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CHAPTER I
INTRODUCTION

As the credit derivatives market had grown over the past decade, products that
depended on default correlations had become more popular such as a collateralized debt
obligation (CDOs) and other credit basket derivatives. There are several advantages of
issuing credit risk securities to improve the liquidity or cash flow (Rajiv Bhatt, 2008), so
we believe that the CDOs market and other creditbasket derivatives will return after the
CDO market was almost stopped since the end of 2007 because of the crisis. In this paper,
we would like to create abetter ortore accurate pricing model for market participants
when the CDOs market comebaeks. 1

One of the major usks involved'in thlé_ qyaluation of eredit derivatives is credit risk
which is the distribution of finangial lbss ciu'sed by a broken financial agreement; for
instance, a failure to pay inferest or'princiﬁipl ‘on a loan or bond. Approximating loss
distribution that tells us the prebabilities assoé_lte}tlegi_ with different percentage losses in the
portfolio is a part of the pricing progess. Thj’e}‘(}i.fﬁcult task when we construct a loss
distribution is the correlation among obligors sjiné@‘}different correlation among obligors
can make a loss distribution look completely g‘T__f;fe!r_ent. In this paper, we presented the
way to deal with this task througﬁ CDOS pricing frz;nework.

Generally, a Mqh:[é Carlo Simulation, the market standard method, is applied to
derive values for CDOs. 'However, a Monte Carlo Simulation is not very efficient for
calculating price in real time because of the number of simulations that need to be run.
For one sampling of Z,'a sct) of tisk factors, the computing) time of Joint Gaussian
probabilities requires 2dM basic operations and M evaluation of the normal cdf where d
refer to the number of risk factors and M is number of obligors, Sinee, the simulation
often requires ‘manyireplications, the{cemputing time will \grow with [the number of
replication. This can take too much time for practitioners in times of strong market
movements. For numerical methods, the more difficulty of pricing CDOs has arisen since
we venture into the more realistic case of multifactor models, because traditional methods
often require computing time that is exponential in the number of factors. (P.Glasserman

and S.Suchintabandid, 2007).



We will focus on the problem of pricing CDOs and credit basket derivatives. Our
purpose of this work is to develop a method of approximating CDOs tranche price that is
less complicated in the computation of the model’s output and improves the calculation
speed. To determine joint default probabilities and develop a method of approximating
CDOs tranche prices we combine two techniques:

1. The correlation expansion (P.Glasserman and S.Suchintabandid, 2007)

2. The probability bucketing approach (John Hull and Alan White, 2004)

For the first technique, the correlation expansion, is a method for approximating
CDOs tranche prices by usingra series of p9rtfolios inwhich obligors are independent to
approximate a portfolio whose.ebligors are correlated. The approximation is of the form:

(L= )0/ 7 Z_constfj (L—y)"
7 )
where, for each label J, the'expectation E J(L—y) s the tranche price of a credit

portfolio whose obligorsiare independent.; ¢
4 : /
The advantage of this method is
e Pricing in independent obligor mo-(_'ié"llsJére easy to compute.

The disadvantage of this method is =
e This technique requires the very exaﬁaiue of E S(L—y)".
The second technique is the prbbability: Bucketing appfoach. The purpose of this

technique is to estimafejtﬁé probability that the total 10ss lies'in the k-th bucket for all k

by time T, conditional ori the values of the risk factors Z%,,7,,...,Z,. Assume that the

recovery rate is known and there are M obligors; then:
1. Divide potentiallosses 1nto ranges: {0, by }, {bo,b, }, 1.7 {bK_1 ,oo}
2. Calculate the conditional probability that the loss by time T will be in the
k-th bucket (P*) ) and the mean.loss,conditionial, that.the loss.is'in k-th

bucket ( 4x) by‘first assume that there jare nogobligofs.
3. Built up one obligor at a time.

The only assumption in the iterative procedure is that we concentrate at the recent

value of 4y for all the probability associated with bucket .
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Probability Bucketing




Andersen, L., J. Sidenius, and S. Basu (2003) also show a similar technique. The
loss unit was chosen by a ratio of losses which is a special case of probability bucketing
approach.

So, we use probability bucketing technique to create independent total loss
distributions and merge them with correlation expansion technique to help them create a
dependent total loss distribution.

From the two techniques above 1 that using probability bucketing approach

+

to estimate E S(L-y)

still give us the accurate v n condition of the size of the buckets.
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CHAPTER I
LITERATURE REVIEW

Currently, several numerical integrations were presented to deal with the difficulty
of correlation among obligors in basket credit derivatives and CDOs pricing. Andersen,
Sidenius, and Basu (2003) and Laurent and Gregory (2003) presented the method to deal
with dependent defaults for multi-name credit derivatives and found that using semi-
analytical methods and numerical integration ceuld efficiently calculate CDO prices
which were a single-factor model. J

