การใช้ค่าดัชนีพืชพรรณที่ได้จากเทคนิคการสำรวจระยะไกล แบบไฮเปอร์สเปกตรัลเพื่อศึกษาตัวแปรทางชีววิทยาของป่าชายเลน

นายธันวา สัจจาพิทักษ์วงศ์

พาลงกรณ์มหาวิทยาลัย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาระบบสารสนเทศปริภูมิทางวิศวกรรม ภาควิชาวิศวกรรมสำรวจ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2552 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย HYPERSPECTRAL –DERIVED VEGETATION INDICES FOR STUDYING MANGROVE FOREST BIOPHYSICAL PARAMETERS

Mr.Thanwa Saggapitakwong

ศูนยวิทยทรัพยากร

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in Spatial Information System in Engineering

Department of Survey Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2009

Copyright of Chulalongkorn University

หัวข้อวิทยานิพนธ์	การใช้ค่าดัชนีพืชพรรณที่ได้จากเทคนิคการสำรวจระยะไกล
	แบบไฮเปอร์สเปกตรัลเพื่อศึกษาตัวแปรทางชีววิทยาของ
	ป่าชายเลน
โดย	นายธันวา สัจจาพิทักษ์วงศ์
สาขาวิชา	ระบบสารสนเทศปริภูมิทางวิศวกรรม
อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	รองศาสตราจารย์ ดร. บรรเจิด พละการ
อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม	อาจารย์ ดร. ชัยโชค ไวภาษา

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็น ส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

🛛 🔊 🖚 📩 คณบดีคณะวิศวกรรมศาสตร์

(รองศาสตราจารย์ ดร. บุญสม เลิศหิรัญวงศ์)

คณะกรรมการสอบวิทยานิพนธ์

วาววประธานกรรมการ

(รองศาสตราจารย์ ดร. อิทธิ ตริสิริสัตยวงศ์)

......อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก

(รองศาสตราจารย์ ดร. บรรเจิด พละการ)

ริงโทก ไกภาษา อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม

(อาจารย์ ดร. ชัยโชค ไวภาษา)

sonta anno ussuns

(อาจารย์ ดร. ธงทิศ ฉายากุล)

(ดร. เซาวลิต ศิลปทอง)

อันวา สัจจาพิทักษ์วงศ์ : การใช้ค่าดัชนีพืชพรรณที่ได้จากเทคนิคการสำรวจระยะไกล แบบไฮเปอร์สเปกตรัลเพื่อศึกษาตัวแปรทางชีววิทยาของป่าชายเลน. (HYPERSPECTRAL-DERIVED VEGETATION INDICES FOR STUDYING MANGROVE FOREST BIOPHYSICAL PARAMETERS) อาจารย์ที่ปรึกษา วิทยานิพนธ์หลัก : รองศาสตราจารย์ ดร. บรรเจิด พละการ, อาจารย์ที่ปรึกษา วิทยานิพนธ์ร่วม : อาจารย์ ดร.ชัยโชค ไวภาษา, 76 หน้า.

การศึกษานี้มีจุดมุ่งหมายเพื่อศึกษาศักยภาพของข้อมูลที่ได้จากเทคนิคการสำรวจ ระยะไกลแบบไฮเปอร์สเปกตรัลในการแก้ปัญหาจุดอิ่มตัวของสัญญาณที่จะพบได้ในแบบจำลอง ความสัมพันธ์เชิงเส้นระหว่างค่าตัวแปรทางชีววิทยาของป่าที่มีพรรณไม้หนาแน่นกับค่าดัชนี พืชพรรณ โดยใช้ข้อมูลค่ามวลชีวภาพ(Biomass) และค่าดัชนีพื้นที่ผิวใบ(Leaf Area Index) ที่ได้จากพื้นที่ศึกษาป่าชายเลนที่มีพรรณไม้ขึ้นหนาแน่นบริเวณแหลมตะลุมพุก อำเภอปากพนัง จังหวัดนครศรีธรรมราช และข้อมูลจากภาพถ่ายดาวเทียมระบบ Hyperion และ ALI มาทำการ ทดลองและใช้ค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์(Normalized Difference Vegetation Index),ค่าดัชนีลัดส่วนธรรมดา(Simple Ratio) และค่าดัชนีตำแหน่ง Red Edge,(Red Edge Positioning) ผลการทดลองที่ได้น่าสนใจเป็นอย่างมากเมื่อพบว่าค่าดัชนีพืชพรรณผลต่างแบบ นอร์แมลไลซ์ และค่าดัชนีลัดส่วนธรรมดาที่ได้จากข้อมูลไฮเปอร์สเปกตรัลและข้อมูล มัลติสเปกตรัลที่ศึกษาเปรียบเทียบกันนั้นไม่เกิดปัญหาจุดอิ่มตัวของสัญญาณทั้งคู่ โดยยืนยัน ด้วยผลการทดสอบทางสถิติที่ระดับนัยสำคัญ 0.05 ขณะที่ค่าดัชนีตำแหน่ง Red Edge นั้น ไม่สามารถเอาชนะปัญหาจุดอิ่มตัวของสัญญาณได้

จากผลการศึกษานี้ แสดงให้เห็นว่าข้อมูลมัลติสเปกตรัลก็มีศักยภาพที่ใกล้เคียงกับ ข้อมูลไฮเปอร์สเปกตรัลในการใช้ศึกษาความสัมพันธ์ระหว่างค่าตัวแปรทางชีววิทยาของ ป่าชายเลนกับค่าดัชนีพืชพรรณ แต่ข้อมูลมัลติสเปกตรัลนั้นมีราคาถูกกว่ามาก อย่างไรก็ตาม ควรมีการศึกษาในเรื่องนี้อีกครั้งเพื่อยืนยันผลการค้นพบนี้

ภาควิชา<u>วิศวกรรมสำรวจ</u> สาขาวิชา<u>ระบบสารสนเทศปริภูมิทางวิศวกรร</u>ม ปีการศึกษา<u>2552</u>

$\frac{1}{2}$
ลายมือชื่อนิสิต <u>Xy</u>
ลายมือชื่ออ.ที่ปรึกษาวิทยานิพนธ์หลัก
ลายมือชื่ออ.ที่ปรึกษาวิทยานิพนธ์ร่วม ชิ้งไหก ไวเกษา

4970774521 : MAJOR SPATIAL INFORMATION SYSTEM IN ENGINEERING KEYWORDS : HYPERSPECTRAL/ MANGROVE/ NDVI/ LEAF AREA INDEX/ BIOMASS

THANWA SAGGAPITAKWONG : HYPERSPECTRAL –DERIVED VEGETATION INDICES FOR STUDYING MANGROVE FOREST BIOPHYSIAL PARAMETERS. THESIS ADVISOR : ASSOCIATE PROFESSOR BANJERD PALAKARN, Ph.D., THESIS CO-ADVISOR : CHAICHOKE VAIPHASA, Ph.D.,76 pp.

This study investigates the capability of hyperspectral remote sensing in mitigating the signal saturation problem that normally found when creating linear regression models between biophysical parameters of dense forests and vegetation indices. The study area is densely vegetated area of the Lam Talumpuk mangrove, Amphoe Pak Phanang, Nakorn Sri Thammarat Province. The data in use are satellite images captured by Hyperion and ALI. The Vegetation Indices under investigation are Normalized Difference Vegetation Index(NDVI), Simple Ratio(SR), and Red Edge Positioning(REP). It is unexpectedly found that the results of hyperspectral data is comparable to the results of multispectral data as both of them did not face the saturation problem as the statistical test confirmed this result at a 0.05 significant level, Nevertheless, However, REP could not overcome the saturation problem.

Our final outcome suggested that mutispectral data is cost-effectively than hyperspectral data for building mathematical relationships between forest biophysical parameters of mangrove forests and vegetation indices. However, repeat studies should be conducted to confirm our findings.

Department : Survey Engineering Field of Study :Spatial Information System In Engineering Academic Year : 2009 Student's Signature : <u>*Mamma*</u> Advisor's Signature : Co-Advisor's Signature : **Julyn hmm**

กิตติกรรมประกาศ

อนิจจัง ทุกขัง อนัตตา สิ่งใดๆในโลกนี้ล้วนไม่เที่ยง เป็นทุกข์ ไม่มีตัวตน แม้แต่วิชาความรู้ ก็มีวันเสื่อมสลายไปกับกาลเวลาได้ แต่ความดีที่เราได้ทำไว้นั้นจะอยู่คงทนถาวรตลอดกาลนาน ขอกราบขอบพระคุณ คุณพ่อสุพงศ์ สัจจาพิทักษ์วงศ์ และคุณแม่เตียง แซ่ซื้อ ที่คอยเป็น

กำลังใจให้เสมอ ไม่ว่าลูกจะตัดสินใจทำสิ่งใดก็คอยสนับสนุนในทุกด้าน

ขอขอบคุณ รศ.ดร. บรรเจิด พละการ ที่กรุณาสละเวลาอันมีค่ามาเป็นอาจารย์ที่ปรึกษาให้ อีกทั้งคอยติดตามสอบถามความก้าวหน้าในการทำวิทยานิพนธ์ของข้าพเจ้าอยู่เสมอ คอยให้ คำแนะนำและกรุณาตรวจทานตัวเล่มวิทยานิพนธ์ให้

ขอขอบคุณ ดร.ชัยโซค ไวภาษา ที่สอนข้าพเจ้าในทุกเรื่องทั้งเรื่องการทำวิจัยและมุมมอง การใช้ชีวิตของนักวิจัยในโลกกว้างใหญ่ใบนี้ อันเป็นความรู้ที่มีค่ายิ่ง

ขอขอบคุณ รศ.ดร.อิทธิ ตริสิริสัตยวงศ์ ประธานกรรมการ ดร.เซาวลิต ศิลปทอง กรรมการ ภายนอกมหาวิทยาลัยจากสำนักงานพัฒนาเทคโนโลยีอวกาศและภูมิสารสนเทศ(องค์การมหาชน) และดร.ธงทิศ ฉายากุล กรรมการ ที่กรุณาเป็นกรรมการสอบวิทยานิพนธ์ให้ วิทยานิพนธ์ฉบับนี้จะ เสร็จสมบูรณ์ไม่ได้ หากปราศจากข้อคิดเห็นและคำแนะนำที่มีค่าของทุกท่าน เพื่อให้วิทยานิพนธ์ ฉบับนี้มีความสมบูรณ์ทางวิชาการมากที่สุดเท่าที่จะทำได้

ขอขอบคุณครูบาอาจารย์<mark>ทุกท่านที่ได้เคยสั่</mark>งสอนข้าพเจ้าตั้งแต่ชั้นอนุบาล จนถึงชั้น ปริญญา ทำให้ข้าพเจ้ามีการศึกษาในวันนี้

ขอขอบคุณบังหยาและคุณนั้น เจ้าหน้าที่สถานีพัฒนาทรัพยากรป่าชายเลนปากพนังที่ช่วย ขับเรือยนต์พาคณะทำงานเข้าสู่พื้นที่ป่าชายเลนแหลมตะลุมพุก อีกทั้งเป็นกำลังสำคัญในการเก็บ ข้อมูลภาคสนามอีกด้วย

ขอบคุณมิตรภาพของพี่ๆน้องๆนิสิตปริญญาโทภาควิชาวิศวกรรมสำรวจทุกท่าน สำหรับ น้ำใจและความช่วยเหลือที่มีให้กันเสมอในยามที่ต้องการในช่วงที่ข้าพเจ้าทำการศึกษาอยู่ที่ จุฬาลงกรณ์มหาวิทยาลัย เรามาจากหลากหลายที่มา แต่หลอมรวมเป็นหนึ่งเดียวกัน ขอบคุณครับ ขอบคุณน้องๆปริญญาโททีมดีโอทีเอทุกคน สำหรับมิตรภาพ กำลังใจ ความสามัคคี (เราทำงาน เป็นทีม) และความช่วยเหลือซึ่งกันและกัน

ขอบคุณเพื่อนวนศาสตร์รุ่น 62 ทุกคน คุณออ พรานไชย, คุณอรุณ สินบำรุง วน.61 ที่ช่วย ให้ความกระจ่างเรื่องชนิดพันธุ์ไม้ของป่าชายเลน และคุณเกียรติศักดิ์ สุตะพรม, คุณอภิชาติ สีทาแก, คุณสุทธิดา ศิลปสุวรรณ, คุณราชศักดิ์ เผ่าวงศา วน.61 ที่คอยให้กำลังใจเสมอ และคุณอัชฌาภรณ์ ถิ่นถา ขอบคุณที่มีคุณอยู่บนโลกใบนี้

สารบัญ

หน้า

บทคัดย่อภาษาไทย	٩
บทคัดย่อภาษาอังกฤษ	ବ
กิตติกรรมประกาศ	ନ୍ଥ
สารบัญ	ป
สารบัญตาราง	ល្ង
สารบัญรูป	ป

บทที่ 1 บทน้ำ

1.1 ความเป็นมาและคว <mark>ามสำคัญของปัญหา</mark>	1
1.2 วัตถุประสงค์ของการวิจัย	4
1.3 ขอบเขตของการศึกษา	4
1.4 ประโยชน์ที่คาดว่าจะไ <mark>ด้รับ</mark>	5

บทที่ 2 ทฤษฎีที่เกี่ยวข้อง

2.1 ค่าดัชนีพืชพรรณ (Veg <mark>etation Indices)</mark>	6
2.2 ตัวแปรทางชีววิทยา (Biophysical Parameters)	8
2.3 ปัญหาการเกิดจุดอื่มตัวของสัญญาณ (Saturation Problem)	11
2.4 การจำแนกประเภทข้อมูลภาพแบบไม่ควบคุม(Unsupervised Classification)	12
2.5 คุณลักษณะของข้อมูลภาพถ่ายดาวเทียมที่ใช้ในการศึกษา	13
2.5.1 ภาพถ่ายดาวเทียมระบบ ASTER	13
2.5.2 ภาพถ่ายดาวเทียมระบบ Hyperion	14
2.5.3 ภาพถ่ายดาวเทียมระบบ ALI	16
2.6 แบบจำลองความสัมพันธ์ของค่าดัชนีพืชพรรณกับค่าตัวแปรทางชีววิทยาของ	
ป่าชายเลนที่ได้จากข้อมูลภาพถ่ายดาวเทียมระบบ Hyperion และ ALI	17

	หน้า
บทที่ 3 งานวิจัยที่เกี่ยวข้อง	
3.1 งานวิจัยที่ศึกษาความส้มพันธ์ระหว่างค่าดัชนีพืชพรรณกับตัวแปรทาง	
ชีววิทยาของป่าชายเลน	19
3.2 งานวิจัยที่รายงานปัญหาการเกิดจุดอิ่มตัวของสัญญาณ	20
3.3 งานวิจัยที่ศึกษาการแก้ปัญหา <mark>การเกิดจุด</mark> อิ่มตัวของสัญญาณ	21

a	<u>ad</u> 0 <u>a</u>	4
บทท ∠	1 วธดาเน	นการศกษา

4.1 พื้นที่ศึกษาป่าซ <mark>ายเลนแหลมตะ</mark> ลุมพุก	22
4.2 ข้อมูลภาพถ่า <mark>ยดาวเทียมที่ใช้ในการศึกษา</mark>	23
4.3 การเก็บข้อมู <mark>ลภาคส</mark> นาม	24
4.4 การวิเคราะห์ข้อมูล	26
4.5 การทดสอบท <mark>าง</mark> สถิต ิ	26

บทที่ 5	ผลการศึกษา
ции О	M 641 1 1 9 4 11 1 1

5.1 ผลการศึกษา	29
5.2 การตรวจสอบการเกิดปัญหาจุดอิ่มตัวของสัญญาณด้วยวิธีทดสอบทางสถิติ	40

บทที่ 6 อภิปรายผล สรุปผลการศึกษาและข้อเสนอแนะ	
6.1 อภิปรายผล	44
6.2 สรุปผลการศึกษา	52
6.3 ข้อเสนอแนะ	53
รายการค้างคิง	54

ภาคผนวก	หน้า
ภาคผนวก ก ข้อมูลรายละเอียดการทำงานในภาคสนาม	58
ภาคผนวก ข ข้อมูลที่ใช้ในการศึกษา	66

I vara a c	
าโระวัญตนไขยาววิทยาวาาพาวิก	- 76
	10

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

สารบัญตาราง

		หน้า
ตารางที่ 2.1	แสดงลักษณะบางประการของภาพถ่ายดาวเทียมระบบ ASTER	14
ตารางที่ 2.2	แสดงลักษณะบางประการของภาพถ่ายดาวเทียมระบบ Hyperion	15
ตารางที่ 2.3	แสดงรายละเอียดช่วงคลื่นของภาพถ่ายดาวเทียมระบบ Hyperion	16
ตารางที่ 2.4	แสดงลักษณะบางประการของภาพถ่ายดาวเทียมระบบ ALI	16
ตารางที่ 2.5	แสดงค่าศูนย์กลางขอ <mark>งความยา</mark> วช่วงคลื่น(CWL)ในแต่ละ band ของ ALI	
	เปรียบเทียบกับ <mark>band ของ Hyperion</mark>	17
ตารางที่ 4.1	แสดงชนิดพันธุ์ไม้เด่น 7 ชนิดที่พบในป่าชายเลนแหลมตะลุมพุก	23
ตารางที่ 4.2	แสดงชนิดข้ <mark>อมูลภาพถ่าย</mark> ดาวเที <mark>ยมและวันที่ท</mark> ำการบันทึกภาพ	23
ตารางที่ 5.1	แสดงค่าด <mark>ัชนีพื้นที่ผิวใบ และค่ามวลชีวภาพขอ</mark> งแปลงตัวอย่างที่ใช้ในการ	
	ทดลองจำนวน 31 แปลง	29
ตารางที่ 5.2	แสดงค่าสัมประสิทธิ์การตัดสินใจ(R ²)ที่ได้จากแบบจำลองความสัมพันธ์	
	ของค่าดัชนีพืชพรรณกับค่าตัวแปรทางชีววิทยาที่ได้จากภาพถ่ายดาวเทียม	
	ระบบ Hyperion (<mark>สีเหลืองแสดงค่าม</mark> ากที่สุดและสีเขียวแสดงค่า	
	น้อยที่สุด)	38
ตารางที่ 5.3	แสดงค่าสัมประสิท <mark>ธิ์การตัดสินใจ(R²)ที่ได้จากแบบจำลองความสัมพันธ์</mark>	
	ของค่าดัชนีพืชพรรณกับค่าตัวแปรทางชีววิทยา ที่ได้จากภาพถ่าย	
	ดาวเทียมระบบ ALI (สีเหลืองแสดงค่ามากที่สุดและสีเขียวแสดงค่า	
	น้อยที่สุด)	39
ตารางที่ 5.4	แสดงการเปรียบเทียบค่าสัมประสิทธิ์การตัดสินใจ (R²)ที่มากที่สุดที่ได้จาก	
	ภาพถ่ายดาวเทียมระบบ Hyperion กับภาพถ่ายดาวเทียมระบบ ALI	39
ตารางที่ 5.5	แสดงค่า significance ที่ได้จากการทดสอบค่าสัมประสิทธิ์ความถดถอย	
	$eta_{\scriptscriptstyle 1}$ ของแบบจำลองค่าดัชนีพืชพรรณกับค่าตัวแปรทางชีววิทยาที่ได้จาก	
	ข้อมูลภาพถ่ายดาวเทียมระบบ Hyperion และ ALI	41
ตารางผนวก	แสดงการบันทึกช่วงคลื่นใน band ของ Hyperion ที่ตรงกับ band ของ ALI	67
ที่ ข1		
ตารางผนวก	แสดงค่าพิกัด UTM, ค่าดัชนีพื้นที่ผิวใบ(LAI)และค่ามวลชีวภาพ	
ที่ ข2	(Biomass) ของแปลงตัวอย่าง	70

ตารางผนวก สี่ ๙ว	แสดงค่าสัญญาณของแปลงตัวอย่างที่ได้จากภาพถ่ายเ	ดาวเทียมระบบ ALI	71
ท ข3			
ตารางผนวก	แสดงค่าสัญญาณของแปลงตัวอย่างในช่วงคลื่นสีแดง	(band28-band33)	
ที่ ข4	และช่วงคลื่นอินฟาเรดใกล้ (band42-45,49-53)	ที่ได้จากภาพถ่าย	
	ดาวเทียมระบบ Hyper <mark>ion</mark>		72

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

หน้า

สารบัญรูป

		หน้า
รูปที่ 2.1	แสดงช่วง Red edge ที่ปรากฏระหว่างช่วงคลื่นสีแดงกับช่วงอินฟาเรดใกล้	
	ของค่าสะท้อนพลังงานของพืชสีเขียว	8
รูปที่ 2.2	แสดงการวัดค่ารัศมีของเรือนยอดต้นไม้(R)	9
รูปที่ 2.3	แสดงรูปแบบการเกิดปัญหาจุดอิ่มตัวของสัญญาณของค่าดัชนีพืชพรรณ	
	ผลต่างแบบนอร์แมลไลซ์ (NDVI) เมื่อค่าตัวแปรทางชีววิทยา(Biomass /	
	LAI) มีค่าสูง	12
รูปที่ 2.4	แสดงตัวอย่า <mark>งภาพถ่าย</mark> ดาวเทียม <mark>ระบบ Hyp</mark> erion (a) และ ภาพถ่าย	
	ดาวเทียมระบบ ALI (b)	15
รูปที่ 2.5	แสดงแบ <mark>บจำลองความสัมพันธ์ของค่าดัชนีพ</mark> ืชพรรณกับค่าตัวแปรทาง	
	ชีววิทยา <mark>จำนวน 10 แบบ ที่ได้จากภาพถ่ายดาวเท</mark> ียมระบบ Hyperion และ	
	ALI	18
รูปที่ 3.1	แสดงควา <mark>มสัมพันธ์ของค่าดัชนีพ</mark> ืชพรรณผลต่างแบบนอร์แมลไลซ์ที่ได้จาก	
	ภาพถ่ายดา <mark>วเทียม SPOT XS กับค่าดัชนีพื้นที่</mark> ผิวใบที่ได้จากแปลงตัวอย่าง	
	จำนวน 29 แ <mark>ป</mark> ลงข <mark>องป่าชายเลนหมู่เกาะ</mark> Turk and Caicos ในงานวิจัย	
	ของ Green และคณะ (1977)	19
รูปที่ 4.1	แสดงพื้นที่ศึกษาป่าชายเลนบริเวณแหลมตะลุมพุก อ.ปากพนัง	
	จ.นครศรีธรรมราช	22
รูปที่ 4.2	แสดงวิธีก <mark>า</mark> รวางแปลงตัวอย่างด้วยวิธี Transect Line	25
รูปที่ 4.3	แสดงแผนผังขั้นตอนวิธีการศึกษา	28
รูปที่ 5.1	แสดงแบบจำลองความสัมพันธ์ของค่าดัชนีพืชพรรณกับค่าตัวแปรทาง	
	ชีววิทยา 10 รูปแบบ ที่ได้จากภาพถ่ายดาวเทียมระบบ Hyperion และ	
N P	ALI	31
รูปที่ 5.2	แสดงลักษณะความสัมพันธ์ของค่าดัชนีพืชพรรณกับค่าตัวแปรทางชีววิทยา	
	ที่ได้จากการศึกษาที่ผ่านมาใน 2 ลักษณะ คือ 1.ลักษณะกราฟมีความชั้น	
	มาก ข้อมูลมีความสัมพันธ์กันสูง (a) และ 2.ลักษณะกราฟไม่มีความชั้น	
	หรือมีแนวโน้มเข้าสู่เส้นโค้งสัญญาณอิ่มตัว เนื่องจากมีความหนาแน่นของ	
	พรรณไม้ในป่าสูงทำให้เกิดปัญหาจุดอิ่มตัวของสัญญาณ (b)	32

