltiazem hydrochloride OPC and propranolol hydrochloride OPC were approximately 60-70 % of theoretical coated layers weight (Table 21 and 22).

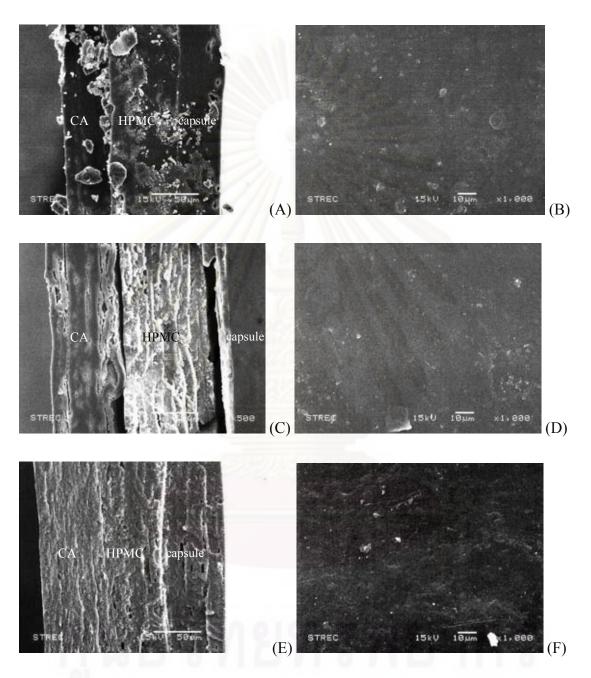
 Table 20 Theoretical average weight of coated layers per capsule

Amount of	Theoretical weight per cap (mg)	
coating solution	Subcoating (HPMC layer)	semipermeable membrane (CA layer)
250 ml	60	43
290 ml	60	49
335 ml	60	57

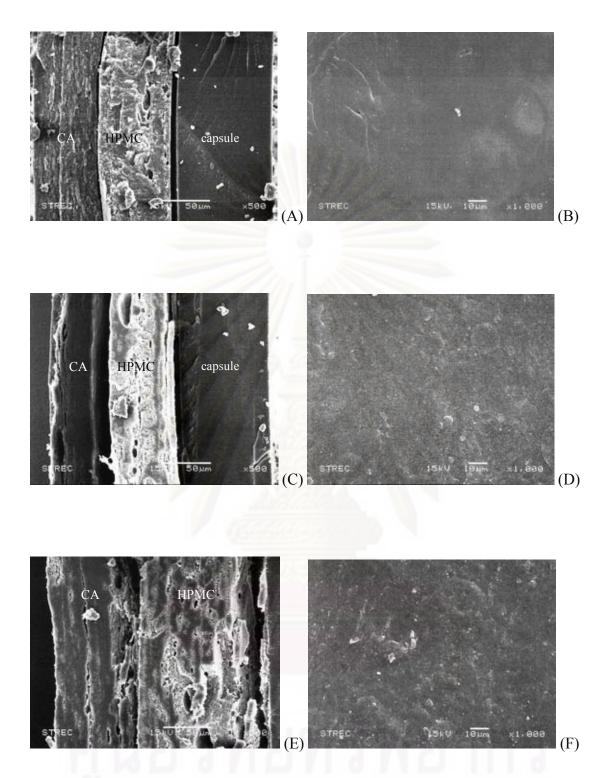
Amount of		Actual weight per theoretical weight (%)		
coating solution	Capsule type	Subcoating (HPMC layer)	Semipermeable membrane (CA layer)	
250 ml	Crosslinked	65.435	58.223	
200 111	Non-crosslinked	64.772	65.974	
290 ml	Crosslinked	68.518	66.553	
290 111	Non-crosslinked	68.982	65.759	
335 ml	Crosslinked	64.977	69.809	
555 m	Non-crosslinked	60.002	63.121	

 Table 21 Percentage of actual coated layers weight per theoretical coated layers

 weight of diltiazem hydrochloride OPC


 Table 22 Percentage of actual coated layers weight per theoretical coated layers

 weight of propranolol hydrochloride OPC


Amount of		Actual weight per theoretical weight (%)		
coating solution	Capsule type	Subcoating (HPMC layer)	Semipermeable membrane (CA layer)	
290 ml	Crosslinked	70.648	68.708	
270 m	Non-crosslinked	73.055	71.088	
335 ml	Crosslinked	59.402	57.904	
333 IIII	Non-crosslinked	57.898	60.526	

7.2 Coated film characterization

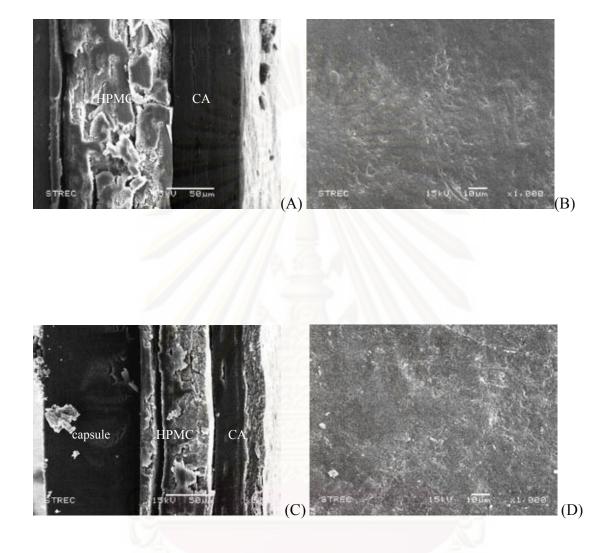

Coated layers of diltiazem hydrochloride OPC and propranolol hydrochloride OPC were characterized using scanning electron microscope as diplayed in Figure 28-29 and 30-31, respectively.

Figure 28 The photomicrograph (SEM) of cross-section view (x500) and surface view (x1000) of diltiazem hydrochloride crosslinked OPC coated with 250 ml [cross-section (A) and surface (B)], 290 ml [cross-section (C) and surface (D)] and 335 ml [cross-section (E) and surface (F)] CA coating solution

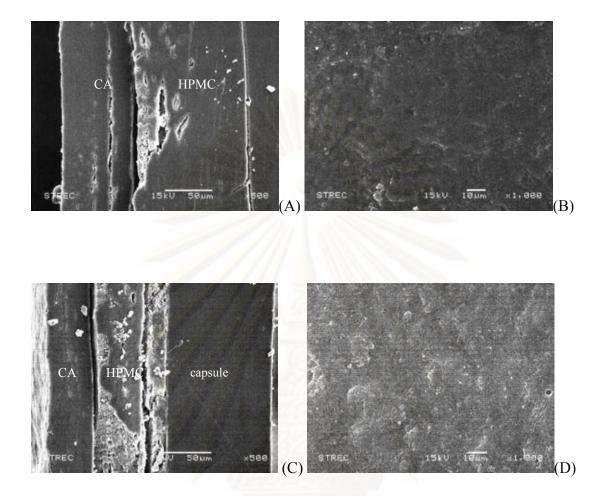


Figure 29 The photomicrograph (SEM) of cross-section view (x500) and surface view (x1000) of diltiazem hydrochloride non-crosslinked OPC coated with 250 ml [cross-section (A) and surface (B)], 290 ml [cross-section (C) and surface (D)] and 335 ml [cross-section (E) and surface (F)] CA coating solution

Figure 30 The photomicrograph (SEM) of cross-section view (x500) and surface view (x1000) of propranolol hydrochloride crosslinked OPC coated with 290 ml [cross-section (A) and surface (B)] and 335 ml [cross-section (C) and surface (D)] CA coating solution

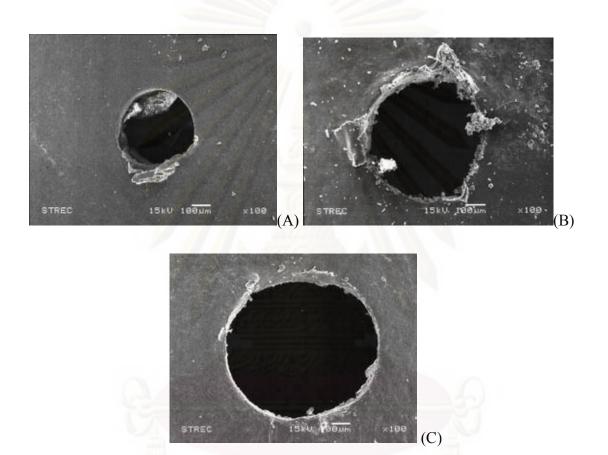


Figure 31 The photomicrograph (SEM) of cross-section view (x500) and surface view (x1000) of propranolol hydrochloride non-crosslinked OPC coated with 290 ml [cross-section (A) and surface (B)] and 335 ml [cross-section (C) and surface (D)] CA coating solution

. Cross-section view of OPC clearly show three separated layers; capsule shell layer, HPMC layer and CA layer. As shown in figures, surface of all groups of OPC were smooth and homogeneous. It was found that film thickness can not be measured correctly because coating layers were distorted during specimen preparation. Nevertheless, it was indicated that HPMC layer was thicker than CA layer due to high HPMC layer weight gain.

7.3 Orifice characterization

The photomicrograph of the orifices are displayed in Figure 32. It was found that the orifice, which drilled using hypodermic needle, had rounded shape and smooth edge. Needles with 0.4, 0.6 and 0.8 mm diameter gave roughly 0.4, 06, and 0.8 orifice sizes, respectively.

Figure 32 The photomicrograph (SEM) of various sizes of the orifice that drilled with 0.4 mm (A) ,0.6mm (B) and 0.8 mm (C) needle

7.4 Effect of orifice size of OPC on powder loss

To study the effect of orifice size of OPC on powder loss, OPC were drilled using 0.4, 0.6 and 0.8 mm needle. Powder losses and area of the orifice were shown in Table 23. It was clearly evident that loss of powder increase with an increase in diameter and area of the orifice. In an attempt to reduce powder loss before dissolution testing, OPC were drilled prior to use. Figure 33 shows correlation between % powder loss and area of the orifice.

Size of the orifice (mm)	Area of the orifice (mm ²)	% loss of powder
0.4	0.126	0.782
0.6	0.283	1.546
0.8	0.503	2.998

 Table 23 Percentage of powder loss from various orifice sizes OPC

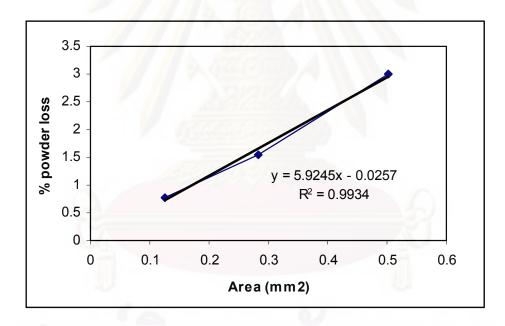


Figure 33 Correlation between % powder loss and area of the orifice

7.5 Content of model drug in OPC

Content of diltiazem hydrochloride and propranolol hydrochloride in OPC were about 100 %. Table 24 and 25 displayed content of diltiazem hydrochloride and propranolol hydrochloride in OPC, respectively.

Table 24 Content of diltiazem hydrochloride coating with various amounts of CA solution (n=3)

Amount of coating	Content of diltiazem hydrochloride		
solution	Crosslinked capsule	Non-crosslinked capsule	
250 ml	90.23 ± 1.30 mg	89.59 ± 3.21 mg	
230 mi	(100.26 ± 1.45 %)	(99.54 ± 3.57 %)	
290 ml	$89.98 \pm 2.25 \text{ mg}$	94.71 ± 1.46 mg	
290 III	(99.98 ± 2.50 %)	(105.24 ± 1.62 %)	
225 1	90.72 ± 2.19 mg	89.33 ± 3.64 mg	
335 ml	(100.80 ± 2.34 %)	(99.25 ± 4.05 %)	

 Table 25 Content of propranolol hydrochloride coating with various amounts of CA solution (n=3)

Amount of	Content of propranolol hydrochloride		
coating	Crosslinked capsule	Non-crosslinked capsule	
290 ml	$93.60 \pm 2.81 \text{ mg}$	92.77 ± 1.02 mg	
290 III	(104.00 ± 3.12 %)	(103.09 ± 1.13 %)	
225 ml	$94.45 \pm 0.90 \text{ mg}$	96.03 ± 2.44 mg	
335 ml	(104.94 ± 1.00 %)	(106.70 ± 2.71 %)	

7.6 Dissolution study

7.6.1 Evaluation of various parameters affecting on drug release profile

2.6.1.1 Amount of cellulose acetate coating solutions

Influence of coating solution level on drug release from OPC was investigated using deionized water as dissolution medium. All OPC were drilled using 0.6 mm needle. OPC in this experiment were divided into four groups as follows:

- diltiazem HCl crosslinked OPC coating with 250, 290 and
 335 ml CA solution
- diltiazem HCl non-crosslinked OPC coating with 250, 290
 and 335 ml CA solution
- propranolol HCl crosslinked OPC coating with 290 and
 335 ml CA solution
- propranolol HCl non-crosslinked OPC coating with 290 and 335 ml CA solution

The influences of cellulose acetate solution level on drug release profiles of diltiazem hydrochloride crosslinked and non-crosslinked OPC are shown in Figure 34 and 35. Diltiazem hydrochloride crosslinked OPC coating with 250, 290 and 335 ml had 1, 1.5 and 2.5 hrs lag time, respectively. Lag time of diltiazem hydrochloride non-crosslinked OPC coating with 250, 290 and 335 ml were 0.5, 1 and 1 hrs, respectively. As shown in Figure 34, level of coating solution could affect lag time of diltiazem hydrochloride crosslinked OPC. Diltiazem hydrochloride crosslinked and non-crosslinked OPC could sustain release profile about 9 hrs and between 10%-80% of cumulative drug release profiles closed to zero-order of drug content (R² are shown in Table 26 and 27).

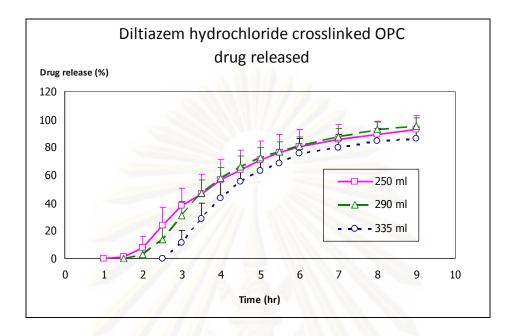


Figure 34 The release profiles of diltiazem hydrochloride from crosslinked OPC (n=18) coating with various amounts of CA solution (250, 290 and 335 ml) in deionized water.

Figure 35 The release profiles of diltiazem hydrochloride from non-crosslinked OPC (n=18) coating with various amounts of CA solution (250, 290 and 335 ml) in deionized water.

diltiazem hydrochloride crosslinked OPC				
coating solution level	Qobs [*] (%)	calculated release rate (%/hr)	R^2	
250 ml	7.92-80.25	17.661	0.962	
290 ml	13.92-80.77	18.581	0.9322	
335 ml	11.54-79.55	16.943	0.9055	

Table 26 The comparative parameters of diltiazem hydrochloride crosslinked OPC with various CA solution levels including calculated release rate and R^2

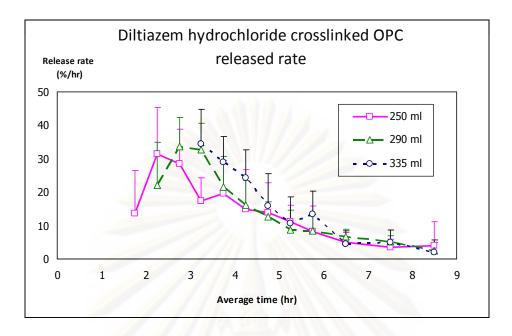
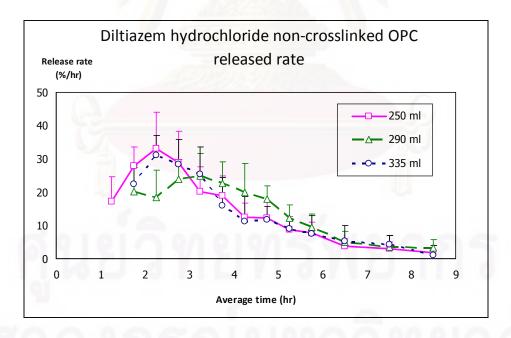

*Qobs=percentage of drug release interval used for calculation of zero-order equation

Table 27 The comparative parameters of diltiazem hydrochloride non-crosslinkedOPC with various CA solution levels including calculated release rate and R^2


diltiazem hydrochloride non-crosslinked OPC				
coating solution level	Qobs [*] (%)	calculated release rate (%/hr)	R^2	
250 ml	9.92-94.9	18.824	0.9463	
290 ml	8.17-92.66	19.793	0.989	
335 ml	4.58-91.1	16.15	0.9182	

*Qobs=percentage of drug release interval used for calculation of zero-order equation

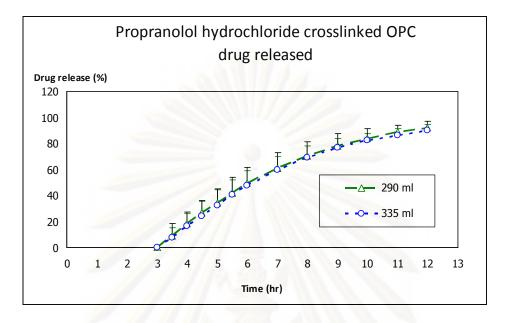

Release rate of diltiazem hydrochloride crosslinked and non-crosslinked OPC are shown in Figure 36 and 37. For the initial period release rate were increasing after that release rate were decreasing. In last 3 hrs, release rate were steady. Release rate of diltiazem hydrochloride crosslinked OPC coating with 335 ml CA solution was the slowest release rate but release rate from OPC coating with 250 and 290 ml CA solution were similar. Release rate from diltiazem hydrochloride non-crosslinked OPC coating with 250, 290 and 335 ml CA solution were similar. From Table 26 and 27, diltiazem hydrochloride crosslinked and non-crosslinked OPC coating with various CA solution levels gave no clear different calculated release rate.

Figure 36 The release rate profiles of diltiazem hydrochloride from crosslinked OPC (n=18) coating with various amounts of CA solution (250, 290 and 335 ml) in deionized water.

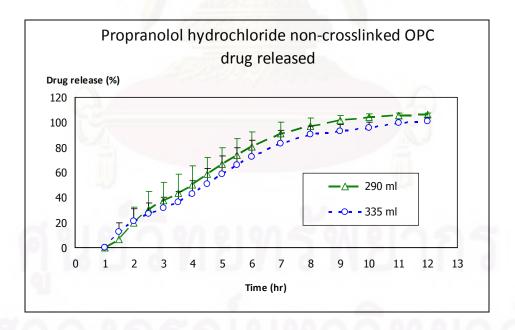


Figure 37 The release rate profiles of diltiazem hydrochloride from non-crosslinked OPC (n=18) coating with various amounts of CA solution (250, 290 and 335 ml) in deionized water.

The release profiles of propranolol from each group of OPC are shown in Figure 38 and 39.

Figure 38 The release profiles of propranolol hydrochloride from crosslinked OPC (n=18) coating with various amounts of CA solution (290 and 335 ml) in deionized water.

Figure 39 The release profiles of propranolol hydrochloride from non-crosslinked OPC (n=18) coating with various amounts of CA solution (290 and 335 ml) in deionized water.

Lag time of propranolol hydrochloride crosslinked and non-crosslinked OPC coating with both CA solution levels were 3 and 1 hrs, respectively. For propranolol hydrocloride OPC, up to 90% of drug release was closed zere-order relase (R^2 are shown in Table 28 and 29).

Table 28 The comparative parameters of propranolol hydrochloride crosslinked OPC coating with various CA solution levels including calculated release rate and R²

propranolol hydrochloride crosslinked OPC				
coating solution level	Qobs [*] (%)	calculated release rate (%/hr)	R^2	
290 ml	9.02-92.04	9.8159	0.9478	
335 ml	7.58-90.40	9.8013	0.9502	

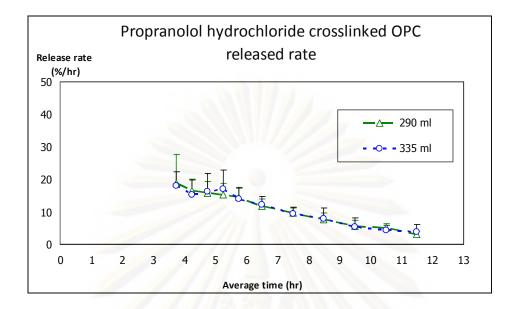
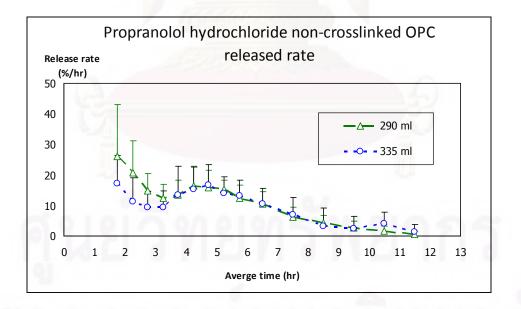

*Qobs=percentage of drug release interval used for calculation of zero-order equation

Table 29 The comparative parameters of propranolol hydrochloride non-crosslinked OPC with various CA solution levels including calculated release rate and R^2


propranolol hydrochloride non-crosslinked OPC				
coating solution level	Qobs [*] (%)	calculated release rate (%/hr)	R^2	
290 ml	6.74-90.78	15.023	0.9897	
335 ml	12.50-90.11	12.386	0.9928	

*Qobs=percentage of drug release interval used for calculation of zero-order equation

As shown in Figure 40 and 41, it was no diferrence between release rate profiles of propranolol hydrochloride OPC coating with 290 and 335 ml CA solution (calculated release rates are presented in Table 28 and 29). Release rate of propranolol hydrochloride crosslinked OPC had more linear pattern and less variation of release rate than release rate of propranolol hydrochloride non-crosslinked OPC.

Figure 40 The release rate profiles of propranolol hydrochloride from crosslinked OPC (n=18) coating with various amounts of CA solution (290 and 335 ml) in deionized water.

Figure 41 The release rate profiles of propranolol hydrochloride from noncrosslinked OPC (n=18) coating with various amounts of CA solution (290 and 335 ml) in deionized water. According to equation 4, the increment in membrane thickness (*h*) led to a reduction of solute delivery rate (dm/dt).

$$\frac{dm}{dt} = \frac{A}{h} L_p \sigma \Delta \pi C$$

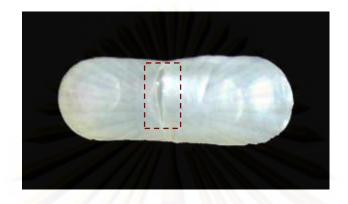
dm/dt = solute delivery rate

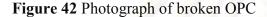
A = membrane area

h = membrane thickness

 L_p = mechanical permeability

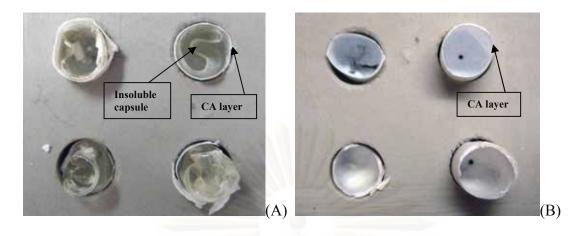
 σ = reflection coefficient


 $\Delta \pi$ = osmotic pressure difference


C = concentration of compound in the dispensed fluid

It seem reasonable to assume that thickness of film depended on semipermeable membrane weight. Average weight of CA layer of diltiazem hydrochloride crosslinked OPC coating with 250, 290 and 335 ml were found to be 25.04, 32.61 and 39.79 mg/cap, respectively (Table 16). As shown in Figure 34, level of CA solution increase led to an increase of semipermeable film thickness, resulting in the lag time of diltiazem hydrochloride crosslinked OPC increase. However, Figure 35 shows that diltiazem hydrochloride non-croslinked OPC showed not much diference of lag time which might be caused by slight difference of average weight of CA layer. Average weight of CA layer of diltiazem hydrochloride non-crosslinked OPC coating with 250, 290 and 335 ml were found to be 28.37, 32.22 and 35.98 mg/cap, respectively (Table 16). The reason is that membrane resistance to water penetration increased as the membrane thickness increased resulting in an increase of lag time and a reduction of release rate (Liu and Xu, 2008) During dissolution test, coating film of diltiazem hydrochloride OPC coating with 250 ml CA solutions were broken (Figure 42), therefore 250 ml coating solution was not use for propranolol hydrochloride OPC study. As shown in Table 17, semipermeable membrane weight of porpranolol hydrochloride OPC coating with 290 and 335 ml are similar led to no difference of lag time of propranolol hydrochloride OPC coating with various amounts of CA solution. For both model drugs, lag time of crosslinked OPC were

(Eq. 4)


longer than lag time of non-crosslinked OPC. Since crosslinked capsule was a hydrophobic shell, it was dfficult for water to penetrate into OPC.

Release rate of diltiazem hydrochloride crosslinked and non-crosslinked coating with various amounts of CA solution had no clear diversity (Figure 36 and 37). Amount of coating solutions did not affect release rate of propranolol hydrochloride crosslinked and non crosslinked due to similarity of CA layer weight. However, capsule type had effect on propranolol hydrochloride release rate. It can indicated that propranolol hydrochloride crosslinked OPC gave more linear release rate profile and less variation of release rate at various sampling time points than non-crosslinked OPC (Figure 40 and 41). Propranolol hydrochloride OPC release rate rate had less fluctuation than diltiazem hydrochloride OPC release rate. Propranolol hydrochloride OPC could extended zero-order release rate longer than diltiazem hydrochloride OPC due to difference of drugs solubility hence affecting OPC water influx and OPC delivery rate.

After dissolution testing, there were insoluble capsule inside crosslinked OPC but non-crosslinked OPC had nothing inside. Figure 43 exhibits cross-section views of crosslinked and non-crosslinked OPC.

Figure 43 Photograph of cross-section views of crosslinked (A) and non-crosslinked (B) OPC after dissolution testing

2.6.1.2 Orifice size

In order to study the influence of orifice size on drug release profile of diltiazem hydrochloride crosslinked and non-crosslinked OPC and propranolol hydrochloride crosslinked and non-crosslinked OPC coating with 335 ml CA solution, the release characteristics of OPC were investigated using deionized water as dissolution medium. OPC study in this experiment divided into four subgroups as follows

- diltiazem HCl crosslinked OPC with 0.4, 0.6 and 0.8 mm orifice size.
- diltiazem HCl non-crosslinked OPC with 0.4, 0.6 and 0.8 mm orifice size.
- propranolol HCl crosslinked OPC with 0.4, 0.6 and 0.8 mm orifice size.
- propranolol HCl non-crosslinked OPC with 0.4, 0.6 and 0.8 mm orifice size.

Figure 44 and 45 show the release profiles of diltiazem hydrochloride from crosslinked and non-crosslinked OPC with various orifice sizes. Lag time of diltiazem hydrochloride crosslinked OPC with orifice size 0.4, 0.6 and 0.8 mm were found to be 2, 2.5 and 1.5 hrs, respectively. Lag time of diltiazem hydrochloride non-crosslinked OPC with orifice size 0.4, 0.6 and 0.8 mm were obtained to be 1.5, 1 and 1 hrs,

respectively. It indicated that orifice size might not have effect on lag time of diltiazem hydrochloride OPC. Diltiazem hydrochloride OPC could prolong drug release about 9 hours and about 80 % of drug content released close to zero-order model (R^2 are presented in Table 30 and 31) with similar variations of drug release at various sampling time points.

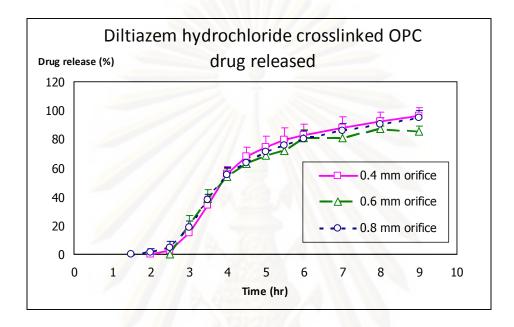
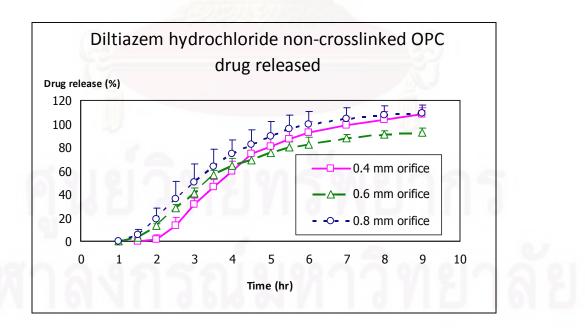



Figure 44 The release profiles of diltiazem hydrochloride from crosslinked OPC with various orifice sizes 0.4, 0.6 and 0.8 mm (n=6) in deionized water.

Figure 45 The release profiles of diltiazem hydrochloride from non-crosslinked OPC with various orifice sizes 0.4, 0.6 and 0.8 mm (n=6) in deionized water.

Table 30 The comparative parameters of diltiazem hydrochloride crosslinked OPC with various orifice sizes including calculated release rate and R^2

diltiazem hydrochloride crosslinked OPC				
orifice size	Qobs [*] (%)	calculated release rate (%/hr)	R ²	
0.4 mm	14.94-82.53	22.337	0.9015	
0.6 mm	20.51-80.94	18.722	0.9283	
0.8 mm	4.59-80.25	21.985	0.9351	

*Qobs=percentage of drug release interval used for calculation of zero-order equation

Table 31 The comparative parameters of diltiazem hydrochloride non-crosslinkedOPC with various orifice sizes including calculated release rate and R^2

diltiazem hydrochloride non-crosslinked OPC				
orifice size	Qobs [*] (%)	calculated release rate (%/hr)	R^2	
0.4 mm	13.66-80.7	27.325	0.9853	
0.6 mm	13.12-79.92	18.836	0.9496	
0.8 mm	5.48-82.35	26.377	0.9902	

*Qobs=percentage of drug release interval used for calculation of zero-order equation

Release rate profiles of diltiazem hydrochloride from crosslinked and noncrossliniked OPC with various orifice sizes are displayed in Figure 46 and 47. Orifice size had slight effect on release rate of diltazem hydrochloride crosslinked and noncrosslinked OPC. But the results showed that there were different release rate profiles between diltiazem hydrochloride crosslinked OPC and diltiazem hydrochloride noncrosslinked OPC. Release rate of diltiazem hydrochloride crosslinked OPC immediately decreased from 3 hrs to 5 hrs when past 6 hrs release rate was steady. But release rate of diltiazem hydrochloride non-crosslinked OPC slowly decreased from 2 to 6 hrs. As shown in Table 30 and 31, diltizem hydrochloride crosslinked and non-crosslinked OPC with 0.6 mm orifice size gave lower calculated release rate.

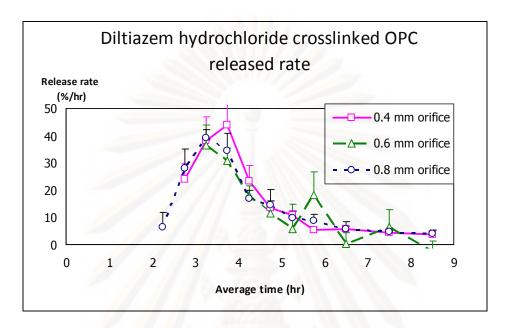



Figure 46 The release rate profiles of diltiazem hydrochloride from crosslinked OPC with various orifice sizes 0.4, 0.6 and 0.8 mm (n=6) in deionized water.