P.Glasserman and S:Suchintabandid (2007) developed numerical methods which
were non-simulation based; andswere less sensitive to the number of factors for evaluating
credit risks and pricing basket eredit derivat%_ve_s and CDOs. They presented two methods
which were Correlation Expansion andr the f_r}’f':thod that based on the Laplace inversion
method. For Correlation Expansion: te‘chniqué, showed that CDO tranche prices could be
expressed as a series of'prices in _in_dependér__lj[ obligor models and could be used to
approximate joint probabilities’ of multivari;_izjei‘e rr.lormal random variables. In another

method, it presented fast and precise.way. of vaig{ng CDO tranche especially with the

high number of risk factors. P il

To predict the 10ss distrii)ﬁ:[-ion' for basket -cqrezlit derivatives and CDOs is one of
the important parts ofjtﬁé pricing process. Oldrich Alfons Viasicek (2002) offered a
method to construct loss: distributions that could be used to represent the loan loss
behavior of large portfoli(;s. 7

John Hull.and Alan White (2004) offered a numnierical procedure to create the loss
distribution called;*Probability Bucketing”. Andersen, L., J. Sidenius, and S. Basu (2003)
also showed_ the similar technique. The loss unit was-¢hosen by a ratio” of losses which
was a special case of probability bucketing-approach.

Other researchers for example Sudheer Chava, Catalina Stefanescu and Stuart
Turnbull (2008) also focused on modeling and calculating the loss distribution. And
found that the default probabilities and recovery rate had negative correlation. In addition,

they found that the predicted loss distribution was affected by the default model

significantly.



There also are a number of researchers who presented numerical methods to price
credit basket derivative products. From literature review above, each method has both
advantages and disadvantages. For our work, we decided to combine two techniques,
Correlation Expansion and Probability Bucketing, to improve the method which can give

us the advantage in term of speed and accuracy also in the less complicated way.

AULINENINYINS
RN TAUNIINGIAE



CHAPTER 111
METHODOLOGY

The main contribution of this paper is to combine two techniques. First, the
Correlation Expansion method which is a method for approximating CDOs tranche prices
by using a series of portfolios in which obligors are independent to approximate a
portfolio whose obligors are correlated. The appreximation is of the form:

E(L—y) =~ ZconstEJ (= )"
I

-
The advantage of this.method 1s pricing in independent obligor models is easy to

compute. The second methed is the Probability Bucketing method which approximates
the probability distribution.of the losses byltime T. The loss distribution is built up one
obligor at a time. This approach has an advﬁntage in term of computation speed and
always gives reasonably accurate answe;s ccrgnpgred with Monte Carlo simulation (John
Hull and Alan White, 2004). The details.of eaéh method are explained in appendix A.

The key that makes the progfafil (MATLAB) generate faster is the technique that
we created sparse matrix of probabirliﬁrés and Gﬁ&qt@d probabilities in every bucket at the
same time for every one obligo;;- '[hé-lt 1S added—:;l, instead of using loops to update
probabilities which can update dlil'y'ofle buckéf;gf(")bb. Suppose we have N buckets and
M obligors. If we do upaate—the—pfebabiﬁtykeﬂe—ﬁmefer—eﬁebuéket, then for one obligor
that is added in we have 4o calculate it N times and for M oblzié’c-)rs we have to do it NxM
times. This is very time Consuming. So, we update probabilities in the form of matrix.
This helps us to berable to update.N, buckets, at-one time., We also developed the program
code to be more! flexible lin caSe that there are ‘imany: probabilities that move to the same

bucket. We can illustrate the matrix approach in Probability Bucketing as follows



Buckets after add the i-th obligor

Binl Bin2 Bin 3 Bin N
Previous  gint [P 0 0 0
buckets  Bijn 2 0 0 P>*p(i) 0
before Bin 3 0 0 Ps*p(i) 0
add the :
ith Binm-1| 0 0 0 Py *p(i)
] Bin m 0 0 0 P.*p(i)
obligor WU, s it S i . .
sum | Pr¥p(i) "0 P2*pa)ePs p (i) P *p()+ Pn*p(i)
-
Binl _aBind #//} _Bip_3 o Bin N
Binl | Pi*p(i)*(4,+Y) " 0 | 0 0
Bin 2 0 0 P *pli) H(A5+ 1) 0
Bin 3 0 0 Bs*p(i)*(As+X) 0
Bin m-1 0 0 ' 0 P *p(i) *(Am-11Y))
Bin m 0 @ == A Po*p(i) ¥(An+Y))
y 3 NSTTRT A L
Iy ko (71) % X X /7) % R
Sum P *p(i)*(4;+Y)) 0 PXp(i) 2R Y )T P 1*p()* (A1 +Yi)+

P R A ) Pup(i) *(An+Y)

= o

The two ﬁguré'g _*;_ibove represent the sparse matrix of i_j‘r_ababilities in each bucket
after we added the i-th obligor. Next, sum them in column and find that which buckets are
not zero. Then, we can uﬁdate the mean loss and the probabilities following the formulas
in appendix A by using/the twoymatrixesjabove:

To combine these two methods, first, we need*to create perturbed probabilities

(p”). Then, substitute the perturbed probabilities_ p#*to contribute the'loss distribution

by using "probability " bucketing’ miethod.” The loss" distribution tells’-us about the

probabilities associated with different percentage losses in a portfolio. Consequently, we
casily obtain expectations E ,(L—y)"whose obligors are independent. But to make it

more realistic, we need to consider the correlation among obligors. Thus, we use the

correlation expansion method to deal with this task. This method helps us obtain the
expectation E,(L — y)" whose obligors are dependent from expectations E ,(L—y)"whose

obligors are independent.



