การออกแบบไซโคลนสำหรับอนุภาคของแข็งในฟลูอิไดซ์เบดแบบหมุนเวียน

นายณัฐพงศ์ อิ่มแสงจันทร์

จุฬาลงกรณ์มหาวิทยาลัย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมีเทคนิค ภาควิชาเคมีเทคนิค คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2553 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

CYCLONE DESIGN FOR SOLID PARTICLES IN CIRCULATING FLUIDIZED BED

Mr.Natthaphong Imsaengchan

สูนย์วิทยุทรัพยากร

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Chemical Technology Department of Chemical Technology Faculty of Science Chulalongkorn University Academic Year 2010 Copyright of Chulalongkorn University

หัวข้อวิทยานิพนธ์	การออกแบบไซโคลนสำหรับอนุภาคของแข็งในฟลูอิไดซ์เบด
	แบบหมุนเวียน
โดย	นายณัฐพงศ์ อิ่มแสงจันทร์
สาขาวิชา	เคมีเทคนิค
อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	รองศาสตราจารย์ ดร. เลอสรวง เมฆสุต

คณะวิทยาศาสตร์ จุฬา<mark>ลงกรณ์มหาวิท</mark>ยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็นส่วนหนึ่ง

ของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

(ศาสตราจารย์ ดร.สุพจน์ หารหนองบัว)

คณะกรรมการสอบวิทย<mark>านิพนธ์</mark>

ประธานกรรมการ

(รองศาสตราจารย์ ดร. ธราพงษ์ วิทิตศานต์)

/ พา พา อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก

(รองศาสตราจารย์ ดร. เลอสรวง เมฆสุต)

2. m Jm. กรรมการ

(ผู้ช่วยศาสตราจารย์ ดร. ประพันธ์ คูซลธารา)

กรรมการภายนอกมหาวิทยาลัย

(รองศาสตราจารย์ ดร.โสฟส สุวรรณยืน)

ณัฐพงศ์ อิ่มแสงจันทร์ : การออกแบบไซโคลนสำหรับอนุภาคของแข็งในฟลูอิไดซ์เบด แบบหมุนเวียน. (CYCLONE DESIGN FOR SOLID PARTICLES IN CIRCULATING FLUIDIZED BED) อ.ที่ปรึกษาวิทยานิพนธ์หลัก : รศ.ดร.เลอสรวง เมฆสุต, 159 หน้า.

ไซโคลนเป็นอุปกรณ์สำคัญสำหรับระบบเผาไหม้ฟลูอิไดซ์เบดแบบหมุนเวียน (CFB) ทำหน้าที่ดักจับอนุภาคของเซื้อเพลิงแข็งที่เผาไหม้ไม่หมดกลับสู่ระบบเพื่อเผาไหม้ซ้ำ งานวิจัย นี้ได้ทำการศึกษาประสิทธิภาพของไซโคลน 3 แบบ คือ ไซโคลนแบบทั่วไป กับ ไซโคลน สี่เหลี่ยม 2 แบบ โดยก่อนการสร้างไซโคลนสี่เหลี่ยม ได้ศึกษาประสิทธิภาพของไซโคลนโดยวิธี พลวัติของไหลเชิงการคำนวณ (CFD) และ ศึกษากับแบบจำลองฟลูอิไดซ์เบดแบบหมุนเวียน ที่มีความสูง 6.0 เมตร ไซโคลนที่ทำการศึกษามีขนาดเล้นผ่านศูนย์กลาง 0.16 เมตร อัตราการ ป้อนอากาศปฐมภูมิที่แตกต่างกัน คือ 175 200 และ 230 ลูกบาศก์เมตรต่อวินาที อนุภาคที่ใช้ ศึกษาคือ ทราย และ ของผสมระหว่างทรายกับถ่านหิน ซึ่งมีขนาด และ ความหนาแน่นของ อนุภาคแตกต่างกัน

ผลการทดลองเมื่อศึกษาประสิทธิภาพโดยวิธีพลวัติของไหลเซิงการคำนวณที่ ภาวะการทดลองเดียวกันพบว่าประสิทธิภาพของไซโคลนสี่เหลี่ยมมีค่าใกล้เคียงกับไซโคลน แบบทั่วไปคือ ร้อยละ 99 ที่ภาวะการทดลองเดียวกัน คือความเร็วอากาศขาเข้าอยู่ในช่วง 10.9 ถึง 15.0 เมตรต่อวินาที ความดันลดอยู่ในช่วง 68.6 ถึง 147.0 ปาสคัล จากนั้นจึงได้สร้าง ไซโคลนสี่เหลี่ยมเพื่อนำไปทดลองจริงกับแบบจำลองฟลูอิไดข์เบดแบบหมุนเวียน ผลที่ได้ พบว่าที่อัตราการป้อนอากาศปฐมภูมิเพิ่มขึ้น ความดันลดตกคร่อมไซโคลนจะมีค่าเพิ่มสูงขึ้น โดยไซโคลนสี่เหลี่ยมจะมีความดันลดตกคร่อมไซโคลนที่ต่ำกว่าไซโคลนแบบทั่วไปประมาณ 20 ถึง 50 ปาสคัล แต่ประสิทธิภาพของไซโคลนสี่เหลี่ยมที่ได้จากการทดลองนั้น กลับให้ค่า ประสิทธิภาพการแยกที่ต่ำกว่าไซโคลนแบบทั่วไป ซึ่งเมื่อศึกษาด้วยวิธีพลวัติของไหลเชิงการ คำนวณโดยใช้ภาวะจริงที่ได้จากการทดลองของไซโคลนแต่ละแบบ ผลการทดลองที่ได้พบว่า ไซโคลนสี่เหลี่ยมให้ผลของประสิทธิภาพที่ต่ำกว่าไซโคลนแบบทั่วไปสอดคล้องกับผลการ ทดลอง นอกจากนี้ยังพบว่าขนาดของทางออกของแข็งของไซโคลนสี่เหลี่ยมนั้นส่งผลต่อ ประสิทธิภาพการแยกที่ลดลงของไซโคลนอีกด้วย

ภาควิชา เคมีเทคนิค ลายมือชื่อนิสิต นี้สุทงศ อังแสงจันทร์ สาขาวิชา เคมีเทคนิค ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก // ^ ปีการศึกษา 2553 # # 4972599423 : MAJOR CHEMICAL TECHNOLOGY KEYWORDS : CYCLONE / CIRCULATING FLUIDIZED BED / COMPUTATIONAL FLUID DYNAMICS / EXPERIMENT

NATTHAPHONG IMSAENGCHAN : CYCLONE DESIGN FOR SOLID PARTICLES IN CIRCULATING FLUIDIZED BED. THESIS ADVISOR : ASSOC.PROF.LURSUANG MEKASUT, 159 pp.

Cyclone is an essential part of a circulating fluidized bed (CFB) combustor in collecting the uncombusted particulates before sending back to the system for reburning. This research studied the effectiveness of three different cyclones namely: conventional cyclone and two types of square cyclones. The experiment in CFB reactor and the computation fluid dynamics (CFD) were carried out. The CFB reactor has 0.10 meter in diameter and 6.0 meters height. All cyclones has diameter of 0.16 meter. The three main parameters were studied: shape of cyclone, primary air flow rate and density of particles. Primary air flow rate were varied from 175 to 230 m³/h. Sand and mixed sand and coal with different size and density are used.

The CFD results show that the efficiencies of conventional and square cyclones were similar, 99 percent approximately, under the same condition (10.9 to 15.0 m/s of inlet velocity and 68.6 to 147.0 Pascal of pressure drop). For experimental results, pressure drop increased when primary air flow rate raised. Pressure drop in both square cyclones is lower than conventional cyclone in the range of 20 to 50 Pascal. Consequently, the square cyclone actual condition getting form the experimental results were used to simulate the efficiency again. The result can be concluded that the computational efficiency was consistent with the experimental efficiency. The efficiency of squared cyclone was lower than conventional cyclone. It also found that the size of the solid outlet of square cyclone influence on the decreasing of collection efficiency of cyclone.

 Department :
 Chemical Technology
 Student's Signature
 Nathhaphong
 Jmsaengchan

 Field of Study :
 Chemical Technology
 Advisor's Signature
 X
 Mathematical Study

 Academic Year :
 2010
 2010
 X
 Mathematical Study
 X

กิตติกรรมประกาศ

วิทยานิพนธ์ฉบับนี้สำเร็จลุลวงไปได้ด้วยดีนั้น เกิดขึ้นได้ด้วยความร่วมมือจากหลายๆ ฝ่าย โดยเฉพาะอย่างยิ่ง ความอนุเคราะห์เป็นอย่างสูงจาก รองศาสตราจารย์ ดร.เลอสรวง เมฆสุต อาจารย์ที่ปรึกษาวิทยานิพนธ์ ซึ่งท่านได้คอยให้ความช่วยเหลือ ให้ความรู้ ข้อคิด กำลังใจ และเป็น ห่วงเป็นใยในทุกๆ ด้าน รวมทั้งให้คำชี้แนะที่มีประโยชน์เกี่ยวกับงานวิจัย พร้อมกันนี้ ขอขอบพระคุณคณาจารย์กลุ่มฟลูอิไดซ์เบดแบบหมุนเวียนที่ให้คำแนะนำดีๆ เป็นประจำทุกครั้งที่มี การประชุมกลุ่ม อีกทั้งคณาจารย์ทุกท่านในภาควิชาเคมีเทคนิคที่ได้ให้ความช่วยเหลือเป็นอย่างดี เสมอมา

งานวิจัยเรื่อง "การออกแบบไซโคลนสำหรับอนุภาคของแข็งในฟลูอิไดซ์เบดแบบ หมุนเวียน" สำเร็จลุล่วงได้ด้วยดีโดยได้รับการสนับสนุนเงินทุนจากโครงการพัฒนาบัณฑิตศึกษา และวิจัยด้านเชื้อเพลิง ภายใต้โครงการพัฒนาบัณฑิตศึกษาด้านวิทยาศาสตร์และเทคโนโลยี ศูนย์ ปิโตรเลียมและเทคโนโลยีปิโตรเคมี ซึ่งผู้วิจัยต้องขอขอบพระคุณมา ณ ที่นี้

ขอขอบพระคุณ รองศาสตราจารย์ ดร. ธราพงษ์ วิทิตศานต์ ผู้ช่วยศาสตราจารย์ ดร. ประพันธ์ คูชลธารา และรองศาสตราจารย์ ดร.โสฬส สุวรรณยืน ที่กรุณาเป็นกรรมการในการสอบ วิทยานิพนธ์

ขอขอบพระคุณ คุณสังข์ <mark>ชมชื่น ที่คอยให้คว</mark>ามช่วยเหลือในการสร้างไซโคลนซึ่งเป็น อุปกรณ์ที่สำคัญที่สุดของงานวิจัยนี้

ขอขอบพระคุณ เจ้าหน้าที่ทุกท่านของภาควิชาเคมีเทคนิค คณะวิทยาศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย โดยเฉพาะเจ้าหน้าที่ช่างเทคนิคประจำห้องฟลูอิไดเซชัน คุณเกรียงไกร บุญจรัสวงศ์ และ คุณสมบัติ หอมจันทร์ ที่ให้ความช่วยเหลือและอำนวยความสะดวกในการวิจัย

ขอบขอบพระคุณ คุณประเสริฐ ช่วยศรีนวล และ คุณสุวิทย์ คิ้วงาม ที่คอยช่วยเหลือและ อำนวยความสะดวกในการใช้ตึกเคมีเทคนิค เพื่อทำงานวิจัย

ขอขอบคุณ เพื่อนๆ พี่ๆ และน้องๆ ในภาควิชาเคมีเทคนิคทุกท่านที่ได้ให้ความช่วยเหลือ และให้กำลังใจ จนงานวิจัยลุล่วงไปด้วยดี

