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CHAPTER I 

INTRODUCTION 

1.1 General introduction  

Around 80% of shrimp products come from Asia with Thailand, China, 

Indonesia and India as the main producers. Shrimp farming in Thailand is a multi-

billion dollar industry contributing a major income to the country. Thai shrimp 

farming began in the early 1980s and widely distributed to different areas in the mid 

1980s (Source: http://www.american.edu/ted/THAISHMP.HTM). Shrimp farms and 

hatcheries are mainly located along the coastal areas of Thailand. Southern provinces 

(Nakorn Sri Thammarat, Surat Thani) account for the majority while those in the East 

(Chanthaburi) and Central regions (Samut Sakhon, Samut Songkhram) comprise the 

minority in terms of number of farms.  

The shrimp production was seriously affected by the outbreaks of infectious 

disease. Generally, the causes of infectious diseases in shrimp are mainly virus and 

bacteria (Bachère, 2000). Diseases are now rapidly spreading over the world as a 

result of expansion and globalization of the shrimp producing countries (Rönnbäck, 

2001). Previously, black tiger shrimp, Penaeus monodon, account for more than half 

of the total shrimp aquaculture. Whereas the other commercial shrimp product are P. 

vannamei, P. indicus, P. merguiensis and P. chinensis. Since 2005, the production of 

black tiger shrimp in Thailand has been decreased while the shrimp culture was favor 

to the pacific white shrimp, P. vannamei (Figure 1.1) because of its advantage. 

Genetic selection is successfully performed in the white shrimp leading to the 

effective growth rate, disease resistance and high survival rate during larval rearing. 

Whereas so far breeding of black tiger shrimp has not been successful (Wyban, 2007).  
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Figure 1.1 The black tiger shrimp and white shrimp production in Thailand from 

2002 to 2008.  (Source: http://www.shrimpcenter.com) 



 3 

1.2 Taxonomy of Penaeus monodon 

 Penaeus monodon, is a shrimp species that was classified into the 

largest phylum in the animal kingdom, the Arthropoda. The taxonomic definition of 

Penaeus monodon is as follows (Baily-Brook et al., 1992): 

Phylum  Arthropoda 

     Subphylum  Crustacea 

        Class  Malacostraca 

            Subclass  Eumalacostraca 

                Order  Decapoda 

                    Suborder  Natantia 

                         Infraorder  Penaeidea 

                            Superfamily  Penaeoidea 

                               Family  Penaeidae Rafinesque, 1985 

                                   Genus  Penaeus Fabricius, 1798 

                                        Subgenus  Penaeus 

                                            Species  monodon 

Scientific name: Penaeus monodon (Fabricius), 1798 

Common name:  Jumbo tiger prawn, Giant tiger prawn, Blue tiger prawn, 

Leader prawn, Panda prawn (Australia), Jar-Pazun (Burma), Bangkear (Cambodia), 

Ghost prawn (Hong Kong), Jinga (India, Bombay region), Udang windu (Indonesia), 

Ushi-ebi (Japan), Kamba ndogo (Kenya), Kalri (Pakistan), Sugpo(Philipines), Grass 

shrimp (Taiwan), Kung kula-dum (Thailand), Timsa (Vietnam).  

FA.O. Names: Giant tiger prawn, Crevette giante tigre, Camaron tigre gigante. 

 

 

 



 4 

1.3 Shrimp diseases 

Almost from the beginning disease was remembered as a biological threat to 

the shrimp farming, and some diseases caused severe economic losses. The major 

causes of infectious disease in P. monodon are virus and bacteria (Lightner et al., 

1998). The severe problem of shrimp diseases in Thailand was begun in 1993. From 

1993 to 1994, the yellow head disease was reported in center and southern of 

Thailand (Hasson et al., 1995). Whereas the white spot syndrome disease was initial 

begun between 1994 to 1996. As a result, shrimp export producing was reduced from 

1992 high of 115,000 metric tons to 35,000 metric tons (Flegel, 1997). Vibriosis is the 

most prevalent bacteria disease causing mass mortalities in shrimp farming. The 

major virulent strains of Vibrio in shrimp are Vibrio harveyi, V. parahaemolyticus, V. 

alginolyticus and V. anguillaram (Sunaryanto et al., 1986). The application of modern 

biotechnology to penaeid shrimp diseases has been essential for rapid and sensitive 

diagnosis. Therefore, the prevention and control of diseases turned into a priority for 

shrimp production. To deal with this problem, besides the development of farm 

management, shrimp immunity and defense effectors responded to pathogen should 

be elucidated. 

1.3.1 Viral disease 

Disastrous failures have occurred in the shrimp farming industry in Thailand 

over a decade mostly due to virus infection. White spot syndrome virus (WSSV) and 

Yellow-head virus (YHV) are the important virus species that have been reported in 

P. monodon. They cause white spot syndrome disease (WSS) and yellow-head disease 

(YH), respectively (Boonyaratpalin et al., 1993; Wongteerasupaya et al., 1995). 

Moreover, infectious hypodermal and hematopoeitic virus (IHHNV), 

hepatopancreatic parvovirus (HPV) and monodon baculovirus (MBV) infections are 

related to the impeding of shrimp growth. In Thailand, Taura syndrome and (TSV) 

and Laem Singh virus (LSNV) are now important infectious virus in shrimp farming. 

The outbreak of these viruses causes a great loss in the shrimp industry in several 

countries including Thailand. 
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1.3.1.1 White spot syndrome virus (WSSV) 

White spot syndrome virus (WSSV) is an enveloped DNA virus of bacilliform 

to cylindrical morphology with an average size of 120 x 275 ± 22 nm and has a tail-

like projection at one end of the particle (Kasornchandra et al., 1995; 

Wongteerasupaya et al., 1995). WSSV was first called a baculovirus because of its 

cylindrical morphology and the histological lesions that resembled those of “non-

occluded” baculoviruses (Wongteerasupaya et al., 1995).This virus is a member of the 

virus family Nimaviridae (genus Whispovirus). The enveloped virus that infects a 

broad range of crustacean species (Wang et al., 1998). The viral genome contains 

double-stranded DNA of 292 to 305 kb in length from the three different virus 

isolate (WSSV-TH, WSSV-CN and WSSV-TW) (Van Hulten et al., 2001; Yang et 

al., 2001). In cultured shrimp, WSSV infection can cause a cumulative mortality of up 

to 100% within 3–10 days, leading to large economic losses to the shrimp-culture 

industry. The apparent sign of WSSV infection is the white inclusion of various size 

embedded in shrimp cuticle at the last stages of infection. The causative agent was a 

new bacilliform virus (Takahashi et al., 1994). Thus, white spots in the cuticle are 

unreliable for diagnosis of WSSV.  

WSSV was first discovered in the Chinese province Fujian in 1992, from 

where it spread quickly (Flegel, 1997). Whereas the first reported epidemic due to this 

virus is from Taiwan in 1992 (Chen, 1995). However; reports of losses due to white 

spot disease came from China in 1993 (Huang et al., 1995), where it led to a virtual 

collapse of the shrimp farming industry. This was followed by outbreaks in Japan and 

Korea in the same year, Thailand, India and Malaysia in 1994 and by 1996 it had 

severely affected East Asia and South Asia. In late 1995, it was reported in the USA, 

1998 in Central and South America, 1999 in Mexico and in 2000 in the Philippines. 

Currently, it is known to be present in all shrimp growing regions except Australia. 

Nowadays, the virus has spread to almost all major shrimp-farming areas of the world. 

In 1996, Lightner pointed out that no significant resistance to this disease had been 

reported for any species of shrimp, and this still remains true today. The causative 

agent of WSS, WSSV is extremely virulent and has a wide host range (Lo et al., 

1996). 
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The disease is thought to spread by means of contaminated water, 

decomposing fecal matter or tissue, cannibalism and fluid from infected females. 

Direct transmission can occur between unrelated crustacean species. Shrimp may be 

indirectly exposed to the disease through expose to previous hatchery or pond 

growing cycles, contaminated water supplies (new or previously utilized) 

contaminated food (through unlikely), equipment surfaces and clothing, or animals 

who have ingested diseased shrimp. Humans may also facilitate transmission of the 

disease by global transportation of viruses in infected frozen imported shrimps. 

Shrimp, which survive the infection, are suspected to be life-long carriers of WSS. It 

is difficult to prevent and inhibited the WSSV infection because this virus is survive 

for long time in the environment (2 years in a shrimp pond). 

Rapid and specific diagnosis of the virus is carried out using two step-nested 

polymerase chain reactions (PCR). Histopathological changes in infected shrimps 

include prominent intranuclear eosinophilic to basophilic inclusions in the infected 

cells and cellular degeneration with hypertrophied nuclei and chromatin margination 

in the cuticular epidermis, gill epithelium, antennal gland, haematopoeitic tissue, 

nervous tissue and connective tissue and cellular necrosis and detachment of intestinal 

epithelial tissue (Wongteerasupaya et al., 1995). 

1.3.1.2 Yellow head disease 

Yellow head disease (YHD) is a viral infection of shrimp and prawn, in 

particular of P. monodon, one of the two major species of farmed shrimp. The disease 

is highly lethal and contagious, killing shrimp quickly (Wongteerasupaya et al., 

1995). Outbreaks of this disease have wiped out in a matter of days the entire 

populations of many shrimp farms that cultivated P. monodon, i.e. particularly 

Southeast Asian farms (Source: http://nis.gsmfc.org/nis_factsheet.php?toc_id=119). 

In Thailand, the virus was first reported in 1990’s. This syndrome occurs in the 

juvenile to sub-adult stages of shrimp, 5 to 15 grams in size, especially at 50-70 days 

of grow-out (Lightner, 1996). At the onset of YHD shrimp have been observed 

consuming feed at an abnormally high rate for several days. Feeding abruptly ceases 

and within 1 day, a few moribund shrimp appear swimming slowly near the surface at 

the pond edges. After that, the light yellow coloration is occurred at dorsal 
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cephalothorax in YHV infected shrimp moreover a generally pale or bleached are also 

appeared, later, it will die within a few hours. 

YHV was first considered to be a baculovirus. But, it was later discovered 

during purification and characterization that its morphology differed from that of 

baculoviruses (Boonyaratpalin et al., 1993). Recently, YHV was classified in new 

taxa family Roniviridae genus Okavirus (Walker et al., 2008). YHV is rod-shaped, 

enveloped virus. The viral genomes consist of single-stranded RNA (ssRNA) of 

positive sense with a helical nucleocapsid. Viral replication seems to occur only in the 

cytoplasm without any sign of replication in the intact nuclei of infected cells. A long 

filamentous of the virus (some over 800 nm in length), perhaps a precursor to the 

enveloped and rod-shape form is presented in the cytoplasm of many host cells. Viral 

envelopes appear to be acquired by passage of these provirions through the 

endoplasmic reticulum of the host cells. Enveloped virions then cluster in cytoplasmic 

vesicles, sometimes densely packed, and resembling paracrystalline arrays, where 

they appear to divide into the smaller rod-shaped units (Chantanachookin et al., 

1993). Rod-shaped virions and filamentous precursors were found in normal, healthy, 

captured (wild) broodstock by Flegel et al. (1992). YHV may occur as latent, 

asymptomatic infections in broodstock shrimp and may possibly transfer from these 

shrimp to their offspring in larval rearing facilities (Chantanachookin et al., 1993). 

YHV infections can be recognized by densely basophilic inclusions, 

particularly in H&E stained gill sections and rapidly stained whole gills (Flegel et al., 

1997), or by staining of hemolymph smears (Nash et al., 1995). The diagnosis of 

YHV infection could be performed by using immuno-histochemistry, the monoclonal 

antibody aggregated with a surface glycoprotein and the nucleocapsid protein of virus 

(Sánchez-Barajas et al., 2009). In addition to conventional RT-PCR 

(Wongteerasupaya et al., 1997) or in situ hybridization (Wongteerasupaya et al., 

1996; Tang et al., 1999) was advantage for detection of YHV infection too. 
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1.3.2 Bacterial disease 

In Thailand, vibriosis is the major cause of production loss in penaeid shrimp 

farm (Nash et al., 1992). This bacterial outbreak causes mortality of the affected 

shrimps up to 100%, whether they are larvae, post-larvae, juveniles, sub-adults or 

adults (Lightner, 1983). Vibrio harveyi was originally recovered from a dead sandbar 

shark (Carcharhinus plumbeus) with vasculitis, which died at the National Aquarium 

in Baltimore, USA, in 1982 (Grimes et al., 1984) and is also called V. carchariae. 

Extracellular products (ECP) were assigned to be important determinants of virulence 

in V. harveyi. The study of pathogenicity from Vibrio-infected P. monodon 

determined that virulence occurred with both live bacteria and ECP (Liu et al., 1996). 

Vibrio harveyi is Gram-negative bacteria; therefore it has a cell wall that 

consists of two membranes: an outer membrane made up of lipopolysaccharides and 

an inner cytoplasmic membrane. In between these is a periplasmic space housing a 

peptidoglycan layer. V. harveyi is a facultative anaerobe, meaning it can swap 

between aerobic respiration of oxygen and fermentation in order to produce ATP. 

This characteristic helps V. harveyi survive in low oxygen concentrations, if 

fermentable material is present. The cells of the Vibrionaceae are non-sporulating 

rods, usually 0.5-0.8 m width and 1.4-2.6 m in length, and they have locomotor 

organelles called flagella. Vibrios have a group of flagella at one end if the cell (polar 

flagella) and the flagella are encased in a sheath that is a continuation of the outer 

membrane of the bacterial cell wall. In contrast, the Photobacterium genus only has 

unsheathed flagella. The ability to produce light is dependent upon the concentration 

of the organisms in the substrate (i.e., sea water or special growth medium in the 

laboratory). The light generating reactions require oxygen, and the final product of 

luminescence reactions is excited luciferase which can generate light (Showalter et 

al., 1990). The substrates are reduced flavin mononucleotide (FMNH2), a long chain 

aldehyde (RCHO; probably tetradecanal), and molecular oxygen which react 

according to the following overall stoichiometry: 

Bioluminescent bacteria produce a specific chemical called an autoinducer 

(sometimes more than one), which can induce bioluminescence reactions in bacterial 
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cells when they are in high concentrations. At lower concentrations, specifically when 

dispersed in the ocean, the cells do not produce light. 

V. harveyi is a pathogen of fish and invertebrates, including sharks, seabass, 

seahorses, lobster, and shrimp. Its pathogenicity depends on the concentration of V. 

harveyi cells at a given time. Diseases caused by V. harveyi include eye-lesions, 

gastro-enteritis, vasculitis, and luminous vibriosis. Luminous vibriosis is a leading 

cause of death among commercially farmed shrimp and other aquaculture. The 

infection, by V. harveyi, enters through the mouth and forms plaques, then spreads to 

the innards and the appendages. Loss of limb function and appendage degradation has 

been documented. This bacteria has been reported to be a factor in loose shell 

syndrome and white gut disease in P. monodon in India (Jayasree et al., 2006). 

Contamination can spread all the way to egg and larval tanks, thus causing an even 

bigger problem for shrimp farmers. Luminous vibriosis has been documented in many 

other crustaceans all of which glow in the dark when infected. Mortality occurs when 

penaeid shrimp is exposed to a concentration of V. harveyi at 102 cells/g of tissue 

homogrnate (Lightner, 1993). 

The past controlling of this disease by using antibiotic in broader shrimp 

farming was the problem of drug resistance (Karunasagar et al., 1994). The probiotic 

such as Pseudomonas I-2 or Bacillus subtilis BT23 have been a choice for solution of 

Vibriosis in present farming (Chythanya et al., 2002; Vaseeharan et al., 2003). 

1.4 Crustacean immune system 

Invertebrate animal have the native immune responses called innate immune 

system. These immune response differences to the adaptive immune system in 

vertebrate animal that produce the specific molecule, typical immunoglobulins are 

known as antibody memorizes foreign molecules. Both vertebrate and invertebrate 

have developed unique modalities to detect and response to microbial surface 

molecules like lipoplysaccharide (LPS), lipoteichoic acid, peptidoglycan (PGN) and 

-glucan (Begum et al., 2000). This assumed that the recognition system was 

developed at early state of animal evolution (Janeway Jr et al., 1999; Medzhitov et al., 

2000). 
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Crustacean immune responses are involved by cell-mediated and humeral 

component in the circulatory system. First defense process is initiated by the 

hemocyte and the plasmatic proteins are recognizing the invading microorganisms. 

Crustacean hemocyte plays important role in host immune system including 

phagocytosis, melanization, cytotoxicity and cell-cell communication 

(Jiravanichpaisal et al., 2006). The hemolymph plasma of crustacean contains many 

defense molecules including enzyme and protein such as antimicrobial peptide, 

proteinase inhibitors, hydrolytic enzyme, hemocyanin, phenoloxidase etc. 

1.4.1 Blood cell 

Crustacean hemocyte could be classified by presenting of cytoplasmic 

granules to three major types that consist of hyaline, semi-granular and granular cell. 

Each hemocyte cell type has a difference role for its immune responses such as 

phagocytosis, encapsulation, cytotoxicity, haemolysis, cell adhesion, and 

degranulation (Johansson et al., 2000). The phagocytosis and coagulation are the 

responsibility from the hyaline, smallest hemocyte that without cytoplasmic granules 

(Söderhäll et al., 1986). Semigranular, the most number of total hemocyte 

approximately 75 % of all hemocyte, contain small granular (0.4 µm diameter) which 

exhibit some phagocytic capacity. Semigranular that most sensitive and first to 

reaction during an immune response, are a function of encapsulation and 

degranulation. Granular cell (10-20 % of total hemocyte) contains a large number of 

secretary large granular (0.8 µm diameter). Granular and semi-granular cell can store 

the cytotoxic reaction and the component for activation of prophenoloxidase system 

(Smith et al., 1983). L-granules contain at least 24 proteins, a majority of which are 

clotting factors, a clottable protein, coagulogen, proteinase inhibitors, lectins, and 

antimicrobial proteins.  In contrast, S-granules contain at least 6 proteins with 

molecular masses of less than 30 kDa, in addition to an antimicrobial peptide 

tachyplesin and its analogues (Muta et al., 1990; Shigenaga et al., 1993). 

1.4.2 Pattern recognition protein 

The innate immune system employs germline-encoded pattern recognition 

receptors to identify pathogen-associated molecular patterns (PAMPs) which are 

absent in the host but present on the surface of pathogens (Medzhitov et al., 2002). 
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The best known examples of PAMPs include LPS of gram-negative bacteria, PGN of 

gram-positive bacteria, the manan of yeast, glucan of fungi and double-stranded RNA 

of viruses (Hoffmann et al., 1999; Kurata et al., 2006). The process of recognition of 

invading microorganism is mediated by the hemocyte and by plasmatic protein 

(Medzhitov et al., 1997). 

The carbohydrates are regular components of microbial cell wall. 

Heamagglutinin or lectins can bind to specific carbohydrates expressed on different 

cell surfaces due to an occurrence of agglutination reaction. The –1,3-glucan binding 

protein (BGBP) were reported in many crustaceans such as freshwater crayfish, 

Pacifastacus leniusculus (Duvic et al., 1990), and three marine shrimp species, P. 

californiensis (Vargas-Albores et al., 1996), P. chinensis (Du et al., 2007), P. 

vannamei (Vargas-Albores et al., 1997; Jiménez-Vega et al., 2002) and P. monodon 

(Sritunyalucksana et al., 2002). The BGBP has not been shown to contain glucanase 

activity although it has glucanase-like motif. After BGBP binding with glucans, it can 

operate as elicitors of defense responses (Muta, 1995; Seki et al., 1995). LPS-binding 

protein, a multivalent carbohydrate-binding agglutinin, can increases phagocytic rate 

(Vargas-Albores, 1995).   

1.4.3 The prophenoloxidase (proPO) system and melanization 

The prophenoloxidase activating melanization is an important innate immune 

system in invertebrate. The phenoloxidase (PO) occurs as inactive enzyme which 

named prophenoloxidase (proPO). PO catalyzes both the o-hydroxylation of 

monophenol and oxidation of phenol to quinone following non-enzymatically 

polymerized to melanin (Cerenius et al., 2004). The proPO was activated by proPO-

activating enzyme, which is the terminal proteinase of serine proteinase cascade 

(Figure 1.2). Some arthropod, the proPO activation required one or more serine 

proteinase homolog, non-catalytic proteinase. This cascade is initiated via recognition 

of microbial surface molecules by specific binding proteins. The melanization in 

arthropod is involving in process of wound healing and sclerotization 

(Sritunyalucksana et al., 2000). This defense reaction results in nodule formation and 

encapsulation which caused against invading microorganism entering the body. The 

expression analysis shows that proPO mRNA of P. monodon is only expressed in 

hemocyte (Sritunyalucksana et al., 1999). The enzymes of proPO system are normally 
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localized in the semigranular and the granular cell of Penaeid shrimps (Vargas-

Albores et al., 1993; Perazzolo et al., 1997). 

From the blast searching, deduced amino acid sequence of P. monodon proPO 

has highly similarity to crayfish proPO (74%). In horseshoe crab, hemocyanin binding 

to some clotting factor component can be exhibited in vitro PO activity (Nagai et al., 

2000). They demonstrated that proPO and hemocyanin are the same evolutionally 

relationship. PO can bind to the parasite leading to induction of malanization. A 

second isoform of proPO genes was identified from P. monodon (Amparyup et al., 

2009A) and P. vannamei (Ai et al., 2009) which are shown more similarity to proPO 

of other penaeids than proPO from crayfish, lobsters, crab, or a freshwater prawn. 

Two proPOs are mainly expressed in hemocyte (Yeh et al., 2009). The dsRNA of a 

proPO gene was injected to freshwater crayfish resulting the increasing of Aeromonas 

hydrophila in hemolymph and reduction of survival bacterial infected crayfish (Liu et 

al., 2007). The same result was observed in proPO knocked down P. monodon that 

was infected with V. harveyi (Amparyup et al., 2009A). 