ป

หน้า

รูปที่ 5.3	แสดงแบบจำลองความสัมพันธ์ NDVI-LAI ที่ได้จากข้อมูลภาพถ่าย	
	ดาวเทียมระบบ Hyperion (a)และ ALI (b)	33
รูปที่ 5.4	แสดงแบบจำลองความสัมพันธ์ SR-LAI ที่ได้จากข้อมูลภาพถ่ายดาวเทียม	
	ระบบ Hyperion (a) และ ALI (b)	34
รูปที่ 5.5	แสดงแบบจำลองความสัมพันธ์ NDVI-Biomass ที่ได้จากข้อมูลภาพถ่าย	
	ดาวเทียมระบบ Hyperion (a) และ ALI (b)	35
รูปที่ 5.6	แสดงแบบจ <mark>ำลองความส</mark> ัมพันธ์ <mark>SR-Biom</mark> ass ที่ได้จากข้อมูลภาพถ่าย	
	ดาวเทียมร <mark>ะบบ Hyperion (a)และ ALI (b)</mark>	36
รูปที่ 5.7	แสดงแบบจำลองความสัมพันธ์ REP - LAI (a)และ REP - Biomass (b)	
	ที่ได้จากข้อมูลภาพถ่ายดาวเทียมระบบ Hyperion	37
รูปที่ 6.1	แสดงค่าสัมประสิทธิ์การตัดสินใจ (R ²)ของความสัมพันธ์ระหว่างค่า	
	มวลชีวภา <mark>พ</mark> กับค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์ที่ได้จากคู่ band	
	ในช่วงคลื่น <mark>630 – 880 nm ของข้อมูลภาพถ่</mark> ายดาวเทียมระบบ Hyperion	
	(a) และ ALI (b <mark>)</mark> (พื้นที่สีน้ำตาลแดงได้ค่า R ² มากที่สุดอยู่ในช่วงคลื่นสีแดง	
	กับช่วงคลื่นอินฟาเว <mark>ดใกล้) และช่วงคลื่น</mark> 360-2200 nm จากข้อมูลไฮเปอร์	
	สเปกตรัลในการวิจัยของ Mutanga และ Skidmore (2004) (c) (พื้นที่	
	สีแดงได้ค่า R ² มากที่สุดอยู่ในช่วงคลื่นอินฟาเรดใกล้กับช่วงคลื่น	
	อินฟาเรดใกล้)	46
รูปที่ 6.2	แสดงความสัมพันธ์ของค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์ (NDVI)	
	กับค่ามวลชีวภาพ (Biomass) ที่ได้จากคู่ band ในช่วง Red Edge (a) และ	
	ที่ได้จากคู่ band ในช่วงคลื่นสีแดงกับช่วงคลื่นอินฟาเรดใกล้ (b) จากการ	
	วิจัยของ Mutanga และ Skidmore(2004)	47
รูปที่ 6.3	แสดงค่าความสัมพันธ์ของค่าดัชนีพื้นที่ผิวใบ(LAI) กับค่าดัชนีพืชพรรณ	
	ผลต่างแบบนอร์แมลไลซ์(NDVI) ที่ได้จากภาพถ่ายดาวเทียมระบบ	
	Hyperion (a), ALI (b) ในพื้นที่ศึกษาป่าชายเลนแหลมตะลุมพุก, IKONOS	
	(c) จากงานวิจัยของ Kovac และคณะ (2004) ในป่าชายเลนเสื่อมโทรม	
	ประเทศเม็กซิโก และ SPOT (d) จากงานวิจัยของ Green และคณะ (1997)	
	ในป่าชายเลน บริเวณหมู่เกาะ Turk and Caicos	49

ส

		หน้า
รูปผนวกที่ก1	แสดงจุดควบคุมตำแหน่งภาคพื้นดินที่ใช้ในพื้นที่ศึกษา	63
รูปผนวกที่ก2	แสดงภาพถ่ายดาวเทียมระบบ ASTER ที่ทำการจำแนกข้อมูลด้วยวิธี	
	Unsupervised Classification แล้ว	64
รูปผนวกที่ก3	แสดงการเลือกแปลงตัวอย่างด้วยวิธี Line Transect	65
รูปผนวกที่ข1	แสดงภาพพื้นที่ศึกษา <mark>ที่ได้จากภาพถ่</mark> ายดาวเทียมระบบ Hyperion	73
รูปผนวกที่ข2	แสดงภาพพื้นที่ <mark>ศึกษาที่ได้จากภาพถ่ายด</mark> าวเทียมระบบ ALI	74
รูปผนวกที่ข3	แสดงภาพพื้ <mark>นที่ศึกษาที่ได้จากภาพถ่ายดาวเที</mark> ยมระบบ ASTER	75

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

บทที่1 บทนำ

1.1 ความเป็นมาและความสำคัญของปัญหา

. ป่าชายเลนเป็นสังคมพืชที่ขึ้นและพบอยู่ทั่วไปบริเวณพื้นที่ชายฝั่งทะเลบริเวณปากอ่าว ลำคลอง ทะเลสาบ และรอบเกาะแก่งต่างๆ ซึ่งเป็นบริเวณที่มีน้ำทะเลท่วมถึง หรือบริเวณที่เป็น ้น้ำกร่อยทั้งในแถบโซนร้อนและกึ่งโซนร้อน เมื่อพิจารณาจากสภาพภูมิประเทศบริเวณซายฝั่ง กล่าวได้ว่าป่าชายเลนเป็นพื้นที่หรือเขตแนวที่เชื่อมต่อระหว่างพื้นที่บนบกกับทะเลนั่นเอง ้ป่าชายเลนของโลกส่วนใหญ่ขึ้<mark>นกระจัด</mark>กระจา<mark>ยอยู่บริเว</mark>ณชายฝั่งทะเลเขตร้อนตั้งแต่ประเทศ ้อเมริกาตอนใต้ อเมริกากลาง อัฟริกา เอเชีย หมู่เกาะแปซิฟิก และประเทศนิวซีแลนด์ มีพื้นที่ ทั้งหมดประมาณ 113.4 ล้านไร่ โดยในเขตร้อนแถบเอเชียรวมถึงออสเตรเลียมีพื้นที่มากที่สุด ประมาณ 52.5 ล้านไร่ หรือคิดเป็น 64.4 % ของพื้นที่ป่าชายเลนทั่วโลก (ณิฏฐารัตน์ ปภาวสิทธ์ และคณะ,2546) สำหรับประเทศไทยจากข้อมูลของกรมป่าไม้ในปีพ.ศ. 2547 พบว่ามีป่าชายเลน อยู่ประมาณ 2,758.05 ตร.กม. หรือคิดเป็น 0.54 % ของพื้นที่ประเทศไทย ขึ้นกระจายตลอด ชายฝั่งทะเล สำหรับภาค<mark>ตะวันออ</mark>กตั้ง<mark>แต่จังหวัดตราด จัน</mark>ทบุรี ระยอง ชลบุรี จนถึงฉะเชิงเทรา และภาคกลางจากจังหวัดสมุทรปร<mark>าการ กรุงเทพฯ ส</mark>มุทรสาคร สมุทรสงคราม เพชรบุรี จนถึงประจวบศีรีขันธ์ ซึ่งทั้งสองภาครวมแล้วมีพื้นที่ประมาณเพียง 11.75% สำหรับภาคใต้ชายฝั่ง ทะเลตะวันตกของอ่าวไทยตั้งแต่จังหวัดชุมพร สุราษฎร์ธานี นครศรีธรรมราช พัทลุง สงขลา จนถึง ปัตตานี และด้านชายฝั่งทะเลอันดามันจากจังหวัดระนอง พังงา ภูเก็ต กระบี่ ตรัง จนถึงสตูล มีพื้นที่มากที่สุดถึง 88.25 % ของพื้นที่ป่าชายเลนทั้งประเทศ (กรมป่าไม้ ,2550) ป่าชายเลน ในประเทศไทยเรียกอีกชื่อหนึ่งว่าป่าโกงกางเนื่องจากมีไม้โกงกางเป็นพรรณไม้เด่นขึ้นตามฝั่งทะเล ที่เป็นดินเลนพบมากตามปากแม่น้ำลำคลองที่ไหลออกสู่ทะเล ริมทะเลทั้งฝั่งอ่าวไทยและทะเล ้อันดามัน ป่าซายเลนฝั่งอันดามันมีไม้ขนาดใหญ่และอุดมสมบูรณ์กว่าฝั่งอ่าวไทย มีลักษณะ ้โครงสร้างของป่าและองค์ประกอบของพรรณไม้โดยเฉพาะ ต้นไม้บางชนิดเช่น โกงกาง มีรากค้ำยัน (buttress root หรือ stilt root) ออกมาจากโคนต้น บางชนิดเช่น แสม ,ลำพู , ประสัก มีรากอากาศ ้ โผล่พ้นพื้นดินเลน เรียกว่า รากหายใจ (pneumatophore) พรรณไม้ชนิดอื่นที่พบขึ้นอยู่ทั่วไป เช่น ลำแพนหิน ,ถั่วขาว ,โปรง ,ตะบูนขาว ,ตะบูนดำ ,หงอนไก่ทะเล ,ฝาด ,ตาตุ่มทะเล , จาก, ปรงทะเล ,เหงือกปลาหมอ เป็นต้น (ธวัชชัย สันติสุข ,2550)

2

เป็นที่ทราบกันโดยทั่วไปว่าป่าชายเลนมีคุณค่าและความสำคัญต่อมนุษย์ทั้งโดย ทางตรงและทางอ้อม ไม้ใช้ทำฟื้นและถ่าน เป็นแหล่งรวมพันธุ์ไม้และสัตว์น้ำนานาชนิด ้โดยเฉพาะสัตว์น้ำใช้ป่าชายเลนเป็นที่วางไข่ อนุบาลตัวอ่อน และที่หลบภัย ช่วยบำบัดน้ำเสียและ ้สิ่งปฏิกูล ฟอกน้ำเสียให้เป็นน้ำสะอาดได้ ป้องกันการพังทลายของดินซายฝั่ง สร้างอากาศบริสุทธิ์ ของชายฝั่งทะเล เป็นแหล่งสมุนไพรให้กับชุมชนชายฝั่งทะเล ป้องกันดินพังทลายและลมพายุที่ รุนแรงได้อย่างมีประสิทธิภาพ เป็นแหล่งอาหารของชุมชนที่อาศัยอยู่บริเวณชายฝั่งทะเล สรุปได้ว่า ป่าชายเลนมีความสำคัญต่อความมั่นคงทางสังคมและเศรษฐกิจของประเทศอย่างมหาศาล (ณิภูฐารัตน์ ปภาวสิทธ์ และคณะ,2546) จากความสำคัญของป่าชายเลน และทรัพยากรป่าไม้ ทำให้นักวิทยาศาสตร์สนใจศึกษาตัวแปรทางชีววิทยา(Biophysical parameters) ที่ทำให้ทราบ ้ปริมาณของผลผลิตของป่าที่เกิดจากกระบวนการสังเคราะห์ด้วยแสงของพืช เช่น ค่ามวลชีวภาพ (Biomass), ค่าดัชนีพื้นที่ผิวใบ(Leaf Area Index,LAI) ซึ่งมีความสำคัญอย่างยิ่งในการวิเคราะห์ ความสามารถในการให้ผลผลิตของป่าและกระบวนการผลิตของป่า เนื่องจากผลผลิตสุทธิของ หมู่ไม้มักมีความสัมพันธ์ไปใน<mark>ทางเดี</mark>ยวกับค่าดัชนีพื้นที่ผิวใบ(พงษ์ศักดิ์ สหุนาพุํ, 2538) และ ค่าตัวแปรทางชีววิทยาเป็นลักษณะโครงสร้างของพืชที่สำคัญมากเพราะมีความสัมพันธ์โดยตรงกับ การแลกเปลี่ยนพลังงาน,ก๊าซ**ค**าร์บอนไดออกไซด์ (CO2) แล<mark>ะ</mark>มวลสารระหว่างเรือนยอดของพืชกับ ชั้นบรรยากาศ(Fassnacht แล<mark>ะค</mark>ณะ,1997) ซึ่งพืชจะกักเก็บคาร์บอน(C) ไว้ในเนื้อไม้ประมาณ 40-45 % ของน้ำหนักแห้ง(Hogarth,2007) การวัดค่าดัชนีพื้นที่ผิวใบได้อย่างถูกต้องเป็นสิ่งจำเป็น สำหรับการประมาณปริมาณของก๊าซอาร์บอนไดออกไซด์ในชั้นบรรยากาศซึ่งเป็นประโยชน์ใน การศึกษาปรากฏการณ์ที่เกิดขึ้นในโลก เช่น การเปลี่ยนแปลงของสภาพภูมิอากาศ (Climate Change) ผลกระทบต่อชั้นบรรยากาศจากการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินในพื้นที่ป่า ขนาดใหญ่การประมาณหาค่าดัชนีพื้นที่ผิวใบเป็นสิ่งที่มีปัญหาเพราะการวัดโครงสร้างของ เรือนยอดปกคลุมโดยตรงเป็นงานที่ต้องใช้แรงงานคนและสิ้นเปลืองเวลาอย่างมาก การประมาณ หาค่าดัชนีพื้นที่ผิวใบและค่ามวลชีวภาพโดยใช้ภาพถ่ายดาวเทียมระบบที่ได้จากการสำรวจ ระยะไกลสามารถนำมาใช้แก้ปัญหาเหล่านี้ได้(Fassnacht และคณะ,1997) ที่ผ่านมาค่าดัชนี พืชพรรณ (Vegetation indice) ที่ได้จากการสำรวจระยะไกลถูกใช้อย่างกว้างขวางในการประมาณ ค่ามวลชีวภาพ และค่าดัชนีพื้นที่ผิวใบ (Hurcom และ Harrison,1998) ซึ่งค่าดัชนีพืชพรรณที่นิยม ใช้ในปัจจุบันมีอยู่หลายตัว เช่น ค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์(Normalized Difference Vegetation Index,NDVI), ค่าดัชนี่สัดส่วนธรรมดา(Simple Ratio ,SR), ค่าดัชนี่ พืชพรรณที่ปรับแก้ดิน (Soil Adjusted Vegetation Index,SAVI),ค่าดัชนีตำแหน่ง Red Edge (Red Edge Positioning,REP) เป็นต้น จากการศึกษางานวิจัยที่เกี่ยวข้อง(Green และคณะ,1997;

Kovac และคณะ,2004) พบว่าการนำภาพถ่ายดาวเทียมมาใช้ศึกษาหาความสัมพันธ์ของ ค่าดัชนีพืชพรรณกับค่าตัวแปรทางชีววิทยาของป่าชายเลน พบว่ามีความสัมพันธ์กันสูง สามารถ สร้างแบบจำลองความสัมพันธ์เพื่อใช้ประมาณค่าตัวแปรทางชีววิทยาของป่าชายเลนได้ดี จึงอาจกล่าวได้ว่าการสำรวจระยะไกลเป็นหนทางเดียวที่ใช้ประมาณค่าตัวแปรทางชีววิทยาได้ โดยไม่ต้องมีการทำลายหรือตัดฟันต้นไม้ซึ่งจะเป็นประโยชน์อย่างมากสำหรับการศึกษาป่าชายเลน ที่มีพื้นที่ขนาดใหญ่

อย่างไรก็ตามมีการศึกษาวิจัยที่พบว่าการนำค่าดัชนีพืชพรรณมาใช้ประมาณค่าตัวแปร ทางชีววิทยาของป่านั้นไม่ประสบความสำเร็จไปเสียทั้งหมดเนื่องจากปัญหาและอุปสรรคต่างๆ เช่น ปัญหาจากสัญญาณพื้นหลัง(Gao และคณะ,2000; Gong และคณะ,2003) ปัญหา สัญญาณอิ่มตัวหรือ Saturation Problem(Fassnacht และคณะ,1997; Gao และคณะ,2000; Hurcom และ Harrison,1998; Li และคณะ, 2007 ; Mutanga และSkidmore,2004;Thenkabail, Smith และ Pauw,2000) ปัญหาผลกระทบจากชั้นบรรยากาศ (Myneni และ Asrar,1994) เป็นต้น หากนับจากจำนวนของเอกสารที่ค้นคว้าในเรื่องนี้ทั้งหมด เราพบว่าปัญหาการเกิดจุดอิ่มตัวของ สัญญาณนั้นเป็นปัญหาที่นักวิชาการกล่าวถึงกันมาก และเป็นปัญหาสำคัญที่ทำให้ค่าดัชนี พืชพรรณที่ได้จากเทคนิคการสำรวจระยะไกลถูกลดศักยภาพลงไป ไม่สามารถประมาณค่าที่ระดับ ความหนาแน่นของเรือนยอดปกคลุมสูงได้ (Jensen, 2007;Mutanga และSkidmore,2004; Thenkabail , Smith และ Pauw ,2000)

ต่อมาได้มีการทดลองศึกษาเพื่อแก้ปัญหาจุดอิ่มตัวของสัญญาณโดยใช้เทคนิคการสำรวจ ระยะไกล แบบไฮ เปอร์ส เปกตรัล กับพืชชนิดอื่นที่มิใช่ป่าชายเลน (Mutanga และ skidmore,2004;Thenkabail และคณะ,2004) โดยพบว่าภาพถ่ายดาวเทียมระบบไฮเปอร์ สเปกตรัลซึ่งมีความละเอียดของข้อมูลมากกว่าภาพถ่ายดาวเทียมระบบมัลติสเปกตรัลสามารถ เลือกคู่ band ที่ให้ค่าความสัมพันธ์ของค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์กับ ค่ามวลชีวภาพสูงได้ หลักฐานทั้งหมดที่รวบรวมมานั้นยืนยันว่าการใช้ค่าดัชนีพืชพรรณสร้าง แบบจำลองระหว่างข้อมูลการสำรวจระยะไกลกับพืชนั้น การเกิดปัญหาจุดอิ่มตัวของสัญญาณเป็น ปัญหาต่อการสร้างแบบจำลองความสัมพันธ์ที่ถูกต้องระหว่างค่าดัชนีพืชพรรณที่ได้จากข้อมูล มัลติสเปกตรัลกับค่าตัวแปรทางชีววิทยาของป่าชายเลน นอกจากนี้หลักฐานดังกล่าวก็ดูเหมือน จะสนับสนุนว่าการใช้ข้อมูลไฮเปอร์สเปกตรัลที่มีความละเอียดของข้อมูลสูงกว่าข้อมูล มัลติสเปกตรัลจะเป็นทางเลือกที่ดีในการแก้ไขปัญหาดังกล่าว แต่เนื่องจากรายงานที่พบเกือบ ทั้งหมดนั้นเป็นการศึกษาในพืชชนิดอื่นที่นอกเหนือจากพืชชายเลน และยังไม่เคยมีผู้ใดศึกษาใน เรื่องดังกล่าวอย่างจริงจังมาก่อนในกรณีของปาชายเลน ทำให้เรายังไม่สามารถลรุปได้แน่ชัดว่า การใช้ข้อมูลไฮเปอร์สเปกตรัลนั้นจะสามารถสร้างความสัมพันธ์ที่ถูกต้องระหว่าง ค่าดัชนีพืชพรรณกับค่าตัวแปรทางชีววิทยาของป่าชายเลนได้หรือไม่

ดังนั้นการศึกษาในครั้งนี้จึงจัดทำขึ้นเพื่อค้นหาความจริงในเรื่องดังกล่าว โดยจะมุ่งเน้น การทดสอบสมมุติฐานหลักว่าการใช้ข้อมูลไฮเปอร์สเปกตรัลจะสามารถแก้ไขปัญหาจุดอิ่มตัวของ สัญญาณได้จริงหรือไม่ โดยการศึกษาในครั้งนี้จะวินิจฉัยจากข้อมูลไฮเปอร์สเปกตรัลที่ได้จาก ภาพถ่ายดาวเทียมระบบ Hyperion โดยเปรียบเทียบกับผลที่วิเคราะห์จากข้อมูลมัลติสเปกตรัล ที่ได้จากภาพถ่ายดาวเทียมระบบ ALI ที่ติดตั้งอยู่บนดาวเทียมดวงเดียวกันและถ่ายภาพในเวลา เดียวกัน ส่วนข้อมูลภาคสนามนั้นได้จากการเก็บข้อมูลในพื้นที่ป่าชายเลนที่มีเรือนยอดปกคลุม หนาแน่นบริเวณแหลมตะลุมพุก อำเภอปากพนัง จังหวัดนครศรีธรรมราช

1.2 วัตถุประสงค์ของการวิจัย

เพื่อทดสอบและเปรียบเทียบอิทธิพลของปัญหาการเกิดจุดอิ่มตัวของสัญญาณที่มีต่อ ข้อมูลไฮเปอร์สเปกตรัลกับข้อมูลมัลติสเปกตรัลในพื้นที่ศึกษาป่าชายเลนเขตร้อน

1.3 ขอบเขตของการศึกษ<mark>า</mark>

ในการศึกษาครั้งนี้จะใช้ค่าดัชนีพืชพรรณที่ได้จากภาพถ่ายดาวเทียมระบบ Hyperion และ ภาพถ่ายดาวเทียมระบบ ALI คือ ค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์,ค่าดัชนีสัดส่วน ธรรมดา และค่าดัชนีตำแหน่ง Red Edge มาหาความสัมพันธ์กับค่ามวลชีวภาพและค่าดัชนี พื้นที่ผิวใบของป่าซายเลน โดยใช้การวิเคราะห์ความถดถอยเชิงเส้น (Linear Regression) เป็นแบบจำลองในการวิเคราะห์หาความสัมพันธ์ สำหรับภาพถ่ายดาวเทียมระบบ Hyperion จะใช้ คู่ Band ในช่วงคลื่นสีแดง (Band 28 –33) และช่วงคลื่นอินฟาเรดใกล้ (Band42-53) และ ภาพถ่ายดาวเทียมระบบ ALI จะใช้คู่ Band ในช่วงคลื่นลินดง (MS-3) และช่วงคลื่นอินฟาเรดใกล้ (MS-4 และMS-4') มาคำนวณค่าดัชนีพืชพรรณโดยเลือกป่าชายเลนบริเวณแหลมตะลุมพุกที่มี พรรณไม้ชายเลนขึ้นอยู่หนาแน่น และมีความหลากหลายของชนิดพันธุ์ไม้เป็นพื้นที่ศึกษา และ เลือกใช้เทคนิคการสำรวจระยะไกลด้วยภาพถ่ายดาวเทียมระบบแบบไฮเปอร์สเปกตรัล เปรียบเทียบกับแบบมัลติสเปกตรัลโดยมีสมมุติฐานว่าข้อมูลที่ได้จากภาพถ่ายดาวเทียมระบบแบบ ไฮเปอร์สเปกตรัลน่าจะแก้ปัญหาจุดอิ่มตัวของสัญญาณที่เกิดขึ้นในพื้นที่ศึกษาได้ ในขณะที่ข้อมูล ภาพถ่ายดาวเทียมแบบมัลติสเปกตร์ลโมสามารถแก้ปัญหาได้

เพื่อให้เหมาะสมกับกรอบของเวลาการทำงานวิจัย ผู้วิจัยจึงไม่สร้างดัชนีพืชพรรณ ขึ้นมาใหม่ แต่จะใช้ค่าดัชนีพืชพรรณที่เป็นที่นิยมใช้กันอย่างแพร่หลายอยู่แล้วคือ ค่าดัชนีพืชพรรณ

5

ผลต่างแบบนอร์แมลไลซ์,ค่าดัชนีสัดส่วนธรรมดา และค่าดัชนีตำแหน่ง Red Edge ในการหา ความสัมพันธ์กับตัวแปรทางชีววิทยาของป่าชายเลน และแบบจำลองทางคณิตศาสตร์ที่เลือกใช้ สำหรับเป็นเครื่องมือในการวินิจฉัยสมมุติฐานหลักนั้นจะเป็นระบบสมการเชิงเส้นที่ง่ายต่อ การทดสอบสมมุติฐานทางสถิติ และในการวิจัยครั้งนี้ คณะผู้วิจัยได้สั่งซื้อภาพถ่ายดาวเทียมระบบ Hyperion และ ALI ซึ่งถ่ายโดยดาวเทียม EO-1 ขององค์การบริหารการบินและอวกาศแห่งชาติ (NASA) ประเทศสหรัฐอเมริกา ซึ่งต้องใช้เวลาในการโคจรถ่ายภาพทั้งหมดถึง 3 ครั้ง จึงสามารถ ถ่ายภาพบริเวณพื้นที่ศึกษาปาชายเลนอ่าวปากพนังโดยไม่มีเมฆรบกวนได้สำเร็จเมื่อวันที่ 15 กรกฎาคม พ.ศ. 2550 แต่เนื่องจากกรอบระยะเวลาการศึกษาที่มีจำกัด คณะผู้วิจัยจึงพิจารณาใช้ ภาพถ่ายดาวเทียมระบบ ASTER ที่ถ่ายภาพบริเวณพื้นที่ศึกษาเมื่อปี พ.ศ. 2547 มาใช้ในการช่วย เก็บข้อมูลตัวแปรทางชีววิทยาของป่าชายเลนในภาคสนาม ซึ่งได้ทำการเก็บข้อมูลภาคสนามเสร็จ สิ้นในช่วงเดือนเมษายน พ.ศ. 2550

1.4 ประโยชน์ที่คาดว่า<mark>จะได้รับ</mark>

1.4.1 ทำให้ทราบว่าการใช้ข้อมูลค่าดัชนีพืชพรรณจากภาพถ่ายดาวเทียมแบบไฮเปอร์ สเปกตรัลนั้นสามารถแก้ปัญหาจุดอิ่มตัวของสัญญาณที่ปรากฏในความสัมพันธ์ระหว่าง ค่าดัชนี พืชพรรณกับค่าตัวแปรทางชีววิทยาในสังคมพืชป่าชายเลนได้จริงหรือไม่

 1.4.2 เป็นข้อมูลสำหรับนักวิชาการ นักวิจัยและนักจัดการทรัพยากรป่าชายเลนนำไปใช้ พิจารณาตัดสินใจเลือกชนิดข้อมูลภาพถ่ายดาวเทียมที่เหมาะสมในการศึกษาป่าชายเลน หรือ ทำการศึกษาวิจัยต่อไป

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

บทที่ 2 ทฤษฏิที่เกี่ยวข้อง

2.1 ค่าดัชนีพืชพรรณ (Vegetation Indices)

2.1.1 ค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์(Normalized Difference Vegetation Index, NDVI)Rouse และคณะ (1974)ได้พัฒนาค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์ขึ้นเป็นค่าดัชนี พืชพรรณที่นิยมใช้กันอย่างกว้างขวาง(Jensen, 2007)เพราะสามารถใช้ติดตามการเปลี่ยนแปลง ของพืชในช่วงเวลาระหว่างฤดูกาลและในช่วงแต่ละปีได้ ใช้ประมาณค่ามวลชีวภาพและค่าดัชนีพื้นที่ ผิวใบในสังคมพืชได้ดี และในการใช้งานไม่ต้องการข้อมูลอย่างอื่นประกอบ เช่น ข้อมูลชุดดิน ข้อมูลปรับแก้ค่าต่างๆ ทำให้ต้องเสียเวลาในเก็บข้อมูลเพิ่มในการคำนวณใช้ค่าสะท้อนพลังงาน ในช่วงคลื่นสีแดงและช่วงคลื่นอินฟาเรดใกล้มาคำนวณดังสมการ

$$NDVI = \frac{(NIR - R)}{(NIR + R)}$$
(1)