Figure 47 The release rate profiles of diltiazem hydrochloride from non-crosslinked OPC with various orifice sizes 0.4, 0.6 and 0.8 mm (n=6) in deionized water.

As shown in Figure 48, lag time of propranolol hydrochloride crosslinked OPC with orifice size 0.4, 0.6 and 0.8 mm were 3.5, 3 and 3 hrs, respectively. Figure 49 showed that lag time of propranolol hydrochloride non-crosslinked OPC with 0.4, 0.6 and 0.8 mm orifice sizes were 1 hr.

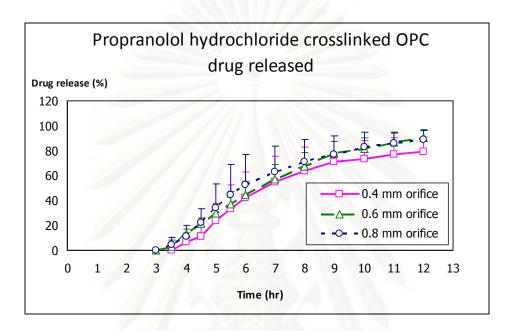
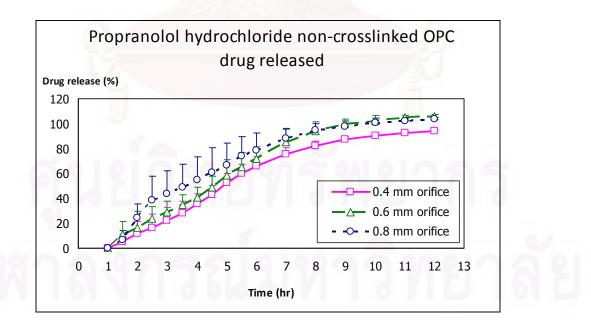



Figure 48 The release profiles of propranolol hydrochloride from crosslinked OPC with various orifice sizes 0.4, 0.6 and 0.8 mm (n=6) in deionized water.

Figure 49 The release profiles of propranolol hydrochloride from non-crosslinked OPC with various orifice sizes 0.4, 0.6 and 0.8 mm (n=6) in deionized water.

Propranolol hydrochloride crosslinked and non-crosslinked OPC could prolong release for 12 and 9 hrs, respectively. About 90 % of drug release were closed to zero-order kinetics (R^2 are shown in Table 32 and 33). Propranolol hydrochloride crosslinked OPC with 0.6 mm orifice size had lower drug release variation at various sampling time points and non-crosslinked OPC with 0.8 mm orifice size had the most drug release variation at various sampling time points (Figure 48 and 49).

Table 32 The comparative parameters of propranolol hydrochloride crosslinked OPC with various orifice sizes including calculated release rate and R^2

propranolol hydrochloride crosslinked OPC				
orifice size	Qobs [*] (%)	calculated release rate (%/hr)	R^2	
0.4 mm	11.28-79.5	8.6714	0.8946	
0.6 mm	13.59-90.18	9.7697	0.9535	
0.8 mm	11.21-89.24	9.3077	0.9053	

*Qobs=percentage of drug release interval used for calculation of zero-order equation

Table 33 The comparative parameters of propranolol hydrochloride non-crosslinkedOPC with various orifice sizes including calculated release rate and R^2

propra	nolol hydrochlori	de non-crosslinke	ed OPC
orifice size	Qobs [*] (%)	calculated release rate (%/hr)	R ²
0.4 mm	11.68-90.52	10.735	0.9593
0.6 mm	10.79-94.35	13.478	0.9958
0.8 mm	6.77-94.66	12.581	0.9529

*Qobs=percentage of drug release interval used for calculation of zero-order equation

Figure 50 and 51 show release rate profiles of propranolol hydrochloride crosslinked and non-crosslinked OPC that had low fluctuation except for release rate profile of propranolol hydrochloride non-crosslinked OPC with 0.8 mm orifice size.

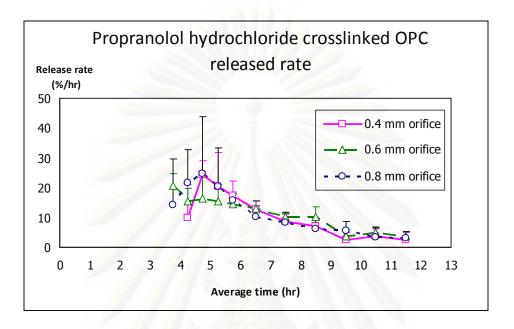


Figure 50 The release rate profiles of propranolol hydrochloride from crosslinked OPC with various orifice sizes 0.4, 0.6 and 0.8 mm (n=6) in deionized water.

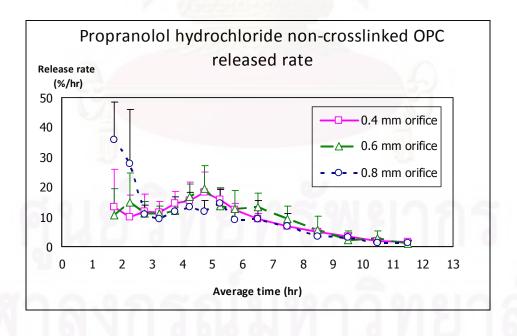


Figure 51 The release rate profiles of propranolol hydrochloride from noncrosslinked OPC with various orifice sizes 0.4, 0.6 and 0.8 mm (n=6) in deionized water.

It was found that no clear difference existed in the release profiles of all groups OPC among 0.4, 0.6 and 0.8 mm in orifice diameter (Figure 44, 45, 48 and 49). However for all orifice sizes, crosslinked OPC seemed to have more similar drug release than non-crosslinked OPC. The results showed that the orifice size affected variation of drug release at various sampling time points. As presented in Figure 45 and 49, diltiazem hydrochloride and propranolol hydrochloride non-crosslinked OPC with 0.8 mm orifice size were observed high variation of drug release at various sampling time points. Drug release variation at various sampling time points of propranolol hydrochloride crosslinked OPC with 0.6 mm was the lowest (Figure 48). Diltiazem hydrochloride crosslinked OPC with various orifice sizes gave slight different variation of drug release at various sampling time points (Figure 44). Diameter of orifice increased led to an increas of variation at various sampling time points except for propranolol hydrochloride crosslinked OPC with 0.4 mm orifice which gave high variation due to broken membrane of OPC. High variation of release rate at various time points of OPC with 0.8 orifice size may be due to high water influx through the larger orifice (Liu et al., 2000).

Mohammadi-Samani et al. (2000) reported that propranolol hydrochloride osmotic pump tablets with 0.2 mm to 0.8 mm orifice size gave release mechanism followed zero-order model. But release rate of propranolol hydrochloride osmotic pump tablets with 1.0 mm orifice size became abnormal. It can be indicated that the delivery rate of osmotic pump is independent of orifice size within predictable limits (Theeuwes, 1975). Hence lag time and delivery rate of OPC might be affected by orifice size which was out of optimum range. The minimum area of the optimum orifice size can be calculated from Poiseuille's law (Lakshminarayanaiah, 1969).

Minimum area of the orifice =
$$5\left(l\frac{dV}{dt}\frac{\eta}{\Delta P_{\text{max}}}\right)^{\frac{1}{2}}$$

$$\left(l\frac{dV}{dt}\frac{\eta}{\Delta P_{\max}}\right)^{\frac{1}{2}}$$

dV/dt = volume flux

- l =length of the orifice
- η = viscosity of the delivery fluid

 ΔP_{max} = maximum hydrostatic pressure of the device

The maximum area of the optimum orifice size is established to reduce the diffusion contribution to the delivery rate. These area can be calculated from following equation that was developed by Theeuwes (1974).

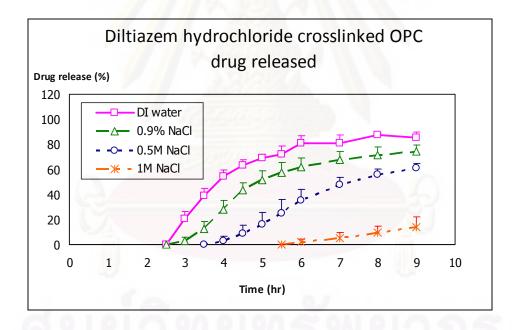
Maximum area of the orifice
$$= \frac{l}{F} \left(\frac{dm}{dt}\right)_z \frac{1}{DS}$$

(dm/dt)_z = fluid delivery rate from t=0 to t=z
F = the ratio of total delivery rate to diffusive rate (If F ≥ 40, diffusive contribution to delivery rate is insignificant)
D = diffusion coefficient of drug in dissolution medium
S = the component solubility

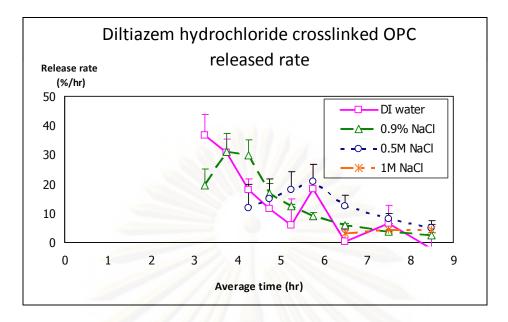
From Figure 34 to 41 and 44 to 51, diltiazem hydrochloride OPC gave short time of drug release and high release rate. As presented in Table 24 to 31, calculated release rate of propranolol hydrochloride OPC was less than calculated release rate of diltiazem hydrochloride. According to Equation 7, the soluble component increase resulting in increment of delivery rate. The soluble component of diltiazem hydrochloride OPC was higher than the component solubility of propranolol hydrochloride OPC.

$$\left(\frac{dm}{dt}\right)_z = \frac{A}{h} P_w \pi_s S \tag{Eq. 7}$$

Based on the aboved results, OPC prepared using 335 ml CA solution with orifice size of 0.6 mm were selected for investigating the effect of release media having different ionic strenghts and pHs on drug release from the system.


7.6.2 Evaluation of drug release in various media

2.6.2.1 Different ionic strength media


Drug release of diltiazem hydrochloride crosslinked and noncrosslinked OPC and propranolol hydrochloride crosslinked and non-crosslinked OPC were studied using various ionic strength solutions as follows

- 0.154 M or 0.9 % sodium chloride (NaCl) solution (isotonic)
- o 0.5 M NaCl solution
- o 1 M NaCl solution

Figure 52 and 53 display drug release profiles and release rate profiles of diltiazem hydrochloride crosslinked OPC. Lag time of diltiazem hydrochloride crosslinked OPC in deionized water, 0.9 %, 0.5 M and 1 M NaCl solutions were 2.5, 2.5, 3.5 and 5.5 hrs, respectively. The results showed that increasing ionic strength of medium could increase lag time and decreased drug release of diltiazem hydrochloride crosslinked OPC (Calculated release rates are presented in Table 34).

Figure 52 The release profiles of diltiazem hydrochloride from crosslinked OPC (n=6) in deionized water and various concentration NaCl solutions (0.9%, 0.5 M and 1 M).

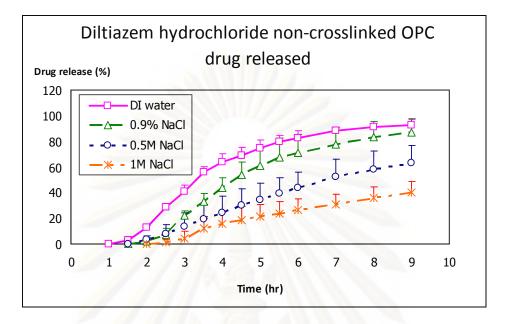
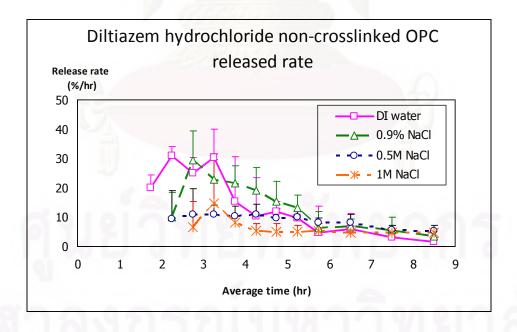

Figure 53 The release rate profiles of diltiazem hydrochloride from crosslinked OPC (n=6) in deionized water and various concentration NaCl solutions (0.9%, 0.5 M and 1 M).

Table 34 The comparative parameters of diltiazem hydrochloride crosslinked OPC in deionized water and various concentration NaCl solutions including calculated release rate and R²

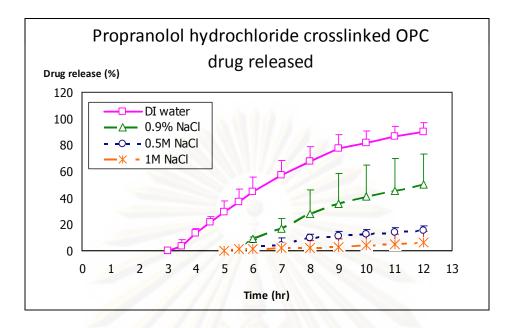

dilt	iazem hydrochlor	ride crosslinked O	PC
dissolution medium	Qobs [*] (%)	calculated release rate (%/hr)	R^2
DI water	20.51-63.12	28.63	0.9787
0.9 % NaCl	12.69-62.16	19.662	0.9438
0.5 M NaCl	8.79-60.98	11.931	0.9553
1 M NaCl	3.90-7.37	4.4371	1.000

*Qobs=percentage of drug release interval used for calculation of zero-order equation

Drug release profiles and release rate profiles of diltiazem hydrochloride noncrosslinked OPC were displayed in Figure 54 and 55, respectively. Diltiazem hydrochloride crosslinked OPC lag time in deionized water, 0.9 %, 0.5 M and 1 M NaCl solution were 1, 1.5, 1.5 and 2 hrs, respectively. The increase in ionic strength of dissolution medium led to reduction of diltiazem hydrochloride release from noncrosslinked OPC (Calculated release rates are presented in Table 35).

Figure 54 The release profiles of diltiazem hydrochloride from non-crosslinked OPC (n=6) in deionized water and various concentration NaCl solutions (0.9%, 0.5 M and 1 M).

Figure 55 The release rate profiles of diltiazem hydrochloride from non-crosslinked OPC (n=6) in deionized water and various concentration NaCl solutions (0.9%, 0.5 M and 1 M).


Table 35 The comparative parameters of diltiazem hydrochloride non-crosslinkedOPC in deionized water and various concentration NaCl solutions includingcalculated release rate and R^2

diltiazem hydrochloride non-crosslinked OPC			
dissolution medium	Qobs [*] (%)	calculated release rate (%/hr)	R ²
DI water	13.12-63.95	25.868	0.9895
0.9 % NaCl	7.25-61.36	21.513	0.9891
0.5 M NaCl	8.21-63.14	8.6339	0.9831
1 M NaCl	12.00-40.18	4.9743	0.9955

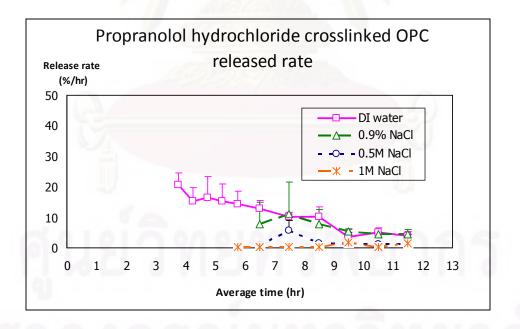

*Qobs=percentage of drug release interval used for calculation of zero-order equation

Figure 56 and 57 exhibit drug release profiles and release rate profiles of propranolol hydrochloride crosslinked OPC. Lag time of propranolol hydrochloride crosslinked OPC in deionized water, 0.9 %, 0.5 M and 1 M NaCl solution were found to be 3, 5.5, 5.5 and 5 hrs, respectively. Increasing ionic strength of medium extremely decreased in drug release and release rate of propranolol hydrochloride crosslinked OPC (Calculated release rates are shown in Table 36). As shown in Figure 56 and 57, propranolol hydrochloride barely released in 0.5 M and 1 M NaCl solutions.

ศูนยวิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Figure 56 The release profiles of propranolol hydrochloride from crosslinked OPC (n=6) in deionized water and various concentration NaCl solutions (0.9%, 0.5 M and 1 M).

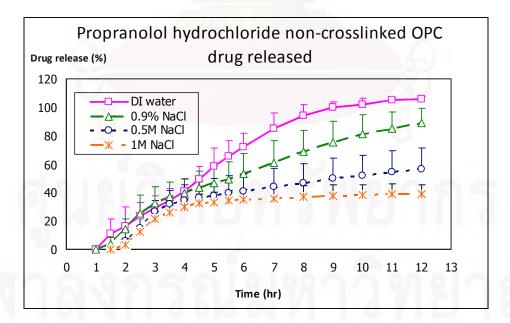
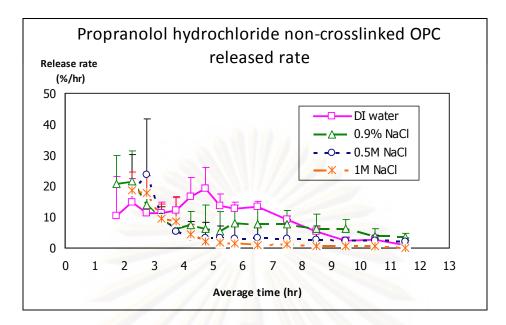

Figure 57 The release rate profiles of propranolol hydrochloride from crosslinked OPC (n=6) in deionized water and various concentration NaCl solutions (0.9%, 0.5 M and 1 M).

Table 36 The comparative parameters of propranolol hydrochloride crosslinked OPC in deionized water and various concentration NaCl solutions including calculated release rate and R^2


propranolol hydrochloride crosslinked OPC			
dissolution medium	Qobs [*] (%)	calculated release rate (%/hr)	R^2
DI water	13.59-57.32	14.67	0.9976
0.9 % NaCl	8.94-50.14	6.95	0.9717
0.5 M NaCl	9.75-15.25	1.38	0.9991
1 M NaCl	4.33-6.40	1.04	0.9005

*Qobs=percentage of drug release interval used for calculation of zero-order equation

As shown in Figure 58 and 59, there was no clear difference in lag time of propranolol hydrochloride crosslinked OPC in various ionic strength media. Drug release of propranolol hydrochloride non-crosslinked OPC during 1 to 4 hrs were similar (Calculated drug release are presented in Table 37). But after 4 hrs of propranolol hydrochloride release, the effect of ionic strength was clearly observed and propranolol hydrochloride release about 40 % of drug content in 1M NaCl solution.

Figure 58 The release profiles of propranolol hydrochloride from non-crosslinked OPC (n=6) in deionized water and various concentration NaCl solutions (0.9%, 0.5 M and 1 M).

Figure 59 The release rate profiles of propranolol hydrochloride from non-crosslinked OPC (n=6) in deionized water and various concentration NaCl solutions (0.9%, 0.5 M and 1 M).

Table 37 The comparative parameters of propranolol hydrochloride non-crosslinkedOPC in deionized water and various concentration NaCl solutions includingcalculated release rate and R^2

proprat	nolol hydrochlori	de non-crosslinke	ed OPC
dissolution medium	Qobs [*] (%)	calculated release rate (%/hr)	R^2
DI water	10.79-49.02	12.52	0.9967
0.9 % NaCl	14.42-49.34	9.26	0.9377
0.5 M NaCl	14.80-49.65	4.36	0.8520
1 M NaCl	12.36-37.57	3.12	0.7018

*Qobs=percentage of drug release interval used for calculation of zero-order equation

Solubility of diltiazem hydrochloride and propranolol hydrochloride are reported in Table 4 and 5 in different media to confirm that sink conditions were maintained during dissolution studies. And solubility of propranolol hydrochloride in different ionic strength media are displayed in Table 38. The solubility of both model drugs in high ionic strength medium are reduced due to common ion effects (Florence and Attwood, 2006). According to equation 4, ionic strength of dissolution medium increases led to decrease of osmotic pressure difference ($\Delta \pi$) resulting in reduction of drug delivery rate (dm/dt). The lag time values of OPC were affected by the ionic strength of dissolution medium. For both model drugs, ionic strength of dissolution medium had more effect on lag time and release rate of crosslinked OPC than lag time and release rate of non-crosslinked OPC. Propranolol hydrochloride OPC was found to be highly dependent on ionic strength of dissolution media more than diltiazem hydrochloride OPC. Based on the results of this study, the increase of ionic strength of dissolution medium led to a reduction of drug release rate of diltiazem hydrochloride and propranolol hydrochloride OPC. Previous studies reported that ionic strength of dissolution media increased resulting in reduction of drug release (Okimoto et al., 1999; Verma et al., 2003). It can be concluded that osmotic pumping is the main mechanism of drug release from the OPC (Liu et al., 1984; Appel and Zentner, 1991)

Medium	Solubility (mg/ml)	
0.154 M NaCl solution	25.32 ± 0.95	
0.5 M NaCl solution	6.36 ± 0.27	
1 M NaCl solution	2.74 ± 0.09	

 Table 38 Solubility of propranolol hydrochloride in different ionic strength media

Osmolarity (ξ_c) of delivery solutions can be calculated by molar concentration (USP 29/NF24, 2006)

$$\xi_{\rm c} = \Sigma i C_i$$

i = van 't Hoff factor (accounts for the number of individual particles of a compund dissolved in solution)

 C_i = molar concentration of the solute in solution

From above equation, omolarity of diltiazem hydrochloride and propranolol hydrochloride formulation solutions were 7.198 and 6.748 Osmol/L, respectively. And osmolarity of 0.9%, 0.5 and 1 M NaCl solution were 0.308, 1 and 2 Osmol/L, respectively. The increment of concentration of NaCl solution led to reduction of osmolarity difference between inside and outside OPC.

The estimation of osmotic pressure (π) of each ingredient saturated solution can be calculated by Morse equation (Amiji and Sandmann, 2003)

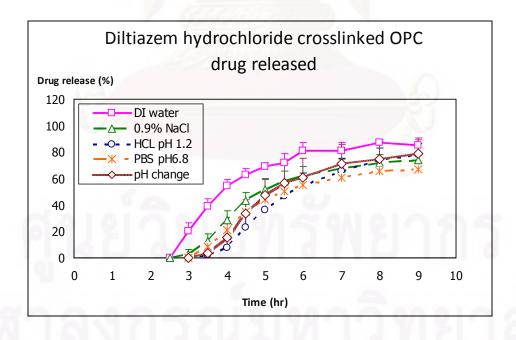
```
\pi = iMRT
```

M = molarity of solution $R = \text{gas constant} (0.08206 \text{ L} \cdot \text{atm} \cdot \text{mol}^{-1} \cdot \text{K}^{-1})$ T = Temeperature (°K)

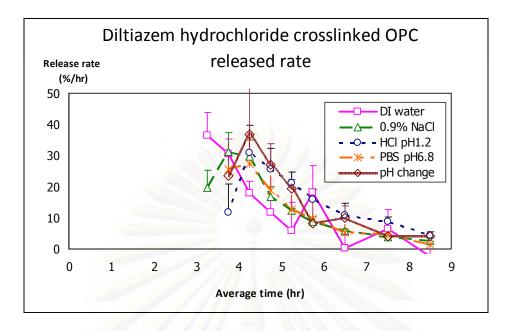
Table 39 are presented osmotic pressure of saturated solution of diltiazem hydrochloride, propranolol hydrochloride and lactose. Osmotic pressure of NaCl saturated solution is shown in Tale 2.

 Table 39 Osmotic pressure of saturated solution of formulation ingredients

Ingrdient	Osmotic pressure (atm)
Diltiazem hydrochloride	67
Propranolol hydrochloride	9
Lactose	24


These results also seemed to confirm that ionic strength had effect on drug release and diltiazem hydrochloride formulation had higher osmotic pressure resulting in more drug release rate.

2.6.2.2 Different pH media


To study the effect of pH of dissolution medium, release studies of diltiazem hydrochloride or propranolol hydrochloride crosslinked and noncrosslinked OPC were conducted in isotonic media of different pH as follows

- Isotonic 0.1 M hydrochloric acid pH 1.2
- Isotonic phosphate buffer pH 6.8
- 0.1 M hydrochloric acid pH 1.2 for 2 hrs and changed to isotonic phosphate buffer pH 6.8

Drug release profiles and release rate profiles of diltiazem hydrochloride crosslinked OPC in various pH media were displayed in Figure 60 and 61. It was shown that lag time of diltiazem hydrochloride crosslinked OPC in isotonic, isotonic HCl pH 1.2, isotonic PBS pH 6.8 and pH-change medium were 2.5, 3, 3 and 3 hrs, respectively. It indicated that no clear differences existed in drug release rate of diltiazem hydrochloride crosslinked OPC in different pH isotonic media (Calculated release rates are presented in Table 40).

Figure 60 The release profiles of diltiazem hydrochloride from crosslinked OPC (n=6) in deionized water, 0.9 % NaCl solution and different pH media with isotonicity (HCl pH1.2, PBS pH6.8 and pH-change method).

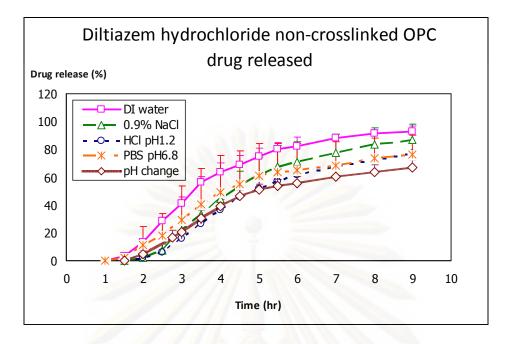
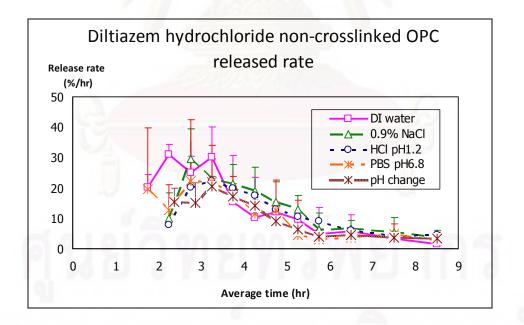

Figure 61 The release rate profiles of diltiazem hydrochloride from crosslinked OPC (n=6) in deionized water, 0.9 % NaCl solution and different pH media with isotonic (HCl pH1.2, PBS pH6.8 and pH-change method).

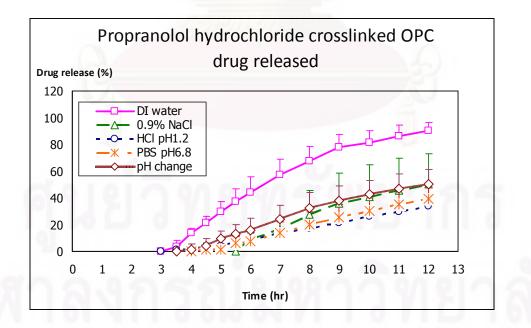
Table 40 The comparative parameters of diltiazem hydrochloride crosslinked OPC in different pH media with isotonic including calculated release rate and R²


dilt	diltiazem hydrochloride crosslinked OPC										
dissolution medium	Qobs [*] (%)	calculated release rate (%/hr)	R ²								
HC1	7.82-74.07	16.05	0.9372								
PBS	8.23-65.30	12.24	0.8740								
pH-change	15.24-70.82	17.84	0.9085								

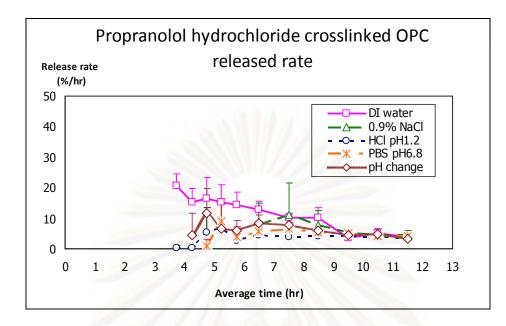
*Qobs=percentage of drug release interval used for calculation of zero-order equation

As shown in Figure 62, lag time of diltiazem hydrochloride non-crosslinked OPC in isotonic, isotonic HCl pH 1.2, isotonic PBS pH 6.8 and pH-change medium were found to be 1.5, 1.5, 1 and 1.5 hrs, respectively. Figure 63 show that drug release rate profile of diltiazem hydrochloride non-crosslinked OPC are apparently similar in all different pH media with isotonic (Calculated release rates are presented in Table 41).

Figure 62 The release profiles of diltiazem hydrochloride from non-crosslinked OPC (n=6) in deionized water, 0.9 % NaCl solution and different pH media with isotonic (HCl pH1.2, PBS pH6.8 and pH-change method).


Figure 63 The release rate profiles of diltiazem hydrochloride from non-crosslinked OPC (n=6) in deionized water, 0.9 % NaCl solution and different pH media with isotonic (HCl pH1.2, PBS pH6.8 and pH-change method).

diltiaz	diltiazem hydrochloride non-crosslinked OPC										
dissolution medium	Qobs [*] (%)	calculated release rate (%/hr)	R^2								
HCl	5.64-72.01	12.23	0.9200								
PBS	11.56-68.53	12.21	0.9082								
pH-change	4.89-67.27	8.76	0.8774								


Table 41 The comparative parameters of diltiazem hydrochloride non-crosslinkedOPC in different pH media with isotonic including calculated release rate and R^2

*Qobs=percentage of drug release interval used for calculation of zero-order equation

Figure 64 and 65 display the release profiles and release rate profiles of propranolol hydrochloride from crosslinked OPC. As can be seen from the figure, lag time of propranolol hydrochloride crosslinked OPC in isotonic, isotonic HCl pH 1.2, isotonic PBS pH 6.8 and pH-change medium were found to be 5.5, 3, 4 and 3.5 hrs, respectively. Drug release profiles and release rate profiles of propranolol hydrochloride crosslinked OPC are similar all different pH media with isotonic (Calculated release rates are shown in Table 42).

Figure 64 The release profiles of propranolol hydrochloride from crosslinked OPC (n=6) in deionized water, 0.9 % NaCl solution and different pH media with isotonic (HCl pH1.2, PBS pH6.8 and pH-change method).

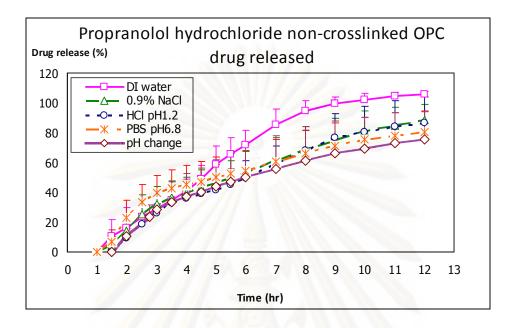
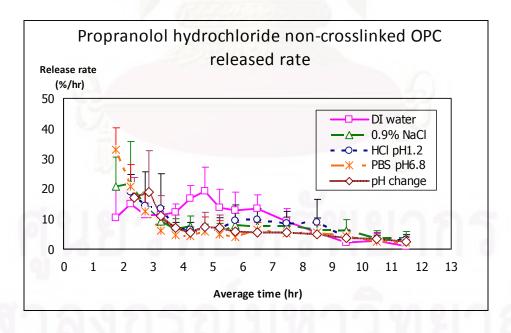

Figure 65 The release rate profiles of propranolol hydrochloride from crosslinked OPC (n=6) in deionized water, 0.9 % NaCl solution and different pH media with isotonicity (HCl pH1.2, PBS pH6.8 and pH-change method).

