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CHAPTER I 

INTRODUCTION 

 

       As the credit derivatives market had grown over the past decade, products that 

depended on default correlations had become more popular such as a collateralized debt 

obligation (CDOs) and other credit basket derivatives. There are several advantages of 

issuing credit risk securities to improve the liquidity or cash flow (Rajiv Bhatt, 2008), so 

we believe that the CDOs market and other credit basket derivatives will return after the 

CDO market was almost stopped since the end of 2007 because of the crisis. In this paper, 

we would like to create a better or more accurate pricing model for market participants 

when the CDOs market comebacks. 

       One of the major risks involved in the evaluation of credit derivatives is credit risk 

which is the distribution of financial loss caused by a broken financial agreement; for 

instance, a failure to pay interest or principal on a loan or bond. Approximating loss 

distribution that tells us the probabilities associated with different percentage losses in the 

portfolio is a part of the pricing process. The difficult task when we construct a loss 

distribution is the correlation among obligors since different correlation among obligors 

can make a loss distribution look completely different. In this paper, we presented the 

way to deal with this task through CDOs pricing framework. 

       Generally, a Monte Carlo Simulation, the market standard method, is applied to 

derive values for CDOs.  However, a Monte Carlo Simulation is not very efficient for 

calculating price in real time because of the number of simulations that need to be run. 

For one sampling of Z, a set of risk factors, the computing time of Joint Gaussian 

probabilities requires 2dM basic operations and M evaluation of the normal cdf where d 

refer to the number of risk factors and M is number of obligors. Since the simulation 

often requires many replications, the computing time will grow with the number of 

replication. This can take too much time for practitioners in times of strong market 

movements. For numerical methods, the more difficulty of pricing CDOs has arisen since 

we venture into the more realistic case of multifactor models, because traditional methods 

often require computing time that is exponential in the number of factors. (P.Glasserman 

and S.Suchintabandid, 2007).   
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       We will focus on the problem of pricing CDOs and credit basket derivatives. Our 

purpose of this work is to develop a method of approximating CDOs tranche price that is 

less complicated in the computation of the model’s output and improves the calculation 

speed. To determine joint default probabilities and develop a method of approximating 

CDOs tranche prices we combine two techniques: 

1. The correlation expansion (P.Glasserman and S.Suchintabandid, 2007)  

2. The probability bucketing approach (John Hull and Alan White, 2004) 

       For the first technique, the correlation expansion, is a method for approximating 

CDOs tranche prices by using a series of portfolios in which obligors are independent to 

approximate a portfolio whose obligors are correlated. The approximation is of the form:       

   )(
~

.)( yLEconstyLE J
J

 

where, for each label  J, the expectation   )(
~

yLEJ   is the tranche price of a credit 

portfolio whose obligors are independent.  

The advantage of this method is 

  Pricing in independent obligor models are easy to compute. 

The disadvantage of this method is 

 This technique requires the very exact value of  )(
~

yLEJ . 

The second technique is the probability bucketing approach. The purpose of this 

technique is to estimate the probability that the total loss lies in the k-th bucket for all k 

by time T, conditional on the values of the risk factors dZZZ ,...,, 21 . Assume that the 

recovery rate is known and there are M obligors, then: 

1. Divide potential losses into ranges: 

2. Calculate the conditional probability that the loss by time T will be in the  

    k-th bucket ( )(k
TP ) and the mean loss conditional that the loss is in  k-th 

    bucket ( Ak ) by first assume that there are no obligors.   
3. Built up one obligor at a time.  

The only assumption in the iterative procedure is that we concentrate at the recent 

value of Ak for all the probability associated with bucket k.  

      ,,,,,,0 1100 Kbbbb 
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Figure 1: Illustrate the Probability Bucketing Technique 

 

The advantages of this method are 

 It gives us the advantage in term of computation speed. 

 It gives reasonably accurate answers compared with Monte Carlo simulation. 

 It is flexible to organize sizes of buckets. 

The disadvantage of this method is 

 It cannot deal with the correlation task. 
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Andersen, L., J. Sidenius, and S. Basu (2003) also show a similar technique. The 

loss unit was chosen by a ratio of losses which is a special case of probability bucketing 

approach. 

So, we use probability bucketing technique to create independent total loss 

distributions and merge them with correlation expansion technique to help them create a 

dependent total loss distribution.   

       From the two techniques above, we find that using probability bucketing approach 

to estimate  )(
~

yLEJ and substituting it into   

   )(
~

.)( yLEconstyLE J
J

 

still give us the accurate value of  )( yLE in condition of the size of the buckets. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

CHAPTER II 

LITERATURE REVIEW 

 

Currently, several numerical integrations were presented to deal with the difficulty 

of correlation among obligors in basket credit derivatives and CDOs pricing. Andersen, 

Sidenius, and Basu (2003) and Laurent and Gregory (2003) presented the method to deal 

with dependent defaults for multi-name credit derivatives and found that using semi-

analytical methods and numerical integration could efficiently calculate CDO prices 

which were a single-factor model. 

P.Glasserman and S.Suchintabandid (2007) developed numerical methods which 

were non-simulation based, and were less sensitive to the number of factors for evaluating 

credit risks and pricing basket credit derivatives and CDOs. They presented two methods 

which were Correlation Expansion and the method that based on the Laplace inversion 

method. For Correlation Expansion technique showed that CDO tranche prices could be 

expressed as a series of prices in independent obligor models and could be used to 

approximate joint probabilities of multivariate normal random variables. In another 

method, it presented fast and precise way of valuing CDO tranche especially with the 

high number of risk factors. 