สุดท้ายนี้ขอกราบขอบพระคุณบิดา มารดา ญาติพี่น้อง ที่ให้ความช่วยเหลือ เป็นกำลังใจ และให้การสนับสนุนเป็นอย่างดีจนสำเร็จการศึกษา

สารบัญ

	หน้า
บทคัดย่อภาษาไทย	٦
บทคัดย่อภาษาอังกฤษ	ବ
กิตติกรรมประกาศ	ନ୍ଥ
สารบัญ	ป
สารบัญตาราง	ฏ
สารบัญภาพ	ท
บทที่	
1 บทน้ำ	1
1.1 ความสำคัญแ <mark>ละที่มาของงานวิ</mark> จัย	1
1.2 วัตถุประสงค์	3
1.3 ขอบเขตของงา <mark>นวิจัย</mark>	4
1.4 ขั้นตอนในการด <mark>ำเนินงานวิ</mark> จัย	4
1.5 ประโยชน์ที่คาดว่า <mark>จะได้</mark> รับจ <mark>ากงานวิจัย</mark>	4
2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง.	5
2.1 ทฤษฎีฟลูอิไดเซชัน	5
2.1.1 นิยาม	5
2.1.2 ประเภทของฟลูอิไดเซชัน	5
2.1.3 ลักษณะของฟลูอิด์เบด	5
2.1.4 แก๊สฟลูอิไดเซชัน	6
2.2 ระบบฟลูอิไดซ์เบดแบบหมุนเวียน (Circulating fluidized bed: CFB)	12
2.2.1 ส่วนประกอบและลักษณะการทำงานของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบ	
หมุนเวียน	13
2.2.1.1 ท่อไรเซอร์ (Riser)	13
2.2.1.2 ไซโคลนและส่วนที่ทำการแยกของแข็งกับแก๊ส (Cyclone and	
gas – solid separator)	13
2.2.1.3 ท่อป้อนกลับและระบบการป้อนกลับของของแข็ง (Downcomer	
and return system)	13
2.2.2 ข้อดีและข้อเสียของการใช้เทคนิคฟลูอิไดเซชัน	14

บทที่		หน้า
	2.3 ทฤษฏีพื้นฐานของฝุ่นละออง	15
	2.3.1 ลักษณะของฝุ่น (Particle Characteristics)	15
	2.3.2 กลไกในการจับฝุ่น (Particle Collection Mechanism)	16
	2.3.3 ความสัมพันธ์ระหว่างขนาดของอนุภาคกับประสิทธิภาพการเก็บอนุภาค	1
	2.3.4 ประสิทธิภาพในการจับฝุ่น (Effectiveness of Particle Collection)	18
	2.3.5 อุปกรณ์ดักจับฝุ่น	19
	2.4 ไซโคลน (Cyclone)	20
	2.4.1 กลไกในการ <mark>จับอนุภาค (</mark> Collectio <mark>n Mechan</mark> isms)	20
	2.4.2 หลักการทำงาน	20
	2.4.3 ชนิดของไซ <mark>โคลน</mark>	2
	2.4.4 ขนาดแล <mark>ะรูปร่างของไซโคลน</mark>	23
	2.4.5 ประสิทธิภาพของไซโคลน (Collection efficiency)	25
	2.4.6 ค่าความดั <mark>น</mark> ลด (Pressure Drop)	20
	2.4.7 การออกแบบไซโคลน	26
	2.4.8 ผลของตัวแปร <mark>ต่อสมรรถนะของไซโคล</mark> น	2
	2.5 งานวิจัยที่เกี่ยวข้อง	28
	แบบจำลองทางคณิตศาสตร์ เครื่องมือและอุปกรณ์การทดลอง	32
	3.1 แบบจำลองทางคณิตศาสตร์และวิธีการสร้างแบบจำลองการไหล	32
	3.1.1 แบบจำล <mark>อ</mark> งการไหลหลายวัฏภาคของแก๊สและของแข็ง	32
	3.1.2 การสร้างแบบจำลองการไหลโดยโปรแกรม Gambit 2.3.16 และ Fluent	
	6.2.16	33
	3.1.2.1 การสร้างแบบจำลองการไหลด้วยโปรแกรม Gambit และ	
	รายละเอียดของระบบ	34
	3.1.2.2 การจำลองภาวะโดยโปแกรม Fluent	3
	3.1.2.2.1 การกำหนดชนิดของเครื่องมือการแก้สมการ (Solver)	36
	3.1.2.2.2 การกำหนดคุณสมบัติของแต่ละวัฏภาคที่ใช้ในการ	
	จำลองภาวะ	3
	3.1.2.2.3 การกำหนดค่าขอบเขตและสภาวะที่ใช้ในการจำลอง	
	ภาวะ	38

ฎ

ĺ	9	1

บทที่	หน้า
3.1.2.2.4 การกำหนดขั้นเวลาและการจำลองภาวะ	39
3.2 เครื่องมือและอุปกรณ์	40
3.2.1 เครื่องฟลูอิไดซ์เบดแบบหมุนเวียน (CFB)	40
3.2.1.1 ตัวกระจายอากาศ (Air distributor)	40
3.2.1.2 ท่อไรเซอร์ (Riser)	40
3.2.1.3 ไซโคลน (Cyclone)	40
3.2.1.3 <mark>.1 ไซโคลนแบบทั่วไป (C</mark> onventional cyclone)	40
3.2. <mark>1.3.2 ไซโค</mark> ลนทรงสี่เหลี่ยม (square cyclone) แบบที่ 1	40
3. <mark>2.1.3.3 ไซโค</mark> ลนทรงสี่เหลี่ยม (square cyclone) แบบที่ 2	41
3.2.1.4 ร <mark>ะบบป้อนกลับของแข็ง (Return system</mark>)	41
<mark>3.2.1.4.1 ท่อป้อนกลับ (Downcomer)</mark>	41
<mark>3</mark> .2.1.4.2 ลูปซีล (Loop seal)	41
3.2.1.5 เครื่องเป่าอากาศ (Blower)	42
3.2.1.6 เครื <mark>่องอัดอากาศ (Air compressor)</mark>	42
3.2.2 อุปกรณ์ควบคุ <mark>มและอุปกรณ์วัด</mark>	46
3.2.3 เครื่องมือและอุปกรณ์อื่นๆ	48
3.3 วิธีการทดลอง	49
3.3.1 ศึกษาประสิทธิภาพของไซโคลนแบบทั่วไปและไซโคลนแบบสี่เหลี่ยมโด	ยใช้
แบบจำลองทางคณิตศาสตร์	49
3.3.2 ศึกษาปัจจัยของความเร็วขาเข้าของไซโคลนและความหนาแน่น	ของ
อนุภาคที่ส่งผลต่อการทำงานของไซโคลน	49
3.3.3 ศึกษาประสิทธิภาพของไซโคลนแบบสี่เหลี่ยมเมื่อนำมาใช้กับระบบเ	ฟลูอิ
ไดซ์เบดแบบหมุนเวียน	50
4 ผลการทดลองและการวิเคราะห์ผลการทดลอง	51
4.1 ผลการจำลองภาวะในแบบจำลองการไหลของเครื่องแยกไซโคลน	51
4.1.1 ผลการจำลองภาวะในแบบจำลองการไหลของเครื่องแยกไซโคลนเ	แบบ
ทั่วไป	51
4.1.2 ผลการจำลองภาวะในแบบจำลองการไหลของเครื่องแยกไซโคลนเ	แบบ
สี่เหลี่ยม	54

หน้า	

4.2 ผลการศึกษาอุทกพลศาสตร์ภายในไรเซอร์ของแบบจำลองฟลูอิไดซ์เบดแบบ	
หมุนเวียน	56
4.2.1 ผลของความดันสถิตรอบ ๆ เครื่องฟลูอิไดซ์เบดแบบหมุนเวียนที่ใช้ไซโคลน	
แบบทั่วไปในการทดลอง	57
4.2.2 ผลของความดันสถิตรอบ ๆ เครื่องฟลูอิไดซ์เบดแบบหมุนเวียนที่ใช้ไซโคลน	
แบบสี่เหลี่ยม (1) ในการท <mark>ดลอง</mark>	60
4.2.3 ผลของความดัน <mark>สถิตรอบ ๆ เครื่องฟลูอิไดซ์</mark> เบดแบบหมุนเวียนที่ใช้ไซโคลน	
แบบสี่เหลี่ยม <mark>(2) ในกา</mark> รทดลอง	63
4.3 ผลการศึกษาอัต <mark>ราการป้อนอ</mark> ากาศปฐมภูมิที่ส่งผลต่อความเร็วขาเข้าและความ	
ดันลดตกคร่อมไซโคลนแบบทั่วไป	65
4.3.1 ผลของอั <mark>ตราการป้อนอากาศป</mark> ฐมภูมิที่ส่งผลต่อความเร็วขาเข้าของไซโคลน	65
4.3.2 ผลของอั <mark>ตราการป้อนอากาศปรู</mark> มภู <mark>มิที่ส่งผลต่อค</mark> วามดันลดตกคร่อมไซโคลน	66
4.3.2.1 <mark>ผลของอัตราการป้อนอากาศป</mark> ฐมภูมิที่ส่งผลต่อความดันลดตก	
คร่ <mark>อมไซโคลนทั่วไป</mark>	66
4.3.2.2 ผลข <mark>องอัตราการป้อนอากาศปฐ</mark> มภูมิที่ส่งผลต่อความดันลดตก	
คร่อมไซโคลนแบบสี่เหลี่ยม (1) และ (2)	68
4.4 ผลการศึกษาเปรียบเทียบไซโคลนแบบทั่วไปกับไซโคลนแบบสี่เหลี่ยมที่ได้จาก	
การทดลอง	69
4.4.1 ผลของปร <mark>ะ</mark> สิทธิภาพของไซโคลนแบบทั่วไปแล <mark>ะไ</mark> ซโคลนแบบสี่เหลี่ยมที่ได้	
จากการทดลอง	69
4.4.2 ผลของประสิทธิภาพของไซโคลนแบบทั่วไปและไซโคลนแบบสี่เหลี่ยมที่ได้	
จากแบบจำลองทางคณิตศาสตร์	72
4.4.3 การศึกษาผลกระทบของทางออกของแข็งบริเวณส่วนล่างของไซโคลนที่	
ส่งผลต่อประสิทธิภาพการแยกของแข็งของไซโคลน	74
4.5 ผลการศึกษาความหนาแน่นของอนุภาคของแข็งที่ส่งผลต่อประสิทธิภาพของ	
ไขโคลน	80
4.5.1 ผลของประสิทธิภาพย่อยของไซโคลนแบบทั่วไปที่ใช้กับเครื่องฟลูอิไดซ์เบด	
แบบหมุนเวียน	80

	2	/
ห	L	J1

	4.5.2 ผลของประสิทธิภาพย่อยของไซโคลนสี่เหลี่ยม (1) และ (2) ที่ใช้กับเครื่อง	
	ฟลูอิไดซ์เบดแบบหมุนเวียน	83
	4.5.3 ผลของประสิทธิภาพการแยกของไซโคลนแบบทั่วไปกับไซโคลนสี่เหลี่ยม	
	(1) และ (2) ที่ได้จากแบบจำลองทางคณิตศาสตร์ ที่อนุภาคมีความหนาแน่นต่างกัน	85
5	สรุปผลการทดลองและข้อเสนอแนะ	86
	5.1 สรุปผลการทดลอง	86
	5.1.1 ผลการจำลองภา <mark>วะในแบบจำลองการไหล</mark> ของเครื่องแยกไซโคลน	86
	5.1.2 การศึกษา <mark>อัตราการป้</mark> อนอากา <mark>ศปฐมภูมิที่ส่</mark> งผลต่อความเร็วขาเข้าและ	
	ความดันลดตกคร่อมไซโคลน	86
	5.1.3 การศึกษ <mark>าเปรียบเทียบไซโคลนแบบทั่วไป</mark> กับไซ <mark>โค</mark> ลนแบบสี่เหลี่ยมที่ได้จาก	
	การทดลองและจา <mark>กแบบจำลอง</mark>	87
	5.2 ข้อเสนอแนะ	87
รายก	าารอ้างอิง	88
ภาคเ	ผนวก	90
	ภาคผนวก ก	91
	ภาคผนวก ข	97
	ภาคผนวก ค	100
ประวั	วัติผู้เขียนวิทยานิพนธ์	159