Table 42 The comparative parameters of propranolol hydrochloride crosslinked OPCin different pH media with isotonicity including calculated release rate and R^2


prop	propranolol hydrochloride crosslinked OPC										
dissolution medium	Qobs [*] (%)	calculated release rate (%/hr)	R^2								
HCl	9.09-33.50	4.08	0.9994								
PBS	7.93-39.15	5.26	0.9942								
pH-change	9.56-38.02	7.34	0.9971								

*Qobs=percentage of drug release interval used for calculation of zero-order equation

The release profiles and release rate profiles of propranolol hydrochloride from non-crosslinked OPC are exhibited in Figure 66 and 67. Lag time of propranolol hydrochloride non-crosslinked OPC in isotonic, isotonic HCl pH 1.2, isotonic PBS pH 6.8 and pH-change medium were obtained to be 1, 1.5, 1 and 1.5 hrs, respectively. About 40% of drug release of propranolol hydrochloride non-crosslinked OPC in various medium were similar and after that drug release in all different pH media with isotonicity were different from drug release in deionized water (Calculated release rates are presented in Table 43).

Figure 66 The release profiles of propranolol hydrochloride from non-crosslinked OPC (n=6) in deionized water, 0.9 % NaCl solution and different pH media with isotonicity (HCl pH1.2, PBS pH6.8 and pH-change method).

Figure 67 The release rate profiles of propranolol hydrochloride from noncrosslinked OPC (n=6) in deionized water, 0.9 % NaCl solution and different pH media with isotonicity (HCl pH1.2, PBS pH6.8 and pH-change method).

proprat	propranolol hydrochloride non-crosslinked OPC										
dissolution medium	Qobs [*] (%)	calculated release rate (%/hr)	R^2								
HCl 🚽	9.16-76.67	8.89	0.9833								
PBS	6.58-75.5	6.70	0.8977								
pH-change	10.61-75.41	5.93	0.9436								

Table 43 The comparative parameters of propranolol hydrochloride non-crosslinked OPC in different pH media with isotonicity including calculated release rate and R^2

*Qobs=percentage of drug release interval used for calculation of zero-order equation

Based on this study, drug release of diltiazem hydrochloride and propranolol hydrochloride are independent of pH of dissolution media, even though drug solubility were difference in different pH media (Table 4 and 5). In previous studies, there was no difference in drug release with changing the media pH (Theeuwes, 1975; Zentner et al., 1991; Verma et al., 2003; Garg et al., 2007) It can be predicted that the environment of gastrointestinal tract scarcely affect the drug release from OPC.

From the above results, the release profiles of OPC might not completely fit to zero-order delivery due to another delivery mechanism such as drug diffusion through the semipermable membrane pores and swellable of subcoating polymer. Semipermable membrane pores were induced by high level of hydrophilic plasticizer in semipermeable membrane led to drug diffusion through membrane pores. In further study, amount of hydrophilic polymer in CA coating solution should be decreased to reduce drug diffusion mechanism of OPC. In case of subcoating polymer, HPMC E5 should be changed to less hydrophilic swellable polymer such as HPC and/or concentration of subcoating solution should be reduced.

CHAPTER V CONCLUSIONS

Osmotically controlled drug delivery system using crosslinked and noncrosslinked hard gelatin capsules could be successfully prepared by fluidized bed coating method. Diltiazem hydrochloride and propranolol hydrochloride using crosslinked capsules and non-crosslinked capsules nearly achieved zero-order model. Physical characteristics of crosslinked and non-crosslinked hard gelatin capsules were similar. But capsules which were exposed to formaldehyde vapors for over 6 hrs are insoluble in all dissolution media.

Thickness of semipermeable membrane had effect on drug release of OPC. An increase of semipermeable film thickness, resulting in an increase of OPC lag time and a reduction of OPC release rate. In this study, suitable level of CA coating solution was 335 ml which equivalent to CA of 9.75 mg/cm².

For both model drugs, lag time and drug release of OPC slightly affected by orifice size. Nevertheless, larger orifice size OPC seemed to have high varion of drug release at various sampling time points. OPC with 0.6 mm orifice size were selected in this study.

OPC using crosslinked capsule had longer lag time than OPC using noncrosslink capsules. For diltiazem hydrochloride OPC, there was no difference between release rate of crosslinked OPC and release rate of non-crosslinked OPC. However, release rate of crosslinked OPC was more linear release rate profile and less variation of release rate at various sampling time points in case of propranolol hydrochloride OPC.

Diltiazem hydrochloride OPC had shorter drug release period and higher drug release rate than propranolol hydrochloride OPC. But, propranolol hydrochloride OPC could provided approximated zero-order release longer than diltiazem hydrochloride OPC.

Ionic strength of dissolution media had highly effect on drug release for both model drugs especially for propranolol hydrochloride. It was found that ionic strength

of dissolution medium increased led to decrease of osmotic pressure difference ($\Delta \pi$) resulting in drug delivery rate (dm/dt) decreased. It can be predicted that osmotic pumping is the main mechanism of drug release from the OPC. Based on the result, drug release of OPC are independent of pH of dissolution media.

Both crosslinked and non-crosslinked hard gelatin capsules could be applied in development OPC system of high water soluble drug. However, crosslinked hard gelatin capsules might be more promising in development OPC system of water soluble drug.

REFERENCES

- Appel, L. E. and Zentner, G. M. Use of modified ethylcellulose lattices for microporous coating of osmotic tablets. <u>Pharmaceutical Research</u> 8 (1991): 600-604.
- Bindschaedler, C., Gurnya, R. and Doelkera, E. Osmotically controlled drug delivery systems produced from organic solutions and aqueous dispersions of cellulose acetate. Journal of Controlled Release 4 (1986): 203-212
- Choudhury, P. K., Ranawat, M. S., Pillai, M. K. and Chauhan, C. S. Asymmetric membrane capsule for osmotic delivery of flurbiprofen. <u>Acta Pharmaceutica</u> 57 (2007): 343-350.
- Deters, J. C., Theeuwes, F., Mullins, K. J. and Eckenhoff, J. B., inventors; ALZA Corporaion, assignee. <u>Osmotic capsule</u>. US patent 4,627,850. 1986.

DURECT Corporation. ALZET® Technical Information Manual. 2008.

- Ende, M. T. a., Herbig, S. M. and Korsmeyer, R. W. Osmotic Drug Delivery from Asymmetric Membrane Film-Coated Dosage Forms. in Wise, D. L. (Eds), <u>Handbook of Pharmaceutical Controlled Release Technology</u>, page 751-785. New York: Marcel Dekker 2000.
- Florence, A. T. and Attwood, D. The solubility of drugs. <u>Physicochemical principles</u> <u>of pharmacy</u>, pp 139-176. London: Pharmaceutical Press, 2006.
- Garg, A., Gupta, M. and Bhargava, H. N. Effect of formulation parameters on the release characteristics of propranolol from asymmetric membrane coated tablets. <u>European Journal of Pharmaceutics and Biopharmaceutics</u> 67 (2007): 725-731.
- Higuchi, T. and Leeper, H. M., inventors; ALZA Coporation, assignee. <u>Improved</u> osmotic dispenser employing magnesium sulphate and magnesium chloride. US patent 3,760,804. 1973.

- Higuchi, T. and Leeper, H. M., inventors; ALZA Corporation, assignee. <u>Osmotic</u> <u>dispenser with means for dispensing active agent responsive to osmotic gradient</u>. US patent 3,995,631. 1976.
- Lakshminarayanaiah, N. <u>Transport Phenomena in Membrane</u>. New York: Academic Press, 1969.
- Lindstedt, B., Ragnarsson, G. and Hjärtstam, J. Osmotic pumping as a release mechanism for membrane-coated drug formulations. <u>Indian Journal of Pharmaceutical Sciences</u> 56 (1989): 261-268.
- Liu, H., et al. Chitosan-based controlled porosity osmotic pump for colon-specific delivery system: Screening of formulation variables and in vitro investigation. <u>International Journal of Pharmaceutics</u> 332 (2007): 115-124.
- Liu, J.C., Farber, M. and Chien, Y. W. Comparative release of phenylpropranolamine HCl from long-acting appetite suppressant products: accutrim vs dexatrim. <u>Drug</u> Development and Industrial Pharmacy 10 (1984): 1639-1661.
- Liu, L. and Che, B. Preparation of monolithic osmotic pump system by coating the indented core tablet. <u>European Journal of Pharmaceutics and Biopharmaceutics</u> 64 (2006): 180-184.
- Liu, L., Khang, G., Rhee, J. M. and Lee, H. B. Monolithic osmotic tablet system for nifedipine delivery. <u>Journal of Controlled Release</u> 67 (2000): 309-322.
- Liu, L., et al. Nifedipine controlled delivery by sandwiched osmotic tablet system. Journal of Controlled Release 68 (2000): 145-156.
- Liu, L. and Xu, X. Preparation of bilayer-core osmotic pump tablet by coating the indented core tablet. <u>International Journal of Pharmaceutics</u> 352 (2008): 225-230.
- Lu, E.-X., Jiang, Z.-Q., Zhang, Q.-Z. and Jiang, X.-G. A water-insoluble drug monolithic osmotic tablet system utilizing gum arabic as an osmotic, suspending and expanding agent. <u>Journal of Controlled Release</u> 92 (2003): 375-382.

- Makhija, S. N. and Vavia, P. R. Controlled porosity osmotic pump-based controlled release systems of pseudoephedrine I. Cellulose acetate as a semipermeable membrane. <u>Journal of Controlled Release</u> 89 (2003): 5-18.
- Meier, M. M., Kanis, L. A. and Soldi, V. Characterization and drug-permeation profiles of microporous and dense cellulose acetate membranes: influence of plasticizer and pore forming agent. <u>International Journal of Pharmaceutics</u> 278 (2004): 99-110.
- Mohammadi-Samani, S., Adrangui, M., Siahi-Shadbad, M. R. and Nokhodchi, A. An approach to controlled-release dosage form of propranolol hydrochloride. <u>Drug</u> <u>Development and Industrial Pharmacy</u> 26 (2000): 91-94.
- O'Neil, M.J., ed. The Merk Index : an acyclopedia of chemicals, drugs, and biological. 14th ed. NJ, USA: MERCK & Co.,Inc. 2006.
- Okimoto, K., Rajewski, R. A. and Stella, V. J. Release of testosterone from an osmotic pump tablet utilizing (SBE)_{7m} -b-cyclodextrin as both a solubilizing and an osmotic pump agent. Journal of Controlled Release 58 (1999): 29-38.
- Prabakaran, D., Singh, P., Kanaujia, P. and Vyas, S. P. Effect of hydrophilic polymers on the release of diltiazem hydrochloride from elementary osmotic pumps. <u>International Journal of Pharmaceutics</u> 259 (2003): 173-179.
- Reynolds, J.E.F., ed. Martindale: The extra pharmacopoeia 30th ed. London, UK: The pharmaceutical press. 1994.
- Rose, S. and Nelson, J. F. A continuous long-term injector. <u>Australian Journal of</u> <u>Experimental Biology and Medical Science</u> 33 (1955): 415-419.
- Shokri, J., et al. Swellable elementary osmotic pump (SEOP): An effective device for delivery of poorly water-soluble drugs. <u>European Journal of Pharmaceutics and Biopharmaceutics</u> 68 (2008): 289-297.

- Sinchaipanid, N., Pongwai, S., Limsuwan, P. and Mitrevej, A. Design of salbutamol EOP tablets from pharmacokinetics parameters. <u>Pharmaceutical Development</u> <u>and Technology</u> 8 (2003): 135-142.
- Siroratsakul, N. Development of osmotically controlled drug delivery capsules. Bangkok: Chulalongkorn University; 2004.
- Theeuwes, F. Elementary osmotic pump. Journal of Pharmaceutical Sciences 64 (1975): 1987-1991.
- Theeuwes, F. and Higuchi, T., inventors; ALZA Corporation, assignee. <u>Osmatic</u> dispensing device for releasing beneficial agent. US patent 3,845,770. 1974.
- Theeuwes, F., et al. Elementary osmotic pump for indomethacin. Journal of <u>Pharmaceutical Sciences</u> 72 (1983): 253-258.
- Theeuwes, F., Swanson, D. R., Guittard, G., Ayer, A. and Khanna, S. Osmotic delivery systems for the beta-adrenoceptor antagonists metoprolol and oxprenolol: design and evaluation of systems for once-daily administration. <u>British Journal of Clinical Pharmacology</u> 19 (1985): 698-76S.
- The United Stated Pharmacopoeia Convention. <u>The United States Pharmacopoeia</u> <u>29/The National Formulary 24</u>. Asian edition. Toronto: Web Cam, 2006.
- Thombre, A. G., Cardinal, J. R., DeNoto, A. R., Herbig, S. M. and Smith, K. L. Asymmetric membrane capsules for osmotic drug delivery I. Development of a manufacturing process. <u>Journal of Controlled Release</u> 57 (1999): 55-64.
- Thombre, A. G., DeNoto, A. R. and Gibbes, D. C. Delivery of glipizide from asymmetric membrane capsules using encapsulated excipients. <u>Journal of</u> <u>Controlled Release</u> 60 (1999): 333-341.
- Thombre, A. G., et al. Osmotic drug delivery using swellable-core technology. Journal of Controlled Release 94 (2004): 75-89.

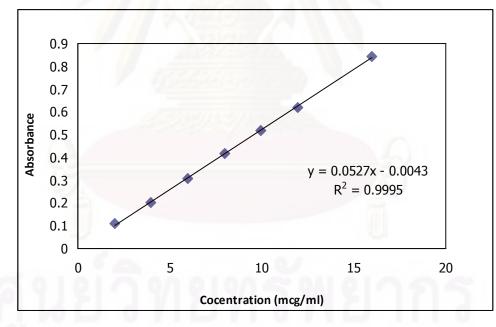
- Verma, R. K., Kaushal, A. M. and Garg, S. Development and evaluation of extended release formulations of isosorbide mononitrate based on osmotic technology. <u>International Journal of Pharmaceutics</u> 263 (2003): 9-24.
- Verma, R. K., Krishna, D. M. and Garg, S. Formulation aspects in the development of osmotically controlled oral drug delivery systems. <u>Journal of Controlled</u> <u>Release</u> 79 (2002): 7-27.
- Verma, R. K., Mishra, B. and Garg, S. Osmotically controlled oral drug delivery. <u>Drug Development and Industrial Pharmacy</u> 26 (2000): 695-708.
- Wong, P. L-OROS[™] technology advancing new therapies through ALZA's liquid drug formulation. <u>Delivery Times</u> 2 (2005): 1-4.
- Wright, J. C. and Stevenson, C. L. PUMPS/OSMOTIC. In Mathiowitz, E. (eds), <u>ENCYCLOPEDIA OF CONTROLED DRUG DELIVERY</u>, pp 896-900. A Wiley-Interscience Publication, 1999.
- Zentner, G. M., McClelland, G. A. and Sutton, S. C. Controlled porosity solubilityand resin-modulated osmotic drug delivery systems for release of diltiazem hydrochloride. Journal of Controlled Release 16 (1991): 237-244
- Zentner, G. M., Rork, G. S. and K. J. Himmelstein, inventors; Merck & Co., Inc., assignee. <u>Controlled porosity osmotic pump</u>. US patent 4,968,507. 1990.
- Zhang, Y., Zhang, Z. and Wu, F. A novel pulsed-release system based on swelling and osmotic pumping mechanism. Journal of Controlled Release 89 (2003): 47-55.

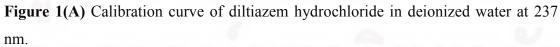
APPENDICES

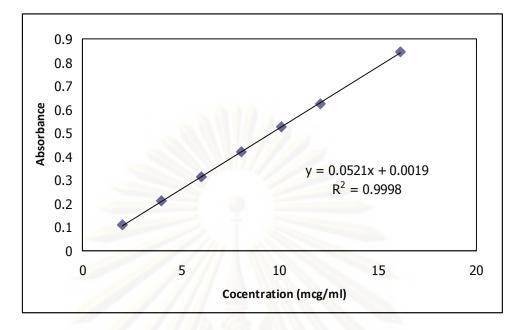
ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

APPENDIX A Calibration curve

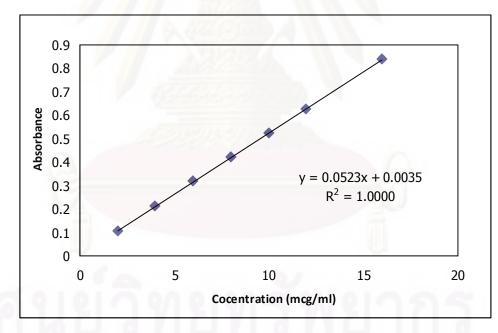
The amounts of diltiazem hydrochloride and propranolol hydrochloride were determined by the spectrophotometer. The absorbance of model drugs are presented in Tabl 1(A) and 2(A). The calibration curve and the linear relationship with the correlation of determination in each medium of diltiazem hydrochloride and propranolol hydrochloride were displayed in Figure 1(A) -6(A) and Figure 7(A) - 12(A), respectively.

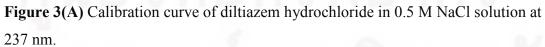

 Table 1(A) The absorbance of diltiazem hydrochloride in different media at wavelength 237 nm

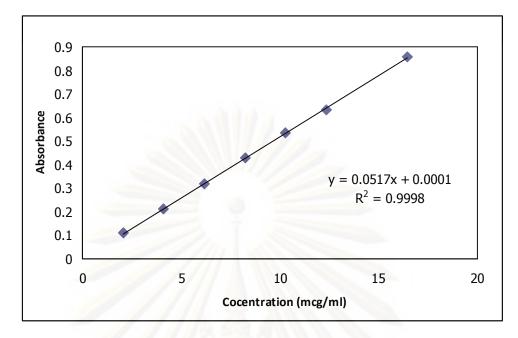

		1. 500	Absor	bance		
concentration (mcg/ml)	DI water	0.9 % NaCl	0.5 M NaCl	1 M NaCl	HCl pH 1.2 with isotonicity	PBS pH 6.8 with isotonicity
2	0.1090	0.1110	0.1063	0.1093	0.1087	0.1057
4	0.2030	0.2106	0.2125	0.2124	0.2110	0.2186
6	0.3079	0.3141	0.3180	0.3181	0.3188	0.3168
8	0.4164	0.4224	0.4222	0.4270	0.4268	0.4214
10	0.5186	0.5268	0.5250	0.5332	0.5225	0.5172
12	0.6195	0.6261	0.6266	0.6311	0.6362	0.6215
16	0.8450	0.8462	0.8389	0.8567	0.8531	0.8390

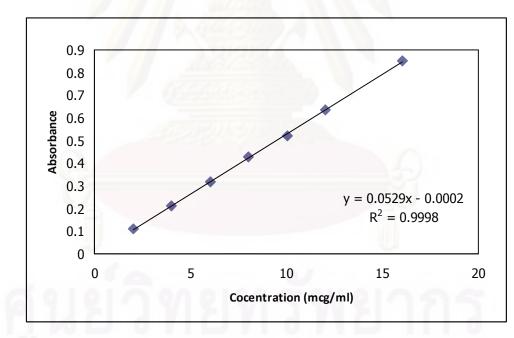

จุฬาลงกรณมหาวิทยาลัย

	Absorbance									
concentration (mcg/ml)	DI water	0.9 % NaCl	0.5 M NaCl	1 M NaCl	HCl pH 1.2 with isotonicity	PBS pH 6.8 with isotonicity				
8	0.1543	0.1529	0.1543	0.1513	0.1522	0.1537				
16	0.3016	0.3034	0.3016	0.3101	0.3030	0.3053				
24	0.4530	0.4547	0.4530	0.4633	0.4550	0.4625				
32	0.6129	0.6086	0.6129	0.6235	0.6153	0.6166				
40	0.75 <mark>2</mark> 1	0.7591	0.7521	0.7746	0.7643	0.7582				
48	0.8980	0.9073	0.8980	0.9363	0.9203	0.9073				


 Table 2(A)
 The absorbance of propranolol hydrochloride in different media at wavelength 287 nm






Figure 2(A) Calibration curve of diltiazem hydrochloride in 0.9 % NaCl solution at 237 nm.

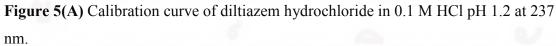
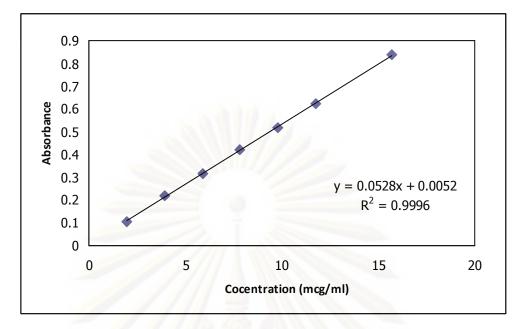
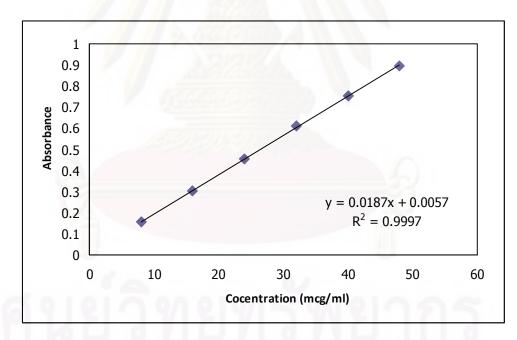
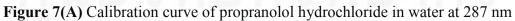
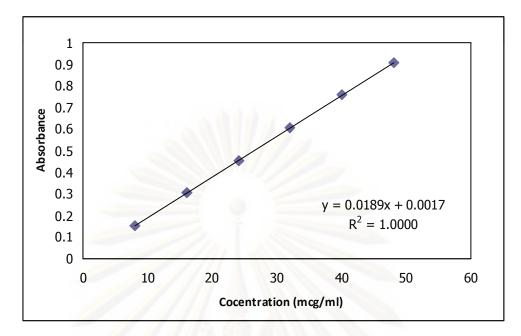
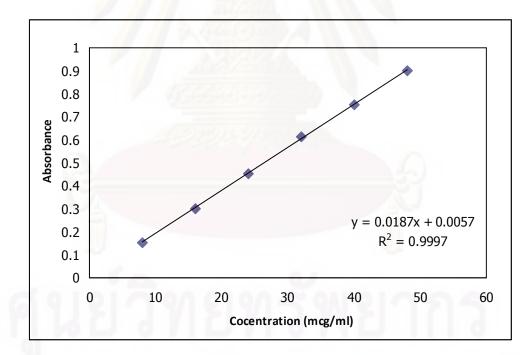
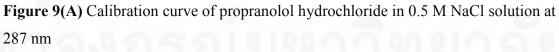
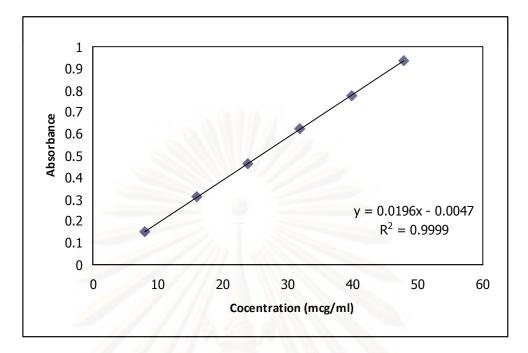


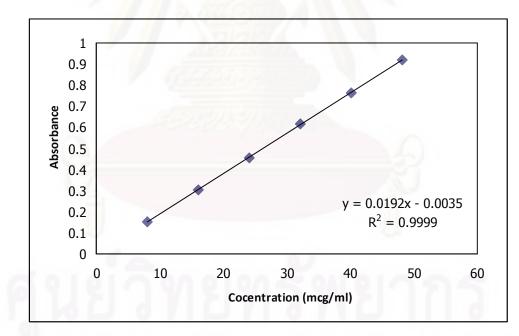
Figure 4(A) Calibration curve of diltiazem hydrochloride in 1 M NaCl solution at 237 nm.

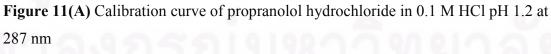





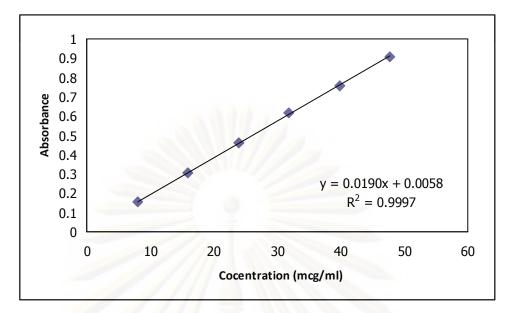

Figure 6(A) Calibration curve of diltiazem hydrochloride in PBS pH 6.8 at 237 nm.






Figure 8(A) Calibration curve of propranolol hydrochloride in 0.9 % NaCl solution at 287 nm





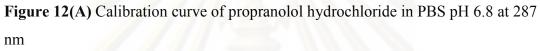


Figure 10(A) Calibration curve of propranolol hydrochloride in 1 M NaCl solution at 287 nm

APPENDIX B

Validation of UV-VIS spectrophotometer

The parameters were assessed to ensure the acceptability of the selected analytical method performance. The parameters are accuracy, precision, specificity and linearity.

1. Accuracy

The accuracy was performed by measuring placebos spiked with knowing amounts of diltiazem hydrochloride and propranolol hydrochloride and evaluated as the percentage of recovery. Each sample was analyzed from triplicate. Accuracy data of diltiazem hydrochloride and propranolol hydrochloride are presented in Table 1(B) and 2(B), respectively.

 Table 1(B)
 Accuracy data of percentage of analytical recovery of diltiazem

 hydrochloride
 Image: State of the state of

Actual concentration	A	Absorbanc	e	Analytical concentration (mcg/ml)			
(mcg/ml)	nl	n2	n3	n1	n2	n3	
1.994	0.1053	0.1054	0.1053	2.0797	2.0816	2.0797	
3.988	0.2031	0.203	0.203	3.9355	3.9336	3.9336	
5.982	0.3081	0.308	0.3077	5.9279	5.9260	5.9203	
7.976	0.417	0.4172	0.4172	7.9943	7.9981	7.9981	
9.970	0.5194	0.5194	0.5194	9.9374	9.9374	9.9374	
11.96 <mark>4</mark>	0.6197	0.62	0.6201	11.8406	11.8463	11.8482	
15.952	0.846	0.8461	0.8457	16.1347	16.1366	16.1290	

Actual concentration	% Recovery							
(mcg/ml)	nl	n2	n3	Mean	SD	% CV		
1.994	104.30	104.39	104.30	104.33	0.0549	0.0527		
3.988	98.68	98.64	98.64	98.65	0.0275	0.0278		
5.982	99.10	99.06	98.97	99.04	0.0660	0.0667		
7.976	100.23	100.28	100.28	100.26	0.0275	0.0274		
9.970	99.67	99.67	99.67	99.67	0.0000	0.0000		
11.964	98.97	99.02	99.03	99.01	0.0330	0.0333		
15.952	101.15	101.16	101.11	101.14	0.0248	0.0245		

Actual concentration	Absorbance			Analytical concentration (mcg/ml)			
(mcg/ml)	nl	n2	n3	n1 n2 n3			
7.000	0.4554	0.4554	0.4550	7 0000	0.0050	7 00 4 7	
7.999	0.1551	0.1554	0.1552	7.9893	8.0053	7.9947	
15.998	0.3018	0.3019	0.3018	15.8342	15.8396	15.8342	
23.997	0.4527	0.4527	0.4526	23.9037	23.9037	23.8984	
31.996	0.6131	0.6128	0.6128	32.4813	32.4652	32.4652	
39.995	0.7522	0.7521	0.7522	39.9198	39.9144	39.9198	
47.99 <mark>4</mark>	0.8981	0.8981 0.898		47.7219	47.7166	47.7166	

Table 2(B) Accuracy data of percentage of analytical recovery of propranolol

 hydrochloride

Actual concentration	10	% Recovery						
(mcg/ml)	n1	n2	n3	Mean	SD	% CV		
7.999	99.88	100.08	99.95	99.97	0.1021	0.1022		
15.998	98.98	99.01	98.98	98.99	0.0193	0.0195		
23.997	99.61	99.61	99.59	99.60	0.0129	0.0129		
31.996	101.52	101.47	101.47	101.48	0.0289	0.0285		
39.995	99.81	99.80	99.81	99.81	0.0077	0.0077		
47.994	99.43	99.42	99.42	99.43	0.0064	0.0065		

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

2.1 Within run precision

The within run precision was evaluated by analyzing the calibration curve in the same day. The percentage of coefficient of variation (% CV) of diltiazem hydrochloride concentration and propranolol hydrochloride concentration was determined. Each sample was analyzed from six replicated. Within run precision data of diltiazem hydrochloride and propranolol hydrochloride are displayed in Table 3(B) and 4(B), respectively.

Actual concentration	Absorbance								
(mcg/ml)	n1	n2	n3	n4	n5	n6			
2.012	0.1041	0.1039	0.1039	0.1040	0.1038	0.1039			
4.024	0.2082	0.2081	0.2082	0.2082	0.2083	0.2083			
6.036	0.3134	0.3134	0.31 <mark>33</mark>	0.3133	0.3133	0.3134			
8.048	0.4270	0.4270	0.4270	0.4271	0.4269	0.4270			
10.06	0.5295	0.5294	0.5293	0.5293	0.5295	0.5296			
12.072	0.6445	0.6445	0.6444	0.6443	0.6443	0.6445			
16.096	0.8820	0.8820	0.8819	0.8820	0.8818	0.8818			

Table 3(B) Within run precision data of diltiazem hydrochloride

Actual concentration	Analytical concentration (mcg/ml)									
(mcg/ml)	nl	n2	n3	n4	n5	n6	Mean	SD	% CV	
2.012	2.1264	2.1227	2.1227	2.1245	2.1209	2.1227	2.1233	0.0019	0.0891	
4.024	4.0330	4.0311	4.0330	4.0330	4.0348	4.0348	4.0333	0.0014	0.0342	
6.036	5.9597	5.9597	5.9579	5.9579	5.9579	5.9597	5.9588	0.0010	0.0168	
8.048	8.0403	8.0403	8.0403	8.0421	8.0385	8.0403	8.0403	0.0012	0.0144	
10.06	9.9176	9.9158	9.9139	9.9139	9.9176	9.9194	9.9164	0.0022	0.0224	
12.072	12.0238	12.0238	12.0220	12.0201	12.0201	12.0238	12.0223	0.0018	0.0150	
16.096	16.3736	16.3736	16.3718	16.3736	16.3700	16.3700	16.3721	0.0018	0.0110	

Table 4(B) Within run precision data of propranolol hydrochloride

Actual concentration	Absorbance							
(mcg/ml)	n1	n2	n3	n4	n5	n6		
8.049	0.1596	0.1595	0.1594	0.1596	0.1594	0.1595		
16.098	0.3163	0.3165	0.3164	0.3164	0.3163	0.3163		
24.147	0.4718	0.4717	0.4717	0.4719	0.4717	0.4717		
32.196	0.6376	0.6376	0.6376	0.6377	0.6378	0.6377		
40.245	0.7758	0.7759	0.7758	0.7758	0.7758	0.7759		
48.294	0.9527	0.9528	0.9526	0.9528	0.9529	0.9529		

Actual concentration	Analytical concentration (mcg/ml)											
(mcg/ml)	n1	n2	n3	n4	n5	n6	Mean	SD	% CV			
8.049	8.1276	8.1224	8.1173	8.1276	8.1173	8.1224	8.1224	0.0046	0.0562			
16.098	1 <mark>6.12</mark> 24	16.13 <mark>2</mark> 7	16.1276	16.1276	16.1224	16.1224	16.1259	0.0042	0.0258			
24.147	24.0561	24.0510	24.0510	24.0612	24.0510	24.0510	24.0536	0.0043	0.0177			
32.196	32. <mark>515</mark> 3	<mark>32.515</mark> 3	32.5153	32.5204	32.5255	32.5204	32.5187	0.0042	0.0128			
40.245	39.5663	39. <mark>57</mark> 14	39.5663	39.5663	39.5663	39.5714	39.5680	0.0026	0.0067			
48.294	48.591 <mark>8</mark>	4 <mark>8.</mark> 5969	48.5867	48.5969	48.6020	48.6020	48.5961	0.0060	0.0123			

2.2 Between run precision

The between run precision was evaluated by comparing each concentration of calibration curves prepared and analyzed on different day for three days. The percentage of coefficient of variation of concentration of diltiazem hydrochloride and propranolol hydrochloride from three sets of calibration curve were determined. Between run precision data of diltiazem hydrochloride and propranolol hydrochloride are displayed in Table 5(B) and 6(B), respectively.