To predict the loss distribution for basket credit derivatives and CDOs is one of 

the important parts of the pricing process. Oldrich Alfons Vasicek (2002) offered a 

method to construct loss distributions that could be used to represent the loan loss 

behavior of large portfolios. 

John Hull and Alan White (2004) offered a numerical procedure to create the loss 

distribution called “Probability Bucketing”. Andersen, L., J. Sidenius, and S. Basu (2003) 

also showed the similar technique. The loss unit was chosen by a ratio of losses which 

was a special case of probability bucketing approach.  

Other researchers for example Sudheer Chava, Catalina Stefanescu and Stuart 

Turnbull (2008) also focused on modeling and calculating the loss distribution. And 

found that the default probabilities and recovery rate had negative correlation. In addition, 

they found that the predicted loss distribution was affected by the default model 

significantly. 
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There also are a number of researchers who presented numerical methods to price 

credit basket derivative products. From literature review above, each method has both 

advantages and disadvantages. For our work, we decided to combine two techniques, 

Correlation Expansion and Probability Bucketing, to improve the method which can give 

us the advantage in term of speed and accuracy also in the less complicated way. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

CHAPTER III 

METHODOLOGY 

 

The main contribution of this paper is to combine two techniques. First, the 

Correlation Expansion method which is a method for approximating CDOs tranche prices 

by using a series of portfolios in which obligors are independent to approximate a 

portfolio whose obligors are correlated. The approximation is of the form:       

   )(
~

.)( yLEconstyLE J
J

 

The advantage of this method is pricing in independent obligor models is easy to 

compute. The second method is the Probability Bucketing method which approximates 

the probability distribution of the losses by time T. The loss distribution is built up one 

obligor at a time. This approach has an advantage in term of computation speed and 

always gives reasonably accurate answers compared with Monte Carlo simulation (John 

Hull and Alan White, 2004). The details of each method are explained in appendix A.  

The key that makes the program (MATLAB) generate faster is the technique that 

we created sparse matrix of probabilities and updated probabilities in every bucket at the 

same time for every one obligor that is added in, instead of using loops to update 

probabilities which can update only one bucket a loop. Suppose we have N buckets and 

M obligors. If we do update the probability one time for one bucket, then for one obligor 

that is added in we have to calculate it N times and for M obligors we have to do it N×M 

times. This is very time consuming. So, we update probabilities in the form of matrix. 

This helps us to be able to update N buckets at one time. We also developed the program 

code to be more flexible in case that there are many probabilities that move to the same 

bucket. We can illustrate the matrix approach in Probability Bucketing as follows 
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                                                             Buckets after add the i-th obligor 
 
 

Previous 

buckets 

before 

add the  

i-th 

obligor 

 

 

 

The two figures above represent the sparse matrix of probabilities in each bucket 

after we added the i-th obligor. Next, sum them in column and find that which buckets are 

not zero. Then, we can update the mean loss and the probabilities following the formulas 

in appendix A by using the two matrixes above. 

To combine these two methods, first, we need to create perturbed probabilities 

( )(~ J
ip ). Then, substitute the perturbed probabilities )(~ J

ip  to contribute the loss distribution 

by using probability bucketing method. The loss distribution tells us about the 

probabilities associated with different percentage losses in a portfolio. Consequently, we 

easily obtain expectations  )(
~

yLEJ whose obligors are independent. But to make it 

more realistic, we need to consider the correlation among obligors. Thus, we use the 

correlation expansion method to deal with this task. This method helps us obtain the 

expectation  )( yLEt whose obligors are dependent from expectations  )(
~

yLEJ whose 

obligors are independent. 

 
 

Bin 1 Bin 2 Bin 3 … Bin N 

Bin 1 P1*p(i) 0 0  0 

Bin 2 0 0 P2*p(i)  0 

Bin 3 0 0 P3*p(i)  0 

       

Bin m-1 0 0 0  Pm-1*p(i) 

Bin m 0 0 0  Pm*p(i) 

Sum P1*p(i) 0 P2*p(i)+ P3*p(i)  Pm-1*p(i)+ Pm*p(i) 

    Bin 1 Bin 2 Bin 3 … Bin N 

Bin 1 P1*p(i)*(A1+Yi) 0 0  0 

Bin 2 0 0 P2*p(i)*(A3+Yi)  0 

Bin 3 0 0 P3*p(i)*(A3+Yi)  0 
       

Bin m-1 0 0 0  Pm-1*p(i)*(Am-1+Yi) 

Bin m 0 0 0  Pm*p(i)*(Am+Yi) 

Sum P1*p(i)*(A1+Yi) 0 
P2*p(i)*(A3+Yi)+ 
P3*p(i)*(A3+Yi) 

 
Pm-1*p(i)*(Am-1+Yi)+ 

Pm*p(i)*(Am+Yi) 
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We can summarize this through these steps: 

1. Calculate perturbed probabilities ( )(~ J
ip ). 

2. Create independent loss distributions of perturbed probabilities using 

probability bucketing technique. 

3. Compute expectations   )(
~

yLEJ  whose obligors are independent. 

4. Weight  )(
~

yLEJ using correlation expansion technique. Then, we receive 

the expectation  )( yLEt whose obligors are dependent. 

To illustrate the computing time, P.Glasserman and S.Suchintabandid (2007) 

compare the computing time of Monte Carlo Simulation and Correlation Expansion 

method in the following table 

 Plain Monte-Carlo 

With N replications 

Correlation Expansion 

Number of operations   

Basic operations* 2dMN 
M

n

dn
n 







  2
4  

Normal cdf  (.) MN - 

Accuracy 








N

1
 

 1 n  

*Basic operations comprise addition and multiplication. 