Most serine proteinases in proPO cascade of arthropod contain clip domain at 

N-terminus of zymogen. The terminal SPs which activate proPO are also called 

proPO activating enzyme (PPAE). In crayfish, PPAE is expressed in the hemocyte 

granules as an inactive from. After the presenting of microbial in hemolymph, PPAE 

will be secreted into plasma and converted to an active form (Aspàn et al., 1991; 

Aspàn et al., 1995). The specific inhibitor of crayfish PPAE, pacifastin, can be 

inactivated PO activity in crayfish. Recently, a cDNA encoding a PPAE (PmPPAE1) 

from P. monodon was cloned and characterized. RNAi-mediated silencing of 

PmPPAE1 gene significantly decreased the total PO activity in shrimp and 

additionally increased the mortality of V. harveyi infected shrimp, the latter of which 

correlated with an increase in the number of viable bacteria in the hemolymph 

(Charoensapsri et al., 2009). In several insect and crustacean immunities, there is a 

report that the proPO activation was corresponding to the enhancing of phagocytosis. 

The crayfish PPAE is involved in processing both proPO and peroxinectin (Lin et al., 

2007). The crustacean peroxinectin, an active form of a large family of cell adhesion 

proteins, is a protein expressing strong cell adhesion, opsonin and degranulation 

activities (Jiravanichpaisal et al., 2006). 
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Figure 1.2 The prophenoloxidase activating system in insect hemolymph. 

Peptidoglycan from Gram-positive bacteria, lipopolysaccharide from Gram-negative 

bacteria, and β -1,3-glucan from fungi are recognized by specific binding proteins in 

hemolymph: peptidoglycan-binding protein (PGBP), lipopolysaccharide-binding 

protein (LBP), and β-1,3 glucanbinding protein (β-GBP), respectively. Formation of 

recognition complexes somehow triggers a cascade of unknown serine proteinases. At 

the end of the proposed pathway, proPO activating proteinase (PAP or PPAE) is 

activated through limited proteolysis. Activated PAP (or PPAE) cleaves 

prophenoloxidase to generate phenoloxidase. (Jiang et al., 2000) 

1.4.4 The clotting system 

The blood clotting system or coagulation is the protection system form blood 

lost after injury. Moreover this system is the first line of defense and an integral part 

of the overall invertebrate immune system. The blood clotting system in arthropods 

has two mainly difference mechanisms: crayfish and horseshoe crab. The clotting 

system in crayfish depends on the direct tranglutaminase (TGase)-mediated cross 

linking of a specific plasma protein, whereas the process in horseshoe crab is 

regulated by a proteolytic cascade activated by bacterial elicitors through specific 

recognition proteins.  
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In horseshoe crab, four serine proteinase and a clottable protein (coagulogen) 

are involved microbial polysaccaride-mediated coagulation cascade (Iwanaga et al., 

1998). The factor C is autocatalytically activated when bacterial lipopolysaccaride 

was detected and involve the factor B becoming the activated factor B (Muta et al., 

1993). Then the activated factor B will convert the procloting enzyme to the clotting 

enzyme (Nakamura et al., 1993). In addition the factor G directly activate the 

proclotting enzyme after the presence of –1,3-glucan (Iwanaga, 1993). The clotting 

factor are stored in the granule of hemocyte until the cell are activated, which then the 

clotting factor will be released into hemolymph by degranulation. After the serine 

proteinase cascade activation, the coagulogen, a soluble protein, is conveted to 

coagulin, an insoluble aggregate. The clot formed through the activation of this 

cascade is effective for immobilizing invading microorganisms (Kawabata et al., 

1996). 

In crayfish, the blood clot is formed by the clottable proteins (CPs) in plasma 

that catalyzed by a Ca2+ dependent TGase (Hall et al., 1999). The coagulation is 

processed by the TGase forms the -(-glutamyl)-lysine crosslinks between glutamine 

and lysine of the CPs (Kopacek et al., 1993). The releasing of TGase is a result from 

the hemocytes under foreign particle stimulus or tissue damage. The CPs were found 

in several crustaceans such as crayfish (Kopacek et al., 1993), P. monodon (Yeh et al., 

1998), lobster, Panulirus interruptus (Doolittle et al., 1990). The CPs are glycoprotein 

that has physiological functions in the prevention of pathogen infection and the lipid 

transport (Hall et al., 1995). TGase have been cloned and localized in crayfish (Wang 

et al., 2001) and further characterized in tiger shrimp (Huang et al., 2004). 
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Figure 1.3 The hemolymph clotting system of horseshoe crab. Microbial cell surface 

molecules can bind and trigger a cascade of serine proteinases that are released from 

hemocytes upon infection. As a result, coagulogen is converted to coagulin which 

forms an insoluble gel. These clotting enzymes are subject to negative regulation by 

specific serine proteinase inhibitors of the serpin superfamily. (Iwanaga et al., 1998) 

1.4.5 Antimicrobial peptides (AMPs) 

Antimicrobial peptides are a component of the innate immune response that 

has been evolutionarily conserved. They are found in all different classes of life. 

Antimicrobial peptides are the small molecules generally less than 150-200 amino 

acid residues. The most of AMPs are the cationic peptide and have amphipathic 

structure. The target of cationic AMPs generally is bacterial membrane. The 

integration of peptide into the cell membrane, anionic phospholipids, resulting 

aqueous content might leak from target cell lead to cell lysis. The several of 

antimicrobial peptides were isolated and characterized from crustacean, as mainly 

anti-lipopolysaccaride factors, penaeidins and crustins.  

Anti-lipopolysaccaride factor (ALF) is an AMP that was found in haemocytes 

of horseshoe crabs, Limulus polyphemus, named LALF (Morita et al., 1985), and 

Tachypleus tridentatus, named TALF (Tanaka et al., 1982). This protein is localized 

in large granule of horseshoe crab hemocyte which was found functionally prevention 

of Gram-negative bacteria (Muta et al., 1990). ALF can bind and neutralized the 

endotoxic or lipopolysaccharide (LPS). A moiety of LPS leads to inhibition of the 
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endotoxin-mediated activation of the coagulation cascade. It can exhibits strong 

antibacterial activity on the growth of Gram-negative R-type bacteria (Morita et al., 

1985). In shrimp, at least 5 isoforms of ALF was identified from P. monodon EST 

database (Supungul et al., 2004). The expression of ALFPm2 and ALFPm3 was 

rapidly increased in V. harveyi challenged shrimp (Tharntada et al., 2008). Moreover, 

the recombinant ALFPm3 protein exhibits antimicrobial activity against Gram-

negative bacteria, Gram-positive bacteria and fungi (Somboonwiwat et al., 2008) and 

exhibits antiviral activity (Tharntada et al., 2009). 

Crustins are antibacterial proteins of 7-14 kDa with a characteristic four-

disulphide core-containing whey acidic protein (WAP) domain. Recently, crustin was 

classified into three types (Type I, Type II and Type III) based mainly on the domain 

structure between the signal sequence and the WAP domain (Smith et al., 2008). 

Genomic approaches, such as expressed sequence tag (EST) analysis, have identified 

several  homologues of crustin from a variety of crustacean species including shrimps, 

crabs, crayfish and lobsters (Smith et al., 2008). In P. monodon, the recombinant 

crustinPm1, crustinPm5, crustin-likePm and SWDPm2 (Type III crustin) were 

expressed in E. coli. The recombinant crustinPm1, crustinPm5 and SWDPm2 were 

exhibited anti-gram positive bacterial activity (Supungul et al., 2008; Vatanavicharn 

et al., 2009) whereas crustin-likePm can inhibit the growth of both Gram positive and 

Gram negative bacteria (Amparyup et al., 2008). 

Peneadin belong to a family of AMP which combines a proline-rich amino-

terminal domain and a carboxyl-domain containing six cysteines engaged in three 

disulfide bridges. It was first isolated from the plasma and hemocyte of P. vannamei. 

The fist three were named penaeidin-1, -2 and -3, and their structure and antimicrobial 

were studied using recombinant protein (Destoumieux et al., 1997). The cDNA clones 

of penaeidin isoform were also isolated from the haemocytes of L. vannamei and L. 

setiferus (Gross et al., 2001) and P. monodon (Supungul et al., 2004). Penaeidins are 

constitutively synthesized and stored in the shrimp hemocytes, localized in 

granulocyte–cytoplasmic granules, and released in response to appropriate stimuli 

such as infections (MunÌƒoz et al., 2002). In black tiger shrimp, penaedin-2 precursor 

was reported from EST libralies (Supungul et al., 2002). In addition, the synthetic 

peptide of penaiedin-5 exhibited anti-bacterial activity and anti-fungal activity. The 
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expression level of penaeidin-5 was induced after V. harveyi challenged (Hu et al., 

2006). 

1.4.6 Proteinase inhibitor 

The proteinases of invading pathogens and the endogenous proteinases of the 

several zymogen cascades, involved in blood clotting, proPO activating system or 

signaling pathway, have the potential for undesirable destructive action. It allowed 

they survive to act beyond the limits of their intended target. The inhibitors of 

proteinases have evolved as important elements in the system of host defenses against 

pathogens and as regulators of endogenous proteinases. 

Some proteinase cascades were regulated by proteinase inhibitors such as 

serine proteinase inhibitors in the Kazal and Serpin families (Kanost et al., 2001; 

Kanost et al., 2001; De Gregorio et al., 2002; De Gregorio et al., 2002), -

macroglobulin (Vargas-Albores et al., 1996; Armstrong et al., 1999) . 

Like blood clotting, prophenoloxidase activation is normally regulated in vivo 

local reaction with brief duration. Also comparable to blood clotting, the regulation 

may be partly due to serine proteinase inhibitor in plasma (Kanost et al., 1996). For 

example, pacifastin and –macrogrobulin can inhibit crayfish proPO activation 

(Aspàn et al., 1990). In M. sexta, serine proteinase in proPO system can be inhibited 

by serpin-1J (Jiang et al., 1997). In addition, serpin-6 from M. sexta hemolymp inhibit 

proPO-activating proteinase-3 (PAP-3) (Wang et al., 2004). While serpin-4 and -5 

decreased pro-PO activation when added to plasma, but they did not directly inhibit 

the pro-PO-activating proteases (Tong et al., 2005). The proteinase inhibitors in 

proPO system may functionally protect host cell damage from toxically by product in 

this activation system. The serpin mark up a superfamily of protein, most of which 

function as serine proteinase inhibitor. Serpin contain an exposed reactive site loop, 

which interacts with the active site of a proteinase, leading to the formation of a vary 

stable serpin-proteinase complex (Stone et al., 1997). It appears likely to be an acyle 

enzyme complex that represents a normal intermediate on the substrate pathway of a 

serine proteinase (Olson et al., 1995). In shrimp, the transcription level of of serpin 

from F. chinensis was up regulated when challenged with bacteria, Vibrio 

anguillarum or Stephylococcus aureus , and WSSV (Liu et al., 2009).  
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Kazal, Kunitz and light chain of pacifastin are the path of low molecular 

weight serine proteinase inhibitor that may occur as single, small protein or some 

cases as chains of inhibitor domain (Nakamura et al., 1987; Johansson et al., 1994; 

Liang et al., 1997). The Kazal-type serine proteinase inhibitors were identified from 

many shrimp such as P. chinensis, P. vannamei, P. monodon etc. (Jarasrassamee et 

al., 2005; Jiménez-Vega et al., 2005; Kong et al., 2009). The mRNA level of L. 

vannamei four Kazal domain protein was modified after injected with Vibrio 

anguillarum (Jiménez-Vega et al., 2005). The Kazal-type SPIPm2 exhibited the 

inhibitory activity against subtilisin. This function may as a defend component against 

proteinases from pathogenic bacteria (Somprasong et al., 2006). Their recombinant 

inhibitor was found to possess bacteriostatic activity against the Bacillus subtilis 

(Donpudsa et al., 2009). Besides, pacifastin and α–macroglobulin inhibit crayfish 

PPO activation (Aspàn et al., 1990). The kuruma shrimp, Marsupenaeus japonicus, 

α2-macroglobulin was responded to oral administration of peptidoglycan (Rattanachai 

et al., 2004). 

1.4.7 Apoptotic and tumor proteins 

The apoptosis is a mechanism of cell suicide in response to verity of stimulus. 

In muticellular organism, apoptosis is essential for development, tumor suppression, 

immune function and maintenance of homeostasis. Viruses can directly induce 

apoptosis of infected cell (O'Brien, 1998). In insect, apoptosis is reported to be 

extremely powerful in suppressing of virus replication, infectivity and spread, via 

mechanisms that involve the premature lysis of infected cell (Clem, 2005; Wakiyama 

et al., 2006). Apoptosis has been detected in several virus target tissue of shrimp such 

as hemocyte, hematopoietic tissue and lymphoid organ (Khanobdee et al., 2002; 

Wongprasert et al., 2003; Sahul Hameed et al., 2006; Anantasomboon et al., 2008). 

The study in P. monodon, apoptosis was detected after YHV infection. There is a 

major cause of dysfunction and death of the host (Khanobdee et al., 2002). In P. 

japonicus, high mortality of WSSV infection was occurred together with a high 

incident of apoptosis (Wu et al., 2004). This result associated the recent research that 

apoptosis might be implicated shrimp death owing to viral infection (Flegel et al., 

1995).  
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1.5 Serine proteinases (SPs) and serine proteinase 

homologues (SPHs) 

1.5.1 Mechanism of action of serine proteinases 

Serine proteinase (SP) is a group of endopeptidase that cleaved peptide bond 

in protein (Neurath, 1985) in which one of the amino acid at the active site is serine 

(Phillips et al., 1992). The SP is belonging to one of four protease families. Generally 

SP can be classified to 6 clans. Six clans are consisted of clan A to clan F especially 

clan A contains a families that share a common origin with chymotrypsin such as 

trypsin, elastase and the enzyme of blood clotting system (Barrett et al., 1995). These 

enzymes typically are synthesized in inactive forms which require activation by 

cleavage of a peptide bond near the N-terminus (Neurath, 1989). In chymotrypsin this 

is between Arg-15 and Ile16; the free, protonated amino group of Ile16 is important 

for the mechanism. The amino-terminal peptide with residues 1 through 13 stays 

attached to the rest of the protein through a disulfide bond.  In trypsin the activation 

cuts off an amino-terminal hexapeptide, which does not remain attached (Neurath et 

al., 1976). Whereas, thrombin, does not have its amino terminal domain attached by a 

disulfide bond and goes free in the plasma to attack fibrinogen and generate clots 

(Dunn et al., 1982). 

The peptide bond is cleaved by nucleophilic attack of the serine hydroxyl 

group on the scissile carbonyl bond, forming an acyl enzyme intermediate (Figure 

1.4). The carbonyl carbon of this bond is position near the nucleophilic serine. The 

serine-OH attacks the carbonyl carbon, and the nitrogen of the histidine accepts the 

hydrogen from the -OH of the serine and a pair of electrons from the double bond of 

the carbonyl oxygen moves to the oxygen. As a result, a tetrahedral intermediate is 

generated. The bond joining the nitrogen and the carbon in the peptide bond is now 

broken. The covalent electrons creating this bond move to attack the hydrogen of the 

histidine, breaking the connection. The electrons that previously moved from the 

carbonyl oxygen double bond move back from the negative oxygen to recreate the 

bond, generating an acyl-enzyme intermediate. Now, water comes in to the reaction. 

Water replaces the N-terminus of the cleaved peptide, and attacks the carbonyl 

carbon. Once again, the electrons from the double bond move to the oxygen making it 
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negative, as the bond between the oxygen of the water and the carbon is formed. This 

is coordinated by the nitrogen of the histidine. This accepts a proton from the water. 

Overall, this generates another tetrahedral intermediate. In a final reaction, the bond 

formed in the first step between the serine and the carbonyl carbon moves to attack 

the hydrogen that the histidine just acquired. The now electron-deficient carbonyl 

carbon re-forms the double bond with the oxygen. As a result, the C-terminus of the 

peptide is now ejected. In trypsin, the catalytic triad is composed of Ser195, His57 

and Asp102 (Phillips et al., 1992). 

 

Figure 1.4 A detailed mechanism for the chymotrypsin-like SP reaction. (Source: 

http://www.bmolchem.wisc.edu/courses/spring503/503-sec1/503-3a.htm) 
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1.5.2 Clip-domain serine proteinases and clip-domain serine proteinase 

homologues 

The first clip domain SP was initially identified from horseshoe crab, 

Tachypleus tridentatus that have function in clotting system (Muta et al., 1990). The 

clip domain is a conserved domain that was found in the N-terminus of SP enzyme 

especially 6 highly conserved cysteine residues. Six cysteine residues forming 3 

disulfide bonds have a topology similar to –defensin in vertebrate and invertebrate 

(Wang et al., 2001; Ganz, 2004) but the X-ray crystallography demonstrated that the 

structure appear to be difference (Piao et al., 2005).  The clip domain was firstly 

called by Iwanaga et al. (1998) since the disulfide bridges forming the shape look like 

a paper clip. The activation cleavage site is presented between catalytic domain and 

clip domain by two cysteines formed a disulfide bond linking the two domains after 

activation reaction (Figure 1.5)(Jiang et al., 2000). 

There are some groups of clip-SP that share a common feather to regular clip 

families SP except differ slightly in having a catalytic triad with the amino acid Ser 

replaced by Gly. These proteins are also called serine proteinase homolog (SPH). 

Although the SPHs are non-proteolytic activity, due to substitution of Ser to Gly at 

catalytic triad but it have role in several biological function for instance of 

prophenoloxidase activation cascade (Kwon et al., 2000), cell adhesion or as an 

immune molecule (Huang et al., 2000; Lin et al., 2006).  

1.5.3 Role of clip-domain family of serine proteinases and serine proteinase 

homologues in arthropods 

Arthropod clip-domain serine proteinases (clip-SPs) and clip domain serine 

proteinase homologues (clip-SPHs) have been shown to be involved in various 

biological functions, especially in embryonic development and innate immune 

responses (Jiang et al., 2000; Gorman et al., 2001; Ross et al., 2003; Jang et al., 2008).  

The clotting system of horseshoe crab is activated by microbial cell wall 

component via a proteolytic cascade. The factor C and Factor G, a serine proteinase 

zymogen, was activated by gram negative bacteria and fungi invading the horseshoe 
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crab hemolymph. Consequently, the active clotting enzyme will cleave coagulogen to 

coagulin, an insoluble aggregate (Kawabata et al., 1996; Iwanaga et al., 1998). 

 

Figure 1.5 Domains organization of clip-domain proteinases. The proteinases contain 

an amino-terminal clip domain followed by a linker region of variable length and a 

carboxyl-terminal serine proteinase domain typical of the chymotrypsin family. A 

disulfide bond connects the linker region to the proteinase domain such that when the 

proteinase zymogen is activated by a specific proteolysis at the amino-terminus of the 

proteinase domain, the clip domain and proteinase domain remain covalently attach 

(Jiang et al., 2000) 

In D. melanogaster, snake and easter are the clip-domain SPs which controls a 

development of dorsal-ventral axis in D. melanogaster embryo. The snake 

functionally activated the easter which activates the morphogen spätzle (Dissing et al., 

2001). Basically, the spätzle is activated by recognition of gram positive bacteria or 

fungi(Royet et al., 2005). The proteinase inhibitor called serpin 27A was observed 

that it can regulate proteolytic activity of ester (Ligoxygakis et al., 2003). This 

activation system was named Toll signaling pathway. The Drosophila Toll pathway is 

corresponding to immune system in post-embryonic state but understanding of the 

immune respond in this system was not clear. The activation of proteins 

corresponding Toll pathway are required for transcription induction of antifungal 

peptide called Drosomycin (Anderson, 2000). In Drosophila embryo, active spätzle is 
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Toll ligand that is generated by localized proteolytic processes. In the other hand, the 

pathogen-associated molecular patterns (PAMPs) such as LPS, peptidoglycan and 

mannans might activate the classical protein ligand via unidentified protease cascade. 

The novel five SP were identified that have function associated the Toll signaling 

pathway. Generally four of these SPs are related to Toll signaling pathway that 

activated by fungi whereas another one is required for signaling in respond to gram 

positive bacteria (Kambris et al., 2006).  

Serine proteinase cascade in prophenoloxidase activating system are well 

studied in many arthropod. The serine proteinase that convert prophenoloxidase to 

phenoloxidase are named prophenoloxidase activating enzyme (PPAE) in B. mori 

(Satoh et al., 1999), P. leneusculus (Wang et al., 2001) or H. diomphalia (Kim et al., 

2002), prophenolxidase activating proteinase (PAP) in M. sexta (Gupta et al., 2005) or 

melanization proteinase (MP) in D. malanogaster (Tang et al., 2006). Some SP in this 

cascade would be auto-activated when presenting of microbial call wall component 

such as M. sexta hemolymp proteinase 14 (HP14) (Gorman et al., 2007).  

Basically the activation of proPO may require SPH as SP cofactor in many 

organisms such as H. diomphalia, Tenebrio molitor, and M. sexta (Lin et al., 2006; 

Wang et al., 2008). However PPAE from B. moli does not need SPH to assisting for 

proPO activation (Satoh et al., 1999). Prophenoloxidase activating factor II (PPAFII), 

SPH that activated proPO, is processed by PPAFIII (PPAFIII, SP) (Kim et al., 2002). 