เมื่อ NIR คือ ค่าสะท้อนพลังงานในช่วงคลื่นอินฟาเรดใกล้ (Near Infrared Band) R คือ ค่าสะท้อนพลังงานในช่วงคลื่นสีแดง (Red Band)

ในการศึกษาครั้งนี้ในช่วงคลื่นสีแดง จะใช้ band MS-3 สำหรับภาพถ่ายดาวเทียมระบบ ALI และ ใช้ Band28-Band33 สำหรับภาพถ่ายดาวเทียมระบบ Hyperion และในช่วงคลื่นอินฟาเรดใกล้ จะใช้ band MS-4 และMS-4' สำหรับภาพถ่ายดาวเทียมระบบ ALI และใช้ Band42-Band53 สำหรับภาพถ่ายดาวเทียมระบบ Hyperion

ค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์จะมีค่าอยู่ในช่วง -1.0 ถึง +1.0 ถ้าพื้นผิวถูก ปกคลุมด้วยพืชพรรณ ค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์ที่ได้จะมีค่าเป็นบวก เพราะพืชมี ค่าสะท้อนพลังงานในช่วงคลื่นอินฟาเรดใกล้มากกว่าค่าสะท้อนพลังงานในช่วงคลื่นสีแดง เนื่องจากคลอโรฟิลล์ในพืชจะดูดกลืนค่าพลังงานคลื่นแม่เหล็กไฟฟ้าจากแสงอาทิตย์ในช่วงคลื่น สีแดงมากและสะท้อนออกมาน้อย ประมาณ 10 % แต่ Spongy mesophyll ในพืชจะสะท้อน พลังงานในช่วงคลื่นอินฟาเรดใกล้ออกมามากถึง 40 - 60 % ดังนั้นค่าดัชนีพืชพรรณผลต่างแบบ นอร์แมลไลซ์จึงใช้อธิบายลักษณะของพืชได้ดี แต่ถ้าพื้นผิวปกคลุมเป็นน้ำ เมฆ และหิมะ ค่าดัชนี พืชพรรณผลต่างแบบนอร์แมลไลซ์ที่ได้จะมีค่าติดลบเพราะมีค่าสะท้อนพลังงานในช่วง คลื่นอินฟาเรดใกล้ต่ำกว่าค่าการสะท้อนพลังงานในช่วงคลื่นสีแดง และในกรณีที่พื้นผิวปกคลุมเป็นดิน ค่าสะท้อนพลังงานในช่วงคลื่นสีแดงและค่าสะท้อนพลังงานในช่วงคลื่นอินฟาเรดใกล้มีค่า ใกล้เคียงกัน ทำให้ค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์ที่ได้มีค่าใกล้เคียงกับศูนย์ (Green และคณะ1997; Jensen,2007;Lillesand, Kiefer และChipman, 2004)

2.1.2 ค่าดัชนีสัดส่วนธรรมดา (Simple Ratio, SR)

ค่าดัชนีสัดส่วนธรรมดาเป็นดัชนีพืชพรรณอีกตัวหนึ่งที่ได้รับความนิยมใช้กันแพร่หลายใน การศึกษาเกี่ยวกับปริมาณของค่ามวลชีวภาพและค่าดัชนีพื้นที่ผิวใบ ไม่ต้องการข้อมูลอย่างอื่น ประกอบในการใช้งาน เช่น ข้อมูลชุดดิน ข้อมูลปรับแก้ค่าต่างๆ เป็นต้น ทำให้ไม่ต้องเสียเวลา ในการเก็บข้อมูลเพิ่ม ซึ่งคำนวณจากสัดส่วนของค่าสะท้อนพลังงานในช่วงคลื่นสีแดงกับช่วงคลื่น อินฟาเรดใกล้ตามสมการที่ Birch และ McVey (1968) ได้พัฒนาขึ้นมา (Jensen, 2007) ดังสมการ

ในการศึกษาครั้งนี้ในช่วงคลื่นสีแดง จะใช้ band MS-3 สำหรับภาพถ่ายดาวเทียมระบบ ALI และใช้ Band28 - Band33 สำหรับภาพถ่ายดาวเทียมระบบ Hyperion และในช่วงคลื่น อินฟาเรดใกล้จะใช้ band MS-4 และ MS-4' สำหรับภาพถ่ายดาวเทียมระบบ ALI และใช้ Band 42 - Band 53 สำหรับภาพถ่ายดาวเทียมระบบ Hyperion

2.1.3 ค่าดัชนีตำแหน่ง Red Edge (Red Edge Positioning, REP)

ค่าดัชนีตำแหน่ง Red Edge (Red Edge Positioning, REP) คือตำแหน่งบนกราฟ ค่าสะท้อนพลังงานของพืชในช่วงระหว่างคลื่นสีแดงกับคลื่นอินฟาเรดใกล้ที่มีค่าความชันสูงที่สุด (Jensen, 2007) ดังรูปที่ 2.1 ค่าดัชนีตำแหน่ง Red Edge ถูกนำมาใช้ในการศึกษาการ เปลี่ยนแปลงปริมาณของคลอโรฟิลล์ในใบไม้ ,สถานภาพของน้ำและมวลชีวภาพ ,ค่าดัชนีพื้นที่ ผิวใบ ,อายุ ,ระดับสุขภาพของพืช ,ความเครียดของพืช ,ผลผลิตของระบบนิเวศน์ เป็นต้น (Cho, Skidmore and Atzberger, 2008; Pu และคณะ ,2003) ในการใช้งานไม่ต้องการข้อมูลอย่างอื่น เช่น ข้อมูลชุดดิน ข้อมูลปรับแก้ค่าต่างๆทำให้ไม่ต้องเสียเวลาในการเก็บข้อมูลเพิ่ม และจะใช้งาน ได้เฉพาะกับข้อมูลไฮเปอร์สเปกตรัลเท่านั้น

รูปที่ 2.1 แสดงช่วง Red Edge ที่ปรากฏ ระหว่างช่วงคลื่นสีแดงกับช่วงคลื่น อินฟาเรดใกล้ของค่าสะท้อนพลังงานของ พืชสีเขียว (ที่มา Blackburn,2007)

ค่าดัชนีตำแหน่ง Red Edge จะใช้ข้อมูลค่าสะท้อนพลังงานในช่วงคลื่นที่ได้จากข้อมูล ไฮเปอร์สเปกตรัล ใน 4 ความยาวคลื่นมาคำนวณตามสมการที่ Clever (1994)ได้พัฒนาขึ้น (Jensen, 2007) ดังนี้

$$REP = 700 + 40 \left[\frac{\rho(\text{red edge}) - \rho(700\text{nm})}{\rho(740\text{nm}) - \rho(700\text{nm})} \right]$$
(3)

 $\rho(\text{red edge}) = \frac{\rho(670\text{nm}) + \rho(780\text{nm})}{2}$ (4)

ในการคำนวณ จะใช้ค่าสะท้อนพลังงานใน Band 32, Band 35, Band 39 และ Band 43 จากภาพถ่ายดาวเทียมระบบ Hyperion แทนค่าในช่วงคลื่น 670nm, 700nm, 740nm และ 780 nm ตามลำดับ

2.2 ตัวแปรทางชีววิทยา (Biophysical Parameters)

2.2.1 ค่าดัชนีพื้นที่ผิวใบ (Leaf Area Index , LAI) เป็นผลรวมของพื้นที่ผิวของใบไม้ ทั้งหมดในด้านใดด้านหนึ่งเพียงด้านเดียว ต่อหน่วยพื้นที่(Jensen,2007)โดยวิธีการวัดค่าดัชนี พื้นที่ผิวใบมี 2 วิธี คือวิธีทางตรง และวิธีทางอ้อม

1)วิธีทางตรง ใช้การตัดต้นไม้ออกมาจากพื้นที่แล้วนำใบไม้ที่ได้มาวัดหาพื้นที่

2)วิธีการทางอ้อม โดยใช้เครื่องมืออุปกรณ์มาใช้ประมาณค่า นิยมใช้ Fish eye len ที่มี มุมกว้าง 180 องศา ติดกับกล้องแล้วถ่ายภาพเรือนยอดปกคลุมจากบนพื้นดินแล้วทำการแปรภาพ คำนวณเป็นสัดส่วนเรือนยอดปกคลุมต่อพื้นที่ (ชลิตา ศรีลัดดา,2548) หรือใช้เครื่องมือ LAI-2000 วางไว้บนพื้นใต้เรือนยอด ซึ่งเครื่องมือนี้จะวัดแสงที่ส่องผ่านช่องว่างของเรือนยอดแต่เครื่องมือนี้ มีข้อเสียคือไม่สามารถแยกแยะต้นไม้ที่ตายแล้วทำการวัดเฉพาะต้นไม้ที่มีชีวิตอยู่ได้(Kovac และคณะ,2004) ในการทดลองนี้ใช้วิธีคำนวณดังสมการ

 $LA = \pi R^{2}$ (5) เมื่อ LA คือค่าพื้นที่ผิวใบของต้นไม้หนึ่งต้น R คือรัศมีของเรือนยอดต้นไม้วัดจากด้านที่ยาวที่สุดจากลำต้นจนถึงวงขอบเรือนยอด ดังรูปที่ 2.2 และค่าดัชนีพื้นที่ผิวใบ(LAI) คำนวณได้จากสมการ $LAI = \frac{sumLA}{area}$ (6) เมื่อ sum LA คือผลรวมของค่าพื้นที่ผิวใบของต้นไม้ทุกต้นในแปลง area คือ พื้นที่ของแปลงตัวอย่างขนาด 30 x 30 ตารางเมตร

รูปที่ 2.2 แสดงการวัดค่ารัศมีของเรือนยอดต้นไม้(R)

ค่าดัชนีพื้นที่ผิวใบที่ได้จากการศึกษาไม่สามารถใช้อ้างอิงเป็นค่าดัชนีพื้นที่ผิวใบของพื้นที่ ศึกษาได้เนื่องจากเป็นการประมาณค่าพื้นที่ผิวใบของเรือนยอดต้นไม้ด้วยพื้นที่รูปวงกลมเรือนยอด ผู้วิจัยต้องการเพียงดูแนวโน้มความสัมพันธ์ของข้อมูลกับข้อมูลที่ได้จากการสำรวจระยะไกลเพื่อใช้ ในการศึกษาปัญหาการเกิดสัญญาณอิ่มตัวของข้อมูลค่าดัชนีพื้นที่ผิวใบเท่านั้น

9

2.2.2 ค่ามวลชีวภาพ (Biomass) คือมวลของสิ่งมีชีวิตทั้งหมดที่ปรากฏอยู่ในระบบ นิเวศน์ต่อหน่วยพื้นที่ ในที่นี่เราจะหมายถึงมวลของทุกส่วนของต้นไม้ ทั้งลำต้น ใบ ราก ดอก และผล (ถ้ามี) โดยทั่วไปนิยมวัดในรูปของน้ำหนักแห้ง มวลชีวภาพมีความสำคัญในการศึกษา ผลผลิตของป่า และการแลกเปลี่ยนก๊าซคาร์บอนออกไซด์ของพืชกับชั้นบรรยากาศ ซึ่งพืชสามารถ กักเก็บคาร์บอน(C) ไว้ในเนื้อไม้ประมาณ 40-45 % ของน้ำหนักแห้ง(Hogarth,2007) โดยทั่วไป จะทำการหามวลชีวภาพได้สองวิธี คือวิธีการตัดฟันต้นไม้ และวิธีการทางแอลโลเมตริก

1) วิธีการตัดฟันต้นไม้ (Harvest method) กระทำโดยตัดต้นไม้ทุกต้นที่พบในพื้นที่แล้ว นำไปอบ แล้วชั่งหาน้ำหนักแห้ง โดย

2) วิธีการทางแอลโลเมตริก (Allometric method) เป็นวิธีที่ตัดต้นไม้บางส่วนเฉพาะที่เป็น ตัวอย่างแล้วนำน้ำหนักของพืชมาหาความสัมพันธ์กับส่วนต่างๆของพืชโดยวิธี Allometric วิธีนี้ทำให้ไม่จำเป็นต้องตัดพันต้นไม้ทั้งหมดในพื้นที่

การประมาณค่ามวลชี่วภาพด้วยวิธีนี้ไม่ต้องตัดพันต้นไม้ทั้งหมดในพื้นที่ศึกษา โดยจะทำ การตัดต้นไม้บางส่วน มาวิเคราะห์หาความสัมพันธ์ของค่ามวลชี่วภาพกับขนาดเส้นผ่านศูนย์กลาง ที่ระดับความสูงเพียงอก(Diameter at Breast Height, DBH) และความสูง(Height,H) ของต้นไม้ ซึ่งมีการศึกษาพบว่าความสัมพันธ์ของค่า (DBH)² H สามารถใช้ประมาณค่ามวลชี่วภาพของลำต้น ได้อย่างแม่นยำ (พงษ์ศักดิ์ สหุนาพุ้,2538) การศึกษานี้จึงได้นำวิธีการดังกล่าวมาประยุกต์ใช้ เนื่องจากไม่ต้องการตัดต้นไม้ในพื้นที่ศึกษา การคำนวณดังสมการ

$Biomass = a (DBH^2H)^b$ / Area

(8)

a และ b คือค่าคงที่จาก regression line ของป่าแต่ละพื้นที่ในที่นี้กำหนดให้มีค่า เท่ากับ 1 DBH คือขนาดเส้นผ่านศูนย์กลางของต้นไม้ที่ระดับความสูงเพียงอก (เซนติเมตร)

H คือความสงของต้นไม้ (เมตร)

Area คือพื้นที่แปลงตัวอย่างมีขนาดเท่ากับ 30 X 30 ตารางเมตร

เมื่อ

ในการศึกษาครั้งนี้จะใช้วิธีการประมาณค่าในการวัดหาค่ามวลชีวภาพเนื่องจากไม่

ต้องการตัดต้นไม้ออกจากพื้นที่ศึกษา และในวิธีการนี้เราจะต้องทราบค่าคงที่ a และ b ซึ่งเป็น ตัวเลขที่มีจุดทศนิยมที่ได้จากความสัมพันธ์ระหว่างขนาดเส้นผ่านศูนย์กลางของต้นไม้ที่ระดับ ความสูงเพียงอกกับความสูงของต้นไม้ในพื้นที่ศึกษาเพื่อให้ค่ามวลชีวภาพที่คำนวณได้มีความ ถูกต้อง แต่ผู้วิจัยมีจุดมุ่งหมายที่จะแก้ปัญหาจุดอิ่มตัวของสัญญาณเป็นสำคัญ จึงกำหนดให้ ค่าคงที่ a และ b เท่ากับ 1 ในการคำนวณหาค่ามวลชีวภาพในทุกแปลงตัวอย่างทั้งระบบ ซึ่งทำให้ ค่ามวลชีวภาพที่ได้จากการศึกษานี้ไม่ใช่ค่ามวลชีวภาพที่ถูกต้องตามจริง ไม่สามารถนำไปใช้ อ้างอิงเป็นค่ามวลชีวภาพของป่าชายเลนบริเวณพื้นที่ศึกษาได้ แต่จะไม่กระทบต่อแนวโน้ม ความสัมพันธ์ระหว่างค่าดัชนีพืชพรรณกับค่ามวลชีวภาพที่เราต้องการนำมาใช้พิจารณาเพื่อศึกษา การแก้ปัญหาจุดอิ่มตัวของสัญญาณให้บรรลุตามวัตถุประสงค์ของการวิจัย

2.3 ปัญหาการเกิดจุดอิ่มตัวของสัญญาณ (Saturation Problem)

ปัญหาการเกิดจุดอิ่มตัวของสัญญาณของค่าดัชนีพืชพรรณหรือที่เรียกว่า Saturation คือ ปัญหาหนึ่งที่พบจากการใช้งานค่าดัชนีพืชพรรณ โดยปกติค่าดัชนีพืชพรรณกับค่าตัวแปรทาง ชีววิทยาจะมีความสัมพันธ์กันค่อนข้างสูง แต่ค่าดัชนีพืชพรรณจะเกิดปัญหาจุดอิ่มตัวของ สัญญาณ เมื่อค่าตัวแปรทางชีววิทยาเริ่มมีค่าสูงมากอย่างต่อเนื่อง ดังรูปที่ 2.3 สาเหตุการเกิด ปัญหาจุดอิ่มตัวของสัญญาณนั้นอาจจะเกิดจากหลายปัจจัย เช่น อิทธิพลของความหนาแน่นของ เรือนยอดปกคลุม, ความแตกต่างระหว่างชั้นเรือนยอดของหมู่ไม้, อิทธิพลของสภาพดินพื้นหลัง เป็นต้น มีผลทำให้ค่าดัชนีพืชพรรณเกิดข้อจำกัดไม่สามารถทำนายค่าตัวแปรทางชีววิทยาในช่วงที่ เกิดปัญหาจุดอิ่มตัวของสัญญาณได้ ในการศึกษาสังคมพืชที่มีเรือนยอดปกคลุมหนาแน่นมีโอกาส ที่จะเกิดปัญหาจุดอิ่มตัวของสัญญาณได้ มาก เนื่องจากสังคมพืชประเภทนี้ให้ค่าตัวแปรทาง ชีววิทยาค่อนข้างสูง

จุฬาลงกรณ่มหาวิทยาลัย

รูปที่ 2.3 แสดงรูปแบบการเกิดปัญหาจุดอิ่มตัวของสัญญาณของค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์ (NDVI) เมื่อค่าตัวแปรทางชีววิทยา(Biomass / LAI)มีค่าสูง

2.4 การจำแนกประเภทข้อมูลภาพแบบไม่ควบคุม (Unsupervised Classification)

การจำแนกข้อมูลภาพด้วยวิธีจำแนกแบบไม่ควบคุม (Unsupervised Classification) คือการจำแนกจุดภาพโดยใช้ค่าความสว่างของจุดภาพ(pixel) ที่มีลักษณะเฉพาะตัวในแต่ละband มาจัดกลุ่ม ซึ่งข้อดีของวิธีนี้เมื่อเทียบกับวิธีจำแนกแบบควบคุม (Supervised Classification) คือไม่ต้องการความรู้เกี่ยวกับสิ่งปกคลุมพื้นผิวในภาพเพื่อใช้ในการจำแนก และข้อผิดพลาดที่เกิด จากมนุษย์มีโอกาสเกิดขึ้นน้อย ข้อเสียของวิธีนี้คือจำแนกจุดภาพออกเป็นชั้นข้อมูลที่มี ค่าสัญญาณเหมือนกัน โดยไม่ได้สนใจข้อมูลของวัตถุในภาพตามความเป็นจริงว่าเป็นอย่างไร และมีข้อจำกัดในการจำแนกเมื่อวัตถุในภาพมีลักษณะเฉพาะตัวที่ต้องใช้ข้อมูลหรือประสบการณ์ ของมนุษย์ช่วยในการจำแนก คุณสมบัติของแต่ละชั้นข้อมูลมีความไม่แน่นอนจะเปลี่ยนไป ตามฤดูกาล และไม่สามารถนำไปใช้อธิบายภาพอื่นๆได้ (Campbell, 2002) สำหรับ Algorithm ที่นิยมใช้กันของวิธีนี้ คือ K-mean กับ ISODATA ในที่นี้จะกล่าวถึงเฉพาะวิธี K-mean ที่จะใช้ใน การศึกษา

Algorithm K-mean จะทำงานโดยจำแนกจุดภาพออกเป็น K กลุ่มตามคำสั่ง ขั้นตอนแรก จะทำการสุ่มเลือกจุดศูนย์กลาง(centroid) ของแต่ละกลุ่มขึ้นมา แล้วทำการจัดกลุ่มภาพในภาพ ด้วยการคำนวณหาระยะทางที่น้อยที่สุดของระยะทางระหว่างจุดภาพกับจุดศูนย์กลาง ยกกำลังสอง ถ้าจุดภาพอยู่ห่างจากจุดศูนย์กลางของกลุ่มไหนน้อยที่สุดก็จะถูกจัดให้เข้ากลุ่มนั้น แล้วทำการจัดชั้นข้อมูลให้จุดภาพทั้งหมดในภาพ ขั้นตอนที่สอง ทำการเปลี่ยนตำแหน่ง จุดศูนย์กลางของกลุ่มแล้วทำการจัดชั้นข้อมูลใหม่โดยใช้วิธีการคำนวณเหมือนขั้นตอนแรก ขั้นตอนที่สามทำซ้ำในขั้นตอนที่สองไปเรื่อยๆจนกว่าชั้นข้อมูลที่ได้ไม่มีการเปลี่ยนแปลง จึงหยุด การทำงาน

ในการศึกษานี้เราใช้วิธีการจำแนกภาพด้วยวิธีจำแนกแบบไม่ควบคุม แบบ K-mean โดยใช้ภาพถ่ายดาวเทียมระบบ ASTER เนื่องจากพื้นที่ในภาพเกือบทั้งหมดเป็นป่าชายเลน แต่เรา ไม่ทราบจากภาพว่าพันธุ์ไม้ชนิดใดขึ้นเป็นกลุ่มอยู่ตรงไหน จึงทำการจำแนกค่าความสว่างที่ปรากฏ ในภาพเพื่อจัดชั้นข้อมูลของค่าความสว่างของสังคมพืชป่าชายเลนในพื้นที่ศึกษา เพื่อจะช่วย ทำการสุ่มตัวอย่างแบบ Stratified Random Sampling ให้กระจายครอบคลุมในทุกชนิด พันธุ์ไม้เด่นในพื้นที่ศึกษา

2.5 คุณลักษณะของข้อมูลภาพถ่ายดาวเทียมที่ใช้ในการศึกษา

2.5.1 ภาพถ่ายดาวเทียมระบบ ASTER

ภาพถ่ายดาวเทียมระบบ ASTER มีชื่อเต็มว่า <u>A</u>dvanced <u>Spaceborne Thermal</u> Emission and <u>Reflection Radiometer</u> เป็นโครงการความร่วมมือระหว่างองค์การ NASA ประเทศสหรัฐอเมริกากับกระทรวงอุตสาหกรรมและการค้าระหว่างประเทศ ของประเทศญี่ปุ่น ภาพถ่ายดาวเทียมระบบ ASTER สามารถบันทึกรายละเอียดข้อมูลของอุณหภูมิ, ค่าสะท้อน พลังงาน และระดับความสูงบนพื้นผิวโลก โดยติดตั้งบนดาวเทียม TERRA และถูกใช้งานร่วมกับ กล้องอื่นๆ เช่น MODIS, MISR และ CERES มีความสำคัญในการติดตามการเปลี่ยนแปลง ของโลกในระดับความละเอียดเชิงพื้นที่ปานกลาง ทำการบันทึกข้อมูลใน 14 band จากช่วงคลื่น ที่ตามองเห็น(Visible) ถึงช่วงคลื่น Thermal Infrared ดูรายละเอียดตารางที่ 2.1 สำหรับช่วงคลื่น ที่ตามองเห็น และคลื่นอินฟาเรดใกล้ ถูกบันทึกใน Band 1-3 ด้วยความละเอียดเชิงพื้นที่ 15x 15m. โดยใช้กล้อง Telescope 2 ตัว ตัวแรกถ่ายมุม Nadir ติดกับเครื่อง CCD บันทึกสัญญาณใน 3 ช่วงคลื่น(band 1-3) ตัวที่สองติดกับเครื่อง CCD ถ่ายในมุม Backward บันทึกสัญญาณใน 1 ช่วงคลื่น(band 3) กล้อง telescope ที่ถ่ายมุม backward จะให้มุมมองที่สองของพื้นที่ใน band ที่ 3 ใช้สำหรับการดูภาพแบบ stereoscopic (Jensen,2007)

Band	VNIR	Band	SWIR	Band	TIR	
	Spectral		Spectral		Spectral	
	resolution(µm)		Resolution(µm)		resolution(µm)	
1 (nadir)	0.52- 0.60	4	1.60- 1.70	10	8.125- 8.475	
2 (nadir)	0.63- 0.69	5	2.145- 2.185	11	8.475- 8.825	
3 (nadir)	0.76- 0.86	6	2.185-2.225	12	8.925- 9.275	
3 (backward)	0.76- 0.86	7	2.235- 2.285	13	10.25- 10.95	
		8	2.295- 2.365	14	10.95- 11.65	
		9	2.360- 2.430			
Spatial resolution(m)	15 x 15		30 x 30		90 x 90	
Swath width	60 km		60 km		60 km	
Quantization	8 bits		8 bits		12 bits	

ตารางที่ 2.1 แสดงลักษณะบางประการของภาพถ่ายดาวเทียมระบบ ASTER (Jensen,2007)

ในการศึกษาครั้งนี้จะนำข้อมูลภาพ ASTER ในband 1-9 ที่อยู่ในช่วงคลื่นที่ตามองเห็น, อินฟาเรดใกล้และอินฟาเรดคลื่นสั้นมาใช้ในการจำแนกภาพเพื่อใช้ในการเก็บข้อมูลภาคสนาม เนื่องจากสอดคล้องกับช่วงคลื่นของข้อมูลภาพถ่ายดาวเทียมระบบ Hyperion ที่เราต้องการ วิเคราะห์ที่บันทึกข้อมูลในช่วงคลื่นที่ตามองเห็น,อินฟาเรดใกล้และอินฟาเรดคลื่นสั้น(band1-242) เหมือนกัน และไม่ใช้ข้อมูลภาพ ASTER ในband 10-14 ซึ่งเป็นช่วงคลื่น Thermal Infrared เนื่องจากอยู่นอกเหนือช่วงคลื่นที่ภาพถ่ายดาวเทียมระบบ Hyperion ทำการบันทึก และขนาดจุดภาพมีขนาดใหญ่เกินความต้องการใช้งาน