 

Where d is refer to the number of risk factors. M is number of obligors and n is the 

number of dimensions. This approximate time of Correlation Expansion does not include 

the evaluated time of    Mvv  ,,1  in perturbation method (only additions and 

multiplications). 

However, since we combine two techniques which are Correlation Expansion and 

Probability Bucketing, the approximation of computing time is changed. The advantage 

of Probability Bucketing helps to reduce computing time of Correlation Expansion 

around 1.5 times of bucket reducing times. For example, suppose that we have M obligors 

and 1,000 buckets. This takes time T with Correlation Expansion to calculate. If we 

rearrange the buckets to be 250 buckets, the approximate time of the combined method is 

T / (1.5*4).  
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So, this combined method lets us obtain an acceptable value in such a short time 

compared to the traditional methods such as Monte Carlo simulation which is not very 

efficient for calculating price in real time because of the number of simulations that is 

needed to be run. We will show how this combined method works through three 

examples below.  

For the first example, we show a case that the potential losses are small and a 

default probability of each obligor is equally low. 

For the second example, we show a case that the potential losses are big and a 

default probability of each obligor is equally low. 

 And for the last example, we illustrate a case that a default probability of each 

obligor is different and high. 

 

Example I 

 Suppose we have a portfolio of 50 obligors. Each obligor has a default probability 

equal to 0.02. The given loss amount of obligor k is Ck = k. The perturbation parameter   

that we use is 0.1. And loading matrix A is a sparse matrix size 50 x 5. For the first 

column, the elements from a(1,1) to a(12,1) are equal to 0.2. The next column, from 

a(9,2) to a(22,2) are 0.2, and elements a(19,3) to a(32,3) of the third column, a(29,4) to 

a(42,4) of the fourth column and a(39,5) to a(50,5) of the fifth column are equal to 0.2 as 

well. We want to calculate  )( yLEt  at t = 1 for the given y = 50 , 75 , 100 , 200. We 

will compare the results among Monte Carlo simulation, the combined method with the 

interval of buckets equal to 1 unit (A), and the combined method whose intervals of 

buckets are in different ranges. We divide the range of buckets to be equal to 1 unit from 

0 to 110 and shift 3 units each bucket from 110 to 200. Next buckets are set at 700 and 

1,275 (B). 

 

 Case I: compare between Monte Carlo simulation and (A). Then the value of 

 )( yLEt  at t = 1 is 
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Table 1 

y  alpha 0  alpha 1  alpha 2  Result 
of 

combined 
method 

Monte Carlo  95% interval 

50  4.4497  0.3861 0.046 4.8588 4.7847 4.5975 ‐ 4.9719

75  1.5082  0.2818 0.0547 1.81735 1.773 1.5888 ‐ 1.9602

100  0.4352  0.1458 0.0473 0.60465 0.5888 0.4016 ‐ 0.776

200  0.0011  0.0016 0.0022 0.0038 0.004 ‐0.1832 ‐ 0.1912

 

where all alphas are the coefficient of Kibble’s series. We also compute values of 

confidence interval by first computing mean then variance from a set of outputs from 

Monte Carlo simulation. Finally, we set a level of significant and calculate the confidence 

interval. 

Case II: compare between Monte Carlo simulation and (B). Then the value of 

 )( yLEt  at t = 1 is 

Table 2 

y  alpha 0  alpha 1 alpha 2 Result
of 

combined 
method 

Monte Carlo 95% interval

50  4.4497  0.3861 0.046 4.8588 4.7847 4.5975 ‐ 4.9719

75  1.5082  0.2818 0.055 1.8175 1.773 1.5888 ‐ 1.9602

100  0.4352  0.1458 0.0473 0.6047 0.5888 0.4016 ‐ 0.776

200  0.0011  0.0016 0.0022 0.0038 0.004 ‐0.1832 ‐ 0.1912

 

We find out that even we divide intervals to be 1 unit each bucket or we split them 

into different ranges they give us accurate value compare to Monte Carlo simulation with 

a simulation number of 1,000,000 times at 95% confidence interval. And this method has 

an advantage in term of computing time. For Monte Carlo simulation, to receive the 

answer it takes around 2.5 hours for a simulation number of 1,000,000 times using 

MATLAB program on personal computer (Intel Core 2 Duo CPU 1.8 GHz). While it 

takes only about 140 seconds for (A) and 13 seconds for (B). This means, in case I, it was 

60 times faster and 670 times faster in case II. 

In table 3, we show the answers we get from the combined method in many ways 

of bucket arrangement. 
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Table 3 

y Case* alpha 0 alpha 1 alpha 2 E(L- y)+ Time(sec.)** 
  1 4.4497 0.3861 0.046 4.8588 138.157
  2 4.5368 0.3864 0.3463 5.09635 67.56% faster

50 3 4.4497 0.3866 -0.1997 4.73645 90.23% faster
  4 4.4497 0.3861 0.046 4.8588 90.39% faster
  5 4.4497 0.3861 0.046 4.8588 90.95% faster
  1 0.4352 0.1458 0.0473 0.60465 136.781
  2 0.4457 0.1472 0.5662 0.876 68.63% faster
100 3 0.4353 0.1462 -0.1984 0.4823 89.27% faster

  4 0.4352 0.1458 0.0472 0.6046 90.45% faster
  5 0.4352 0.1458 0.0473 0.60465 90.69% faster
  1 0.0011 0.0016 0.0022 0.0038 139.578
  2 0.0012 0.0017 0.0106 0.0082 69.50% faster
200 3 0.0011 0.0016 8.21E-05 0.0027 90.92% faster

  4 0.0011 0.0016 0.0021 0.00375 90.12% faster
  5 0.0011 0.0016 0.0022 0.0038 90.62% faster

*Case 1: We divide interval of every buckets to be equal to 1 unit. 