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

สารบัญตาราง

ตารางที่		หน้า
2.1	ลักษณะของไซโคลน	24
2.2	ปัจจัยที่มีผลต่อการเปลี่ยนแปลงสมรรถนะของไซโคลน	27
3.1	ค่าคุณสมบัติต่างๆ ของวัฏภา <mark>คที่ใช้</mark> ในการจำลองภาวะใช้ในการศึกษาอุทก	
	พลศาสตร์	37
3.2	แสดงสัดส่วนโดยน้ <mark>ำหนักของข</mark> องแข็งที่ใช้ในการท _ิ ดลอง	49
4.1	ประสิทธิภาพข <mark>องไซโคลนแ</mark> บบทั่วไปที่ได้จากการทดลองและแบบจำลอง	
	คณิตศาสตร์	53
4.2	ประสิทธิภา <mark>พของไซโคลนแบบทั่วไปที่ได้จากการท</mark> ดลองและแบบจำลอง	
	คณิตศาสตร์	55
4.3	แสดงค่าควา <mark>มดันลดตกคร่อมไซโคลนแบบทั่วไปที่ได้</mark> จากการทดลองและการ	
	คำนวณ	66
4.4	แสดงประสิทธิภา <mark>พของ</mark> ไซโ <mark>คลนแบบทั่วไปที่สภา</mark> วะต่าง ๆ	69
4.5	แสดงประสิทธิภาพของไซ <mark>โคลนแบบสี่เหลี่ยม</mark> (1) ที่สภาวะต่าง ๆ	70
4.6	แสดงประสิทธิภาพของไซโคลนแบบสี่เหลี่ยม (2) ที่สภาวะต่าง ๆ	70
4.7	แสดงสภาวะที่ใช้ในแบบจำลองทางคณิตศาสตร์ของไซโคลนแบบต่าง ๆ	72
4.8	แสดงประสิทธิภาพของไซโคลนแต่ละชนิดที่ได้จากการทดลองจริงและจาก	
	แบบจำลองทางคณิตศาสตร์ อนุภาคที่ใช้ศึกษาคือทรายขนาดอนุภาค 109.5	
	ไมโครเมตร	73
4.9	แสดงประสิทธิภาพของไซโคลนสี่เหลี่ยม (1) ที่มีขนาดของทางออกของแข็ง	
	ต่างกัน ที่ได้จากแบบจำลองทางคณิตศาสตร์ อนุภาคที่ใช้ศึกษาคือทรายขนาด	
	อนุภาค 109.5 ไมโครเมตร	75
4.10	แสดงประสิทธิภาพที่ได้จากแบบจำลองทางคณิตศาสตร์ของไซโคลนแบบทั่วไป	
	และไซโคลนสี่เหลี่ยม (1) ที่มีขนาดของทางออกของแข็งต่างกัน อนุภาคที่ใช้	
	ศึกษาคือทรายขนาดอนุภาค 109.5 ไมโครเมตร	76
4.11	ประสิทธิภาพการแยกของไซโคลนแบบต่างๆ ที่อนุภาคของแข็งมีความหนาแน่น	
	ต่างกัน ขนาดของอนุภาคของแข็ง 73 ไมโครเมตร	85

ตารางที่		หน้า
P1	สมบัติทางกายภาพของอนุภาคของแข็งที่ใช้ในการทดลอง	100
P2	แสดงอัตราการไหลย้อนกลับของแข็ง (Solid recycle rate) ของทรายและของ	
	ผสมระหว่างทรายกับถ่านหินที่อัตราการป้อนอากาศต่างๆ	100
P3	แสดงค่าความดันสถิตที่ตำแหน่งความสูงต่างๆ ที่อัตราการป้อนอากาศปฐมภูมิ	
	ต่าง ๆ โดยตัวอย่างที่ใช้ทดลองคือทราย	101
P4	แสดงค่าความดันสถิตที่ต <mark>ำแหน่งความสูง</mark> ต่างๆ ที่อัตราการป้อนอากาศปฐมภูมิ	
	ต่าง ๆ โดยตัวอย่าง <mark>ที่ใช้ทดลองคือ ของผสมระหว่า</mark> งทรายกับถ่านหิน	102
Р 5	แสดงค่าความดั <mark>นสถิตที่ตำแห</mark> น่งความ <mark>สูงต่างๆ ที่อัต</mark> ราการป้อนอากาศปฐมภูมิ	
	ต่าง ๆ โดยตัวอ <mark>ย่างที่ใช้ทดลองคื</mark> อทราย	103
P6	แสดงค่าความ <mark>ดันสถิตที่ตำแหน่งความสูงต่างๆ ที่อัตรา</mark> การป้อนอากาศปฐมภูมิ	
	ต่าง ๆ โดยตัวอย่างที่ใช้ทดลองคือของผสมระหว่างทรายกับถ่านหิน	104
ค7	แสดงค่าความ <mark>ดันสถิตที่ตำแหน่งความสูงต่างๆ ที่อัตรา</mark> การป้อนอากาศปฐมภูมิ	
	ต่าง ๆ โดยตัวอ <mark>ย่างที่ใช้ทดลองคือทราย</mark>	105
P8	แสดงค่าความดัน <mark>สถิตที่ตำแหน่งความสูงต่างๆ ที่อั</mark> ตราการป้อนอากาศปฐมภูมิ	
	ต่าง ๆ โดยตัวอย่างที่ใช้ท <mark>ดลองคือของผสมร</mark> ะหว่างทรายกับถ่านหิน	106
A9	แสดงค่าความเร็วขาเข้าไซโคลนที่อัตราการป้อนอากาศปฐมภูมิต่างๆ	107
ค10	แสดงค่าความดันคร่อมไซโคลนแบบทั่วไป ที่อัตราการการป้อนอากาศปฐมภูมิ	
	ต่างๆ	107
ค11	แสดงค่าความดันคร่อมไซโคลนสี่เหลี่ยม (1) ที่อัตราการการป้อนอากาศปฐมภูมิ	
	ต่างๆ	107
ค12	แสดงค่าความดันคร่อมไซโคลนสี่เหลี่ยม (2) ที่อัตราการการป้อนอากาศปฐมภูมิ	
	ต่างๆ	108
ค13	แสดงปริมาณของของแข็งที่เหลืออยู่ในระบบภายหลังการทดลอง และ	
	ประสิทธิภาพการแยกของไซโคลนที่สภาวะต่าง ๆ ของไซโคลนแบบทั่วไป	108
ค14	แสดงปริมาณของของแข็งที่เหลืออยู่ในระบบภายหลังการทดลอง และ	
	ประสิทธิภาพการแยกของไซโคลนที่สภาวะต่างๆ ของไซโคลนสี่เหลี่ยม (1)	108
ค15	แสดงปริมาณของของแข็งที่เหลืออยู่ในระบบภายหลังการทดลอง และ	
	ประสิทธิภาพการแยกของไซโคลนที่สภาวะต่างๆ ของไซโคลนสี่เหลี่ยม (2)	109

ค 16	แสดงปริมาณของแข็งที่เหลือ ประสิทธิภาพย่อย และประสิทธิภาพรวมของ
	ไซโคลนแบบทั่วไป ที่ได้จากการทดลองที่สภาวะอัตราการป้อนอากาศปฐมภูมิ
	175 ลกบาศก์เมตรต่อชั่วโมง
ค17	แสดงปริมาณของแข็งที่เหลือ ประสิทธิภาพย่อย และประสิทธิภาพรวมของ
	ไซโคลนแบบทั่วไป ที่ได้จากการทดลองที่สภาวะอัตราการป้อนอากาศปฐมภูมิ
	200 ลูกบาศก์เมตรต่อชั่วโมง
ค18	แสดงปริมาณของแข็งที่เหลือ ประสิทธิภาพย่อย และประสิทธิภาพรวมของ
	ไซโคลนแบบทั่วไป <mark>ที่ได้จากก</mark> ารท ด ลอ <mark>งที่สภาวะอ</mark> ัตราการป้อนอากาศปฐมภูมิ
	230 ลูกบาศก์เมตรต่อชั่วโมง
ค19	- แสดงปริมาณของแข็งที่เหลือ และ ประสิทธิภาพย่อยของไซโคลนสี่เหลี่ยม (1) ที่
	ได้จากการทดลองที่สภาวะอัตราการป้อนอากาศปฐมภูมิ 175 ลูกบาศก์เมตรต่อ
	ชั่วโมง
ค20	แสดงปริมาณของแข็งที่เหลือ และ ประสิทธิภาพย่อยของไซโคลนสี่เหลี่ยม (1) ที่
	ได้จากการทดลอง <mark>ที่สภ</mark> าวะ <mark>อัตราการป้อน</mark> อาก <mark>าศป</mark> ฐมภูมิ 200 ลูกบาศก์เมตรต่อ
	ชั่วโมง
P21	แสดงปริมาณของแข็งที่ <mark>เหลือ และ ประสิทธิภาพย่อ</mark> ยของไซโคลนสี่เหลี่ยม (1) ที่
	ได้จากการทดลองที่สภาวะอัตราการป้อนอากาศปฐมภูมิ 230 ลูกบาศก์เมตรต่อ
	ชั่วโมง
ค22	แสดงปริมาณของแข็งที่เหลือ และ ประสิทธิภาพย่อยของไซโคลนสี่เหลี่ยม (2) ที่
	ได้จากการทดลองที่สภาวะอัตราการป้อนอากาศปฐมภูมิ 175 ลูกบาศก์เมตรต่อ
	ชั่วโมง
ค23	แสดงปริมาณของแข็งที่เหลือ และ ประสิทธิภาพย่อยของไซโคลนสี่เหลี่ยม (2) ที่
	ได้จากการทดลองที่สภาวะอัตราการป้อนอากาศปฐมภูมิ 200 ลูกบาศก์เมตรต่อ
	ชั่วโมง
ค24	แสดงปริมาณของแข็งที่เหลือ และ ประสิทธิภาพย่อยของไซโคลนสี่เหลี่ยม (2) ที่
	ได้จากการทดลองที่สภาวะอัตราการป้อนอากาศปฐมภูมิ 230 ลูกบาศก์เมตรต่อ
	ชั่วโมง
ค25	แสดงตารางประสิทธิภาพการแยกของไซโคลนทั้ง 3 แบบ ที่ได้จากการทดลอง
	และ จากแบบจำลอง ที่สภาวะการทดลองต่าง ๆ

ตารางที่		หน้า
A26	ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30	
	วินาที ความเร็วอากาศขาเข้า 10.9 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน	
	68.6 ปาสคัล	120
ค27	ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30	
	วินาที ความเร็วอากาศขาเข้า 13.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน	
	107.8 ปาสคัล	121
ค28	ข้อมูลอัตราการไหล <mark>เชิงมวลจา</mark> กแบบ <mark>จำลองไซโค</mark> ลนแบบทั่วไปที่เวลา 0 – 30	
	วินาที ความเร็วอ <mark>ากาศขาเข้า</mark> 15.0 เมต <mark>รต่อวินาที, ค</mark> วามดันลดตกคร่อมไซโคลน	
	147.0 ปาสคัล	122
ค29	ข้อมูลอัตราก <mark>ารไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่</mark> วไปที่เวลา 0 – 30	
	วินาที ความเร็วอากาศขาเข้า 10.9 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน	
	68 ปาสคัล	123
P30	ข้อมูลอัตราการใหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30	
	วินาที ความเร็วอ <mark>ากาศ</mark> ขาเ <u>ข้า 13.0 เมตรต่อวินาที</u> ความดันลดตกคร่อมไซโคลน	
	120.0 ปาสคัล	124
ค31	ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30	
	วินาที ความเร็วอากาศขาเข้า 15.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน	
	147.0 ปาสคัล	125
P32	ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30	
	วินาที ความเร็วอากาศขาเข้า 10.9 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน	
	68.6 ปาสคัล	126
ค33	ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30	
	วินาที ความเร็วอากาศขาเข้า 13.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน	
	107.8 ปาสคัล	127
ค34	ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30	
	วินาที ความเร็วอากาศขาเข้า 15.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน	
	147.0 ปาสคัล	128