2.5.2 ภาพถ่ายดาวเทียมระบบ Hyperion

ภาพถ่ายดาวเทียมระบบ Hyperion เป็นข้อมูลไฮเปอร์สเปกตรัลชนิดหนึ่งที่ทำการบันทึก ข้อมูลและจัดเก็บเป็นช่วงคลื่นที่แคบๆติดต่อเนื่องกันไปหลายร้อยช่วง ภาพถ่ายดาวเทียมระบบ Hyperion เป็นข้อมูลที่ได้จากกล้องถ่ายภาพ Hyperion ที่ติดตั้งอยู่บนดาวเทียม EO-1 ของ ประเทศสหรัฐอเมริกา นิยมเรียกชื่อว่าภาพถ่ายดาวเทียมระบบ Hyperion โดยภาพมีลักษณะ ครอบคลุมพื้นที่เป็นแถบยาวครอบคลุมพื้นที่ประมาณ 7,500 ตารางกิโลเมตร ดังแสดงในรูปที่ 2.4 ทำการบันทึกข้อมูลที่ความกว้างช่วงคลื่น 10 nm ใน 1 band ต่อเนื่องติดต่อกันไปตั้งแต่ 356 - 2578 nm จำนวนทั้งหมด 242 band และโคจรกลับมาถ่ายซ้ำที่เดิมทุกๆ 16 วัน ดังแสดงรายละเอียดในตารางที่ 2.2 และบันทึกข้อมูลในช่วงคลื่นที่ตามองเห็น,อินฟาเรดใกล้ และอินฟาเรดคลื่นสั้น ดังรายละเอียดในตารางที่ 2.3

รูปที่ 2.4 แสดงตัวอย่างภาพถ่ายดาวเทียมระบบ Hyperion (a) และ ภาพถ่ายดาวเทียมระบบ ALI (b) (ที่มา EO-1 ,USGS,2008)

ตารางที่ 2.2 แสดงลักษณะบางประการของภาพถ่ายดาวเทียมระบบ Hyperion (ที่มา EO-1 ,USGS,2008)

ลักษณะบางประการของภาพถ่ายดาวเทียมระบบ Hyperion					
Spectral bands	242 bands (356-2575 nm)				
Bandwidth	10 nm				
repeat cycle	16 days				
Pixel size	30 m				
land area per image	7.7 x 42 หรือ 7.7 x 185 km				
Satellite	EO-1				

15

Spectral	Band	wavelength (nm)	Status
	1-7	356-417	ไม่มีสัญญาณ
VisibleNIR channels	8-55	426-895	มีสัญญาณ
	56-57	913-926	มีสัญญาณ (overlaps กับ SWIR 77-78)
	58-70	936-1058	ไม่มีสัญญาณ
	71-76	852-902	ไม่มีสัญญาณ
Shortwave infrared	77-78	912-923	มีสัญญาณ (overlaps กับ VNIR 56-57)
Channels	79-2 <mark>24</mark>	933-2396	มีสัญญาณ
	225-242	2406-2578	ไม่มีสัญญาณ

ตารางที่ 2.3 แสดงรายละเอียดช่วงคลื่นของภาพถ่ายดาวเทียมระบบ Hyperion (ที่มา EO-1 ,USGS,2008)

2.5.3 ภาพถ่าย<mark>ดาวเท</mark>ียมระบบ ALI

ภาพถ่ายดาวเทียมระบบ ALI เป็นภาพถ่ายดาวเทียมแบบมัลติสเปกตรัลชนิดหนึ่ง ที่ได้จากกล้องถ่ายภาพ ALI ที่ติดตั้งบนดาวเทียม EO-1 และทำการบันทึกสัญญาณใน 10 band ในช่วงคลื่นไม่ต่อเนื่องกัน ในเวลาและสถานที่เดียวกันกับกล้องถ่ายภาพ Hyperion ดังตารางที่ 2.4 โดยมีค่าศูนย์กลางของความยาวช่วงคลื่น(Spectral Center Wavelenghts,CWL) ในแต่ละ band เมื่อเปรียบเทียบกับ Hyperion ดังแสดงในตารางที่ 2.5

ตารางที่ 2.4 แสดงลักษณะบางประการของภาพถ่ายดาวเทียมระบบ ALI (ที่มา EO-1 ,USGS,2008)

Speatral	EO-1 Advanced	EO-1 Advanced Land Imager (ALI)				
specifici	Band	Spectral resolution (µm) Spatial Resolution (m)				
	MS-1	0.433- 0.453	30 x 30			
	MS-1'	0.450- 0.510	30 x 30			
	MS-2	0.525- 0.625	30 x 30			
	MS-3	0.630- 0.690	30 x 30			
	MS-4	0.775- 0.805	30 x 30			
	MS-4'	0.845-0.890	30 x 30			
	MS-5	1.20- 1.30	30 x 30			
	MS-5'	1.55- 1.75	30 x 30			
	MS-7	2.08- 2.35	30 x 30			
	Panchromatic	0.48- 0.69	10 x 10			
Revisit	16 days					
Land area per	image ^{37 x 42 หรือ} 37x185	km				
Sattelite	EO-1					

ALI band no	. CWL (nm)	Hyperion band no.	CWL (nm)	Range
MS-1'	441.6	10	447.17	VNIR
MS-1	484.8	14	487.87	VNIR
MS-2	567.2	22	569.27	VNIR
MS-3	660	31	660.85	VNIR
MS-4	790	44	793.13	VNIR
MS-4'	865.6	51	864.35	VNIR
MS-5	1244.4	110	1245.36	SWIR
MS-5'	1640.1	149	1638.81	SWIR
MS-7	2225.7	207	2224.03	SWIR

ตารางที่ 2.5 แสดงค่าศูนย์กลางของความยาวช่วงคลื่น(CWL) ในแต่ละ band ของ ALI เปรียบเทียบกับ band ของ Hyperion (ที่มา EO-1 ,USGS,2008)

2.6 แบบจำลองความสัมพันธ์ของค่าดัชนีพืชพรรณกับค่าตัวแปรทางชีววิทยาของป่าชายเลน ที่ได้จากข้อมูลภาพถ่ายดาวเทียมระบบ Hyperion และ ALI

เมื่อนำข้อมูลค่าดัชนีพืชพรรณที่ได้จากภาพถ่ายดาวเทียมระบบ Hyperion และ ALI กับค่าตัวแปรทางชีววิทยามาหาความสัมพันธ์กัน จะได้แบบจำลองความสัมพันธ์ 10 รูปแบบ คือ 1) แบบจำลอง NDVI – LAI จากภาพ Hyperion 2) แบบจำลอง SR – LAI จากภาพ Hyperion 3) แบบจำลอง NDVI – Biomass จากภาพ Hyperion 4) แบบจำลอง SR – Biomass จากภาพ Hyperion 5) แบบจำลอง REP – LAI จากภาพ Hyperion 6) แบบจำลอง REP – Biomass จากภาพ Hyperion 7) แบบจำลอง NDVI – LAI จากภาพ ALI 8) แบบจำลอง SR – LAI จากภาพ ALI 9) แบบจำลอง NDVI – Biomass จากภาพ ALI และ 10) แบบจำลอง SR – Biomass จาก ภาพ ALI ดังแสดงในรูปที่ 2.5

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

บทที่ 3 งานวิจัยที่เกี่ยวข้อง

3.1 งานวิจัยที่ศึกษาความสัมพันธ์ระหว่างค่าดัชนีพืชพรรณกับตัวแปรทางชีววิทยาของ ป่าชายเลน

3.1.1 Kovac และคณะ (2004) ได้นำภาพถ่ายดาวเทียมระบบ IKONOS มาใช้ประมาณ
ค่าดัชนีพื้นที่ผิวใบ ในป่าชายเลนเสื่อมโทรมที่ประเทศเม็กซิโก ซึ่งมีพันธุ์ไม้ชายเลนขึ้นอยู่ 2 ชนิด
พบว่าค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์กับค่าดัชนีพื้นที่ผิวใบมีความสัมพันธ์กันสูง
(R² = 0.71)

3.1.2 Green และคณะ (1997) ได้ทำการศึกษาความสัมพันธ์ระหว่างค่าดัชนีพืชพรรณ ผลต่างแบบนอร์แมลไลซ์จากภาพถ่ายดาวเทียมระบบ SPOT XS กับค่าดัชนีพื้นที่ผิวใบใน ป่าชายเลนที่หมู่เกาะ Turk and Caicos ประเทศ British West Indies ซึ่งมีพันธุ์ไม้ชายเลนอยู่ 3 ชนิด คือ *Rhizophora mangle ,Laguncularia racemosa* และ *Avicennia germinans* โดยใช้ แบบจำลองความสัมพันธ์เชิงเส้นในการศึกษาความสัมพันธ์ ทำการเก็บข้อมูลจากแปลงตัวอย่าง จำนวน 29 แปลง พบว่าค่าดัชนีพื้นที่ผิวใบของป่าชายเลนในพื้นที่ศึกษามีค่าตั้งแต่ 0.8 - 7.0 และ ค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์กับค่าดัชนีพื้นที่ผิวใบมีความสัมพันธ์กันเชิงเส้น และได้ค่าสัมประสิทธ์การตัดสินใจ (R²) = 0.74 ดูรูปที่ 3.1 และได้ทำแผนที่เพื่อใช้ประมาณค่า LAI ในพื้นที่ศึกษาโดยเปรียบเทียบค่าดัชนีพื้นที่ผิวใบที่วัดได้จากในพื้นที่ป่าชายเลนกับค่าดัชนี พื้นที่ผิวใบที่ได้จากการประมาณค่าพบว่าแผนที่มีความถูกต้องสูงถึง 88% ที่ช่วงความเชื่อมั่น 95%

รูปที่ 3.1 แสดงความสัมพันธ์ของค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์ที่ได้จากภาพถ่ายดาวเทียม SPOT XS กับค่าดัชนีพื้นที่ผิวใบที่ได้จากแปลงตัวอย่างจำนวน 29 แปลงของป่าชายเลนหมู่เกาะ Turk and Caicos ในงานวิจัยของ Green และคณะ (1977)

3.2 งานวิจัยที่รายงานปัญหาการเกิดจุดอิ่มตัวของสัญญาณ

3.2.1 Li และคณะ(2007) ศึกษาป่าชายเลนที่ประเทศจีนได้ทำการทดลองเปรียบเทียบใช้ ภาพถ่ายดาวเทียมระบบ LANDSAT TM กับ RADARSAT พบว่าค่าดัชนีพืชพรรณที่ได้จาก ภาพถ่ายดาวเทียมระบบ LANDSAT TM เกิดปัญหาจุดอิ่มตัวของสัญญาณที่ระดับค่ามวลชีวภาพ ต่ำมากโดยได้กล่าวว่า Optical Remote Sensing มีข้อเสียในการใช้ประมาณค่ามวลชีวภาพ เนื่องจากมีปัญหาจุดอิ่มตัวของสัญญาณแต่การใช้ RADARSAT จะประมาณค่ามวลชีวภาพ ได้ดีกว่า

3.2.2 Thenkabail, Smith และ Pauw (2000) ได้ทดลองใช้ข้อมูลไฮเปอร์สเปกตรัลและ ภาพถ่ายดาวเทียมระบบ LANDSAT 5 TM ศึกษาพืชผลผลิตการเกษตร 4 ชนิด คือ มันฝรั่ง ถั่วเหลือง ข้าวโพด และฝ้าย พบว่าความสัมพันธ์ของค่าดัชนีพืชพรรณกับค่าดัชนีพื้นที่ผิวใบ และค่ามวลชีวภาพที่ได้จากช่วงคลื่นแคบ (Narrow band) สูงกว่าความสัมพันธ์ที่ได้จาก ช่วงคลื่นกว้าง (Broad band) ในพืชทั้งสี่ชนิด

3.2.3 Gao และคณะ(2000) ได้ใช้ภาพ LANDSAT TM ศึกษาป่าใบเข็ม(Needle Leaf) และป่าใบกว้าง(Broad Leaf) ในประเทศสหรัฐอเมริกา พบว่าป่าทั้งสองชนิดเกิดปัญหาจุดอิ่มตัว ของสัญญาณ โดยป่าที่มีเปอร์เซนต์เรือนยอดปกคลุมต่ำจะเข้าสู่เส้นโค้งสัญญาณอิ่มตัว (Saturation curve) เร็วกว่าป่าที่มีเปอร์เซ็นต์เรือนยอดปกคลุมสูง แสดงให้เห็นว่าอิทธิพลของ ดินพื้นล่างของป่า(soil background) มีผลต่อค่าดัชนีพืชพรรณมากและได้สรุปว่าค่าดัชนีพืชพรรณ มีความว่องไวต่อดินพื้นล่างของเรือนยอดปกคลุม แต่ไม่มีความว่องไวต่อโครงสร้างของเรือนยอด ปกคลุม

3.2.4 Hurcom และ Harrison (1998) พบว่าการใช้ค่าดัชนีพืชพรรณหาความสัมพันธ์กับ ตัวแปรทางชีววิทยาไม่ประสบความสำเร็จ เพราะไม่สามารถนำมาใช้ศึกษาสังคมพืชที่เรือนยอด หนาแน่นได้เนื่องจากเกิดปัญหาจุดอิ่มตัวของสัญญาณโดยได้ทดลองใช้เครื่อง Spectroradiometer (bandwidth 2-5 nm) กับป่ากึ่งแห้งแล้ง (semi-arid) ในพื้นที่ศึกษาประเทศ สเปน(มีพันธุ์ไม้ 2 ชนิด)และพื้นที่ศึกษาประเทศโปรตุเกส(มีพันธุ์ไม้ 5 ชนิด)แล้วพบว่า ความสัมพันธ์ระหว่างค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์กับค่าดัชนีพื้นที่ผิวใบ มีความสัมพันธ์กันต่ำ โดยสรุปผลการทดลองว่าเป็นเพราะระดับชั้นเรือนยอดที่มีหลายระดับ มีผลต่อเรือนยอดปกคลุมของป่า และพืชขึ้นอยู่ค่อนข้างใกล้ชิดกัน

3.2.5 Fassnacht และคณะ(1997) ได้ทดลองใช้ค่าดัชนีพืชพรรณที่ได้จากภาพถ่าย ดาวเทียมระบบ LANDSAT 5 TM มาประมาณค่าดัชนีพื้นที่ผิวใบในป่าที่ Central Wisconsin ประเทศสหรัฐอเมริกา พบว่าในป่าไม้สน (Conifer forest) และในป่าไม้เนื้อแข็ง (Hardwood forest, มีพันธุ์ไม้ 4 ชนิด) เกิดปัญหาจุดอิ่มตัวของสัญญาณ

3.3 งานวิจัยที่ศึกษาการแก้ปัญหาการเกิดจุดอิ่มตัวของสัญญาณ

3.3.1 Mutanga และ Skidmore(2004)ได้ทดลองใช้ข้อมูลไฮเปอร์สเปกตรัลที่ได้จากเครื่อง Spectroradiometer มาศึกษาการประมาณค่ามวลชีวภาพของหญ้าที่ปลูกในเรือนกระจก พบว่า ค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์ที่ได้ในช่วง Red edge จากข้อมูลไฮเปอร์สเปกตรัลให้ ความสัมพันธ์กับค่ามวลชีวภาพสูงกว่าค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์ตามปกติ ผลการทดลองแสดงให้เห็นว่าคลอโรฟิลล์ของพืชดูดกลืนช่วงคลื่นสีแดงกับช่วงคลื่นอินฟาเรดใกล้ ไว้ในปริมาณมาก ทำให้ค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์ที่ได้ตามปกติมีความสัมพันธ์กับ ค่ามวลชีวภาพต่ำ (R² = 0.26) และได้สรุปว่าที่ระดับความหนาแน่นของเรือนยอดปกคลุมสูง ค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์จากในช่วง Red edge จากข้อมูลไฮเปอร์สเปกตรัลจะให้ ความถูกต้องในการประมาณค่ามวลชีวภาพมากกว่าการใช้ค่าดัชนีพืชพรรณผลต่าง แบบนอร์แมลไลซ์ปกติ เนื่องจากค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์ปกติมีข้อจำกัดคือ จะเกิดปัญหาจุดอิ่มตัวของสัญญาณหลังจากค่ามวลชีวภาพหรือค่าดัชนีพื้นที่ผิวใบมีระดับคงที่ ทำให้ใช้ประมาณค่ามวลชีวภาพหรือค่าดัชนีพื้นที่ผิวใบได้ไม่ดีในพื้นที่ที่มีเรือนยอดปกคลุมเกือบ 100 %

3.3.2 Thenkabail และคณะ (2004) ศึกษาป่าฝนในทวีปแอฟริกาพบว่าภาพถ่ายดาวเทียม ระบบ Hyperion สามารถใช้เลือกคู่ band ที่ให้ความสัมพันธ์ของค่าดัชนีพืชพรรณผลต่างแบบ นอร์แมลไลซ์กับค่ามวลชีวภาพสูงได้

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

บทที่ 4 วิธีดำเนินการศึกษา

4.1 พื้นที่ศึกษาป่าชายเลนแหลมตะลุมพุก

รูปที่ 4.1 แสดงพื้นที่ศึกษาป่าช<mark>ายเลนบริเวณแหลมตะ</mark>ลุมพุก อ.ปากพนัง จ.นครศรีธรรมราช

ปาชายเลนบริเวณแหลมตะลุมพุก อำเภอปากพนัง จังหวัดนครศรีธรรมราช มีลักษณะเป็น สังคมพืชที่ขึ้นปกคลุมทั่วพื้นที่ของแหลมตะลุมพุก ยกเว้นบริเวณชายหาดตามแนวด้าน ทิศตะวันออกและทิศเหนือ มีการทำนากุ้งตลอดสองข้างทางไปตามแนวถนนที่ตัดเลียบริมชายหาด จากทางทิศตะวันออกไปจนถึงสุดปลายแหลมในทิศเหนือดังรูปที่ 4.1 มีพื้นที่ป่าชายเลนประมาณ 56.8 ตารางกิโลเมตร ประกอบด้วยพันธุ์ไม้เด่น(Dominant species) จำนวน 7 ชนิด ดังแสดงใน ตารางที่ 4.1 โดยชนิดพันธุ์ไม้ที่ขึ้นปกคลุมมากที่สุดคือโกงกางใบเล็ก และพบโกงกางใบใหญ่ มากเป็นอันดับที่สอง พรรณพืชที่พบมีการขึ้นอยู่ปะปนกัน ยากที่จะพบพันธุ์ไม้ชนิดใดขึ้นอยู่เป็น สังคมพืชได้เพียงชนิดเดียว(Homogeneous)โดยที่ไม่มีชนิดอื่นขึ้นปะปน ลักษณะทางธรณีสัณฐาน เป็นตะกอนทับถมสะสมมาเป็นเวลานานจากแม่น้ำทางใต้ของแหลม มีอิทธิพลของน้ำทะเลขึ้นลง ทางทิศตะวันออกและทิศเหนือมีสภาพภูมิอากาศแบบเขตร้อนประกอบด้วย 2 ฤดูกาลในหนึ่งปี คือฤดูร้อนในช่วงระหว่างเดือนกุมภาพันธ์ถึงเมษายนและในฤดูฝนจะได้รับอิทธิพลจากลมมรสุม (Vaiphasa, Skidmore และ De Boer, 2006)
ตารางที่ 4.1 แสดงชนิดท	งันธ์ไม้เด่น 7	้ ชนดทพบ ในบ	ไาชายเลนแหลมตะลมพก

ชื่อภาษาไทย	ชื่อวิทยาศาสตร์ (sciencetific name)	ชื่อวงศ์ (Family)
โกงกางใบเล็ก	Rhizophora apiculata Blume	RHIZOPHORACEAE
โกงกางใบใหญ่	Rhizophora mucronata Poir.	RHIZOPHORACEAE
ถั่วขาว	Bruguiera parviflora (Roxb.)	RHIZOPHORACEAE
แสมขาว	Avicennia alba Blume	AVICENNIACEAE
แสมดำ	Avicennia officinalis L.	AVICENNIACEAE
แสมทะเล	Avicennia marina Forssk.	AVICENNIACEAE
ลำพู	Sonneratia caseolaris (L.)Engl.	SONNERATIACEAE

4.2 ข้อมูลภาพถ่ายดาวเทียมที่ใช้ในการศึกษา

ในการศึกษานี้ผู้วิจัยได้ใช้ข้อมูลภาพถ่ายดาวเทียม 3 ชนิดคือใช้ภาพถ่ายดาวเทียมระบบ ASTER ช่วยในการเก็บข้อมูลแปลงตัวอย่าง และใช้ภาพถ่ายดาวเทียมระบบ Hyperion และ ALI ในการวิเคราะห์ค่าดัชนีพืชพรรณ ดังแสดงรายละเอียดในตารางที่ 4.2

ตารางที่ 4.2 แสดงชนิดข้อมูลภาพ<mark>ถ่ายดาวเทียมและวันที่ทำการบันทึก</mark>ภาพ

ชนิดภาพถ่ายดาวเทียมระบบ	วันที่ทำการบันทึกภาพ	หมายเหตุ
Hyperion	1 <mark>5 กรกฎาคม พ.ศ.25</mark> 50	ใช้วิเคราะห์ค่าดัชนีพืชพรรณ
Advance Land Image (ALI)	15 กรกฎาคม พ.ศ.2550	ใช้วิเคราะห์ค่าดัชนีพืชพรรณ
ASTER	22 พฤศจิกายน พ.ศ.2547	ใช้ทำแผนที่เพื่อเก็บข้อมูล
		ภาคสนามในเดือนเมษายน
		พ.ศ.2550

คูนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

4.3 การเก็บข้อมูลภาคสนาม

4.3.1 การเตรียมการก่อนเก็บข้อมูลในแปลงตัวอย่าง

 ทำการถ่ายค่าพิกัดจากหมุดหลักฐานของกรมแผนที่ทหารที่ตั้งอยู่ในสำนักงานโครงการ ชลประทานที่ 15 อำเภอปากพนัง มาสู่หมุดชั่วคราวบ้านบังหยา (บ้านคนงานอยู่ใกล้ท่าขึ้นเรือ)

 ทำการเลือกจุดควบคุมตำแหน่งภาคพื้นดิน (ground control point) จากภาพถ่าย ดาวเทียมระบบ ASTER ที่บันทึกภาพบริเวณแหลมตะลุมพุก อ่าวปากพนัง ให้ครอบคลุมทั่วพื้นที่ ศึกษา ทำการเลือกไว้ประมาณ 20 – 30 จุด

 ออกเรือเข้าสู่พื้นที่ศึกษาเพื่อเก็บข้อมูลค่าพิกัดของจุดควบคุมตำแหน่งภาคพื้นดิน ในการศึกษานี้เก็บค่าพิกัดจุดควบคุมตำแหน่งภาคพื้นดินมาทั้งหมด 19 จุด เสร็จแล้วทำการ คำนวณปรับแก้ความถูกต้องทางตำแหน่งให้กับจุดควบคุมตำแหน่งภาคพื้นดินทั้งหมด

4) การหาค่าพิกัดของตำแหน่งใช้หลักการ DGPS (Differencial GPS) โดยใช้เครื่องมือ รับสัญญาณดาวเทียม GPS แบบพกพา จำนวน 2 เครื่อง ซึ่งวิธีนี้ให้ความถูกต้องทางตำแหน่ง คลาดเคลื่อนไม่เกิน 5 เมตร (ซูเกียรติ วิเชียรเจริญ ,2549)

5) นำภาพถ่ายดาวเทียมระบบ ASTER ใน band ที่ 1-9 ซึ่งมีความละเอียดเชิงพื้นที่ 15 เมตร มาทำการกำหนดตำแหน่งทางภูมิศาสตร์ (Geo referencing) ด้วยจุดควบคุมตำแหน่งภาคพื้นดิน ์ ที่ได้เก็บค่าพิกัดมาจากพื้นที่ศึกษา ให้มีค่าพิกัดในระบบอ้างอิง UTM Zone 47N, WGS 1984 หลังจากนั้นทำการจำแนกข้อมู<mark>ลป่าชายเลนใน</mark>ภาพถ่ายดาวเทียมระบบ ASTER (ใช้ band 1 – band 9 เนื่องจากสอดคล้องกับช่วงคลื่นของภาพถ่ายดาวเทียมระบบ Hyperion) ออกเป็น 15 cluster (เนื่องจากพื้นที่ศึกษามีพันธุ์ไม้เด่นจำนวน 7 ชนิด)ด้วยวิธีจำแนก แบบไม่ควบคุม(Unsupervised Classification แบบ k-mean) เพื่อใช้ในการวางแผนเลือกแปลง ตัวอย่างแบบ Stratified Random Sampling ทำการเลือกแปลงตัวอย่างจากในภาพ ขนาด 1 จุดภาพ (15 X 15 ตารางเมตร)โดยใช้วิธี Line Transect ซึ่งเป็นวิธีที่มีความเหมาะสมกับ ้สภาพป่าที่มีต้นไม้ขึ้นแน่นทึบ (Bullock ,1999) โดยวางเส้น Transect ตั้งฉากกับแนวคลองเข้าไป ในป่าชายเลน ทำการวางแปลงตัวอย่างแปลงที่หนึ่งของ Line โดยให้ขอบแปลงห่างจากแนวคลอง 2 จุดภาพ (30 เมตร) แล้ววางแปลงที่สองเว้นระยะห่าง 2 จุดภาพจากแปลงแรก ทำการวางแปลง เช่นนี้ไปตลอดเส้น transect จนถึงแปลงสุดท้ายของแนวเส้น ให้เว้นระยะห่างจากแนวขอบของ Cluster อย่างน้อย 2 จุดภาพ ความยาวของเส้น transect ที่ใช้ไม่ควรเกิน 200 เมตร เนื่องจาก ต้องเผื่อเวลาเดินกลับ และป้องกันการหลงป่า ดังแสดงรายละเอียดในรูปที่ 4.2 ทำการวางแปลง ตัวอย่างให้ได้ครอบคลุมครบทั้ง 15 Cluster ไว้ประมาณ 500 แปลง เมื่อทำการออกเรือสำรวจ ความเป็นไปได้ในการเข้าถึงแปลงตัวอย่าง จะทำการคัดเลือกแปลงที่สามารถเข้าถึงได้ไว้ประมาณ 100 แปลง เนื่องจากในพื้นที่มีข้อจำกัดตามธรรมชาติ เช่น อิทธิพลของน้ำขึ้นน้ำลง
 ความห่างไกลจากคลอง เป็นต้น ทำการพิมพ์แผนที่ภาพแปลงตัวอย่างดังกล่าว พร้อมกับ
 จดค่าพิกัดที่จุดกึ่งกลางของแปลงตัวอย่างมาใช้ในการเก็บข้อมูลความเจริญเติบโตของต้นไม้ต่อไป