  Case 2: We divide interval of every buckets to be equal to 2 units. 

  Case 3: We divide the range of buckets to be equal to 1 unit from 0 to 70. Then shift 2 units each   

             bucket until 150. From 150 to 200, the interval is 5 units and for the rest buckets we increase  

 100 units bucket by bucket until reach 1,300.  

  Case 4: We divide the range of buckets to be equal to 1 unit from 0 to 100 and shift 3 units each  

                bucket from 100 to 199. Then, increase 10 units from 199 to 409. And the rest buckets, their  

 intervals are equal to 100. 

  Case 5: We divide the range of buckets to be equal to 1 unit from 0 to 110 and shift 3 units each  

 bucket from 110 to 200. Next buckets are set at 700 and 1,275.    

**For case 2 to 5, the computing times are the times compared to the computing time of case 1. 

 

We see that if we divide buckets too wide the answer will be inaccurate as showed 

in case 2. In case 3, because we start to expand intervals too early so the answer is also 

imprecise. For case 4 and 5, we start to expand the buckets around a hundred-something 

and they give us acceptable accurate answers.  

So, there is a procedure to set up the range of buckets. It is important to keep the 

range of early buckets to be narrow such as 1 unit each. We use a cumulative distribution 

function (cdf.) of total losses to find a point that we can start to expand a size of buckets. 
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Figure 2: Cumulative distribution function for example I  

From figure 1 we see that the graph is sharply increased from the amount of 

potential loss of 0 to roughly 100. Then, it is gradually raised and stabled. So, we can 

choose a specific number around a hundred, and divide buckets to be quite narrow from 0 

to that number and make interval wider and wider for the rest of buckets. It also works for 

the range with the decimal. Nevertheless, the answer will be inaccurate if we create 

intervals of buckets too wide.  

The most advantage of using probability bucketing is the flexibility of bucket 

organization. Because we can set the number of buckets to be as small as possible, while 

obtain the acceptable accurate output.  As table 3 shows us, if we well organize the 

buckets, we can obtain an acceptable accurate output in high speed of computing.  

The running time of this combined method depends on the number of buckets and 

obligors. For this example with 50 obligors, the running time is about 120 seconds per 

1,000 buckets.  
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Example II 

This example the setting is the same as example I except the potential loss of 

obligor k which is equal to k2 (Ck = k2). For the given y = 200 , 2000 , 5000 , 10000. We 

will compare the results of expectation  )( yLEt  between Monte Carlo simulation, and 

the combined method whose intervals of buckets are in different ranges. We constructed 

the interval of buckets equal to 1 unit from 0 to 6,000 and increase 1,000 units for the rest 

buckets until 10,000, then shift 10,000 units bucket by bucket until reach 50,000. 

Then the value of  )( yLEt  at t = 1 is 

Table 4 

y  alpha 0  alpha 1  alpha 2  Result 
of 

combined 
method 

Monte Carlo  95% interval 

200  746.3768  2.6716  0.0904 749.0936 745.9595 738.6836 ‐ 753.2354

2000  152.6086  12.8832  1.3904 166.187 166.1214 158.8455 ‐ 173.3973

5000  4.5047  2.2788  1.0769 7.32195 7.3769 0.101 ‐ 14.6528

10000  0.0025  0.0052  0.0101 0.01275 0.0147 ‐7.2612 ‐ 7.2906

 

 From the table above, we see that the results from the combined method are quite 

precise and this takes around 50 times faster than Monte Carlo method. This shows us 

that even the potential losses are big, the answer is still accurate.  

In table 5, we illustrate the answers we get from the combined method in many 

ways of bucket arrangement. 

Table 5 

y Case* alpha 0 alpha 1 alpha 2 E(L- y)+ Time(sec.)**
  1 152.437 12.882 1.5444 166.0912 5763.7
2000 2 152.5224 12.8814 1.7464 166.277 96.55% faster

  3 152.5225 12.8811 1.6687 166.23795 97.21% faster
  1 4.499 2.2769 1.0603 7.30605 5884
5000 2 4.5012 2.2771 0.9834 7.27 96.58% faster

  3 4.5013 2.2764 1.1279 7.34165 97.25% faster
  1 0.0025 0.0052 0.0101 0.01275 6023.1
10000 2 0.002 0.0045 0.0088 0.0109 96.71% faster
  3 0.002 0.0045 0.009 0.011 97.31% faster

*Case 1: We divide the range of buckets to be equal to 1 unit from 0 to 6,000. Then shift 1,000 units  

  each bucket until 10,000. And the rest buckets, their interval are equal to 10,000 until reach  

  50,000. 

  Case 2: We split the interval of buckets to be equal to 2 units from 0 to 1,000. Then shift 5 units  
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  each bucket until 2,000. From 2,000 to 5,000, the interval is 10 units, next shift 100 units  

  until 6,000. From 6,000 to 10,000, the interval is 1,000 units. And the rest buckets, their  

  interval are equal to 10,000. 

  Case 3: We split the interval of buckets to be equal to 2 units from 0 to 500, 3 units from 500 to  

 1,001, 5 units from 1,001 to 2,001, 10 units from 2,001 to 5,001, 100 units from 5,001 to  

 6,001 and 1,000 units from 6,001 to 10,001. Then, shift 10,000 units for the rest buckets. 

**For case 2 and 3, the computing times are the times compared to the computing time of case 1. 

 

 From table 5, we know that since the potential loss is large, we can set the buckets 

a bit wider from the beginning. And for the well organized buckets, the speed of 

computation increases a lot while the answer is still precise. 
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Figure 3: Cumulative distribution function for example II 

The graph above illustrates that we should separate buckets to be quite narrow 

from 0 to about 4,000. Then, we can extend it to be wider for the rest. 