ตารางที่		หน้
ค35	ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (1) ที่เวลา 0 –	
	30 วินาที ความเร็วอากาศขาเข้า 10.9 เมตรต่อวินาที่ ความดันลดตกคร่อม	
	ไซโคลน 68.6 ปาสคัล	129
P36	ข้อมูลอัตราการใหลเชิงมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (1) ที่เวลา 0 –	
	30 วินาที ความเร็วอากาศขาเข้า 13.0 เมตรต่อวินาที่ ความดันลดตกคร่อม	
	ไซโคลน 107.8 ปาสคัล	130
ค37	ข้อมูลอัตราการไหล <mark>เชิงมวลจา</mark> กแบบจ <mark>ำลองไซโคล</mark> นแบบสี่เหลี่ยม (1) ที่เวลา 0 –	
	30 วินาที ควา <mark>มเร็วอากาศข</mark> าเข้า 15. <mark>0 เมตรต่อวิ</mark> นาที ความดันลดตกคร่อม	
	ไซโคลน 147.0 <mark>ปาสคั</mark> ล	131
P38	ข้อมูลอัตรากา <mark>รไหลเชิงมวลจา</mark> กแบบจ <mark>ำลองไซโคลนแบ</mark> บสี่เหลี่ยม (1) ที่เวลา 0 –	
	30 วินาที คว <mark>ามเร็วอากาศขาเข้า 10.9 เมตรต่อวิน</mark> าที่ ความดันลดตกคร่อม	
	ไซโคลน 39.1 ป <mark>าสคั</mark> ล	132
A39	ข้อมูลอัตราการ <mark>ใหลเชิงมวลจากแบบจำลองไซโคลนแ</mark> บบสี่เหลี่ยม (1) ที่เวลา 0 –	
	30 วินาที ความ <mark>เร็วอากาศขาเข้า 13.0</mark> เมตรต่อวินาที่ ความดันลดตกคร่อม	
	ไซโคลน 78.4 ปาสคัล	133
ค40	ข้อมูลอัตราการใหลเชิง <mark>มวลจากแบบจำลองไ</mark> ซโคลนแบบสี่เหลี่ยม (1) ที่เวลา 0 –	
	30 วินาที <mark>่ ความเร็วอากาศขาเข้า 15.0 เมตรต่อวินา</mark> ที่ ความดันลดตกคร่อม	
	ไซโคลน 98.0 ปาสคัล	134
ค41	อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (1) ที่เวลา 0 –	
	30 วินาที ความเร็วอากาศขาเข้า 10.9 เมตรต่อวินาที ความดันลดตกคร่อม	
	ไซโคลน 39.1 ปาสคัล	135
ค42	ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30	
	วินาที ความเร็วอากาศขาเข้า 13.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน	
	78.4 ปาสคัล	136
ค43	ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30	
	วินาที ความเร็วอากาศขาเข้า 15.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน	
	98.0 ปาสคัล	137

ตารางที่	
P44	ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30
	วินาที ความเร็วอากาศขาเข้า 10.9 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 39 1 ปาสคัด
P45	ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30
	วินาที ความเร็วอากาศขาเข้า 13.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน
@16	78.4 ปาสคัล
M40	ขยมูลขตว การเกลเขามวลจากแบบ ๆ เลขาเขาสุณแบบ ครายการเป็นสา 0 – 30 วินาที ความเร็กคากาศขาเข้า 15 0 เมตรต่อวินาที ความดับลดตกคร่อมไซโคลม
	98.0 ปาสคัล
ค47	ข้อมูลอัตราก <mark>ารไหลเชิงมวลจากแบบจำลองไซโคลนแบ</mark> บทั่วไปที่เวลา 0 – 30
	วินาที ความเร็วอากาศขาเข้า 10.9 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน
	49.0 ปาสคัล
P48	ข้อมูลอัตรากา <mark>รไหลเชิงมวลจากแบบจ</mark> ำลองไซ <mark>โคลนแบบทั่วไปที่เวลา 0 – 30</mark>
	วินาที ความเร็วอ ^{ากาศ} ขาเข้า 13.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน
	78.4 ปาสคัล
ค49	ข้อมูลอัตราการใหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30
	วินาที ความเร็วอากาศขาเข้า 15.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน
	98.0 ปาสคัล
ค50	ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบสีเหลียม (2) ทีเวลา 0 –
	30 วินาที ความเร็วอากาศขาเข้า 10.9 เมตรต่อวินาที ความดันลดตกคร่อม
	ไซโคลน 49.0 ปาสคัล
P51	ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (2) ที่เวลา 0 –
	30 วินาที ความเร็วอากาศขาเข้า 13.0 เมตรต่อวินาที่ ความดันลดตกคร่อม
	ไซโคลน 78.4 ปาสคัล
ค52	ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (2) ที่เวลา 0 –
	30 วินาที่ ความเร็วอากาศขาเข้า 15.0 เมตรต่อวินาที่ ความดันลดตกคร่อม
	ไซโคลน 98.0 ปาสคัล

ตารางที่		หเ
ค53	ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (2) ที่เวลา 0 –	
	30 วินาที ความเร็วอากาศขาเข้า 10.9 เมตรต่อวินาที่ ความดันลดตกคร่อม	
	ไซโคลน 49.0 ปาสคัล	14
ค54	ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (2) ที่เวลา 0 –	
	30 วินาที ความเร็วอากาศขาเข้า 13.0 เมตรต่อวินาที่ ความดันลดตกคร่อม	
	ไซโคลน 78.4 ปาสคัล	14
P55	ข้อมูลอัตราการไหล <mark>เชิงมวลจา</mark> กแบบจ <mark>ำลองไซโคล</mark> นแบบสี่เหลี่ยม (2) ที่เวลา 0 –	
	30 วินาที ควา <mark>มเร็วอากาศข</mark> าเข้า 15. <mark>0 เมตรต่อวิ</mark> นาที ความดันลดตกคร่อม	
	ไซโคลน 98.0 ป <mark>าสคัล</mark>	14
P56	ข้อมูลอัตราก <mark>ารไหลเชิงมวลจากแบบจำลองไซโคลนแบ</mark> บสี่เหลี่ยม (1) ที่เวลา 0 –	
	30 วินาที คว <mark>ามเร็วอากาศขาเข้า 10.9 เมตรต่อวิน</mark> าที่ ความดันลดตกคร่อม	
	ไซโคลน 39.1 ปา <mark>สค</mark> ัล	15
ค57	ข้อมูลอัตราการให <mark>ลเชิงมวลจากแบบจำลองไซโคลน</mark> แบบทั่วไปที่เวลา 0 – 30	
	วินาที ความเร็วอ <mark>ากาศ</mark> ขาเข้า 13.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน	
	78.4 ปาสคัล	15
ค58	ข้อมูลอัตราการไหลเชิง <mark>มวลจากแบบจำลองไ</mark> ซโคลนแบบทั่วไปที่เวลา 0 – 30	
	วินาที ความเร็วอากาศขาเข้า 15.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน	
	98.0 ปาสคัล	15
ค59	ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30	
	วินาที ความเร็วอากาศขาเข้า 10.9 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน	
	39.1 ปาสคัล	15
P60	ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30	
	วินาที ความเร็วอากาศขาเข้า 13.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน	
	78.4 ปาสคัล	15
P61	ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30	
	วินาที ความเร็วอากาศขาเข้า 15.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน	
	98.0 ปาสคัล	15

ตารางที่		หน้า
P62	ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30	
	วินาที ความเร็วอากาศขาเข้า 10.9 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน	
	39.1 ปาสคัล	156
P63	ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30	
	วินาที ความเร็วอากาศขาเข้า 13.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน	
	78.4 ปาสคัล	157
P64	ข้อมูลอัตราการไห <mark>ลเชิงมวลจากแบบจำลองไซโค</mark> ลนแบบทั่วไปที่เวลา 0 – 30	
	วินาที ความเร็ว <mark>อากาศขาเข้า</mark> 15.0 เมต <mark>รต่อวินาที ค</mark> วามดันลดตกคร่อมไซโคลน	
	98.0 ปาสคัล	158

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

สารบัญภาพ

ภาพที่		ห
2.1	ลักษณะการเกิดฟลูอิไดซ์เซชันของเบดที่มีของไหลต่างชนิดกันไหลผ่าน	
2.2	รูปแบบการไหลสำหรับฟลูอิไดซ์เบดแก๊ส- ของแข็ง	
2.3	ลักษณะของเบดนิ่งที่ไม่มีและมีการเคลื่อนที่สัมพัทธ์กับผนัง	
2.4	ความสัมพันธ์ระหว่างคว <mark>ามดันลดกับความเ</mark> ร็วในช่วงการเกิดเบดแบบปั่นป่วน	
2.5	(ก) เครื่อง CFB และ (<mark>ข) เครื่อง</mark> FCC	
2.6	รูปร่างต่าง ๆ ของอ <mark>นุภาค</mark>	
2.7	กลไกทางกายภ <mark>าพต่าง ๆ ที่มีอิทธิพลในการแยกอนุภา</mark> คของแข็งออกจากกระแส	
	แก๊ส	
2.8	ความสัมพันธ์ระหว่างขนาดของอนุภาคกับประสิทธิภาพในการจับฝุ่น	
2.9	ส่วนประกอบขอ <mark>งไซโค</mark> ลน	
2.10	ไซโคลนชนิดอาก <mark>าศไหลเข้าตามแนวสัม</mark> ผัส (Tangential Entry Cyclone)	
	(ก) ทางเข้าด้านบ [ุ] น (Top <u>Inlet)</u> แ <mark>ละ</mark> (ข) ทางเข้าด้านล่าง (Bottom	
	Inlet)	
2.11	ไซโคลนชนิดอากาศไหลเข้าตามแนวแกน (Axial Entry Cyclone)	
2.12	ชนิดของท่อทางเข้า (Inlet) ของไซโคลน	
2.13	ประสิทธิภาพแย <mark>กตามขนาดของไซโคลนชนิดต่างๆ</mark>	
2.14	สัดส่วนของไซโคลนมาตรฐาน	
3.1	ไซโคลนแบบทั่วไป (ก) เครื่องแยกไซโคลนที่ใช้ในการศึกษาอุทกพลศาสตร์ใน	
	ห้องปฏิบัติการจริง (ข) รูปวาดตัวแทนเครื่องแยกไซโคลนที่ใช้ในการจำลองเชิง	
	เรขาคณิต	
3.2	รูปทรงของแบบจำลองการไหลของเครื่องแยกไซโคลนที่ใช้กับระบบฟลูอิไดซ์เบด	
	แบบหมุนเวียนที่ใช้ในการศึกษาอุทกพลศาสตร์ที่สร้างขึ้นในภายโปรแกรม	
	Gambit	
3.3	แบบจำลองเครื่องแยกไซโคลนที่ใช้กับระบบฟลูอิไดซ์เบดแบบหมุนเวียนใน 3 มิติที่	
	ใช้ในการศึกษาอุทกพลศาสตร์ด้วยโปรแกรม Gambit และ ANSYS	
3.4	แผนภาพกระบวนการแก้ปัญหาโดยรวมของวิธีแก้ปัญหาแบบ Segregated	