On the other hand the enzyme that activated SPHs in H. diomphalia has been 

unknown (Yu et al., 2003). The SPH was first discovered in 1990 which was shown to 

stabilize muscle attachment in D. malanogaster embryo and was called masquerade 

(Mas) (Murugasu-Oei et al., 1995). Similar to general SP, SPHs are required the 

proteolytic activation. In crayfish, the proteolytic cleavage of SPH, from hemocyte, 

are processed at the three indicated site during binding to bacteria or yeast and could 

be involved in granulocyte adhesion, pattern recognition and opsonizaton but not 

corresponded to phophenoloxidase activation (Lee et al., 2001).  
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1.6 RNA interference (RNAi) 

RNA interference (RNAi) or RNA-based gene silencing is a immune system 

in eukaryotic organism. The double stranded RNA (dsRNA) can directly prevent 

eukaryotic cell form viral infection (for example HIV-1, RSV, HPV, poliovirus etc.) 

and also induced sequence-specific inhibition of gene expression (Bagasra et al., 

2004). First step, dsRNA is attached with RNAaseIII-like enzyme such as Dicer in D. 

malanogaster (Elbashir et al., 2001; Agrawal et al., 2003; Bernstein et al., 2003). And 

then this enzyme will cleave the dsRNA into short interfering RNA (siRNA) of 21-23 

nucleotides (Hammond et al., 2000). The siRNA will be incorporated with helicase, 

RecA, exo-, endo-nucleases and other protein forming RNAi-induced silencing 

complex (RISC). The RISC binds to and claves the target mRNA at the center of the 

region complement to siRNA. As a result, mRNA is suddenly degraded leading to 

increasing of gene expression. MicroRNA (miRNA) is a special class of siRNA by 

endogenous gene is a source (Bartel et al., 2004; Ambros et al., 2007). In 

mammalians, miRNA is function in regulation of specific expression of immune gene 

(Chowdhury et al., 2005). 

The discovery of RNAi was initiated in plant (Matzke et al., 1989) but the 

effect of dsRNA leading to gene specific silencing was elucidated in Caenorhabditis 

elegans (Fire et al., 1998). Now post-transcriptional gene silencing mechanism 

initiated by dsRNA has been discovering in various organism (Mello et al., 2004). 

The RNAi become to an important tool for functional genomic studied and other 

applications. Specific dsRNA was used to silencing of known immune related gene 

especially in insect (Eleftherianos et al., 2006). RNAi mediated gene silencing have 

been successes in many organism such as Drosophila (Misquitta et al., 1999), 

Zebrafish (Wargelius et al., 1999), Planaria (Sánchez Alvarado et al., 1999) and 

plants (Jensen et al., 2004). In crustacean, RNAi have been became to a technique for 

understanding of functional immune respond in crayfish (Liu et al., 2007) and P. 

monodon (Charoensapsri et al. 2009). 
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1.7 Previous studies 

Partial cDNA sequence coding a PmClipSP1 gene was identified from 

Penaeus monodon EST database (http://pmodon.biotec.or.th). Subsequently, the full 

length cDNA was obtained by RACE-PCR. In addition, the realtime PCR revealed 

that PmClipSP1 mRNA was highest expressed in hemocyte and upregulated at 3 hr. 

after V. harveyi infection in shrimp hemocyte (Amparyup et al., 2009B). However, 

the role of PmClipSP1, which is involved in the shrimp immunity, is yet to be 

clarified. 

1.8 Objectives 

The objective of this thesis is to identify and characterize the function of 

PmClipSP1 in shrimp immunity. The recombinant proteins of PmClipSP1 (mature 

protein and SP domain) were expressed in E. coli system and the biological function 

of PmClipSP1 were analyzed. Furthermore, the potential participation of PmClipSP1 

in the proPO system and shrimp immunity was also elucidated by dsRNA-mediated 

RNA interference (RNAi). This study provides a basic knowledge of a clip domain 

serine proteinase leading to an understanding of shrimp immunity. 

 



CHAPTER II 

MATERIALS AND METHODS 

2.1 Equipments 

-20 oC Freezer (Whirlpool), -80 oC Freezer (ThermoForma) 

Costar® 96-well plate (Corning Incorporation) 

Amicon Ultra-4 concentrators (Millipore). 

Automatic micropipette: P10, P20, P100, P200, and P1000 (Gilson Medical 

Electrical S.A.) 

Balance: Satorius 1702 (Scientific Promotion Co.) 

Gel documentation (SYNGENE)  

Gene Pulser (Bio-RAD) 

Incubator (Memmert) 

Innova 4080 incubator shaker (New Brunswick Scientific) 

Insulin syringes U 100 (Becton, Dickinson and Company) 

LABO Autoclave (SANYO) 

Laminar Airflow Biological Safety Cabinets (NuAire, Inc.) 

Microcentrifuge tubes 0.5 ml and 1.5 ml (Bio-RAD Laboratories) 

Microtiter plate reader (Beckman Coulter AD200) 

PCR Mastercycler (Eppendorf AG) 

pH meter Model # SA720 (Orion) 

Power supply: Power PAC 3000 (Bio-RAD Laboratories) 

 



 27 
Refrigerated microcentrifuge MIKRO 22R (Hettich Zentrifugen)  

Spectrophotometer (eppendorf) 

Sterring hot plate (Fisher Scientific)  

Syringe (NIPRO) 

Needle 21GX1”(NIPRO) 

Touch mixer Model # 232 (Fisher Scientific) 

Trans-Blot® SD (Bio-RAD Laboratories) 

Ultra Sonicator (SONICS Vibracell) 

Vertical electrophoresis system (Hoefer™ miniVE) 

Water bath (Memmert) 

2.2 Chemicals, Reagents and Biological substance 

100 mM dATP, dCTP, dGTP, and dTTP (Fermentas) 

2-Mercaptoethanol, C2H6OS (Fluka) 

5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside (X-Gal) (Fermentas) 

5-bromo-4-chloro-indolyl phosphate (BCIP) (Fermentas) 

Absolute methanol, CH3OH (Scharlau) 

Acrylamide (Plus one) 

Agarose (Sekem) 

Alkaline phosphatase-conjugated rabbit anti-mouse IgG (Jackson 

ImmunoResearch Laboratories, Inc.) 

Ammonium persulfate, (NH4)2S208 (USB) 

Amplicillin (BioBasic) 
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Anti-His antiserum (GE Healthcare) 

Bacto agar (Difco) 

Bacto tryptone (Scharlau) 

Bacto yeast extract (Scharlau) 

Boric acid, BH3O3 (MERCK) 

Bovine serum albumin  (Fluka) 

Bromophenol blue (MERCK) 

Calcium chloride (CaCl2) (MERCK) 

Chloramphenicol (Sigma) 

Coomassie brilliant blue G-250 (Fluka) 

Coomassie brilliant blue R-250 (Sigma) 

Diethyl pyrocarbonate (DEPC), C6H10O5 (Sigma) 

Dithiothreitol (Pharmacia) 

Ethidium bromide (Sigma) 

Ethylene diamine tetraacetic acid disodium salt dihydrate (EDTA)(Fluka) 

Formaldehyde, CH2O (BDH) 

Formamide deionized (Sigma) 

GeneRuler™ 100bp DNA ladder & GeneRuler™ 1kb DNA ladder (Fermentas) 

Glacial acetic acid , CH3COOH (J.T. Baker) 

Glucose, C6H12O6 (Ajax chemicals) 

Glycerol, C3H8O3  (Scharlau) 
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Glycine, NH2CH2COOH (Scharlau) 

Hydrochloric acid (HCl) (MERCK) 

Imidazole (Fluka) 

Isopropanol, C3H7OH (MERCK) 

Isopropyl-β-D-thiogalactoside (IPTG), C9H18O5S (USBiological) 

Laminarin from Laminaria (Sigma)  

LPS of E. coli serotype 0111:B4 (Sigma)  

Magnesium chloride (MgCl2) (MERCK) 

Methanol, CH3OH (MERCK) 

N, N, N’, N’-Tetramethylethylenediamine (TEMED) (BDH) 

N, N’, methylenebisacrylamide (Fluka) 

Ni Sepharose 6 Fast Flow (GE Healthcare) 

Nitroblue tetrazolium (NBT) (Fermentas) 

Paraformaldehyde (Sigma) 

pET22b(+) vector (Novagen) 

Phenol, saturated (MERCK) 

Prestained protein molecular weight marker (Fermentas) 

RNA markers (Promega) 

Skim milk powder (Mission) 

Sodium acetate, CH3COONa (Carlo Erba) 

Sodium cacodylate trihydrate (CAC), (CH3)2AsO2Na · 3H2O, (Sigma) 
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Sodium chloride, NaCl (BDH) 

Sodium dihydrogen orthophosphate, NaH2PO4.H20 (Carlo Erba) 

Sodium dodecyl sulfate, C12H25O4SNa (Sigma) 

Sodium hydroxide, NaOH (Eka Nobel) 

Triethanolamine (Unilab) 

Tris-(hydroxy methyl)-aminomethane, NH2C(CH2OH)3 (USB) 

Tri reagent (Molecular Research Center) 

Tryptic soy broth (Difco) 

Urea (Fluka, Switzerland) 

Xylene cyanol FF, C25H27N2O6S2Na (Sigma) 

2.3 Kits and enzymes  

ImProm-IITM Reverse Transcription system kit (Promega) 

Mini Quick Spin RNA Columns (Roche Applied Science) 

NucleoSpin® Extract II Kits (MACHEREY-NAGEL) 

QIAprep® Miniprep kits (QIAGEN) 

pGEM®-T Easy Vector Systems (Promega) 

T & A Cloning vector Kit (RBC Bioscience)  

T7 RiboMAX(TM) Express RNAi System (Promega) 

Taq DNA polymerase (Fermentus) 

Advantage 2 Polymerase Mix (Clontech) 

EcoRI (Biolabs) 
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HindIII (Biolabs) 

NdeI (Biolabs) 

RNase A (Sigma) 

RQ1 RNase-free DNase (Promega) 

T7 RNA polymerase (Roche)  

T4 DNA ligase 

Trypsin (Sigma) 

α-Chymotrypsin (Sigma) 

2.4 Microorganisms 

Escherichia coli strain Rosetta (DE3)  

Escherichia coli strain JM109 

Vibrio harveyi 639  

2.5 Software 

BlastX (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) 

Clustal X (Thompson, 1997) 

GENETYX (Software Development Inc.) 

NetNglyc software (http://www.cbs.dtu.dk/services/NetNGlyc) 

PHYLIP (Felsenstein, 1993) 

SECentral (Scientific & Educational Software) 

SignalP (http://www.cbs.dtu.dk/services/SignalP/) 

SMART (http://smart.embl-heidelberg.de/smart/set_mode.cgi?GENOMIC=1) 
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2.6 DNA sequence analysis 

The full length cDNA sequence was edited and translated using the GENETYX 

software program (Software Development Inc.). This sequence was further compared 

with database from the GenBank (http://www.ncbi.nlm.nih.gov) using the BlastX 

program (Altschul et al., 1997). The significant probabilities and identity were 

considered from E-values < 10-4 and the match included > 10 amino acid residues for 

BlastX. Putative motifs and domains were investigated using SMART program. 

Related sequences that had been searched from GenBank, were aligned using Clustal 

X program (Thompson et al., 1997). The potential cleavage site of the signal peptide 

and putative N-Glycosylation sites were predicted by SignalP software (http://cbs. 

dtu.dk/services/SignalP/) and NetNglyc software (http://cbs.dtu.dk/services/NetNG 

lyc), respectively. Aligned sequences were bootstrapped 1000 times using Seqboot. 

Boostrapped neighbour-joining trees were constructed using Neighbour and 

Consense. All phylogenetic reconstruction programs are routine in PHYLIP 

(Felsenstein, 1993). Trees were appropriately illustrated using TreeView (http:// 

taxonomy.zoology.gla.ac.uk/rod.html). 

2.7 Construction of expression plasmid for recombinant 

PmClipSP1 production in E. coli 

2.7.1 Amplification of the mature sequence of the PmClipSP1 and the proteinase 

domain of PmClipSP1 

DNA fragments coding the mature sequence and the proteinase domain of the 

PmClipSP1 from P. monodon cDNA were amplified using specific primers. A pair of 

primers 22NdeISP1-F and 22HidIIISP1-R (Table 2.1) was used for the mature 

sequence of the PmClipSP1 amplification and a pair of primers ExSPSP1-F and 

22HidIIISP1-R (Table 2.1) was used for the proteinase domain of PmClipSP1 

amplification. The PCR reaction was performed using Advantage 2 polymerase mix. 

The amplification reactions were preformed in 25 µl total volume containing 2 µl 

cDNA sample, 1x PCR buffer, 0.2 mM each dNTP, 1.5 mM MgCl2, 1 µM each 

primer and 1 units Advantage 2 Taq DNA polymerase (Clontech) following thermal 

cycle conditions were: pre-denaturing at 94 oC for 10 min, 5 cycles of denaturing step 
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94 oC for 1 min, annealing step 55 oC 1 min, extension step 72 oC for 1 min, 30 cycles 

of denaturing step 94 oC for 1 min, annealing step 62 oC 1 min, extension step 72 oC 

for 1 min and the final extension was carried out 72 oC for 10 min  
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Table 2.1 Primer sequence using for cloning strategies and dsRNA synthesis 

Primer name Sequence Tm (oC) 
For gene cloning and protein expression 

5' GGAATTCCATATGCATCATCATCATCATCAT 22NdeISP1-F 

CAGGGTGCAGATTGTGTACGCAGTCAGT 3' 
78 

5' CCCAAGCTTTTATGGCTTTAAGTTCTGCTCA 22HidIIISP1-R 

ATCCATGTC 3' 
73 

5' GAATTCCATATGCATCATCATCATCATCATA  ExSPSP1-F 

GAATTGTGGGTGGAGAAGTAGCC3'  
79 

For dsRNA synthesis 
SP1i-F 5' CGTGGTTGCGTGGCGTGGTTAG  3' 70 

5' CCTATAGTGAGTCGTATTAGGATCCGCCTG T7SP1i-R 

TTGAGTCTGATGAGTGC  3' 
76 

SP1i-R 5' GCCTGTTGAGTCTGATGAGTGC 3' 65 
5' GGATCCTAATACGACTCACTATAGGCGTGG T7SP1i-F 

TTGCGTGGCGTGGTTAG 3' 
79 

GFP-F 5'ATGGTGAGCAAGGGCGAGGA 3' 68 
5'TAATACGACTCACTATAGGTTACTTGTACAG GFPT7-R 

CTCGTCCA 3' 
71 

GFP-R 5' TTACTTGTACAGCTCGTCCA 3' 60 
5' TAATACGACTCACTATAGGATGGTGAGCAA  GFPT7-F 

GGGCGAGGA 3' 
75 

For RT-PCR 
PmPPAE1-F 5'TGGGGCGAAGGCAGGGCACAAGGCGCAG3' 81 
PmPPAE1-R 5'CTCTTCTTCAAGCTCACCACTTCTATCT3' 65 
PmPPAE2rt-F 5'GCGGCGGTCACGCTCCTTGTTC3' 72 
PmPPAE2rt-R 5'ACTCTCGGGGGCACGCTTGTTG3' 71 
PmSP2rt-F 5'GGCGTTGGTCTTCACTGCTCTC3' 67 
PmSP2rt-R 5'CAGAACTGCCTTCCAAGGATAG3' 62 
PmSPH1rt-F 5'TACGTACTCATTGATATCAGGTTTGG3' 62 
PmSPH1rt-R 5'GCCTCGTTATCCTTGAATCCAGTGA3' 66 
PmSPH2rt-F 5'CCGTGAACCAGCGATGTCCTTA3' 66 
PmSPH2rt-R 5'GCCACACTCTCCGCCTGCTCCG3' 73 
PmSPH3rt-F 5'GCTCTTGGTGCTGCCGCTGTTG3' 71 
PmSPH3rt-R 5'CACCGTCCACGCACAGGTAATA3' 66 
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2.7.2 Agarose gel electrophoresis  

The PCR products were analyzed on 1.2% (w/v) agarose gel in 1x TBE (89 mM 

Tris-HCl, 8.9 mM boric acid and 2.5 mM EDTA, pH 8.0) which were prepared by 

melt slurry in microwave oven until it completely dissolved. After solution cool down 

at 55-60 oC, then the gel was pored into the tray that was applied with the well comb. 

The PCR products were mixed into the 6X loading dye and loading into each well. 

The GeneRulerTM 100 bp or 1 kb DNA Ladder plus (Fermentas) were used as 

standards DNA markers. 

Electrophoresis was executed in 1X TBE buffer until dye moved about ¾ of gel 

length. After that, the gel was stained in a 2.5 g/ml ethidium bromide (EtBr) solution 

for 1.5 min and destained in water for 15 min. DNA fragments were detected by 

visualization in UV transilluminator and photographed. 

2.7.3 Purification of PCR product from agarose gel 

The expected PCR bands were spited form the gel and purified by using 

NucleoSpin® Extract II Kits (MACHEREY-NAGEL) following manufacturer 

protocol. The gel fragment was cut and weighed. Three volume of NT buffer was 

added with gel slice and incubated at 60 oC until gel completely dissolved. The 

solutions were filled in NucleoSpin® column and centrifuged at 12,000x g for 1 min 

to remove the supernatant. The columns were washed with 500 µl of NT2 buffer and 

centrifuged as described above. The column was centrifuged again to remove 

remained ethanol from NT2 buffer. The DNA was eluted with 15 µl of elution NE 

buffer and stood at room temperature for 1 min before centrifugation. Eluted DNA 

was stored at -20 oC. 

2.7.4 Cloning of DNA fragment into pGEM-T Easy vector or T&A cloning vector 

The purified PCR product of the complete sequence of PmClipSP1 was ligated 

into pGEM-T Easy® (Promega) vector and the purified PCR product of the proteinase 

domain of PmClipSP1 was ligated into T&A cloning vector (RBC bioscience). For 

the ligation to pGEM-T Easy, the reaction was composed of 5µl of 2x Rapid ligation 

buffer, 1µl of pGEM-T Easy Vector (50 ng), proper amount of PCR product, 1µl of 

T4 DNA ligase (3 Weiss units/µl), and deionized water to a final volume of 10 µl. 
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Moreover the ligation to T&A cloning vector (RBC bioscience) was achieved follow 

by the reaction with 5 µl of 1x Rapid A and B ligation buffer, 2 µl of T&A Cloning 

Vector (50 ng), proper amount of PCR product, 1 µl of T4 DNA ligase (3 Weiss 

units/µl), and deionized water to a final volume of 10 µl. The reactions were mixed by 

pipetting, briefly spun and incubated overnight at 4 °C. 

The appropriate amount of insert in the ligation reaction was calculated following 

equation: 

ng of insert = [ng of vector × kb size of insert] × insert:vector molar ratio 

                                 Kb size of vector 
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Figure 2.1 pGEM®-T easy vector map (A) and multiple cloning site sequences (B) 

(Promega) 
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Figure 2.2 T&A Cloning vector map (A) and multiple cloning site sequences 

(B) (RBC) (Source: T&A Cloning vector kit User Manaul ) 

2.7.5 Competent cells preparation 

E. coli strain JM 109 from stock glycerol was streked in LB agar (1% (w/v) 

bacto tryptone, 0.5% (w/v) bacto yeast extract, 1% (w/v) NaCl and 1.5 % (w/v) agar 

C) and incubated at 37 °C until single colonies were appeared. The starter culture was 

prepared by picked single colony into LB broth (1% (w/v) bacto tryptone, 0.5% (w/v) 

bacto yeast extract, and 1% (w/v) NaCl). It was incubated overnight in shaker at 

37 °C. The starter culture was diluted 100 fold in 250 ml LB broth and incubated in 

shaker at 37 °C for approximately 2 hr until OD600 of the cells reached 0.5-0.7. And 

then, cells were chilled on ice for 10 min and harvested by centrifugation at 5,000Xg 

(A) 

 
(B) 
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for 10 min at 4 oC. The supernatant was removed and the cell pellet was washed twice 

in 10 mM and 100 mM ice cool CaCl2 at half volume and one twentieth to one fifth 

volume of initial cell culture respectively. The competent cell was stocked in 15% 

glycerol and stored in -80 °C until used. 

2.7.6 Transformation by heat shock 

A hundred microliters of competent cell was mixed with ten microliters of 

ligate, that have been prepared. The mixture of competent cell and ligate were chilled 

on ice for 10 min and heated at 45 °C for 45-50 s after that the mixture was chilled on 

ice immediately for 5 min and 1ml LB broth was added. The transfomant was 

incubated at 37 °C for one hour. After incubation, transformants were spread on LB 

agar plate containing 100 µg/ml of ampicillin, 20 µg/ml of X-gal and 30 µg/ml of 

IPTG and then incubated at 37 oC for overnight. After incubation the white colonies 

were selected for screening of insert in plasmid by colony PCR. 

2.7.7 Screening and selection of transformant  

White colonies were randomly selected for screening the insert by colony PCR. 

The colony PCR was performed in 25 µl reaction that consisted of 1x PCR buffer, 0.2 

mM of dNTP mix, 1.5 mM MgCl2, 1 µM of forward and reverse primers, and 1 units 

of Taq DNA polymerase (Fermentus). For the cloning in pGEM-T Easy vector, T7 

and SP1-R primers were used to analyzed insert sizes, whereas M13 forward and M13 

reverse primers were used for T&A cloning. The single colony was picked into the 

reaction by using sterile pipette tip. The thermocycles were 94 C for 1 min, 35 cycles 

at 94 C for 30 s, 55 C for 30 s, 72 C for 2 min and a final extension at 72 C for 5 

min. The PCR products were analyzed by 1.2% agarose gel electrophoresis.  