To compare the difficulty with the previous example, we found out that this 

example is a bit more complicated than the previous. Since the potential losses are high, 

the way to arrange buckets becomes more difficult. If we split buckets too narrow, it will 

take a great deal of time. On the other hand, if we separate buckets too wide, the output 

will be inaccurate. So, the difficulty is to organize size of buckets to be fit with the high 

potential loss data 
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Example III 

 The setting of this example are also the same as given in example I, but  

a default probability of each obligor is changed from 0.02 to be as follow. 

Table 6 

k Prob. k Prob. k Prob. k Prob. k Prob. 
1 0.9780 11 0.0730 21 0.0216 31 0.0483 41 0.9382
2 0.5035 12 0.6033 22 0.4505 32 0.4970 42 0.8200
3 0.3790 13 0.0386 23 0.3257 33 0.0520 43 0.5696
4 0.7677 14 0.5199 24 0.7477 34 0.7408 44 0.8078
5 0.9288 15 0.6465 25 0.7872 35 0.2778 45 0.2424
6 0.1400 16 0.0544 26 0.1802 36 0.7501 46 0.6232
7 0.9159 17 0.5371 27 0.9480 37 0.9847 47 0.8913
8 0.5835 18 0.8405 28 0.8051 38 0.0957 48 0.6960
9 0.4063 19 0.4471 29 0.2531 39 0.6710 49 0.8847

10 0.3989 20 0.9035 30 0.0307 40 0.0324 50 0.5163
 

We want to calculate  )( yLEt  at t = 1 for the given y = 50 , 75 , 100 , 200. We will 

compare the results among Monte Carlo simulation, the combined method with the 

interval of buckets equal to 1 unit, and the combined method whose intervals of buckets 

are in different ranges. We separate the buckets to be 1 unit each from 1 to 690. Then, 

shift 5 units from 690 to 900. Next buckets are set at 1,000 and 1,275 (B). 

Case I: compare between Monte Carlo simulation and (A). Then the value of 

 )( yLEt  at t = 1 is 

Table 7 

y  alpha 0  alpha 1  alpha 2  result  Monte Carlo  95% interval 

50  639.2463  ‐0.0017 0 639.2446 639.753 639.1939 ‐ 640.3121

75  614.2463  ‐0.0017 0 614.2446 614.7146 614.1555 ‐ 615.2737

100  589.2463  ‐0.0017 0 589.2446 589.5963 589.0372 ‐ 590.1554

200  489.2463  ‐0.0017 0 489.2446 489.734 489.1749 ‐ 490.2931

 

Case II: compare between Monte Carlo simulation and (B). Then the value of 

 )( yLEt  at t = 1 is 
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Table 8 

y  alpha 0  alpha 1  alpha 2  result  Monte Carlo  95% interval 

50  639.2349  0.0167 0.9513 639.7273 639.753 639.1939 ‐ 640.3121

75  614.2349  0.0167 0.9513 614.7273 614.7146 614.1555 ‐ 615.2737

100  589.2349  0.0167 0.9513 589.7273 589.5963 589.0372 ‐ 590.1554

200  489.2349  0.0167 0.9513 489.7273 489.734 489.1749 ‐ 490.2931

 

 In this example, we want to know whether the probability of each obligor is not 

the same and quite high the result is acceptable. The results from the combined method 

and Monte Carlo simulation show that they are almost the same.  

Table 9 

y Case* alpha 0 alpha 1 alpha 2 E(L- y)+ Time(sec.)**
  1 639.2463 -0.0017 -1.12E-06 639.2446 137.797
  2 639.0985 21.395 -8.72E+03 -3699.7065 64.52% faster

50 3 449.2114 -1.0464 -0.0536 448.1382 90.66% faster
  4 639.2484 -0.0013 -0.0028 639.2457 31.73% faster
  5 639.2349 0.0167 0.9513 639.7273 42.45% faster
  1 589.2463 -0.0017 -1.43E-06 589.2446 138.375
  2 589.0985 21.395 -8.72E+03 -3749.7065 68.65% faster
100 3 399.2114 -1.0464 -0.0536 398.1382 90.39% faster

  4 589.2484 -0.0013 -0.0028 589.2457 32.24% faster
  5 589.2349 0.0167 0.9513 589.7273 43.32% faster
  1 489.2463 -0.0017 -8.10E-07 489.2446 138.203
  2 489.0985 21.395 -8.72E+03 -3849.7065 68.24% faster
200 3 299.2114 -1.0464 -5.36E-02 298.1382 90.10% faster

  4 489.2484 -0.0013 -0.0028 489.2457 33.62% faster
  5 489.2349 0.0167 0.9513 489.7273 42.86% faster

*Case 1: We divide interval of every buckets to be equal to 1 unit. 

  Case 2: We divide interval of every buckets to be equal to 2 units. 

  Case 3: We divide the range of buckets to be equal to 1 unit from 0 to 100 and shift 3 units each  

  bucket from 100 to 199. Then, increase 10 units from 199 to 409. And the rest buckets,  

  their interval are equal to 100. 

  Case 4: We divide the range of buckets to be equal to 1 unit from 0 to 800 and shift 3 units each  

           bucket from 800 to 902. Then, increase 200 units from 902 to 1,302.  

  Case 5: We separate the buckets to be wide 1 unit each from 1 to 690. Then, shift 5 units from 690  

  to 900. Next buckets are set at 1,000 and 1,275. 