รูปที่ 4.2 แสดงวิธีการวางแป<mark>ลงตัวอย่างด้วยวิธี Transect Line</mark>

4.3.2 การเก็บข้อมูลในแปลงตัวอย่าง

1) ทำการออกเรือเข้าหาแปลงตัวอย่าง โดยใช้เครื่องมือรับสัญญาณดาวเทียม GPS โดย ล่องเรือไปตามแนวคลอง และยึดค่าทิศเหนือและค่าทิศตะวันออกที่อ่านได้จากเครื่องมือ รับสัญญาณดาวเทียม GPS เป็นหลักในการเข้าหาแปลงตัวอย่าง เมื่อพบแนวทิศเหนือหรือ ทิศตะวันออกของค่าพิกัดแปลงตัวอย่างแล้วทำการหยุดเรือที่กึ่งกลางลำคลอง(เนื่องจากริมตลิ่ง รับสัญญาณดาวเทียมไม่ได้)แล้วใช้เข็มทิศในตัวเครื่องมือรับสัญญาณดาวเทียม GPS เล็งทิศทาง ที่จะเข้าสู่แปลงตัวอย่าง และใช้เชือกในล่อนยาว 30 เมตร วัดระยะทางจากตัวเรือสู่ตำแหน่ง จุดกึ่งกลางแปลงตัวอย่าง

2) เมื่อพบตำแหน่งจุดกึ่งกลางแปลงตัวอย่างแล้ว ทำการวางแปลงขนาด 30X30 ตารางเมตร แล้วเก็บข้อมูลค่าขนาดเส้นผ่านศูนย์กลางที่ระดับความสูงเพียงอก,ค่าความสูง และค่ารัศมีเรือนยอดของต้นไม้ทุกต้นในแปลงที่มีขนาดเส้นผ่านศูนย์กลางที่ระดับความสูง เพียงอกตั้งแต่ 4.5 เซนติเมตรขึ้นไปและมีความสูงมากกว่า 1.30 เมตร

4.4 การวิเคราะห์ข้อมูล

้นำภาพถ่ายดาวเทียมระบบ Hyperion และ ALI มาทำการกำหนดตำแหน่งทางภูมิศาสตร์ (Geo referencing)โดยอ้างอิงค่าพิกัดจากจุดควบคุมตำแหน่งภาคพื้นดิน (ground control point) ในภาพถ่ายดาวเทียมระบบ ASTER ให้มีค่าพิกัดในระบบอ้างอิง UTM zone 47N , datum WGS แล้วทำการนำค่าสะท้อนพลังงานของแปลงตัวอย่างที่ได้จากภาพถ่ายดาวเทียมระบบ 1984 Hyperion และ ALI มาสร้าง<mark>แบบจำลอง</mark>ความสัม<mark>พันธ์ระหว่า</mark>งค่าดัชนีพืชพรรณกับค่าตัวแปรทาง ชีววิทยาของป่าชายเลนที่ได้จากการเก็บข้อมูลในภาคสนามใน 6 รูปแบบความสัมพันธ์ดังนี้ 1) NDVI- LAI 2) SR-LAI 3) NDVI-Biomass 4) SR-Biomass 5) REP-LAI และ 6) REP-Biomass

4.5 การทดสอบทางสถิติ

ทดสอบค่าสัมประสิทธิ์ความถดถอย (regression coefficient) หรือ eta_1 ในความสัมพันธ์ เชิงเส้น โดยตั้งสมมติฐานดังนี้

- $H_0: \beta_1 = 0$ หรือ Y = $\beta_0 + \beta_1 X + e$,หรือเกิดปัญหา Saturatution
- H_a : $\beta_1 \neq$ 0 หรือ Y \neq β_0 + β_1 X + e ,หรือไม่เกิดปัญหา Saturation

เมื่อ Y คือ ค่าตัวแปรทางชีววิทยาของป่าชายเลน

- X คือ ค่าดัชนีพืชพรรณ
- eta_0 คือ ส่วนตัดแกน Y หรือค่าของ Y เมื่อค่า X มีค่าเท่ากับศูนย์
- eta_1 คือ ค่าสัมประสิทธิ์ความถดถอย
- คือ ค่าความคลาดเคลื่อนอย่างสุ่ม

การทดสอบสมมติฐานตามข้างต้นใช้วิธีการวิเคราะห์ความแปรปรวนแบบทางเดียว (1 way -ANOVA) ถ้าผลการทดสอบสมมติฐานปรากฏว่าแบบจำลองความสัมพันธ์ของ Hyperion ทั้ง 54 คู่ band และ ALI ทั้ง 2 คู่ band ในแบบจำลองความสัมพันธ์ NDVI-LAI ,SR-LAI , NDVI-Biomass ,SR –Biomass , REP-LAI และ REP-Biomass ได้ค่าsignificance น้อยกว่า 0.05 จะปฏิเสธสมมติฐาน H₀ หรือยอมรับ H₂ แสดงว่าแบบจำลองไม่เกิดปัญหาจุดอิ่มตัวของ

สัญญาณที่ระดับนัยสำคัญ 0.05 แต่ถ้าผลการทดสอบสมมติฐานปรากฏว่าแบบจำลอง ความสัมพันธ์ได้ค่าsignificance มากกว่า 0.05 จะยอมรับสมมติฐาน H_o แสดงว่าแบบจำลอง เกิดปัญหาจุดอิ่มตัวของสัญญาณที่ระดับนัยสำคัญ 0.05

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

รูปที่ 4.3 แสดงแผนผังขั้นตอนวิธีการศึกษา

บทที่ 5 ผลการศึกษา

5.1 ผลการศึกษา

ข้อมูลค่าตัวแปรทางชีววิทยาของป่าชายเลนที่ได้จากแปลงตัวอย่างบริเวณป่าชายเลน แหลมตะลุกพุก เมื่อนำมาใช้วิเคราะห์ในภาพถ่ายดาวเทียมระบบ Hyperion และ ALI พบว่า บางแปลงมีปัญหาสัญญาณรบกวน ทำให้สามารถใช้ข้อมูลค่าตัวแปรทางชีววิทยาของป่าชายเลน ในการทดลองศึกษาได้ทั้งหมดจำนวน 31 แปลง ดังแสดงในตารางที่ 5.1

	-						-
ລຳ	หมาย	Coodinate	UTM	ค่าดัชนี	ค่ามวล	ชนิด	วงศ์
ดับ	เลข	East	North	พื้นที่	ชีวภาพ		
ที่	แปลง			ผิวใบ	(10 ⁻⁴ ลบ.ม.		
				19 20-12 1	ด่อ ดร.ม.)		
1	1	6295 <mark>5</mark> 6	929222	1.1638	270.6178	โกงกางใบเล็ก	Rhizophoraceae
2	2	629 <mark>496</mark>	929222	1.3274	296.7656	โกงกางใบเล็ก	Rhizophoraceae
3	3	6294 <mark>66</mark>	<mark>92931</mark> 2	0.9711	141.1722	แสมขาว	Avicenniaceae
4	4	629466	929282	0.8727	95.4044	โกงกางใบเล็ก	Rhizophoraceae
5	5	629496	929282	0.4686	84.4667	โกงกางใบเล็ก	Rhizophoraceae
6	6	629496	929312	0.4555	147.6733	โกงกางใบเล็ก	Rhizophoraceae
7	7	629526	929312	0.6082	172.8422	โกงกางใบเล็ก	Rhizophoraceae
8	26	629616	930122	0.8526	236.2467	โกงกางใบเล็ก	Rhizophoraceae
9	44	629976	935612	0.5856	40.1500	โกงกางใบเล็ก	Rhizophoraceae
10	45	630006	935612	0.4364	70.3478	แสมดำ	Avicenniaceae
11	61	629076	932882	1.4198	179.5644	แสมขาว	Avicenniaceae
12	67	630486	932342	1.2238	178.0778	โกงกางใบเล็ก	Rhizophoraceae
13	68	630456	932342	0.6775	213.7144	โกงกางใบเล็ก	Rhizophoraceae
14	70	631296	928382	0.6240	50.9200	โกงกางใบเล็ก	Rhizophoraceae
15	71	629466	928622	2.2401	502.1322	โกงกางใบเล็ก	Rhizophoraceae
16	72	630156	929462	0.7601	100.3989	โกงกางใบเล็ก	Rhizophoraceae
17	73	629376	929522	1.6278	376.5111	โกงกางใบเล็ก	Rhizophoraceae
18	74	630786	930302	1.1843	245.2611	โกงกางใบเล็ก	Rhizophoraceae
19	76	630786	931232	0.6632	95.8889	โกงกางใบเล็ก	Rhizophoraceae
20	Final1	628476	928622	1.6435	317.7000	โกงกางใบเล็ก	Rhizophoraceae
21	Final4	629946	928562	0.9285	419.6667	โกงกางใบเล็ก	Rhizophoraceae
22	Final5	630396	929582	1.1118	134.8333	โกงกางใบเล็ก	Rhizophoraceae
23	R10	632106	935732	1.0648	71.7189	แสมดำ	Avicenniaceae
24	R11	632796	934472	0.6894	45.5389	แสมดำ	Avicenniaceae
25	R12	632916	933902	0.0969	15.3067	แสมดำ	Avicenniaceae
26	R13	633426	933152	0.3979	49.6889	แสมดำ	Avicenniaceae
27	R5	633396	933002	0.2273	26.4822	แสมดำ	Avicenniaceae
28	R6	633366	933002	0.4051	34.2800	แสมดำ	Avicenniaceae
29	R7	632616	934622	0.6726	45.8000	แสมดำ	Avicenniaceae
30	R8	632586	934622	0.1544	34.3622	แสมดำ	Avicenniaceae
31	R9	632136	935732	0.6879	101.2322	แสมดำ	Avicenniaceae

ตารางที่ 5.1 แสดงค่าดัชนีพื้นที่ผิวใบ และค่ามวลชีวภาพของแปลงตัวอย่างที่ใช้ในการทดลองจำนวน 31 แปลง

เมื่อนำค่าดัชนีพืชพรรณที่ได้จากข้อมูลภาพถ่ายดาวเทียมระบบ Hyperion และ ALI กับ

ค่าตัวแปรทางชีววิทยาจากแปลงตัวอย่างทั้งหมด 31 แปลงตัวอย่างมาสร้างแบบจำลอง
ความสัมพันธ์ในรูปเชิงเส้นจะได้แบบจำลองความสัมพันธ์10 แบบ คือ แบบจำลองที่ได้จากข้อมูล
Hyperion มี 6 แบบจำลองคือ 1) แบบจำลอง NDVI – LAI 2) แบบจำลอง SR – LAI
3) แบบจำลอง NDVI – Biomass 4) แบบจำลอง SR – Biomass 5) แบบจำลอง REP – LAI และ
6) แบบจำลอง REP – Biomass ส่วนแบบจำลองที่ได้จากข้อมูล ALI มี 4 แบบจำลอง คือ
1) แบบจำลอง NDVI – LAI 2) แบบจำลอง SR – LAI 3) แบบจำลอง NDVI – Biomass และ
4) แบบจำลอง SR – Blomass ดังแสดงในรูปที่ 5.1

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

รูปที่ 5.1 แสดงแบบจำลองความสัมพันธ์ของค่าดัชนีพืชพรรณกับค่าตัวแปรทางชีววิทยา 10 รูปแบบ ที่ได้จาก ภาพถ่ายดาวเทียมระบบ Hyperion และ ALI

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย จากการศึกษาผลงานวิจัยที่ผ่านมา (Li และคณะ,2007; Kovac และคณะ, 2004; Gao และคณะ,2000; Thenkabail , Smith และ Pauw ,2000; Hurcom และ Harrison,1998; Fassnacht และคณะ,1997; Green และคณะ,1997;) พบว่าการนำค่าดัชนีพืชพรรณผลต่าง แบบนอร์แมลไลซ์มาสร้างแบบจำลองความสัมพันธ์เชิงเส้นกับค่าตัวแปรทางชีววิทยาของ ป่าชายเลน (ค่ามวลชีวภาพและค่าดัชนีพื้นที่ผิวใบ)จะพบรูปแบบความสัมพันธ์ใน 2 ลักษณะ คือ ลักษณะแรกข้อมูลมีความสัมพันธ์กันสูง กราฟความสัมพันธ์จะเป็นเส้นตรงที่มีความชันมาก มีลักษณะความสัมพันธ์เชิงบวก กล่าวคือเมื่อค่าตัวแปรทางชีววิทยาเพิ่มขึ้น ค่าดัชนีพืชพรรณก็ เพิ่มขึ้นด้วย (ดูรูปที่ 5.2(a)) และลักษณะที่สอง กราฟมีแนวโน้มเข้าสู่เส้นโค้งสัญญาณอิ่มตัว (Saturation curve) หรือไม่มีความชัน เป็นเพราะว่าเมื่อค่าตัวแปรทางชีววิทยามีค่าเพิ่มสูงขึ้น เรื่อยๆ เนื่องจากความหนาแน่นของพรรณไม้ในแปลงตัวอย่างที่สูงขึ้นแต่ค่าดัชนีพืชพรรณ กลับมีค่าคงที่ ไม่สูงขึ้นตามไปด้วย กราฟจึงไม่มีความชันหรือมีลักษณะขนานกับแกน X เรียกว่า เกิดปัญหาจุดอิ่มตัวของสัญญาณ (Saturation Problem)(ดูรูปที่ 5.2(b)) จากผลการทดลองที่ได้นี้ พบว่าข้อมูลมีรูปแบบความสัมพันธ์ค่อนข้างเป็นไปในลักษณะที่สอง เนื่องจากมีความหนาแน่น ของพรรณไม้ในปาชายเลนค่อนข้างสูง

รูปที่ 5.2 แสดงลักษณะความสัมพันธ์ของค่าดัชนีพืชพรรณกับค่าตัวแปรทางชีววิทยาที่ได้จากการศึกษาที่ผ่านมา ใน 2 ลักษณะ คือ 1.ลักษณะกราฟมีความชันมาก ข้อมูลมีความสัมพันธ์กันสูง (a) และ 2.ลักษณะกราฟไม่มี ความชันหรือมีแนวโน้มเข้าสู่เส้นโค้งสัญญาณอิ่มตัว เนื่องจากมีความหนาแน่นของพรรณไม้ในป่าสูงทำให้เกิด ปัญหาจุดอิ่มตัวของสัญญาณ (b)

ผลการสร้างแบบจำลองความสัมพันธ์ในรูปเชิงเส้น ที่ได้จากภาพถ่ายดาวเทียมระบบ

Hyperion และภาพถ่ายดาวเทียมระบบ ALI ดังแสดงในรูปที่ 5.3 ถึง 5.7 (โดยใช้ข้อมูลคู่ band ที่ได้ค่า R² มากที่สุดของภาพ Hyperion จากคู่ band 42 - band31 และ คู่ band 42 - band28 (ดูตารางที่ 5.1) และภาพ ALI จากคู่ band MS-4 - band MS-3 (ดูตารางที่ 5.2)) พบว่าระดับ ค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์ที่ได้จากข้อมูลภาพถ่ายดาวเทียมระบบ Hyperion และ ALI มีค่าอยู่ที่ระดับ 0.2 ถึง 0.6 และที่ระดับ 0.5 ถึง 0.7 ตามลำดับ และระดับค่าดัชนีสัดส่วน ธรรมดา ที่ได้จากข้อมูลภาพถ่ายดาวเทียมระบบ Hyperion และ ALI มีค่าอยู่ที่ระดับ 0.2 ถึง 0.6 และที่ระดับ 0.1 ถึง 0.4 ตามลำดับ และค่าดัชนีตำแหน่ง Red Edge มีค่าอยู่ที่ระดับ 721 - 726

รูปที่ 5.3 แสดงแบบจำลองความสัมพันธ์ NDVI-LAI ที่ได้จากข้อมูลภาพถ่ายดาวเทียมระบบ Hyperion (a) และ ALI (b)

33

รูปที่ 5.4 แสดงแบบจำลองความสัมพันธ์ SR-LAI ที่ได้จากข้อมูลภาพถ่ายดาวเทียมระบบ Hyperion (a) และ ALI (b)

จุฬาลงกรณ์มหาวิทยาลัย

รูปที่ 5.5 แสดงแบบจำลองความสัมพันธ์ NDVI-Biomass ที่ได้จากข้อมูลภาพถ่ายดาวเทียมระบบ Hyperion (a) และ ALI (b)

รูปที่ 5.6 แสดงแบบจำลองความสัมพันธ์ SR-Biomass ที่ได้จากข้อมูลภาพถ่ายดาวเทียมระบบ Hyperion (a) และ ALI (b)

จุฬาลงกรณ์มหาวิทยาลัย

รูปที่ 5.7 แสดงแบบจำลองความสัมพันธ์ REP - LAI (a)และ REP - Biomass (b)ที่ได้จากข้อมูลภาพถ่าย ดาวเทียมระบบ Hyperion

จุฬาลงกรณ่มหาวิทยาลัย

ตารางที่ 5.2 แสดงค่าสัมประสิทธิ์การตัดสินใจ(R²)ที่ได้จากแบบจำลองความสัมพันธ์ของค่าดัชนี พืชพรรณกับ ค่าตัวแปรทางชีววิทยา ที่ได้จากภาพถ่ายดาวเทียมระบบ Hyperion (สีเหลืองแสดงค่ามากที่สุดและสีเขียว แสดงค่าน้อยที่สุด)

Near Infrared	Hyperion	Hyperion	Hyperion	Hyperion	Hyperion	Hyperion
-Red band	NDVI-LAI	SR-LAI	NDVI-	SR-	REP-LAI	REP-
relationship			Biomass	Biomass		Biomass
b42-b28	0.2534	0.263	0.1636	0.1662	0.1246	0.0438
b42-b29	0.2615	0.2703	0.161	0.1636		
b42-b30	0.2556	0.2642	0.1581	0.1608		
b42-b31	0.2689	0.2782	0.1594	0.1632		
b42-b32	0.2482	0.257	0.1493	0.1518		
b42-b33	0.2438	0.2529	0.149	0.152		
b43-b28	0.2276	0.2339	0.1426	0.1422		
b43-b29	0.2362	0.242	0.1404	0.1401		
b43-b30	0.231	0.2336	0.1381	0.138		
b43-b31	0.2435	0.25	0.1388	0.14		
b43-b32	0.2125	0.2189	0.1213	0.1213		
b43-b33	0.2181	0.2243	0.1284	0.1289		
b44-b28	0.2179	0.2248	0.1349	0.1346		
b44-b29	0.2259	0.2321	0.1326	0.1324		
b44-b30	0.2213	0.2274	0.1307	0.1307		
b44-b31	0.233	0.24	0.131	0.1323		
b44-b32	0.2125	0.2189	0.1213	0.1213		
b44-b33	0.2088	0.2155	0.1213	0.1218		
b45-b28	0.2169	0.2234	0.132	0.1312		
b45-b29	0.2246	0.2304	0.1295	0.1288		
b45-b30	0.2202	0.2259	0.1278	0.1274		
b45-b31	0.2312	0.2378	0.1277	0.1286		
b45-b32	0.2109	0.2169	0.1182	0.1177		
b45-b33	0.2074	0.2139	0.1184	0.1186		
b49-b28	0.2192	0.2248	0.1313	0.1289		
b49-b29	0.2268	0.2315	0.1288	0.1265		
b49-b30	0.2223	0.227	0.1272	0.1252		
b49-b31	0.234	0.2397	0.1275	0.127		
b49-b32	0.2133	0.2184	0.1177	0.116		
b49-b33	0.2103	0.2158	0.1182	0.117		
b50-b28	0.2134	0.2189	0.1232	0.1214		
b50-b29	0.2213	0.2262	0.121	0.1194		
b50-b30	0.2168	0.2216	0.1195	0.1182		
b50-b31	0.2275	0.2333	0.1193	0.1193		
b50-b32	0.2076	0.2129	0.1102	0.109		
b50-b33	0.2043	0.2098	0.1105	0.1098		

ตารางที่ 5.2(ต่อ)

NearInfrared	Hyperion	Hyperion	Hyperion	Hyperion	Hyperion	Hyperion
-Red band	NDVI-LAI	SR-LAI	NDVI-	SR-	REP-LAI	REP-
relationship			Biomass	Biomass		Biomass
b51-b28	0.2135	0.2178	0.1203	0.1178		
b51-b29	0.2208	0.2244	0.1178	0.1155		
b51-b30	0.2168	0.2203	0.1168	0.1146		
b51-b31	0.2275	0.2321	0.1166	0.1158		
b51-b32	0.2074	0.2115	0.1074	0.1056		
b51-b33	0.2044	0.2087	0.1079	0.1064		
b52-b28	0.2096	0.2141	0.1185	0.1155		
b52-b29	0.2171	0.22 <mark>09</mark>	0.1162	0.1133		
b52-b30	0.2133	0.2171	0.1153	0.1126		
b52-b31	0.224	0.2288	0.115	0.1138		
b52-b32	0.2041	0.2084	0.1059	0.1036		
b52-b33	0.2009	0.2055	0.1063	0.1045		
b53-b28	0.1889	0.1916	0.1024	0.0984		
b53-b29	0.1961	0.198	0.1002	0.0964		
b53-b30	0.1932	0.1953	0.0999	0.0963		
b53-b31	0.2024	0.2054	0.099	0.0969		
b53-b32	0.1833	0.1859	0.0906	0.0874		
b53-b33	0.1807	0.1836	0.0912	0.0884		

ตารางที่ 5.3 แสดงค่าสัมประสิทธิ์การตัดสินใจ(R²)ที่ได้จากแบบจำลองความสัมพันธ์ของค่าดัชนีพืชพรรณกับ ค่าตัวแปรทางชีววิทยา ที่ได้จากภาพถ่ายดาวเทียมระบบ ALI (สีเหลืองแสดงค่ามากที่สุดและสีเขียวแสดงค่า น้อยที่สุด)

คู่ band ของ ภาพถ่าย	NDVI-LAI	SR-LAI	NDVI-Biomass	SR-Biomass
ดาวเทียมระบบALI /ค่า R ²	3		e e e e e e e e e e e e e e e e e e e	
MS-4-MS-3	0.2227	0.2251	0.1302	0.1301
MS-4'-MS-3	0.204	0.205	0.1063	0.1048

ตารางที่ 5.4 แสดงการเปรียบเทียบค่าสัมประสิทธิ์การตัดสินใจ (R²) ที่มากที่สุด ที่ได้จากภาพถ่ายดาวเทียม ระบบ Hyperion กับ ภาพถ่ายดาวเทียมระบบ ALI

ภาพถ่าย	NDVI-LAI	SR-LAI	NDVI-Biomass	SR-Biomass	REP-LAI	REP-Bomass
ดาวเทียม	าลงก	2111	NMJJ.	ทยาล	B	
Hyperion	0.2689	0.2782	0.1636	0.1662	0.1246	0.198
ALI	0.2227	0.2251	0.1302	0.1301	-	-

5.2 การตรวจสอบการเกิดปัญหาจุดอิ่มตัวของสัญญาณด้วยวิธีทดสอบทางสถิติ

จากแผนภาพแสดงการกระจายของข้อมูล ในรูปที่ 5.3 - 5.7 จะเห็นได้ว่าความสัมพันธ์ ของตัวแปร 2 ตัว คือ ค่าดัชนีพืชพรรณที่ได้จากการสำรวจระยะไกลกับตัวแปรทางชีววิทยาของ ป่าชายเลน มีความสัมพันธ์กัน ต่อมาจะทำการทดสอบทางสถิติว่าในแบบจำลองความสัมพันธ์ ทั้ง 10 รูปแบบนั้น เกิดปัญหาจุดอิ่มตัวของสัญญาณหรือไม่ กล่าวคือทดสอบความสัมพันธ์ของ ตัวแปร X และตัวแปร Y ว่าอยู่ในรูปเชิงเส้น ดังสมการ Y = β₀ + β₁ X + e หรือไม่ โดยจะทดสอบค่าสัมประสิทธิ์ความถดถอย (regression coefficient) หรือ β₁ โดยตั้งสมมติฐาน ดังนี้

$$H_0: \beta_1 = 0$$
 หรือ Y = $\beta_0 + \beta_1 X + e$,หรือเกิดปัญหา Saturation