ภาพที่		หน้า
3.5	ขอบเขตของแบบจำลองการไหลภายในไซโคลนแบบทั่วไปของเครื่องฟลูอิไดซ์เบด	
	แบบหมุนเวียนที่ใช้ในการศึกษาอุทกพลศาสตร์ และค่าสภาวะที่ใช้ในการจำลอง	
	ภาวะ	38
3.6	แผนผังของเครื่องฟลูอิไดซ์เบดแบบหมุนเวียน	43
3.7	เครื่องจำลองฟลูอิไดซ์เบดแบบหมุนเวียน	44
3.8	ไซโคลน	45
3.9	เครื่องอัดอากาศ (Air <mark>Compres</mark> sor)	47
3.10	อุปกรณ์ควบคุมอัต <mark>ราการไหลข</mark> องอ <mark>ากาศปฐมภูมิของท่</mark> อไรเซอร์	47
3.11	อุปกรณ์วัดความ <mark>ดัน Differential Pressure Trans</mark> mitter (DPT)	48
3.12	เครื่องมือและอุปกรณ์อื่นๆ (ก) เครื่องบดละเอียด และ (ข) เครื่องคัดขนาด	48
4.1	อัตราการไหลเชิ <mark>งมวลของไซโคลนแบบทั่วไปที่ได้จากการ</mark> จำลอง	52
4.2	กราฟแสดงควา <mark>มสัมพันธ์ระหว่างอัตราการป้อนอาก</mark> าศปฐมภูมิที่อัตราการไหล	
	ต่างๆ กับประสิทธิ <mark>ภาพการแยกของไซโคลนแบบ</mark> ทั่วไป โดยตัวอย่างที่ใช้ใน	
	การศึกษาคือทรายที่มี <mark>ขน</mark> าดอนุภาคเฉลี่ย 109.5 ไมโครเมตร	54
4.3	กราฟแสดงความสัมพันธ์ <mark>ระหว่างอัตราการ</mark> ป้อนอากาศปฐมภูมิที่อัตราการไหล	
	ต่างๆ กับประสิทธิภาพการแยกของไซโคลนที่ได้จากแบบจำลองทางคณิตศาสตร์	
	โดยตัวอย่างที่ใช้ในการศึกษาคือทรายที่มีขนาดอนุภาคเฉลี่ย 109.5 ไมโครเมตร	55
4.4	แสดงไซโคลนแ <mark>บบต่างๆ ที่ใช้ในการศึกษา (ก) ไซโคลน</mark> แบบทั่วไป (ข) ไซโคลน	
	สี่เหลี่ยม (1) และ (ค) ไซโคลนสี่เหลี่ยม (2)	56
4.5	ตำแหน่งที่วัดความดันหลักๆ รอบเครื่องฟลูอิไดซ์เบดแบบหมุนเวียน	57
4.6	กราฟแสดงผลของความดันสถิตรอบๆ ลูปของฟลูอิไดซ์เบดแบบหมุนเวียน ที่อัตรา	
	การป้อนอากาศปฐมภูมิต่าง ๆ (ตัวอย่างคือทราย)	57
4.7	กราฟแสดงผลของสัดส่วนช่องว่างภายในท่อไรเซอร์ของฟลูอิไดซ์เบดแบบ	
	หมุนเวียน ที่อัตราการป้อนอากาศปฐมภูมิต่าง ๆ (ตัวอย่างคือทราย)	58
4.8	กราฟแสดงผลของความดันสถิตรอบๆ ลูปของฟลูอิไดซ์เบดแบบหมุนเวียน ที่อัตรา	
	การป้อนอากาศปฐมภูมิต่าง ๆ (ตัวอย่างคือของผสมระหว่างทรายกับถ่านหิน)	59
4.9	กราฟแสดงผลของสัดส่วนช่องว่างภายในท่อไรเซอร์ของฟลูอิไดซ์เบดแบบ	
	หมุนเวียน ที่อัตราการป้อนอากาศปฐมภูมิต่าง ๆ (ตัวอย่างคือของผสมระหว่าง	
	ทรายกับถ่านหิน)	59

ภาพที่		หน้า
4.10	กราฟแสดงผลของความดันสถิตรอบ ๆ ลูปของฟลูอิไดซ์เบดแบบหมุนเวียน ที่	
	อัตราการป้อนอากาศปฐมภูมิต่าง ๆ (ตัวอย่างคือทราย)	60
4.11	กราฟแสดงผลของสัดส่วนช่องว่างภายในท่อไรเซอร์ของฟลูอิไดซ์เบดแบบ	
	หมุนเวียน ที่อัตราการป้อนอากาศปฐมภูมิต่าง ๆ (ตัวอย่างคือทราย)	61
4.12	กราฟแสดงผลของความดันสถิตรอบๆ ลูปของฟลูอิไดซ์เบดแบบหมุนเวียน ที่อัตรา	
	การป้อนอากาศปฐมภูมิต่าง <mark>ๆ</mark> (ตัวอย่างคือของผสมระหว่างทรายกับถ่านหิน)	61
4.13	กราฟแสดงผลของ <mark>สัดส่วนช่อ</mark> งว่าง <mark>ภายในท่อไ</mark> รเซอร์ของฟลูอิไดซ์เบดแบบ	
	หมุนเวียน ที่อัตรา <mark>การป้อนอาก</mark> าศปฐมภู <mark>มิต่าง ๆ (ตั</mark> วอย่างคือของผสมระหว่าง	
	ทรายกับถ่านหิน)	62
4.14	กราฟแสดงผล <mark>ของความดันสถ</mark> ิตรอบ <mark>ๆ ลูปของฟลูอิได</mark> ซ์เบดแบบหมุนเวียน ที่	
	อัตราการป้อนอ <mark>ากาศปฐมภูมิต่าง ๆ (ตัวอย่างคือทราย)</mark>	63
4.15	กราฟแสดงผล <mark>ของสัดส่วนช่องว่างภายในท่อไรเซอร์ของฟลูอิไดซ์เบดแบบ</mark>	
	หมุนเวียน ที่อัตร <mark>าการป้อนอากาศปฐมภู</mark> มิต่าง ๆ (ตัวอย่างคือทราย)	63
4.16	กราฟแสดงผลของ <mark>ความดันสถิตรอบๆ ลูปของฟลูอิได</mark> ซ์เบดแบบหมุนเวียน ที่อัตรา	
	การป้อนอากาศปฐมภูมิต่า <mark>ง ๆ (ตัวอย่างคือขอ</mark> งผสมระหว่างทรายกับถ่านหิน)	64
4.17	กราฟแสดงผลขอ <mark>งสัดส่วนช่องว่างภายในท่อไรเ</mark> ซอร์ของฟลูอิไดซ์เบดแบบ	
	หมุนเวียน ที่อัตราการป้อนอากาศปฐมภูมิต่าง ๆ (ตัวอย่างคือของผสมระหว่าง	
	ทรายกับถ่านหิน)	64
4.18	กราฟแสดงความสัมพันธ์ระหว่างอัตราการป้อนอากาศปฐมภูมิที่อัตราการป้อน	
	อากาศต่างๆ กับความเร็วขาเข้าของไซโคลนแบบทั่วไป	65
4.19	กราฟแสดงความสัมพันธ์ระหว่างอัตราการป้อนอากาศปฐมภูมิที่อัตราการป้อน	
	ต่างๆ กับความดันลดตกคร่อมไซโคลนแบบทั่วไป	67
4.20	แสดงความสัมพันธ์ระหว่างอัตราการป้อนอากาศปฐมภูมิกับความดนลดตกคร่อม	
	ไซโคลนแบบต่างๆ (ตัวอย่างคือทราย)	68
4.21	แสดงความสัมพันธ์ระหว่างอัตราการป้อนอากาศปฐมภูมิกับความดนลดตกคร่อม	
	 ไซโคลนแบบต่างๆ (ตัวอย่างคือของผสมระหว่างทรายกับถ่านหิน)	68
4.22	กราฟแสดงอัตราการป้อนอากาศปฐมภูมิที่สภาวะต่างๆ กับประสิทธิภาพของ	
	ไซโคลนแต่ละชนิด (ตัวอย่างคือทราย)	71

น

ภาพที่		หน้า
4.23	กราฟแสดงอัตราการป้อนอากาศปฐมภูมิที่สภาวะต่างๆ กับประสิทธิภาพของ	
	ไซโคลนแต่ละชนิด (ตัวอย่างคือของผสมระหว่างทรายกับถ่านหิน)	71
4.24	แสดงไซโคลนสี่เหลี่ยม (1) และส่วนของทางออกของแข็งซึ่งถูกลดขนาดลงเพื่อ	
	ติดตั้งเข้ากับระบบฟลูอิไดซ์เบดแบบหมุนเวียนในส่วนของท่อป้อนกลับของแข็ง	
	(downcomer)	74
4.25	แสดงแบบจำลองทางคณิต <mark>ศาสตร์ของไซโคลนสี่</mark> เหลี่ยม (1) ที่มีขนาดของทางออก	
	ของแข็งต่างกัน (ก) แบบจำลองไซโคลนสี่เหลี่ยม (1) แบบเดิม และ (ข)	
	แบบจำลองไซโคลน <mark>สี่เหลี่ยม (1</mark>) ที่สร้างขึ้นจริง	75
4.26	กราฟแสดงประสิทธิภาพของไซโคลนแบบทั่วไปและไซโคลนสี่เหลี่ยม (1) ที่มี	
	ทางออกของแข็งขนาดต่างกัน	76
4.27	คอนทัวร์ความเร็วของของแข็ง (ถ่านหิน) ตามแนวแกน Z ของไซโคลนแบบทั่วไป	
	ที่เวลา 30 วินาที	77
4.28	คอนทัวร์ความเร็วของของแข็ง (ถ่านหิน) ตามแนวแกน Y ของไซโคลนสี่เหลี่ยม (1)	
	ที่สร้างขึ้นจริง ที่เวล <mark>า 30</mark> วินา <mark>ที</mark>	78
4.29	คอนทัวร์ความเร็วของ <mark>ของแข็ง (ถ่านหิน) ตาม</mark> แนวแกน Y ของไซโคลนสี่เหลี่ยม (2)	
	ที่เวลา 30 วินาที	79
4.30	แสดงประสิทธิภาพย่อยของอนุภาคของแข็งในแต่ละช่วงขนาด ตัวอย่างคือทราย	81
4.31	แสดงประสิทธิภาพย่อยของอนุภาคของแข็งในแต่ละช่วงขนาด ตัวอย่างคือของ	
	ผสมระหว่างทรายกับถ่านหิน	81
4.32	เปรียบเทียบประสิทธิภาพย่อยของอนุภาคทรายและถ่านหินในแต่ละช่วงขนาด ที่	
	อัตราการป้อนอากาศ 175 200 และ 230 ลูกบาศก์เมตรต่อชั่วโมง	82
4.33	แสดงประสิทธิภาพย่อยของอนุภาคของแข็งในแต่ละช่วงขนาด	83
4.34	เปรียบเทียบประสิทธิภาพย่อยของอนุภาคทรายและถ่านหินในแต่ละช่วงขนาด ที่	
	อัตราการป้อนอากาศ 175 200 และ 230 ลูกบาศก์เมตรต่อชั่วโมง	84
ก1	การจำแนกกลุ่มของของแข็งโดยวิธีของ Geldart	91

ป

บทที่ 1 บทนำ

1.1 ความสำคัญและที่มาของงานวิจัย

ระบบฟลูอิไดซ์เบดแบบหมุนเวียนถูกนำมาประยุกต์ใช้ในอุตสาหกรรมที่มีกระบวนการที่ สัมผัสกันโดยตรงของแก๊สและของแข็ง เช่น เตาเผา หม้อไอน้ำขนาดใหญ่ เป็นต้น เนื่องจากเป็น ระบบที่ตอบสนองต่อการลดต้นทุนการผลิตและทำให้กระบวนการผลิตมีประสิทธิภาพยิ่งขึ้น

ระบบฟลูอิไดซ์เบดแบบหมุนเวียนทุก<mark>กร</mark>ะบวนการประกอบด้วยส่วนที่สำคัญ 3 ส่วนดังนี้