We can summarize this through these steps:

1. Calculate perturbed probabilities ( 5\”).

2. Create independent loss distributions of perturbed probabilities using

probability bucketing technique.

3. Compute expectations E ,(L—y)" whose obligors are independent.
4. Weight E ,(L—y)"using correlation expansion technique. Then, we receive

the expectation E,(L — ) whose obligors.are dependent.

To illustrate the computing time, P.Glasserman and S.Suchintabandid (2007)
compare the computing timerof Monte Carlo Simulation and Correlation Expansion

method in the following tabie

Plain Monte-Carlo Correlation Expansion
With ¥ repl’i.cations
Number of operations )
Basic operations* 2dMN. n+2d
.I: ‘| n
Normal cdf @ () 7 MV ;

Accuracy O( o )

*Basic operations comprise addjtion and multiplication.

Where d is refer to the number of risk factors. M is number of obligors and # is the
number of dimensions. This approximate time of Correlation Expansion does not include

the evaluated tifae of (v, ),...,go(vM)in perturbation method (only additions and

multiplications):

However, since' we combinetwo techniques'which are“CorrelationExpansion and
Probability Bucketing, the approximation of computing time is changed. The advantage
of Probability Bucketing helps to reduce computing time of Correlation Expansion
around 1.5 times of bucket reducing times. For example, suppose that we have M obligors
and 1,000 buckets. This takes time 7 with Correlation Expansion to calculate. If we
rearrange the buckets to be 250 buckets, the approximate time of the combined method is

T/(1.5%4).
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So, this combined method lets us obtain an acceptable value in such a short time
compared to the traditional methods such as Monte Carlo simulation which is not very
efficient for calculating price in real time because of the number of simulations that is
needed to be run. We will show how this combined method works through three
examples below.

For the first example, we show a case that the potential losses are small and a
default probability of each obligor is equally low.

For the second example, we show a case'that the potential losses are big and a
default probability of each obligoris equally low.

And for the last example; we illust-rate a case that a default probability of each
obligor is different and highs

v

Example | .
Suppose we have'a portfolio/of 50 obﬁgqrs. Each obligor has a default probability

equal to 0.02. The given loss amount of. obligf).r_ k is €; = k. The perturbation parameter 6
that we use is 0.1. And loading matrix A 1sag sﬁarse matrix size 50 x 5. For the first
column, the elements from a(l,1), to a(12,1)-5-_'r§:_equal to 0.2. The next column, from
a(9,2) to a(22,2) are 0.2, and elementé a(19,3)%6;f32,3) of the third column, a(29.,4) to
a(42,4) of the fourth column and a(39,5) to a(SG!;g)'f)_f‘the fifth column are equal to 0.2 as
well. We want to calculate £ (£ =) atz="1 for the given y = 50 , 75, 100 , 200. We

will compare the results among Monte Carlo simulation, the combined method with the
interval of buckets equalr to 1 unit (A), and the combined method whose intervals of
buckets are in differéntiranges. \We/divideithetange of'buckets tobe equal to 1 unit from
0 to 110 and shift,3 units €ach bucket from 110 to 200 Next buckets are set at 700 and
1,275 (B).

Case I: compare between Monte Carlo simulation and (A). Then the value of

E(L-y) att=11is
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Table 1
y alpha 0 alpha 1 alpha 2 Result Monte Carlo 95% interval
of
combined
method
50 4.4497 0.3861 0.046 4.8588 4.7847 4.5975 -4.9719
75 1.5082 0.2818 0.0547 1.81735 1.773 1.5888-1.9602
100 0.4352 0.1458 0.0473 0.60465 0.5888 0.4016 - 0.776

200 0.0011 0.0016 0.0022 0.0038 0.004 -0.1832-0.1912

where all alphas are the eoefficient of Kibblc sseries. We also compute values of
confidence interval by first.eomputing mean then varance from a set of outputs from
Monte Carlo simulation. Finally,w€ s¢t a level of significant and calculate the confidence
interval. "1

Case Il: compare between Monte Caglo simulation and (B). Then the value of

E(L-y) att=11is —
: 1 4
L} '
Table 2
y alpha0 alpha ' alpha'2 Result Monte Carlo 95% interval
Lvesr | i
— combined
method
50 4.4497 0.3861 e"9,0‘46 W_ 4.7847 4.5975-4.9719
75 1.5082 +0.2818 0.055 1.8175 #1.773 1.5888 - 1.9602
100 0.4352 *:-é 1458 0.0473 Mﬁ@lﬁ%S 0.4016 - 0.776
200 0.0011 +~.0,0016 0.0022 0.0038 +..0.004 -0.1832-0.1912

We find out that e;en we divide intervals to be 1 unit each bucket or we split them
into different ranges ‘they give us'accurate value compare to Monte-Carlo simulation with
a simulation number of 1,000,000 times at 95% confidence interval. And this method has
an advantage .in term. of, computing. time. For. Monte"Carlo.simulation,. to receive the
answer it takes around 2.5 hours ‘for)afsimulation aumber_of 1,000,000 times using
MATLAB program on personal computer (Intel Core 2 Duo CPU 1.8 GHz). While it
takes only about 140 seconds for (A) and 13 seconds for (B). This means, in case I, it was
60 times faster and 670 times faster in case II.