- เมื่อ Y คือ ค่าตัวแปรทางชีววิทยาของป่าชายเลน
 - X คือ ค่าดัช<mark>นีพีชพรรณ</mark>
 - eta_0 คือ ส่วนตัดแกน Y หรือค่าของ Y เมื่อค่า X มีค่าเท่ากับศูนย์
 - eta_1 คือ ค่าสัมประสิทธิ์ความถดถอย
 - e คือ ค่าความคลาดเคลื่อนอย่างสุ่ม

การทดสอบสมมติฐานตามข้างต้นใช้วิธีการวิเคราะห์ความแปรปรวนแบบทางเดียว (1 way -ANOVA) ผลการทดสอบสมมติฐาน ปรากฏว่าแบบจำลองความสัมพันธ์ของ Hyperion ทั้ง 54 คู่ band ในแบบจำลองความสัมพันธ์ NDVI-LAI ,SR-LAI,NDVI-Biomass ,SR –Biomass ได้ค่าsignificance น้อยกว่า 0.05 จึงปฏิเสธสมมติฐาน H₀ หรือยอมรับ H_a แสดงว่า แบบจำลอง ไม่เกิดปัญหาจุดอิ่มตัวของสัญญาณที่ระดับนัยสำคัญ 0.05 และแบบจำลองความสัมพันธ์ของ ALI ทั้ง 2 คู่ band ในแบบจำลองความสัมพันธ์ NDVI-LAI ,SR-LAI ,NDVI-Biomass และ SR-Biomass ได้ค่าsignificance น้อยกว่า 0.05 จึงปฏิเสธสมมติฐาน H₀ หรือ ยอมรับ H_a แสดงว่า ไม่เกิดปัญหาจุดอิ่มตัวของสัญญาณที่ระดับนัยสำคัญ 0.05 เช่นกัน ขณะที่แบบจำลอง REP-LAI และ REP-Biomass ได้ค่า significance มากกว่า 0.05 จึงยอมรับสมมติฐาน H₀ แสดงว่าเกิด ปัญหาจุดอิ่มตัวของสัญญาณในแบบจำลองของค่าดัชนีตำแหน่ง Red Edge ดังแสดงในตารางที่ 5.5

คู่ band	แบบจำลอง	ค่า sig.	แบบจำลอง	ค่า sig.	ภาพถ่ายดาวเทียม
	ความสัมพันธ์		ความสัมพันธ์		ระบบ
b42-b28	NDVI – LAI	0.004	NDVI – Biomass	0.004	Hyperion
b42-b29	NDVI – LAI	0.003	NDVI – Biomass	0.003	Hyperion
b42-b30	NDVI – LAI	0.004	NDVI – Biomass	0.004	Hyperion
b42-b31	NDVI – LAI	0.003	NDVI – Biomass	0.003	Hyperion
b42-b32	NDVI – LAI	0.004	NDVI – Biomass	0.004	Hyperion
b42-b33	NDVI – LAI	0.005	NDVI – Biomass	0.005	Hyperion
b43-b28	NDVI – LAI	0.007	NDVI – Biomass	0.007	Hyperion
b43-b29	NDVI – LAI	0.006	NDVI – Biomass	0.006	Hyperion
b43-b30	NDVI – LAI	0.006	NDVI – Biomass	0.006	Hyperion
b43-b31	NDVI – LAI 🚽	0.005	NDVI – Biomass	0.005	Hyperion
b43-b32	NDVI – LAI	0.007	NDVI – Biomass	0.007	Hyperion
b43-b33	NDVI – LAI	0.008	NDVI – Biomass	0.008	Hyperion
b44-b28	NDVI – LAI	0.008	NDVI – Biomass	0.008	Hyperion
b44-b29	NDVI – LAI	0.007	NDVI – Biomass	0.007	Hyperion
b44-b30	NDVI – LAI	0.008	NDVI – Biomass	0.008	Hyperion
b44-b31		0.006	NDVI – Biomass	0.006	Hyperion
b44-b32		0.009	NDVI – Biomass	0.009	Hyperion
b44-b33		0.01	NDVI – Biomass	0.007	Hyperion
b45-b28		0.008	NDVI – Biomass	0.008	Hyperion
b45-b20		0.007	NDVI – Biomass	0.000	Hyperion
b45-b30		0.007	NDVI – Biomass	0.007	Hyperion
b45-b30		0.006	NDVI – Biomass	0.006	Hyperion
b45-b37		0.000	NDVI – Biomass	0.000	Hyperion
b45-b32		0.007	NDVI - Biomass	0.007	Hyperion
b40-b00		0.01	NDVI - Biomass	0.01	Hyperion
b47-b20		0.000	NDVI - Biomass	0.000	Hyperion
D47-D27		0.007	NDVI Biomass	0.007	Hyperion
b47-030		0.007	NDVI Biomass	0.007	Hyperion
b47-001		0.008	NDVI Biomass	0.000	Hyperion
047-032 h 10 h 22		0.007	NDVI Biomass	0.007	Hyperion
D47-D33		0.009	NDVI – BIOMUSS	0.009	Пурепоп
D50-D28		0.008	NDVI – BIOMASS	0.008	Hyperion
D50-D29		0.008	NDVI – BIOMASS	0.008	Hyperion
D50-D30		0.008		0.008	Hyperion
D50-D31		0.007	NDVI – BIOMASS	0.007	Hyperion
D50-D32		0.01	NDVI – BIOMASS	0.01	Hyperion
D50-D33		0.008	NDVI – Biomass	0.008	Hyperion
b51-b28	NDVI – LAI	0.009	NDVI – BIOMASS	0.009	Hyperion
b51-b29	NDVI – LAI	0.008	NDVI – Biomass	0.008	Hyperion
651-630	NDVI – LAI	800.0	NDVI – Biomass	800.0	Hyperion
b51-b31	NDVI – LAI	0.007	NDVI – Biomass	0.007	Hyperion
b51-b32	NDVI – LAI	0.01	NDVI – Biomass	0.01	Hyperion
b51-b33	NDVI – LAI	0.011	NDVI – Biomass	0.011	Hyperion
b52-b28	NDVI – LAI	0.01	NDVI – Biomass	0.01	Hyperion
b52-b29	NDVI – LAI	0.008	NDVI – Biomass	0.008	Hyperion
b52-b30	NDVI – LAI	0.009	NDVI – Biomass	0.009	Hyperion
b52-b31	NDVI – LAI	0.007	NDVI – Biomass	0.007	Hyperion
b52-b32	NDVI – LAI	0.011	NDVI – Biomass	0.011	Hyperion

ตารางที่ 5.5 แสดงค่า significance ที่ได้จากการทดสอบค่าสัมประสิทธิ์ความถดถอย β₁ ของแบบจำลอง ค่าดัชนีพืชพรรณกับค่าตัวแปรทางชีววิทยาที่ได้จากข้อมูลภาพถ่ายดาวเทียมระบบ Hyperion และ ALI

ตารางที่ 5.5 (ต่อ)

Band	แบบจำลอง	ค่า sig.	แบบจำลอง	ค่า sig.	ภาพถ่ายดาวเทียม
	ความสัมพันธ์		ความสัมพันธ์		ระบบ
b52-b33	NDVI – LAI	0.011	NDVI – Biomass	0.011	Hyperion
b53-b28	NDVI – LAI	0.015	NDVI – Biomass	0.015	Hyperion
b53-b29	NDVI – LAI	0.013	NDVI – Biomass	0.013	Hyperion
b53-b30	NDVI – LAI	0.013	NDVI – Biomass	0.013	Hyperion
b53-b31	NDVI – LAI	0.011	NDVI – Biomass	0.011	Hyperion
b53-b32	NDVI – LAI	0.016	NDVI – Biomass	0.016	Hyperion
b53-b33	NDVI – LAI	0.017	NDVI – Biomass	0.017	Hyperion
b42-b28	SR – LAI	0.003	SR – Biomass	0.003	Hyperion
b42-b29	SR – LAI	0.03	SR – Biomass	0.03	Hyperion
b42-b30	SR – LAI	0.003	SR – Biomass	0.003	Hyperion
b42-b31	SR – LAI	0.002	SR – Biomass	0.002	Hyperion
b42-b32	SR – LAI	0.004	SR – Biomass	0.004	Hyperion
b42-b33	SR – LAI	0.005	SR – Biomass	0.005	Hyperion
b43-b28	SR – LAI	0.006	SR – Biomass	0.006	Hyperion
b43-b29	SR – LAI	0.005	SR – Biomass	0.005	Hyperion
b43-b30	SR – LAI	0.006	SR – Biomass	0.006	Hyperion
b43-b31	SR – LAI	0.004	SR – Biomass	0.004	Hyperion
b43-b32	SR – LAL	0.007	SR – Biomass	0.007	Hyperion
b43-b33	SR – LAI	0.007	SR – Biomass	0.007	Hyperion
b44-b28	SR – LAI	0.007	SR – Biomass	0.007	Hyperion
b44-b29	SR LAI	0.006	SR – Biomass	0.006	Hyperion
b44-b30	SR LAI	0.000	SR – Biomass	0.000	Hyperion
b44-b31	SR LAI	0.007	SR – Biomass	0.007	Hyperion
b44_b32		0.008	SR – Biomass	0.000	Hyperion
b44_b32		0.000	SR – Biomass	0.000	Hyperion
b44-000		0.007	SR – Biomass	0.007	Hyperion
b45-b20		0.007	SR – Biomass	0.007	Hyperion
b45-b27		0.000	SR – Biomass	0.000	Hyperion
b45 b31		0.007	SR – Biomass	0.007	Hyperion
b45-b37		0.000	SR – Biomass	0.000	Hyperion
b45-b32		0.000	SR – Biomass	0.000	Hyperion
b49-b33		0.007	SR – Biomass	0.007	Hyperion
b47-020		0.007	SR - Biomass	0.007	Hyperion
b47-027		0.000	SR – Biomass	0.000	Hyperion
b47-030		0.007	SR – Biomass	0.007	Hyperion
b47-031		0.000	SR – Biomass	0.000	Hyperion
b47-032	SR - LAI	0.008	SR Biomass	0.000	Hyperion
b47-b33		0.008	SR - Diomass	0.000	Hyperion
DJU-D20		0.000	SR - BIOMUSS	0.000	Hyperion
DJU-DZ7		0.007	SR - BIOMUSS	0.007	Hyperion
D30-D30		0.008	SR - Diomass	0.000	Hyperion
D30-D31		0.008	SR - Diomass	0.000	Hyperion
D50-D52		0.008	SR - DIOITIUSS	0.000	Hyperion
NON-DOQ	SK - LAI	0.01	SR - DIUMUSS	0.01	Hyperion
D21-D28	SK – LAI	0.000		0.008	Hyperion
DOI-D29	SK – LAI	0.007	SR - DIOITIOSS	0.00/	Hyperion
D21-D30	SK – LAI	0.008	SR - DIOITIOSS	0.008	Hyperion
D21-D31	SK – LAI	0.006	SK - BIOMOSS	0.006	Hyperion
D51-D32	אר – דען	0.009	2k – riomass	0.009	нурегіоп

ام		
ตารางที	5.5	(ต่อ)

Band	แบบจำลอง	ค่ำ sig.	แบบจำลอง	ค่ำ sig.	ภาพถ่ายดาวเทียม
	ความสัมพันธ์		ความสัมพันธ์		ระบบ
b51-b33	SR – LAI	0.01	SR – Biomass	0.01	Hyperion
b52-b28	SR – LAI	0.009	SR – Biomass	0.009	Hyperion
b52-b29	SR - LAI	0.008	SR - Biomass	0.008	Hyperion
b52-b30	SR - LAI	0.008	SR - Biomass	0.008	Hyperion
b52-b31	SR - LAI	0.006	SR - Biomass	0.006	Hyperion
b52-b32	SR - LAI	0.01	SR - Biomass	0.01	Hyperion
b52-b33	SR - LAI	0.01	SR - Biomass	0.01	Hyperion
b53-b28	SR - LAI	0.014	SR - Biomass	0.014	Hyperion
b53-b29	SR - LAI	0.012	SR - Biomass	0.012	Hyperion
b53-b30	SR - LAI	0.013	SR - Biomass	0.013	Hyperion
b53-b31	SR - LAI	0.01	SR - Biomass	0.01	Hyperion
b53-b32	SR - LAI	0.015	SR - Biomass	0.015	Hyperion
b53-b33	SR - LAI 👘	0.016	SR - Biomass	0.016	Hyperion
REP	REP - LAI 🥖	0.051*	REP - Biomass	0.051*	Hyperion
b4-b5	NDVI - LAI	0.007	NDVI - Biomass	0.007	ALI
b4-b6	NDVI - L <mark>A</mark> I	0.011	NDVI - Biomass	0.011	ALI
b4-b5	SR - LAI	0.007	SR - Biomass	0.007	ALI
b4-b6	SR - LAI	0.011	SR - Biomass	0.011	ALI

* ค่า sig. มากกว่า 0.05 จะยอมรับ สมมติฐาน H0 ที่ระดับนัยสำคัญ 0.05

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

บทที่ 6 อภิปรายผล สรุปผลการศึกษา และข้อเสนอแนะ

6.1 อภิปรายผล

จากผลการทดลองที่ได้แสดงในรูปที่ 5.3, 5.4, 5.5, 5.6 และ 5.7 จะเห็นว่าค่าดัชนี พืชพรรณที่ได้จากข้อมูลภาพถ่ายดาวเทียมระบบ Hyperion และ ALI กับค่าตัวแปรทางชีววิทยา ของป่าชายเลนในบริเวณพื้นที่ศึกษาแหลมตะลุมพุก อำเภอปากพนัง จังหวัดนครศรีธรรมราช ในการศึกษาครั้งนี้ได้ค่าสัมประสิทธิ์การตัดสินใจ(R²)ค่อนข้างต่ำ เนื่องจากข้อจำกัดทางด้านเวลา และงบประมาณในการเก็บข้อ<mark>มูลภาคสนามทำให้ได้ข้อมูล</mark>แปลงตัวอย่างที่วิเคราะห์แล้วสามารถ น้ำมาใช้ศึกษาหาความสัมพันธ์กับค่าตัวแปรทางชีววิทยาของป่าชายเลนได้จำนวน 31 แปลง ซึ่งผู้วิจัยเชื่อว่าค่าสัมประสิทธิ์การตัดสินใจที่ได้ค่อนข้างต่ำนี้ มีสาเหตุมาจากข้อมูลแปลงตัวอย่าง ้ที่นำมาใช้ในการวิเคราะห์มีจำนวนน้อยไป หากมีเวลาเก็บข้อมูลแปลงตัวอย่างได้มากกว่านี้ ้จำนวนข้อมูลแปลงตัวอย่า<mark>งที่เพิ่มขึ้นน่าจะทำให้ค่าสัมประ</mark>สิทธิ์การตัดสินใจระหว่างค่าดัชนี พืชพรรณกับค่าตัวแปรทางชีววิทยาที่ได้มีค่าสูงขึ้นตามจำนวนแปลงตัวอย่างที่เพิ่มขึ้นไปด้วย ้อย่างไรก็ตามถึงแม้ว่าแบบจำลองความสัมพันธ์เชิงเส้นระหว่างค่าดัชนีพืชพรรณกับค่าตัวแปรทาง ชีววิทยาในการศึกษานี้จะได้ค่าสัมประสิทธิ์การตัดสินใจค่อนข้างต่ำ แต่มิได้หมายความว่า แบบจำลองความสัมพันธ์เชิงเส้นจะเกิดความผิดพลาดหรือไม่เหมาะสมต่อการใช้งานแต่อย่างใด เนื่องจากผู้วิจัยเห็นว่าแบบจำลองความสัมพันธ์เชิงเส้นมีความเหมาะสมในการใช้รายงาน ความสัมพันธ์ที่เกิดขึ้นระหว่างค่าดัชนีพืชพรรณจากการสำรวจระยะไกลกับค่าตัวแปรทางชีววิทยา ้ของพื้นที่ศึกษาให้นักวิจัยท่านอื่นได้ทราบ เพราะแบบจำลองความสัมพันธ์เชิงเส้นเป็นแบบจำลอง ที่นักวิทยาศาสตร์นิยมใช้กันอย่างกว้างขวางในการศึกษาหาความสัมพันธ์ระหว่างค่าดัชนี พืชพรรณกับค่าตัวแปรทางชีววิทยา เมื่อนำค่าดัชนีพืชพรรณกับค่าตัวแปรทางชีววิทยาที่ได้ ในแต่ละคู่ band (ในช่วงคลื่นสีแดงกับช่วงอินฟาเรดใกล้) มาทดสอบด้วยวิธีการทางสถิติ โดยมี สมมติฐานว่าถ้าหากความสัมพันธ์ของค่าดัชนีพืชพรรณกับค่าตัวแปรทางชีววิทยาเกิดปัญหา จุดอิ่มตัวของสัญญาณ ผลการทดสอบที่ได้จะยอมรับสมมติฐาน H₀ : β₁ = 0 หรือกล่าวได้ว่า ้ไม่สามารถเอาชนะปัญหาจุดอิ่มตัวของสัญญาณได้ แต่ถ้าไม่เกิดปัญหาจุดอิ่มตัวของสัญญาณ ในความสัมพันธ์ของข้อมูล ผลการทดสอบที่ได้จะปฏิเสธสมมติฐาน H $_{_0}$: $eta_{_1}$ = 0 หรือยอมรับ ้สมมติฐาน H $_{_1}:eta_1
eq 0$ หรือกล่าวได้ว่าสามารถเอาชนะปัญหาจุดอิ่มตัวของสัญญาณได้ เมื่อ eta_1 ้คือค่าสัมประสิทธิ์ความถดถอย (regression coefficient) ในสมการวิเคราะห์ความถดถอย เชิงเส้นอย่างง่าย Y = β₀ + β₁ X ผลการทดสอบทางสถิติปรากฏว่าค่าดัชนีพืชพรรณผลต่าง แบบนอร์แมลไลซ์และค่าดัชนีสัดส่วนธรรมดาที่ได้จากข้อมูลไฮเปอร์สเปกตรัลจากภาพถ่าย

ดาวเทียมระบบ Hyperion และข้อมูลมัลติสเปกตรัลจากภาพถ่ายดาวเทียมระบบ ALI ที่ได้จาก ดาวเทียมดวงเดียวกันทำการบันทึกสัญญาณในเวลาและสถานที่เดียวกันนั้น พบว่าไม่เกิด ปัญหาจุดอิ่มตัวของสัญญาณหรือกล่าวได้ว่าสามารถเอาชนะปัญหาจุดอิ่มตัวของสัญญาณได้ทั้งคู่ ขณะที่ค่าดัชนีตำแหน่ง Red Edge พบว่าเกิดปัญหาจุดอิ่มตัวของสัญญาณหรือไม่สามารถ เอาชนะปัญหาจุดอิ่มตัวของสัญญาณได้ที่ระดับนัยสำคัญ 0.05

้ด้วยแรงบันดาลใจจากงานวิจัยของ Mutanga และ Skidmore (2004) ที่ได้ทดลอง น้ำข้อมูลไฮเปอร์สเปกตรัลมาใช้ศึกษาการแก้ปัญหาการเกิดจุดอิ่มตัวของสัญญาณโดยทดลองกับ หญ้าแอฟริกาที่มีเรือนยอดปกคลุมหนาแน่นที่ปลูกในเรือนกระจก เพื่อทดสอบว่าข้อมูลไฮเปอร์ ้สเปกตรัลนั้นสามารถเอาชนะปัญหาจุดอิ่มตัวของสัญญาณได้ ผู้วิจัยจึงได้ทดลองศึกษาปัญหา จุดอิ่มตัวของสัญญาณเช่น<mark>เดียวกันนี้ ใ</mark>ดยเลือก<mark>พื้นที่ศึกษา</mark>ป่าชายเลนบริเวณแหลมตะลุมพุก อำเภอปากพนัง จังหวัดนครศรีธรรมราช ที่มีพันธุ์ไม้ป่าชายเลนหลายชนิดขึ้นปกคลุมอยู่หนาแน่น โดยทำการเลือกใช้ค่าดัชนีพืชพรรณที่นิยมใช้กันทั่วไปคือ ค่าดัชนีพืชพรรณผลต่าง แบบนอร์แมลไลซ์, ค่าดัชนี่สัดส่วนธรรมดา และค่าดัชนีตำแหน่ง Red Edge จากข้อมูลภาพถ่าย ดาวเทียมระบบ Hyperion และ ALI เมื่อน้ำค่าความส้มพันธ์ของค่าดัชนีพืชพรรณผลต่าง แบบนอร์แมลไลซ์กับค่ามวล<mark>ชีวภาพมาทำการพล็อตกราฟ</mark> พบว่าค่าความสัมพันธ์ที่มากที่สุด ของข้อมูลภาพถ่ายดาวเทียมระ<mark>บ</mark>บ Hyperion จะได้จากคู่ band ในช่วงคลื่นสีแดง(620 - 700 nm) ้กับช่วงคลื่นอินฟาเรดใกล้(740 – 7<mark>90 nm) ดังแสดงใน</mark>รูปที่ 6.1(a) และความสัมพันธ์ที่มากที่สุด ของข้อมูลภาพถ่ายดาวเทียมระบบ ALI จะได้จากคู่ band ในช่วงคลื่นสีแดง(630 - 690 nm) กับช่วงคลื่นอินฟาเรดใกล้(775 - 805 nm) ดังแสดงในรูปที่ 6.1(b) จะเห็นว่าทั้งภาพถ่ายดาวเทียม ระบบ Hyperion และ ALI ค่าความสัมพันธ์ที่มากที่สุดจะได้จากคู่ band ในช่วงคลื่นสีแดง กับช่วงคลื่นอินฟาเรดใกล้ ขณะที่ผลการวิจัยของ Mutanga และ Skidmore(2004) พบว่า ค่าความสัมพันธ์ที่มากที่สุดของค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์กับค่ามวลชีวภาพ จะได้จากคู่ band ในช่วง red edge คลื่นสั้น (700 - 750 nm)กับช่วง red edge คลื่นยาว (750 – 800 nm) หรือได้จากคู่ band ในช่วงคลื่นอินฟาเรดใกล้กับช่วงคลื่นอินฟาเรดใกล้ ดังแสดง ในรูปที่ 6.1(c)

รูปที่ 6.1 แสดงค่าสัมประสิทธิ์การตัดสินใจ (R²)ของความสัมพันธ์ระหว่างค่ามวลชีวภาพกับค่าดัชนีพืชพรรณ ผลต่างแบบนอร์แมลไลซ์ที่ได้จากคู่ band ในช่วงคลื่น 630 – 880 nm ของข้อมูลภาพถ่ายดาวเทียมระบบ Hyperion (a) และ ALI (b) (พื้นที่สีน้ำตาลแดงได้ค่า R² มากที่สุดอยู่ในช่วงคลื่นสีแดงกับช่วงคลื่นอินฟาเรดใกล้) และช่วงคลื่น 360-2200 nm จากข้อมูลไฮเปอร์สเปกตรัลในการวิจัยของ Mutanga และ Skidmore (2004) (c) (พื้นที่สีแดงได้ค่า R² มากที่สุดอยู่ในช่วงคลื่นอินฟาเรดใกล้กับช่วงคลื่นอินฟาเรดใกล้)

โดยคู่ band ในช่วง red edge ที่ได้จากข้อมูลไฮเปอร์สเปกตรัลดังกล่าวให้ค่าความสัมพันธ์ที่ มากกว่าอย่างชัดเจนเมื่อเปรียบเทียบกับค่าความสัมพันธ์ที่ได้จากคู่ band ในช่วงคลื่นสีแดงกับ ช่วงคลื่นอินฟาเรดใกล้ที่ใช้ในการคำนวณค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์ ตามปกติดังแสดงในรูปที่ 6.2 ขณะที่ค่าความสัมพันธ์ที่ได้จากคู่ band ในช่วงคลื่นสีแดง กับคลื่นอินฟาเรดใกล้ที่ได้จากข้อมูลไฮเปอร์สเปกตรัลและข้อมูลมัลติสเปกตรัลในการศึกษานี้ ได้ผลไม่แตกต่างกัน ดังได้แสดงในรูปที่ 5.3 – 5.6

รูปที่ 6.2 แสดงความสัมพันธ์ของค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์ (NDVI) กับค่ามวลชีวภาพ (Biomass) ที่ได้จากคู่ band ในช่วง Red Edge (a) และที่ได้จากคู่ band ในช่วงคลื่นสีแดงกับช่วงคลื่น อินฟาเรดใกล้ (b) จากการวิจัยของ Mutanga และ Skidmore(2004)

.47

เมื่อทำการเปรียบเทียบค่าความสัมพันธ์ของค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์กับ ค่าดัชนีพื้นที่ผิวใบที่ได้จากการศึกษานี้กับงานวิจัยของ Green และคณะ (1997) ที่ทดลองใช้ ภาพถ่ายดาวเทียมระบบ SPOT ในพื้นที่ศึกษาป่าชายเลนที่หมู่เกาะ Turk and Caicos ประเทศ British West Indies. และงานวิจัยของ Kovac และคณะ(2004) ที่ได้ทดลองใช้ภาพถ่าย ดาวเทียมระบบ IKONOS ในพื้นที่ศึกษาป่าชายเลนเสื่อมโทรมที่ประเทศเม็กซิโก พบว่าผลการวิจัย ของทั้งสองคณะได้ค่าความสัมพันธ์ค่อนข้างมาก (Green ได้ R² = 0.74 และKovac ได้ R² = 0.71) ในขณะที่ผลการทดลองครั้งนี้ได้ค่าความสัมพันธ์ค่อนข้างต่ำ(ภาพ Hyperion ได้ R² = 0.2689 และ ALI ได้ R² = 0.2227) น่าจะมีสาเหตุมาจากความหลากหลายของชนิดพันธุ์ไม้ และความหนาแน่นของพันธุ์ไม้ที่ขึ้นอยู่ในแปลงตัวอย่าง ดังแสดงในรูปที่ 6.3