ส่วนท่อไรเซอร์จะทำงานภายใต้ภาวะการเกิดฟลูอิไดซ์เบดที่ความเร็วสูง

 ส่วนที่ทำหน้าที่แยกของแข็งออกจากแก๊ส ได้แก่ ไซโคลน ทำหน้าที่ดักจับอนุภาค ของแข็งที่หลุดออกมาจากท่อไรเซอร์

 ส่วนที่ทำหน้าที่ป้อนกลับ ประกอบด้วย ท่อตรง (Stand pipe) และระบบการป้อนกลับ ของของแข็ง หน้าที่โดยรวมคือจะป้อนกลับเม็ดของแข็งที่ได้จากไซโคลนกลับไปด้านล่างของท่อตรง หลังจากนั้นจะถูกป้อนสู่ระบบการป้อนกลับของของแข็งเพื่อทำการหมุนเวียนเข้าสู่ท่อไรเซอร์

การทำงานของส่วนต่างๆ อธิบายได้ดังนี้

- ส่วนท่อไรเซอร์

การไหลของของแข็งและแก๊สในท่อไรเซอร์เป็นลักษณะหนึ่งของการสัมผัสกันระหว่างแก๊ส กับเม็ดของแข็ง โดยแก๊สจะเคลื่อนที่ผ่านกลุ่มอนุภาคของแข็งที่อยู่เหนือตัวกระจายแก๊ส โดยมี ลักษณะการไหลของของแข็งและแก๊สในรูปแบบต่าง ๆ

- ส่วนที่ทำการแยกของแข็งออกจากแก๊ส

อุปกรณ์ที่ใช้ในการแยกของแข็งออกจากแก๊สมีหลายชนิดแต่ที่นิยมใช้คือไซโคลน ซึ่งจะทำ หน้าที่แยกของแข็งออกจากแก๊สโดยอาศัยแรงเหวี่ยงในแนวรัศมีทำให้อนุภาคของแข็งที่ชนกับผนัง ของไซโคลนตกลงสู่ท่อตรงเพื่อทำการป้อนกลับต่อไป เนื่องจากไซโคลนไม่มีส่วนที่เป็นเครื่องจักร ทำให้ราคาในการสร้างไม่แพง

- ระบบการป้อนกลับของของแข็ง

ระบบการป้อนกลับของของแข็งจะทำหน้าที่ป้อนของแข็งที่ถูกแยกด้วยไซโคลนแล้ว ตกผ่านท่อป้อนกลับเข้าไปในไรเซอร์ ระบบการป้อนกลับที่นิยมใช้มี 2 ประเภท คือ อุปกรณ์ควบคุม การไหลของของแข็งเชิงกล (Mechanical solid flow rate device) และอุปกรณ์ควบคุมการไหล ของของแข็ง (Non - mechanical solid flow rate device) สำหรับระบบที่เป็นกระบวนการเผาไหม้ แบบฟลูอิไดซ์เบดแบบหมุนเวียน ระบบการป้อนกลับจะเป็นอุปกรณ์ ควบคุมการไหลของของแข็ง ซึ่งเป็นอุปกรณ์ที่อาศัยแก๊สที่เติมเข้ามาเป็นตัวควบคุม

ระบบอุตสาหกรรมนิยมใช้ไซโคลนเพื่อทำหน้าที่ดักจับอนุภาคขนาดเล็ก (เส้นผ่าน ศูนย์กลางมากกว่า 10 ไมโครเมตร) การแยกอนุภาคของแข็งออกจากอากาศของไซโคลนจะอาศัย หลักการของแรงเหวี่ยงหนีศูนย์กลาง โดยอากาศและอนุภาคของแข็งที่ไหลเข้าสู่ไซโคลนจะถูกทำ ให้เกิดการหมุนวนโดยอาศัยการทำงานของพัดลมซึ่งอาจเป็นพัดลมที่ติดตั้งมาพร้อมกับตัวไซโคลน หรืออาจเป็นพัดลมของระบบระบายอากาศก็ได้ รวมถึงลักษณะการออกแบบช่องทางเข้าของ ไซโคลน การหมุนวนของอากาศภายในไซโคลนจะมีสองส่วน ส่วนแรกเป็นการหมุนวนของอากาศ ที่มีทิศทางม้วนลงด้านล่าง (ชั้นนอก) ซึ่งมีผลทำให้อนุภาคของแข็งหยาบแยกออกจากอนุภาค ของแข็งละเอียด ส่วนการหมุนวนในส่วนที่สองจะเกิดขึ้นที่ด้านล่างของไซโคลนโดยมีทิศทางม้วน ขึ้นด้านบนสวนกับการหมุนวนในส่วนแรก (ชั้นใน) การหมุนวนนี้สามารถพาอนุภาคของแข็งที่ ละเอียดมากขึ้นไปและไหลออกจากไซโคลนพร้อมกับอากาศได้

การหมุนวนของอากาศจะทำให้อนุภาคของแข็งอยู่ภายใต้อิทธิพลของแรงเหวี่ยงหนี ศูนย์กลางซึ่งมีแนวโน้มที่จะทำให้อนุภาคของแข็งเคลื่อนที่มุ่งหน้าสู่ผนังของไซโคลน เมื่ออนุภาค ของแข็งเคลื่อนที่จนถึงผนังของไซโคลนก็จะตกลงสู่ด้านล่างด้วยแรงโน้มถ่วงของโลก (น้ำหนักของ ตัวมันเอง) และแรงเสริมจากการหมุนวนของอากาศในส่วนแรกส่งผลให้อนุภาคของแข็งไหลออก จากไซโคลนที่ด้านล่าง

นอกจากการหมุนวนของอากาศที่กล่าวตอนต้นแล้ว ยังมีการไหลหมุนวนของอากาศอีก ลักษณะหนึ่งที่ทำให้ประสิทธิภาพการแยกอนุภาคของแข็งออกจากอากาศลดลง นั่นคือการเกิด กระแสหมุนวนของอากาศในแนวรัศมี และกระแสหมุนวนของอากาศในแนวแกน โดยกระแสหมุนวน ของอากาศในแนวรัศมีจะเกิดขึ้นรอบแนวศูนย์กลางของไซโคลนในทิศทางตรงกันข้ามกับการ เคลื่อนที่ของอนุภาคของแข็ง ซึ่งส่งผลให้ประสิทธิภาพการแยกอนุภาคของแข็งของไซโคลนลดลง ในขณะที่กระแสหมุนวนของอากาศในแนวแกนจะเกิดในส่วนที่เป็นกรวย ซึ่งมักก่อให้เกิดปัญหาต่อ การทำงานของไซโคลนในบริเวณช่องทางเข้า กล่าวคือจะทำให้อากาศและอนุภาคของแข็งไม่เกิด การหมุนวนลงด้านล่างแต่จะพยายามพาอนุภาคของแข็งให้ออกจากไซโคลนผ่านทางช่องทางออก ด้วยเหตุนี้ช่องทางออกของไซโคลนจึงต้องยื่นลึกเข้ามาในตัวไซโคลนให้ต่ำกว่าขอบล่างของช่อง ทางเข้าเพื่อป้องกันไม่ให้อนุภาคของแข็งไหลออกไปโดยไม่ผ่านกระบวนการคัดแยก ซึ่งโดยทั่วไป เราสามารถแบ่งไซโคลนได้เป็น 2 ซนิด ตามทิศทางการไหลของอากาศเข้าสู่ตัวไซโคลน คือ ไซโคลนแบบไหลเข้าตามแนวสัมผัส ถือเป็นไซโคลนแบบดั้งเดิมที่มีการใช้กันอย่าง กว้างขวางทั้งขนาดใหญ่และขนาดเล็ก

 2. ไซโคลนแบบไหลเข้าตามแนวแกน อากาศจะไหลเข้าสู่ไซโคลนในแนวแกนจาก ด้านบนและถูกบังคับให้เกิดการหมุนโดนอาศัยใบพัด (Inlet vane) ซึ่งติดตั้งอยู่ที่ช่องทางเข้า ไซโคลนแบบนี้มักมีการสร้างโดยอาศัยกรรมวิธีการหล่อ (Casting) ทั้งในส่วนของตัวเรือนไซโคลน และในส่วนของใบพัด

การออกแบบไซโคลน โดยทั่วไปหมายถึง การหาขนาดหรือสัดส่วนของไซโคลนที่เหมาะสม การประเมินค่าความดันลดตกคร่อมของไซโคลนตามขนาดที่ออกแบบไว้ รวมถึงการประเมิน ประสิทธิภาพการแยกอนุภาคของแข็งของไซโคลน ซึ่งการออกแบบไซโคลนสามารถกระทำได้ หลายลักษณะซึ่งขึ้นอยู่กับความต้องการของระบบ เงื่อนไขหรือข้อจำกัดต่าง ๆ เช่น เงื่อนไขด้าน มลภาวะทางอากาศ หรือเงื่อนไขด้านพื้นที่ติดตั้ง ในที่นี้สามารถแบ่งการออกแบบไซโคลนได้เป็น 3 ลักษณะ คือ

 ออกแบบโดยกำหนดขนาดของไซโคลนที่ต้องการ การออกแบบลักษณะนี้จะเหมาะ กับกรณีที่มีข้อจำกัดด้านพื้นที่ติดตั้ง

2. ออกแบบโดย<mark>กำหนดความดันตกที่ต้องการ การ</mark>ออกแบบลักษณะนี้จะกระทำเมื่อ ต้องการให้ความดันตกที่เกิดขึ้นมีค่าไม่เกินจากที่กำหนด

 ออกแบบโดยกำหนดประสิทธิภาพการแยกอนุภาคของแข็ง การออกแบบลักษณะนี้ จะกระทำเมื่อมีข้อจำกัดด้านมลภาวะทางอากาศ

เนื่องจากเครื่องเผาไหม้ฟลูอิไดซ์เบดแบบหมุนเวียนของภาควิชาเคมีเทคนิคนั้น มีปริมาณ ของอนุภาคของแข็งหลุดออกมาจากระบบอยู่สูง และเมื่อนำอนุภาคของแข็งที่หลุดออกมาจาก ระบบไปทำการวิเคราะห์หาปริมาณคาร์บอนคงตัว พบว่ามีปริมาณคาร์บอนคงตัวเหลืออยู่สูงถึง ร้อยละ 15.44 จุดนี้จะเป็นส่วนที่ทำให้เกิดการสูญเสียพลังงานโดยเปล่าประโยชน์ การศึกษาและ พัฒนาเครื่องแยกของแข็งออกจากแก๊สหรือไซโคลน จึงเป็นสิ่งที่น่าสนใจศึกษาและจำเป็นต่อระบบ เผาไหม้ฟลูอิไดซ์เบดแบบหมุนเวียน

1.2 วัตถุประสงค์

ออกแบบและสร้างไซโคลน และศึกษาตัวแปรต่าง ๆ ที่มีผลต่อประสิทธิภาพในการแยก อนุภาคของไซโคลน เช่น รูปทรงของไซโคลน ความหนาแน่นของอนุภาค ความเร็วของอากาศที่ ช่องทางเข้าของไซโคลน

1.3 ขอบเขตของงานวิจัย

- 1. ศึกษาไซโคลนที่ใช้กับเครื่องฟลูอิไดซ์เบดแบบหมุนเวียน
- 2. ออกแบบและสร้างไซโคลนแบบวงกลมและแบบสี่เหลี่ยม
- เปรียบเทียบประสิทธิภาพในการแยกอนุภาคของไซโคลนแบบวงกลมกับแบบสี่เหลี่ยมโดย อนุภาคที่ใช้เป็นทรายและถ่านหินที่มีขนาดอนุภาคต่างกัน