In table 3, we show the answers we get from the combined method in many ways

of bucket arrangement.
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Table 3
y Case™* alphaO0 alphal alpha2 E(L-y)+ Time(sec.)**
1 4.4497 0.3861 0.046 4.8588 138.157
2 4.5368 0.3864 0.3463 5.09635 67.56% faster
50 3 4.4497 0.3866 -0.1997 4.73645 90.23% faster
4 4.4497 0.3861 0.046 4.8588 90.39% faster
5 4.4497 0.3861 0.046 4.8588 90.95% faster
1 0.4352 0.1458 0.0473 0.60465 136.781
2 0.4457 0.1472 0.5662 0.876 68.63% faster
100 3 0.4353 0.1462 -0.1984 0.4823 89.27% faster
4 0.4352 0.1458 0.0472 0.6046 90.45% faster
5 0.4352 0.1458 00463 0.60465 90.69% faster
1 0.00Ij.——0.00le O.W 0.0038 139.578
2 0.0012" 0,017 00106 0.0082  69.50% faster
200 3 M ';_00116 8.21E=05 = 0.0027 90.92% faster
4 . .0016 0.0021 0.00375 90.129% faster
5 Z&féjﬁ .'0.0022 0.0038 90.62% faster
*Case 1: We divide interval of every buckets to be equal to'1 unit.
Case 2: We divide interval of every bugkets to be equlal to 2 units.
Case 3: We divide the range of buckets to be equal to‘*l umt from 0 to 70. Then shift 2 units each
bucket until 150. From 150 to 200, the 1nterval is 5 units and for the rest buckets we increase
100 units bucket by bucket until reach 1,300. -'"' i
Case 4: We divide the range of buckets to be equal to I umt, f»rpm 0 to 100 and shift 3 units each
bucket from 100 to 199. Then, inctéase 10 umtﬁ”m 199 to 409. And the rest buckets, their
intervals are equal to 100. = Y-
Case 5: We divide the rangcof buckets to be equal to 1 unit from 0-to-1 ]d dnd shift 3 units each

bucket from 110 te- 200 Next buckets are set at 700 and 1,275. _'---"

**For case 2 to 5, the computmg times are the times compared to the computlng time of case 1.

We see that ifiwe divide, buckets teorwide the answer,will besinaccurate as showed

in case 2. In case, 3, because we start'to expand intervals too 'early’so the answer is also

imprecise. For case 4 and 5, we start td' expand the buekets around a hundred-something

and they'give us acceptable accurate answers.

So,there is a procedure to set up the range of buckets. It is important to keep the

range of early buckets to be narrow such as 1 unit each. We use a cumulative distribution

function (cdf.) of total losses to find a point that we can start to expand a size of buckets.
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Example 11

This example the setting is the same as example I except the potential loss of

obligor k£ which is equal to k* (Cy = k). For the given y = 200, 2000 , 5000 , 10000. We
will compare the results of expectation E (L —y)" between Monte Carlo simulation, and
the combined method whose intervals of buckets are in different ranges. We constructed

the interval of buckets equal to 1 unit from 0 to 6,000 and increase 1,000 units for the rest

buckets until 10,000, then shift 10,000 units bugket by bucket until reach 50,000.
Then the value of E,(L—y) att=11s

" Table 4
y alpha 0 alpha :I.—a|ph;2— ' Result  Monte Carlo 95% interval
of
combined
VAW 5 DN
200 746.3768 2.67}( /00904 —749.0936 745.9595 738.6836 - 753.2354
2000 152.6086 12.8832 4 4.3904 1166.187 166.1214 158.8455 - 173.3973
5000  4.5047 22788 [ 10769 ~7.32195 7.3769 0.101 - 14.6528
0.01275 0.0147 -7.2612 - 7.2906

10000 0.0025 0.0052 0.0101

oo odblad d . '8

#

From the table above, we se¢ that the rééﬁllls_. from the combined method are quite
precise and this takes around 50 times faster tI_l_Eﬁ!jMonte Carlo method. This shows us
that even the potential lesses are big, the answe-r'-ié_ ééili accurate:

In table 5, we ilustrate the answers we get from the combined method in many
ways of bucket arrangemént.