2.7.8 Plasmid DNA extraction using QIAprep® Miniprep kit 

The plasmid was isolated from the positive clones by a QIAprepTM Miniprep 

kits (QIAGEN) as described in Qiagen’s handbook. The QIAprep miniprep procedure 

is based on alkaline lysis of bacterial cells followed by adsorption of DNA onto silica 

membrane under high salt condition. Firstly, bacterial cells were harvested by 

centrifugation and resuspend in 250 µl P1 buffer containing RNase A. Next, the 250 

µl P2 buffer was added and mixed thoroughly by inverting the tube 4–6 times for cell 
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lysis. The cell lysate was neutralized by adding 350 µl N3 buffer. After maximum 

speed centrifugation for 10 min, the supernatant containing the plasmid was applied to 

column by pipetting. The column was centrifuged for 30–60 s, and then the flow-

through was discarded. The QIAprep spin column was washed twice by adding 0.5 ml 

Buffer PB and 0.75 ml Buffer PE, respectively, and then centrifuged to remove 

residual ethanol from PE Buffer. Finally, the QIAprep column was placed in a clean 

1.5 ml microcentrifuge tube. The plasmid DNA was eluted by adding 50 µl EB buffer 

(10 mM Tris-HCl, pH 8.5) to the center of each column. After incubation at room 

temperature for 1 min, the eluted fraction was collected by centrifugation for 1 min.  

2.7.9 Verification of recombinant plasmids 

The correct sequence of insert in recombinant plasmid was determined by 

restriction enzyme digestion using NdeI and HindIII. Conditions for enzymatic 

digestion of recombinant plasmid composed of 3 l of extracted recombinant plasmid, 

1x reaction buffer (10mM NaCl, 5 mM Tris-HCl, 1 mM MgCl2, 0.1 mM 

dithiothreitol, pH 7.9: New England Biolabs), 0.5 unit of HindIII and NdeI (New 

England Biolabs) and in  a 10 l reaction volume. The digested plasmid was analyzed 

by 1.0% agarose gel electrophoresis. The size of DNA fragment was compared with 

standard DNA ladder (100 bp or 1kb ladder marker). The recombinant plasmid was 

sequenced by an automatic DNA sequencer at the Macrogen Inc (Korea). 

2.7.10 pET-22b(+) expression vector preparation 

pET-22b(+) (Novagen) was used as an E. coli expression vector consisting of 

T7 promoter, His Tag coding sequence, T7 Tag coding sequence, multiple cloning 

sites, lacI coding sequence, pBR322 origin and Amprest coding sequence. E. coli from 

stock glycerol containing pET-22b(+) was cultured in 10 ml LB medium 37 °C with 

orbital shaking at 250 rpm an overnight. The plasmid was extracted by QIAprep® 

Miniprep kits (QIAGEN). The extracted pET-28b(+) was cut with HindIII and NdeI 

and then purified from gel by NucleoSpin® Extract II Kits. 
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Figure 2.3 pET-22b(+) vector map and sequences in and around the multiple cloning 

sites (Novagen) 

2.7.11 Ligation and transformation into E. coli strain Rosetta (DE3) 

The correct sequence inserts that has been digested from recombinant pGEM-T 

Easy or T&A cloning vector by restriction enzymes, were purified following the 

method described above. The expression vectors were constructed by ligation 

between pET-22b(+) and interested gene that both were previously digested with 

HindIII and NdeI. The ligation reactions were assembled using 2 µl of 10x ligation 

buffer, 2 µl of T4 ligase (New England Biolab), 2 µl of interested gene and 8 µl pET-

22b(+) vector which molar ratio of insert:vector was 3:1. The total volume was 

adjusted to 20 µl with sterile water. The ligation reaction was incubated at 4 °C for 
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overnight. Ten microliters of ligation was transformed into E. coli strain Rosetta 

(DE3). 

2.7.12 Screening and determination of E. coli strain Rosetta (DE3) 

transformation  

Transformant was screened in LB agar containing 100 mg/ml ampicillin and 

examined by colony PCR. The positive appeared clones were selected for extraction 

of the recombinant plasmid by using QIAprep® Miniprep kits (QIAGEN). The 

recombinant plasmids were detected by restriction enzyme digestion with HindIII and 

NdeI. The digested plasmid was detected by 1.0% agarose gel electrophoresis. One 

kilo base pair marker was used as standard for comparison with size of digested DNA.  

2.7.13 Over expression of PmClipSP1-mature protein and PmClipSP1 -SP 

domain in E. coli system 

The exact sequence clone was selected and cultured in LB medium containing 

100 mg/ml ampicillin at 37 °C with orbital shaking at 250 rpm an overnight. The 

bacterial culture was diluted 100 fold LB broth and incubated for about 2 hr until 

OD600 of the cultures reached 0.6. The expression was induced by adding 1 mM IPTG 

(Isopropyl-β-D-thiogalactopyranoside) into the cell culture broth. The cells were 

collected at 1 hr, 2 hr, 3 hr, 4 hr and 5 hr after induction. The cells were centrifuged at 

8000 rpm for 2 min and discarded supernatant. The cell pellet was resuspended in 1X 

SDS loading buffer and boiled for 15 min before determine by sodium dodecyle 

sulphate polyacrylamide gel electrophoresis (SDS-PAGE). 

2.7.14 Purification of recombinant PmClipSP1-mature protein and PmClipSP1 -

SP domain 

The cell culture was harvested at 4 hr after induction following previous 

method. The cells were washed twice and resuspended in 20 mM phosphate buffer pH 

7.4. The resuspended cells were treated with deoxyribonuclease (DNase) before 

sonication. After sonication, the call lysate was centrifuged at 8000 rpm for 10 min. 

The aqueous fraction was kept for examining expression protein by SDS-PAGE and 

the precipitate was dissolved with lysis buffer (20 mM phosphate buffer pH 7.4 

containing 8 M urea and 20 mM imidazole) shaking at room temperature overnight. 
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This fraction called inclusion body was purified under denaturing conditions in 8 M 

urea using nickel affinity chromatography (GE Healthcare). Ni-NTA agarose was 

mixed with the inclusion body and shaked at room temperature for 1 hr. The mixture 

was filled into column collecting flow through. The column was washed twice with 

the wash buffer (20 mM phosphate buffer pH 7.4 containing 8 M urea and 20 mM 

imidazole). After washing, the purified protein was eluted with elution buffer (20 mM 

phosphate buffer pH 7.4 containing 8 M urea and 500 mM imidazole). Each fraction 

was determined recombinant protein by SDS-PAGE. The purified protein was 

dialyzed in 20 mM Tris–HCl, pH 8.0 to allowing refold protein. The dialysis buffer 

was changed twice every 10 hr and each step was performed at 4 °C. The refolding 

proteins were concentrated by ultrafiltration through 30 kDa cut off Amicon Ultra-4 

concentrators (Millipore). The purified recombinant PmClipSP1 -SP domain was send 

to the commercial service of the AMS Clinical Services Center, Chiang Mai 

University, for production of a specific polyclonal antibody.  

2.7.15 Analysis of recombinant protein by sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE was prepared according to the method of Laemmli method (1970). 

The separating gel was prepared as 12% acrylamide gel by mixing of 4.16 ml solution 

A (30% w/v acrylamid, 0.8% w/v bis-acrylamide), 2.5 ml solution B (1.5 M Tris-HCl 

pH 8.8, 0.4% SDS) 60 µl of 10% ammonium persulfate (APS), 6 µl N,N,N,N’-

tetramethylenebisacrylamide (TEMED) and 3.34 ml water. Before loading of solution 

into the slab gel (10 × 10 × 0.75 cm) system, the mixture was vigorous shaked until 

solution was homogeneous and the gels were placed in a vertical position at room 

temperature for complete polymerization. The 5% stacking gel was prepared by 

mixing 0.67 ml solution A, 1 ml solution C (0.5 M Tris-HCl pH 6.8, 0.4% SDS) 30 µl 

of 10% APS, 5 µl TEMED and 2.3 ml water. The solution was slotted on the 

separating gel surface and the well comb was buried in the top of stacking gel. The 

protein samples were mixed with 2X SDS loading buffer and boiled for 15 min before 

loading. The electrophoresis was performed at constant current of 20 mA per slab in 1x 

Tris-glycine electrophoresis buffer pH 8.3 (25 mM Tris, 192 mM glycine and 0.1% 

(w/v) SDS) at room temperature until the protein marker was distinctively separated. 

After that, the gel was stained in coomassie blue staining solution (0.25% (w/v) 
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coomassie brilliant blue R-250, 50% (v/v) methanol and 10% (v/v) glacial acetic acid) 

for 30 min and de-stained by soaking in de-staining solution (30% (v/v) methanol and 

10% (v/v) glacial acetic acid). 

2.7.16 Determination of protein concentration 

The concentration of protein was determined by Bradford method (1976) and 

bovine serum albumin (Fluka) using as the standard (Appendix C). This method is 

based on the binding of coomassie brilliant blue G250 dye to proteins. When the dye 

binds to proteins, the red form of dye is converted to the blue color. One hundred 

microliters of diluted sample solution was mixed with Bradford working buffer and 

left for 2 min before the absorbance at 595 nm was measured. The Bradford working 

buffer (100 ml) was a mixture of 6 ml Bradford stock solution (350 g Coomassie blue 

G250, 100 ml 95% ethanol and 200 ml 85% phosphoric acid), 3 ml 95% ethanol, 6 ml 

85% phosphoric acid and 85 ml distilled water. 

2.7.17 Phenoloxidase activity assay 

The hemocyte lysate supernatant (HLS) was prepared by collecting the 

hemolymph from the ventral sinus using a 1 ml syringe with a 26 gauge-needle 

containing SAC buffer (Shrimp anti-coagulant buffer, 1% Triton X-100, 0.5% sodium 

dodecyl sulfate, and 2.5 mM EDTA in PBS) as two volume of hemolymph. The 

hemocyte was harvested by centrifuged at 500Xg for 5 min and washed once with 

SAC buffer again. Latter, the cell pellet was homogenized in CAC buffer (Calcium 

cacodylate buffer, 0.01 M sodium cacodylate, 0.45 M NaCl, 100 mM CaCl2, 26 mM 

MgCl2, pH 7.0) and centrifuged at 25000Xg for 20 min in 4 °C. The remained 

solution is hemocyte lysate supernatant (HLS) that used for phenoloxidase activity 

assay. The protein concentration of the HLS was determined by the Bradford method. 

To determine property of PO system activation of  recombinant protein, PO 

activity was examined according to the method described by Söderhäll and Smith 

(1983). A hundred microliters of HLS and five micrograms of recombinant protein 

were incubated with fifty microliters of larminalin (1 mg/ml) and fifty microliters of 

lipopolysaccaride (1 mg/ml) at 25 °C for 1 hr. After incubation 50 µl of L-3,4-

dihydroxyphenylalanine (L-DOPA, 3 mg/ml) was added and incubated at 20 °C for 

15 min. For negative control, CAC buffer was substituted with the recombinant 
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protein. PO activity would be detected by spectophotometry at OD490 by Microliter 

plate reader (Beckman Coulter AD200). Specific PO activity was defined as the 

increase in OD490/min/mg protein of HLS (Leonard et al., 1985). 

2.7.18 Protease activity assay  

In the measurement of amidase activity, N-benzoyl–Phe–Val–Arg–p-

nitroanilide (Sigma), N-succinyl–Ala–Ala–Pro–Phe–p-nitroanilide (Sigma) and N-

benzoyl-D,L-arginine 4-nitroanilide hydrochloride (Sigma) was used as a substrate of 

trypsin, chymotrypsin and trypsin respectively. The blend of substrate and 

recombinant SP1-SPdomain (0.02, 0.2, 2.0 and 20.0 µM) were incubated at 30 °C for 

15 min. Reaction was stopped by added 50 % acetic acid 50 µl and final volume was 

adjusted by adding water until 500 µl. The optical density at 410 nm of the 

chromogenic substrate was measured using a spectrophotometer. A specific enzyme 

was used as the positive control by substituted with the recombinant protein and the 

negative control added nothing. 

2.7.19 Western blot analysis  

Hemolymph was obtained using ice cool SAC buffer. Hemocyte was separated 

by centrifugation at 500Xg for 10 min at 4 °C. The plasma was suddenly harvested. 

The hemocyte pellet was washed twice and resuspended with 150 mM NaCl 

containing 2 mM EDTA. After homogenization, the cells were centrifuged at 

25,000Xg for 20 min at 4 °C. The aqueous phase solution is hemocyte lysate 

supernatant. Protein concentration was determined by Bradford method. Twenty 

micrograms of total protein from HLS and plasma were loaded to 12% SDS-PAGE 

under denaturing condition. After SDS-PAGE completely running, the proteins were 

blotted by using electro-transfer with Trans-Blot SD® (Bio-Rad) at 110 mA for 1 hr. 

Six filter papers (Whatman®) and a nitrocellulose membrane were simultaneously 

soaked on transfer buffer (25 mM Tris, 190 mM glycine and 20% methanol) while 

SDS-PAGE was drenched in de-ionize water. Three sheets of filter paper were placed 

on Trans-Blot SD® platform followed by the membrane, the gel and three filter papers 

respectively. After electro-transfer complete, the membrane was washed twice in 

TBST buffer for 10 min per time then it was blocked with 2% bovine serum albumin 

(BSA) in TBST buffer for over night. After three washing in TBST, the membrane 
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was incubated in anti-rabbit SP1 antibody (1: 2000 diluted in TBST) for 1 hr and 

washed twice in TBST for 15 min each.  The washed membrane was incubated with 

alkaline phosphatase-conjugated rabbit anti-mouse IgG (1: 5000 dilutions in TBST) 

for an hour at room temperature. After that, it was washed with TBST and deionized 

water each three times. The colour development was allowed in 15 ml of NBT/BCIP 

(Fermentas) and this development was stopped by adding 20 mM EDTA. 

2.8 RNA interference 

 

Figure 2.4 Outline of procedure for the production and purification of dsRNA using 

the T7 RiboMAX Express RNAi System. (Source: T7 RiboMAX(TM) Express RNAi 

System (Promega)) 
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2.8.1 Construction of SP1i-T&A vector 

For the amplification of template which has a size of 600 bp approximately, 

PCR products were amplified with specific RNAi primers of PmClipSP1 gene (Table 

2.1). The PCR reaction mix contained 2 µl cDNA, 1x PCR buffer, 0.2 mM each 

dNTP, 1.5 mM MgCl2, 1 µM SP1i-F and SP1i-R primer and 1 units Taq DNA 

polymerase (Fermentus) The amplification reaction was as follows: 94 C for 3 min, 

35 cycles at 94 C for 1 min, 55 C for 1 min, 72 C for 3 min and a final extension at 

72 C for 10 min.  Then the PCR product was purified by using NucleoSpin® Extract 

II Kits (MACHEREY-NAGEL). After that the purified product was ligated with T&A 

cloning vector (RBC Bioscience) and the ligation was transformed into E. coli strain 

JM109. Positive colonies were tested for the insert by colony PCR and digestion by 

HindIII/BglII. The plasmids were extracted using QIAprep® Miniprep kits (QIAGEN) 

and sequenced at Macrogen Inc (Korea). 

2.8.2 dsRNA synthesis  

To generate dsRNA, two specific DNA templates were amplified having T7 

promoter sequence at 5’end of sense and anti-sense strand. Amplification strategies 

using two PCR reactions that are consisted of 50 µl total volume containing 2 µl SPi-

T&A vector diluted 1: 50, 1x PCR buffer, 0.25 mM MgCl2, 0.2 µM each dNTP, 0.8 

µM each primer and 2 units Taq DNA polymerase (Fermentus). The pair of T7SP1i-F 

and SP1i-R using as sense strand whereas SP1i-F and T7SP1i-R using as anti-sense 

strand. Thermocycling condition were as follows: a predenaturing at 94 C for 14 

min, 30 cycles at 94 C for 1 min, 55 C for 1 min, 72 C for 1 min and a final 

extension at 72 C for 5 min. The green fluorescent protein (GFP), exogenous gene, 

was used to produce a dsRNA control. PCR template was amplified as described 

above. Two pairs of GFP primers containing T7 promoter sequence at 5’ end and 

primer without T7 promoter sequence, GFPT7-F, GFP-R, GFP-F and GFPT7-R, were 

required for amplification together with pEGFP-1 vector (Clontech) which was used 

as PCR template. The individual PCR product was determined by agarose gel 

electrophoresis and purified by NucleoSpin® Extract II Kits (MACHEREY-

NAGEL).  
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The ssRNA was synthesized by in vitro transcription using the T7 RiboMAXTM 

Express Large Scale RNA Production Systems (Promega) following the 

manufacturing protocol. The 20 µl of T7 components comprised 10 µl at the 

components of RiboMAX express T7 2X buffer, 1 to 8 µl of linear DNA template (~1 

µg total), 2 µl of enzyme mix-T7 Express and the final volume was adjusted by 

nuclease-free water. The components were mixed gently and incubated at 37 C for 

30 min or over. To anneal RNA strand, equal volume of the complementary ssRNAs 

were mixed. The mixture was thereupon heated at 70 C for 10 min and slowly cooled 

down to room temperature (~20 min). The dsRNA solution was incubated with RQ1 

RNase-Free DNase at 37 °C for 10 min, at ratio reaction: enzyme = 20:1. For the 

purification of dsRNA, the solution was added with 0.1 volume of 3M sodium acetate 

(pH 5.2) and 1 volume of isopropanol or 2.5 volumes of 95% ethanol. The reaction 

was mixed and placed on ice for 5 min, spun at top speed in a microcentrifuge for 10 

min. A white pellet was washed with 0.5 ml of cold 70% ethanol, air-dried and 

resuspended in nuclease-free water. The dsRNA was examined by agarose gel 

electrophoresis and the concentration was determined by spectrophotometer at OD260. 

The dsRNA was stored at -20 °C or -70 °C.  

2.8.3 Injection of dsRNA into shrimp 

Juvenile shrimps (2±0.2 g. fresh weigh) were injected with 5 g of SP1 dsRNA 

in 25 µl injection buffer (150 mM NaCl) using insulin syringes U100, via third 

abdominal segment area. While GFP dsRNA or only injection buffer were changed 

with SP1 dsRNA for injection in control group. The RNA treated shrimps were repeat 

injected with dsRNA in related volume together with injection of 10 µg of the 

lipopolysaccharide (LPS) from Escherichia coli 0111:B5 (Sigma) and laminarin from 

laminaria (Sigma) at 24 hr after the first dsRNA injection. Total RNA from hemocyte 

was isolated for determination of affective gene silencing at 48 hr after the second 

injection.  

2.8.4 RNA isolation 

Hemolymph was collected from the ventral-sinus cavity of individual shrimp 

using the 1 ml syringe with a 26 gauge-needle containing one-forth volume of the pre-

cooled anticoagulant (10% sodium citrate). Hemocytes were immediately harvested 
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by centrifugation at 500Xg for 10 min at 4 °C to discard the plasma from hemocytes. 

The hemocyte pallet was homogenized in 1 ml Tri reagent (Molecular Research 

Center). The homogenate was stored at room temperature and then adding 0.2 ml of 

chloroform. The mixture was vigorously shaken for 15 seconds and incubated at 

room temperature for 3 min before centrifugation at 12,000Xg for 15 min at 4 °C. The 

colorless upper aqueous phase was transferred to a new 1.5 ml microcentrifuged tube. 

Total RNA was precipitated by incubation with 500 µl of precool isopropanol at         

-20 °C for 15 min and centrifuged at 12,000Xg for 10 min at 4 °C. After the 

supernatant was removed, RNA pellet was washed with 1 ml of 75 % ethanol. The 

RNA pellet was air dried about 30 min. The total RNA was dissolved with an 

appropriate amount of diethyl pyrocarbonate (DEPC) – treated water. 

The concentration of total RNA was determined by measuring the OD at 260 

nm and estimated in g/ml using the following equation, 

  [RNA]  = OD260 x dilution factor x 40* 

*A 1 OD unit at 260 nm corresponds to approximately 40 g/ml of RNA 

(Sambrook et al., 1989) 

2.8.5 DNase treatments of total RNA samples 

The obtained total RNA was further treated with RQ1 RNase-free DNase 

(Promega, 1 units/5 µg of the total RNA) at 37 °C for 30 min to remove the 

contaminating chromosomal DNA. Then, the RNA pellets were purified by 

phenol/chloroform extraction following by ethanol precipitation. Briefly, the reaction 

volume was adjusted to 40 µl with DEPC-treated water, 250 µl of Trizol reagent were 

added and vortex for 10 sec. Two hundred microliters of chloroform was then added 

and vigorously shaken for 15 sec. The resulting mixture was stored at room 

temperature for 2 to 5 min and centrifuged at 12,000Xg for 15 min at 4 °C. The RNA 

in upper phase was precipitated by isopropanol and washed by 70% (v/v) ethanol. 

After that, RNA pellet was briefly air-dried and dissolved with an appropriate amount 

of DEPC- treated water. The concentration of DNA-free total RNA was determined as 

described in 2.4 
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2.8.6 First-strand cDNA synthesis 

The first stranded cDNA was synthesized using an ImProm-IITM Reverse 

Transcription system kit (Promega). Total RNA (160 ng) was combined with 0.5 g 

of oligo (dT15) primer and appropriate DECP-treated water in final volume of 0.5 l. 

The reaction was heated at 70 C for 5 min and immediately placed on ice for 5 min. 

After that, the reaction was mixed with 4 l of 5x reaction buffer, 2.6 l of 25 mM 

MgCl2, 1 l of dNTP Mix (10 mM each), 20 units of ribonuclease inhibitor and 1 l 

of ImProm-II reverse transcriptase. The reverse transcriptase (RT) reaction was 

performed after the following reagents were sequentially added into the mixture and 

incubated at 25 C for 5 min and at 42 C for 60 min. At last, the reaction was 

incubated at 70 C for 15 min. A cDNA sample was stored at -20 °C until ready for 

use. 