รูปที่ 6.3 แสดงค่าความสัมพันธ์ของค่าดัชนีพื้นที่ผิวใบ(LAI) กับค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์ (NDVI) ที่ได้จากภาพถ่ายดาวเทียมระบบ Hyperion (a), ALI (b) ในพื้นที่ศึกษาป่าชายเลนแหลมตะลุมพุก, IKONOS (c) จากงานวิจัยของ Kovac และคณะ (2004) ในป่าชายเลนเสื่อมโทรมประเทศเม็กซิโก และ SPOT (d) จากงานวิจัยของ Green และคณะ (1997) ในป่าชายเลน บริเวณหมู่เกาะ Turk and Caicos

หากเปรียบเทียบเฉพาะค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์ที่ได้จากภาพถ่าย

ดาวเทียมทั้ง 4 ชนิดดังกล่าวแล้ว จะเห็นว่ามีความสัมพันธ์ในเชิงบวกกับค่าดัชนีพื้นที่ผิวใบ ของป่าชายเลน โดยค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์ที่ได้จากพื้นที่ศึกษาป่าชายเลน แหลมตะลุมพุก มีค่าเริ่มต้นที่สูงกว่าป่าชายเลนในพื้นที่ศึกษาของ Green และคณะ (1997) และ ป่าชายเลนในพื้นที่ศึกษาของ Kovac และคณะ (2004) (ภาพถ่ายดาวเทียมระบบ Hyperion มีค่าระหว่าง 0.3-0.6 , ALI มีค่าระหว่าง 0.5-0.7 , SPOT มีค่าระหว่าง 0 – 0.45 และ IKONOS มีค่าระหว่าง 0.2-0.7) ทั้งนี้ค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์ จากแปลงตัวอย่างของ Green และคณะ (1997) และแปลงตัวอย่างของ Kovac และคณะ (2004) จะแปรผันตาม ้ค่าดัชนีพื้นที่ผิวใบในแปลงตัวอย่าง กล่าวคือแปลงใดที่มีค่าดัชนีพื้นที่ผิวใบน้อยก็จะมีค่าดัชนี พืชพรรณผลต่างแบบนอร์แ<mark>มลไลซ์น้อยด้</mark>วย และแ<mark>ปลงใดที่มีค่าดัชนีพื้นที่ผิวใบมาก ก็จะมีค่าดัชนี</mark> พืชพรรณผลต่างแบบนคร์แมลไลซ์มากตามไปด้วย ขณะที่การศึกษานี้จะได้ค่าดัชนีพืชพรรณ ผลต่างแบบนอร์แมลไลซ์ที่มีค่าค่อนข้างมากทุกแปลง (ตั้งแต่ 0.3 ขึ้นไป) เนื่องจาก ้มีความหนาแน่นของพันธุ์ไม้ที่ขึ้นปกคลุมอยู่ค่อนข้างหนาแน่น<mark>เก</mark>ือบทุกแปลง แต่ผู้วิจัยมีข้อสังเกต ้ว่าจากข้อมูลภาคสนามนั้<mark>น ในแปลงตัวอย่างแต่ละแปลงจะ</mark>มีพันธุ์ไม้เด่นที่ขึ้นอยู่ไม่เหมือนกัน แต่ยังได้ค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์ที่มากอยู่ จึงอาจสันนิษฐานได้ว่าพันธุ์ไม้เด่นใน ้ป่าชายเลนแต่ละชนิดนั้นให้ค่า<mark>สะท้อนสัญญาณที่ไม่แตกต่</mark>างกันหรือความแตกต่างด้านชนิดพันธุ์ ของไม้ในป่าชายเลนไม่มีอิทธิพ<mark>ลต่อการได้ค่าสะ</mark>ท้อนสัญญาณที่แตกต่างกัน ซึ่งจะต้อง ทำการศึกษาวิจัยเพื่อพิสูจน์ข้อสันนิษฐานนี้ต่อไป

ค่าตัวแปรทางชีววิทยาที่ได้จากการศึกษานี้ ไม่สามารถนำไปอ้างอิงเป็นค่าตัวแปรทาง ชีววิทยาของพื้นที่ศึกษาป่าชายเลนอ่าวปากพนังได้ เนื่องจากค่าดัชนีพื้นที่ผิวใบที่ได้คำนวณโดยใช้ แบบจำลองรูปวงกลมของเรือนยอดของต้นไม้ โดยไม่ได้ทำการวัดพื้นที่ผิวใบไม้ทั้งหมดในแปลง ตัวอย่าง และการวัดค่ามวลชีวภาพก็ใช้วิธีการทางอ้อมโดยใช้สมการความสัมพันธ์ระหว่างขนาด ความโตและความสูงของต้นไม้ โดยไม่ได้ทำการตัดต้นไม้ในแปลงตัวอย่างมาทำการชั่งหาน้ำหนัก แห้งหรือน้ำหนักสด ทั้งนี้ผู้วิจัยไม่ประสงค์จะตัดต้นไม้ออกจากพื้นที่ศึกษาเพื่อทำการวัดหา ค่าตัวแปรทางชีววิทยาดังกล่าว อย่างไรก็ตามข้อมูลที่ได้จากวิธีการทางอ้อมนี้ไม่กระทบต่อ ค่าแนวโน้มความสัมพันธ์ระหว่างค่าดัชนีพืชพรรณกับค่าตัวแปรทางชีววิทยาที่ผู้วิจัยต้องการ นำมาใช้พิจารณาเพื่อศึกษาการแก้ปัญหาการเกิดจุดอิ่มตัวของสัญญาณแต่อย่างใด ดังนั้น หากต้องการจะใช้ข้อมูลค่ามวลชีวภาพและค่าดัชนีพื้นที่ผิวใบของพื้นที่ศึกษา ควรทำการเก็บ ข้อมูลภาคสนามด้วยตนเองอีกครั้งหรือติดต่อขอข้อมูลจากหน่วยงานที่รับผิดชอบโดยตรง

ในการศึกษาความสัมพันธ์ของค่าดัชนีพืชพรรณที่ได้จากข้อมูลการสำรวจระยะไกลกับ ข้อมูลค่าตัวแปรทางชีววิทยาของป่าชายเลน ผู้วิจัยเลือกใช้การวิเคราะห์ความถดถอยเชิงเส้น อย่างง่าย เนื่องจากเป็นที่นิยมใช้กันโดยทั่วไปและมีความเหมาะสมกับข้อมูลที่ได้จากการศึกษา เพื่อใช้ศึกษาปัญหาจุดอิ่มตัวของสัญญาณให้บรรลุตามวัตถุประสงค์ของการวิจัย ทั้งนี้การศึกษา ความสัมพันธ์ของข้อมูลที่ได้จากการสำรวจระยะไกลกับข้อมูลตัวแปรทางชีววิทยาของป่าชายเลน ดังกล่าวนั้นไม่ได้จำกัดว่าจะต้องใช้วิธีการวิเคราะห์ความถดถอยเชิงเส้นอย่างง่ายมาทำการศึกษา ได้เพียงอย่างเดียวเท่านั้น สามารถเลือกวิธีการวิเคราะห์ข้อมูลด้วยวิธีการทางสถิติอื่นๆได้ตาม ความสนใจและเหมาะสมกับข้อมูล

ในอนาคตผู้วิจัยหวังว<mark>่าจะมีโอกา</mark>สได้ทำก<mark>ารศึกษาอีก</mark>ครั้งเพื่อยืนยันผลการศึกษาในครั้งนี้ และจะทำการพัฒนาดัชนีพืชพรรณตัวใหม่ที่มีความเหมาะสมสำหรับป่าชายเลนในเมืองไทย โดยเฉพาะ เปรียบเทียบผลที่ได้กับค่าดัชนีพืชพรรณที่มีอยู่แล้ว เช่น ค่าดัชนีพืชพรรณผลต่าง แบบนอร์แมลไลซ์, ค่าดัชนีสัดส่วนธรรมดา และค่าดัชนีตำแหน่ง red edge โดยจะทำการวาง แปลงตัวอย่างศึกษาสังคมพืชป่าชายเลนทั้งฝั่งอ่าวไทยและฝั่งอันดามัน และเพิ่มแปลงตัวอย่างให้ ้มีจำนวนมากขึ้น ทำการเก็บข้อมูลภาคสนามในทุกฤดูกาลทั้งฤดูร้อน ฤดูฝน และฤดูแล้ง เพื่อทำการติดตามความเปลี่ยนแปลงที่เกิดขึ้นทางชีววิทยาของป่าชายเลนในรอบปี พร้อมกับ เลือกใช้ข้อมูลภาพถ่ายดาวเทียมจาก<mark>ดาวเทียมหลาย</mark>ดว<mark>ง เช่น</mark> THEOS, Hyperion, ALI, IKONOS และ SPOT เพื่อค้นหาว่าการติด<mark>ตามความเปลี่ยนแ</mark>ปลงทางชีววิทยาที่เกิดขึ้นในฤดูกาลต่างๆ ในป่าชายเลนจากดาวเทียมแต่ละดวงเหมือนหรือแตกต่างกันอย่างไร และป่าชายเลนฝั่งอ่าวไทย กับป่าชายเลนฝั่งอันดามันเมื่อสำรวจจากระยะไกลแล้วข้อมูลที่ได้มีความเหมือนหรือแตกต่างกัน เนื่องจากผู้วิจัยเห็นว่าข้อมูลการสำรวจจากระยะใกลด้วยเทคนิคต่างๆนี้มีความสำคัญ ต่อวงการศึกษาทางนิเวศวิทยาของสังคมพืชป่าชายเลนเป็นอย่างมาก อันจะเป็นประโยชน์ ต่อนักวิชาการ นักวิทยาศาสตร์ และหน่วยงานที่มีหน้าที่บริหารจัดการทรัพยากรป่าชายเลน สามารถนำความรู้ที่ได้ไปใช้ในการศึกษาวิจัยหรือการจัดการทรัพยากรป่าชายเลนได้อย่างมี ประสิทธิภาพต่อไปในอนาคต

6.2 สรุปผลการศึกษา

สรุป การศึกษาครั้งนี้มีจุดมุ่งหมายที่จะศึกษาศักยภาพของข้อมูลไฮเปอร์สเปกตรัลจาก ภาพถ่ายดาวเทียมระบบ Hyperion ในการแก้ปัญหาการเกิดจุดอิ่มตัวของสัญญาณที่มักจะเกิดขึ้น ในความสัมพันธ์ระหว่างค่าดัชนีพืชพรรณกับค่าตัวแปรทางชีววิทยา โดยเปรียบเทียบกับผลที่ได้ ้จากการใช้ข้อมูลมัลติสเปกตรัลจากภาพถ่ายดาวเทียมระบบ ALI ที่บันทึกภาพในเวลาและสถานที่ เดียวกัน โดยทดลองใช้ค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์, ค่าดัชนีสัดส่วนธรรมดา และค่าดัชนีตำแหน่ง red_edge_ที่นิยมใช้กันทั่วไปกับค่าดัชนีพื้นที่ผิวใบและค่ามวลชีวภาพจาก พื้นที่ศึกษาป่าชายเลนที่มีพันธุ์ไม้ขึ้<mark>นปกคลุมอยู่หนาแน่น</mark> บริเวณแหลมตะลุมพุก อำเภอปากพนัง ้จังหวัดนครศรีธรรมราช ผลการศึกษาพบว่าการใช้ค่าดัชนีพืชพรรณผลต่างแบบนอร์แมลไลซ์และ ค่าดัชนีสัดส่วนธรรมดาที่ไ<mark>ด้จากข้อมูลไฮ</mark>เปอร์ส<mark>เปกตรัลจากภา</mark>พถ่ายดาวเทียมระบบ Hyperion มาหาความสัมพันธ์กับค่าดัชนีพื้นที่ผิวใบและค่ามวลชีวภาพของป่าชายเลนนั้น จะมีความสัมพันธ์ ้กันแบบเชิงเส้นและไม่พบปัญหาจุดอิ่มตัวของสัญญาณหรือสามารถเอาชนะปัญหาจุดอิ่มตัวของ ้สัญญาณในป่าชายเลนได้ และยังพบว่าการใช้ข้อมูลมัลติสเปกตรัลจากภาพถ่ายดาวเทียมระบบ ALI ก็สามารถเอาชนะปัญหาจุดอิ่มตัวของสัญญาณในป่าชายเลนได้เช่นเดียวกัน ขณะที่ค่าดัชนี ์ ตำแหน่ง Red Edge ที่ได้จากข้อมูลภาพถ่ายดาวเทียมระบบ Hyperion นั้น ไม่สามารถเอาชนะ ้ปัญหาจุดอิ่มตัวของสัญญาณได้ จากผลการศึกษาจะเห็นได้ว่าข้อมูลมัลติสเปกตรัลนั้นสามารถ ้นำมาใช้ในการศึกษาตัวแปรทางช<mark>ีววิทยาของสังคม</mark>พืชป่าชายเลนได้ผลดีเช่นเดียวกับข้อมูล ้ไฮเปอร์สเปกตรัล แต่ข้อมูลมัลติสเปกตรัลนั้นมีราคาถูกกว่าข้อมูลไฮเปอร์สเปกตรัลเป็นอย่างมาก ผลการศึกษาที่ได้นี้จึงเป็นประโยชน์ต่อนักวิจัยและหน่วยงานที่มีหน้าที่เกี่ยวข้องกับการจัดการ ทรัพยากรป่าชายเลนสำห<mark>ร</mark>ับใช้ในการวางแผนและตัดสินใจเลือกใช้ข้อมูลให้เหมาะสมกับงานและ งบประมาณที่ได้รับต่อไป

จุฬาลงกรณ์มหาวิทยาลัย

6.3 ข้อเสนอแนะ

ในการศึกษาครั้งนี้ ได้ค่าความสัมพันธ์ระหว่างข้อมูลภาพถ่ายดาวเทียมไฮเปอร์สเปกตรัล และข้อมูลภาพถ่ายดาวเทียมมัลติสเปกตรัลกับค่ามวลชีวภาพของป่าชายเลนมีค่าต่ำ อาจเป็นเพราะในการศึกษานี้ มีขอบเขตการศึกษาปัญหาการเกิดจุดอิ่มตัวของสัญญาณ ของข้อมูลเป็นหลัก จึงกำหนดให้ค่าคงที่ a และ b มีค่าเท่ากับ 1 เป็นผลให้ค่ามวลชีวภาพ ที่คำนวณได้อาจจะไม่ถูกต้องนักและไม่ใช่ค่าที่แท้จริง แต่ไม่มีผลกับแนวโน้มรูปแบบ การเกิดปัญหาจุดอิ่มตัวของสัญญาณ<mark>ตามที่ได้เค</mark>ยกล่าวไว้แล้วในตอนต้น ดังนั้นหากต้องการ ้ค่ามวลชีวภาพที่ถูกต้องมากขึ้น <mark>มีข้อเสนอแนะว่าหากล</mark>องนำค่าคงที่ a และ b ที่เป็นตัวเลข มีจุดทศนิยมในสมการ Biomass = a + (DBH² H) ^b ที่มีผู้ศึกษาไว้แล้วสำหรับใช้คำนวณ ้ค่ามวลชีวภาพของต้นโ<mark>กงกางใบเล็ก, โกงกางใบใหญ่, แ</mark>สมขาว, แสมดำ และชนิดอื่นๆ ในป่าชายเลนฝั่งอ่าวไทยมาใช้ในการคำนวณโดยอนุโลม อาจทำให้ค่าความสัมพันธ์ระหว่างข้อมูล ภาพถ่ายดาวเทียมไฮเปอร์สเปกตรัลและข้อมูลภาพถ่ายดาวเทียมมัลติสเปกตรัลกับค่ามวลชีวภาพ ของป่าชายเลนแหลมตะลุมพุกมีค่าที่สูงขึ้นได้ เพื่อเป็นการประหยัดเวลาและเป็นไปตาม ้วัตถุประสงค์ของการศึกษาที่ต้องการศึกษาปัญหาจุดอิ่มตัวของสัญญาณเท่านั้น ผู้วิจัยจึงไม่ได้นำ ้ค่าคงที่จากสมการค่ามวลชี<mark>วภาพของพันธุ์ไม้แต่ละชนิดที่อาจม</mark>ีผู้ศึกษาไว้แล้วมาใช้ในการคำนวณ แต่อย่างใด เนื่องจากไม่ได้มีวัตถุประสงค์ที่จะทำการศึกษาหาค่ามวลชีวภาพที่แท้จริง ในพื้นที่ศึกษาตามที่ได้กล่าวแล้ว

จากผลการศึกษาครั้งนี้ ผู้วิจัยพบว่าข้อมูลไฮเปอร์สเปกตรัลจากภาพถ่ายดาวเทียมระบบ Hyperion และข้อมูลมัลติสเปกตรัลจากภาพถ่ายดาวเทียมระบบ ALI ที่ถ่ายภาพในตำแหน่งและ เวลาเดียวกันมีศักยภาพในการศึกษาค่าตัวแปรทางชีววิทยาของป่าชายเลน เช่น ค่าดัชนี พื้นที่ผิวใบ และค่ามวลชีวภาพที่ได้ผลใกล้เคียงกัน แต่ข้อมูลไฮเปอร์สเปกตรัลจะมีราคาค่อนข้าง แพงมาก จึงมีข้อเสนอแนะว่า หากนักวิจัยต้องการศึกษาค่าดัชนีพื้นที่ผิวใบ และค่ามวลชีวภาพของ ป่าชายเลน ก็สามารถเลือกใช้ข้อมูลมัลติสเปกตรักทำการศึกษาได้ เนื่องจากมีราคาถูก และได้ผล ที่ใกล้เคียงกับการใช้ข้อมูลไฮเปอร์สเปกตรัล อย่างไรก็ตามควรมีการศึกษาในเรื่องนี้อีกครั้ง เพื่อยืนยันผลการค้นพบนี้

รายการอ้างอิง

ภาษาไทย

- กัลยา วานิชย์บัญชา.2546. <u>การวิเคราะห์สถิติ : สถิติสำหรับการบริหารและวิจัย.</u>พิมพ์ครั้งที่ 7. กรุงเทพฯ:ภาควิชาสถิติ คณะพาณิชยศาสตร์และการบัญชี จุฬาลงกรณ์มหาวิทยาลัย.
- ชลิตา ศรีลัดดา.2548. <u>อิทธิพลของโครงสร้างเรือนยอดต่อการเจริญเติบโตและการสืบพันธ์ตาม</u> <u>ธรรมชาติในสวนป่าชายเลน อ.ปากพนัง จ.นครศรีธรรมราช</u>.วิทยานิพนธ์ปริญญา มหาบัณฑิต.คณะวนศาสตร์ มหาวิทยาลัยเกษตรศาสตร์.
- ชูเกียรติ วิเชียรเจริญ.2549.<u>เอกสารประกอบการสอนรายวิชา 2108531 GPS Satellite surveying</u>. กรุงเทพฯ:ภาควิชาวิศวกรรมสำรวจ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.
- ณิฏฐารัตน์ ปภาวสิทธิ์ และคณะ.2546. <u>คู่มือวิธีการประเมินแบบรวดเร็วเพื่อการจัดการ</u> <u>ทรัพยากรธรรมชาติและสิ่งแวดล้อมพื้นที่ชายฝั่งทะเล: ระบบนิเวศป่าชายเลน</u>. กรุงเทพฯ: หน่วยปฏิบัติการนิเวศวิทยาทางทะเล ภาควิชาวิทยาศาสตร์ทางทะเล คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.

้ ธวัชชัย สันติสุข. 2550. <u>ป่าของประเทศไทย.</u> กรุงเทพฯ: อรุณการพิมพ์.

- ป่าไม้,กรม.สำนักงานเลขานุการกรม.2550. <u>สถิติการป่าไม้ของประเทศไทย ปี 2550</u>. กรุงเทพฯ: สมลดา.
- พงษ์ศักดิ์ สหุนาพุ้. 2538. <u>ผลผลิตและการหมุนเวียนของธาตุอาหารในระบบนิเวศป่าไม้</u>.กรุงเทพฯ: ภาควิชาวนวัฒนวิทยา คณะวนศาสตร์ มหาวิทยาลัยเกษตรศาสตร์.
- ส่วนพฤกษศาสตร์ป่าไม้ สำนักวิชาการป่าไม้ กรมป่าไม้. 2544. <u>ชื่อพรรณไม้แห่งประเทศไทย</u> <u>เต็ม สมิตินันทน์ ฉบับแก้ไขเพิ่มเติม พ.ศ. 2544</u>.พิมพ์ครั้งที่ 2. กรุงเทพฯ: ประชาชน.

ภาษาอังกฤษ

Blackburn, G.A.2007.Hyperspectral remote sensing of plant pigments. <u>Journal of</u> <u>Experimental Botany</u> 58,4:855-867.

Bullock, J.1999.Plants. In W. J. Sutherland (ed.),<u>Ecological census techniques:</u> <u>A handbook</u>,pp. 111-138 .UK: Cambridge University Press.

Campbell, J.B.2002. Introduction to remote sensing. 3rd ed. New York: The Guilford Press.

Cho, M. A., Skidmore, A. K., and Atzberger, C.2008. Towards red-edge positions less sensitive to canopy biophysical parameters for leaf chlorophyll estimation using properties optique spectrales des feuilles (PROSPECT) and scattering by arbitrarily inclined leaves (SAILH) simulated data.<u>International Journal of Remote</u> <u>Sensing</u> 29,8: 2241-2255.

Earth Observing1 (EO-1).2008 .U.S.Geological Survey. http://eo1.usgs.gov/index.php.

- Fassnacht,K.S.,Gower,S.T.,MacKenzie,M.D.,Nordheim,E.V.,and Lillesand,T.M.1997. Estimating the leaf area index of north central Wisconsin forests using the Landsat Thematic mapper. <u>Remote Sensing of Environment</u> 61: 229-245.
- Gao,X.,Huete,A.R.,Ni,W.,and Miura,T.2000.Optical –biophysical relationships of vegetation spectra without background contamination. <u>Remote Sensing of Environment</u> 74 :609-620.
- Gong,P.,Pu,R., Biging,G.S., and Larrieu ,M. R.2003. Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data. <u>IEEE Transactions on Geoscience and Remote Sensing</u> 41,6: 1355-1362.
- Green,E.P.,Mumby,P.J.,Edwards,A. J.Clark,C.D., and Ellis,A.C.1997.Estimating leaf area index of mangroves from satellite data.<u>Aquatic Botany</u> 58:11-19.
- Hogarth, P. J.2007. <u>The Biology of mangroves and seagrasses</u>.2nd edition. New York: Oxford University Press.
- Hurcom, S. J., Harrison, A. R.1998. The NDVI and spectral decomposition for semi-arid vegetation abundance estimation. <u>International Journal of Remote Sensing</u> 19,16: 3109-3125.
- Jensen, J. R. 2007. <u>Remote sensing of environment : An earth resource perspective</u>. 2 nd ed. NJ: Pearson Education.
- Kovacs , J.M., Flores-Verdugo ,F., Wang, J., and Aspden, L.P. 2004. Estimating leaf area index of a degraded mangrove forest using high spatial resolution satellite data. <u>Aquatic Botany</u> 80:13-22.