Table 5
y  Case*{ galpha0, palphady) <alpha 2 | ~E(E W)+  Time(sec)**
1 1523430 12.882 1.5444 166.0912 5763.7

2000 2 152.5224 12.8814 1.7464 166.277  96.55% faster
3 152.5225 12.8811 1.6687 A _166,23795"+ 97.21% faster
! 4.499 2.2769 1.0608 7.30605 5884
5000 2 4.5012 22771 0.9834 7.27 © '96.58% faster
3 4.5013 2.2764 1.1279 7.34165  97.25% faster
1 0.0025 0.0052 0.0101 0.01275 6023.1
10000 2 0.002 0.0045 0.0088 0.0109  96.71% faster
3 0.002 0.0045 0.009 0.011  97.31% faster

*Case 1: We divide the range of buckets to be equal to 1 unit from 0 to 6,000. Then shift 1,000 units
each bucket until 10,000. And the rest buckets, their interval are equal to 10,000 until reach
50,000.
Case 2: We split the interval of buckets to be equal to 2 units from 0 to 1,000. Then shift 5 units
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each bucket until 2,000. From 2,000 to 5,000, the interval is 10 units, next shift 100 units
until 6,000. From 6,000 to 10,000, the interval is 1,000 units. And the rest buckets, their
interval are equal to 10,000.

Case 3: We split the interval of buckets to be equal to 2 units from 0 to 500, 3 units from 500 to
1,001, 5 units from 1,001 to 2,001, 10 units from 2,001 to 5,001, 100 units from 5,001 to
6,001 and 1,000 units from 6,001 to 10,001. Then, shift 10,000 units for the rest buckets.

**For case 2 and 3, the computing times are the times compared to the computing time of case 1.

From table 5, we know that since the potential loss is large, we can set the buckets
a bit wider from the beginning.. And for the“well organized buckets, the speed of

. . . - . . .
computation increases a lot while the answer is still precise.

Probability
o o o e
(=)} ~ o0 Nel
k

o
w
k,
i

.

<
~
I

, et e : o
0 0.5 1 1.5 2 2.5 3 85 4 45
Potential loss ; X104

Figl;re 3: Cumulative distribution function for example I1

The graph above illustrates that we should separate buckets to be quite narrow
from 0 to about 4,000. Then, we can extend it taybe wider for the rest.

To compare the difficulty’ with the' previous example,l we found out that this
example is a bit more complicated than,the previous. Since the potential losses are high,
the way o, atrangebuckets becomes maoréldifficult\If welsplit'buckets toginarrow, it will
take a great deal of time. On the other hand, if we separate buckets too wide, the output
will be inaccurate. So, the difficulty is to organize size of buckets to be fit with the high

potential loss data
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Example 111

The setting of this example are also the same as given in example I, but
a default probability of each obligor is changed from 0.02 to be as follow.
Table 6

Prob. k Prob. k Prob. k Prob. k Prob.

0.9780 11 0.0730 21 0.0216 31 0.0483 41 0.9382
0.5035 12 0.6033 22 0.4505 32 0.4970 42 0.8200
0.3790 13 0.0386 23 0.3257 33 0.0520 43 0.5696
0.7677 14 0.5199 24 0. 7477 434 0.7408 44 0.8078
0.9288 15 0.6465 25 07572 285 0.2778 45 0.2424
0.1400 16 0.0544-26 _;0.1802""36 0.7501 46 0.6232
0.9159 17 Q D 3fle™=2 7 0.9480-+37 0.9847 47 0.8913
0.5835 18 0.8405 #28 0.8051 38 0.0957 48 0.6960
0.4063 19 0.4471¢ 29 0%2631. %29 0.6710 49 0.8847
0.3989 20 090854 80 _'0.0307 40" 0.0324 50 0.5163

Boo~v~ouobhwnrkx

We want to calculate E L —y) /ati# =" for the given y =50 , 75, 100 , 200. We will

compare the results among Monte Catlo sfltl_lulation, the combined method with the
interval of buckets equal to I unit, and the combined method whose intervals of buckets
are in different ranges. We separate the buckéfé__‘t_o_be 1 unit each from 1 to 690. Then,

shift 5 units from 690 to 900. Next buckets are s&ét_" 1,000 and 1,275 (B).

Case |: compare between Monte Carl'()'!."s;iriiu]ation and (A). Then the value of

E(L-y) att=11is

Table 7
y alpha 0 aI;ha 1 alpha2 result Monte Carlo 95% interval
50 639.2463. -0.0017. 0 .639.2446 639,753 .639.1939 - 640.3121
75 614.2463 | -0,0017 0 614.2446 614.7146 .614.1555 - 615.2737
100 589.2463 -0.0017 0 589.2446 589.5963 589.0372 - 590.1554
200 489.2463 -0.0017 0 489.2446 489.734 4891749 - 490.2931

Case Il: compare between Monte Carlo simulation and (B). Then the value of

E(L-y) att=11is
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Table 8
y alpha0 alphal alpha2 result Monte Carlo 95% interval
50 639.2349 0.0167 0.9513 639.7273 639.753 639.1939 - 640.3121
75 614.2349 0.0167 0.9513 614.7273 614.7146 614.1555-615.2737
100 589.2349 0.0167 0.9513 589.7273 589.5963 589.0372-590.1554
200 489.2349 0.0167 0.9513 489.7273 489.734 489.1749 - 490.2931

In this example, we want to know whether the probability of each obligor is not
the same and quite high the result is acceptabie’: ,111_9 results from the combined method

and Monte Carlo simulation show that they are alfnost the same.