**For case 2 to 5, the computing times are the times compared to the computing time of case 1. 
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Figure 4: Cumulative distribution function for example III 

From table 9 and figure 3, to create buckets that suit the data we have, it seems 

that we can set the broad intervals of early buckets and narrow those in the middle, then 

expand again for the rest buckets. For example, we set the interval to be 5 units each from 

0 to 500, and 1 unit each from 500 to 900, then 5 units each from 900 to 1275. But, we 

find that the graph is “S” shape though, we still need to set very narrow buckets from the 

beginning as previous examples. 

Comparing with two examples above, the high default probabilities do not make 

the bucket arrangement more difficult. The only one thing making the bucket 

arrangement more complex is the high amount of potential losses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

CHAPTER IV 

RESULTS 

 

We find out that the combined method, whose sizes of buckets are arranged gives 

us the acceptable accurate value as the output of the method with the size of buckets is 1 

unit each to estimate the CDO tranche price at time t. And it is much less time consuming 

to calculate compare to Monte Carlo simulation. This method works in both high and low 

potential loss cases. Furthermore, no matter the default probabilities of each obligor are 

high or low, this method still gives us the precise answer.  However, the method is 

suitable just for portfolios that have low correlation. Also, the bucket arrangement is very 

important. If we set buckets too wide, the speed of computation increase, but the answers 

are not accurate. So, we need to arrange bucket sizes that make the calculation time as 

fastest as possible but still give us an acceptable value. We found that high default 

probabilities do not affect the difficulty of the bucket arrangement compared with low 

default probabilities given the same potential losses. But the difficulty is raised when the 

potential losses are high, because for high potential losses, we can set a size of early 

bucket wider than 1 unit each to fit the data. However we have to work harder to find that 

number; a size of early buckets, as it is easy to get an unacceptable output.  

This combined method gives us the acceptable answer in high speed of time; 

however it is quite sensitive in the way of setting up buckets. So, we need to be careful 

when we set them up. There is a procedure to set up the range of buckets. It is important 

to keep the range of early buckets to be narrow such as 1 unit each. We use a cumulative 

distribution function (cdf.) of total losses to find a point that we can start to expand a size 

of buckets. 

 
 
 
 
 
 
 
 
 
 
 
 



 

CHAPTER V 

CONCLUSION 

 

       We develop a method which improves the calculation speed and is less 

complicated in term of computation to approximate the CDO tranche price. We combine 

two techniques; the correlation expansion (P.Glasserman and S.Suchintabandid, 2007) 

which gives an advantage that pricing in independent obligor models is easy to compute 

and the probability bucketing approach (John Hull and Alan White, 2004) which gives the 

advantage in term of calculation speed. We find that we can use this combined method 

which gives us the acceptable output to estimate the CDO tranche price at time t in high 

speed of time. However, we need to be careful when we organize sizes of buckets 

because it is quite sensitive. If we disorganize buckets, the result could be rejected. 
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APPENDICES



 

APPENDIX A 

 

Model 

Correlation Expansion 

       A numerical method for computing  )( yLE  which has been developed by 

P.Glasserman and S.Suchintabandid [2007] shows that the difficulty of computing the 

tranche price  )( yLE , whose obligors are correlated, can be expressed as a series of 

prices in independent obligor model. The form of this estimation method is: 

                                                   )(
~

.)( yLEconstyLE J
J

                                

(1) 

This pricing method is based on computing joint probabilities of correlated normal 

random variables which is interpreted as the probability that obligors default at the same 

time. 


J

J
M

J
MM ppconstxXxXP )()(

111
~~.),,(   

where Xi are correlated N(0,1) random variables, and ix are real numbers.  

So, the first step is to estimate the value of )()(
1

~~ J
M

J pp   which represent the default 

joint probabilities of an independent obligor portfolio. Each obligor has a marginal 

default probability of )(~ J
ip . The probability )(~ J

ip  can be computed by using the 

perturbation formula. Then, we can find the value of  )(
~

yLEJ . 

The next step is to calculate the value of const, and substitute them into (1). 

Therefore we receive  )( yLEt . 

 

The Perturbation Formula 

 According to definition 2.1 of perturbed probability in P.Glasserman and 

S.Suchintabandid, 2007, we can calculate )(~ J
ip which is the perturbed probability of 

)()( iiii xxXPp   ;  ii xx  1)(  with Φ the cumulative normal 

distribution function by  
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



n

k
ikJii

J
i xHkivxpp

1
1

)( )(),()(:~   

where,    )( ix   is the standard normal density function 

  )(xHn  is the Hermite polynomial of degree n. 

  ),( kivJ  are computed as follow, 

 Assume that ik  have a generalized  d-factor structure, for all i , k = 1,…,M 





d

j
kjijik

1
j aa  

 where j and ija  are real scalars and rewrite ija  as a(i , j). For negative index j, 

we define the principle a(i ,- j) = -a(i , j) and a(i , 0) = 0. 

 Let  Dn refer to the Cartesian product and D0 = {Ø}. Define D := {0, ±1, 

±2,…,±d}, where d is the dimension of the factorization. 