				Day	1				
Actual concentration	Absorbance			Analy	tical concen (mcg/ml)	tration	% Recovery		
(mcg/ml)	n1	n2	n3	nl	n2	n3	n1	n2	n3
2.004	0.1024	0.1024	0.1023	2.0451	2.0451	2.0432	102.05	102.05	101.96
4.008	0.2049	0.2048	0.2047	3.9718	3.9699	3.9680	99.10	99.05	99.00
6.012	0.3073	0.3073	0.3072	5.8966	5.8966	5.8947	98.08	98.08	98.05
8.016	0.4219	0.422	0.422	8.0508	8.0526	8.0526	100.43	100.46	100.46
10.02	0.5202	0.5202	0.5201	9.8985	9.8985	9.8966	98.79	98.79	98.77
12.024	0.62 <mark>66</mark>	0.6268	0.6269	11.8985	11.9023	11.9041	98.96	98.99	99.00
16.032	0.8537	0.8539	0.8539	16.1673	16.1711	16.1711	100.84	100.87	100.87
			172	N PAR					

Table 5(B)	Between run	precision	data of o	diltiazem	hydrochloride
	Detween run	precision	aata or v	annazonn	ing all controllac

	Day 2											
Actual concentration	Absorbance			Analy	Analytical concentration (mcg/ml)			% Recovery				
(mcg/ml)	nl	n2	n3	nl	n2	n3	nl	n2	n3			
2.010	0.1035	0 <mark>.1</mark> 034	0.1031	2.1200	2.1181	2.1124	105.47	105.38	105.09			
4.020	0.2003	0.2003	0.2002	3.9638	3.9638	3.9619	98.60	98.60	98.55			
6.030	0.3019	0.3019	0.3019	5.8990	5.8990	5.8990	97.83	97.83	97.83			
8.040	0.412	0.4119	0.4117	7.9962	7.9943	7.9905	99.46	99.43	99.38			
10.050	0.5133	0.5133	0.5131	9.9257	9.9257	9.9219	98.76	98.76	98.73			
12.060	0.6209	0.6209	0.6212	11.9752	11.9752	11.9810	99.30	99.30	99.34			
16.080	0.8459	0.8458	0.8457	16.2610	16.2590	16.2571	101.13	101.11	101.10			

Day 3 Actual Absorbance Analytical concentration % Recovery											
concentration	P	Absorbanc	e		(mcg/ml)		9	o Recove	ry		
(mcg/ml)	nl	n2	n3	nl	n2	n3	nl	n2	n3		
1.994	0.1053	0.1054	0.1053	2.0797	2.0816	2.0797	104.30	104.39	104.30		
3.988	0.2031	0.203	0.203	3.9355	3.9336	3.9336	98.68	98.64	98.64		
5.982	0.3081	0.308	0.3077	5.9279	5.9260	5.9203	99.10	99.06	98.97		
7.976	0.417	0.4172	0.4172	7.9943	7.9981	7.9981	100.23	100.28	100.28		
9.970	0.5194	0.5194	0.5194	9.9374	9.9374	9.9374	99.67	99.67	99.67		
11.964	0.6197	0.62	0.6201	11.8406	11.8463	11.8482	98.97	99.02	99.03		
15.952	0.846	0.8461	0.8457	16.1347	16.1366	16.1290	101.15	101.16	101.11		

Approximate concentration	% Recovery						
(mcg/ml)	Mean	SD	% CV				
2	103.89	1.4683	1.4134				
4	98.76	0.2196	0.2224				
6	98.31	0.5584	0.5680				
8	100.04	0.4735	0.4733				
10	99.07	0.4533	0.4576				
12	99.10	0.1616	0.1630				
16	101.04	0.1347	0.1334				

Table 5(B) Between run precision data of diltiazem hydrochloride (continue)

Table 6(B) Between run precision data of propranolol hydrochloride

				Day	1				
Actual concentration	А	bsorbanc	e	Analytical concentration (mcg/ml)			% Recovery		
(mcg/ml)	nl	n2	n3	n1	n2	n3	nl	n2	n3
8.035	0.1566	0.1566	0.1567	8.0206	8.0206	8.0258	99.82	99.82	99.89
16.070	0.3115	0.3115	0.3112	16.0052	16.0052	15.9897	99.60	99.60	99.50
24.105	0.4676	0.4675	0.4677	24.0515	24.0464	24.0567	99.78	99.76	99.80
32.140	0.6315	0.6313	0.6313	32.5000	32.4897	32.4897	101.12	101.09	101.09
40.175	0.7755	0.7756	0.7754	39.9227	39.9278	39.9175	99.37	99.38	99.36
48.210	0.9360	0.9356	0.9360	48.1959	48.1753	48.1959	99.97	99.93	99.97

	Day 2											
Actual concentration	concentration			ee Analytical concentration (mcg/ml)			% Recovery					
(mcg/ml)	nl	n2	n3	nl	n2	n3	nl	n2	n3			
8.003	0.1542	0.1543	0.1541	8.1212	8.1263	8.1162	101.48	101.54	101.41			
16.006	0.3092	0.3092	0.3093	15.9495	15.9495	15.9545	99.65	99.65	99.68			
24.009	0.4660	0.4663	0.4662	23.8687	23.8838	23.8788	99.42	99.48	99.46			
32.012	0.6320	0.6321	0.6322	32.2525	32.2576	32.2626	100.75	100.77	100.78			
40.015	0.7828	0.7828	0.7826	39.8687	39.8687	39.8586	99.63	99.63	99.61			
48.018	0.9473	0.9472	0.9471	48.1768	48.1717	48.1667	100.33	100.32	100.31			

	Day 3											
Actual concentration	entration			Analytical concentration (mcg/ml)			% Recovery					
(mcg/ml)	nl	n2	n3	n1	n2	n3	nl	n2	n3			
7.999	0.1551	0.1554	0.1552	7.9893	8.0053	7.9947	99.88	100.08	99.95			
15.998	0.3018	0.3019	0.3018	15.8342	15.8396	15.8342	98.98	99.01	98.98			
23.997	0.4527	0.4527	0.4526	23.9037	23.9037	23.8984	99.61	99.61	99.59			
31.996	0.6131	0.6128	0.6128	32.4813	32.4652	32.4652	101.52	101.47	101.47			
39.995	0.7522	0.7521	0.7522	39.9198	39.9144	39.9198	99.81	99.80	99.81			
47.994	0.8981	0.898	0.898	47.7219	47.7166	47.7166	99.43	99.42	99.42			

Table 6(B) Between run precision data of propranolol hydrochloride (continue)

Approximate concentration		% Recovery	
(mcg/ml)	Mean	SD	% CV
8	100.43	0.7907	0.7873
16	99.40	0.3155	0.3174
24	99.61	0.1427	0.1432
32	101.12	0.3117	0.3082
40	99.60	0.1894	0.1902
48	99.90	0.3902	0.3906

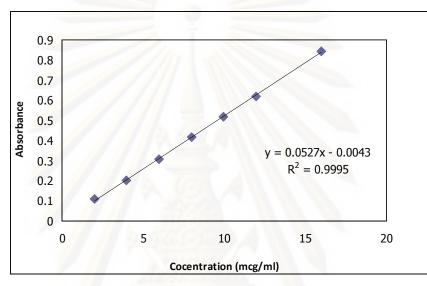
3. Specificity

The method specificity was evaluated by comparing the chromatograms from UV/Vis spectrophotometer between model drugs (diltiazem hydrochloride or propranolol hydrochloride) and non-active ingredients. The specificity is established by showing that chromatograms of non-active ingredients should not interfere with chromatograms of active ingredients. This validation was performed by comparing the peak scan between the dissolution medium taken from placebo system and drug containing system of the similar compositions. The absorbance of the dissolution medium taken from non-drug containing at wavelength 237 nm and 287 nm were presented in Table 7(B) and 8(B).

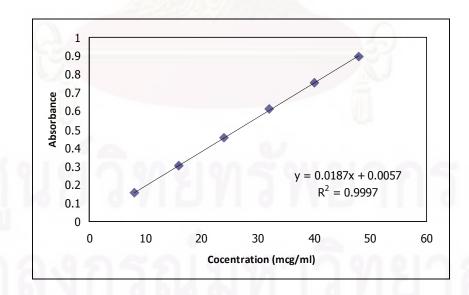
Wavelength (nm)	Concentration (mcg/ml)	Time (hr)	l	Absorbanc	e	Mean	SD	% CV
	44	1	0.0295	0.0295	0.0295	0.0295	0.0000	0.0000
237		12	0.0348	0.0347	0.0349	0.0348	0.0001	0.2874
201	92	1	0.0614	0.0614	0.0616	0.0615	0.0001	0.1879
	01	12	0.0687	0.0689	0.0687	0.0688	0.0001	0.1679
	44	1	0.0019	0.0019	0.0018	0.0019	0.0001	3.0929
287		12	0.0045	0.0047	0.0048	0.0047	0.0002	3.2733
	92	1	0.0044	0.0043	0.0043	0.0043	0.0001	1.3323
	<u> </u>	12	0.0051	0.0051	0.0053	0.0052	0.0001	2.2349

Table 7(B) The absorbance of hard gelatin capsules shell in deionized water

 Table 8(B)
 The absorbance of non-active ingredients (Sodium chloride and lactose)


 in deionized water

Wavelength (nm)	Concentration (mcg/ml)	Time (hr)	1	Absorbanc	e	Mean	SD	% CV
	NaCl 399 +	1	0.0053	0.0051	0.0051	0.0052	0.0001	2.2349
237	Lactose 796	12	0.0069	0.0068	0.0068	0.0068	0.0001	0.8449
201	NaCl 803 +	1	0.0029	0.0029	0.0029	0.0029	0.0000	0.0000
	Lactose 1618	12	0.0050	0.0049	0.0047	0.0049	0.0002	3.1388
20	NaCl 399 +	1	0.0028	0.0027	0.0026	0.0027	0.0001	3.7037
287	Lactose 796	12	0.0040	0.0039	0.0039	0.0039	0.0001	1.4678
201	NaCl 803 +	1	0.0038	0.0037	0.0038	0.0038	0.0001	1.5328
	Lactose 1618	12	0.0043	0.0043	0.0041	0.0042	0.0001	2.7276


งกรณมหาว

4. Linearity

Triplicate of solutions containing model drugs (diltiazem hydrochloride or propranolol hydrochloride) in various concentrations were prepared and analyzed. The linear equations of the curve obtained by plotting absorbance versus the concentrations were calculated.

Figure 1(B) Calibration curve of diltiazem hydrochloride in deionized water at wavelength 237 nm

Figure 2(B) Calibration curve of propranolol hydrochloride in water at wavelength 287 nm

Result values of validation parameters of UV/Vis spectrophotometer for diltiazem hydrochloride and propranolol hydrochloride were presented in Table 9(B).

Table 9(B) Limited of acceptability and result values of analytical method validation parameters of UV/Vis spectrophotometer for diltiazem hydrochloride and propranolol hydrochloride

	Limited	Result value	Result value
Parameter	of	of	of
	acceptability	diltiazem hydrochloride	propranolol hydrochloride
1. Accuracy			
• % recovery	95.0-105.0 %	98.65-104.33 %	98.99-101.48 %
• SD	A sea A	0.0000-0.0549	0.0064-0.1021
2. Precision (% CV)	6. 6		
• Within run precision	not more than 2	0.0110-0.0891	0.0067-0.0562
• Between run precision	A STACOM)	0.1334-1.4134	0.1902-0.7873
3. Specificity	No other peak	No other peak interfere	No other peak interfere
	interfere drug peak	drug peak	drug peak
4. Linearity	1021210		
• Correlation coefficient (R ²)	more than 0.999	0.9995	0.9997

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

APPENDIX C

Solubility of drug

The solubility of propranolol hydrochloride was determined by continuous shaking of excess amount of drug for 30 hrs in 0.1588, 0.5 and 1 M NaCl solutions at $25 \,^{\circ}$ C.

 Table 1(C) Solubility of propranolol hydrochloride in 0.1588 M (0.9 %) NaCl solution

time (hr)	sol	ubility (mg/1	nl)	Mean	SD	% CV
	n1 n2 n3					
24	23.83	24.99	25.17	24.66	0.73	2.96
27	23.8 <mark>4</mark>	25.42	25.41	24.89	0.91	3.66
30	2 <mark>4</mark> .25	25.64	26.08	25.32	0.95	3.76

Table 2(C) Solubility of propranolol hydrochloride in 0.5 M NaCl solution

time (hr)	sol	ubility (mg/r	nl)	Mean	SD	% CV
	nl	n2	n3			
24	5.81	6.21	6.44	6.15	0.32	5.26
27	5.98	6.26	6.41	6.22	0.22	3.55
30	6.05	6.45	6.57	6.36	0.27	4.24

Table 3(C) Solubility of propranolol hydrochloride in 1 M NaCl solution

time (hr)	sol	ubility (mg/1	nl)	Mean	SD	% CV	
	nl	n2	n3			2	
24	2.55	2.78	2.67	2.67	0.12	4.34	
27	2.60	2.76	2.74	2.70	0.09	3.30	
30	2.65	2.83	2.74	2.74	0.09	3.12	

APPENDIX D

Data of in vitro dissolution study

Table 1(D) The diltiazem hydrochloride release from 0.6 mm orifice size crosslinkedOPC coating with 250 ml CA solution in deionized water

Time				diltiaz	em hydr	ochloric	le releas	se (%)			
(hr)	n1	n2	n3	n4	n5	n6	n7	n8	n9	n10	n11
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.5	4.01	0.00	0.00	0.00	0.00	0.00	0.00	5.72	4.42	3.35	0.00
2	19.57	11.79	0.00	0.00	0.00	0.00	4.73	21.00	21.22	16.53	10.59
2.5	33.38	31.72	15.21	8.66	14.88	10.33	18.31	32.54	42.19	43.97	33.90
3	48.18	53.63	30.54	28.65	22.19	27.17	24.96	48.98	54.15	52.81	39.80
3.5	61.25	61. <mark>15</mark>	33.77	38.09	24.15	40.77	32.07	58.86	64.60	60.08	50.87
4	71.99	78.58	37.42	45.92	35.99	66.09	39.08	65.77	72.36	66.87	60.43
4.5	76.99	71.64	38.00	64.03	48.95	83.47	54.64	70.59	78.16	73.26	67.61
5	83.54	77 <mark>.5</mark> 3	<mark>48</mark> .59	86.72	56.09	90.11	63.51	77.51	81.93	77.47	72.99
5.5	88.01	<mark>80</mark> .80	58.85	91.19	65.38	99.43	70.79	81.41	84.82	82.40	78.31
6	91.44	82.54	69.28	103.76	70.46	97.28	80.11	84.43	86.99	85.22	75.30
7	96.13	88. <mark>57</mark>	7 <mark>3</mark> .92	99.50	77.28	100.82	83.41	90.81	91.61	90.98	86.37
8	98.62	91.19	<mark>82.4</mark> 9	99.32	82.34	100.35	87.87	94.95	93.45	95.51	90.55
9	98.32	92.93	84.79	100.16	114.33	103.16	92.27	96.58	95.51	97.99	91.03

Time (hr)		diltiaz	em hydi	rochlori	de relea	ise (%)		Mean	SD	% CV
· · /	n12	n13	n14	n15	n16	n17	n18	0		
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
1.5	0.00	3.60	0.00	0.00	0.00	0.00	0.00	1.17	2.00	170.35
2	0.00	16.26	7.10	3.10	10.64	0.00	0.00	7.92	8.15	102.96
2.5	23.27	37.98	24.06	11.53	32.97	10.38	0.00	23.63	12.96	54.84
3	34.50	57.20	36.73	20.27	50.62	29.69	21.21	37.85	12.92	34.14
3.5	42.56	68.07	43.79	24.15	57.56	40.11	35.41	46.52	14.07	30.24
4	51.96	76.61	51.98	36.26	65.85	44.44	46.49	56.34	14.69	26.07
4.5	57.97	84.75	60.04	40.42	71.99	49.51	55.40	63.74	13.98	21.94
5	65.15	86.83	65.58	44.08	79.01	52.34	62.75	70.65	13.97	19.77
5.5	70.07	87.91	70.45	49.21	84.85	56.47	71.05	76.19	13.16	17.27
6	73.84	90.74	75.89	54.22	88.08	58.62	76.25	80.25	12.59	15.69
7	80.20	94.41	81.64	60.86	93.11	63.99	82.15	85.32	11.16	13.08
8	85.54	95.23	85.85	67.49	95.06	67.29	86.56	88.87	9.57	10.77
9	88.83	96.18	89.24	72.22	96.42	70.68	91.03	92.87	10.12	10.89

Time				diltiaz	em hydi	cochlori	de relea	se (%)			
(hr)	n1	n2	n3	n4	n5	n6	n7	n8	n9	n10	n11
1.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.00	10.75	0.00	0.00	15.55	0.00	0.00	0.00	0.00	0.00	0.00
2.5	11.96	25.32	20.91	17.65	31.72	21.61	5.74	7.49	11.67	0.00	8.48
3	32.87	33.08	38.63	31.99	46.64	45.64	12.99	26.68	28.66	17.63	21.27
3.5	50.36	43.22	57.95	50.81	56.55	60.32	29.99	47.88	47.90	34.17	40.78
4	62.77	49 <mark>.11</mark>	66.52	56.81	<mark>6</mark> 4.11	67.06	52.92	56.41	58.49	50.04	53.79
4.5	76.39	58.4 <mark>3</mark>	73.44	65.65	70.38	74.03	51.15	63.19	63.80	62.96	59.70
5	82.38	62.86	75.78	71.25	70.46	82.56	59.15	70.94	71.41	68.70	65.79
5.5	87.51	72.75	78.58	66.93	73.23	82.04	63.68	74.14	75.41	74.28	70.19
6	88.91	74.69	79.41	75.79	79.80	90.54	66.89	78.89	80.15	81.35	75.56
7	95.09	84.94	87.48	7 <mark>8</mark> .81	83.49	92.94	72.19	87.25	87.19	91.91	83.43
8	97.78	<mark>90</mark> .74	92.75	88.59	90.66	97.57	76.27	92.32	91.80	97.38	89.03
9	99.96	88.83	92.03	85.57	94.09	99.46	79.89	97.97	97.00	101.75	93.31

Table 2(D) The diltiazem hydrochloride release from 0.6 mm orifice size crosslinkedOPC coating with 290 ml CA solution in deionized water

Time (hr)		diltiaz	em hydi	rochlori	ide relea	ase (%)		Mean	SD	% CV
(,	n12	n13	n14	n15	n16	n17	n18			
1.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
2	3.20	0.00	0.00	8.32	0.00	3.37	10.39	2.87	4.90	171.02
2.5	9.42	0.00	9.69	27.35	10.60	15.39	15.59	13.92	8.87	63.72
3	25.99	15.78	28.46	48.86	30.59	33.43	34.27	30.75	10.13	32.96
3.5	39.55	37.58	37.82	62.85	50.14	46.61	53.13	47.09	9.24	19.61
4	48.44	54.76	49.20	71.47	59.46	53.37	67.29	57.89	7.18	12.40
4.5	55.25	67.72	58.94	75.79	67.88	64.43	78.36	65.97	7.71	11.68
5	63.24	76.43	67.30	80.84	75.13	71.08	85.26	72.25	7.35	10.17
5.5	69.48	82.07	74.94	84.92	80.56	76.83	89.98	76.53	7.03	9.19
6	74.96	84.95	78.86	86.82	82.46	82.04	91.78	80.77	6.27	7.76
7	83.35	90.10	86.71	93.14	89.20	88.91	96.39	87.36	5.92	6.78
8	90.22	94.75	91.90	96.60	95.18	94.12	99.37	92.61	5.20	5.61
9	94.58	98.40	95.64	99.53	97.17	95.67	101.16	95.11	5.67	5.96
	1.10		0.1			0				0

Time				% dilt	iazem h	ydrochlo	oride re	lease			
(hr)	n1	n2	n3	n4	n5	n6	n7	n8	n9	n10	n11
2.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	12.12	9.56	13.68	13.70	11.72	7.35	23.05	19.01	13.19	30.86	15.19
3.5	31.34	33.14	28.77	42.03	27.92	27.01	43.99	35.29	36.64	46.02	29.60
4	46.16	50.94	39.06	62.40	36.10	43.54	61.28	51.63	52.59	56.70	46.12
4.5	51.35	<mark>61.58</mark>	51.75	73.37	46.52	61.09	66.77	60.44	62.70	65.85	55.32
5	57.92	70.08	74. <mark>6</mark> 4	76.97	54.48	73.24	69.35	67.44	69.04	69.82	64.21
5.5	68.67	<mark>74.3</mark> 2	85.25	79.96	59.65	80.81	77.37	63.05	73.59	72.70	64.09
6	79.97	81.69	9 <mark>3.</mark> 14	84.07	64.60	87.46	80.64	77.81	78.64	83.69	73.73
7	86.10	<mark>88.3</mark> 5	97.86	87.33	71.29	93.43	84.36	72.12	84.49	81.52	75.12
8	90.93	92.62	9 <mark>8.8</mark> 2	88.61	75.23	97.27	90.31	86.75	89.02	85.45	87.51
9	96.11	96.72	101.14	91.30	79.07	100.75	88.12	88.59	86.87	85.65	85.55

Table 3(D) The diltiazem hydrochloride release from 0.6 mm orifice size crosslinkedOPC coating with 335 ml CA solution in deionized water

Time (hr)		% dilt	t <mark>iaze</mark> m h	ydroch	loride re	elease		Mean	SD	% CV
	n12	n13	n14	n15	n16	n17	n18			
2.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
3	21.78	7.18	0.00	0.00	0.00	9.39	0.00	11.54	8.64	74.88
3.5	41.32	12.63	11.09	11.35	18.65	25.05	14.89	28.71	11.33	39.47
4	56.53	29.89	27.66	27.60	26.65	33.27	30.03	43.23	12.29	28.43
4.5	67.65	42.78	41.97	46.71	46.10	45.74	48.60	55.35	9.73	17.59
5	73.78	50.12	49.24	50.39	53.15	51.08	63.58	63.25	9.69	15.32
5.5	80.20	53.96	56.90	56.25	61.31	61.28	64.03	68.52	9.71	14.18
6	91.11	59.12	60.62	60.31	63.90	66.27	66.69	75.19	11.05	14.70
7	89.10	66.33	67.05	66.72	70.92	76.59	73.30	79.56	9.74	12.24
8	86.25	71.78	72.34	71.02	75.50	83.20	77.18	84.43	8.67	10.27
9	77.25	76.20	75.97	77.26	80.04	85.83	81.19	86.31	8.26	9.57

					220						
Time				% dil	ltiazem	hydroc	chloride	release			
(hr)	n1	n2	n3	n4	n5	n6	n7	n8	n9	n10	n11
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.5	0.00	0.00	0.00	0.00	<mark>3.4</mark> 9	0.00	5.52	3.22	3.03	0.00	0.00
2	11.40	12.18	4.34	6.34	10.99	11.89	23.28	10.12	10.62	9.87	8.39
2.5	22.12	29.36	15.85	13.85	25.04	26.41	34.61	23.17	31.48	25.86	20.61
3	42.35	44.80	32.75	32.01	47.82	45.33	45.66	35.02	65.02	39.59	31.70
3.5	60.12	67.53	44.58	55.34	64.24	53.65	57.46	48.09	82.64	56.69	42.47
4	71.86	74.41	49.72	68.27	<mark>71.2</mark> 2	57.15	74.29	63.85	95.76	67.38	50.87
4.5	77.84	80.77	56.08	75.73	77.18	63.57	86.42	76.42	101.25	78.79	63.65
5	81.72	86.62	63.01	80.60	83.22	69.93	92.52	85.63	102.56	86.17	71.83
5.5	85.26	<mark>89.35</mark>	<mark>69.44</mark>	88.10	87.43	75. <mark>97</mark>	98.37	91.24	102.84	91.87	78.75
6	90.86	90.66	77 <mark>.8</mark> 0	92.78	90.82	80.89	101.20	95.06	103.09	96.50	85.05
7	94.50	9 <mark>6.4</mark> 0	<mark>84</mark> .17	95.90	93.19	83.27	104.16	99.93	104.59	99.86	92.39
8	98.12	99.62	91.3 <mark>4</mark>	99.80	97.26	90.16	104.18	102.37	104.11	102.44	97.73
9	99.75	101.1 <mark>3</mark>	95 <mark>.7</mark> 1	101.32	98.41	93.21	106.41	103.54	104.69	104.97	101.42

Table 4(D)The diltiazem hydrochloride release from 0.6 mm orifice sizenon-crosslinked OPC coating with 250 ml CA solution in deionized water

Time (hr)		% dilt	iazem l		Mean	SD	% CV			
	n12	n13	n14	n15	n16	n17	n18			
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
1.5	3.82	0.00	0.00	0.00	0.00	4.41	0.00	1.30	1.96	150.51
2	11.12	14.98	5.62	6.84	5.86	8.74	6.01	9.92	4.38	44.12
2.5	25.79	29.78	20.45	20.54	23.15	22.00	19.05	23.84	5.33	22.35
3	38.26	39.03	36.65	36.61	39.22	39.05	35.38	40.35	7.80	19.33
3.5	55.79	48.25	46.85	53.99	48.27	49.09	51.97	54.84	9.58	17.46
4	70.91	59.54	54.60	64.86	54.83	57.41	60.62	64.86	11.04	17.02
4.5	85.47	73.67	64.22	74.70	63.62	68.32	69.89	74.31	10.63	14.30
5	95.18	79.57	70.19	81.18	69.90	76.80	73.06	80.54	10.10	12.54
5.5	99.11	88.41	78.41	87.68	77.17	88.06	82.06	86.64	8.65	9.99
6	101.46	93.02	83.72	91.37	83.72	92.96	87.15	91.01	7.07	7.77
7	103.30	97.25	88.08	95.69	88.00	97.99	89.50	94.90	6.43	6.77
8	104.35	101.80	94.39	100.49	93.80	102.05	92.88	98.72	4.55	4.61
9	104.85	104.96	98.67	103.32	99.76	107.08	100.80	101.67	3.71	3.65

Time				% dil	tiazem l	nydroch	loride re	lease			
(hr)	n1	n2	n3	n4	n5	n6	n7	n8	n9	n10	n11
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.5	7.21	10.83	12.60	10.29	10.08	16.77	9.26	6.05	8.63	4.47	5.81
2	13.43	20.68	21.73	21.81	19.13	28.99	27.52	26.35	15.88	13.88	9.98
2.5	29.00	23.68	25.75	26.07	26.06	33.10	37.10	39.51	25.82	29.24	20.56
3	41.58	35.61	38.74	39.21	39.21	49.83	46.16	46.64	36.24	42.58	31.30
3.5	56.66	52.62	53.47	55.14	54.42	66.63	54.52	54.23	45.99	53.52	40.67
4	66.29	66.66	67.35	65.96	68.67	79.69	61.75	60.76	53.62	63.79	49.32
4.5	77.46	78.66	80.29	75.57	73.16	89.81	70.68	66.22	60.94	72.16	57.97
5	83.39	88.44	87.98	83.66	85.58	93.91	82.18	76.62	70.77	79.99	66.65
5.5	88.08	94.55	92.91	89.49	90.10	97.70	91.65	84.82	78.53	84.95	75.03
6	91.87	98.49	97.13	94.15	94.21	100.83	97.95	90.96	84.73	89.63	80.93
7	95.90	102.51	100.89	99.66	99.67	103.65	102.10	96.14	90.48	95.40	89.09
8	99.84	103.62	102.40	102.12	101.31	103.69	96.92	101.47	99.00	100.18	95.40
9	102.69	104.66	104.48	103.22	103.28	104.34	105.80	103.67	102.56	102.85	100.07

Table 5(D)The diltiazem hydrochloride release from 0.6 mm orifice sizenon-crosslinked OPC coating with 290 ml CA solution in deionized water

Time (hr)		% di	ltiazem	hydroch	loride r	elease		Mean	SD	9
()	n12	n13	n14	n15	n16	n17	n18			С
1	0.00	0.00	0.00	3.55	0.00	0.00	0.00	0.00	0.00	-
1.5	0.00	4.05	3.34	16.79	5.71	7.57	7.55	8.17	4.36	53
2	6.15	16.36	11.65	25.74	17.07	15.18	16.42	18.22	6.32	34
2.5	15.54	29.13	22.86	31.60	31.99	24.30	21.58	27.38	5.92	21
3	25.90	40.48	33.14	40.50	51.64	33.05	35.16	39.28	6.61	16
3.5	34.14	50.91	47.60	50.50	67.45	41.00	50.27	51.65	8.17	15
4	45.46	57.30	58.71	64.04	82.77	59.17	62.09	62.97	9.11	14
4.5	51.82	64.51	65.94	81.95	92.30	81.49	71.88	72.93	10.61	14
5	59.56	72.76	75.38	92.47	99.73	93.36	80.64	81.84	10.34	12
5.5	68.56	78.93	81.36	97.45	101.53	99.66	87.50	87.93	8.98	10
6	75.75	85.34	90.26	100.86	102.41	100.88	91.43	92.66	7.45	8
7	86.02	92.97	97.63	104.22	104.31	95.48	99.51	97.54	5.35	5
8	92.80	98.98	102.20	104.76	104.16	105.29	102.35	100.92	3.33	3
9	97.73	101.95	104.71	105.05	114.68	106.14	104.65	104.03	3.34	3

Time				% diltia	azem hy	drochlo	ride rel	ease			
(hr)	n1	n2	n3	n4	n5	n6	n7	n8	n9	n10	n11
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.5	7.10	4.67	5.30	4.46	3.96	4.39	4.66	5.17	5.05	0.00	3.68
2	20.09	13.26	16.75	18.37	18.24	16.20	15.57	13.31	11.72	11.43	14.16
2.5	35.62	28.77	37.31	35.49	29.56	32.89	33.81	28.99	25.30	26.94	28.33
3	51.32	40.29	62.53	47.62	39.91	47.10	49.11	38.77	35.85	40.51	38.82
3.5	63.24	50.79	69.71	62.29	52.91	57.96	56.69	57.56	51.96	61.81	50.60
4	67.92	59.85	76.73	70.21	60.17	66.34	64.92	69.51	53.74	58.62	69.53
4.5	72.98	65.33	81.78	75.65	66.49	70.53	71.88	75.69	58.32	72.85	63.25
5	77.67	<u>68.92</u>	85.31	80.97	69.19	74.77	79.06	79.03	65.24	77.50	70.10
5.5	83.55	74.20	89.85	84.00	73.36	76.55	84.24	82.64	71.48	82.53	75.72
6	89.15	80.37	93.03	90.49	76.15	80.45	92.48	85.51	75.70	77.10	78.50
7	96.27	<mark>94</mark> .46	98.30	99.32	80.95	85.74	91.54	90.10	84.67	90.72	85.78
8	101.39	99.30	102.43	104.48	85.95	92.40	95.44	91.29	86.08	93.63	90.56
9	103.24	101. <mark>8</mark> 2	102.80	103.99	89.53	94.32	98.13	94.60	87.82	95.72	90.71