-
— ' Tabied
y Case* alpha alphal | alpha2  E(L-y)+ Time(sec.)**
1 639.246 { '73 ~1.12E-06 . 639.2446 137.797
2 639. 395 -8.72E+03  -3699.7065 64.52% faster
50 3 449.21 464 % -0.0536 448.1382  90.66% faster
4 639 0043+ -0.0028 639.2457  31.73% faster
5 639.23 0167/ #0.9513 639.7273  42.45% faster
1 589. ~0.0017 421.43E-06 589.2446 138.375
2 589.098 21.395 -8.72E+03  -3749.7065 68.65% faster
100 3 399.2144 & -1.0484" ' 10.0536 398.1382  90.39% faster
4 589.2484, -0.0013  -0,0028 589.2457  32.24% faster
5 589.2349 400167  0.9513 589.7273  43.32% faster
1 489.2463 . -0.0017 -*:@%%97 489.2446 138.203
2 489.0985  21.395' -8.72E+0311,.-3849.7065 68.24% faster
200 3 299:2114 -1.0464 -5 36F-02"""2208.1382 90.10% faster
4 489(2484  -0.0013 .0.0028  489.2457 33.62% faster
5 489:2349 0.0167 0.9513  489.7273  42.86% faster

*Case 1: We divide interval of-€very buckets to be equal to 1 unit. Tt

Case 2: We divide interval of every=buckets to be equalito/2 units.

Case 3: We divide the range of buckets to be equal'to 1 unit from 0 to 100 and shift 3 units each
bucket from: 100 to 199. Then, increase 10 units from 199 to 409. And the rest buckets,
their interval are equal to 100.

Case 4: We divide the range'of buckets to'be equal to 1/unit from 0 to 800-and shift 3 units each
bucket from 800 to 902. Then, increase 200 units from 902 to 1,302.

Case 5: We separate the buckets to be wide 1 unit each from 1 to 690. Then, shift 5 units from 690
to 900. Next buckets are set at 1,000 and 1,275.

**For case 2 to 5, the computing times are the times compared to the computing time of case 1.
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From table 9 and e i the data we have, it seems

that we can set the broad i arrow those in the middle, then

expand again for the restbucls £Xa >, WE 'S ¢ interval to be 5 units each from
0 to 500, and 1 unit each fro from 900 to 1275. But, we
find that the graph is “S” shape # (o set very narrow buckets from the
beginning as previous examples '

Comparing with two exam high default probabilities do not make
the bucket arrangement more difficult., Tl one thing making the bucket

I e e e - S—— — = g [
arrangement more COMmMpleX=is-the-tigi-aii ] DOLCIILEd ""'{-

..................... i)

U
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CHAPTER IV
RESULTS

We find out that the combined method, whose sizes of buckets are arranged gives
us the acceptable accurate value as the output of the method with the size of buckets is 1
unit each to estimate the CDO tranche price at time t. And it is much less time consuming
to calculate compare to Monte Carlo simulation. This method works in both high and low
potential loss cases. Furthermore, no matter the default probabilities of each obligor are
high or low, this method still gives us the precise.answer. However, the method is
suitable just for portfoliosthat havelow correlation. Also, the bucket arrangement is very
important. If we set buckets toowide, the speed of computation increase, but the answers
are not accurate. So, we.meed 0 arrange bv{clf_et sizes that make the calculation time as
fastest as possible but still give us ah;acé@table value. We found that high default
probabilities do not affect the difficulty 'of t'}pe ‘bucket arrangement compared with low
default probabilities given'the Same potential 'il__'_qs!sgs. But the difficulty is raised when the
potential losses are high, because f()!r_zmhigh ppj‘@_{lﬁal losses, we can set a size of early
bucket wider than 1 unit each 10 fif the.data. HOWeyer we have to work harder to find that

number; a size of early buckets, as itiseasy to get an unacceptable output.

=i

This combined ‘method gi%fes us the a;:éeptable answer in high speed of time;

however it is quite serisjﬁve in the way of setting up bucketsiSo, we need to be careful
when we set them up. There is a procedure to set up the range of buckets. It is important
to keep the range of earl}; buckets to be narrow such as 1 unit each. We use a cumulative
distribution function{cdfi) of'total losses to find a'point thatjwe can; start to expand a size

of buckets.



CHAPTER YV
CONCLUSION

We develop a method which improves the calculation speed and is less

complicated in term of computation to approximate the CDO tranche price. We combine

two techniques; the correlation expansion (P.Glasserman and S.Suchintabandid, 2007)
i

advantage in term of calculation speed. ﬁn@an use this combined method
which gives us the accep anche price at time ¢ in high
speed of time. Howev we organize sizes of buckets

because it is quite sensiti t could be rejected.