2.8.7 Determination of gene silencing by RT-PCR 

The expression of PmClipSP1 gene from SP1 silencing shrimp hemocyte was 

determined by RT-PCR. The PCR reaction was consisted of  25 µl total volume 

containing 2.0 µl cDNA (1:10 dilution), 1x PCR buffer, 0.25 mM MgCl2, 0.2 µM 

each dNTP, 0.2 µM SP1i-F and SP1i-R primer and 2 units Taq DNA polymerase 

(Fermentus). The amplification reaction was performed following 94 C for 1 min, 25 

cycles or 30 cycle of 94 C for 30 s, 55 C (or 54 or 57 C following Tm of primer) 

for 30 s, 72 C for 30 s and a final extension step at 72 C for 5 min. The expression 

of PmClipSP1, other SPs and SPHs gene was normalized to the expression of 

elongation factor-1 gene (EF-1) for each sample. That is, primer EF-1F and EF-1R 

were used for amplification of EF-1 gene. All PCR products were analysed on 1.5% 

agarose gel. The gel images were photographed by CCD camera and analysed using 

GeneTools™ (SynGene).  
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2.8.8 Hemolymph PO activity assay 

The injection of dsRNA was performed following the method as described 

above. The shrimp hemolymph was collected at 24 hr after second RNA injection. 

Concentration of the total hemolymph protein form the individual shrimp was 

determined following Bradford method. 

Two milligrams hemolymph protein was dissolved in 10mM Tris-HCl pH 8.0 at 

final volume 435 µl and added 65 µl of 3,4-dihydrophenyl alanine (L-dopa, 3mg./ml.). 

The solution was incubated at 30 oC for 15 min and then added 500 µl of 10% acetic 

acid for stopping reaction. The amount of dopachrom produced was measured by 

using spectrophotometer at OD490. One unit of PO activity was defined as 0.001 

absorbance/mg total protein/minute. 

2.8.9 V. harveyi 639 preparation for bacterial challenge  

Ten microliters of V. harveyi 639 from glycerol stock was inoculated on four 

milliliters of tryptic soy broth (TSB) medium and incubated at 30 oC overnight using 

as a starter culture. Forty microliters of the starter culture was inoculated in four 

mililitrers of TSB medium and incubated at 30 oC for 1 hr 45 min or until OD600 as 

0.59-0.6. After that it was diluted 10 fold in phosphate buffer saline (PBS) pH 7.4, 

final concentration of cell culture as 107 CFU/ml. 

2.8.10 Bacterial count in PmClipSP1 knocked down shrimp 

The injection of RNA was carried out as previous method but for the bacterial 

challenged, a shrimp was injected with V. harveyi 639 (2 x 105 CFU/shrimp) 

substituting an injection of LPS. Hemolymph was collected at 6 hr after challenge 

with out using anticoagulant. Hemolymph was serial diluted, 1:2 1:4 1:8 and 1:16 in 

phosphate buffer saline (PBS) pH 7.4 and 10 µl of diluted hemolymph was dot onto 

LB agar plate. And 1 µl, 5 µl and 10 µl undiluted hemolymph was also doted onto 

agar. The culture plates were incubated at 30oC over night. Bacterial colony forming 

units (CFUs) was counted from the individual shrimp. Three shrimps were used for 

each experiment. 
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2.8.11 Cumulative mortality assay of V. harveyi in PmClipSP1 knocked down 

shrimp 

The injection of RNA and the challenge of V. harveyi were performed as 

described above. The fatal shrimps should be suddenly picked out from culture tank. 

The mortality would be recorded at 3 hr after challenge and observed for 5 days. Ten 

shrimps were used per one experiment and each assay was repeated three times. 

2.8.12 Statistical analysis 

The significance of the difference between the two sample groups was 

determined using a two-tailed, independent sample t-test. The significance of the 

difference between 3 or more group samples was determined by one-way ANOVA 

followed by Duncan’s new multiple range test. Statistical package, SPSS-PC+ (SPSS 

Inc) was used for statistical analyzes. A P value of less than 0.05 was considered 

statistically significant. Values were expressed as means±S.D. 



CHAPTER III 

RESULTS 

3.1 Sequence analysis of the PmClipSP1 from P. monodon  

A search from Penaeus monodon EST database (http://pmonodon.biotec.or.th) 

(Tassanakajon et al., 2006) identified four clip-domain serine proteinases (Clip-SPs). 

In this study, we selected a clip-SP, namely PmClipSP1, for further characterization. 

The complete cDNA sequence of P. monodon serine proteinase (PmClipSP1; 

FJ620688) gene was obtained from the previous study (Amparyup et al., 2009B). A 

full-length sequence of a PmClipSP1 cDNA of P. monodon consisted of 1,509 bp, 

containing 55 bp in the 5’-untranslated region (UTR), 1,101 bp in an open reading 

frame (ORF) and 353 bp in 3’-UTR with a polyadenylate signal (AATAAA), at 

positions 1,343-1,348, and poly (A) tail (Figure 3.1).  

The ORF encoded a polypeptide of 366 amino acid residues. Analysis of the 

SignalP program indicated the presence of a cleavage site between amino acids 25 

and 26 (Ser-Gln). The calculated molecular mass of the mature protein was 36.48 kDa 

with a predicted isoelectric point (pI) of 5.56. Two putative N-glycosylation sites, 

NFS (aa position 219) and NKS (aa position 228) sites were found suggesting that it 

is a glycoprotein (Appendix A). 

Using the SMART program analysis, the six conserved cysteines of the clip 

domain at N-terminal region and the three conserved catalytic sites (His151, Asp216 

and Ser314) of a serine proteinase domain at C-terminal region were annotated as 

being present in the mature protein of PmClipSP1 (Figure 3.2). The domain 

organization of PmClipSP1 is shown in Figure 3.2. 
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  GAGTTCTCAACCCACGCCAGCATTAGAAACCATGTTGCTTATTCACGGGATCAACATGAA 60 

                                                          M  N 

  TATTAAACGTGGTTGCGTGGCGTGGTTAGTACCCGCAGTTCTACTGGTGGTGGCGCAGCA 120 

    I  K  R  G  C  V  A  W  L  V  P  A  V  L  L  V  V  A  Q  Q 

  GGTAACCAGCCAGGGTGCAGATTGTGTACGCAGTCAGTGTATCTCAATTCGAGAATGTCC 180 

    V  T  S  Q  G  A  D  C  V  R  S  Q  C  I  S  I  R  E  C  P 

  AGCTCTGCTAAAACTTTTACAGGATCCTACACGAATCAATATCAGGAAGCTACAAGATGC 240 

    A  L  L  K  L  L  Q  D  P  T  R  I  N  I  R  K  L  Q  D  A 

  CACCTGCTATGTCAGGAACCGGGAACCTATGGTATGCTGTCCATCTATAACTACAACTGA 300 

    T  C  Y  V  R  N  R  E  P  M  V  C  C  P  S  I  T  T  T  E 

  AACACCGACGATTCCCACAAAGTCTCTCCTCCCAGAAAATTGTGGGCACAGTGCTCACTT 360 

    T  P  T  I  P  T  K  S  L  L  P  E  N  C  G  H  S  A  H  L 

  GAACAGAATTGTGGGTGGAGAAGTAGCCCCACTTGATGCATACCCATGGAAAGCTGTTCT 420 

    N  R  I  V  G  G  E  V  A  P  L  D  A  Y  P  W  K  A  V  L 

  AGGATATAAAGATAAAGGATTAGCTGCCATTGAATTTCTCTGCGGGGGTTCAGTCATTAA 480 

    G  Y  K  D  K  G  L  A  A  I  E  F  L  C  G  G  S  V  I  N 

  CGAGAGATATGTTCTTACTGCTGCTCATTGTGTAGACCCTGGTACACTTGGCACACGAAG 540 

    E  R  Y  V  L  T  A  A  H  C  V  D  P  G  T  L  G  T  R  R 

  ATTGGAAGTAGTTCGACTGGGTGAATGGGACCTCACCACCACTGAAGACTGTGAGAGCAC 600 

    L  E  V  V  R  L  G  E  W  D  L  T  T  T  E  D  C  E  S  T 

  AAATAGTGGAGGGGTATTCTGTGCTCCTCCAGTTCAAGATTTCGAGGCTGAGGAAATTAT 660 

    N  S  G  G  V  F  C  A  P  P  V  Q  D  F  E  A  E  E  I  I 

  CGGTCATCCCTCATACAACACTCGTGTGAGATTCTCCGATGACATTGCACTCATCAGACT 720 

    G  H  P  S  Y  N  T  R  V  R  F  S  D  D  I  A  L  I  R  L 

  CAACAGGCCCATTAACTTCCAGGAATCAGCAGGATTTGTGTTGCCTGTGTGCCTGCCTCC 780 

    N  R  P  I  N  F  Q  E  S  A  G  F  V  L  P  V  C  L  P  P 

  ATCTAACTTCTCCCCTCGTACAGCAGCTGGTAACAAATCAGCAATTGCAGCTGGATGGGG 840 

    S  N  F  S  P  R  T  A  A  G  N  K  S  A  I  A  A  G  W  G 

  CTTCACTGAAACTGGCTCTGCAAGTAACAAAATTAAGCATGTAAAGCTGCCATTGGTTGA 900 

    F  T  E  T  G  S  A  S  N  K  I  K  H  V  K  L  P  L  V  D 

  CAGTACTGAGTGTAGTCAGGTGTACAAAGGCAGTACAGTCAGTGAACAACTCTGTGCCGG 960 

    S  T  E  C  S  Q  V  Y  K  G  S  T  V  S  E  Q  L  C  A  G 

  TGGCAATGCTGGTGAAGACTCGTGCGGTGGAGACTCTGGTGGTCCCTTGGTACTTGCCGG 1020 

    G  N  A  G  E  D  S  C  G  G  D  S  G  G  P  L  V  L  A  G 

  TACTTTTGGTCCTCCCTACCAGCAGATTGGCATTGTTTCCTACGGTCCTGTCAGCTGTGG 1080 

    T  F  G  P  P  Y  Q  Q  I  G  I  V  S  Y  G  P  V  S  C  G 

  CCAGCAGGGGGTACCTGGTATCTACACATCTGTAAGCAGCTACAGGACATGGATTGAGCA 1140 

    Q  Q  G  V  P  G  I  Y  T  S  V  S  S  Y  R  T  W  I  E  Q 

  GAACTTAAAGCCATAAATGAGTTCTCAGGCAACTGAACTTATTTCAACAGTATTGAGAGA 1200 

    N  L  K  P  *   

  ATAGTAATGAAAGTAATCTGACAGGAAATAGTGATGATAGTATGTTCTACTTCAAAAAAA 1260 
  TGATGAATATTTTTGTTTGGTTTGGTTTTGTATGATTTTTTGTCTACATTTTCTTAATAC 1320 
  TGTAGCTGGTATCCACTCAGGAAATAAAAGTGGTCAAAAGAAATAATTATCAGTTTCATC 1380 
  AATGTCACAAGTAGATTTTTGAAAATTGAGTCTCGAAAGATTAGGAAAACTGAACGTAAT 1440 
  TCTGCTTTAACAGTTGATATAATGCTATTACCTCTTTGATACATTCCTGTAAAAAAAAAA 1500 
  AAAAAAAAA         1510 
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Figure 3.1 The full-length nucleotide and deduced amino acid sequences of the 

PmClipSP1 from the black tiger shrimp. The deduced amino acid sequence is shown 

below the nucleotide sequence. The putative polyadenylation signal is in bold and 

italicized. The putative signal peptide sequence is bolded and underlined. The N-

terminal clip domain is in dot line box with six cysteine residues (open circle) and the 

C-terminal SP-like domain is in solid line box. The catalytic triad (H, D and S) were 

marked as the stars. The arrows and diamonds indicate the putative activation 

cleavage sites and putative N-linked glycosylation sites, respectively. The nucleotide 

sequence coding start and stop codon are highlighted. 

 

 
Figure 3.2 Domain organization of PmClipSP1 protein. Signal sequence (SS), clip 

domain and SP domain are show as diamond, hexagon and rectangle respectively. The 

arrows point the putative activation cleavage sites. The typically disulfide linkages are 

indicated by solid lines and the additional disulfide bond in SP domain is indicated by 

a dot line. The catalytic triad (H, D and S) are presented in the SP domain. 

 

3.2 Sequence comparison of PmClipSP1 

Searching for sequence similarities of known proteins by BlastX revealed that 

the amino acid sequence of the P. monodon PmClipSP1 is similar to a serine 

proteinase (ABC33918) of P. chinensis (58% sequence similarity), the serine protease 

14D (ACN38198) from Anopheles gambiae (57%), prophenoloxidase activating 

factor (PPAF) I (BAA34642) from Holotrichia diomphalia (54%), the melanization 

protease 1 (NP_649450) of Drosophila melanogaster (52%) and PPAE3 (AAX18637) 

of Manduca sexta (51%) (Table 3.1). 

Multiple sequence alignment of the deduced PmClipSP1 amino acid sequence 

with those of other clip-SPs in arthropods revealed the six conserved clip domain 

H D S 
SS Serine proteinase  Clip 
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cysteines at the N-terminus (Fig. 3.3A) as well as, at the C-terminus, the three 

conserved catalytic sites (His151, Asp216 and Ser314) and the substrate-binding 

pocket (Asp308, Gly337 and Gly348) of a typical trypsin-like serine proteinase 

domain (Fig. 3.3B), indicating that this protein likely belongs to the family of clip 

domain serine proteinases. 

Moreover, the eight conserved cysteine residues in the SP domain that 

participate in the formation of four disulfide bonds are found in AgSP14D2, MsPAP1, 

HdPPAF-I, DmMP1 and DmEster while PmPPAE1, PlPPAE, AgSP14D, PmMasSPH 

and LvMasSPH showed only six conserved cysteine residues (Figure 3.3B).  

Table 3.1 The BLASTX results and percentages of similarity of PmClipSP1 sequence 

to other clip-SPs in GenBank database. 

Gene Closest species % 
similarity  

Accession 
No. 

Serine proteinase Penaeus chinensis 58% ABC33918 

Serine proteinase 14D Anopheles gambiae 57% ACN38198 

PPAF1 Holotrichia diomphalia 54% BAA34642 

Melanization protease-1 Drosophila melanogaster 52% NP_649450 

PAP3 Manduca sexta 51% AAX18637 
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PmSP1           CGHSAHLN--RIVGGE---VAPLDAYPWKAVLGYKD--KGLAAIEFLCGGSVINERYVLTAAHCVDPGTLGT-RRLEVVR 
PmPPAE1         CGLIAKRPPTRIVGGK---DADPQEWPWMAALMRD-------GASSYCGGVLITDSHILTAAHCVDG----FDRNTITVR 
PlPPAE          CGLVAKRPPTRIVGGK---PADPREWPWVAALLRQ-------GSTQYCGGVLITNQHVLTAAHCVRG----FDQTTITIR 
AgSP14D         CG-VQLTD--RVLGGQ---PTKIDEFPWTALIEYE---KPNGRFGFHCGGSVINERYILTAAHCITS-IPRG-WKVHRVR 
AgSP14D2        CG-KMQMD--RIVGGE---VAPIDGYPWLTRIQYY---KGSNRYGFHCGGVLIHNQYVLTAAHCIEG-VPSS-WIVYQVR 
MsPAP1          CGVDMNGD--RIYGGQ---ITDLDEFPWMALLGYL---TRTGSTTYQCGGVLINQRYVLTAAHCTIGAVEREVGKLITVR 
HdPPAF-I        CGYQVEAD--KILNGD---DTVPEEFPWTAMIGYK---NSSNFEQFACGGSLINNRYIVTAAHCVAGRVLRVVGALNKVR 
DmMP1A          CG-ENFGD--RVVGGN---ETTKREFPWMALIEYT---KPGNVKGHHCGGSLINHRYVLTAAHCVS--AIPSDWELTGVR 
Dm_easter       CG-NILSN--RIYGGM---KTKIDEFPWMALIEYT---KSQGKKGHHCGGSLISTRYVITASHCVNGKALPTDWRLSGVR 
PmMasSPH        CGKRNSQGFDVRITGFKDNEAQFAEFPWMTAILRVEKVGKKELNLYVCGGSLIHPSIVLTAAHCVHS----KAASSLKTR 
PlmasSPH        CGFQNP--LPVPNQPAKFAEAEFGEYPWMAVVLDNG-------NNYKGGGVLISENWVLTAAHKVNN----ERN--LKVR 
                **                  :    :** : :                ** :*    ::**:*                *         
 
 
 
PmSP1           LGEWDLTTTEDCESTNSGGVFCAPPVQDFEAEEIIGHPSYNTRVR-FSDDIALIRLNRPINFQESAGFVLPVCLPPSNFS 
PmPPAE1         LGEYTLDLTDD------------TGHVDFKVADIRMHRSY--DTTTYVNDIAIIKLQGSTNFNVD---IWPVCLPE---- 
PlPPAE          LGEYDFKQTS-------------TGAQTFGVLKIKEHEAY--DTTTYVNDIALITLDKSTEFNAD---IWPICLPD---- 
AgSP14D         LGEWDLSSTTDQEDD-----FYADAPIDLDIEKIIVHPGYNLQDKSHHNDIALIRFNREINYSS---TIRAICLPLSNSL 
AgSP14D2        LGEFDTTTTIDCVED-----DCADPVRDVPINAYVVHPDYYKQNGADYNDIALLQLSETVEFTD---FIRPICLPTSEES 
MsPAP1          LGEYDTQNSVDCVDD-----VCADPPQNIPIEVAYPHSGYSDNNKNRKDDIALVRLTRRAQYTY---YVKPICLAN---N 
HdPPAF-I        LGEWNTATDPDCYGAVR--VCVPDKPIDLGIEETIQHPDYVDGSKDRYHDIALIRLNRQVEFTN---YIRPVCLP---QP 
DmMP1A          LGEWDASTNPDCTVGKNGRRDCNEPYVDYPVEERIPHPQYPGNSRDQLNDIALLRLRDEVQYSD---FILPVCLPTLASQ 
Dm_easter       LGEWDTNTNPDCEVDVRGMKDCAPPHLDVPVERTIPHPDYIPASKNQVNDIALLRLAQQVEYTD---FVRPICLPLDVNL 
PmMasSPH        FGEWDTQKTYER-----------YPHQDRNVISVKIHPNYN--SGALYNDFALLFLDSPATLA---PNVDTVCLPQ---A 
PlmasSPH        LGEHDVTKPKDHPN---------FDHIEIPVGRIIIHPELK--VDTLQNDVGLLNLQRPVNTNRF-PHIGTACLPR---Q 
                :**                                 *           .*..:: :            : . **.      
 
 
 
PmSP1           PRTAAGNKSAIAAGWGFTETG---SASNKIKHVKLPLVDSTECSQVYKG--------STVSEQLCAGGNAG-EDSCGGDS 
PmPPAE1         GDESYEGRTGTVTGWGTIYYGG--PVSSTLQEVTVPIWTNKACDDAYEQN--------IIDKQLCAGATDGGKDSCQGDS 
PlPPAE          GDETYVDRQGTVVGWGTIYYGG--PVSSVLMEVSIPIWTNADCDAAYGQD--------IIDKQLCAGDKAGGKDSCQGDS 
AgSP14D         RNRKHAGLSSYAAGWGKTETA---SASQKKLKVELTVVDVKDCSPVYQRNGI-----SLDSTQMCAGGVRG-KDTCSGDS 
AgSP14D2        RTVNLTGKYATVAGWGQTENS---TSSTKKLHLRVPVVDNEVCADAFSSIRL-----EIIPTQLCAGGEKG-KDSCRGDS 
MsPAP1          NERLATGNDVFVAGWGKTLSG---KSSPIKLKLGMPIFDKSDCASKYRNLGA-----ELTDKQICAGGVFA-KDTCRGDS 
HdPPAF-I        NEEVQVGQRLTVVGWGRTETG---QYSTIKQKLAVPVVHAEQCAKTFGAAGV-----RVRSSQLCAGGEKA-KDSCGGDS 
DmMP1A          HNNIFLGRKVVVAGWGRTETN---FTSNIKLKAELDTVPTSECNQRYATQRR-----TVTTKQMCAGGVEG-VDSCRGDS 
Dm_easter       RSATFDGITMDVAGWGKTEQL---SASNLKLKAAVEGFRMDECQNVYSSQDI-----LLEDTQMCAGGKEG-VDSCRGDS 
PmMasSPH        NQKFDYDT-CWATGWGRDKFGKEGEFQNILKEVALPVVPNHDCQNGLRTTRLGSFFQLH-NSFMCAGGQQG-IDTCKGDG 
PlmasSPH        GQIFAGENQCWVTGFGKDAFEGVGEFQRILKEVDVPVQDPFVCQERLRSTRLGQTFTLDRNSFLCAGGIEG-KDACTGDG 
                           ..*:*          .    .  :       *                    :***   . *:* **. 
 