  DjjjjDDDD nn
n

n  ,,:,,: 11      

 Given J =  njj ,,1   from the set Dn and a set of perturbation parameters θ1,…,θn, 

the recursion of ),( kivJ  can be defined as, 

)1,(),(),(),( ''  kivjiakivkiv
JnnJJ   

where 1 ≤ i ≤ M and k is an integer. 1
11 ),,( 

  n
n DjjJ  is the truncation of  

J  by deleting the nth coordinate. For nDJ  , 1:)0,( ivJ and 0:),( kivJ  where  

k > n. For all nDJ  and k > 0, as 0,,1 n   , 0),( kivJ . 
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To make this clearer we can illustrate it as 

J     : 1                                                                                    1 

1jJ      : 101 11  ja                                                                   

       00,1, '11  ivaiv jjj                                    1              

 21, jjJ     : 101 22  ja  

      1,11, '22 ivaiv jjj    

    01,2, '22  ivaiv jjj                            1           

 321 ,, jjjJ   : 101 33  ja  

      1,11, '33 ivaiv jjj    

         2,1,2, ''33 ivivaiv jjjj    

       02,3, '33  ivaiv jjj                    1    

To calculate joint probabilities, the method is explained here. Let Pt be the 

probability measure under which MXX ,...,1  are N(0,1) random variables whose 

covariance matrix is 





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
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


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

 

As t varies from 0 to 1, there exist real numbers b0 , b1 , … ; 

   
!2

,,
2

21011

t
btbbxXxXP MMt  

To estimate bn, P.Glasserman and S.Suchintabandid have introduced an efficient 

method. With perturbation parameters   n1 , the coefficient bn can be 

illustrate as the limit 

   
n

DJ

J
M

J
J bPPw

n

 


 0

1

~~   

11 ja

 1,iv j

 1,iv j  2,iv j

22 ja
22 ja

 1,iv j  2,iv j  3,iv j

33 ja 33 ja 33 ja
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where the weight wJ  is given as follows: wJ := 1  if  n = 0; otherwise wJ = 

n
J )2/( 2 . Define )(2: 10 d   and 

njjJ  
1

: for all J =  njj ,,1   

from the set Dn. 

The appropriate value of  to compute the perturbed probabilities )(~ J
ip and the 

weighted sum can be set in moderately small to achieve a precise value of bn. Since they 

found that as 0 , the sum converges to bn very quickly. Then we can estimate the 

joint probability. 

For  )( yLEt whose obligors are correlated, they apply the same method as 

above, calculating the joint probability from independent probabilities. Let 

 )(
~

yLEJ indicate the expectation of a portfolio whose obligors default with perturbed 

probabilities )(~ J
ip  independently. Then, we have 

   )(
~

.)( yLEconstyLE J
J

 

                                                     
!2

2

210

t
t   

Then the coefficient n  in the above expansion can be illustrated as follows 

n
DJ

JJ
n

yLEw  



 0)(
~

 

The weight wJ is calculated the same as above. 

 

Probability Bucketing Approach  

       John Hull and Alan White [2004] develop a technique called probability 

bucketing with the purpose of estimating the probability that the total loss lies in the k-th 

bucket for all k. They build up the probability distribution of the loss by time T, 

conditional on the values of the risk factors dZZZ ,...,, 21 . Assume that the recovery rate is 

known and can be stochastic, and there are M obligors. This technique can be explained 

as follows 

       Initially, divide potential losses into ranges      ,,,,,,0 1100 Kbbbb   and 

refer to  0,0 b  as the 0-th bucket,  kk bb ,1  as the k-th bucket (1≤ k ≤ K-1), and   ,1Kb  

as the K-th bucket. It is best to set b0 = 0 and bk - bk-1 = u(1≤ k ≤ K-1) for some constant u.  
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Let:                   )(k
TP  =   the conditional probability that the loss by time T will be in           

                                       the k-th bucket. )),(( 1 dT ZZkp    

                           Ak    =   the mean loss that the loss is in  k-th bucket  

                                        (1≤ k ≤ K). 

       Then, calculate )(k
TP  and  Ak  by first assuming that there are no obligors, next 

assuming that there is one obligor, followed by assuming that there are two obligors, and 

so on. In case that there are no obligors, we are sure there will be no loss. As a result 

)0(
TP = 1 and )(k

TP  = 0 for  k > 0 , also  A0 = 0. For the initial value Ak for k > 0, let 

)( 1 kkk bbA  0.5  for 1≤ k ≤ K-1 and 1 Kk bA . 

       The only assumption in the iterative procedure is that we concentrate at the recent 

value of Ak for all the probability associated with bucket k. Suppose that we have 

calculated )(k
TP  and Ak when the first i-1 obligors are considered. 

When u(k) > k, the formulas are: 

                                        i
k

T
k

T
k

T pPPP *)(*)()(   
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


  

where : 

iY  = the loss given default from the i-th obligor 

ip  = the default probability of the i-th obligor 

u(k) = the bucket including ik YA   for  0≤ k ≤ K 

       And *
)(

**)(*)( ,,, kuk
ku

T
k

T AAPP  are the values of )(
)()( ,,, kuk

ku
T

k
T AAPP before the 

probability shift is considered. 

       The effect of  i-th obligor is to move an amount of probability i
k

T pP )( from bucket  

k to  u(k) (0≤ k ≤ K). 
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If  u(k) = k, then the formulas are: 

                                        *)()( k
T

ku
T PP   

                                        *)()( k
T

k
T PP   

                                        iikk YpAA  *  

                                        iikku YpAA  *
)(  

       We then obtain the total loss distribution when all M obligors have been 

considered. 

 

Example 

 

i-th obligor iY  ip  

1 8 0.4 

2 17 0.1 

3 4 0.5 

 

      Suppose there are three obligors in portfolio and we would like to find the total loss 

distribution of these three obligors. Let each interval equal to 5. 

1. Suppose first, there are no obligors, thus there are no losses. Then assume that the 

1-st obligor is considered.  
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2. Assume that the 2-nd obligor has been occurred. 