]
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APPENDIX A

Model
Correlation Expansion

A numerical method for computing E(L—y)" which has been developed by
P.Glasserman and S.Suchintabandid [2007] shows that the difficulty of computing the
tranche price E(L —y)", whose obligors are correlated, can be expressed as a series of

prices in independent obligor medel. The form of this estimation method is:
-

E(L=~y) & Z:consz‘ENJ(L—y)+
/)

(1 :
This pricing method is based on.computing joint prebabilities of correlated normal

random variables which.i§ intérpreted as the probability that obligors default at the same
\ 4

.l

P(X, > X )zz const .p\” ... p\)

time.

i

where X; are correlated N(0,1) random variables, and x, are real numbers.

So, the first step is to estimate the value f)'f'-%f]) .. D\ which represent the default

joint probabilities of an-independent-obligoipoitiolio.Lachs obligor has a marginal
default probability of P!, The probability p‘” can be;computed by using the
perturbation formula. The;l, we can find the value of E S (L—- )7/)+ .

The nextsstep is'to calculate'the'value of \const, and substitute them into (1).

Therefore we receive E,(L — y)".

The Perturbation Formula

According to definition 2.1 of perturbed probability in P.Glasserman and

S.Suchintabandid, 2007, we can calculate p'”’which is the perturbed probability of
p,=P(X,>x)=®(x,) ; D(x)=1- (D(x,.) with @ the cumulative normal

distribution function by
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PI(J) =p;t ¢’(xi)z v, (i, k)H, (x,)
k=1
where, @(x,) 1is the standard normal density function

H (x) is the Hermite polynomial of degree n.

v,(i,k) are computed as follow,

GivenJ= (ji,..., j,) fio ! and a'set of perturbation parameters 0, ...,0,,
the recursion of v, (i,k) can bede ed as
v,(i,k)=v -
where 1 <i < Mar i ) D" 'is the truncation of

J by deleting the n™ o? - c'l":v i,k):=0 where
i i

Lu

k>n.ForallJ € D" and'’ >O as 0,,...,0, > O v, (i,k)

ﬂ'lJEJ’J‘VIEWl‘iWEJ’lﬂi
Q‘imENﬂ‘iﬂJ UA1AINYAY
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To make this clearer we can illustrate it as
J=¢ : 1

1
. x0a,
J =] : l=6a,x0+1 /\

v,(i,1)=6a, xv,(i,0)+0 v, (i)
J=0. ) 1=0,a,%0+1 /\\i/ \0

)= Oha;, x LB

,6,2)= j 1 vl v, (i2)

J = (j1’ j2’ J3) : ><¢93aj3 ‘93“;3 ng“js

1@ v62) v(3)

To calculate joint iitid e A explained here. Let P, be the

probability measure under ich: o WG random variables whose

D WP Puss @1 ]

W‘ﬁﬁf)?ﬁnﬂﬂfwmfn

> X,..n X, > X, )= by + byt +b, —+
ChARlNE "J“W‘ﬂél%ﬁ ’%“'ﬁ‘ﬁi e m e
method. With perturbation parametersd, =... = the coefficient b, can be

illustrate as the limit

T BB e,
JeD"
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where the weight w; is given as follows: w; := 1 if n = 0; otherwise w,; =
@,/(20°)". Define @, =-2@, +...+@,)and @,:=a .7, for all J = (iaeeen i)
from the set D".

The appropriate value of @to compute the perturbed probabilities p'”’and the

weighted sum can be set in moderately small to achieve a precise value of b,. Since they
found that as & — 0, the sum converges to.b, very quickly. Then we can estimate the
joint probability.

For E,(L-y) whose obligors are corielated, they apply the same method as
above, calculating the joint probabil-ity from._independent probabilities. Let

E ,(L—y)"indicate the expeefation of a portfolio whose ebligors default with perturbed

probabilities 7 independently: Then, we have

)) OF 3 AN .‘z_const B, (L~ y)*
L5

\
= O+, Rt
" 2!
o Jd ok

Then the coefficient ¢, in thie above expansion can be illustrated as follows

Z WYEJ (L~ ) ) LN a
JeD"

n

The weight w; is ¢alculated the same as above.

Probability Bucketinrg Approach

John Hull|and Alan White' [2004] develop- a technique called probability
bucketing with theé purpose of estimating the probability that the total loss lies in the k-th
bucket for allvk-~They build up- the probability-distribution ;of; the, loss by time T,
conditional on the vatues of the risk'factors“Z,,Z,,.., Z; . Assume that'the recovery rate is
known and can be stochastic, and there are M obligors. This technique can be explained
as follows

Initially, divide potential losses into ranges {O,bo }, {bo ,b, }, , {b K _1>® } and
refer to {O,bo} as the 0-th bucket, {bk_l,bk} as the k-th bucket (1< k£ < K-1), and {ij,oo}

as the K-th bucket. It is best to set bp = 0 and by, - br.; = u(1< k < K-1) for some constant u.
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Let: P¥) = the conditional probability that the loss by time T will be in
the k-th bucket. (p,(k|Z,...,Z,))
A, = the mean loss that the loss is in k-th bucket
(1Ifk<K).
Then, calculate P and A; by first assuming that there are no obligors, next

assuming that there is one obligor, foll

so on. In case that there are no ' there will be no loss. As a result
P”=1and P* =0 for pals = initial value 4y for k> 0, let

assuming that there are two obligors, and

where :

Y, = the I(I)'§s given default from the i-th obligor

fl LSRRI T

= the bucket includi é‘ng A +7Y for 0<k<K

AN FHUAGA Y o

probab111t§|sh1ft is considered.