 
 
PmSP1           GGPLVLAGTFG---PPYQQIGIVSYGPVSCGQQGVPGIYTSVSSYRTWIEQNLKP------------------- 
PmPPAE1         GGPLLLQQGSE---NRWAVVGVVSWGIR-CAEPGNPGVYTRVSKYVDWIKNNAV-------------------- 
PlPPAE          GGPLMLQQGGA---NRWAVVGVVSWGIR-CAEAASPGVYTRISKYTDWIRANQ--------------------- 
AgSP14D         GGPLMRQMTG-----SWYLIGVVSFGPQKCGAPGVPGVYTNVAEYVDWIKDNIY-------------------- 
AgSP14D2        GGPLMRYGDGRSSTKSWYLIGLVSFGLEQCGTDGVPGVYTRMSEYMDWVLDTME-------------------- 
MsPAP1          GGPLMQRRPEG----IWEVVGIVSFGNR-CGLDGWPGVYSSVAGYSDWILSTLRSTNV---------------- 
HdPPAF-I        GGPLLAER----ANQQFFLEGLVSFGAT-CGTEGWPGIYTKVGKYRDWIEGNIRP------------------- 
DmMP1A          GGPLLLEDYSN-GNSNYYIAGVVSYGPTPCGLKGWPGVYTRVEAYLNWIENNVRA------------------- 
Dm_easter       GGPLIGLDTNK-VNTYYFLAGVVSFGPTPCGLAGWPGVYTLVGKYVDWIQNTIES------------------- 
PmMasSPH        GSPLVCEAVAGSG--VYVQAGIVAWGIG-CGEQGVPGVYADVGYASDWIQTEANIGLASLYSIQGYDWDYGRFI 
PlmasSPH        GAPLVCRPERGQ----WTVAGLVAWGIG-CATSEVPGVYVNIASYADFIRRYVR-------------------- 
                *.**:           :   *:*::*   *.    **:*  :     ::    
 

 
 
 
 
 
 
 
PmSP1           C-----VRS-QCISIRE-CP----A-----LLK-L-LQD---PT-RIN-IRKLQDATC--YVRNREPM-VCCP  
PmPPAE1         CVTPRFERG-HCRYLQH-C-----I-----QPE---FT-N--NF---N--VF-LRYVC--FIEG-VYVGVCCP  
PlPPAE          CRTPKGERG-QCRFLQY-C-----I-----LPE---FA-Q--NF---Q--AF-LQYVC--FIQG-TYVGACCP  
AdSP14D1        CVNPVGEAG-KCVLFRE-CQP---LVD---IYN-K-PVNT--P--DDT-Q-FLTESRCGLY-ER-KTL-VCCA  
AgSP14D2        CETPDGKVG-TCVYLRS-C-----LS----IRNVL-LKKE--NMTPED-RSLVMKSKC--GQEG-RSVLVCCP  
MsPAP1          CTTPQGVDS-NCISLYE-CP----Q-----LLS-A-FEQRPLPS-PV--VNYLRKSQCG-F-DGYTPR-VCCG  
HdPPAF-I        CRTPNGENA-RCVPINN-CK----I-----LYDSV-LTSD--P--EVI-R-FLRASQCG-Y-NG-QPL-VCCG  
DmMP1A          CRTPD-ENSGTCINLRE-CG----Y-----LFE-L-LQSE--EVTEQD-RRFLQASQCG-YRNG-QVL-ICCA  
Dm_ester        CITPNRERA-LCIHLED-CK----Y-----LYG-L-LTTT--PLRDTD-RLYLSRSQCG-YTNG-KVL-ICCP  
PmMasSPH        C-N-NGL-G-VCVPYYL-CNEGNVITDGAGLID-IRFGNS--KK-SND-TSTRSSSDC----P--QFLDVCCT  
PlMasSPH        C---------VCLPVNQVCPEGQATPP--QRPEGVAINHGAGQI-DVRIVNLLTGGQC----PG-QKM--CCP  
                *          *      *                                      *            ** 

A 

B 
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Figure 3.3 Multiple alignment of amino acid sequence of clip domain (A) and SP 

domain (B) of clip-SPs and SPHs. The amino acid sequence of P. monodon Clip SP1 

(PmClipSP1, FJ620688) was aligned with those of P. monodon PPAE (PmPPAE1, 

FJ595215) and MasSPH (PmMasSPH, ABE03741); P. leniusculus PPAE (PlPPAE, 

CAB63112) and MasSPH (PlMasSPH, AAX18636); A. gambie SP14D (AgSP14D, 

AAB62929) and SP14D2 (AgSP14D2, AAD38335); M. sexta PAP1 (MsPAP1, 

CAL25132); H. diomphalia PPAF-I (HdPPAF-I, BAA34642); D. melanogaster 

MP1A (DmMP1A, NP_649450) and ester (Dm ester, NP_524362). (A) The six 

conserved cysteines in the clip domain are highlighted and linked by solid line. Gaps 

(-) were introduced to maximize the alignmant of the clip domain cysteines. (B) 

Activation cleavage site and the amino acid residues forming the substrate specificity 

pocket were demonstrated by arrow head and dots respectively. The amino acid 

residues coresponding to the catalytic triad were presented as dark highligh and stars 

The disulfide linkages are shown by solid lines and the additional disufide bond in SP 

domain is represented by dot line. 

3.3 Phylogenetic analysis 

To determine the relationship of the PmClipSP1 protein to other arthropod 

clip-SP proteins, a phylogenetic tree was constructed using the NJ distance based 

method to compare the amino acid sequences of the SP domain (Figure 3.4). 

According to NJ analysis, arthropod clip-SPs and clip-SPHs can be classified into two 

major groups: (1) clip-SPs and (2) clip-SPHs. The group of clip-SPs can be classified 

into four subgroups. The first subgroup is a group of insect PPAEs (HdPPAFI, 

MsPAP1, MsPAP2, MsPAP3, BmPPAE) and insect clip-SPs (AgSP14D, AgSP14D2, 

DmMP1, DmSP7, DmSPE, DmEa, BmproBAEEase, and Tm44kDa). The second 

subgroup contained crustacean PPAEs (PlPPA and PmPPAE1) and horse shoe crab 

clip-SPs (TtPCE and TtCB). The third subgroup composed of Tm41 (Tenebrio molitor 

41 kDa zymogen) and DmSnk (Drosophila melanogaster snake) and the last subgroup 

is a group of shrimp clip-SPs or clip-SPH (PmClipSP1, PmClipSP2, PmPPAE2, 

FcSPH) and an insect PPAF (HdPPAFIII).  

Although PmClipSP1 clusters together with some of the shrimp clip-SPs 

(PmClipSP2 and PmPPAE2) and clip-SPH (FcSPH), their functions are unknown, 
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except for that of PPAF-III from H. diomphalia, which is a clip-SP that activates 

PPAF-II, a cofactor for the serine proteinase PPAF-I, by cleavage (Kwon et al., 2000). 

Nevertheless, the phylogenetic tree clearly indicates that the PmClipSP1 was more 

closely related to clip-SPs than clip-SPHs (Figure 3.4). 
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Figure 3.4 Bootstrapped unrooted neighbour-joining tree of the serine proteinase 

domain of clip-SPs and clip-SPHs from arthropods: Penaeus monodon clip-SP1 

(PmClipSP1; ACP19562), clip-SP2 (PmClipSP2; ACP19561), PPAE1 (PmPPAE1; 

ACP19558), PPAE2 (PmPPAE2; ACP19559), Mas-like SPH1 (PmMasSPH1; 

ABE03741), Mas-like SPH2 (PmMasSPH2; ACP19560), Mas-like SPH3 

(PmMasSPH3; ACP19563), Mas-like protein (PmCSPH; AY600627); Penaeus 

chinensis SPH (FcSPH1; DQ318859); Pacifastacus leniusculus PPA (PlPPA; 

CAB63112), Mas-like protein (PlMas; Y11145), SPH1 (PlSPH1; AY861652), SPH2a 

(PlSPH2a; EU552456); Callinectes sapidus PPAF (CsPPAF; AY555734); Anopheles 

gambiae serine protease 14D (AgSP14D; FJ653845), serine protease 14D2 

(AgSp14D2; AF117749); Drosophila melanogaster melanization protease 1 

(DmMP1; NM_141193), Spätzle-Processing enzyme (DmSPE; NM_142911), snake 

(DmSnk; NM_079614), easter (DmEa; NM_079638), serine protease 7 (DmSP7; 

NM_141477); Bombyx mori PPAE (BmPPAE; NM_001043367), SP zymogen 

(BmproBAEEase; NM_001043379); Holotrichia diomphalia PPAFI (HdPPAFI; 

AB013088), PPAFII (HdPPAFII; AJ400903), PPAFIII (HdPPAFIII; AB079666); 

Manduca sexta PAPI (MsPAP1; AY789465), PAP2 (MsPAP2; AY077643), 

(MsPAP3; AY188445), SPH1 (MsSPH1; AF518767), SPH2 (MsSPH2; AF518768); 

Tenebrio molitor PPAF (TmPPAF; AJ400904), Mas-like SPH (TmMasSPH; 

AB084067), 41 kDa zymogen (Tm41kDa; AB363979), 44 kDa zymogen (Tm44kDa; 

AB363980); Tachypleus tridentatus proclotting enzyme (TtPCE; M58366) and 

coagulation factor B (TtCFB; D14701). Bootstrap values indicate the percentage of 

times that the particular node occurred in 1000 trees generated by bootstrapping the 

original deduced protein sequences. 



 61 

3.4 Recombinant expression of a serine proteinase (SP) 

domain of PmClipSP1 in the E. coli system 

To further characterize the function of PmClipSP1, a mature protein and a SP-

like domain of this gene were cloned and expressed in E. coli expression system using 

pET22b(+) as an expression vector. 

3.4.1 Amplification of a mature protein and a SP-like domain of the PmClipSP1 

DNA fragments encoding a mature protein (mPmClipSP1) or a SP-like 

domain (SP-PmClipSP1) of PmClipSP1 protein with hexa His-tag sequences at the N-

terminus were amplified using primers HindIIISP1-F and NdeISP1-R for 

mPmClipSP1 or primers ExSPSP1-F and 22HidIIISP1-R for SP-PmClipSP1. After 

amplification, a single band of each protein was observed on agarose gel 

electrophoresis. The size of mPmClipSP1 and SP-PmClipSP1 was approximately 

1,050 bp (Figure 3.5A) and 800 bp (Figure 3.5B), respectively, which corresponded to 

the expected size of mPmClipSP1 (1067 bp) and SP-PmClipSP1 (810 bp) of 

PmClipSP1 (Appendix B). The amplified products were then cloned and sequenced. 

3.4.2 Construction of the recombinant plasmid pET-22b(+)-SP1 

After DNA sequence analyses, the mPmClipSP1 and SP-PmClipSP1 

fragments of PmClipSP1 were sub-cloned into an expression plasmid pET22b(+) at 

the HindIII and NdeI sites fused with six His encoded nucleotides at the N terminus 

and transformed into E. coli JM109 (Appendix B). The recombinant plasmid was 

extracted and verified by restriction enzyme (HindIII and NdeI) digestion. The 

recombinant plasmid screening was demonstrated in Figure 3.6.  
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Figure 3.5 Amplification of DNA fragments encoding a mature protein (mPmClip 

SP1, A: lane 1) and a serine proteinse domain (SP-PmClipSP1, B: lane 1). Lane M is 

a GeneRuler™ 100 bp DNA ladder marker (A) or GeneRuler™ 1 kb DNA ladder 

marker (B) (Fermentas). 

 
Figure 3.6 Screening and detection of the recombinant plasmid of the mature 

PmClipSP1 (mPmClipSP1) in pET-22b(+) digesting with HindIII and NdeI on 1.2% 

agarose gel electrophoresis. Lane M is GeneRuler™ 1kb DNA ladder (Fermentas). 

The odd numbers represent the uncut recombinant plasmid and even numbers indicate 

the mPmClipSP1 recombinant plasmid cutting by HindIII and NdeI. 

bp bp 

bp 
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3.4.3 Over-expression of the PmClipSP1 protein in the E. coli Rosetta (DE3) 

strain 

After selection of the corrected clone, the resulting plasmids were then 

transformed into E. coli Rosetta (DE3) pLysS cells for protein expression. The single 

colony of transformed cells was grown at 37 °C in LB medium containing ampicillin 

until they reached an OD600 of 0.6. Expression was then induced by the addition of 1 

mM IPTG. The cultured cells were harvested at 1, 2, 3, 4 and 5 hr after IPTG 

addition. After induction, the Coomassie brilliant blue staining of the gels revealed the 

induction of an approximately 37 kDa protein (Figure 3.7) for mPmClipSP1 and an 

approximately 28 kDa protein (Figure 3.8) for SP-PmClipSP1. The protein was 

detected after 1 h of IPTG induction and gradually increased following induction 

period. However, the highest expressions of recombinant proteins were detected at 4 

hr after induction (Figures 3.7 and 3.8). After sonication, both the supernatant and 

pellet fractions were analyzed by 12 % SDS-PAGE, which showed that target proteins 

with an expected molecular weight around 37 kDa and 28 kDa proteins for 

mPmClipSP1 and SP-PmClipSP1, respectively, were only expressed in the insoluble 

fraction (inclusion bodies) not in the soluble fraction (Figure 3.9). Therefore, this 

condition was applied for a large-scale expression of the recombinant mPmClipSP1 

and SP-PmClipSP1. 

3.4.4 A single-step purification of the recombinant proteins  

The recombinant (r) mPmClipSP1 and SP-PmClipSP1 proteins of PmClipSP1 

were purified from inclusion bodies using Ni-NTA affinity chromatography. The 

purified proteins were refolded by dialysis step for removing urea. The purity of the 

recombinant proteins was analyzed using 12% SDS-PAGE. The results showed that a 

major protein band of each recombinant protein with apparent molecular weight of 37 

kDa (Figure 3.10A) and 28 kDa, (Figure 3.10B), respectively, which is close to the 

calculated molecular mass of the rmPmClipSP1 (37.44 kDa) and rSP-PmClipSP1 

(28.79 kDa) proteins, was achieved after purification process. 
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Figure 3.7 Expression of the recombinant protein of mPmClipSP1 after IPTG 

induction at 0, 1, 2, 3, 4 and 5 hr respectively (lanes 1 to 6). Lane N is protein 

expression of non-insert pET-22b(+) transformant. Lane M indicates the PageRuler™ 

pre-stained protein molecular weight marker (Fermentas). An arrow indicates the 

expected protein (~37 kDa). 
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Figure 3.8 Expression of the recombinant protein of SP-PmClipSP1 after IPTG 

induction at 0, 1, 2, 3, 4 and 5 hr respectively (lanes 1 to 6). Lane M indicates the 

PageRuler™ unstained protein ladder (Fermentas). An arrow indicates the expected 

protein (~28 kDa). 
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Figure 3.9 Fractional analysis of the expressed proteins of mPmClipSP1 and SP-

PmClipSP1 showing recombinant protein was mainly expressed as inclusion body 

form (lanes 3 and 6, respectively) but not found in soluble fraction (lanes 2 and 5). 

Total protein before induction is shown in lanes 1 and 4. Lane M is PageRuler™ 

prestrained protein ladder (Fermentus) in 12 % acrylamide gel electrophoresis. 
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Figure 3.10 Purification and refolding of recombinant proteins of mPmClipSP1 (A: 

lane 1) and SP-PmClipSP1 (B: lane 1) were determined by 12 % acrylamide gel 

electrophoresis. Lane M is PageRuler™ prestrained protein ladder (Fermentus). 

Arrows indicate the expected proteins of ~37 kDa for mPmClipSP1 and ~28 kDa for 

SP-PmClipSP1). 

kDa kDa 
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3.4.5 Immunoblotting analysis 

After purification, the rSP-PmClipSP1 was used to generate rabbit polyclonal 

antibodies by a commercial service. To confirm the binding interaction of antibody 

and rSP-PmClipSP1, the immunoblotting with anti-rSP-PmClipSP1 antibody was 

performed. The purified protein of rSP-PmClipSP1 was electrophoresed on SDS-

PAGE, subsequently blotted to nitrocellulose membrane, then hybridized with rabbit 

anti-rSP-PmClipSP1 antibody and the second antibody conjugated with alkaline 

phosphatase. Finally, the rSP-PmClipSP1 was detected with colorimetric method. 

Immunoblotting analysis indicated that the polyclonal rabbit antisera reacted with the 

major protein band (~28 kDa) of rSP-PmClipSP1 protein (Figure 3.11A and B), 

which is consistent with the expected value (28.79 kDa). 

To detect endogenous PmClipSP1 protein expression in hemocytes of healthy 

shrimp, 20 µg each of the HLS and plasma proteins was subjected to reducing 

12%SDS-PAGE and then transferred onto a nitrocellulose membrane. Western blot 

analysis showed that one protein band (~39 kDa), which corresponded to PmClipSP1 

with a predicted molecular weight of 39.16 kDa, was detected in hemocytes but not in 

the cell-free plasma. However, a band of 50 kDa and bands between 70 to 90 kDa 

were observed. A band of 50 kDa were probably the cross reactivity of PmClipSP1 

antibody with a PmPPAE1 that previously detected in hemocytes with a molecular 

weight of 50 kDa (Charoensapsri et al., 2009). For other protein bands between 70 to 

90 kDa, these bands were probably the nonspecific binding of PmClipSP1 antibody 

with the high concentration of the hemocyanin protein (Figure 3.11C and D).  
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Figure 3.11 SDS-PAGE (A and C) and western blot (B and D) analysis of 

recombinant SP-PmClipSP1 (A and B: lane1), hemocyte protein (C and D: lane1) and 

cell free plasma protein (C and D: lane2). Lane M is Spectra™ Multicolor Broad 

Range Protein Ladder (Fermentas). Twenty g of hemocyte protein (C and D) and 

cell free plasma protein were separated on 12% reducing SDS-PAGE and detected by 

coomasie blue or transfer to Nitrocellulose membrane and probed with rabbit anti-

PmClipSP1 /SP domain antibody. Arrows indicate the expected proteins. 
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3.5 Functional characterization of the recombinant 

PmClipSP1 

The purified rmPmClipSP1 and rSP-PmClipSP1 were assayed for the 

biological activity including the proteinase activity and the activation of PO activity. 

3.5.1 Proteinase activity assay 

The function of PmClipSP1 as a proteinase was investigated using purified 

rmPmClipSP1 and rSP-PmClipSP1 proteins. The proteinase activity on the hydrolysis 

of synthetic chromogenic substrates for serine proteinases trypsin (N-benzoyl–Phe–

Val–Arg–p-nitroanilide or N-benzoyl-D,L-arginine 4- nitroanilide hydrochloride) and 

chymotrypsin (N-succinyl–Ala–Ala–Pro–Phe–p-nitroanilide) were examined. The 

enzymatic activity was monitored as the release of p-nitroaniline at A405 nm. The 

results showed that no proteinase activity was detected in all assays using both 

rmPmClipSP1 and rSP-PmClipSP1 proteins of PmClipSP1, in contrast to trypsin 

which was used as a positive control (Table 3.2). 

Table 3.2 The proteinase activity assays of the recombinant proteins. Trypsin was 

adopted as positive control. 

Proteinase A410 

Blank 0 

Trypsin (0.02 µM)(control) 0.4800 

mPmClipSP1 (0.02, 0.2, 2.0 µM) 0 

SP-PmClipSP1 (0.02, 0.2, 2.0, 20.0 µM) 0 

3.6.2 Assay for activation of phenoloxidase activity 

Generally, the family of clip domain serine proteinases is synthesized as 

zymogens and is activated by a specific proteolytic cleavage. The proPO cascade is 

activated upon recognition of microbial cell wall components, such as peptidoglycan 

(PGN), β-1,3-glucan or lipopolysaccharide (LPS), and leads to the limited proteolysis 

of proPO to the active PO which catalyzes the formation of melanin. In this study, 

purified rmPmClipSP1 was tested for the involvement in the prophenoloxidase 

activation system. The PO activity was determined by measurement of the absorbance 
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at 490 nm using L-DOPA as a substrate and specific PO activity was defined as an 

increase in A490/min/mg protein of HLS. The results revealed that the incubation of 

purified rmPmClipSP1 with HLS, LPS and laminarin (β-1,3-glucan) did not enhance 

PO activity, whilst the addition of the trypsin showed an increase in the PO activity 

compared to control (Figure 3.12). 
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Figure 3.12 Phenoloxidase (PO) activities in the hemocyte lysate supernatant of 

shrimp. The hemocyte lysate supernatant was pre-incubated with larminarin (β-1,3-

glucan) and LPS before incubation with the recombinant mPmClipSP1. The PO 

activity was determined by measurement of the absorbance at 490 nm using L-DOPA 

as a substrate and specific PO activity was defined as an increase in A490/min/mg 

protein of HLS. All assays were performed in triplicate.  

a 

a 
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3.6 Gene silencing of the PmClipSP1 transcript by RNA 

interference  

To characterize the potential role of PmClipSP1 in shrimp innate immunity, 

gene silencing of PmClipSP1 was performed using double stranded RNA (dsRNA) 

mediated RNA interference (RNAi), with the efficiency of gene knockdown 

determined at the transcript level by semi-quantitative RT-PCR. The PmClipSP1 

silenced shrimps were then assayed for total PO activity, bacterial clearance and 

susceptibility to challenge by injection with the pathogenic bacterium, Vibrio harveyi.  

3.6.1 Generation of dsRNA  

The DNA fragment of 660 bp was amplified by PCR from the recombinant 

plasmid containing the PmClipSP1 gene using the gene-specific primers SP1i-F and 

SP1i-R for PmClipSP1 (Table 2.1). The primers for the dsRNA synthesis consist of 

the same primer sequences but flanked at the 5’end by a T7 promoter recognition 

sites. Two separate PCR reactions were set up, one with T7SP1i-F and SP1i-R (Table 

2.1) for the sense strand template, the other with SP1i-F and T7SP1i-R (Table 2.1) for 

the anti-sense strand template. For an exogenous gene as a negative control, a 720-bp 

fragment of the green fluorescent protein (GFP) was amplified with the pEGFP-1 

vector as template using GFPT7-F and GFP-R (Table 2.1) for the sense strand 

template, and GFP-F and GFPT7-R (Table 2.1) for the anti-sense strand template. 

After electrophoresis, the results revealed the expected amplicons of 685 bp for 

PmClipSP1 and 739 bp for GFP were obtained (Figure 3.13). These fragments were 

cloned and sequenced. The PCR products were purified and used to construct the 

dsRNA with a T7 RNA polymerase using T7 RiboMAX™ Express Large Scale RNA 

Production Systems. The ssRNAs of sense and antisense strands of PmClipSP1 and 

GFP were synthesized and their concentration were determined before annealing step 

(Appendix C). Following an annealing of ssRNA, a major band of PmClipSP1 and 

GFP dsRNAs was observed after agarose gel electrophoresis analysis (Figure 3.14). 
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Figure 3.13 PCR products of 685 bp amplified from PmClipSP1 sense (lane1) and 

antisense (lane2) strand templates and 739 bp from GFP sense (lane3) and antisense 

(lane4) strand templates analyzed by 1.2 % agarose gelelctrophoresis. Lane M is 

GeneRuler™ 100 bp DNA ladder marker (Fermentas). 