Table 6(D)The diltiazem hydrochloride release from 0.6 mm orifice sizenon-crosslinked OPC coating with 335 ml CA solution in deionized water

Time (hr)		% dil	tiazem	hydrochl	oride rel	ease		Mean	SD	%
()	n12	n13	n14	n15	n16	n17	n18			C\
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
1.5	0.00	5.62	4.77	7.31	6.31	3.64	6.43	4.58	1.98	43.
2	12.54	17.02	18.24	15.76	20.04	11.68	20.58	15.83	3.06	19.3
2.5	28.28	32.32	26.69	37.12	37.07	25.79	34.43	31.37	4.19	13.3
3	43.88	51.36	40.26	53.89	49.10	41.79	48.36	45.58	6.77	14.8
3.5	59.12	64.98	53.37	60.81	57.97	59.37	57.97	58.28	5.14	8.
4	67.40	74.55	62.47	68.94	67.24	67.00	66.49	66.20	5.62	8.4
4.5	72.29	77.77	69.76	78.14	73.87	73.19	72.48	71.79	5.66	7.
5	79.36	87.80	75.35	86.36	80.68	80.32	80.17	77.65	6.19	7.
5.5	82.91	93.13	79.22	91.23	86.26	83.30	84.50	82.15	6.10	7.4
6	84.51	97.21	83.78	95.88	91.30	85.04	88.30	85.83	6.81	7.9
7	85.84	99.62	78.57	99.63	95.87	90.04	92.38	91.10	6.49	7.
8	90.70	100.94	92.02	101.48	98.33	94.59	94.54	95.31	5.54	5.8
9	90.32	103.66	87.41	92.61	100.98	96.44	97.60	96.20	5.66	5.8

Time				% prop	ranolol	hydroch	loride r	elease			
(hr)	n1	n2	n3	n4	n5	n6	n7	n8	n9	n10	n11
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.5	0.00	0.00	0.00	0.00	9.36	8.15	12.08	11.83	13.38	0.00	19.07
4	11.24	11.39	12.61	11.16	15.14	13.93	20.20	21.37	21.73	13.48	42.10
4.5	17.52	17.53	19.03	19.09	23.45	20.76	29.41	32.67	30.31	19.45	52.95
5	25.60	24.52	26.36	24.10	30.18	29.90	37.20	45.65	38.73	25.30	60.98
5.5	34.55	<u>31.24</u>	34.10	30.54	36.28	40.42	46.12	54.83	47.23	31.02	67.15
6	43.62	38.98	42.33	37.71	41.47	49.74	54.51	61.87	55.12	37.34	72.42
7	58.34	<mark>49.51</mark>	56.45	51.32	51.41	62.97	65.76	71.31	66.59	50.74	80.00
8	69.23	59.58	67.29	62.38	61.19	72.03	74.81	78.06	75.61	61.57	86.18
9	77.29	70.17	75.52	71.67	70.82	78.91	82.26	84.17	82.29	71.52	89.67
10	84.16	79.47	80.50	78.60	78.20	84.96	87.17	88.11	86.38	79.09	90.31
11	89.09	86. <mark>61</mark>	87.46	84.78	85.54	89.38	91.24	91.27	90.24	84.77	94.86
12	92.72	9 <mark>1.7</mark> 3	<mark>91.63</mark>	89.11	88.97	92.21	93.74	93.59	93.59	89.89	97.69

Table 7(D)The propranolol hydrochloride release from 0.6 mm orifice sizecrosslinked OPC coating with 290 ml CA solution in deionized water

Time (hr)		% prop	oranolol		Mean	SD	%			
()	n12	n13	n14	n15	n16	n17	n18			CV
3	0.00	0.00	0.00	0.00	0.00	0.00	7.83	0.00	0.00	
3.5	8.35	9.09	14.92	10.90	11.22	17.44	16.61	9.02	6.49	71.99
4	13.88	16.16	24.49	16.72	14.73	27.54	23.71	18.42	7.73	41.97
4.5	19.93	22.21	34.83	24.56	24.84	37.44	33.00	26.61	9.15	34.39
5	26.06	28.53	43.80	32.21	35.22	45.39	41.15	34.49	9.97	28.91
5.5	32.66	34.51	50.52	39.40	47.45	52.16	48.87	42.17	10.19	24.16
6	39.58	40.43	56.76	47.02	57.21	58.16	54.92	49.40	9.96	20.16
7	55.32	52.35	65.75	59.66	68.76	68.38	65.20	61.10	8.54	13.97
8	67.29	63.49	73.86	70.17	77.60	78.58	74.20	70.73	7.33	10.36
9	76.65	73.23	80.68	77.55	82.87	83.57	80.75	78.31	5.45	6.96
10	82.42	79.54	85.75	83.48	87.24	88.38	85.91	83.87	3.85	4.59
11	87.46	85.38	90.30	88.12	90.49	92.81	90.27	88.89	2.85	3.21
12	90.67	88.63	91.99	90.56	92.85	94.93	92.17	92.04	2.27	2.47

Time				% prop	oranolol	hydroch	loride r	elease			
(hr)	n1	n2	n3	n4	n5	n6	n7	n8	n9	n10	n11
3	0.00	0.00	0.00	8.68	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.5	0.00	0.00	0.00	13.78	0.00	46.95	0.00	0.00	8.55	0.00	10.74
4	13.15	8.50	9.37	20.06	8.22	58.18	11.73	10.86	15.76	11.30	19.52
4.5	24.10	13.49	18.39	26.85	12.72	67.85	18.31	17.95	27.69	18.28	27.36
5	34.15	19.01	32.55	34.16	17.60	74.68	26.51	23.09	42.51	24.85	35.87
5.5	44.37	2 <u>5.5</u> 4	4 <u>5.5</u> 1	40.99	23.30	81.28	38.02	27.81	52.61	29.79	44.77
6	50.83	31.88	54.30	46.54	28.94	86.15	48.62	32.91	60.21	36.34	53.00
7	60.49	<mark>44.3</mark> 4	66.59	56.80	39.94	93.05	65.62	44.90	71.16	51.29	65.16
8	70.15	54.26	76.34	65.16	49.86	96.50	77.34	54.79	78.63	62.47	75.66
9	77.24	63.17	82.90	68.99	61.18	97.30	90.94	67.71	83.56	73.90	84.25
10	84.59	73.01	90.88	80.02	67.46	98.55	91.13	69.70	88.43	78.13	88.69
11	88.60	79.18	94.05	84.27	74.70	100.26	96.29	76.52	91.37	83.60	91.92
12	90.84	85.24	96.65	87.61	79.45	100.49	97.52	81.42	94.41	88.43	95.67

Table 8(D)The propranolol hydrochloride release from 0.6 mm orifice sizecrosslinked OPC coating with 335 ml CA solution in deionized water

Time (hr)		% proj	oranolo		Mean	SD	% CV			
(,	n12	n13	n14	n15	n16	n17	n18			,
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
3.5	0.00	8.94	9.22	11.16	8.08	9.13	9.93	7.58	11.07	146.04
4	12.37	16.69	15.92	18.89	15.75	16.71	15.92	16.61	11.01	66.29
4.5	18.09	22.48	26.44	24.88	23.11	26.76	21.67	24.25	11.84	48.83
5	23.98	29.29	35.25	34.33	29.83	35.21	30.45	32.41	12.36	38.13
5.5	29.72	35.14	50.86	43.64	38.14	42.95	41.32	40.88	13.15	32.18
6	34.86	40.36	61.75	52.68	44.41	49.17	47.73	47.82	13.55	28.34
7	45.81	50.30	78.32	65.18	59.56	58.71	60.64	59.88	13.15	21.96
8	55.43	59.91	87.40	73.20	71.50	69.08	70.48	69.34	12.10	17.45
9	65.81	68.40	91.95	79.66	79.99	74.68	76.59	77.12	10.24	13.28
10	72.32	73.75	93.92	84.05	86.21	80.39	82.18	82.41	8.80	10.68
11	78.51	78.89	95.66	86.89	90.04	83.93	85.25	86.66	7.40	8.54
12	83.65	83.91	97.13	90.15	100.61	86.57	87.40	90.40	6.58	7.27

Time				% pro	pranolol	hydroc	hloride r	elease			
(hr)	n1	n2	n3	n4	n5	n6	n7	n8	n9	n10	n11
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.5	14.50	0.00	0.00	9.58	18.06	0.00	0.00	7.79	18.85	14.54	0.00
2	34.01	0.00	12.51	16.38	38.07	16.16	18.03	10.68	35.07	36.83	20.52
2.5	45.15	0.00	24.29	27.37	43.94	21.86	25.61	16.83	46.14	52.80	45.83
3	49.58	11.30	33.92	33.25	48.13	26.76	30.27	23.05	52.68	62.22	60.39
3.5	52.31	18.75	40.99	38.31	52.42	33.45	35.15	29.20	58.63	71.33	71.51
4	55.43	29.04	53.20	43.17	58.17	37.40	40.52	37.27	68.26	78.79	79.00
4.5	57.77	40.71	62.88	48.79	66.56	52.54	48.67	50.15	76.25	83.87	83.53
5	63.29	51.08	78.29	55.04	75.40	61.46	56.20	59.96	82.92	88.72	88.79
5.5	70.08	59.83	87.87	<mark>61</mark> .71	83.90	70.04	64.37	69.23	90.18	93.31	94.74
6	76.08	66. <mark>81</mark>	95.74	69.13	91.43	80.09	71.30	75.52	94.06	95.23	96.65
7	87.56	<mark>78</mark> .09	103.07	81.84	99.89	102.20	84.66	86.72	100.39	99.19	101.76
8	96.82	85.28	104.93	90.30	103.24	103.37	93.79	92.15	103.31	100.33	103.84
9	101.19	92 <mark>.8</mark> 6	<mark>107.03</mark>	98.03	106.20	106.18	99.96	98.58	104.74	104.09	104.79
10	106.09	<mark>96.28</mark>	106.45	101.45	106.36	106.23	104.69	102.03	106.45	106.41	107.05
11	108.20	102.31	109.83	103.53	105.90	106.93	105.71	103.91	107.39	106.79	105.95
12	107.89	104. <mark>79</mark>	108.28	106.08	107.18	107.95	107.12	104.00	106.55	105.90	105.65

Table 9(D) The propranolol hydrochloride release from 0.6 mm orifice sizenon-crosslinked OPC coating with 290 ml CA solution in deionized water

Time (hr)		% pro	opranolo		Mean	SD	% CV			
(,	n12	n13	n14	n15	n16	n17	n18			
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
1.5	0.00	8.84	0.00	0.00	14.78	14.33	0.00	6.74	7.44	110.41
2	20.08	11.38	0.00	0.00	28.90	33.91	22.28	19.71	12.74	64.63
2.5	26.67	22.28	11.97	11.18	40.44	41.59	36.97	30.05	14.74	49.06
3	30.56	29.28	20.61	20.29	46.10	49.52	45.46	37.41	14.75	39.42
3.5	33.99	34.15	29.28	28.72	49.51	56.06	52.05	43.66	15.01	34.39
4	37.47	40.52	37.70	35.23	53.15	62.72	59.44	50.36	15.11	30.00
4.5	42.38	49.26	49.90	44.26	61.08	69.39	65.39	58.52	13.45	22.99
5	47.32	55.73	59.93	51.77	73.15	75.66	71.82	66.47	13.13	19.76
5.5	53.54	62.88	69.28	59.97	83.53	81.72	78.42	74.14	12.80	17.26
6	59.09	69.81	76.33	67.83	91.53	86.63	83.57	80.38	11.83	14.71
7	71.31	82.71	88.47	81.13	99.65	93.21	92.26	90.78	9.65	10.63
8	82.95	93.28	96.64	91.00	103.95	99.55	98.87	96.87	6.69	6.91
9	91.60	98.85	101.23	97.20	105.06	103.01	102.27	101.27	4.46	4.41
10	99.30	102.52	104.38	101.30	106.36	105.14	104.90	104.08	2.99	2.87
11	102.48	103.64	105.85	104.35	107.57	106.80	106.51	105.76	2.03	1.92
12	103.40	105.07	106.84	105.19	107.36	107.32	106.74	106.29	1.39	1.30

	r										
Time				% prop	ranolol ł	nydrochlo	oride re	lease			
(hr)	n1	n2	n3	n4	n5	n6	n7	n8	n9	n10	n11
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.5	16.59	17.23	20.10	10.77	16.65	14.03	18.62	9.14	0.00	7.84	25.05
2	31.47	27.65	32.91	19.51	25.52	22.96	28.25	16.53	0.00	16.33	28.88
2.5	33.88	29.82	35.68	23.66	35.20	28.57	31.35	20.03	15.05	23.90	32.45
3	39.04	33.22	40.09	28.42	40.72	31.83	35.80	24.13	23.62	29.80	35.64
3.5	40.31	36.55	43.13	32.35	43.45	35.69	40.87	28.72	29.47	33.45	40.95
4	44.32	45.70	46.73	36.67	49.41	40.15	46.01	34.09	35.23	37.37	48.54
4.5	49.93	55.67	50.17	42.53	58.80	45.98	52.18	43.98	43.59	42.78	58.70
5	54.85	<u>68.30</u>	54.74	48.06	70.93	52.13	60.12	53.16	50.05	50.08	74.90
5.5	61.21	78.47	59.59	56.52	80.73	60.54	68.45	63.06	54.54	57.94	76.75
6	68.13	8 <mark>5.3</mark> 0	64.89	64.48	87.86	67.40	74.11	71.03	63.54	64.26	77.60
7	80.29	93.71	74.09	76.69	95.18	83.27	86.08	76.30	74.17	79.17	95.17
8	91.16	99.40	83.21	89.69	100.03	93.37	92.64	89.89	82.65	88.75	96.86
9	95.33	10 <mark>1</mark> .15	89.76	96.23	99.96	96.98	91.11	95.95	89.03	94.37	98.95
10	97.91	<mark>101.39</mark>	94.71	98.58	101.72	99.58	97.06	97.53	87.84	95.69	99.13
11	99.91	102.54	97.55	101.35	102.56	100.83	98.66	99.02	94.53	97.12	99.39
12	102.34	10 <mark>4.2</mark> 8	99.69	102.81	103.43	100.76	98.57	100.45	96.17	96.16	99.67

Table	10(D)	The	propranolol	hydrochloride	release	from	0.6	mm	orifice	size
non-cre	osslinke	ed OP	C coating wit	th 335 ml CA so	olution in	deion	ized	water	<u>.</u>	

12	102.54	104.20	99.09	102.01	105.45	100.70	90.07	100.45	90.17	90.10 9
Time (hr)		% pro	opranolo	l hydroc	hloride r	elease		Mean	SD	% CV
()	n12	n13	n14	n15	n16	n17	n18			
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00)
1.5	0.00	18.65	8.58	0.00	10.30	21.38	10.09	12.50	7.51	60.08
2	0.00	26.42	20.56	7.53	19.04	28.34	28.29	21.12	9.95	47.10
2.5	9.06	30.34	24.08	9.40	32.49	32.43	35.05	26.80	8.53	31.82
3	14.18	32.52	26.48	13.04	45.19	35.95	38.41	31.56	8.76	3 27.76
3.5	21.04	35.33	29.09	21.39	58.53	39.85	41.86	36.22	8.85	5 24.43
4	27.44	38.39	31.19	32.94	69.97	62.39	46.30	42.94	10.69	24.89
4.5	34.09	42.53	33.72	45.66	80.85	78.91	49.81	50.55	12.76	3 25.23
5	41.14	47.51	38.73	58.94	89.93	88.15	57.89	58.87	14.45	5 24.54
5.5	46.92	53.42	43.19	69.78	93.55	92.58	67.77	65.83	14.16	6 21.51
6	52.81	62.50	48.92	80.64	97.26	96.04	77.89	72.48	13.40) 18.49
7	67.02	78.55	62.14	91.53	95.46	96.94	88.53	83.02	10.43	12.56
8	78.01	88.49	76.66	84.29	96.16	97.30	93.38	90.11	6.93	7.69
9	89.41	92.64	82.96	97.04	84.78	89.20	93.06	93.22	5.05	5.42
10	93.76	95.93	85.88	89.08	95.15	97.13	94.71	95.71	4.37	4.56
11	97.51	98.10	95.14	104.78	100.94	105.43	98.38	99.65	2.97	2.98
12	99.09	97.07	105.11	105.60	101.99	106.80	100.06	101.11	3.17	3.13

Time (hr)		% diltiaz	zem hydr	ochloride	e release		Mean	SD	% CV
~ /	n1	n2	n3	n4	n5	n6			
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.5	7.11	0.00	0.00	0.00	4.87	5.24	2.87	3.24	112.69
3	19.32	10.08	9.49	17.15	15.27	18.35	14.94	4.22	28.26
3.5	32.80	26.89	26.88	43.20	34.97	39.74	34.08	6.65	19.52
4	49.58	54.46	51.77	63.40	57.83	59.53	56.09	5.14	9.16
4.5	55.92	69.35	64.14	75.65	69.63	71.90	67.77	6.91	10.20
5	60.78	77.24	71.33	81.76	75.90	79.77	74.46	7.59	10.19
5.5	64.81	83.18	76.60	86.86	81.67	86.13	79.87	8.24	10.32
6	67.57	86.66	79.51	88.86	84.21	88.38	82.53	8.09	9.80
7	73.81	91.67	87.18	93.47	90.14	93.09	88.23	7.42	8.41
8	80.50	96.06	92.51	97.00	93.94	95.32	92.55	6.11	6.60
9	84.92	9 <mark>8.6</mark> 0	9 <mark>8.61</mark>	99.44	96.70	99.27	96.26	5.64	5.86

 Table 11(D)
 The diltiazem hydrochloride release from 0.4 mm orifice size

 crosslinked OPC coating with 335 ml CA solution in deionized water

Table 12(D)The diltiazem hydrochloride release from 0.6 mm orifice sizecrosslinked OPC coating with 335 ml CA solution in deionized water

Time (hr)		% diltiaz	zem hydr	ochloride	e release		Mean	SD	% CV
()	n1	n2	n3	n4	n5	n6			,
2.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	23.05	19.01	13.19	30.86	15.19	21.78	20.51	6.32	30.79
3.5	43.99	35.29	36.64	46.02	29.60	41.32	38.81	6.12	15.76
4	61.28	51.63	52.59	56.70	46.12	56.53	54.14	5.22	9.64
4.5	66.77	60.44	62.70	65.85	55.32	67.65	63.12	4.68	7.42
5	69.35	67.44	69.04	69.82	64.21	73.78	68.94	3.13	4.54
5.5	77.37	63.05	73.59	72.70	64.09	80.20	71.83	6.95	9.68
6	80.64	77.81	78.64	83.69	73.73	91.11	80.94	5.97	7.38
7	84.36	72.12	84.49	81.52	75.12	89.10	81.12	6.37	7.85
8	90.31	86.75	89.02	85.45	87.51	86.25	87.55	1.82	2.08
9	88.12	88.59	86.87	85.65	85.55	77.25	85.34	4.15	4.87

Time (hr)		% diltiaz	zem hydr	ochloride	e release		Mean	SD	% CV
· · ·	n1	n2	n3	n4	n5	n6			
1.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	5.55	0.00	3.10	0.00	0.00	0.00	1.44	2.36	164.01
2.5	10.71	0.00	6.50	0.00	3.23	7.09	4.59	4.27	93.17
3	23.04	20.88	19.06	10.89	15.60	21.85	18.55	4.56	24.60
3.5	42.29	40.21	37.39	32.34	36.84	39.38	38.07	3.43	9.01
4	63.05	58.52	51.83	52.58	49.35	56.47	55.30	5.03	9.10
4.5	70.07	65.01	60.57	62.74	59.53	64.20	63.69	3.76	5.90
5	78.89	69.17	67.30	68.30	71.49	70.99	71.02	4.17	5.87
5.5	85.61	74.84	72.21	72.01	75.00	75.44	75.85	5.00	6.60
6	91.5 <mark>9</mark>	78.89	76.66	75.45	80.65	78.23	80.25	5.84	7.28
7	95.71	84.32	81.72	86.50	84.04	83.32	85.93	5.03	5.86
8	98.28	89.14	86.07	92.81	88.74	88.65	90.62	4.33	4.78
9	102.81	95.22	88.72	98.20	91.62	91.99	94.76	5.12	5.40

 Table 13(D)
 The diltiazem hydrochloride release from 0.8 mm orifice size

 crosslinked OPC coating with 335 ml CA solution in deionized water

 Table 14(D)
 The diltiazem hydrochloride release from 0.4 mm orifice size noncrosslinked OPC coating with 335 ml CA solution in deionized water

Time (hr)		% diltiaz	zem hydr	ochlorid	e release		Mean	SD	% CV
· · /	n1	n2	n3	n4	n5	n6	32/		
1.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.00	0.00	0.00	8.02	0.00	3.52	1.92	3.30	171.69
2.5	13.14	20.12	9.21	21.67	13.43	4.39	13.66	6.51	47.67
3	30.06	38.86	24.01	37.95	26.62	29.83	31.22	6.00	19.22
3.5	49.26	53.07	39.87	51.84	40.05	44.72	46.47	5.80	12.47
4	71.04	66.10	50.82	61.80	51.29	58.70	59.96	8.05	13.43
4.5	87.96	79.00	63.17	77.97	64.01	74.23	74.39	9.51	12.78
5	93.85	83.79	69.59	84.06	70.67	82.22	80.70	9.16	11.36
5.5	100.02	89.09	75.98	92.75	77.02	87.54	87.07	9.26	10.63
6	104.66	92.95	81.58	101.15	83.40	91.91	92.61	9.22	9.96
7	109.85	97.51	88.60	103.65	94.85	97.26	98.62	7.34	7.44
8	111.79	101.25	93.48	106.84	108.64	101.31	103.89	6.57	6.32
9	113.54	104.99	99.31	112.03	113.66	105.61	108.19	5.82	5.38

Time (hr)		% diltiaz	zem hydr	ochloride	e release		Mean	SD	% CV
· · /	n1	n2	n3	n4	n5	n6			
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.5	4.66	5.17	5.05	0.00	3.68	0.00	3.09	2.45	79.29
2	15.57	13.31	11.72	11.43	14.16	12.54	13.12	1.57	11.94
2.5	33.81	28.99	25.30	26.94	28.33	28.28	28.61	2.87	10.02
3	49.11	38.77	35.85	40.51	38.82	43.88	41.16	4.70	11.42
3.5	56.69	57.56	51.96	61.81	50.60	59.12	56.29	4.28	7.60
4	64.92	69.51	53.74	58.62	69.53	67.40	63.95	6.44	10.07
4.5	71.88	75.69	58.32	72.85	63.25	72.29	69.05	6.72	9.73
5	79.06	79.03	65.24	77.50	70.10	79.36	75.05	5.95	7.93
5.5	84.24	82.64	71.48	82.53	75.72	82.91	79.92	5.11	6.40
6	92.48	85.51	75.70	77.10	78.50	84.51	82.30	6.39	7.76
7	91.5 <mark>4</mark>	9 <mark>0</mark> .10	84.67	90.72	85.78	85.84	88.11	3.00	3.40
8	95.44	91.29	86.08	93.63	90.56	90.70	91.28	3.18	3.49
9	98.13	94.60	87.82	95.72	90.71	90.32	92.88	3.89	4.18

Table 15(D)The diltiazem hydrochloride release from 0.6 mm orifice sizenon-crosslinked OPC coating with 335 ml CA solution in deionized water

Table 16(D)The diltiazem hydrochloride release from 0.8 mm orifice sizenon-crosslinked OPC coating with 335 ml CA solution in deionized water

Time (hr)	A	% diltia	zem hydr	ochlorid	e release		Mean	SD	% CV
~ /	n1	n2	n3	n4	n5	n6			
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.5	0.00	0.00	9.90	9.11	4.65	9.25	5.48	4.64	84.61
2	6.04	10.25	31.93	26.11	16.00	21.32	18.61	9.76	52.42
2.5	15.84	22.21	56.11	45.20	32.83	41.96	35.69	15.04	42.13
3	32.74	36.84	73.97	57.25	41.94	57.33	50.01	15.60	31.20
3.5	46.57	49.05	84.05	71.13	55.81	72.95	63.26	14.99	23.70
4	61.99	63.48	92.09	82.13	65.27	80.06	74.17	12.34	16.63
4.5	69.69	73.15	100.08	93.75	71.34	86.06	82.35	12.84	15.59
5	75.23	84.91	104.61	102.43	76.58	92.17	89.32	12.60	14.11
5.5	80.20	97.66	107.02	106.44	81.83	99.19	95.39	11.76	12.33
6	83.48	104.23	109.27	109.43	87.17	102.94	99.42	11.28	11.35
7	89.91	110.75	112.41	109.94	95.48	108.91	104.57	9.43	9.02
8	95.31	112.18	112.78	112.09	100.41	111.86	107.44	7.60	7.07
9	98.99	112.48	115.39	111.42	103.26	114.13	109.28	6.60	6.04

Time (hr)	0	∕₀ propra	nolol hyd	e	Mean	SD	% CV		
~ /	n1	n2	n3	n4	n5	n6			
3.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	9.04	19.12	0.00	9.69	6.31	7.78	123.28
4.5	0.00	0.00	17.91	29.58	0.00	20.20	11.28	12.96	114.90
5	15.00	9.21	29.56	43.26	9.50	34.08	23.44	14.22	60.70
5.5	22.35	18.05	37.44	64.15	14.06	45.62	33.61	19.20	57.12
6	30.09	28.11	44.92	72.94	19.59	58.25	42.32	20.33	48.04
7	40.67	43.90	54.53	83.30	31.59	75.44	54.91	20.47	37.28
8	49.02	56.95	62.07	89.05	41.05	83.59	63.62	19.05	29.95
9	58.16	67.26	67.76	93.20	49.92	88.38	70.78	16.90	23.88
10	60.24	72.64	69.79	92.54	55.29	88.99	73.25	14.99	20.47
11	64.57	79.33	73.12	92.97	61.07	90.30	76.89	13.12	17.06
12	68.07	84.56	75.83	92.94	65.77	89.81	79.50	11.36	14.29

 Table 17(D)
 The propranolol hydrochloride release from 0.4 mm orifice size

 crosslinked OPC coating with 335 ml CA solution in deionized water

 Table 18(D)
 The propranolol hydrochloride release from 0.6 mm orifice size

 crosslinked OPC coating with 335 ml CA solution in deionized water

Time (hr)	0	% propan	olol hyd	rochlorid	e release		Mean	SD	% C\
()	n1	n2	n3	n4	n5	n6	moun	02	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
3.5	0.00	0.00	8.55	0.00	10.74	0.00	3.22	5.03	156.4
4	11.73	10.86	15.76	11.30	19.52	12.37	13.59	3.39	24.9
4.5	18.31	17.95	27.69	18.28	27.36	18.09	21.28	4.84	22.7
5	26.51	23.09	42.51	24.85	35.87	23.98	29.47	7.90	26.8
5.5	38.02	27.81	52.61	29.79	44.77	29.72	37.12	9.94	26.7
6	48.62	32.91	60.21	36.34	53.00	34.86	44.33	11.22	25.3
7	65.62	44.90	71.16	51.29	65.16	45.81	57.32	11.36	19.8
8	77.34	54.79	78.63	62.47	75.66	55.43	67.39	11.14	16.5
9	90.94	67.71	83.56	73.90	84.25	65.81	77.69	10.08	12.9
10	91.13	69.70	88.43	78.13	88.69	72.32	81.40	9.24	11.3
11	96.29	76.52	91.37	83.60	91.92	78.51	86.37	8.01	9.2
12	97.52	81.42	94.41	88.43	95.67	83.65	90.18	6.70	7.4

Time (hr)		% diltia	zem hydr		Mean	SD	% CV		
~ /	n1	n2	n3	n4	n5	n6			
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.5	0.00	9.97	0.00	0.00	14.64	0.00	4.10	6.52	159.05
4	0.00	16.99	20.01	11.54	18.73	0.00	11.21	9.15	81.63
4.5	12.26	25.79	40.79	16.63	24.94	11.48	21.98	11.05	50.26
5	19.70	52.82	62.46	21.14	33.70	16.01	34.31	19.27	56.18
5.5	27.54	75.71	72.40	27.16	43.01	21.31	44.52	24.00	53.91
6	35.84	84.75	79.48	33.27	51.82	28.83	52.33	24.40	46.62
7	49.48	91.43	87.08	44.82	59.63	43.54	62.66	21.40	34.15
8	59.82	95.53	91.19	55.63	68.55	55.19	70.99	18.04	25.41
9	68.2 <mark>0</mark>	97.30	93.67	64.84	74.80	64.29	77.18	14.70	19.05
10	74.30	99.74	95.46	71.58	80.92	74.66	82.78	11.96	14.45
11	78.91	98.06	95.52	76.73	85.06	82.48	86.13	8.78	10.19
12	82.43	98.67	96.69	80.68	87.92	89.04	89.24	7.29	8.17

 Table 19(D)
 The propranolol hydrochloride release from 0.8 mm orifice size

 crosslinked OPC coating with 335 ml CA solution in deionized water

 Table 20(D)
 The propranolol hydrochloride release from 0.4 mm orifice size

 non-crosslinked OPC coating with 335 ml CA solution in deionized water

Time (hr)	0	% propra	nolol hyd	lrochlorie	e	Mean	SD	% CV	
~ /	n1	n2	n3	n4	n5	n6	-		
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.5	8.61	12.86	8.70	0.00	0.00	0.00	5.03	5.72	113.73
2	18.84	23.03	12.67	0.00	15.55	0.00	11.68	9.68	82.89
2.5	21.46	31.40	15.02	0.00	22.68	9.07	16.61	11.08	66.75
3	24.06	38.46	18.40	10.74	27.36	15.61	22.44	9.83	43.82
3.5	28.39	44.55	23.13	17.09	31.39	24.41	28.16	9.39	33.35
4	34.90	50.93	30.77	26.48	35.31	33.82	35.37	8.31	23.49
4.5	41.36	57.23	42.73	35.85	38.58	43.14	43.15	7.43	17.21
5	49.02	64.25	52.70	47.13	43.17	57.30	52.26	7.60	14.54
5.5	58.70	70.68	61.05	57.14	48.35	64.64	60.09	7.51	12.50
6	65.46	75.23	67.16	64.54	55.01	70.35	66.29	6.76	10.19
7	74.31	81.91	77.37	74.87	66.97	78.52	75.66	5.06	6.69
8	80.95	87.00	83.10	82.57	75.64	84.61	82.31	3.85	4.68
9	86.33	90.61	88.03	87.46	82.00	88.23	87.11	2.87	3.30
10	89.49	92.62	91.42	91.05	86.91	91.63	90.52	2.04	2.25
11	91.28	94.00	92.98	92.85	89.57	93.55	92.37	1.65	1.79
12	93.14	95.22	94.98	94.69	91.11	94.29	93.91	1.55	1.65