The effect of i-th obligor is to move an amount of probability P p, from bucket
kto u(k) (0£k<K).
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If u(k) = k, then the formulas are:
prt = por
P = pr
A4, = AI: +pY,

A,y = AI: + p.Y,

We then obtain the total I on when all M obligors have been
considered. -
Example
i-th oblig - , j2
: 0.4
0.1
0.5

Suppose there are three obligors would like to find the total loss
distribution of these three obligors. ach in equal to 5.

1. Suppose first, th

-

0 10 % Then assume that the
' )

.

I

1-st obligor is li@n;f—

7
UHANYNTNYNS

®1ANLAY

6 25 5 10 10.5 15



2. Assume that the 2-nd obligor has been occurred.

31

0 25 5

3. Next, the 3-rd obli( edl &

]
30

0 25 565 10118 a5 - 00 235 25

e ey
e Fio]
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APPENDIX B

Probability bucketing code.

function [P,A] = BKT(loss,p, interval)

bin = length(interval)-1;

P = zeros(bin,1l);

P(1,1) = 1;

A = (interval(1:bin) + interval(2:bin+l))./2;
M=1

for k = 1:length(loss)
AA = AC(L:M) + loss(K);
U = sum(interval(:,

S1 = sparse(M,bin);
o - sparse(M,bi:)7'

S1((U-1).*M + [1:M]"
S2(U-1).*M + [1:
S1 = sum(S1,1)";
S2 = sum(S2,1)";
u = find(Sl1);

AW = (AW -*P(u

P(1:M) = P(1:M) -
P(wW) = P(u) + S1(uw)

M =sum(interval < sum
end ¢

end

AULINENTNEINS
RINNIUUNIININY



Correlation Expansion code

function [p,PP,J] = CORR(d,n,I,theta)
%d number of columns

number of dimensions

number of obligors
xIsread("pi_new.xIs","P_new")";
xlIsread("pi_new.xIs","A _new");
norminv(1-p,0,1);
pdf("Normal*",x,0,1);
dimension(n,d);
zeros(1,1);
zeros(1,n);
zeros(l,n+1);
P = zeros(size(J,1),1);
or row = 1:1:size(J,1);

I i(/ \\\v s(J(row m));
3\\

X
=]
Inmn

end

end

PP(row,:) =
end

Dimension function cod

function a = dimensiongp ,d)
noValue = 2*d+1

e I AN NINYINT

valu
lot = (novalue™n)/(novalue™k);

HARI T UNIINYIA Y

ile j<=lot
a(l k) = value;
= i+l;
J = 3+1;

end
value = value+1;
if value > d
value = -d;
end
end
end
end



Perturb function code
function L = perturbl(theta,E,n)
L = [0 1]*theta*E(1) + [1 O];

i=2;

while size(L) <= n

L = [0 L]*theta*E(i) + [L O];
=i+ 1;

end

end

Hermite function code

function hermite = herm(m,n)
ifm== s
hermite
elseif m ==
hermite
elseif ==
hermite
elseif m ==
hermite
elseif m ==
hermite
elseif m ==
hermite
elseif m ==
hermite
elseif ==
hermite
elseif m ==
hermite
elseif ==
hermite -36 2 z 50*n"3+94 3
else m == 10 \ P!
hermite = 5% nA2-945;
end || E
4

AULINENTNEINS
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Code for pricing CDO tranche at time t
function [BO,B1,B2] = M_test(d,n,l,theta,yy)

loss = xlsread("pi_new.xlIs","loss _new");
interval = xlsread("pi_new.xlIs","interval_new");
[p.,PP,J] = CORR(d,n,I,theta);

W = abs(sign(J));

W2 = zeros(size(J));

[P1,A1] = BKT(loss,p,interval);

for row = 1:1:size(J,1)
[P,A] = BKT(loss,PP(row, :
expected(row,1) = sum(m

if W(row,n)(
w2(row, :

for w = 1:
if

end
end

end
end

z = find(W ==

W(z) = -10;
BO = sum(max(0,Al-yy).*P1);-
Bl = sum(expected.*(
B2 = sum(expected . *(
end

s consufhbf 4] 9 t) ‘ﬂ'a' WBINS

xIsread("piinew.xIs", A _new”
P xIsread(” p| new.xls®,"P new1§

SR TN AN A 8

for k = 1:1:m

E = mvnrnd(0,1,50);

Z = mvnrnd(0,1,5);

for 1 = 1:length(E)

X = (A(1,:)*Z2) + (sqrt(1-(ACi, )*A(I, ) ")) E(I));
1) = X > x(i);

end

L(k) = sum(loss.*1");

end

p =L > 200;
expected = sum(max(0,L-200).*p)/m;

35
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