 

bp 
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Figure 3.14 Analysis of the dsRNA of PmClipSP1 (A) and GFP (B) by 1.2% agarose 

gel strained with ethidium bromide. Lane M is GeneRuler™ 100 bp DNA ladder 

marker (Fermentas). 

3.6.2 Gene silencing of PmClipSP1 

To determine the efficiency of dsRNA mediated knockdown of PmClipSP1 

transcript levels, shrimp (~2 µg) were injected with 5 µg of dsRNA specific for the 

PmClipSP1 gene and the level of PmClipSP1 expression was determined 48 hr after 

dsRNA injection. For the control groups, GFP dsRNA and 150 mM NaCl were 

injected into the shrimp. The hemolymph from each group of shrimp (two individuals 

per group), composed of PmClipSP1 dsRNA-, GFP dsRNA-, and NaCl-injected 

shrimp, were randomly collected and subjected to RT-PCR analysis. Elongation 

factor-1 gene (EF-1) was used as internal control to monitor the amount of cDNA 

template and amplification efficiency between samples. The results of RT-PCR 

analysis showed that the transcriptional level of PmClipSP1 was decreased in 

PmClipSP1 knockdown shrimp, whereas injection of control GFP dsRNA or NaCl 

buffer had no discernable effect on the PmClipSP1 transcript levels (Figure 3.15). 

bp bp 
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The specificity of gene knockdown was further verified by RT-PCR using 

gene-specific primers for the other known clip-domain serine proteinases of P. 

monodon. The RT-PCR results (Figure 3.15) demonstrated that injection of 

PmClipSP1 dsRNA did not detectably suppress transcription of the other clip-SPs 

(PmPPAE1; FJ595215, PmPPAE2; FJ620685, and PmClipSP2; FJ620687) and clip-

SPHs (PmMasSPH1; DQ455050, PmMasSPH2; FJ620686 and PmMasSPH3; 

FJ620689), which supports the likely specificity of PmClipSP1 RNAi knockdown. 

 

PmClipSP1

EF1α

PmPPAE1

PmClipSP2

PmPPAE2
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NaCl GFP PmClipSP1

 

 

Figure 3.15 Gene-specific silencing of PmClipSP1 transcript levels in P. monodon 

hemocytes. The effect of PmClipSP1dsRNA injection on the transcript expression 

levels of PmClipSP1, and other shrimp clip-SPs (PmPPAE1, PmPPAE2 and 

PmClipSP2) and clip-SPHs (PmMasSPH1, PmMasSPH2 and PmMasSPH3) in 

PmClipSP1 dsRNA-, GFP dsRNA- or saline- injected shrimp was examined by RT-

PCR using gene-specific primers. Each lane represents cDNA from an individual 

shrimp. EF1- was used as a control housekeeping gene to standardize the amount of 

cDNA template in each reaction. 
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3.6.3 Hemolymph PO activity of PmClipSP1 silencing shrimps 

To study the effect of PmClipSP1 RNAi-mediated deficiency on the proPO 

activating system, the total PO activity in the PmClipSP1 knockdown shrimp was 

determined. At 48 hr after the second dsRNA injection, shrimp hemocytes were 

collected, and the PO activity was determined. The PO activity was measured as the 

increased absorbance at 490 nm with time. PO activity was recorded as ∆A490/mg 

total protein/min against control samples that used distilled water instead of shrimp 

hemolymph. The experiments were repeated three times (Appendix B). The results 

indicated that no significant decrease in the total PO activity (P <0.05) was detected in 

the PmClipSP1 knockdown shrimp when compared to control groups with either GFP 

dsRNA or NaCl injected shrimp (Figure 3.16). This suggests that PmClipSP1 was not 

directly involved in the regulation of the proPO system in shrimp. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

NaCl GFP dsRNA PmClipSP1dsRNA

PO
 a

ct
iv

ity
(A

49
0/

m
g 

to
ta

l p
ro

te
in

/m
in

 ×
10

-2
)

 

Figure 3.16 Total hemolymph phenoloxidase (PO) activities in PmClipSP1 

knocked down shrimp. Hemolymph was collected 48 hr after the second dsRNA 

injection. Shrimp injected with either GFP dsRNA in saline (150 mM NaCl), or with 

only saline, were used as control groups. The total PO enzymatic activity was 

measured using L-dopa and was defined as A490/mg protein/min. Experiments were 

repeated three times and the data is shown as the mean ±standard deviation. Means 

with the same lower case letters (above each bar) are not significantly different at the 

p < 0.05 level. 

a a 
a 
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3.6.4 Cumulative mortality of V. harveyi challenge PmClipSP1 silencing shrimp 

To further assess the potential role of PmClipSP1 in the shrimp defense 

against bacterial infection, the PmClipSP1-knockdown shrimp were systemically 

challenged with V. harveyi (2 ×105 CFUs), and the mortality rate was recorded for a 

period of five days after challenge. Figure 3.17 shows the cumulative mortality for 

shrimps in each treatment group. 

The PmClipSP1 silenced shrimp had a cumulative mortality of 82 % within 

the first 24 hr (day 1) post-bacterial infection and reached 86 % by day 3. The 

mortality remained at this level (86 % mortality rate) over the remainder of the five 

day assay period. In contrast, in the GFP-dsRNA injected and saline only injected 

control shrimp, only ~20% and ~27% cumulative mortality was observed at one and 

two days post-infection and thereafter remained at this level over the five day assay 

period. Thus, the mortality was induced within the first two days and was 

significantly higher in the PmClipSP1 dsRNA mediated PmClipSP1 knockdown 

shrimp.  

3.6.5 Bacteria clearance 

To investigate the role of PmClipSP1 in the bacterial clearance during V. 

harveyi infection, knockdown of PmClipSP1 was examined. Shrimp pre-injected with 

dsRNA of PmClipSP1 or GFP (as a control), were infected with V. harveyi (2x105 

CFUs). At 6 hr post-injection of bacterial suspension, bacterial count in the 

hemolymph from silenced shrimp was carried out. The result showed that the 

silencing of PmClipSP1 significantly increased the number of bacterial colony, 2.4-

fold, in silenced shrimp, as compared to control shrimp (Figure 3.18). Thus, the 

combined results of the cumulative mortality rate and the viable bacterial clearance 

experiments suggest an important role for PmClipSP1 in the P. monodon shrimp 

defense against V. harveyi infection. 
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Figure 3.17 Cumulative mortality of PmClipSP1 silencing shrimp challenged 

with Vibrio harveyi. Shrimp were injected twice with dsRNA specific PmClipSP1 

gene following challenge by Vibrio harveyi. The mortality was recorded twice a day 

for 5 days. This experiment was repeated three times. The statistical data were 

analyzed by ANOVA and DUNCAN. 
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Figure 3.18 Bacterial number in PmClipSP1 silencing shrimp. Shrimp were 

injected with dsRNA specific PmSP1 or GFP gene and then injected with Vibrio 

harveyi 639 (2×105 CFUs). The bacteria forming unite in shrimp hemolymph were 

determined as CFU/ml of hemolymp at 6 hr after bacteria challenge. This experiment 

was repeated three times. The data was analyzed by ANOVA and DUNCAN. 

Different of CFUs/ml from each group were considered significant at p< 0.05 
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CHAPTER IV 

DISCUSSIONS 

4.1 Characterization of a clip domain serine proteinase (PmClipSP1) 

from black tiger shrimp Penaeus monodon 

Shrimp viral and bacterial diseases have seriously impacted the sustainability 

and economic success of the shrimp aquaculture industry worldwide. Prevention and 

control of diseases are now the priority for the durability of shrimp industry (Bachère 

et al., 1995). A major problem for the control and prevention of shrimp diseases is the 

lack of enough knowledge of shrimp immunity. In order to effectively solve the 

disease problems and increase sustainability of shrimp farming, the study of immune-

related genes and their products that would lead to better understanding the immune 

system is necessary (Bachère, 2000).  

Shrimp have a non-specific innate immunity which is composed of diverse 

processes and molecules to defend themselves against invading pathogens. The 

immune system of crustaceans consists of both cellular and humoral defenses 

including encapsulation, phagocytosis, a prophenoloxidase (proPO)-activating system 

for melanization, a clotting process and specific and general antimicrobial actions 

(Smith et al., 1992; Söderhäll et al., 1992).  

In invertebrates, extracellular SP cascades involving the clip domain SP (clip-

SP) family play important roles in signaling cascades in both embryonic development 

and defense responses, such as in hemolymph coagulation in the horseshoe crab, 

Tachypleus tridentatus (Muta et al., 1990), antimicrobial peptide synthesis in 

Drosophila (Jang et al., 2008), and the activation of proPO in insects and crustaceans 

(Jiang et al., 2000; Jang et al., 2008; Charoensapsri et al., 2009).  

Several clip-SPs and clip-SPHs have been reported in insects. In Drosophila 

melanogaster, 24 genes of SPs and 13 genes of SPHs containing clip was identified 

form total 147 SPs and 57 SPHs (Ross et al., 2003). In M. sexta, 10 hemolymph serine 

proteinases have a clip domain whereas 4 hemolymph serine proteinases have two 

clip domains (Jiang et al., 2005). The A. gambiae revealed 306 SP-related gene in 
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malaria mosquito, 41 of which encode protein that contain at lest one clip domain 

(Holt et al., 2002; Zdobnov et al., 2002).  

From the P. monodon EST database (http://pmonodon.biotec.or.th) 

(Tassanakajon et al., 2006), four clip-SPs (PmPPAE1; FJ595215:(Charoensapsri et 

al., 2009), PmPPAE2; FJ62068; PmClipSP1; FJ620688 and PmClipSP2; FJ620687) 

and three clip-SP homologues (PmMasSPH1; DQ455050: (Amparyup et al., 2007), 

PmMasSPH2; FJ620686 and PmMasSPH3; FJ620689) were obtained (Charoensapsri 

et al., 2009). In this study, a clip-SP (PmClipSP1), similar to the serine protease 14D 

(AAB62929) of Anopheles gambiae (58% similarity), is one of the interested gene 

because the PmClipSP1 transcript significantly increased upon Vibrio harveyi 

infection (Amparyup et al., 2009B) indicating its potential role in shrimp immune 

responses.   

To characterize the function of PmClipSP1 on shrimp immunity, a full-length 

cDNA encoding the PmClipSP1 from P. monodon was analyzed. The PmClipSP1 

contains a putative signal peptide followed by a clip-domain at the N-terminus and a 

serine proteinase domain at the C-terminus.  This domain organization has been 

described as the characteristic of arthropod clip-SPs (Jiang et al., 2000; Jang et al., 

2008). 

By SMART (Simple Modular Architecture Research Tool) program analysis, 

PmClipSP1 was synthesized as zymogen and required proteolytic cleavage at position 

between Ser25 and Gln26 to activated, similar to the activation of other serine 

proteinases such as clip-SPs as well as trypsinogen and chymotrysinogen (Jiang et al., 

2000). The clip-serine proteinase is a group of serine proteinase that consist of serine 

proteinase domain and one or more clip domain at N-terminus and was found so far 

only in arthropod insects, crustaceans and horseshoe crab (Jiang et al., 2000). 

The first clip domain was discovered in proclotting enzyme from horseshoe 

crab, Tachypleus tridentatus (Muta et al., 1990). It was found six strictly conserve 

cysteine residues forming three disulfide bonds. The clip domain was named because 

three disulfide bonds forming the shape look like a paper clip (Iwanaga et al., 1998). 

The double mutation of cystein in clip domain of D. melanogaster ester leads to 

abnormal in embryonic rescues (Tian et al., 2008). It can be concluded that the 
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conserve cysteins have an important role in the fuction of serine proteinase. Now the 

function of clip domain could not had been identified however it perhaps responsible 

for mediating specific protein-protein interactions or for regulating cascades of SP 

activities (Jang et al., 2008). There is a report that the recombinant clip domain of 

crayfish PPAE could be inhibited the growth of gram-positive bacteria such as 

Micrococcus luteus M111 and Bacillus megaterium Bm11(Wang et al., 2001). Thus, 

clip domain may possibly have more than only one function. The number of clip 

domain are varied in different clip-SPs or clip-SPHs for example 2 domains in PPAE 

of Bombyx mori (Satoh et al., 1999) or PAP-2 of Manduca sexta (Yu et al., 2003), 3 

domains in MasSPH3 of P. monodon (FJ620689), 5 domains in MasSPH of H. 

diomphalia (Kim et al., 2002), 7 domains in Mas-like SP of P. leniusculus (Lee et al., 

2001).   

From the deduced amino acid sequence analysis, the catalytic domain of 

PmClipSP1 was presented the three conserved amino acid residues. They were called 

catalytic triad that consisted of His151, Asp216 and Ser314. These conserve residues 

are the essential feature for successful proteolytic mechanism (Phillips et al., 1992). 

Moreover, there are some proteinases that showed a slight difference from average 

serine protease with the amino acid Ser was replaced by another amino acid (such as 

Gly) leading to lacking protease activity. As such, these proteins are called serine 

proteinase homolog (SPH) (Jiang et al., 2000). The data obtained in this study showed 

that PmClipSP1 belonging to the serine proteinase family because it contain the 

catalytic triad. From the sequence alignment analysis, eight conserve cystein residues 

forming four disulfide bridges was observed in SP domain of PmClipSP1 similar to A. 

gambie SP14D2, D. melanogaster ester, H. diomphalia PPAF-I, D. melanogaster 

MP1A and M. sexta PAP1. On the other hand, SP domain of P. monodon PPAE1, A. 

gambie SP14D1 and P. leniusculus PPAE was observed only six conserved cystein 

residues. This data suggested that a PmClipSP1 is a trypsin-like serine protease which 

contains eight conserved cysteine residues (Cys136-Cys152, Cys179-Cys189, 

Cys268-Cys300 and Cys310-Cys341), believed to form four disulfide bonds (Hartley, 

1964). Moreover, a pair of cysteine (Cys96-Cys239) between clip domain and SP 

domain was found. The inter-domain disulfide bridge probably connected the clip 

domain and SP domain together after protein cleavage activation (Piao et al., 2005).  
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4.2 Recombinant protein expression of a clip domain serine 

proteinase (PmClipSP1) from black tiger shrimp P. monodon 

In the study of functional protein, the E. coli expression system is the first 

choice for the production of recombinant protein (Baneyx, 1999) because of its 

advantages such easy to construct, low cost, large quantity of protein and high success 

rates (Cabrita et al., 2004). However, it has some disadvantage for expression of 

eukaryote protein such as the inability to perform many post-translation modifications 

and the expression of protein often form as inclusion body (Swartz, 2001). According 

to the using of E. coli for expression of recombinant protein, it has more factors 

effecting to a yield of expression protein such as plasmid copy number, upstream 

element, temperature and codon usage (Baneyx, 1999; Swartz, 2001; Jonasson et al., 

2002). For solution of this problem, pET22b(+) and E. coli strain Rosetta (DE3) were 

selected as an expression vector and an expression host respectively. The E. coli strain 

Rosseta (DE3) supplied rare codon usage, suitable for the expression of eukaryote 

protein that is associated with codon rarely. 

Both the recombinant mature protein and the SP domain of PmClipSP1 were 

mainly expressed as inclusion body. Inclusion bodies are a dense amorphous 

aggregate of misfold protein found in the cytoplasmid and periplasmid space (Singh et 

al., 2005). High level expression of nonnative protein and highly hydrophobic protein 

result in accumulating them as insoluble aggregates in vivo as inclusion body (Mitraki 

et al., 1991). Inclusion body proteins are lacking of biological activity and required 

solubilization, refolding and purification to recover functional protein activation 

(Rudolph et al., 1996; Singh et al., 2005). So the recombinant PmClipSP1 proteins 

were solubilized in 8 M urea and purified by using Ni-NTA affinity chromatography. 

The purified proteins were obtained although some contaminated cellular components 

were observed. The renaturation of purified proteins were performed by dialysis in 20 

mM Tris-HCl buffer pH 8.0 to remove urea. According to this step, we expected that 

the recombinant proteins would be correctly refolded and exhibited the function of 

protease activity and/or PO activity. Unfortunately, the recombinant PmClipSP1 both 

the mature protein and the SP domain protein were not exhibited proteolytic activity 

similar to the recombinant chymotrypsin-like serine protease from the Chinese 

shrimp, Penaeus chinensis, which also showed no proteinase activity (Shi et al., 
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2008). The lack of proteinase activity may be due to misfolding form the renaturation 

processes. The successful of renaturing protein depends on protein concentration, 

component of the refolding buffer, disulfide bond formation, method of refolding and 

purity of recombinant protein (Cabrita et al., 2004). Another useful method of 

reducing the formation of inclusion bodies containing heterologous proteins is to 

lower the temperature of growth from 37 °C to 30 °C (Schein, 1989). 

So far, there had a little report correlated with successful of the recombinant 

eukaryote protease enzyme expressing in E. coli system. Recombinant human micro-

plasminogen over-expressing in E. coli could be exhibited urokinase activation (Ma et 

al., 2007). In arthropod, yeast expression system and baculovirus-infected insect cell 

were preferentilly adopted for example the baculovirus-infected insect cells 

expressing recombinant clip-SP, proPAP and proPAP-2 of M. sexta (Wang et al., 

2001; Ji et al., 2003). In some case, the studies of functional proteinase activity have 

been done by purification its native protein from specific tissues such as HP14 from 

M. sexta hemolymp, PPAE from larval cuticles of Bombyx mori (Satoh et al., 1999) 

and PPAF from hemolymph of coleopteran, H. diomphalia larvae (Lee et al., 1998). 

The above-mentioned methods could reduce misfolding of eukaryote proteins. Yeast 

and baculovirus-infected insect cell are often used to produce recombinant proteins 

that are not successfully expressed in E. coli because protein folding problem and 

requirement for glycosylation or posttranslational modification in insect cells system. 

However, these systems are more complex with higher cost and lower yield of protein 

product than E. coli system (Demain et al., 2009). 

4.3 Gene silencing of a clip domain serine proteinase (PmClipSP1) 

from black tiger shrimp P. monodon by RNA interference 

RNA interference (RNAi) induced by long dsRNA has been used to study the 

function of immune relate genes in several arthropods (Reynolds et al., 2008). The 

specific knocking down of PmClipSP1 was succeeded without the depletion of other 

related SP genes. Functional analysis using in PmClipSP1-specific RNA interference 

revealed that PmClipSP1 is not involved in the activation of proPO mediated 

melanization. This result did not support the data searching from Blast and phylogenic 

analysis. However, Charoensapsri et al. (2009) recently identified and characterized a 
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clip-SP (named PmPPAE1) in P. monodon, and found that PmPPAE1 is required for 

the shrimp proPO system (Charoensapsri et al., 2009). Consequently, dsRNA-

mediated RNAi was used to determine the involvement of PmClipSP1 in immune 

defense against V. harveyi infection. The suppression of the PmClipSP1 gene led to a 

significant increase in the number of viable bacteria in the hemolymph and in the 

mortality rate of shrimp systemically infected with V. harveyi. These findings suggest 

that PmClipSP1 plays a role in the antibacterial defense mechanism of P. monodon 

shrimp. These results were in accordance with the recent studied of PmClipSP1 which 

reported that the transcription of PmClipSP1 was increased after 3 hr. of bacterial 

challenge with V. harveyi. Furthermore the transcription of PmClipSP1 was highest 

expressed in shrimp hemocyte (Amparyup et al. 2009B). In insect and crustacean, the 

immune related SPs with clip domain were mostly expressed in hemocyte and/or fat 

body for example clip domain SP in scallop, Chlamys farreri (Zhu et al., 2008), the 

Masquerade-like SPH of crayfish, P. leniusculus (Kopacek et al., 1993), factor D-like 

SP from Denmacentor variabilis (Simser et al., 2004) etc. 

Several studies report the discovery of SPs and SPHs that responded to 

bacterial or virus infection but their physiological function has not been identified. In 

Drosophila, a serine proteinase involved in immune responses could be identified 

from bacterial-challenged hemocyte (De Morais Guedes et al., 2005). Although only 

one trypsin-like serine proteinase was responded to bacterial infection in 

Fenneropenaeus chinensis but the four hepatopancreas trypsin-like serine proteinases 

were up-regulated in WSSV infected shrimp (Shi et al., 2009). A PmMasSPH1 of P. 

monodon was up-regulated after V. harveyi infection (Amparyup et al., 2007) while 

this gene was down-regulated in YHV infection. (Sriphaijit et al., 2007). Moreover, 

the recent study revealed that PmMasSPH1 is a multifunctional immune molecule 

involved in hemocyte adhesion, bacterial binding, bacterial clearance and 

antimicrobial activity (Jitvaropas et al., 2009). On the contrast, the transcription level 

of hemocyte SP from L. vannamei did not changed after Vibrio alginolyticus 

inoculation (Jiménez-Vega et al., 2005). Moreover, the inhibition of M. sexta SP by 

using benzamidine leads to reduction of some antimicrobial protein (Kanost et al., 

1999). These data suggested that SPs are involved in antibacterial mechanism of 

arthropod species. 
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The role of serine proteinase cascade in immunity are widely study in 

arthropods, the serine proteinases with clip domain are involved in several defense 

mechanisms especially the activation of signaling pathway leading to synthesis of 

antimicrobial peptides (Kurata et al., 2006), blood clotting (Davie et al., 1991) and 

prophenoloxidase mediated melanization (Cerenius et al., 2008). For example, the 

persephone gene coding blood serine proteinase could induce Toll pathway that was 

responded to fungi infection in D. melanogaster (Ligoxygakis et al., 2002). In 

Drosophila, the Toll pathway is an important pathway for anti-gram-positive bacteria, 

fungi and virus  by an induction of synthesis of antimicrobial peptides (Lemaitre et 

al., 1996; Rutschmann et al., 2002; Zambon et al., 2005) while Gram-negative 

bacteria is affected by the activation of the immunodeficiency (Imd) pathway (Gottar 

et al., 2002; Ramet et al., 2002). Two SPs, known as easter and snake, were required 

for activation of this pathway during a protease cascade. From our recent study, five 

novel SPs were found that may activate the Toll pathway. Although the Toll like 

receptor was found in many shrimps, but the upstream processes of Toll pathway was 

poor investigated. Recent studies showed the Toll like receptor from P. monodon and 

P. vannmei were not responsed to viral infection whereas Toll receptor from F. 

chinesis was reduced after WSSV infection (Arts et al., 2007; Labreuche et al., 2009). 