 

                  

3. Next, the 3-rd obligor is considered. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

APPENDIX B 

 

Probability bucketing code. 

function [P,A] = BKT(loss,p,interval) 
bin = length(interval)-1; 
P = zeros(bin,1); 
P(1,1) = 1; 
A = (interval(1:bin) + interval(2:bin+1))./2; 
M = 1; 
  
 for k = 1:length(loss) 
   AA = A(1:M) + loss(k);   
   U =  sum(interval(:,ones(1,M))' < AA(:,ones(1,bin+1)),2); 
   S1 = sparse(M,bin); 
   S2 = sparse(M,bin); 
   S1((U-1).*M + [1:M]') = P(1:M)*p(k); 
   S2((U-1).*M + [1:M]') = P(1:M)*p(k).*AA; 
   S1 = sum(S1,1)'; 
   S2 = sum(S2,1)'; 
   u = find(S1); 
   A(u) = (A(u).*P(u) + S2(u))./(P(u) + S1(u)); 
  
  
   P(1:M) = P(1:M) -  P(1:M)*p(k) ; 
   P(u) = P(u) + S1(u) ; 
          
   M =sum(interval < sum(loss(1:k)));   
 end     
  
end 
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Correlation Expansion code 

function [p,PP,J] = CORR(d,n,I,theta) 
%d = number of columns 
%n = number of dimensions 
%I = number of obligors 
p = xlsread('pi_new.xls','P_new')'; 
A = xlsread('pi_new.xls','A_new'); 
x = norminv(1-p,0,1); 
Y = pdf('Normal',x,0,1); 
J = dimension(n,d); 
a = zeros(1,I); 
E = zeros(1,n); 
v = zeros(I,n+1); 
PP = zeros(size(J,1),I); 
for row = 1:1:size(J,1); 
        for i = 1:1:I 
            for m = 1:1:n 
                if J(row,m) == 0 
                    a(i) = 0; 
                else a(i) = sign(J(row,m))*A(i,abs(J(row,m))); 
                end 
                E(m) = a(i); 
            end 
                L(row,i) = {perturb1(theta,E,n)}; 
                u = L{row,i}; 
                for k = 2:1:n+1; 
                    v(i,k) = u(1,k)*herm(k-2,x(i)); 
                    V(row,:) = {sum(v,2)'}; 
                end      
        end 
         
          PP(row,:) = p + Y.*V{row};   
end 
 
 

Dimension function code 

function a = dimension(n,d) 
noValue = 2*d+1; 
a = zeros(noValue^n,n); 
for k=1:n 
    value = -d; 
    lot = (noValue^n)/(noValue^k); 
    i = 1; 
    while i <= size(a,1) 
        j = 1; 
        while j<=lot 
            a(i,k) = value; 
            i = i+1; 
            j = j+1; 
        end 
        value = value+1; 
        if value > d  
            value = -d;    
        end 
    end 
end 
end 
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Perturb function code 
function L = perturb1(theta,E,n) 
    L = [0 1]*theta*E(1) + [1 0]; 
    i = 2; 
    while size(L) <= n 
    L = [0 L]*theta*E(i) + [L 0]; 
    i = i + 1; 
    end 
end 
 
 
Hermite function code 

function hermite = herm(m,n) 
if m == 0 
    hermite = 1; 
elseif m == 1 
    hermite = n; 
elseif m == 2 
    hermite = n^2-1; 
elseif m == 3 
    hermite = n^3-3*n; 
elseif m == 4 
    hermite = n^4-6*n^2+3; 
elseif m == 5 
    hermite = n^5-10*n^3+15*n; 
elseif m == 6 
    hermite = n^6-15*n^4+45*n^2-15; 
elseif m == 7 
    hermite = n^7-21*n^5+105*n^3-105*n; 
elseif m == 8 
    hermite = n^8-28*n^6+210*n^4-420*n^2+105; 
elseif m == 9 
    hermite = n^9-36*n^7+378*n^5-1260*n^3+945*n; 
else m == 10 
    hermite = n^10-45*n^8+630*n^6-3150*n^4+4725*n^2-945; 
end 
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Code for pricing CDO tranche at time t 

function [B0,B1,B2] = M_test(d,n,I,theta,yy) 
  
loss = xlsread('pi_new.xls','loss_new'); 
interval = xlsread('pi_new.xls','interval_new'); 
[p,PP,J] = CORR(d,n,I,theta); 
W = abs(sign(J)); 
W2 = zeros(size(J)); 
  
[P1,A1] = BKT(loss,p,interval);  
  
for row = 1:1:size(J,1) 
[P,A] = BKT(loss,PP(row,:)',interval); 
expected(row,1) = sum(max(0,A-yy).*P); 
  
  
          if W(row,n) == 0 
             W2(row,:) = W(row,:); 
            for w = 1:1:n-1 
                if  W2(row,w) == 0 
                    W2(row,w) = -10; 
                 
                end 
            end 
          end 
          
end 
          z = find(W == 0); 
          W(z) = -10; 
                  
B0 = sum(max(0,A1-yy).*P1); 
B1 = sum(expected.*(W2(:,1)/(2*theta^2))); 
B2 = sum(expected.*(prod(W,2)/(2*theta^2)^2)); 
  
  
end 
 
 
Monte Carlo simulation code 

A = xlsread('pi_new.xls','A_new'); 
P = xlsread('pi_new.xls','P_new'); 
loss = xlsread('pi_new.xls','loss_new'); 
x = norminv(1-P,0,1); 
m = 1000000; 
for k = 1:1:m 
E = mvnrnd(0,1,50); 
Z = mvnrnd(0,1,5); 
for i = 1:length(E) 
X = (A(i,:)*Z) + (sqrt(1-(A(i,:)*A(i,:)'))*E(i)); 
I(i) = X > x(i); 
end 
L(k) = sum(loss.*I'); 
end 
p = L > 200; 
expected = sum(max(0,L-200).*p)/m; 
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