1.4 ขั้นตอนในการดำเนินงานวิจัย

- ค้นคว้าข้อมูล ทฤษฎี และรวบรวมงานวิจัยที่เกี่ยวข้อง
- จัดหาอุปกรณ์การทดลอง
- ออกแบบและสร้างไซโคลน
- 4. คัดขนาดของแข็งที่ใช้ในการทดลองพร้อมทั้งศึกษาสมบัติทางกายภาพของของแข็ง
- คำนวณความเร็วของอากาศที่ป้อนเข้าบริเวณด้านล่างของท่อไรเซอร์ที่เหมาะสมในการ ทดลอง
- ศึกษาประสิทธิภาพการทำงานของไซโคลนที่ได้จากการทดลองโดยเปรียบเทียบกับที่ได้ จากการคำนวณ
- สรุปผลการทดลองและเขียนวิทยานิพนธ์

1.5 ประโยชน์ที่คาดว่าจะได้รับจากงานวิจัย

ได้ไซโคลนที่มีประสิทธิภาพในการแยกอนุภาคของแข็งขนาดเล็กที่หลุดออกจากเครื่อง ฟลูอิไดซ์เบดแบบหมุนเวียน

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

บทที่ 2 ทฤษฏีและงานวิจัยที่เกี่ยวข้อง

2.1 ทฤษฎีฟลูอิไดเซชัน

2.1.1 นิยาม (สมศักดิ์ ดำรงค์เลิศ, 2528)

ฟลูอิไดเซชัน เป็นนิยามที่ใช้อธิบายกระบวนการหรือวิธีการที่ทำให้ของแข็งซึ่งมีรูปร่าง ลักษณะเป็นเม็ดหรือชิ้น เมื่อสัมผัสกับของไหลแล้วเม็ดของแข็งเหล่านี้จะมีสมบัติคล้ายของไหล ดังนั้น เมื่อนำเม็ดของแข็งกลุ่มหนึ่งมาวางไว้บนตะแกรงในหอทดลองแล้วให้ของไหล (แก๊สหรือ ของเหลว) ไหลผ่านจากด้านล่างของตะแกรงที่รองรับเม็ดของแข็งเหล่านั้น ของไหลก็จะผ่านชั้น ของเม็ดของแข็งและไหลออกทางส่วนบนของหอทดลอง เมื่อเพิ่มความเร็วของไหลขึ้นเรื่อย ๆ ใน ที่สุดจะเห็นเม็ดของแข็งขยับตัวและลอยตัวขึ้นเป็นอิสระไม่เกาะติดกัน ของแข็งที่อยู่ในลักษณะนี้ จะมีสมบัติคล้ายของไหล เรียกของแข็งที่ประพฤติตัวในลักษณะนี้ว่า ฟลูอิไดซ์เบด และเรียก ปรากฏการณ์ดังกล่าวว่าฟลูอิไดเซชัน

2.1.2 ประเภทของฟลูอิ<mark>ไดเซชัน</mark>

งานของฟลูอิไดเซชัน ตั้งแต่เริ่มต้นจนถึงปัจจุบันพอที่จะสรุปประเภทของงานได้เป็น 2 ประเภทด้วยกัน คือ ฟลูอิไดเซชันสองสถานะและฟลูอิไดเซชันสามสถานะ

 - ฟลูอิไดเซชันสองสถานะ (Two-phase Fluidization) หมายความว่าในหอทดลองหรือ ในเบดที่ใช้งานประกอบด้วยสองสถานะ คือ ของแข็งกับของไหล โดยที่ของไหลจะเป็นแก๊สหรือ ของเหลวอย่างใดอย่างหนึ่ง ดังนั้นฟลูอิไดซ์เบด 2 สถานะจึงแบ่งย่อยได้เป็น แก๊สฟลูอิไดเซชัน (Gas Fluidization) และฟลูอิไดเซชันของเหลว (Liquid Fluidization)

- ฟลูอิไดเซซันสามสถานะ (Three-phase Fluidization) หมายความว่าในหอทดลองหรือ ในเบดจะประกอบด้วยสามสถานะอยู่ร่วมกัน คือ ของแข็ง ของเหลว และแก๊ส

สำหรับฟลูอิไดเซชันสามสถานะนั้นเป็นกระบวนการที่พัฒนาไปจากฟลูอิไดเซชันสอง สถานะหอทดลองที่เป็นฟอง (Bubble column) และหอทดลองที่บรรจุด้วยของแข็ง (Packed bed) ดังนั้นจึงมีกลไกที่ซับซ้อนมากกว่า การคำนวณต้องใช้หลักคณิตศาสตร์ขั้นสูง

2.1.3 ลักษณะของฟลูอิไดซ์เบด

เบด (Bed) หมายถึง อาณาเขตในหอทดลองที่มีปริมาณเม็ดของแข็งบรรจุอยู่ไม่ว่า ของแข็งนั้นจะอยู่นิ่งหรือเคลื่อนไหวด้วยของไหลในหอทดลอง จะมีระดับตั้งแต่แผ่นโลหะที่ทำเป็น ตะแกรงรองรับหรือเป็นตัวกระจายแก๊ส (Gas distributor) จนถึงระดับสูงสุดหรือผิวหน้าของเม็ดเบด ฟลูอิไดซ์เบดที่เป็นของเหลวจะมีการขยายตัวของเบดอย่างสม่ำเสมอ การลอยตัวและการ หมุนรอบตัวเป็นไปอย่างช้า ๆ เรียกเบดแบบนี้ว่าเบดสม่ำเสมอหรือเบดที่เป็นเนื้อเดียวกัน สำหรับฟลูอิไดซ์เบดที่ของไหลเป็นแก๊ส ลักษณะเบดที่เกิดขึ้นจะแตกต่างจากที่เป็นของเหลวมาก เพราะว่าเมื่อความเร็วของแก๊สสูงกว่าความเร็วต่ำสุดที่ทำให้เกิดฟลูอิไดซ์เบดแล้ว แก๊สส่วนหนึ่งยัง ทำหน้าที่ให้เกิดการลอยตัวของเม็ดของแข็งเหมือนเดิม แต่มีอีกส่วนหนึ่งรวมตัวกันแล้วก่อตัวกัน เป็นฟองแก๊สขึ้น ฟองแก๊สก็จะแทรกตัวขึ้นมายังบนผิวหน้าของเบดและแตกตัวในที่สุด แต่ขณะที่ ฟองแก๊สลอยขึ้นมานี้จะทำให้เม็ดของแข็งลอยติดตามฟองแก๊สขึ้นมาด้วย เม็ดของแข็งภายใน เบดจึงมีการเคลื่อนที่เป็นไปอย่างชุลมุน ดังแสดงในรูปที่ 2.1

รูปที่ 2.1 ลักษณ<mark>ะการเกิดฟลูอิไดซ์เซชันของเบดที่มีของไ</mark>หลต่างชนิดกันไหลผ่าน

(Basu, P. และ Fraser, S. A., 1991)

2.1.4 แก๊สฟลูอิไดเซชัน

แก๊สฟลูอิไดเซชันเป็นการเกิดฟลูอิไดซ์เบดสองสถานะระหว่างของไหลที่เป็นแก๊สกับ ของแข็งดังที่ได้กล่าวไว้แล้วข้างต้น ขอบเขตของฟลูอิไดซ์เบด (Regime of Fluidization) สามารถ แบ่งได้ดังรูปที่ 2.2

เมื่อเบดวางตัวบนตะแกรงหรือตัวกระจายแก๊ส (Gas distributor) และมีแก๊สเคลื่อนที่ผ่าน ขึ้นมา (Upward flowing) ซึ่งความเร็วที่เพิ่มขึ้น และ Hydrodynamic ที่เกิดขึ้นอธิบายได้ดังนี้ - เบดนิ่ง (Packed Bed หรือ fixed bed)

เมื่อแก๊สไหลผ่านเบดขึ้นมาด้วยความเร็วต่ำ ของแข็งที่วางตัวอยู่บนตัวกระจายแก๊สจะ วางตัวนิ่งไม่เคลื่อนไหว แก๊สจะไหลคดเคี้ยวไปตามช่องว่างที่มีอยู่ในเบด เรียกลักษณะเบดแบบนี้ว่า เบดนิ่ง หรือเบดอาจมีการเคลื่อนที่สัมพัทธ์กับผนังแต่อนุภาคของแข็งในเบดไม่มีการเคลื่อนที่ สัมพัทธ์ต่อกัน กรณีนี้เรียกว่า เบดเคลื่อนที่ (Moving bed) ดังแสดงในรูปที่ 2.3

AGGREGATIVE FLUIDIZATION

รูปที่ 2.2 รูปแบบการไหลสำหรับฟลูอิไดซ์เบดแก๊ส ของแข็ง (Grace, J. R. และคณะ, 1997)

รูปที่ 2.3 ลักษณะของเบดนิ่งที่ไม่มีและมีการเคลื่อนที่สัมพัทธ์กับผนัง (Basu, P. และ Fraser, S. A. 1991)

เมื่อแก๊สเคลื่อนที่ผ่านเบดนิ่งจะมีแรงเนื่องจากการไหลของของไหล กระทำต่ออนุภาค ของแข็งในทิศทางการไหล เรียกแรงนี้ว่าแรงลากเนื่องจากการไหล (Drag force) ซึ่งจะก่อให้เกิด ความดันลด (Pressure drop) ตกคร่อมเบด

ความดันตกคร่อมเบดตลอดความสูงของเบดนิ่งที่เกิดขึ้นจะเพิ่มตามความเร็วของแก๊สที่ เพิ่มขึ้น ซึ่งสามารถคำนวณได้จาก Ergun Equation ดังนี้

$$\frac{\Delta P}{L} = 150 \frac{\mu U}{\left(\phi d_p\right)^2} \frac{\left(1-\varepsilon\right)^2}{\varepsilon^3} + 1.75 \frac{\rho_g U^2}{\left(\phi d_p\right)^2} \frac{\left(1-\varepsilon\right)}{\varepsilon^3}$$
(2.1)

- เบดแบบฟองแก๊ส (Bubbling Fluidized Bed)

เมื่อความเร็วแก๊สที่เคลื่อนที่ผ่านเบดนิ่งเพิ่มขึ้นจนถึงความเร็วค่าหนึ่ง อนุภาคของแข็งจะ เริ่มเกิดการเคลื่อนที่ขึ้น ความเร็วที่จุดนี้เรียกว่าความเร็วต่ำสุดในการเกิดฟลูอิไดเซชัน (Minimum fluidization velocity, U_{m}) และเรียกเบด ณ จุดนี้ว่า Minimum fluidized bed ซึ่งเป็นจุดแรกที่ อนุภาคของแข็งประพฤติตัวคล้ายของไหล สำหรับค่าความดันตกคร่อมเบด ณ จุดนี้มีค่าเท่ากับ น้ำหนักของเบด ดังนั้นแรงเสียดทานเนื่องจากการไหล (Drag force; F_{D}) ที่เกิดขึ้น ณ จุดนี้ สามารถแสดงได้ดังนี้

$$F_{D} = \Delta P \cdot A = AL(1-\varepsilon)(\rho_{s} - \rho_{g})g \qquad (2.2)$$

จัดรูปสมการใหม่จะได้ภาวะต่ำสุดของฟลูอิไดเซชัน (Minimum fluidization condition) ดังนี้

$$\frac{\Delta P}{L_{mf}} = \left(1 - \varepsilon_{mf}\right) \left(\rho_s - \rho_g\right) g \tag{2.3}$$

้สำหรับความเร็วต่ำสุดในการเกิดฟลูอิไดเซชัน สามารถคำนวณได้จากสมการดังนี้

$$-Re_{p} < 20 \qquad U_{mf} = \frac{(\phi d_{p})^{2}}{150} \cdot \frac{(\rho_{s} - \rho_{g})}{\mu} g\left(\frac{\varepsilon_{mf}^{3}}{1 - \varepsilon_{mf}}\right) = \frac{d_{p}^{2}(\rho_{s} - \rho_{g})g}{1650\mu}$$
(2.4)

$$-Re_{p} > 1,000 \qquad U_{mf} = \frac{\phi d_{p}}{1.75} \cdot \frac{(\rho_{s} - \rho_{g})}{\rho_{g}} g \varepsilon_{mf}^{3} = \frac{d_{p} (\rho_{s} - \rho_{g}) g}{24.5 \rho_{g}}$$
(2.5)