Time (hr)	0	% propra	nolol hyd	lrochlori	de release	e	Mean	SD	% CV
()	n1	n2	n3	n4	n5	n6		02	,
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.5	19.86	9.75	0.00	8.37	26.73	0.00	10.79	10.74	99.53
2	30.14	17.63	0.00	17.43	30.82	0.00	16.00	13.68	85.51
2.5	33.46	21.37	16.06	25.51	34.64	9.67	23.45	9.78	41.71
3	38.22	25.75	25.20	31.80	38.05	15.13	29.03	8.86	30.51
3.5	43.64	30.65	31.45	35.71	43.73	22.45	34.61	8.24	23.81
4	49.15	36.40	37.61	39.90	51.85	29.29	40.70	8.42	20.69
4.5	55.75	46.98	46.54	45.69	62.73	36.39	49.02	9.10	18.57
5	64.26	56.80	53.46	53.50	80.08	43.93	58.67	12.36	21.07
5.5	73.21	67.40	58.27	61.91	82.11	50.11	65.50	11.32	17.28
6	79.30	75.96	67.93	6 <mark>8.6</mark> 7	83.06	56.43	71.89	9.61	13.36
7	92.17	81.63	79.33	84.62	101.93	71.65	85.22	10.58	12.41
8	99.26	96.24	88.44	94.92	103.83	83.44	94.35	7.37	7.81
9	97.69	102.80	95.33	101.00	106.14	95.68	99.77	4.29	4.30
10	104.15	104.56	94.13	102.48	106.42	100.41	102.03	4.37	4.28
11	105.95	106.25	101.37	104.10	106.79	104.50	104.83	1.98	1.89
12	105.94	107.87	103.21	103.15	107.18	106.28	105.61	2.00	1.89

Table 21(D)The propranolol hydrochloride release from 0.6 mm orifice sizenon-crosslinked OPC coating with 335 ml CA solution in deionized water

Table 22(D) The propranolol hydrochloride release from 0.8 mm orifice sizenon-crosslinked OPC coating with 335 ml CA solution in deionized water

Time (hr)	0	% propra	nolol hyd	lrochlori	e	Mean	SD	% CV	
()	n1	n2	n3	n4	n5	n6			
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.5	12.05	14.50	0.00	14.08	0.00	0.00	6.77	7.46	110.23
2	26.80	27.46	16.44	43.48	20.43	13.62	24.71	10.71	43.36
2.5	36.94	37.11	29.70	74.26	35.55	18.31	38.65	18.85	48.77
3	44.68	40.96	36.33	77.50	40.51	23.90	43.98	17.93	40.76
3.5	47.90	44.40	40.38	83.98	47.39	27.57	48.60	18.87	38.83
4	55.18	48.16	45.35	88.59	57.67	32.01	54.49	18.99	34.84
4.5	64.80	52.90	49.27	93.93	67.44	38.04	61.06	19.34	31.67
5	69.92	58.54	54.64	97.07	74.35	46.68	66.87	17.91	26.78
5.5	78.06	66.08	62.75	100.16	81.46	56.60	74.18	15.80	21.30
6	81.77	72.20	68.53	101.98	84.81	63.05	78.72	13.99	17.78
7	88.22	81.37	81.25	103.23	90.75	82.63	87.91	8.46	9.62
8	93.80	89.39	90.51	103.79	94.78	95.67	94.66	5.10	5.39
9	97.09	93.67	93.65	105.03	97.85	100.29	97.93	4.32	4.41
10	99.71	97.05	99.89	106.44	100.01	102.96	101.01	3.25	3.22
11	101.04	99.88	101.79	106.16	101.19	103.29	102.23	2.23	2.18
12	102.50	101.50	102.76	106.02	103.09	105.33	103.53	1.76	1.70

Time (hr)		% diltia	zem hydr		Mean	SD	% CV		
. ,	n1	n2	n3	n4	n5	n6			
2.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	23.05	19.01	13.19	30.86	15.19	21.78	20.51	6.32	30.79
3.5	43.99	35.29	36.64	46.02	29.60	41.32	38.81	6.12	15.76
4	61.28	51.63	52.59	<u>56.7</u> 0	46.12	56.53	54.14	5.22	9.64
4.5	66.77	60.44	62.70	65.85	55.32	67.65	63.12	4.68	7.42
5	69.35	67.44	69.04	69.82	64.21	73.78	68.94	3.13	4.54
5.5	77.37	63.05	73.59	72.70	64.09	80.20	71.83	6.95	9.68
6	80.64	77.81	78.64	83.69	73.73	91.11	80.94	5.97	7.38
7	84.36	72.12	84.49	81.52	75.12	89.10	81.12	6.37	7.85
8	90.31	8 <mark>6.7</mark> 5	89.02	85.45	87.51	86.25	87.55	1.82	2.08
9	88.12	88.59	86.87	85.65	85.55	77.25	85.34	4.15	4.87

Table 23(D)The diltiazem hydrochloride release from 0.6 mm orifice sizecrosslinked OPC coating with 335 ml CA solution in deionized water

Table 24(D) The diltiazem hydrochloride release from 0.6 mm orifice sizecrosslinked OPC coating with 335 ml CA solution in 0.9 % NaCl solution

Time (hr)		% diltia	zem hydr		Mean	SD	% CV		
. ,	n1	n2	n3	n4	n5	n6	0		
2.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
3	8.24	0.00	0.00	0.00	4.70	4.07	2.84	3.42	120.47
3.5	20.47	4.57	11.82	9.47	14.65	15.15	12.69	5.43	42.81
4	34.39	15.77	29.31	24.42	34.86	30.91	28.28	7.21	25.51
4.5	45.28	31.08	43.16	43.23	49.51	46.82	43.18	6.39	14.80
5	52.41	37.28	52.20	53.87	59.14	54.61	51.58	7.45	14.43
5.5	58.81	42.99	58.97	60.04	65.01	60.48	57.72	7.56	13.10
6	63.82	48.15	63.77	64.35	68.63	64.22	62.16	7.11	11.43
7	70.18	54.83	69.37	69.30	73.79	69.95	67.91	6.62	9.75
8	73.43	59.18	73.39	73.34	76.92	73.24	71.58	6.24	8.72
9	75.15	63.43	75.39	76.04	79.55	75.39	74.16	5.51	7.43

Time (hr)		% diltiaz	zem hydr		Mean	SD	% CV		
	n1	n2	n3	n4	n5	n6			
3.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
4	3.10	0.00	0.00	0.00	4.02	10.09	2.87	3.96	137.88
4.5	6.76	10.60	4.06	0.00	11.53	19.77	8.79	6.86	78.07
5	11.63	24.25	9.85	4.63	17.84	29.08	16.21	9.26	57.11
5.5	15.62	36.51	19.85	12.83	29.46	37.28	25.26	10.63	42.10
6	27.08	44.69	34.72	24.73	38.82	43.54	35.60	8.34	23.43
7	39.66	53.63	51.37	4 <mark>1.7</mark> 6	49.94	51.41	47.96	5.78	12.05
8	49.01	60.95	58.54	52.81	55.89	59.04	56.04	4.45	7.95
9	54.79	<mark>64</mark> .70	63.09	59.93	59.77	63.59	60.98	3.63	5.96

Table 25(D)The diltiazem hydrochloride release from 0.6 mm orifice sizecrosslinked OPC coating with 335 ml CA solution in 0.5 M NaCl solution

Table 26(D)The diltiazem hydrochloride release from 0.6 mm orifice sizecrosslinked OPC coating with 335 ml CA solution in 1 M NaCl solution

Time (hr)		% diltiaz	zem hydr	ochlorid	e release		Mean	SD	% CV
. ,	n1	n2	n3	n4	n6	3			
5.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
6	3.73	5.74	0.00	0.00	0.00	3.82	2.22	2.53	114.23
7	5.36	10.69	3.11	4.65	0.00	9.03	5.47	3.90	71.31
8	5.99	16.34	7.28	11.45	3.94	14.52	9.92	4.96	49.96
9	6.61	23.31	13.32	18.47	4.97	19.41	14.35	7.37	51.39

จุฬาลงกรณ่มหาวิทยาลัย

Time (hr)		% diltiaz	zem hydr	ochloride		Mean	SD	% CV	
. ,	n1	n2	n3	n4	n5	n6			
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.5	4.66	5.17	5.05	0.00	3.68	0.00	3.09	2.45	79.29
2	15.57	13.31	11.72	11.43	14.16	12.54	13.12	1.57	11.94
2.5	33.81	28.99	25.30	26.94	28.33	28.28	28.61	2.87	10.02
3	49.11	38.77	35.85	40.51	38.82	43.88	41.16	4.70	11.42
3.5	56.69	57.56	51.96	61.81	50.60	59.12	56.29	4.28	7.60
4	64.92	69.51	53.74	58.62	69.53	67.40	63.95	6.44	10.07
4.5	71.88	75.69	58.32	72.85	63.25	72.29	69.05	6.72	9.73
5	79.06	79.03	65.24	77.50	70.10	79.36	75.05	5.95	7.93
5.5	84.2 <mark>4</mark>	82.64	71.48	82.53	75.72	82.91	79.92	5.11	6.40
6	92.48	85.51	75.70	77.10	78.50	84.51	82.30	6.39	7.76
7	91.5 <mark>4</mark>	90.10	84.67	90.72	85.78	85.84	88.11	3.00	3.40
8	95.44	<mark>91</mark> .29	86.08	93.63	90.56	90.70	91.28	3.18	3.49
9	98.13	94.60	87.82	95.72	90.71	90.32	92.88	3.89	4.18

 Table 27(D)
 The diltiazem hydrochloride release from 0.6 mm orifice size

 non-crosslinked OPC coating with 335 ml CA solution in deionized water

Table 28(D)The diltiazem hydrochloride release from 0.6 mm orifice sizenon-crosslinked OPC coating with 335 ml CA solution in 0.9 % NaCl solution

Time (hr)		% diltiaz	zem hydr		Mean	SD	% CV		
	n1	n2	n3	n4	n5	n6	0		
1.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
2	5.43	3.27	5.17	0.00	0.00	0.00	2.31	2.64	114.21
2.5	10.94	11.65	6.80	3.05	0.00	11.07	7.25	4.86	66.98
3	19.05	28.82	24.24	17.62	21.35	20.58	21.95	4.05	18.43
3.5	26.13	42.25	33.75	27.12	37.44	33.72	33.40	6.12	18.32
4	33.56	51.53	42.59	37.59	53.40	46.14	44.14	7.76	17.59
4.5	40.47	58.30	50.05	47.11	70.52	55.65	53.68	10.39	19.35
5	45.86	63.23	56.40	55.19	84.67	62.79	61.36	13.05	21.27
5.5	51.58	68.36	62.45	62.18	95.38	67.41	67.90	14.73	21.69
6	56.58	70.79	67.82	67.29	98.23	65.41	71.02	14.17	19.96
7	61.92	75.58	77.93	74.20	101.72	75.14	77.75	13.03	16.76
8	68.14	78.83	92.25	78.12	102.55	79.49	83.23	12.18	14.63
9	71.73	84.22	98.49	81.89	101.57	82.91	86.80	11.21	12.91
	61		d bl	6 6		l d	ΠC		

Time (hr)		% diltiaz	zem hydr	ochlorid		Mean	SD	% CV	
. ,	n1	n2	n3	n4	n5	n6			
1.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
2	3.33	0.00	8.11	3.52	0.00	5.89	3.47	3.21	92.35
2.5	6.21	4.45	22.29	5.78	4.06	6.49	8.21	6.96	84.80
3	8.84	10.66	34.78	8.47	11.95	7.32	13.67	10.47	76.60
3.5	14.62	16.44	42.05	11.88	18.98	11.31	19.21	11.55	60.10
4	21.29	20.75	49.62	14.61	24.07	16.08	24.40	12.84	52.62
4.5	28.74	25.31	55.25	17.36	29.81	23.01	29.91	13.19	44.09
5	35.70	30.77	58.15	21.16	34.12	29.04	34.82	12.51	35.92
5.5	40.76	37.40	62.20	25.46	39.04	34.40	39.88	12.20	30.59
6	45.80	4 <mark>2.2</mark> 1	65.48	28.48	43.32	38.23	43.92	12.19	27.74
7	51.68	49.16	78.09	35.01	50.05	48.91	52.15	14.08	26.99
8	55.1 <mark>6</mark>	55.66	84.86	40.62	55.37	55.86	57.92	14.48	25.00
9	59. <mark>6</mark> 5	62.28	89.36	46.99	57.56	62.99	63.14	14.09	22.31

Table 29(D)The diltiazem hydrochloride release from 0.6 mm orifice sizenon-crosslinked OPC coating with 335 ml CA solution in 0.5 M NaCl solution

Table 30(D)The diltiazem hydrochloride release from 0.6 mm orifice sizenon-crosslinked OPC coating with 335 ml CA solution in 1 M NaCl solution

Time (hr)	A	% diltiaz	zem hydr		Mean	SD	% CV		
. ,	n1	n2	n3	n4	n5	n6			
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
2.5	0.00	0.00	3.67	4.33	0.00	0.00	1.33	2.08	155.70
3	0.00	10.39	6.15	11.09	0.00	0.00	4.61	5.32	115.52
3.5	22.62	16.28	14.99	18.13	0.00	0.00	12.00	9.65	80.40
4	25.84	21.95	20.25	21.79	2.93	3.85	16.10	10.02	62.25
4.5	27.47	25.42	21.83	26.53	5.50	5.65	18.74	10.37	55.34
5	27.80	29.07	23.80	28.48	9.44	9.02	21.27	9.51	44.69
5.5	28.77	33.37	25.50	30.12	12.77	11.69	23.70	9.25	39.01
6	29.78	36.87	27.52	32.33	17.45	14.20	26.36	8.79	33.36
7	32.42	41.56	31.54	35.85	26.36	17.95	30.95	8.11	26.22
8	36.35	46.41	35.63	41.44	32.80	21.11	35.62	8.60	24.13
9	40.46	50.39	40.25	47.37	37.35	25.27	40.18	8.79	21.88

Time	0	6 propra	nolol hyd	lrochlori	de release	e	Mean	SD	% CV
(hr)	n1	n2	n3	n4	n5	n6	wear	00	70 U V
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
3.5	0.00	0.00	8.55	0.00	10.74	0.00	3.22	5.03	156.40
4	11.73	10.86	15.76	11.30	19.52	12.37	13.59	3.39	24.95
4.5	18.31	17.95	27.69	18.28	27.36	18.09	21.28	4.84	22.76
5	26.51	23.09	42.51	24.85	35.87	23.98	29.47	7.90	26.81
5.5	38.02	27.81	52.61	29.79	44.77	29.72	37.12	9.94	26.79
6	48.62	32.91	60.21	36.34	53.00	34.86	44.33	11.22	25.32
7	65.62	44.90	71.16	51.29	65.16	45.81	57.32	11.36	19.81
8	77.34	<mark>5</mark> 4.79	78.63	6 <mark>2.4</mark> 7	75.66	55.43	67.39	11.14	16.52
9	90.9 <mark>4</mark>	67. <mark>71</mark>	83.56	73.90	84.25	65.81	77.69	10.08	12.97
10	91.13	69.70	88.43	78.13	88.69	72.32	81.40	9.24	11.36
11	96.29	76.52	91.37	83.60	91.92	78.51	86.37	8.01	9.27
12	97.52	81.42	9 <mark>4</mark> .41	88.43	95.67	83.65	90.18	6.70	7.43

 Table 31(D)
 The propranolol hydrochloride release from 0.6 mm orifice size

 crosslinked OPC coating with 335 ml CA solution in deionized water

Table 32(D) The propranolol hydrochloride release from 0.6 mm orifice sizecrosslinked OPC coating with 335 ml CA solution in 0.9 % NaCl solution

Time	9	6 proprai	nolol hyd	lrochlorie	de release	e	Mean	SD	% CV
(hr)	n1	n2	n3	n4	n5	n6	Wearr	50	70 C v
5.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
6	10.36	10.96	7.98	9.05	7.63	7.68	8.94	1.44	16.06
7	16.13	16.25	13.47	31.69	12.05	10.51	16.68	7.69	46.08
8	28.82	22.63	20.57	63.15	17.47	14.33	27.83	17.99	64.65
9	36.65	28.65	26.70	80.62	22.58	19.04	35.71	22.80	63.85
10	42.93	34.00	31.29	87.46	27.01	23.22	40.98	23.74	57.92
11	47.31	39.25	36.07	92.33	31.19	27.35	45.58	23.91	52.46
12	51.35	44.16	40.82	94.85	37.95	31.69	50.14	22.86	45.59

Time	0/	6 propra	nolol hyd	lrochlorie	de release	e	Mean	SD	% CV
(hr)	n1	n2	n3	n4	n5	n6	Mean	50	70 C V
5.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
6	0.00	0.00	0.00	7.74	11.72	0.00	3.24	5.18	159.71
7	0.00	0.00	0.00	10.05	13.42	0.00	3.91	6.15	157.29
8	7.94	8.21	7.79	12.36	14.76	7.42	9.75	3.06	31.42
9	9.50	9.12	9.42	14.55	16.02	8.75	11.23	3.19	28.42
10	10.89	9.93	11.01	16.69	17.29	10.02	12.64	3.40	26.93
11	12.18	10.78	12.49	18.74	18.44	11.22	13.97	3.63	25.97
12	13.42	11.68	13.89	20.64	19.50	12.39	15.25	3.83	25.10

Table 33(D) The propranolol hydrochloride release from 0.6 mm orifice size crosslinked OPC coating with 335 ml CA solution in 0.5 M NaCl solution

Table 34(D) The propranolol hydrochloride release from 0.6 mm orifice sizecrosslinked OPC coating with 335 ml CA solution in 1 M NaCl solution

Time	0	% propra	nolol hyd	lrochlori	de releas	e	Mean	SD	% CV
(hr)	n1	n2	n3	n4	n5	n6	INICALL	30	/0 U V
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
5.5	0.00	0.00	0.00	0.00	7.53	0.00	1.25	3.07	244.95
6	0.00	0.00	0.00	0.00	8.77	0.00	1.46	3.58	244.95
7	0.00	0.00	0.00	0.00	11.30	0.00	1.88	4.61	244.95
8	0.00	0.00	0.00	0.00	13.68	0.00	2.28	5.58	244.95
9	0.00	0.00	0.00	0.00	15.87	0.00	2.64	6.48	244.95
10	8.22	0.00	0.00	0.00	17.78	0.00	4.33	7.36	169.88
11	9.12	0.00	0.00	0.00	19.52	0.00	4.77	8.09	169.57
12	9.98	0.00	7.35	0.00	21.09	0.00	6.40	8.40	131.09

Time	0	% propra	nolol hyd	lrochlori	de releas	e	Mean	SD	% CV
(hr)	n1	n2	n3	n4	n5	n6	Mean	30	70 C V
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
1.5	19.86	9.75	0.00	8.37	26.73	0.00	10.79	10.74	99.53
2	30.14	17.63	0.00	17.43	30.82	0.00	16.00	13.68	85.51
2.5	33.46	21.37	16.06	25.51	34.64	9.67	23.45	9.78	41.71
3	38.22	25.75	25.20	31.80	38.05	15.13	29.03	8.86	30.51
3.5	43.64	30.65	31.45	35.71	43.73	22.45	34.61	8.24	23.81
4	49.15	36.40	37.61	39.90	51.85	29.29	40.70	8.42	20.69
4.5	55.75	46.98	46.54	45.69	62.73	36.39	49.02	9.10	18.57
5	64.26	56.80	53.46	53.50	80.08	43.93	58.67	12.36	21.07
5.5	73.21	67.40	58.27	61.91	82.11	50.11	65.50	11.32	17.28
6	79.30	75.96	67.93	68.67	83.06	56.43	71.89	9.61	13.36
7	92.17	81.63	79.33	84.62	101.93	71.65	85.22	10.58	12.41
8	99.26	96.24	88.44	94.92	103.83	83.44	94.35	7.37	7.81
9	97.69	102.80	95.33	101.00	106.14	95.68	99.77	4.29	4.30
10	104.15	1 <mark>04</mark> .56	94.13	102.48	106.42	100.41	102.03	4.37	4.28
11	105.95	106.25	101.37	104.10	106.79	104.50	104.83	1.98	1.89
12	105.94	107.87	103.21	103.15	107.18	106.28	105.61	2.00	1.89

Table 35(D)The propranolol hydrochloride release from 0.6 mm orifice sizenon-crosslinked OPC coating with 335 ml CA solution in deionized water

Table 36(D)The propranolol hydrochloride releasefrom 0.6 mm orifice sizenon-crosslinked OPC coating with 335 ml CA solution in 0.9 % NaCl solution

Time	9	6 propra	nolol hyd	lrochlori	de release	e	Mean	SD	% CV
(hr)	n1	n2	n3	n4	n5	n6	Mean	30	70 C V
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
1.5	9.23	7.68	0.00	7.33	0.00	0.00	4.04	4.47	110.68
2	21.43	25.43	10.53	10.27	11.01	7.84	14.42	7.18	49.78
2.5	43.55	39.04	23.31	12.05	19.89	13.29	25.19	13.23	52.52
3	50.11	42.40	32.42	19.53	24.91	23.50	32.14	11.95	37.18
3.5	53.79	45.56	36.26	29.12	28.47	26.92	36.69	10.88	29.65
4	54.84	48.46	38.96	35.94	31.68	29.04	39.82	9.99	25.08
4.5	61.39	51.47	41.92	41.30	34.51	30.82	43.57	11.25	25.81
5	65.64	54.21	44.04	45.73	37.50	32.53	46.61	11.90	25.54
5.5	67.31	57.07	46.29	51.61	39.61	34.16	49.34	12.02	24.35
6	74.60	60.72	50.13	56.55	42.03	35.80	53.31	13.88	26.03
7	85.17	67.35	58.42	65.03	49.57	40.85	61.07	15.39	25.21
8	92.39	73.23	69.08	70.27	61.49	45.76	68.70	15.25	22.20
9	95.26	75.81	82.82	76.45	69.32	50.72	75.06	14.80	19.72
10	94.36	85.02	89.97	83.56	77.84	56.72	81.24	13.27	16.34
11	96.22	89.42	89.54	89.06	83.62	61.87	84.96	12.00	14.12
12	96.28	91.87	94.87	92.12	89.03	67.64	88.63	10.59	11.95

Time	0	6 propra	nolol hyd	lrochlorie	de release	9	Mean	SD	% CV
(hr)	n1	n2	n3	n4	n5	n6	Mean	50	70 C v
1.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
2	15.33	10.24	0.00	10.16	0.00	0.00	5.96	6.79	113.97
2.5	22.65	17.16	7.94	21.40	0.00	19.65	14.80	8.95	60.46
3	33.03	18.33	19.10	28.71	23.64	36.76	26.60	7.52	28.26
3.5	37.19	18.98	24.30	29.45	33.63	46.08	31.61	9.62	30.42
4	40.11	19.64	26.86	30.26	38.06	50.77	34.28	11.01	32.10
4.5	42.18	20.21	28.58	31.14	41.59	53.04	36.12	11.73	32.46
5	43.70	20.78	29.89	32.06	44.51	55.25	37.70	12.41	32.91
5.5	44.99	23.16	31.05	33.25	46.55	57.27	39.38	12.43	31.58
6	46.3 <mark>5</mark>	24.64	32.19	34.51	49.62	57.86	40.86	12.45	30.46
7	47.93	27.41	34.37	37.65	56.85	60.25	44.08	13.06	29.63
8	49.91	29.76	36.37	41.11	62.78	61.60	46.92	13.53	28.84
9	52.02	31.73	38.16	44.74	68.89	62.35	49.65	14.24	28.69
10	53.71	33.79	39.94	47.90	72.44	63.69	51.91	14.50	27.93
11	55.63	35.78	41.56	51.72	76.30	64.87	54.31	14.89	27.43
12	57.46	37.64	43.12	55.81	78.09	65.87	56.33	14.76	26.21

Table 37(D) The propranolol hydrochloride release from 0.6 mm orifice sizenon-crosslinked OPC coating with 335 ml CA solution in 0.5 M NaCl solution

Table 38(D) The propranolol hydrochloride release from 0.6 mm orifice sizenon-crosslinked OPC coating with 335 ml CA solution in 1 M NaCl solution

Time	%	6 proprai	nolol hyd	lrochlori	de release	e	Mean	SD	% CV
(hr)	n1	n2	n3	n4	n5	n6	wear	0D	/0 0 0
1.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
2	0.00	9.57	8.32	0.00	0.00	0.00	2.98	4.64	155.49
2.5	9.33	15.28	14.95	13.86	11.09	9.66	12.36	2.67	21.57
3	15.24	23.68	27.82	24.13	21.37	15.15	21.23	5.11	24.07
3.5	18.26	28.66	33.52	24.84	28.25	21.89	25.90	5.42	20.93
4	20.16	30.21	34.89	35.52	30.36	29.78	30.15	5.50	18.24
4.5	21.20	31.35	35.44	40.69	32.15	33.06	32.32	6.41	19.82
5	21.73	32.37	35.78	42.87	32.94	34.13	33.30	6.83	20.50
5.5	22.18	33.27	36.08	44.60	33.48	35.18	34.13	7.19	21.07
6	22.62	34.08	36.43	46.16	33.98	36.00	34.88	7.52	21.56
7	23.58	35.38	37.04	46.65	34.83	37.31	35.80	7.38	20.61
8	24.47	36.38	37.66	48.62	35.55	38.37	36.84	7.70	20.91
9	25.27	37.22	38.19	49.60	36.12	39.07	37.58	7.76	20.64
10	25.88	37.79	38.63	49.74	36.65	39.72	38.07	7.61	20.00
11	26.47	38.42	39.14	50.10	37.15	40.31	38.60	7.55	19.55
12	27.00	38.90	39.60	48.07	37.54	40.78	38.65	6.80	17.59

Time		% diltiaz	zem hydr	ochloride	e release		Mean	SD	% CV
(hr)	n1	n2	n3	n4	n5	n6	Mean	30	70 C V
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
3.5	0.00	2.93	0.00	0.00	4.80	4.19	1.99	2.26	113.67
4	8.76	10.16	0.00	0.00	15.26	12.75	7.82	6.46	82.52
4.5	22.47	29.08	11.25	13.92	38.05	25.09	23.31	9.88	42.38
5	38.50	43.98	25.96	25.72	50.50	31.84	36.08	10.04	27.82
5.5	51.47	55.37	37.70	35.81	59.06	40.44	46.64	9.89	21.21
6	57.99	64.11	48.10	44.15	66.59	46.46	54.57	9.63	17.64
7	70.08	76.57	63.06	57.16	74.33	51.05	65.37	10.06	15.39
8	77.87	8 <mark>4.7</mark> 1	73.20	66.98	80.50	61.18	74.07	8.79	11.87
9	83.04	87.91	78.65	72.47	82.61	65.58	78.38	8.12	10.36

Table 39(D)The diltiazem hydrochloride release from 0.6 mm orifice sizecrosslinked OPC coating with 335 ml CA solution in 0.1 M HCl pH 1.2

Table 40(D) The diltiazem hydrochloride release from 0.6 mm orifice sizecrosslinked OPC coating with 335 ml CA solution in PBS pH 6.8

Time	(diltiazem	hydroch	loride re	lease (%))	Mean	SD	% CV
(hr)	n1	n2	n3	n4	n5	n6	wear	50	70 C V
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
3.5	3.91	15.85	9.45	5.22	8.17	6.76	8.23	4.23	51.40
4	11.52	30.38	18.01	20.08	20.56	25.18	20.96	6.41	30.57
4.5	24.72	39.87	40.49	33.22	29.20	40.64	34.69	6.75	19.45
5	38.42	47.47	48.53	41.26	38.48	50.68	44.14	5.41	12.25
5.5	48.48	51.97	52.75	46.58	46.73	56.14	50.44	3.81	7.56
6	53.56	55.82	56.90	52.13	52.85	60.44	55.28	3.11	5.63
7	60.82	60.62	57.58	59.02	59.53	66.40	60.66	3.05	5.02
8	66.00	64.07	63.72	63.13	64.22	70.64	65.30	2.79	4.27
9	70.03	66.35	58.29	67.27	67.16	72.00	66.85	4.70	7.03

Time	(diltiazem	hydroch	loride re	lease (%))	Mean	SD	% CV
(hr)	n1	n2	n3	n4	n5	n6	Mean	50	70 C V
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
3.5	0.00	3.98	4.43	3.32	5.02	4.33	3.51	1.81	51.52
4	7.91	14.52	17.24	14.44	22.16	15.16	15.24	4.62	30.32
4.5	49.45	20.00	36.07	29.37	37.96	28.75	33.60	10.03	29.84
5	69.25	30.15	49.44	43.62	50.59	39.62	47.11	13.14	27.90
5.5	81.44	38.17	58.73	52.42	59.90	50.13	56.80	14.36	25.28
6	79.95	37.47	65.97	57.54	66.91	57.52	60.89	14.12	23.19
7	96.01	50.70	73.70	64.33	74.79	65.39	70.82	15.07	21.27
8	97.67	5 <mark>8.8</mark> 2	75.22	68.04	78.03	71.65	74.91	13.00	17.35
9	99.19	62.85	<mark>81.4</mark> 9	73.21	81.56	75.54	78.97	12.06	15.27

Table 41(D)The diltiazem hydrochloride release from 0.6 mm orifice sizecrosslinked OPC coating with 335 ml CA solution in pH-change method

Table 42(D) The diltiazem hydrochloride release from 0.6 mm orifice size non-crosslinked OPC coating with 335 ml CA solution in 0.1 M HCl pH 1.2

Time	(liltiazem	hydroch	loride re	lease (%))	Mean	SD	% CV
(hr)	n1	n2	n3	n4	n5	n6	wear	OD	/0 0 0
1.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
2	0.00	2.94	4.18	0.00	0.00	3.63	1.79	2.00	111.71
2.5	0.00	10.41	5.28	9.50	0.00	8.64	5.64	4.70	83.34
3	13.53	24.92	5.80	20.21	19.68	10.00	15.69	7.16	45.64
3.5	20.28	37.93	17.61	33.31	30.80	20.69	26.77	8.33	31.10
4	31.29	48.65	26.30	41.51	40.23	32.20	36.70	8.20	22.35
4.5	41.79	55.93	38.82	48.72	45.56	42.11	45.49	6.15	13.52
5	49.44	59.87	48.43	53.45	51.08	49.55	51.97	4.25	8.17
5.5	55.13	63.48	56.29	57.50	56.43	54.96	57.30	3.17	5.53
6	59.66	67.37	62.30	62.13	59.52	59.75	61.79	3.01	4.88
7	67.19	71.25	69.59	68.37	65.18	65.26	67.81	2.41	3.56
8	70.70	74.22	74.07	74.02	69.49	69.56	72.01	2.33	3.24
9	74.90	77.51	78.43	81.74	73.28	73.74	76.60	3.25	4.24
30	2.5	121	รภ	1.9.1	9.9 4	$\neg \neg$	9 N P	0	20