However P. chinesis Toll was up regulated after injection with Vibrio anguillarum for 

24 hr (Yang et al., 2008). These data were different from those of Drosophila in 

which Toll pathway was responded to virus and some gram-positive bacteria. Which 

may imply that Toll pathway in shrimp may be different from the insect. 

The clotting system in arthropods has two different mechanisms. In horseshoe 

crab blood clotting can be activated by the proteolytic cascade. This activation 

cascade bring about coagulogen molecule are subsequently cleaved and formed 

insoluble gel (Kawabata et al., 1996). On other hand, the polymerization of clotting 

proteins (CP) are derived by releasing of the tranglutaminase (TGase) in the crayfish 

clotting system (Kopacek et al., 1993; Hall et al., 1999). While the clotting system 

and the proPO system in horseshoe crab are closely related, Tachypleus clotting 

enzyme can transform hemocyanin to phenoloxidase, and the conversion reaches a 

plateau at 1:1 stoichiometry without proteolytic cleavage (Nagai et al., 2000). It is 

possible that coagulating system may associate with melanization or other immune 

responses such as encapsulation (Jiang et al., 2000). While scolexin, a serine 
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proteinase like protein, may play an important role in M. sexta coagulation system 

(Finnerty et al., 1999). These suggest that SP in arthropod hemolymph may take path 

in more than one pathway. This is the fact that an extracellular signal transduction 

network that mediate various immune responses are served in the complex system of 

serine proteinase cascade (Kanost et al., 1999). However, the silencing of PmClipPm1 

transcript levels did not detectably affect the hemolymph clotting in P. monodon 

shrimp (data not shown).  

In summary, this research demonstrates that PmClipSP1 of P. monodon is 

unlikely to be directly involved in the proPO-activating system, but that it is important 

for the shrimp defense mechanism against infection with the pathogenic Gram-

negative bacteria V. harveyi by an unknown mechanism, which is yet to be 

determined. 

 



CHAPTER V 

CONCLUSION 

1. A full length cDNA of PmClipSP1 gene contains an open reading frame 

(ORF) of 1,101 bp encoding a predicted protein of 366 amino acids including 

a putative signal peptide of 25 amino acids. The calculated molecular mass of 

the mature protein was 36.48 kDa with a predicted isoelectric point (pI) of 

5.56. 

2. Sequence analysis revealed that the deduced amino acid sequence of 

PmClipSP1 is composed of N-terminal clip domain with six conserved 

cysteine residues forming three disulfide bonds and C-terminal serine 

proteinase domain containing conserved His-Asp-Ser catalytic triad.  

3. Sequence comparison of known proteins from NCBI database using BLASTX 

program revealed that the deduced amino acid of PmClipSP1 had a similarity 

of 58%, 57%, 54%, 52% and 51% to those of Penaeus chinensis SP, 

Anopheles gambiae SP14D, Holotrichia diomphalia PPAFI, Drosophila 

melanogaster MP1 and Manduca sexta PAP3 respectively. 

4. The recombinant proteins of both a mature protein and a serine proteinase 

domain protein of PmClipSP1 gene were over-expressed in E. coli and 

successfully purified by Ni-NTA column. Both recombinant proteins lack a 

proteolytic activity and the activation of phenoloxidase (PO) activity. The 

immunobloting analysis showed the PmClipSP1 that was observed only in 

hemocyte but not in cell-free plasma of P. monodon.  

5. RNA interference-mediated suppression of PmClipSP1, performed by 

injection of double-stranded RNA (dsRNA) corresponding to the PmClipSP1 

gene into shrimp, resulted in a significant reduction of PmClipSP1 but not 

other clip-SPs and related gene transcript levels of P. monodon, suggesting 

gene-specific knockdown.  
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6. Silencing of PmClipSP1 gene indicated that no significant decrease in the total 

PO activity was detected in the PmClipSP1 knockdown shrimp when 

compared to control groups with either GFP dsRNA or NaCl injected shrimp. 

This result suggested that PmClipSP1 was not directly involved in the 

regulation of the proPO system in shrimp. 

7. Suppression of the PmClipSP1 gene led to a significant increase in the number 

of viable bacteria in the hemolymph (~2.4 fold) and in the mortality rate 

(59%) of shrimp systemically infected with Vibrio harveyi.  

8. Our data demonstrates that PmClipSP1 of P. monodon is unlikely to be 

directly involved in the proPO-activating system, but that it is important for 

the shrimp defense mechanism against infection with the pathogenic Gram-

negative bacteria, V harveyi. 
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The signal peptide prediction by signalP 

PmClipSP1 

 

>PmClipSP1                 length = 70 

# Measure  Position  Value  Cutoff  signal peptide? 

  max. C    26       0.542   0.32   YES 

  max. Y    26       0.652   0.33   YES 

  max. S    17       0.994   0.87   YES 

  mean S     1-25    0.884   0.48   YES 

       D     1-25    0.768   0.43   YES 

# Most likely cleavage site between pos. 25 and 26: VTS-QG 
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The N-Glycosylation sites prediction with NetNglyc sever 

PmClipSP1 

Output for 'PmClipSP1' 

Name:  PmClipSP1  Length:  366 
MNIKRGCVAWLVPAVLLVVAQQVTSQGADCVRSQCISIRECPALLKLLQDPTRINIRKLQDATCYVRNREPMVCCPSITT 80  
TETPTIPTKSLLPENCGHSAHLNRIVGGEVAPLDAYPWKAVLGYKDKGLAAIEFLCGGSVINERYVLTAAHCVDPGTLGT 160  
RRLEVVRLGEWDLTTTEDCESTNSGGVFCAPPVQDFEAEEIIGHPSYNTRVRFSDDIALIRLNRPINFQESAGFVLPVCL 240  
PPSNFSPRTAAGNKSAIAAGWGFTETGSASNKIKHVKLPLVDSTECSQVYKGSTVSEQLCAGGNAGEDSCGGDSGGPLVL 320  
AGTFGPPYQQIGIVSYGPVSCGQQGVPGIYTSVSSYRTWIEQNLKP 
................................................................................ 80 
................................................................................ 160 
................................................................................ 240 
............N................................................................... 320 
..............................................                                   400 
 

(Threshold=0.5) 

--------------------------------------------------------------------- 

SeqName      Position                Potential         Jury                 N-Glyc 

                                                    agreement result 

--------------------------------------------------------------------- 

PmClipSP1           244                                        NFSP               0.1360     (9/9)      ---    

PmClipSP1           253                                        NKSA               0.7128     (8/9)       +      

--------------------------------------------------------------------- 
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The prediction of putative pI by Ganetyx program 

PmClipSP1 

[GENETYX-WIN : Caluculate isoelectric point]
Date              : 2009.03.25
Filename          : Sequence1
Sequence size     : 376
Sequence position : 1 - 376

Charge

0

10

-10

20

-20

30

-30

40

-40

50

-50

60

-60

1 2 3 4 5 6 7 8 9 10 11 12 13 14
pH Amino Acid  Number  pKa

   Arg (R)     18   12.5
   His (H)      5    6.0
   Lys (K)     13   10.5
   Asp (D)     14    3.9
   Cys (C)     17    8.3
   Glu (E)     20    4.3
   Tyr (Y)     10   10.1

 N-terminal Met (M)  9.3
 � C-terminal  ( )  0.0
 Isoelectric point: 5.98  
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1. Nucleotide sequence and deduced amino acid sequence of recombinant 

mature PmClipSP1. Bold and underline showed His tag sequence for 

using purification.  

  ATGCATCATCATCATCATCATCAGGGTGCAGATTGTGTACGCAGTCAGTGTATCTCAATT  60 
   M  H  H  H  H  H  H  Q  G  A  D  C  V  R  S  Q  C  I  S  I  
  CGAGAATGTCCAGCTCTGCTAAAACTTTTACAGGATCCTACACGAATCAATATCAGGAAG  120 
   R  E  C  P  A  L  L  K  L  L  Q  D  P  T  R  I  N  I  R  K  
  CTACAAGATGCCACCTGCTATGTCAGGAACCGGGAACCTATGGTATGCTGTCCATCTATA  180 
   L  Q  D  A  T  C  Y  V  R  N  R  E  P  M  V  C  C  P  S  I  
  ACTACAACTGAAACACCGACGATTCCCACAAAGTCTCTCCTCCCAGAAAATTGTGGGCAC  240 
   T  T  T  E  T  P  T  I  P  T  K  S  L  L  P  E  N  C  G  H  
  AGTGCTCACTTGAACAGAATTGTGGGTGGAGAAGTAGCCCCACTTGATGCATACCCATGG  300 
   S  A  H  L  N  R  I  V  G  G  E  V  A  P  L  D  A  Y  P  W  
  AAAGCTGTTCTAGGATATAAAGATAAAGGATTAGCTGCCATTGAATTTCTCTGCGGGGGT  360 
   K  A  V  L  G  Y  K  D  K  G  L  A  A  I  E  F  L  C  G  G  
  TCAGTCATTAACGAGAGATATGTTCTTACTGCTGCTCATTGTGTAGACCCTGGTACACTT  420 
   S  V  I  N  E  R  Y  V  L  T  A  A  H  C  V  D  P  G  T  L  
  GGCACACGAAGATTGGAAGTAGTTCGACTGGGTGAATGGGACCTCACCACCACTGAAGAC  480 
   G  T  R  R  L  E  V  V  R  L  G  E  W  D  L  T  T  T  E  D  
  TGTGAGAGCACAAATAGTGGAGGGGTATTCTGTGCTCCTCCAGTTCAAGATTTCGAGGCT  540 
   C  E  S  T  N  S  G  G  V  F  C  A  P  P  V  Q  D  F  E  A  
  GAGGAAATTATCGGTCATCCCTCATACAACACTCGTGTGAGATTCTCCGATGACATTGCA  600 
   E  E  I  I  G  H  P  S  Y  N  T  R  V  R  F  S  D  D  I  A  
  CTCATCAGACTCAACAGGCCCATTAACTTCCAGGAATCAGCAGGATTTGTGTTGCCTGTG  660 
   L  I  R  L  N  R  P  I  N  F  Q  E  S  A  G  F  V  L  P  V  
  TGCCTGCCTCCATCTAACTTCTCCCCTCGTACAGCAGCTGGTAACAAATCAGCAATTGCA  720 
   C  L  P  P  S  N  F  S  P  R  T  A  A  G  N  K  S  A  I  A  
  GCTGGATGGGGCTTCACTGAAACTGGCTCTGCAAGTAACAAAATTAAGCATGTAAAGCTG  780 
   A  G  W  G  F  T  E  T  G  S  A  S  N  K  I  K  H  V  K  L  
  CCATTGGTTGACAGTACTGAGTGTAGTCAGGTGTACAAAGGCAGTACAGTCAGTGAACAA  840 
   P  L  V  D  S  T  E  C  S  Q  V  Y  K  G  S  T  V  S  E  Q  
  CTCTGTGCCGGTGGCAATGCTGGTGAAGACTCGTGCGGTGGAGACTCTGGTGGTCCCTTG  900 
   L  C  A  G  G  N  A  G  E  D  S  C  G  G  D  S  G  G  P  L  
  GTACTTGCCGGTACTTTTGGTCCTCCCTACCAGCAGATTGGCATTGTTTCCTACGGTCCT  960 
   V  L  A  G  T  F  G  P  P  Y  Q  Q  I  G  I  V  S  Y  G  P  
  GTCAGCTGTGGCCAGCAGGGGGTACCTGGTATCTACACATCTGTAAGCAGCTACAGGACA  1020 
   V  S  C  G  Q  Q  G  V  P  G  I  Y  T  S  V  S  S  Y  R  T  
  TGGATTGAGCAGAACTTAAAGCCATAA                    1050 
   W  I  E  Q  N  L  K  P  *  
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128 

 
 
 
 
 
 
 
 
 
 
 
 

      1 atgcatcatcatcatcatcatagaattgtgggtggagaagtagcc 
         M  H  H  H  H  H  H  R  I  V  G  G  E  V  A  
     46 ccacttgatgcatacccatggaaagctgttctaggatataaagat 
         P  L  D  A  Y  P  W  K  A  V  L  G  Y  K  D  
     91 aaaggattagctgccattgaatttctctgcgggggttcagtcatt 
         K  G  L  A  A  I  E  F  L  C  G  G  S  V  I  
    136 aacgagagatatgttcttactgctgcccattgtgtagaccctggt 
         N  E  R  Y  V  L  T  A  A  H  C  V  D  P  G  
    181 acacttggcacacggagattggaagtagttcgactgggtgaatgg 
         T  L  G  T  R  R  L  E  V  V  R  L  G  E  W  
    226 gacctcaccaccactgaagactgtgagagcacaaatagtggaggg 
         D  L  T  T  T  E  D  C  E  S  T  N  S  G  G  
    271 gtattctgtgctcctccagctcaagatttcgaggctgaggaaatt 
         V  F  C  A  P  P  A  Q  D  F  E  A  E  E  I  
    316 atcggtcatccctcatacaacactcgtgtgagattctccgatgac 
         I  G  H  P  S  Y  N  T  R  V  R  F  S  D  D  
    361 attgcactcatcagactcaacaggcccattaacttccaggaatca 
         I  A  L  I  R  L  N  R  P  I  N  F  Q  E  S  
    406 gcaggatttgtgttgcctgtgtgcctgcctccatctaacttctcc 
         A  G  F  V  L  P  V  C  L  P  P  S  N  F  S  
    451 cctcgtacagcagctggtaacaaatcagcaattgcagctggatgg 
         P  R  T  A  A  G  N  K  S  A  I  A  A  G  W  
    496 ggcttcactgaaactggctctgcaagtaataaaattaagcatgta 
         G  F  T  E  T  G  S  A  S  N  K  I  K  H  V  
    541 aagctgccattggttgacagtactgagtgtagtcaggtgtacaaa 
         K  L  P  L  V  D  S  T  E  C  S  Q  V  Y  K  
    586 ggcagtacagtcagtgaacagctctgtgccggtggcaatgctggt 
         G  S  T  V  S  E  Q  L  C  A  G  G  N  A  G  
    631 gaagactcgtgcggtggagactctggtggtcccttggtacttgcc 
         E  D  S  C  G  G  D  S  G  G  P  L  V  L  A  
    676 ggtacttttggtcctccctaccagcagattggcattgtttcctac 
         G  T  F  G  P  P  Y  Q  Q  I  G  I  V  S  Y  
    721 ggtcctgtcagctgtggccagcagggggtacctggtatctacaca 
         G  P  V  S  C  G  Q  Q  G  V  P  G  I  Y  T  
    766 tctgtaagcagctacaggacatggattgagcagaacttaaagcca 
         S  V  S  S  Y  R  T  W  I  E  Q  N  L  K  P  
    811 taa 813     
         *  

2. Nucleotide sequence and deduced amino acid sequence of recombinant 

PmClipSP1-SP domain. Bold and underline showed His tag sequence for 

using purification.  
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1. The proteinase activity assay of recombinant SP domain. Trypsin and 

Chymotrypsin were adopted as positive control. 

 

A410 
proteinase 

BPVApNA1 SAAPFpNA2 D,L-BApNA3 

Trypsin (0.02/0.05 µM)* 0.3772 - 0.0542 

Chymotrypsin (0.05 µM) - 0.2094 - 

SP1SPdomain (0.02/0.05 µM)* 0 0 0 

SP1SPdomain (0.2/0.5 µM)* 0 0 0 

SP1SPdomain (2.0/5.0 µM)* 0 0 0 

SP1SPdomain (20.0/15.0 µM)* 0 0 0 
 

1. N-benzoyl-Phe-Val-Arg-p-nitroanilide (Trypsin substrate) 

2. N-succinyl-Ala-Ala-Pho-Phe-p-nitroanilide (Chymotrypsin substrate) 

3. N-benzoyl-D,L-aginine 4- nitroanilide hydrochlorid (Trypsin substrate) 

* 0.02 , 0.2 , 2.0 , 20.0 µM proteine for substrate Benz 

   0.05 , 0.5 , 5.0 , 15.0 µM proteine for substrate R-pNA , AApho 

2. The proteinase activity assay of recombinant SP domain by varies CaCl2 

concentration. Trypsin was adopted as positive control. 

Proteinase Conc. CaCl2 A410 
 1. blank 0 0 

2. 5 mM CaCl2 0.5125 0.5135 

3. 25 mM CaCl2 0.4423 0.4440 

4. 50 mM CaCl2 0.5081 0.5076 
Trypsin 

5. 100 mM CaCl2 0.5033 0.5042 

6. 5 mM CaCl2 0.0190 0.0188 

7. 25 mM CaCl2 0.0223 0.0225 

8. 50 mM CaCl2 0.0104 0.0101 
SP1 SPdomain 

9. 100 mM CaCl2 0.0154 0.0160 

*N-benzoyl-Phe-Val-Arg-p-nitroanilide (Trypsin substrate) 
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3. The proteinase activity assays of recombinant mature PmClipSP1. Trypsin 

was adopted as positive control and activator of recombinant PmClipSP1. 

Proteinase A410 

1. blank 0 0 

2. Trypsin (0.02 µM)  0.4800 0.4837 

3. SP1 (0.02 µM) 0 0 

4. SP1 (0.2 µM) 0 0 

5. SP1 (2.0 µM)  0 0 
 
*N-benzoyl-Phe-Val-Arg-p-nitroanilide (Trypsin substrate) 
 

 

4. The PO activity assay of recombinant PmClipSP1 

PO activity HLS+ 
LPS+Laminarin 

HLS+ 
LPS+Laminarin 

+SP1 

HLS+ 
LPS+Laminarin 

+Trypsin 
1 3.3 4.14 3.5 

2 4.7 3.9 6.5 

3 3.8 3.99 5.7 

Average 4 4.02 5 

SD 0.989949 0.169706 2.12132034 
 
# PO activity = OD490/min/mg HLS protein 
Incubation time 15 min, 2 mg of HLS protein 
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5. The hemolymph PO activity from silencing gene shrimp measuring by L-dopa 

assay.  

group OD490 PO activity Average SD 

0.3114 0.519 

0.3072 0.512 NaCl 

0.3802 0.6337 

0.5549 0.06833 

0.2761 0.4602 

0.4034 0.6723 GFP dsRNA 

0.3131 0.5218 

0.55143 0.10911 

0.3341 0.55683 

0.3371 0.5481 SP1 dsRNA 

0.3498 0.5688 

0.55791 0.01039 
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6. Synthetic dsRNA were analyzed by 1.2% agarose gel 

electrophoresis staining by ethidium bromide. 

Lane M : GeneRuler™ 100 bp DNA ladder marker (Fermentas) 

Lane 1 : PmClipSP1 ssRNA sense strand 

Lane 2 : PmClipSP1 ssRNA antisense strand 

Lane 3 : GFP dsRNA sense strand 

Lane 4 : GFP dsRNA antisense strand 



 134 

BIOGRAPHY  

 

Mr. Kriangpol Wiriyaukaradecha was born on January 27, 1984 in Bangkok. He 

graduated with the degree of Bachelor of Science from the Department of Biology, 

Faculty of Science, SrinakharinWirot University in 2006. He has studied for the degree of 

Master of Science at program in Biotechnology, Chulalongkorn University since 2006. 

 

 


	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I    Introduction
	1.1  General introduction
	1.2  Taxonomy of Penaeus monodon
	1.3  Shrimp diseases
	1.4  Crustacean immune system
	1.5  Serine proteinases (SPs) and serine proteinase homologues (SPHs)
	1.6  RNA interference (RNAi)
	1.7  Previous studies
	1.8  Objectives

	Chapter II   Materials and Methods
	2.1  Equipments
	2.2  Chemicals, Reagents and Biological substance
	2.3  Kits and Enzymes 
	2.4  Microorganisms
	2.5  Software
	2.6  DNA sequence analysis
	2.7  Construction of expression plasmid for recombinant PmClipSP1 production in E. coli
	2.8  RNA interference

	Chapter III  Results
	3.1  Sequence analysis of the PmClipSP1 from P. monodon
	3.2  Sequence comparison of PmClipSP1
	3.3  Phylogenetic analysis
	3.4  Recombinant expression of a serine proteinase (SP) domain of
PmClipSP1 in the E. coli system
	3.5  Functional characterization of the recombinant PmClipSP1
	3.6  Gene silencing of the PmClipSP1 transcript by RNA interference

	Chapter IV   Discussions
	4.1  Characterization of a clip domain serine proteinase (PmClipSP1) from
black tiger shrimp Penaeus monodon
	4.2  Recombinant protein expression of a clip domain serine proteinase (PmClipSP1) from black tiger shrimp P. monodon
	4.3  Gene silencing of a clip domain serine proteinase (PmClipSP1) from
black tiger shrimp P. monodon by RNA interference

	Chapter V   Conclusion
	References
	Appendix
	Vita