- Li, X.,Yeh, A.G.,Wang,S.,Liu,K.,Liu,X.,Qian,J. and Chen,X. 2007. Regression and analytical models for estimating mangrove wetland biomass in South China using Radarsat images. <u>International Journal of Remote Sensing</u> 20:5567-5582.
- Lillesand, T.M., Kiefer, R.W., and Chipman, J.W.2004. <u>Remote sensing and image</u> <u>interpretation</u>.5th ed. NY: John Wiley & Sons.
- Mutanga, O., and Skidmore, A.K.2004.Narrow band vegetation indices overcome the saturation problem in biomass estimation. <u>International Journal of Remote Sensing</u> 25:1-16.
- Myneni,R.B., and Asrar,G.1994. Atmospheric effects and spectral vegetation indices. <u>Remote Sensing of Environment</u> 47:390-402.
- NASA AVIRIS.2008. Airborne visible infrared imaging spectrometer. http://aviris.jpl.nasa.gov
- Pu, R., Gong.P., Biging., and Larrieu.M.R. 2003.Extraction of Red Edge optical parameters from Hyperion data for estimation of forest leaf area index. <u>IEEE Transactions on</u> <u>Geoscience and Remote Sensing</u> 41,4: 916-921.
- Thenkabail, P.S., Enclona, E.A., Ashton, M.S., Legg, C., and De Dieu, M.J. 2004. Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests. <u>Remote</u> <u>Sensing of Environment</u> 90: 23-43.
- Thenkabail, P.S., Smith, R.B., and Pauw, E.D.2000. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. <u>Remote Sensing of Environment</u> 71:158-182.
- Vaiphasa, C., Skidmore, A.K., and De Boer, W.F. 2006. A post-classifier for mangrove mapping using ecological data. <u>ISPRS Journal of Photogrammetry and Remote Sensing</u> 61:1-10.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

<mark>ภาคผนวก</mark>

ภาคผนวก ก ข้อมูล<mark>รายละเอียดการทำงานใน</mark>ภาคสนาม

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย
การทำงานภาคสนาม

วันแรก (9 เมษายน 2550)

ออกเดินทางจากกรุงเทพฯ ถึงโรงแรมที่พักจังหวัดนครศรีธรรมราช

วันที่สอง (10 เมษายน 2550)

เดินทางไปบ้านบังหยา ทำหมุดชั่วคราว วางเครื่องรับสัญญาณดาวเทียม GPS จำนวน 1 เครื่อง
เปิดรับสัญญาณดาวเทียม GPS จำนวน 1 เครื่องทิ้งไว้ประมาณ 3 ชั่วโมง

เดินทางไปที่สำนักงานโครงการชลประทานที่ 15 อ.ปากพนัง เพื่อหาหมุดหลักฐานของกรมแผนที่ทหาร
เมื่อพบแล้วทำการเปิดเครื่องรับสัญญาณดาวเทียม GPS ทิ้งไว้ประมาณ 3 ชั่วโมง

3. เมื่อครบกำหนดเวลาแล้วเก็บเครื่อง GPS มาทำการดาวโหลดค่าพิกัดที่ได้จากเครื่อง GPS ทั้ง สองเครื่องลงสู่เครื่องคอมพิวเตอร์ ทำการปรับแก้ค่าความถูกต้องทางตำแหน่งของหมุดชั่วคราวที่ บ้านบังหยา

4. นำภาพถ่ายดาวเทียมระบบ ASTER มาทำการเลือกจุดควบคุมตำแหน่งภาคพื้นดิน (Ground Control Point) ให้ครอบคลุมพื้นที่ศึกษา ประมาณ 20 – 30 จุด

วันที่สาม (11 เมษายน 2550)

1. เดินทางไปวางเครื่อง GPS ที่หมุดชั่วคราวบ้านบังหยา

 ทำการออกเรือไปเก็บค่าพิกัดของจุดควบคุมตำแหน่งภาคพื้นดินที่สามารถเข้าถึงได้ โดยใช้ เครื่องรับสัญญาณดาวเทียม GPS แบบพกพา เก็บค่าพิกัดจุดควบคุมตำแหน่งภาคพื้นดินที่เข้าถึง ได้จำนวน 19 จุด

 น ำข้อมูลค่าพิกัดที่ได้จากเครื่องรับสัญญาณดาวเทียม GPS มาใช้คำนวณปรับแก้ค่าความ ถูกต้องให้กับจุดควบคุมตำแหน่งภาคพื้นดินทั้ง 19 จุด ให้มีค่าพิกัดในระบบ UTM Zone 47 N ,WGS 1984

 นำภาพถ่ายดาวเทียมระบบ ASTER มาทำ Geo Referencing ด้วยจุดควบคุมตำแหน่งภาคพื้นดิน ทั้ง 19 จุด ให้มีค่าพิกัดในระบบ UTM Zone 47 N ,WGS 1984 (ดูรูปผนวก ที่ ก1)

5. นำภาพถ่ายดาวเทียมระบบ ASTER ที่มีค่าพิกัดแล้วมาทำการ Classify ด้วยวิธี Unsupervised Classification แบบ K- mean จำแนกข้อมูลพื้นที่ศึกษาออกเป็น 15 Cluster (ดูรูปผนวก ที่ ก2)

 ทำการเลือกแปลงตัวอย่างในภาพถ่ายดาวเทียมระบบ ASTER ด้วยวิธี Line Transect ให้ได้ มากที่สุด อย่างน้อยประมาณ 500 แปลง (ดูรูปผนวก ที่ ก3)

วันที่สี่ (12 เมษายน 2550)

1. ตรวจเซ็คอุปกรณ์ภาคสนาม

 ทำการออกเรือสำรวจแปลงตัวอย่างที่เลือกไว้ ทำการเลือกแปลงตัวอย่างที่สามารถเข้าเก็บข้อมูลได้ไว้ ประมาณ 100 แปลง

วันที่ห้า (13 เมษายน 2550)

- 1. ตรวจเซ็คอุปกรณ์ภาคสนาม
- 2. ออกเรือเข้าสู่แปลงตัวอย่างเก็บข้อมูลความเจริญเติบโตของต้นไม้

วันที่หกจนถึงวันที่เก็บข้อมูลแล้วเส^ร็จ

- 1. ตรวจเซ็คอุปกรณ์ภาคสนาม
- 2. ออกเรือเข้าสู่แปลงตัวอย่างเก็บข้อมูลความเจริญเติบโตของต้นไม้จนครบทุกแปลง

รายการอุปกรณ์เครื่องมือที่ใช้ปฏิบัติงาน

- 1. สายวัด
- 2. เทปผ้า
- 3. สมุดวาดเขียน และดินสอ ยางลบ มีดคัตเตอร์
- 4. Clinometer
- 5. เครื่องรับสัญญาณดาวเทียม GPS แบบพกพา 3 เครื่อง และแบตเตอรี่
- 6. กล่องใส่ของกันน้ำ ถุงซิบล็อก
- 7. ยาจุดกันยุง และไฟแซ็ค
- 8. หนังสือตารางแสดงเวลาน้ำขึ้น-น้ำลง ของกรมอุทกศาสตร์ กองทัพเรือ
- 9. กระเป๋าเป๋ใส่อุปกรณ์สนาม
- 10. เสื้อชูชีพ
- 11. แผนที่ภาพถ่ายดาวเทียมพื้นที่ศึกษาเส้นทางลำคลองเข้าสู่แปลงตัวอย่าง
- 12. เชื้อกในล่อน ความยาว 30 เมตร
- 13. ชุดทำงานสนาม เสื้อกันฝน หมวกผ้า และรองเท้ายาง
- 14. ร่ม แว่นตากันแดด
- 15. แผนที่ภาพถ่ายดาวเทียมพื้นที่ศึกษาที่มีค่าพิกัดของแปลงตัวอย่าง
- 16. อาหารกล่องสำหรับรับประทาน และน้ำดื่ม
- 17. ยาทาผิวหนังแก้อาการคัน ยาแก้แพ้,ยาลดไข้ แก้หวัด

ตารางเวลาการทำงานภาคสนาม

วันที่ 10 เมษายน 2550

7.30 น. ตรวจเซ็คเครื่องมือที่ใช้ในภาคสนาม

8.00 น. รับประทานอาหารเช้า

10.00 น. เดินทางไปบ้านบังหยา ทำหมุดชั่วคราว เปิดเครื่องรับสัญญาณดาวเทียม GPS ทิ้งไว้

12.00 น. รับประทานอาหารกลางวัน

13.00 น. เดินทางไปสำนักงานโครงการชลประทานที่ 15 อ.ปากพนัง เปิดเครื่องรับสัญญาณ

ดาวเทียม GPS ที่หมุดหลักฐานของกรมแผนที่ทหาร

16.00 น. ทำการเก็บเครื่อง GP<mark>S ทั้งสองเค</mark>รื่อง

17.00 น. เดินทางกลับโรงแรมที่พัก

19.00 น. รับประทานอาหารเย็น

20.00 น. ทำงานสำนักงาน ,วางแผนการทำงานของวันพรุ่งนี้

วันที่ 11 เมษายน 2550

4.30 น. อุ่นอาหารกล่องในไมโครเวฟ

5.00 น. ตรวจเช็คเครื่องมือที่ใช้ในภาคสนาม

5.30 น. ออกเดินทางไปขึ้นเรือ

6.00 น. ออกเรือเข้าสู่พื้นที่ศึกษ^า ท<mark>ำการเก็บข้อมูลค่าพิ</mark>กัด GCP

12.00 น. รับประทานอาหารกลางวัน

16.00 น. เลิกงาน นั่งเรือกลับเข้าสู่ท่าเรือ

17.00 น. เดินทางกลับโรงแรมที่พัก

19.00 น. รับประทานอาหารเย็น

20.00 น. ทำงานสำนักงาน ,วางแผนการทำงานของวันพรุ่งนี้

จุฬาลงกรณ่มหาวิทยาลัย

วันที่ 12 เมษายน 2550

- 4.30 น. อุ่นอาหารกล่องในไมโครเวฟ
- 5.00 น. ตรวจเซ็คเครื่องมือที่ใช้ในภาคสนาม
- 5.30 น. ออกเดินทางไปขึ้นเรือ
- 6.00 น. ออกเรือเข้าสู่พื้นที่ศึกษา ทำการสำรวจความเป็นไปได้ในการเข้าแปลงตัวอย่างคร่าวๆ
- 12.00 น. รับประทานอาหารกลางวัน
- 16.00 น. เลิกงาน นั่งเรือกลับเข้าสู่ท่าเรือ
- 17.00 น. เดินทางกลับโรงแรมที่พัก
- 19.00 น. รับประทานอาหารเย็น
- 20.00 น. ทำงานสำนักงาน ,วางแผนการทำงานของวันพรุ่งนี้

วันที่ 13 เมษายน 2550

- 4.30 น. อุ่นอาหารกล่องในไมโครเวฟ
- 5.00 น. ตรวจเช็คเครื่องมือที่ใช้ในภาคสนาม
- 5.30 น. ออกเดินทางไปขึ้นเรือ
- 6.00 น. ออกเรือเข้าสู่พื้นที่ศึกษา ทำการเก็บข้อมูลพืชในแปลงตัวอย่าง
- 12.00 น. รับประทานอาหารกลางวัน
- 17.00 น. เลิกงาน นั่งเรือกลับเข้าสู่ท่าเรือ
- 18.00 น. เดินทางกลับโรงแรมที่พัก
- 20.00 น. รับประทานอาหารเย็น
- 21.00 น. ทำงานสำนักงาน ,วางแผนการทำงานของวันพรุ่งนี้
- วันที่ 14 เมษายน 2550 จนถึงวันที่เก็บข้อมูลแปลงตัวอย่างแล้วเสร็จ
- ทำเช่นเดียวกับวันที่ 13 เมษายน 2550

จุฬาลงกรณ่มหาวิทยาลัย

รูปผนวกที่ ก 1 แสดงจุดควบคุมตำแหน่งภาคพื้นดินที่ใช้ในพื้นที่ศึกษา

รูปผนภกที่ ก 2 แสดงภาพถ่ายดาวเทียมระบบ ASTER ที่ทำการจำแนกข้อมูลด้วยวิธี Unsupervised Classification แล้ว

รูปผนวกที่ ก 3 แสดงการเลือกแปลงตัวอย่างด้วยวิธี Line Transect

ภาคผนวก ข ข้อมูลที่ใช้ในการศึกษา

ALI band	Hyperion band	Average wavelenght(nm)
MS-1	В9	436.9900
MS-1	B10	447.1700
MS-1'	B11	457.3400
MS-1'	B12	467.5200
MS-1'	B13	477.6900
MS-1'	B14	487.8700
MS-1'	B15	498.0400
MS-1'	B16	508.2200
MS-2	B18	528.5700
MS-2	B19	538.7400
MS-2	B20	548.9200
MS-2	B21	559.0900
MS-2	B22	569.2700
MS-2	B23	579.4500
MS-2	B24	589.6200
MS-2	B25	599.8000
MS-3	B28	630.3200
MS-3	B29	640.5000
MS-3	B30	650.6700
MS-3	B31	660.8500
MS-3	B32	671.0200
MS-3	B33	681.2000
MS-4	B42	772.7800
MS-4	B43	782.9500
MS-4	B44	793.1300
MS-4	B45	803.3000
MS-4'	B49	844.0000
MS-4'	B71	851.9200
MS-4'	B50	854.1800
MS-4'	B72	862.0100
MS-4'	B51	864.3500
MS-4'	B73	872.1000
MS-4'	B52	874.5300
MS-4'	B74	882.1900
MS-4'	B53	884.7000
MS-5'	B106	1205.0700
MS-5'	B107	1215.1700
MS-5'	B108	1225.1700
MS-5'	B109	1235.2700
MS-5'	B110	1245.3600
MS-5'	B111	1255.4600
MS-5'	B112	1265.5600
MS-5'	B113	1275.6600

ตารางผนวกที่ ข 1 แสดงการบันทึกช่วงคลื่นใน band ของ Hyperion ที่ตรงกับ band ของ ALI

Ll band	Hyperion band	Average wavelenght(nm)
MS-5'	B114	1285.7600
MS-5'	B115	1295.8600
MS-5	B141	1558.1200
MS-5	B142	1568.2200
MS-5	B143	1578.3200
MS-5	B144	1588.4200
MS-5	B145	1598.5100
MS-5	B146	1608.6100
MS-5	B147	1618.7100
MS-5	B148	1628.8100
MS-5	B149	1638.8100
MS-5	B150	1648.9000
MS-5	B151	1659.0000
MS-5	B152	1669.1000
MS-5	B153	1679.2000
MS-5	B154	1689.3000
MS-5	B155	1699.4000
MS-5	B156	1709.5000
MS-5	B157	1719.6000
MS-5	B15 <mark>8</mark>	1729.7000
MS-5	B159	1739.7000
MS-5	B160	1749.7900
MS-7	B193	2082.7500
MS-7	B194	2092.8400
MS-7	B195	2102.9400
MS-7	B196	2113.0400
MS-7	B197	2123.1400
MS-7	B198	2133.2400
MS-7	B199	2143.3400
MS-7	B200	2153.3400
MS-7	B201	2163.4300
MS-7	B202	2173.5300
MS-7	B203	2183.6300
MS-7	B204	2193.7300
MS-7	B205	2203.8300
MS-7	B206	2213.9300
MS-7	B207	2224.0300
MS-7	B208	2234.1200
MS-7	B209	2244.2200
MS-7	B210	2254.2200
MS-7	B211	2264.3200
MS-7	B212	2274.4200
MS-7	B213	2284.5200
MS-7	B211	2294 6100

ตารางผนวกที่ ข 1 (ต่อ)

ALI band	Hyperion band	Average wavelenght(nm)	_
MS-7	B215	2304.7100	
MS-7	B216	2314.8100	
MS-7	B217	2324.9100	
MS-7	B218	2335.0100	
MS-7	B219	2345.1100	

No	Plot No	Coodinate	UTM,WGS84	LAI	Biomass
		East	North		(10 ⁻⁴ ลบ.ม. ต่อ ตร.ม.)
1	1	629556	929222	1.163823	270.6178
2	2	629496	929222	1.327361	296.7656
3	3	629466	929312	0.971069	141.1722
4	4	629466	929282	0.872667	95.4044
5	5	629496	929282	0.468622	84.4667
6	6	629496	<mark>929312</mark>	0.455532	147.6733
7	7	629526	929312	0.608249	172.8422
8	26	629616	930122	0.852595	236.2467
9	44	629976	935612	0.585559	40.1500
10	45	630006	935612	0.436438	70.3478
11	61	629076	932882	1.419829	179.5644
12	67	630486	932342	1.223793	178.0778
13	68	630456	932342	0.677503	213.7144
14	70	6 <mark>3</mark> 1296	928382	0.623957	50.9200
15	71	629466	928622	2.240135	502.1322
16	72	6 <mark>3</mark> 0156	929462	0.76009	100.3989
17	73	629 <mark>37</mark> 6	929522	1.627837	376.5111
18	74	63 <mark>0786</mark>	930302	1.184313	245.2611
19	76	6307 <mark>8</mark> 6	931232	0.663227	95.8889
20	Final 1	628 <mark>4</mark> 76	928622	1.643511	317.7000
21	Final4	62994 <mark>6</mark>	928562	0.928517	419.6667
22	Final5	630396	929582	1.111777	134.8333
23	R10	632106	935732	1.064793	71.7189
24	R11	632796	934472	0.689407	45.5389
25	R12	632916	933902	0.096866	15.3067
26	R13	633426	933152	0.397936	49.6889
27	R5	633396	933002	0.227347	26.4822
28	R6	633366	933002	0.405057	34.2800
29	R7	632616	934622	0.672582	45.8000
30	R8	632586	934622	0.154357	34.3622
31	R9	632136	935732	0.687906	101.2322

. ตารางผนวกที่ ข 2 แสดงค่าพิกัด UTM, ค่าดัชนีพื้นที่ผิวใบ(LAI)และค่ามวลชีวภาพ (Biomass) ของ แปลงตัวอย่าง

I KY 032130 733732 0.007700

	Distals		Cood	dinate				re	flectan	се			
NO	PIOT NO	LAI VAIUE	East	North	MS-1	MS-1'	MS_2	MS-3	MS-4	MS-4'	MS-5'	MS-5	MS-7
1	1	1.163823	629556	929222	1615	1468	1466	1342	4242	4428	1622	1203	797
2	2	1.327361	629496	929222	1626	1463	1476	1359	4702	4933	1779	1275	803
3	3	0.971069	629466	929312	1665	1513	1585	1452	5058	5295	1854	1332	824
4	4	0.872667	629466	929282	1678	1545	1683	1547	6029	6465	2237	1556	886
5	5	0.468622	629496	929282	1637	1490	1540	1409	5463	5582	1907	1341	810
6	6	0.455532	629496	929312	1650	1484	1501	1389	4483	4625	1650	1247	810
7	7	0.608249	629526	929312	1619	1470	1442	1352	3999	4185	1572	1196	803
8	26	0.852595	629616	9301 <mark>2</mark> 2	1994	1931	2123	2212	8350	8988	3299	2402	1342
9	44	0.585559	629976	935612	1645	1517	1664	1487	7183	7846	3010	2109	1081
10	45	0.436438	630006	935612	1666	1526	1684	1507	7164	7878	3001	2146	1084
11	61	1.419829	629076	932882	1699	1598	1749	1628	8152	8896	3245	2234	1139
12	67	1.223793	630 <mark>486</mark>	932342	1763	1660	1850	1728	8357	8994	3231	2245	1179
13	68	0.677503	630456	932342	1771	1678	1843	1750	8007	8681	3218	2184	1204
14	70	0.623957	<mark>631296</mark>	928382	1626	1494	1676	1464	8586	9445	3473	2328	1128
15	71	2.240135	629466	928622	1627	1496	1626	1474	7814	8464	2902	1942	996
16	72	0.76009	630156	929462	1666	1528	1650	1507	7793	8430	2987	1998	1058
17	73	1.627837	62 <mark>93</mark> 76	929522	1692	1569	1694	1569	6909	7321	2506	1676	962
18	74	1.184313	<mark>630786</mark>	930302	1702	1564	1775	1592	8054	8697	3173	2262	1125
19	76	0.663227	630 <mark>78</mark> 6	931232	1860	1793	2010	1935	7924	8521	3109	2185	1254
20	Final 1	1.643511	6 <mark>2</mark> 8476	9 <mark>2</mark> 8622	1655	1553	1767	1648	7498	8232	3095	2298	1210
21	Final4	0.928517	6299 <mark>4</mark> 6	928562	1639	1497	1625	1459	7449	8101	2809	1893	963
22	Final5	1.111777	630 <mark>3</mark> 96	929582	1664	1529	1693	1537	7981	8692	3165	2178	1072
23	R10	1.064793	632106	935732	1701	1603	1763	1652	5706	6291	2604	2106	1175
24	R11	0.689407	632796	934472	1705	1600	1773	1626	5936	6510	2680	2141	1207
25	R12	0.096866	632916	933902	1675	1558	1676	1552	4987	5373	2346	1982	1115
26	R13	0.397936	633426	933152	1716	1587	1739	1635	5376	5839	2650	2243	1271
27	R5	0.227347	633396	933002	1742	1613	1785	1676	5178	5593	2484	2062	1188
28	R6	0.405057	633366	933002	1721	1627	1776	1673	5299	5733	2560	2052	1183
29	R7	0.672582	632616	934622	1700	1575	1725	1580	5514	5971	2652	2195	1202
30	R8	0.154357	632586	934622	1692	1571	1715	1579	5387	5891	2649	2125	1179
31	R9	0.687906	632136	935732	1710	1593	1774	1638	5816	6410	2614	2054	1168

ตารางผนวกที่ ข 3 แสดงค่าสัญญาณของแปลงตัวอย่างที่ได้จากภาพถ่ายดาวเทียมระบบ ALI

KY 0.007700 002100 700702

ตารางผนวกที่ ข 4 แสดงค่าสัญญาณของแปลงตัวอย่างในช่วงคลื่นสีแดง (band28-band33) และช่วงคลื่น อินฟาเรดใกล้ (band42-45,49-53) ที่ได้จากภาพถ่ายดาวเทียมระบบ Hyperion

Plot No	B28	B29	B30	B31	B32	B33	B42	B43	B44	B45	B49	B50	B51	B52	B53
1	1096	1035	991	924	904	864	2224	2198	1978	1887	1936	1935	1937	1886	1762
2	1080	1051	996	891	913	902	2127	2114	1917	1841	1827	1867	1848	1816	1677
3	1163	1138	1085	985	993	945	2292	2248	2031	1907	1930	1994	1956	1938	1785
4	1245	1215	1154	1063	1055	1008	2894	2824	2547	2463	2465	2527	2529	2479	2290
5	1132	1071	1010	942	933	924	2102	2076	1897	1817	1816	1833	1842	1783	1663
6	1094	1040	989	906	928	870	1886	1864	1707	1610	1563	1649	1650	1593	1475
7	1063	1031	1001	875	889	871	1791	1756	1583	1528	1480	1533	1534	1484	1390
26	1785	1794	1710	1548	16 <mark>08</mark>	1564	<mark>394</mark> 7	3906	3541	3359	3400	3492	3491	3399	3168
44	1215	1163	1113	1010	997	965	3447	3429	3156	2966	3050	3129	3169	3080	2901
45	1187	1175	1068	994	989	956	3366	<mark>332</mark> 8	3071	2920	2998	3066	3037	3008	2824
61	1348	1293	1218	1094	1125	1076	3805	3713	3402	3232	3283	3367	3410	3301	3122
67	1397	1363	1265	1153	1184	1132	<mark>3890</mark>	3842	3503	3349	3365	3479	3492	3408	3199
68	1383	1340	1251	1160	1170	1110	3725	3700	3376	3209	3210	3331	3313	3229	3048
70	1273	1218	1124	1014	1030	962	4239	4240	3887	3747	3709	3856	3877	3756	3554
71	1180	1128	1041	952	974	<mark>93</mark> 6	3701	3693	3345	3207	3249	3346	3357	3252	3063
72	1210	1168	10 <mark>8</mark> 9	1014	1008	966	3668	3648	3299	3141	3209	3259	3291	3256	3031
73	1249	1182	1135	1044	1057	1015	3274	3232	2924	2798	2810	2849	2892	2862	2606
74	1308	1295	12 <mark>13</mark>	1120	1132	1047	3966	3963	3604	3475	3457	3558	3585	3514	3343
76	1480	1448	1377	1292	1277	1252	3730	3701	3372	3184	3242	3269	3334	3237	3013
Final 1	1388	1363	127 <mark>6</mark>	1170	1138	1108	3447	3 <mark>4</mark> 31	3142	2972	3029	3103	3161	3062	2864
Final4	1165	1146	1085	998	975	946	3490	3462	3170	3020	3060	3113	3147	3075	2878
Final5	1255	1216	1142	1044	1045	1038	3785	3741	3410	3266	3265	3389	3445	3320	3112
R10	1309	1240	1199	1056	1098	1074	2555	2 <mark>5</mark> 67	2351	2260	2264	2344	2364	2311	2178
R11	1340	1273	1227	1109	1089	1067	2748	2779	2552	2475	2444	2534	2549	2459	2375
R12	1291	1236	1172	1065	1064	1037	2282	2331	2159	2104	2084	2135	2114	2052	2006
R13	1297	1282	1206	1104	1088	1062	2417	2571	2292	2179	2197	2307	2290	2250	2176
R5	1297	1287	1248	1119	1126	1066	2288	2409	2200	2114	2087	2151	2154	2130	2040
R6	1326	1286	1220	1124	1112	1066	2378	2475	2231	2116	2118	2214	2256	2195	2049
R7	1297	1235	1184	1080	1075	1045	2461	2486	2270	2186	2192	2253	2298	2255	2096
R8	1273	1207	1161	1056	1054	1034	2421	2432	2202	2100	2134	2171	2215	2194	2030
R9	1313	1274	1207	1072	1089	1051	2690	2716	2472	2394	2383	2498	2469	2404	2271

72

รูปผนวกที่ ข 1 แสดงภาพพื้นที่ศึกษาที่ได้จากภาพถ่ายดาวเทียมระบบ Hyperion

จุฬาลงกรณมหาวทยาลัย

รูปผนวกที่ ข 2 แสดงภาพพื้นที่ศึกษาที่ได้จากภาพถ่ายดาวเทียมระบบ ALI

รูปผนวกที่ ข 3 แสดงภาพพื้นที่ศึกษาที่ได้จากภาพถ่ายดาวเทียมระบบ ASTER

ประวัติผู้เขียนวิทยานิพนธ์

นายธันวา สัจจาพิทักษ์วงศ์ เกิดเมื่อวันที่ 16 ธันวาคม พ.ศ. 2520 ที่จังหวัดชลบุรี สำเร็จ การศึกษาวิทยาศาสตรบัณฑิต(วนศาสตร์)จากมหาวิทยาลัยเกษตรศาสตร์ เมื่อปี พ.ศ.2543 หลังจากนั้นในปี พ.ศ. 2545 ได้เข้ารับราชการที่กรมป่าไม้ ในตำแหน่งนักวิชาการป่าไม้ 3 ต่อมาได้เข้าศึกษาต่อในระดับปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาระบบสารสนเทศปริภูมิ ทางวิศวกรรม ภาควิชาวิศวกรรมสำรวจ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ตั้งแต่ ปี พ.ศ. 2549 จนถึงปัจจุบัน