				000					
Time	(liltiazem	hydroch	loride re	lease (%))	Mean	SD	% CV
(hr)	n1	n2	n3	n4	n5	n6	Mean	30	70 C V
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
1.5	7.82	0.00	0.00	2.92	0.00	0.00	1.79	3.18	177.49
2	37.82	4.83	9.78	7.63	6.07	3.24	11.56	13.06	112.97
2.5	49.74	12.18	19.66	8.19	9.20	8.32	17.88	16.19	90.56
3	78.94	20.46	22.70	21.33	10.27	20.78	29.08	24.83	85.40
3.5	93.14	26.51	26.15	30.67	30.23	34.12	40.14	26.13	65.11
4	101.13	34.32	31.11	40.25	41.26	47.26	49.22	26.05	52.92
4.5	102.47	41.30	36.28	46.65	47.73	54.92	54.89	24.14	43.99
5	103.41	48.12	41.24	51.41	52.44	70.63	61.21	22.86	37.35
5.5	104.32	53.90	47.20	56.03	57.44	62.01	63.48	20.58	32.43
6	102.62	56.74	50.20	56.81	60.05	63.10	64.92	18.96	29.21
7	102.65	60.10	53.89	63.16	64.42	66.97	68.53	17.31	25.26
8	103.27	69.74	61.48	66.29	68.29	71.87	73.49	15.01	20.42
9	102.30	73. <mark>5</mark> 4	63.88	68.86	69.73	78.94	76.21	13.74	18.03

Table 43(D)The diltiazem hydrochloride release from 0.6 mm orifice sizenon-crosslinked OPC coating with 335 ml CA solution in PBS pH 6.8

Table 44(D) The diltiazem hydrochloride release from 0.6 mm orifice sizenon-crosslinked OPC coating with 335 ml CA solution in pH-change method

Time	(diltiazem	hydroch	loride re	lease (%))	Mean	SD	% CV
(hr)	n1	n2	n3	n4	n5	n6	Wear	OD	70 O V
1.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
2	4.87	4.71	5.37	7.55	0.00	6.83	4.89	2.65	54.14
2.5	13.83	14.34	21.00	23.47	9.24	17.24	16.52	5.18	31.33
3	15.97	16.38	27.46	27.21	13.97	20.62	20.27	5.89	29.05
3.5	23.83	26.94	37.44	36.57	25.94	32.61	30.55	5.78	18.93
4	33.73	34.85	42.48	44.78	36.70	42.69	39.20	4.67	11.92
4.5	39.39	44.94	49.53	50.44	42.24	51.06	46.26	4.82	10.42
5	45.06	50.81	52.86	55.22	45.96	54.71	50.77	4.37	8.61
5.5	49.88	54.14	55.55	58.61	46.79	58.29	53.88	4.71	8.74
6	53.08	56.41	57.88	60.13	47.88	60.06	55.91	4.73	8.45
7	58.02	61.68	62.13	64.17	51.83	65.01	60.47	4.88	8.07
8	61.63	66.97	65.42	67.78	54.40	67.55	63.96	5.20	8.14
9	64.22	72.50	67.59	70.59	58.22	70.48	67.27	5.29	7.87

Time	pı	opranolo	ol hydroc	hloride r	elease (%	(o)	Mean	SD	% CV
(hr)	n1	n2	n3	n4	n5	n6	wear	50	70 C V
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
3.5	0.00	0.00	8.55	0.00	0.00	0.00	1.42	3.49	244.95
4	0.00	0.00	9.60	0.00	0.00	0.00	1.60	3.92	244.95
4.5	0.00	0.00	10.27	0.00	0.00	0.00	1.71	4.19	244.95
5	0.00	8.16	10.82	7.47	0.00	0.00	4.41	4.96	112.45
5.5	9.04	8.88	11.47	9.79	0.00	7.72	7.82	4.02	51.48
6	11.17	9.79	12.40	11.92	0.00	9.27	9.09	4.61	50.75
7	15.61	11.81	14.58	16.04	9.13	13.98	13.53	2.62	19.35
8	20.27	14.06	20.54	20.12	11.17	18.89	17.51	3.94	22.50
9	24.97	17.33	26.66	24.00	13.48	23.70	21.69	5.12	23.62
10	29.7 <mark>1</mark>	22.12	31.99	27.86	15.97	27.74	25.90	5.86	22.63
11	34.35	25.62	36.88	31.58	18.71	32.04	29.86	6.63	22.19
12	38.67	29.00	40.64	35.32	21.45	35.94	33.50	7.11	21.21
				2017-010					

Table 45(D) The propranolol hydrochloride release from 0.6 mm orifice sizecrosslinked OPC coating with 335 ml CA solution in 0.1 M HCl pH 1.2

Table 46(D) The propranolol hydrochloride release from 0.6 mm orifice sizecrosslinked OPC coating with 335 ml CA solution in PBS pH 6.8

Time	pr	opranolo	l hydroc	hloride re	elease (%	(o)	Mean	SD	% C\
(hr)	n1	n2	n3	n4	n5	n6	Wear	50	70 0 1
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
4.5	0.00	0.00	0.00	0.00	7.11	0.00	1.18	2.90	244.9
5	0.00	0.00	0.00	0.00	9.66	0.00	1.61	3.94	244.9
5.5	7.82	0.00	7.50	0.00	13.28	7.60	6.03	5.16	85.5
6	10.27	0.00	9.94	0.00	17.59	9.76	7.93	6.81	85.9
7	15.59	9.06	15.52	0.00	26.84	13.94	13.49	8.81	65.3
8	20.94	13.35	23.84	8.28	35.55	18.29	20.04	9.40	46.9
9	25.38	17.98	30.75	13.78	41.90	23.13	25.48	9.96	39.0
10	29.77	23.22	36.42	20.89	45.91	27.67	30.65	9.23	30.1
11	34.22	27.61	39.82	26.53	49.81	31.86	34.97	8.71	24.9
12	38.13	31.40	42.89	33.13	53.52	35.85	39.15	8.11	20.7

Time	pı	ropranolo	l hydroc	hloride r	elease (%	ó)	Mean	SD	% CV
(hr)	n1	n2	n3	n4	n5	n6	Wear	0D	/0 0 0
3.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
4	9.62	0.00	0.00	0.00	0.00	0.00	1.60	3.93	244.95
4.5	14.19	0.00	8.61	0.00	0.00	0.00	3.80	6.15	161.71
5	18.22	9.94	11.44	9.62	8.17	0.00	9.56	5.86	61.31
5.5	22.69	13.31	14.16	15.19	11.73	0.00	12.85	7.36	57.27
6	26.85	17.43	17.04	19.02	14.94	0.00	15.88	8.80	55.40
7	38.94	23.20	24.63	29.70	20.64	8.48	24.26	10.08	41.56
8	52.40	29.52	32.43	35.67	27.36	15.62	32.17	12.05	37.45
9	56.68	35.90	39.21	40.75	33.23	22.34	38.02	11.23	29.53
10	60.21	41.64	44.78	42.57	38.16	27.19	42.43	10.70	25.23
11	63.53	46.20	49.19	50.69	42.77	30.14	47.08	10.90	23.15
12	65.42	50.17	53.07	54.81	46.37	33.10	50.49	10.66	21.11

Table 47(D) The propranolol hydrochloride release from 0.6 mm orifice sizecrosslinked OPC coating with 335 ml CA solution in pH-change method

Table 48(D) The propranolol hydrochloride release from 0.6 mm orifice sizenon-crosslinked OPC coating with 335 ml CA solution in 0.1 M HCl pH 1.2

Time	рі	opranolo	ol hydroc	hloride r	elease (%	()	Mean	SD	% CV
(hr)	n1	n2	n3	n4	n5	n6	IVICALI	30	<i>7</i> 0 € V
1.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
2	12.95	0.00	8.44	17.30	12.05	4.21	9.16	6.29	68.69
2.5	22.85	14.65	15.67	24.99	22.47	11.17	18.63	5.54	29.71
3	25.70	31.91	17.56	33.45	26.32	19.80	25.79	6.33	24.54
3.5	27.40	41.23	20.32	41.65	28.34	36.24	32.53	8.55	26.29
4	29.20	45.30	24.16	46.31	30.67	39.48	35.85	9.16	25.56
4.5	30.83	50.05	28.56	49.30	32.44	43.00	39.03	9.62	24.65
5	32.51	53.15	32.04	52.03	34.31	45.50	41.59	9.85	23.67
5.5	34.09	55.22	36.30	55.91	36.45	52.00	44.99	10.40	23.11
6	35.99	58.41	42.26	65.36	39.92	56.01	49.66	11.83	23.83
7	40.82	64.24	55.69	75.78	53.81	65.70	59.34	12.01	20.25
8	43.03	74.51	69.55	84.25	64.09	71.78	67.87	13.87	20.44
9	45.15	81.30	82.11	88.86	86.71	75.86	76.66	16.09	20.99
10	47.98	85.99	89.82	92.27	90.61	77.15	80.64	16.89	20.94
11	49.70	90.30	94.29	95.23	91.74	81.74	83.84	17.40	20.75
12	53.72	93.37	96.00	96.05	97.52	84.65	86.88	16.90	19.45

Time	pr	opranolo	l hydroc	hloride r	elease (%	(o)	Mean	SD	% CV
(hr)	n1	n2	n3	n4	n5	n6	Mean	30	70 C V
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
1.5	0.00	0.00	10.72	19.83	8.95	0.00	6.58	8.10	123.06
2	14.27	16.74	29.23	42.26	23.50	12.66	23.11	11.25	48.67
2.5	22.39	33.34	34.95	54.12	32.62	23.05	33.41	11.50	34.41
3	27.46	43.27	36.83	60.91	37.70	31.74	39.65	11.73	29.58
3.5	29.67	46.20	38.28	65.89	40.07	35.70	42.64	12.61	29.58
4	31.31	48.69	39.81	68.88	42.45	38.54	44.95	13.01	28.94
4.5	32.80	51.87	41.06	71.74	43.31	41.59	47.06	13.53	28.75
5	34.46	54.55	42.29	73.65	45.57	49.41	49.99	13.42	26.85
5.5	35.87	57.64	42.35	75.39	47.38	55.95	52.43	13.92	26.54
6	38.07	60.70	42.97	76.17	50.87	57.74	54.42	13.67	25.12
7	44.23	67.27	46.08	83.15	61.11	62.80	60.77	14.40	23.69
8	46.9 <mark>8</mark>	71.08	49.49	89.29	69.92	69.00	65.96	15.67	23.75
9	53.09	75.24	52.75	91.81	76.39	78.57	71.31	15.43	21.64
10	58.12	78.77	55.80	92.88	83.49	83.94	75.50	15.08	19.98
11	59.32	81.89	58.47	92.73	86.99	88.32	77.95	15.17	19.45
12	63.37	<mark>83</mark> .30	61.65	93.16	89.23	90.71	80.24	14.12	17.60

Table 49(D)The propranolol hydrochloride release from 0.6 mm orifice sizenon-crosslinked OPC coating with 335 ml CA solution in PBS pH 6.8

Table 50(D) The propranolol hydrochloride release from 0.6 mm orifice sizenon-crosslinked OPC coating with 335 ml CA solution in pH-change method

Time	pr	opranolo	l hydroc	hloride r	elease (%	ó)	Mean	SD	% CV
(hr)	n1	n2	n3	n4	n5	n6	Wear	50	70 C V
1.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
2	0.00	12.09	10.40	11.40	13.64	16.09	10.60	5.56	52.46
2.5	10.89	31.44	19.52	22.82	32.28	23.91	23.48	7.95	33.85
3	13.75	39.02	20.68	29.23	41.48	24.97	28.19	10.68	37.88
3.5	18.50	48.37	21.74	36.08	49.94	27.31	33.66	13.41	39.86
4	20.56	55.07	22.94	40.57	54.88	29.20	37.20	15.41	41.43
4.5	22.58	58.60	24.51	44.65	58.00	31.48	39.97	16.17	40.46
5	24.76	63.82	25.82	48.35	65.71	33.65	43.69	18.39	42.09
5.5	27.15	68.32	27.36	52.92	72.46	35.38	47.27	20.26	42.86
6	29.56	71.23	28.95	56.41	78.10	37.13	50.23	21.48	42.77
7	35.87	75.98	32.57	63.22	85.53	41.13	55.72	22.36	40.12
8	41.38	80.47	37.47	70.91	91.45	45.62	61.22	22.71	37.10
9	47.96	84.87	42.31	78.26	93.17	49.34	65.98	21.95	33.26
10	52.76	87.49	46.25	83.95	93.86	53.10	69.57	21.05	30.26
11	56.93	89.61	49.75	89.90	94.14	57.40	72.95	20.25	27.76
12	60.07	91.02	53.74	92.54	93.39	61.68	75.41	18.73	24.84

	diltiazem hydrochloride release rate (%/hr)														
time	time			111	amount	t of CA s	olution								
point	interval		250 ml		110	290 ml		335 ml							
(hr)	(hr)	Mean	SD	% CV	Mean	SD	% CV	Mean	SD	% CV					
1.75	0.5	13.49	13.01	96.43	-	-	-	-	-	-					
2.25	0.5	31.42	13.83	44.02	22.11	12.91	58.37	-	-	-					
2.75	0.5	28.44	10.48	36.86	33.65	8.64	25.68	-	-	-					
3.25	0.5	17.34	6.90	39.78	32.68	7.82	23.93	34.33	10.53	30.66					
3.75	0.5	19.64	9.93	50.54	21.60	9.00	41.65	29.05	7.46	25.69					
4.25	0.5	14.81	11.91	80.38	16.16	7.41	45.83	24.24	8.56	35.31					
4.75	0.5	1 <mark>3.</mark> 81	8.94	64.74	12.56	4.51	35.87	15.80	9.58	60.64					
5.25	0.5	11.07	4.90	44.25	8.55	6.08	71.17	10.54	7.99	75.82					
5.75	0.5	8.12	7.70	94.88	8.48	4.90	57.80	13.34	7.05	52.88					
6.5	1	5.07	2.90	57.09	6.59	2.27	34.47	4.36	4.04	92.67					
7.5	1	3. <mark>5</mark> 5	2.29	64.37	5.25	1.63	31.07	4.88	3.83	78.46					
8.5	1	4.00	7.13	178.13	2.50	2.36	94.57	1.88	3.70	196.80					

Table 51(D) The diltiazem hydrochloride release rate from 0.6 mm orifice size crosslinked OPC coating with various amounts of CA solution (n=18)

Table 52(D) The diltiazem hydrochloride release rate from 0.6 mm orifice size noncrosslinked OPC coating with various amounts of CA solution (n=18)

			diltiazer	n hydrocl	nloride rel	lease rate	e (%/hr)			
time	time				amoun	t of CA s	olution			
point	interval		250 ml			290 ml			335 ml	
(hr)	(hr)	Mean	SD	% CV	Mean	SD	% CV	Mean	SD	% CV
1.25	0.5	17.23	7.39	42.89	_	-	- 11	-	-	-
1.75	0.5	27.84	5.86	21.05	20.11	8.01	39.82	22.50	4.79	21.29
2.25	0.5	33.01	10.97	33.23	18.33	8.33	45.43	31.08	5.97	19.19
2.75	0.5	28.98	9.24	31.88	23.79	5.97	25.11	28.42	7.49	26.36
3.25	0.5	20.06	7.50	37.39	24.75	6.88	27.81	25.40	8.14	32.06
3.75	0.5	18.89	6.04	31.96	22.63	6.56	28.98	15.84	8.66	54.65
4.25	0.5	12.46	4.15	33.28	19.93	8.69	43.60	11.18	7.60	67.95
4.75	0.5	12.21	5.13	42.01	17.81	4.17	23.42	11.73	3.97	33.84
5.25	0.5	8.73	3.84	43.98	12.19	3.91	32.07	8.99	2.36	26.21
5.75	0.5	7.78	3.19	40.95	9.44	4.02	42.53	7.36	5.66	76.90
6.5	1	3.82	2.16	56.58	4.88	3.35	68.57	5.27	4.59	87.11
7.5	1	2.95	1.99	67.27	3.38	3.60	106.40	4.21	2.82	66.95
8.5	1	1.69	2.18	129.53	3.11	2.72	87.44	0.90	3.12	347.65

	propranolol hydrochloride release rate (%/hr)												
time	time		an	nount of (CA soluti	on							
point	interval		290 ml 335 ml										
(hr)	(hr)	Mean	SD	% CV	Mean	SD	% CV						
3.75	0.5	18.80	8.75	46.57	18.05	4.41	24.45						
4.25	0.5	16.38	3.68	22.47	15.28	4.41	28.83						
4.75	0.5	15.77	3.63	22.99	16.32	5.48	33.55						
5.25	0.5	15.35	3.50	22.77	16.94	5.97	35.26						
5.75	0.5	14.46	2.74	18.96	13.88	3.71	26.70						
6.5	1	11.70	2.16	18.49	12.06	2.59	21.46						
7. <mark>5</mark>	1	9.63	1.54	15.96	9.46	1.89	19.94						
8.5	1	7.58	1.94	25.65	7.78	3.34	42.94						
9.5	1	5 .56	1.85	33.21	5.29	2.83	53.44						
10.5	1	5.02	1.25	24.93	4.25	1.66	39.05						
11.5	1	3.14	1.02	32.51	3.73	2.32	62.00						

Table 53(D) The propranolol hydrochloride release rate from 0.6 mm orifice size crosslinked OPC coating with various amounts of CA solution (n=18)

Table 54(D) The propranolol hydrochloride release rate from 0.6 mm orifice size non-crosslinked OPC coating with various amounts of CA solution (n=18)

	propranolol hydrochloride release rate (%/hr)												
time	time		an	nount of (CA soluti	on							
point	interval		290 ml			335 ml							
(hr)	(hr)	Mean	SD	% CV	Mean	SD	% CV						
1.75	0.5	25.95	16.93	65.24	17.24	8.97	52.04						
2.25	0.5	20.68	10.61	51.31	11.36	7.75	68.18						
2.75	0.5	14.71	5.62	38.18	9.52	4.95	51.98						
3.25	0.5	12.50	4.41	35.26	9.33	5.47	58.67						
3.75	0.5	13.41	4.96	36.99	13.43	9.50	70.79						
4.25	0.5	16.32	6.58	40.29	15.23	7.31	48.03						
4.75	0.5	15.91	5.58	35.05	16.64	6.66	40.03						
5.25	0.5	15.34	3.07	20.02	13.93	5.34	38.29						
5.75	0.5	12.47	4.19	33.58	13.29	4.90	36.83						
6.5	1	10.41	4.18	40.14	10.53	5.12	48.59						
7.5	1	6.08	3.43	56.38	7.09	5.55	78.29						
8.5	1	4.40	2.36	53.68	3.11	5.97	192.00						
9.5	1	2.81	1.97	70.28	2.49	3.84	154.17						
10.5	1	1.68	1.59	94.66	3.94	3.93	99.60						
11.5	1	0.54	1.11	207.74	1.46	2.34	160.24						

	diltiazem hydrochloride release rate (%/hr)													
time	time			011	C	orifice siz	ze							
point	interval		0.4 mm		110	0.6 mm	l		0.8 mm					
(hr)	(hr)	Mean	SD	% CV	Mean	SD	% CV							
2.25	0.5	-	-	-	-	-	-	6.29	5.62	89.30				
2.75	0.5	24.14	5.68	23.54	-	-	-	27.93	7.21	25.82				
3.25	0.5	38.28	8.66	22.62	36.60	7.16	19.57	39.04	3.12	8.00				
3.75	0.5	44.03	7.77	17.64	30.66	4.76	15.52	34.45	6.50	18.86				
4.25	0.5	23.34	5.67	24.28	17.96	3.81	21.19	16.78	3.15	18.76				
4.75	0.5	13.40	2.36	17.60	11.64	4.49	38.54	14.67	5.48	37.34				
5.25	0.5	10.82	1.64	15.12	5.79	9.10	157.25	9.65	2.43	25.21				
5.75	0.5	5.31	1.05	19.68	18.21	8.47	46.51	8.79	2.48	28.20				
6.5	1	5.70	1.17	20.59	0.18	4.27	2364.27	5.69	2.73	48.03				
7.5	1	4.33	1.54	35.63	6.43	6.31	98.09	4.68	1.24	26.46				
8.5	1	3.70	1.43	38.50	-2.21	3.70	-167.50	4.14	1.41	33.98				

Table 55(D) The diltiazem hydrochloride release rate from various orifice sizes crosslinked OPC coating with 335 ml CA solution (n=6)

Table 56(D) The diltiazem hydrochloride release rate from various orifice sizesnon-crosslinked OPC coating with 335 ml CA solution (n=6)

			diltiazer	n hydrocl	nloride re	lease rate	e (%/hr)				
time	time			22.4	amoun	t of CA s	olution				
point	interval		250 ml			290 ml	16)		335 ml		
(hr)	(hr)	Mean	SD	% CV	Mean	SD	% CV	Mean	SD	% CV	
1.75	0.5	-	-	-	20.06	4.40	21.93	26.25	11.21	42.71	
2.25	0.5	23.47	12.76	54.34	30.97	3.23	10.42	34.16	10.82	31.66	
2.75	0.5	35.12	8.59	24.47	25.10	5.21	20.74	28.64	6.50	22.68	
3.25	0.5	30.49	4.23	13.86	30.27	9.82	32.46	26.50	3.79	14.30	
3.75	0.5	26.98	8.63	31.99	15.32	15.45	100.81	21.82	6.79	31.09	
4.25	0.5	28.86	4.00	13.87	10.19	13.20	129.48	16.35	4.34	26.52	
4.75	0.5	12.61	2.10	16.66	12.00	3.23	26.91	13.95	5.49	39.34	
5.25	0.5	12.74	2.48	19.46	9.74	2.16	22.19	12.14	7.21	59.42	
5.75	0.5	11.09	3.33	30.07	4.76	8.93	187.72	8.06	3.23	40.11	
6.5	1	6.01	3.04	50.56	5.81	5.30	91.19	5.15	2.82	54.76	
7.5	1	5.27	4.29	81.45	3.18	1.62	50.89	2.87	1.97	68.74	
8.5	1	4.31	1.44	33.57	1.60	1.44	90.20	1.84	1.67	90.66	

	propranolol hydrochloride release rate (%/hr)											
time	time		orifice size									
point	interval		0.4 mm		110	0.6 mm			0.8 mm			
(hr)	(hr)	Mean	SD	% CV	Mean	SD	% CV	Mean	SD	% CV		
3.75	0.5	-	-	-	20.75	3.95	19.03	14.22	15.40	108.30		
4.25	0.5	9.95	10.96	110.18	15.38	4.38	28.50	21.54	11.30	52.47		
4.75	0.5	24.30	4.85	19.95	16.37	7.00	42.76	24.65	19.23	78.02		
5.25	0.5	20.35	11.42	56.13	15.31	5.80	37.87	20.43	12.92	63.25		
5.75	0.5	17.41	4.88	28.02	14.41	4.18	29.01	15.62	2.23	14.31		
6.5	1	12.59	3.15	25.02	13.00	2.45	18.83	10.33	3.43	33.21		
7.5	1	8.72	2.45	28.06	10.06	1.49	14.80	8.33	3.38	40.61		
8.5	1	7.16	2.59	36.25	10.31	3.19	30.92	6.20	3.34	53.93		
9.5	1	2.47	<mark>2.47</mark>	99.91	3.71	2.25	60.71	5.60	3.13	55.93		
10.5	1	3. <mark>6</mark> 4	2.46	67.49	4.97	1.57	31.64	3.35	3.51	104.75		
11.5	1	2.60	2.39	91.89	3.82	1.50	39.36	3.11	2.14	68.70		

Table 57(D) The propranolol hydrochloride release rate from various orifice sizes crosslinked OPC coating with 335 ml CA solution (n=6)

Table 58(D) The propranolol hydrochloride release rate from various orifice sizes non-crosslinked OPC coating with 335 ml CA solution (n=6)

			proprano	lol hydrod	chloride r	elease rat	te (%/hr)			
time	time		anen	011-07	0	rifice siz	e			
point	interval		0.4 mm			0.4 mm		0.4 mm		
(hr)	(hr)	Mean	SD	% CV	Mean	SD	% CV	Mean	SD	% CV
1.75	0.5	13.31	12.65	95.05	10.44	9.09	87.07	35.87	12.44	34.67
2.25	0.5	9.85	7.49	76.06	14.89	9.94	66.76	27.88	17.98	64.48
2.75	0.5	11.67	5.92	50.77	11.15	4.00	35.90	10.66	3.37	31.64
3.25	0.5	11.44	3.55	31.00	11.16	2.33	20.84	9.25	3.25	35.09
3.75	0.5	14.41	4.18	28.97	12.19	2.64	21.68	11.78	4.92	41.80
4.25	0.5	15.56	6.12	39.31	16.63	4.27	25.70	13.13	5.04	38.35
4.75	0.5	18.23	6.80	37.31	19.31	7.79	40.35	11.61	3.69	31.80
5.25	0.5	15.67	3.75	23.96	13.66	6.24	45.71	14.64	4.56	31.18
5.75	0.5	12.39	1.99	16.05	12.78	6.01	47.03	9.08	3.70	40.81
6.5	1	9.37	1.86	19.86	13.33	4.55	34.16	9.19	6.35	69.11
7.5	1	6.65	1.33	19.92	9.13	4.36	47.70	6.75	4.35	64.44
8.5	1	4.80	1.06	21.99	5.42	4.67	86.12	3.28	1.18	36.14
9.5	1	3.41	0.93	27.29	2.25	2.85	126.37	3.08	1.68	54.61
10.5	1	1.85	0.44	23.78	2.80	2.49	88.89	1.21	1.10	90.96
11.5	1	1.53	0.48	31.33	0.78	1.15	147.69	1.31	0.80	61.33

Table 59(D) The diltiazem hydrochloride release rate from 0.6 mm orifice size crosslinked OPC coating with 335 ml CA solution in deionized water and various concentration NaCl solutions (n=6)

time point	time	deionized water					
(hr)	interval (hr)	Mean	SD	% CV			
3.25	0.5	36.60	7.16	19.57			
3.75	0.5	30.66	4.76	15.52			
4.25	0.5	17.96	3.81	21.19			
4.75	0.5	11.64	4.49	38.54			
5.25	0.5	5.79	9.10	157.25			
<mark>5</mark> .75	0.5	18.21	8.47	46.51			
6.5	1	0.18	4.27	2364.27			
7.5	1	6.43	6.31	98.09			
8.5	1	-2.21	3.70	-167.50			

	diltiazem hydrochloride release rate (%/hr)											
time	time		concentration of NaCl solution									
point	interval	0.158	88 M (0.	9 %)		0.5 M		1 M				
(hr)	(hr)	Mean	SD	% CV	Mean	SD	% CV	Mean	SD	% CV		
3.25	0.5	19.70	5.59	28.39	-	-	=32	-	-	-		
3.75	0.5	31.18	6.16	19.76	-	-		-	-	-		
4.25	0.5	29.81	5.20	17.43	11.83	8.11	68.52	-	-	-		
4.75	0.5	16.81	3.32	19.77	14.85	6.97	46.91	-	-	-		
5.25	0.5	12.27	0.79	6.47	18.09	5.99	33.11	-	-	-		
5.75	0.5	8.88	1.31	14.78	20.68	6.10	29.48	-	-	-		
6.5	1	5.75	0.67	11.67	12.36	3.84	31.06	3.26	2.09	64.29		
7.5	1	3.68	0.52	14.12	8.08	1.82	22.56	4.45	2.14	48.17		
8.5	1	2.57	0.90	35.05	4.94	1.29	26.07	4.43	2.90	65.54		

Table 60(D) The diltiazem hydrochloride release rate from 0.6 mm orifice size noncrosslinked OPC coating with 335 ml CA solution in deionized water and various concentration NaCl solutions (n=6)

	time	deionized water						
time point (hr)	interval (hr)	Mean	SD	% CV				
1.75	0.5	20.06	4.40	21.9				
2.25	0.5	30.97	3.23	10.4				
2.75	0.5	25.10	5.21	20.7				
3.25	0.5	30.27	9.82	32.4				
3.75	0.5	15.32	15.45	100.8				
4.25	0.5	10.19	13.20	129.4				
4 <mark>.</mark> 75	0.5	12.00	3.23	26.9				
5.25	0.5	9.74	2.16	22.1				
5. <mark>75</mark>	0.5	4.76	8.93	187.7				
<mark>6</mark> .5	1	5.81	5.30	91.1				
7.5	1	3.18	1.62	50.8				
8. <mark>5</mark>	1	1.60	1.44	90.2				

	diltiazem hydrochloride release rate (%/hr)												
time	time		concentration of NaCl solution										
point	interval	0.1588 M (0.9		9 %)		0.5 M	16		1 M				
(hr)	hr) (hr)	Mean	SD	% CV	Mean	SD	% CV	Mean	SD	% CV			
2.25	0.5	9.88	8.42	85.25	9.47	9.65	101.83	-	-	-			
2.75	0.5	29.39	10.13	34.46	10.92	8.63	79.02	6.55	8.75	133.61			
3.25	0.5	22.91	6.64	28.97	11.08	3.13	28.28	14.79	16.63	112.41			
3.75	0.5	21.47	6.12	28.48	10.38	3.46	33.28	8.19	2.23	27.25			
4.25	0.5	19.09	7.82	40.94	11.02	3.38	30.70	5.27	2.52	47.86			
4.75	0.5	15.35	6.75	43.99	9.82	3.02	30.79	5.07	2.75	54.19			
5.25	0.5	13.07	4.40	33.64	10.11	1.83	18.08	4.87	2.47	50.84			
5.75	0.5	6.25	5.61	89.73	8.09	1.63	20.12	5.31	2.55	48.10			
6.5	1	6.73	2.71	40.24	8.23	2.74	33.27	4.59	2.22	48.42			
7.5	1	5.48	4.67	85.14	5.77	1.30	22.47	4.68	1.20	25.61			
8.5	1	3.57	2.50	69.95	5.22	1.85	35.52	4.56	0.72	15.80			

Table 61(D) The propranolol hydrochloride release rate from 0.6 mm orifice size crosslinked OPC coating with 335 ml CA solution in deionized water and various concentration NaCl solutions (n=6)

time point	time	deionized water						
(hr)	interval (hr)	Mean	SD	% CV				
3.75	0.5	20.75	3.95	19.03				
4.25	0.5	15.38	4.38	28.50				
4.75	0.5	16.37	7.00	42.76				
5.25	0.5	15.31	5.80	37.87				
5 .75	0.5	14.41	4.18	29.0				
6. <mark>5</mark>	1	13.00	2.45	18.83				
<mark>7.</mark> 5	1	10.06	1.49	14.80				
8.5	1	10.31	3.19	30.92				
9. <mark>5</mark>	1	3.71	2.25	60.7 <i>°</i>				
1 <mark>0.</mark> 5	1	4.97	1.57	31.64				
11.5	1	3.82	1.50	39.36				

	propranolol hydrochloride release rate (%/hr)												
time	time												
point	interval	0.15	0.1588 M (0.9 %) 0.5 M					1 M					
(hr)	(hr)	Mean	SD	% CV	Mean	SD	% CV	Mean	SD	% CV			
5.75	0.5	-	-	-	-	-	Ę	0.41	1.01	244.95			
6.5	1	7.74	7.37	95.26	0.67	1.06	157.63	0.42	1.04	244.95			
7.5	1	11.14	10.40	93.33	5.84	3.13	53.64	0.40	0.97	244.95			
8.5	1	7.88	4.82	61.16	1.48	0.43	29.17	0.36	0.89	244.95			
9.5	1	5.28	1.08	20.47	1.41	0.44	30.88	1.69	3.29	194.84			
10.5	1	4.60	0.45	9.70	1.33	0.41	30.49	0.44	0.73	166.64			
11.5	1	4.56	1.37	30.17	1.28	0.35	27.44	1.63	2.88	176.27			

Table 62(D) The propranolol hydrochloride release rate from 0.6 mm orifice size non-crosslinked OPC coating with 335 ml CA solution in deionized water and various concentration NaCl solution (n=6)

propran	olol hydroc	hloride relea	ase rate (%	⁄₀/hr)
time point	time	deid	onized wa	ter
(hr)	interval (hr)	Mean	SD	% CV
1.75	0.5	10.44	9.09	87.0
2.25	0.5	14.89	9.94	66.7
2.75	0.5	11.15	4.00	35.9
3.25	0.5	11.16	2.33	20.8
3.75	0.5	12.19	2.64	21.6
4.25	0.5	16.63	4.27	25.7
4.75	0.5	19.31	7.79	40.3
5 .25	0.5	13.66	6.24	45.7
5.75	0.5	12.78	6.01	47.0
6 <mark>.</mark> 5	1	13.33	4.55	34.1
7.5	1	9.13	4.36	47.7
8.5	1	5.42	4.67	86.1
9.5	1	2.25	2.85	126.3
10.5	1	2.80	2.49	88.8
11.5	1	0.78	1.15	147.6

			proprand	olol hydro	ochloride	release ra	ate (%/hr)			
time	time			cc	oncentrat	ion of N	aCl solut	ion		
point	interval	0.15	88 M (0.	9 %)		0.5 M			1 M	
(hr)	(hr)	Mean	SD	% CV	Mean	SD	% CV	Mean	SD	% CV
1.75	0.5	20.76	9.79	47.14	_	-		-	-	-
2.25	0.5	21.54	14.25	66.16	17.69	12.88	72.85	18.76	5.94	31.65
2.75	0.5	13.91	5.09	36.55	23.59	15.60	66.11	17.74	5.68	32.01
3.25	0.5	9.09	4.97	54.68	10.02	8.06	80.47	9.34	4.79	51.31
3.75	0.5	6.27	3.92	62.55	5.35	3.43	64.15	8.50	8.01	94.31
4.25	0.5	7.49	3.61	48.14	3.68	2.12	57.71	4.33	3.51	81.08
4.75	0.5	6.08	2.21	36.40	3.16	1.73	54.76	1.98	1.29	65.32
5.25	0.5	5.47	3.21	58.77	3.35	1.05	31.41	1.66	1.05	63.63
5.75	0.5	7.93	3.99	50.36	2.97	1.68	56.56	1.49	0.88	59.34
6.5	1	7.76	1.87	24.05	3.22	2.03	63.23	0.92	0.34	37.11
7.5	1	7.64	2.97	38.84	2.84	1.67	58.61	1.04	0.48	46.48
8.5	1	6.36	4.12	64.85	2.73	1.90	69.60	0.74	0.17	23.16
9.5	1	6.18	3.65	59.04	2.26	0.88	38.92	0.49	0.19	38.43
10.5	1	3.71	2.48	66.72	2.40	1.15	48.11	0.53	0.09	17.88
11.5	1	3.68	2.24	60.95	2.02	1.06	52.57	0.05	1.02	2124.23

	diltiazem hydrochloride release rate (%/hr)											
time	time		medium									
point	interval	0.1 N	И HCl pF	H 1.2	F	BS pH 6	.8	p	H-chang	e		
(hr)	(hr)	Mean	SD	% CV	Mean	SD	% CV	Mean	SD	% CV		
3.75	0.5	11.68	9.27	79.43	25.46	8.19	32.18	23.45	6.17	26.31		
4.25	0.5	30.97	8.88	28.66	27.47	9.96	36.27	36.73	24.40	66.44		
4.75	0.5	25.54	6.71	26.27	18.90	4.55	24.07	27.01	6.88	25.46		
5.25	0.5	21.12	3.57	16.89	12.60	4.66	37.00	19.38	2.93	15.14		
5.75	0.5	15.86	3.19	20.11	9.68	1.77	18.29	8.19	8.22	100.41		
6.5	1	10.80	3.86	35.73	5.38	2.46	45.80	9.93	3.78	38.12		
7.5	1	8.70	1.61	18.45	4.63	0.94	20.32	4.08	2.62	64.11		
8.5	1	4.30	1 <mark>.</mark> 38	32.10	1.55	3.58	230.51	4.07	1.60	39.45		

Table 63 (D) The diltiazem hydrochloride release rate from 0.6 mm orifice size crosslinked OPC coating with 335 ml CA solution in different pH media with isotonicity (n=6)

Table 64(D) The diltiazem hydrochloride release rate from 0.6 mm orifice size non-crosslinked OPC coating with 335 ml CA solution in different pH media with isotonicity (n=6)

diltiazem hydrochloride release rate (%/hr)							
time point (hr)	time interval (hr)	medium					
		0.1 M HCl pH 1.2			PBS pH 6.8		
		Mean	SD	% CV	Mean	SD	% CV
1.75	0.5	-	-		19.54	20.31	103.92
2.25	0.5	7.69	8.18	106.27	12.64	8.48	67.09
2.75	0.5	20.10	15.27	75.97	22.39	20.14	89.94
3.25	0.5	22.16	4.67	21.09	22.12	12.01	54.29
3.75	0.5	19.85	2.70	13.58	18.17	5.68	31.27
4.25	0.5	17.58	5.28	30.04	11.34	4.55	40.10
4.75	0.5	12.96	4.25	32.76	12.64	9.97	78.88
5.25	0.5	10.66	2.99	28.05	4.54	11.29	248.68
5.75	0.5	8.98	1.95	21.68	2.87	3.59	124.95
6.5	1	6.02	1.34	22.20	3.61	2.05	56.79
7.5	1	4.20	0.92	21.80	4.96	3.23	65.15
8.5	1	4.59	1.58	34.42	2.72	2.66	98.01

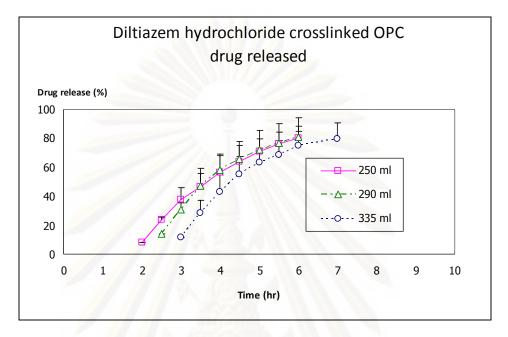
Table 64(D) The diltiazem hydrochloride release rate from 0.6 mm orifice size noncrosslinked OPC coating with 335 ml CA solution in different pH media with isotonicity (n=6) (continue)

time naint	time	pH-change			
time point (hr)	interval (hr)	Mean	SD	% CV	
2.375	0.75	15.51	4.33	27.93	
2.875	0.25	14.99	6.68	44.53	
3.25	0.5	20.57	3.18	15.46	
3.75	0.5	17.30	4.18	24.1	
4.25	0.5	14.12	3.70	26.22	
4.75	0.5	9.01	2.19	24.36	
5.25	0.5	6.21	2.63	42.33	
5. 75	0.5	4.06	1.48	36.5	
6.5	1	4.57	0.56	12.18	
7. <mark>5</mark>	1	3.49	1.00	28.80	
<mark>8.</mark> 5	1	3.31	1.22	36.74	

Table 65(D) The propranolol hydrochloride release rate from 0.6 mm orifice size crosslinked OPC coating with 335 ml CA solution in different pH media with isotonicity (n=6)

	propranolol hydrochloride release rate (%/hr)									
time	time		medium							
point	interval	0.1 N	/I HCl pł	H 1.2	0.1	M HCl pl	H 1.2	0.1 N	M HCl pł	H 1.2
(hr)	(hr)	Mean	SD	% CV	Mean	SD	% CV	Mean	SD	% CV
3.75	0.5	0.35	0.86	244.95	-	-		-	-	-
4.25	0.5	0.22	0.54	244.95	-	-	-	4.39	7.27	165.52
4.75	0.5	5.39	7.95	147.43	0.85	2.08	244.95	11.53	8.15	70.66
5.25	0.5	6.82	7.89	115.72	8.85	7.53	85.09	6.56	3.78	57.61
5.75	0.5	2.55	1.65	64.94	3.79	3.31	87.42	6.07	3.14	51.77
6.5	1	4.44	2.58	58.07	5.57	3.43	61.55	8.38	2.60	30.99
7.5	1	3.98	1.55	38.88	6.55	2.11	32.21	7.90	2.80	35.38
8.5	1	4.18	1.33	31.81	5.45	1.00	18.36	5.85	1.00	17.03
9.5	1	4.21	1.00	23.74	5.16	1.13	21.88	4.41	1.48	33.65
10.5	1	3.97	0.80	20.19	4.33	0.75	17.39	4.66	1.83	39.25
11.5	1	3.64	0.54	14.72	4.18	1.23	29.43	3.40	0.85	24.86

Table 66(D) The propranolol hydrochloride release rate from 0.6 mm orifice s	ize
on-crosslinked OPC coating with 335 ml CA solution in different pH media w	vith
sotonicity (n=6)	
propranolol hydrochloride release rate (%/hr)	


	1 1		5	1	[×]	,	
time	time		medium				
point	interval	0.1 N	A HCl pH	H 1.2	Р	BS pH 6.	8
(hr)	(hr)	Mean	SD	% CV	Mean	SD	% CV
1.75	0.5	-	•	-	33.05	7.09	21.46
2.25	0.5	18.95	5.82	30.71	20.61	7.44	36.12
2.75	0.5	14.32	11.43	79.84	12.48	5.77	46.26
3.25	0.5	13.48	11.54	85.61	5.97	2.57	43.10
3.75	0.5	6.64	2.18	32.74	4.62	1.21	26.24
4.25	0.5	6.36	2.61	41.01	4.23	2.06	48.66
4.75	0.5	5.12	1.39	27.22	5.86	4.89	83.50
5.25	0.5	6.80	3.71	54.58	4.88	4.46	91.43
5.7 <mark>5</mark>	0.5	9.33	5.39	57.73	3.98	2.33	58.65
6.5	1	9.68	3.76	38.81	6.36	2.36	37.11
7.5	1	8.52	4.01	47.07	5.19	2.28	44.01
8.5	1	8.80	7.67	87.14	5.35	2.58	48.30
9.5	1	3.97	2.16	54.32	4.19	2.10	50.07
10.5	1	3.20	1.51	47.04	2.45	1.65	67.42
11.5	1	3.05	1.74	57.20	2.28	1.27	55.81

time point	time	pH-change			
(hr)	interval (hr)	Mean	SD	% CV	
2.375	0.75	17.16	6.55	38.19	
2.875	0.25	18.85	13.93	73.90	
3.25	0.5	10.94	6.68	61.0	
3.75	0.5	7.09	4.31	60.79	
4.25	0.5	5.53	1.93	34.8	
4.75	0.5	7.44	4.79	64.4	
5.25	0.5	7.16	4.08	57.02	
5.75	0.5	5.92	2.98	50.3	
6.5	1	5.49	1.58	28.80	
7.5	1	5.50	1.21	22.0	
8.5	1	4.77	2.02	42.4	
9.5	1	3.58	1.75	48.92	
10.5	1	3.39	1.96	57.99	
11.5	1	2.45	1.87	76.30	

.47 .02 .35 .80 .05 .40 .92 .99

APPENDIX E

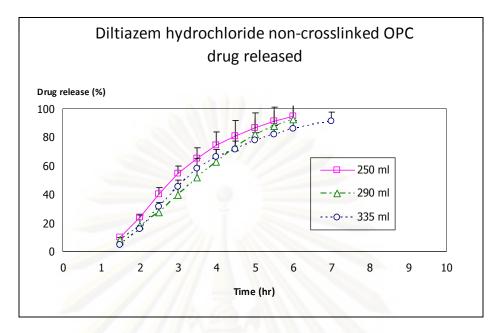

Calculations of zero-order equation

Figure 1(E) The release profiles of diltiazem hydrochloride from 0.6 mm orifice size crosslinked OPC coating with various amounts of CA solution in deionized water used for calculations of zero-order equation

Table 1(E) Zero-order equations of release profiles of diltiazem hydrochloride from 0.6 mm orifice size crosslinked OPC coating with various amounts of CA solution in deionized water

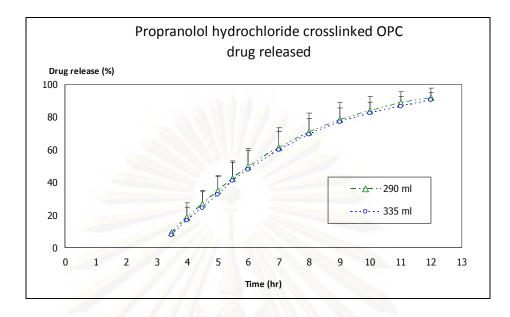

	diltiazem hydrochloride crosslinked OPC					
coating level	Qobs*	equation	R^2			
250 ml	7.92-80.25	y = 17.661x - 19.192	0.962			
290 ml	13.92-80.77	y = 18.581x - 23.324	0.9322			
335 ml	11.54-79.55	y = 16.943x - 28.371	0.9055			

Figure 2(E) The release profiles of diltiazem hydrochloride from 0.6 mm orifice size non-crosslinked OPC coating with various amounts of CA solution in deionized water used for calculations of zero-order equation

Table 2(E) Zero-order equations of release profiles of diltiazem hydrochloride from 0.6 mm orifice size non-crosslinked OPC coating with various amounts of CA solution in deionized water

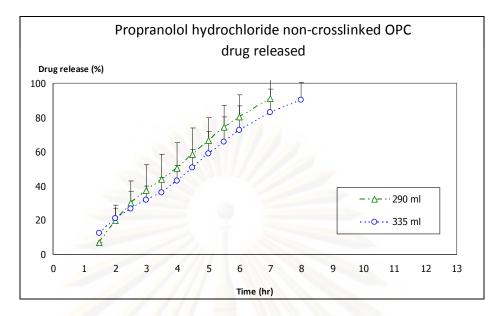

diltiazem hydrochloride non-crosslinked OPC					
coating level	Qobs [*]	equation	R^2		
250 ml	9.92-94.9	y = 18.824x - 8.4696	0.9463		
290 ml	8.17-92.66	y = 19.793x - 19.922	0.989		
335 ml	4.58-91.1	y = 16.15x - 8.0278	0.9182		

Figure 3(E) The release profiles of propranolol hydrochloride from 0.6 mm orifice size crosslinked OPC coating with various amounts of CA solution in deionized water used for calculations of zero-order equation

Table 3(E) Zero-order equations of release profiles of propranolol hydrochloride from 0.6 mm orifice size crosslinked OPC coating with various amounts of CA solution in deionized water

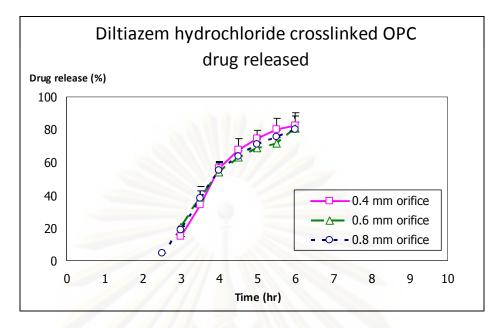

	propranolol hydrochloride crosslinked OPC					
coating level	Qobs [*]	equation	R ²			
290 ml	9.02-92.04	y = 9.8159x - 16.993	0.9478			
335 ml	7.58-90.4	y = 9.8013x - 15.246	0.9502			

Figure 4(E) The release profiles of propranolol hydrochloride from 0.6 mm orifice size non-crosslinked OPC coating with various amounts of CA solution in deionized water used for calculations of zero-order equation

Table 4(E) Zero-order equations of release profiles of propranolol hydrochloride from 0.6 mm orifice size non-crosslinked OPC coating with various amounts of CA solution in deionized water

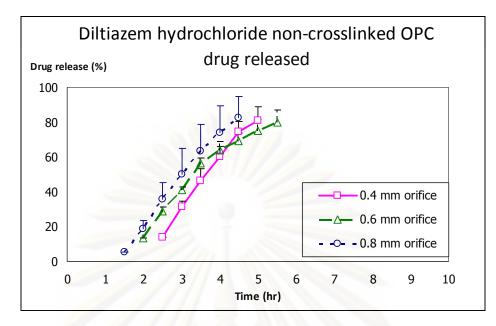

	propranolol hydrochloride non-crosslinked OPC					
coating level	Qobs [*]	equation	R ²			
290 ml	6.74-90.78	y = 15.023x - 10.027	0.9897			
335 ml	12.5-90.11	y = 12.386x - 4.857	0.9928			

Figure 5(E) The release profiles of diltiazem hydrochloride from various orifice sizes crosslinked OPC coating with 335 ml CA solution in deionized water used for calculations of zero-order equation

Table 5(E) Zero-order equations of release profiles of diltiazem hydrochloride from various orifice sizes crosslinked OPC coating with 335 ml CA solution in deionized water

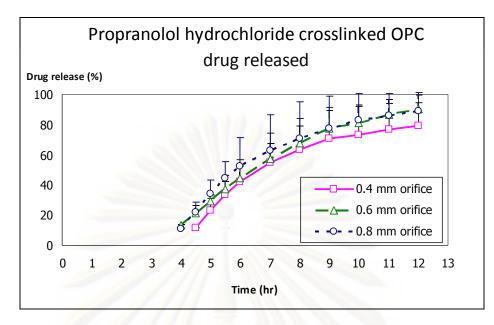

diltiazem hydrochloride crosslinked OPC					
orifice size	Qobs [*]	equation	R ²		
0.4 mm	14.94-82.53	y = 22.337x - 41.981	0.9015		
0.6 mm	20.51-80.94	y = 18.722x - 27.35	0.9283		
0.8 mm	4.59-80.25	y = 21.985x - 42.52	0.9351		

Figure 6(E) The release profiles of diltiazem hydrochloride from various orifice sizes non-crosslinked OPC coating with 335 ml CA solution in deionized water used for calculations of zero-order equation

Table 6(E) Zero-order equations of release profiles of diltiazem hydrochloride from various orifice sizes non-crosslinked OPC coating with 335 ml CA solution in deionized water

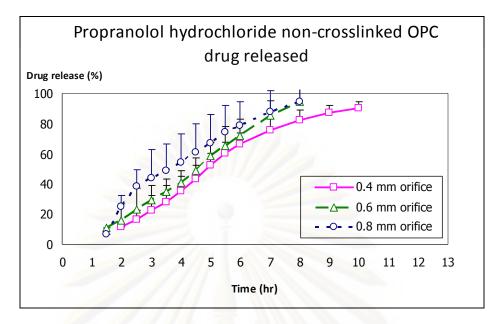

diltiazem hydrochloride non-crosslinked OPC					
orifice size	Qobs [*]	equation	R ²		
0.4 mm	13.66-80.7	y = 27.325x - 51.402	0.9853		
0.6 mm	13.12-79.92	y = 18.836x - 17.242	0.9496		
0.8 mm	5.48-82.35	y = 26.377x - 32.049	0.9902		

Figure 7(E) The release profiles of propranolol hydrochloride from various orifice sizes non-crosslinked OPC coating with 335 ml CA solution in deionized water used for calculations of zero-order equation

Table 7(E) Zero-order equations of release profiles of propranolol hydrochloride from various orifice sizes non-crosslinked OPC coating with 335 ml CA solution in deionized water

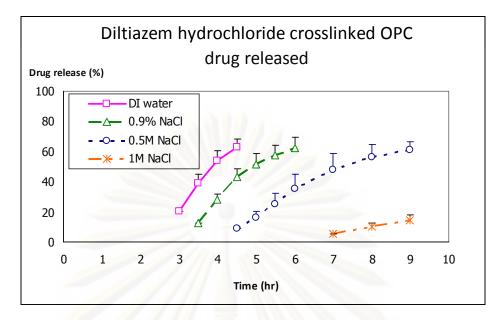

propranolol hydrochloride crosslinked OPC					
orifice size	Qobs [*]	equation	R ²		
0.4 mm	11.28-79.5	y = 8.6714x - 14.678	0.8946		
0.6 mm	13.59-90.18	y = 9.7697x - 17.725	0.9535		
0.8 mm	11.21-89.24	y = 9.3077x - 11.809	0.9053		

Figure 8(E) The release profiles of propranolol hydrochloride from various orifice sizes non-crosslinked OPC coating with 335 ml CA solution in deionized water used for calculations of zero-order equation

Table 8(E) Zero-order equations of release profiles of propranolol hydrochloride from various orifice sizes non-crosslinked OPC coating with 335 ml CA solution in deionized water

propranolol hydrochloride non-crosslinked OPC			
orifice size	Qobs [*]	equation	R ²
0.4 mm	11.68-90.52	y = 10.735x - 6.1376	0.9593
0.6 mm	10.79-94.35	y = 13.478x - 10.696	0.9958
0.8 mm	6.77-94.66	y = 12.581x + 1.6732	0.9529

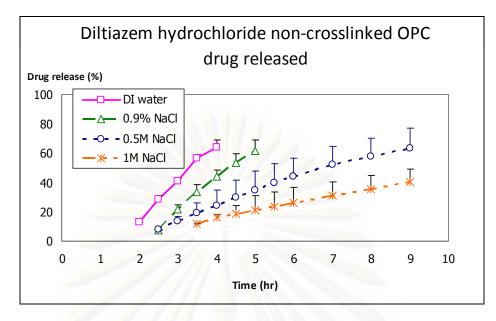

Figure 9(E) The release profiles of diltiazem hydrochloride from 0.6 mm orifice sizes crosslinked OPC coating with 335 ml CA solution in deionized water and various concentration NaCl solutions used for calculations of zero-order equation

Table 9(E) Zero-order equations of release profiles of diltiazem hydrochloride from 0.6 mm orifice sizes crosslinked OPC coating with 335 ml CA solution in deionized water and various concentration NaCl solutions

diltiazem hydrochloride crosslinked OPC				
medium	Qobs*	equation	R ²	
DI water	20.51-63.12	y = 28.63x - 63.217	0.9787	
0.9 % NaCl	12.69-62.16	y = 19.662x - 50.793	0.9438	
0.5 M NaCl	8.79-60.98	y = 11.931x - 40.866	0.9553	
1 M NaCl	3.90-7.37	y = 4.4371x - 25.583	1.000	

*Qobs=percentage of drug release interval used for calculation of zero-order equation

164

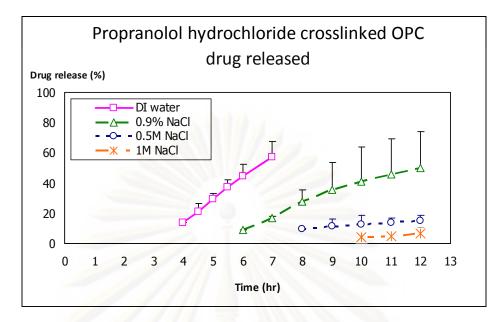

Figure 10(E) The release profiles of diltiazem hydrochloride from 0.6 mm orifice sizes non-crosslinked OPC coating with 335 ml CA solution in deionized water and various concentration NaCl solutions used for calculations of zero-order equation

Table 10(E) Zero-order equations of release profiles of diltiazem hydrochloride from 0.6 mm orifice sizes non-crosslinked OPC coating with 335 ml CA solution in deionized water and various concentration NaCl solutions

diltiazem hydrochloride non-crosslinked OPC				
medium	Qobs [*]	equation	R ²	
DI water	13.12-63.95	y = 25.868x - 36.978	0.9895	
0.9 % NaCl	7.25-61.36	y = 21.513x - 43.711	0.9891	
0.5 M NaCl	8.21-63.14	y = 8.6339x - 10.32	0.9831	
1 M NaCl	12.00-40.18	y = 4.9743x - 4.026	0.9955	

*Qobs=percentage of drug release interval used for calculation of zero-order equation

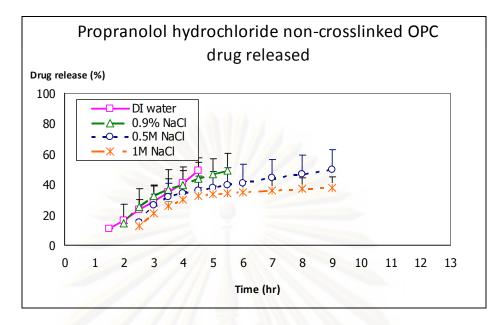

165

Figure 11(E) The release profiles of propranolol hydrochloride from 0.6 mm orifice sizes crosslinked OPC coating with 335 ml CA solution in deionized water and various concentration NaCl solutions used for calculations of zero-order equation

Table 11(E) Zero-order equations of release profiles of propranolol hydrochloride from 0.6 mm orifice sizes crosslinked OPC coating with 335 ml CA solution in deionized water and various concentration NaCl solutions

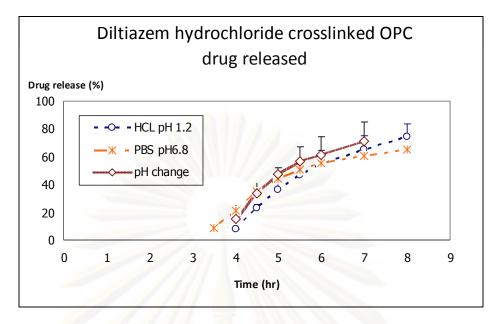

propranolol hydrochloride crosslinked OPC				
medium	Qobs*	equation	R^2	
DI water	13.59-57.32	y = 14.674x - 44.412	0.9976	
0.9 % NaCl	8.94-50.14	y = 6.9478x - 30.263	0.9717	
0.5 M NaCl	9.75-15.25	y = 1.3759x - 1.1904	0.9991	
1 M NaCl	4.33-6.40	y = 1.0352x - 6.2162	0.9005	

Figure 12(E) The release profiles of propranolol hydrochloride from 0.6 mm orifice sizes non-crosslinked OPC coating with 335 ml CA solution in deionized water and various concentration NaCl solutions used for calculations of zero-order equation

Table 12(E) Zero-order equations of release profiles of propranolol hydrochloride from 0.6 mm orifice sizes non-crosslinked OPC coating with 335 ml CA solution in deionized water and various concentration NaCl solutions

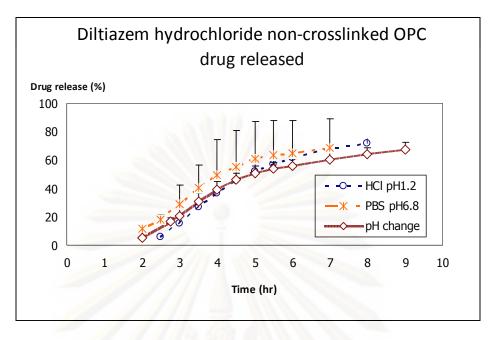

propranolol hydrochloride crosslinked OPC				
medium	Qobs [*]	equation	R ²	
DI water	10.79-49.02	y = 12.517x - 8.4663	0.9967	
0.9 % NaCl	14.42-49.34	y = 9.2611x + 1.2423	0.9377	
0.5 M NaCl	14.80-49.65	y = 4.3649x + 13.53	0.8520	
1 M NaCl	12.36-37.57	y = 3.1174x + 13.971	0.7018	

Figure 13(E) The release profiles of diltiazem hydrochloride from 0.6 mm orifice sizes crosslinked OPC coating with 335 ml CA solution in different pH media with isotonicity used for calculations of zero-order equation

Table 13(E) Zero-order equations of release profiles of diltiazem hydrochloride from 0.6 mm orifice sizes crosslinked OPC coating with 335 ml CA solution in different pH media with isotonicity

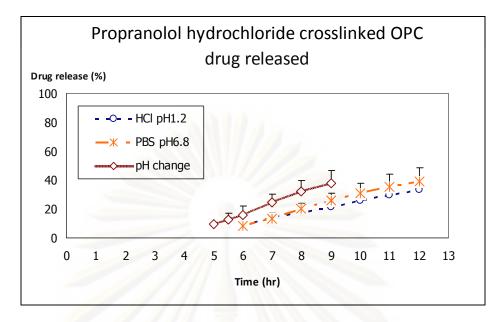

diltiazem hydrochloride crosslinked OPC			
medium	Qobs [*]	equation	R^2
HC1	7.82-74.07	y = 16.051x - 47.74	0.9372
PBS	8.23-65.30	y = 12.237x - 24.075	0.8740
pH-change	15.24-70.82	y = 17.841x - 47.742	0.9085

Figure 14(E) The release profiles of diltiazem hydrochloride from 0.6 mm orifice sizes non-crosslinked OPC coating with 335 ml CA solution in different pH media with isotonicity used for calculations of zero-order equation

Table 14(E) Zero-order equations of release profiles of diltiazem hydrochloride from 0.6 mm orifice sizes non-crosslinked OPC coating with 335 ml CA solution in different pH media with isotonicity

diltiazem hydrochloride non-crosslinked OPC				
medium	Qobs*	equation	R ²	
0.9 % NaCl	7.25-71.02	y = 18.322x - 32.784	0.9695	
HCl	5.64-72.01	y = 12.227x - 15.794	0.9200	
PBS	11.56-68.53	y = 12.206x - 6.3925	0.9082	
pH-change	4.89-67.27	y = 8.7552x - 1.4628	0.8774	

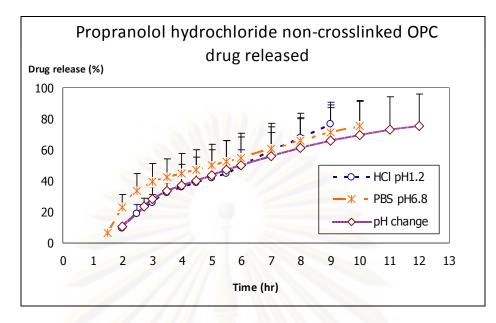

Figure 15(E) The release profiles of propranolol hydrochloride from 0.6 mm orifice sizes crosslinked OPC coating with 335 ml CA solution in different pH media with isotonicity used for calculations of zero-order equation

Table 15(E) Zero-order equations of release profiles of propranolol hydrochloride from 0.6 mm orifice sizes crosslinked OPC coating with 335 ml CA solution in different pH media with isotonicity

propranolol hydrochloride crosslinked OPC				
medium	Qobs [*]	equation	\mathbb{R}^2	
0.9 % NaCl	8.94-40.98	y = 8.3106x - 40.455	0.9869	
HCl	9.09-33.50	y = 4.0818x - 15.153	0.9994	
PBS	7.93-39.15	y = 5.2592x - 22.801	0.9942	
pH-change	9.56-38.02	y = 7.3351x - 27.389	0.9971	

*Qobs=percentage of drug release interval used for calculation of zero-order equation

170

Figure 16(E) The release profiles of propranolol hydrochloride from 0.6 mm orifice sizes crosslinked OPC coating with 335 ml CA solution in different pH media with isotonicity used for calculations of zero-order equation

Table 16(E) Zero-order equations of release profiles of propranolol hydrochloride from 0.6 mm orifice sizes crosslinked OPC coating with 335 ml CA solution in different pH media with isotonicity

propranolol hydrochloride non-crosslinked OPC				
medium	Qobs [*]	equation	R^2	
0.9 % NaCl	14.61-75.06	y = 7.9117x + 5.9338	0.9751	
HCl	9.16-76.67	y = 8.8922x - 2.7019	0.9833	
PBS	6.58-75.5	y = 6.7004x + 13.479	0.8977	
pH-change	10.61-75.41	y = 5.9277x + 10.824	0.9436	

VITAE

Miss Nijarat Wichianprasit was born on August 5, 1984. She received the Bachelor of Sciences in Pharmacy in 2006 from the faculty of pharmaceutical Sciences, Chulalongkorn University, Thailand. She entered studying in the Master's Degree in Industrial Pharmacy Program in the Faculty of Pharmaceutical Sciences, Chulalongkorn University, Thailand in 2007.