ส่วนความเร็วของแก๊สต่ำที่สุดที่ทำให้เริ่มมีฟองแก๊สเกิดขึ้นในเบด (Minimum bubbling fluidization velocity, $U_{_{mb}}$) ในกรณีของอนุภาคของแข็งกลุ่ม A ของ Geldart ค่า $U_{_{mb}}$ จะมีค่า มากกว่า $U_{_{mf}}$ ส่วนในกรณีของกลุ่ม B และ D ค่า $U_{_{mb}}$ จะเท่ากับ $U_{_{mf}}$ ดังนั้นรูปแบบการเกิดฟลูอิได

เซชันแบบสม่ำเสมอหรือแบบไม่มีฟองแก๊ส (Bubble-free fluidization) จึงเกิดเฉพาะในกรณีที่ อนุภาคของแข็งเป็นกลุ่ม A เท่านั้น โดยความเร็วของแก๊สที่ทำให้เริ่มมีฟองแก๊สเกิดขึ้นในเบดใน หน่วย SI มีค่าเท่ากับ

$$U_{mb} = 33d_p \left(\frac{\rho_g}{\mu_g}\right)^{0.1} \tag{2.6}$$

สำหรับอนุภาคของแข็งกลุ่ม A B และ D ของ Geldart ถ้าเพิ่มความเร็วของแก๊สจนพบว่า เริ่มเกิดฟองแก๊สขึ้น เบดจะเริ่มแบ่งออกเป็<mark>น 2 ส่วน</mark> คือ

1) ส่วนที่เป็นฟองแก๊สเรียกว่า Bubble phase อาจมีอนุภาคของแข็งอยู่บ้างแต่น้อยมาก

2) ส่วนที่ไม่ใช่ฟองแก๊สหรือส่วนที่มีอนุภาคของแข็งอยู่หนาแน่น เรียกว่า Emulsion phase ขนาดของฟองแก๊สที่เกิดขึ้นจะเพิ่มขึ้นตาม

- ขนาดของอนุภาคของแข็ง; d_p ที่เพิ่มขึ้น
- ความเร็วแก๊ส; (U –U_m) ที่เพิ่มขึ้น
- ตำแหน่งที่อยู่เหนือตะแกรงรองรับ หรือตัวกระจายแก๊สที่เพิ่มขึ้น

ฟองแก๊สที่เกิดขึ้นจะเคลื่อนที่แทรกขึ้นไป และอาจมีการรวมตัวกันผ่าน Emulsion phase โดยที่อาจจะมีของแข็งบางส่วนติดไปด้านบนของฟองแก๊ส และบางส่วนวิ่งตามฟองแก๊สขึ้นมาด้วย จนกระทั่งถึงผิวบนก็จะเคลื่อนที่หลุดออกไปแล้วแตกกระจายอยู่เหนือผิว อนุภาคของแข็งที่ติดอยู่ เกือบทั้งหมดจะตกกลับลงมายังเบดใหม่ โดยเรียกปรากฏการณ์ที่ของแข็งเคลื่อนที่ตามฟองแก๊สนี้ ว่าการเกิด Wake การเกิด Wake เกิดจากความดันที่อยู่ใต้ฟองแก๊สน้อยกว่าความดันบริเวณ Emulsion phase ทำให้ของแข็งเคลื่อนที่จากบริเวณที่ความดันสูงมาอยู่ในบริเวณที่มีความดันต่ำ

ส่วนบริเวณที่อยู่เหนือเบดขึ้นไป ซึ่งฟองแก๊สจะเกิดการแตกตัวและของแข็งที่ติดไปกับฟอง แก๊สจะตกลงมายังเบดอีกครั้งด้วยผลของแรงโน้มถ่วง เรียกว่า บริเวณอิสระ (Freeboard) อย่างไร ก็ตามอาจจะมีอนุภาคของแข็งบางส่วน (น้อยมาก) ซึ่งมีขนาดเล็กถูกพัดพาเคลื่อนที่ไปกับแก๊สด้วย (ไม่ตกกลับลงมา) ณ ความสูงค่าหนึ่งใน Freeboard ซึ่งอนุภาคของแข็งเกือบทั้งหมดตกกลับลง มายังเบดจะเรียกความสูงนี้ว่า ความสูงหลุดลอยส่งผ่าน (Transport disengaged height, TDH) เหนือความสูงนี้ไปจะมีของแข็งเพียงเล็กน้อยเท่านั้น ซึ่งอาจหลุดไปกับแก๊สด้วยอัตราที่สม่ำเสมอ ซึ่งอัตราการเคลื่อนที่ของของแข็งในช่วงนี้จะเรียกว่า Elutriation rate

- เบดแบบสลัก (Slugging bed)

เนื่องจากขนาดของฟองแก๊สขึ้นอยู่กับความเร็วของแก๊สและความสูงของเบด ในกรณีที่หอ ทดลองมีขนาดเล็กหรือแคบและยาว ฟองแก๊สที่เกิดขึ้นอาจจะมีขนาดใหญ่เกือบเท่ากับเส้นผ่าน ศูนย์กลางหรือความกว้างของเบด (หอทดลอง) ในกรณีนี้จะสังเกตเห็นฟองแก๊สเคลื่อนที่ผ่านเบด และแยกอนุภาคของแข็งออกเป็นชั้น ๆ เรียกว่าเกิดสลัก และที่ความเร็วของแก๊สที่ทำให้ฟองแก๊ส เริ่มมีขนาดใหญ่เท่ากับเส้นผ่านศูนย์กลางของเบดหรือหอทดลองคือ Minimum slugging velocity (U_{ms}) มีค่าประมาณไว้คือ

$$U_{ms} = U_{mf} + 0.07\sqrt{gD}$$
 (2.7)

- เบดแบบปั่นป่วน (Turbulent Bed)

เมื่อความเร็วของแก๊สที่เคลื่อนที่ผ่านเบดแบบฟองแก๊สเพิ่มขึ้นจนมากกว่า U_m เบดจะ เกิดการขยายตัว และเมื่อเพิ่มความเร็วขึ้นเรื่อย ๆ จะเริ่มสังเกตเห็นรูปแบบการสัมผัสของอนุภาค ของแข็งกับแก๊ส ซึ่งมีการขยายตัวเปลี่ยนแปลงไป ฟองแก๊สที่เกิดขึ้นมีการรวมตัวและแตกกระจาย ออกจากกันอย่างรวดเร็ว (จนดูเหมือนไม่มีฟองแก๊ส) การเคลื่อนไหวภายในเบดเป็นแบบปั่นป่วน ลักษณะภายในเบดจะแบ่งได้เป็น 2 ส่วน คือ

- 1) Dense phase ซึ่งเป็นส่วนที่มีอนุภาคของแข็งอยู่หนาแน่น
- 2) Dilute phase ซึ่งเป็นส่วนที่มีอนุภาคของแข็งอยู่เบาบาง

สำหรับในช่วงการเปลี่ยนแปลงภาวะจากเบดแบบฟองแก๊สไปเป็นเบดแบบปั่นป่วนนั้น ไม่ได้เกิดขึ้นแบบทันทีทันใดที่ความเร็วค่าหนึ่ง แต่จะมีช่วงของความเร็วในการเปลี่ยนภาวะทั้งสองนี้ โดยการเปลี่ยนภาวะจากเบดแบบฟองแก๊สไปเป็นเบดแบบปั่นป่วนนั้นจะมีช่วงของการเปลี่ยน โดย เมื่อค่อย ๆ เพิ่มความเร็วขึ้นจนถึงค่า ๆ หนึ่ง เบดซึ่งเดิมอยู่ในภาวะเบดแบบฟองแก๊สนั้น ที่บริเวณ ผิวหน้าของเบดจะเริ่มเปลี่ยนไปเป็นเบดแบบปั่นป่วน ซึ่งเกิดขึ้นอย่างสมบูรณ์ สามารถแสดง ความสัมพันธ์ของความดันตกคร่อมเบดที่เกิดขึ้นในช่วงการเปลี่ยนภาวะได้ดังรูปที่ 2.4

รูปที่ 2.4 ความสัมพันธ์ระหว่างความดันลดกับ ความเร็วในช่วงการเกิดเบดแบบปั่นป่วน (Kunii, D. และ Levenspiel, O., 1991)

ความเร็วสุดท้าย (Terminal velocity) คือ ความเร็วตกอิสระของอนุภาคเม็ดของแข็งใน ของไหลอยู่นิ่ง ซึ่งความเร็วนี้จะมีค่าเท่ากับความเร็วของไหลที่ทำให้เม็ดของแข็งเคลื่อนตัวหลุดออก จากหอทดลองไป โดยแบ่งออกเป็น 2 กรณี ตามลักษณะของอนุภาคของแข็ง

กรณีอนุภาคของแข็งมีรูปร่างเป็นทรงกลม

$$U_{t}^{*} = \left[\frac{18}{\left(d_{p}^{*}\right)^{2}} + \frac{0.591}{\left(d_{p}^{*}\right)^{1/2}}\right]^{-1}$$
(2.8)

กรณีที่อนุภาคของแข็งไม่เป็นทร<mark>งกลม</mark>

$$U_{t}^{*} = \left[\frac{18}{\left(d_{p}^{*}\right)^{2}} + \frac{2.335 - 1.744\phi}{\left(d_{p}^{*}\right)^{1/2}}\right]^{-1}$$
(2.9)

จากสมการที่ (2.8) และ (2.9) จะอยู่ในรูปของตัวแปร U_t^{\cdot} และ d_p^{\cdot} ซึ่งเป็นเทอมของตัว แปรไร้หน่วย โดยที่

$$d_{p}^{*} = d_{p} \left[\frac{\rho_{g} (\rho_{s} - \rho_{g}) g}{\mu^{2}} \right]^{1/3}$$
(2.10)

และ

$$U_{t}^{*} = U_{t} \left[\frac{\rho_{g}^{2}}{\mu (\rho_{s} - \rho_{g})g} \right]^{1/3}$$
(2.11)

ดังนั้นจาก U, ที่ได้จากสมการที่ (2.8) และ (2.9) นำมาหา U, โดยอาศัยสมการที่ (2.11) จะได้

$$U_{t} = U_{t}^{*} \left[\frac{\mu (\rho_{s} - \rho_{g})g}{\rho_{g}^{2}} \right]^{1/3}$$
(2.12)

- Fast Fluidized Bed

เมื่อความเร็วของอากาศมากขึ้นจนไม่สามารถระบุพื้นผิวด้านบนของเบดได้ จนกระทั่ง อนุภาคของแข็งเคลื่อนที่ออกทางด้านบนหอทดลองและต้องเติมอนุภาคของแข็งเข้ามาแทนที่โดย การใส่เข้ามาใกล้ ๆ ส่วนล่างหอทดลอง อนุภาคของแข็งจะรวมกลุ่มและเคลื่อนที่ลงบริเวณใกล้ ๆ ผนังของหอทดลอง ขณะที่แก๊สและอนุภาคของแข็งที่กระจายตัวอยู่ด้านในจะเคลื่อนที่ขึ้น ในขณะ ที่อัตราการป้อนของแข็งคงที่ที่ความเร็วแก๊สเพิ่มขึ้นจะทำให้อนุภาคของแข็งในหอทดลองเจือจาง มากขึ้น ที่ภาวะนี้อัตราส่วนของปริมาตรของช่องว่างต่อปริมาตรของเบคมีค่าอยู่ระหว่าง 0.8 ถึง 0.98

จากรูปที่ 2.2 ในภาวะที่เป็น Fast fluidization ถ้านำเอาของแข็งที่หลุดออกจากเบดหรือ หอทดลองกลับเข้ามาในระบบใหม่ตรงบริเวณส่วนล่างของหอทดลอง ระบบแบบนี้จะเรียกว่าฟลูอิ ใดซ์เบดแบบหมุนเวียน (Circulating fluidized bed, CFB)

หมายเหตุ ฟลูอิไดเซชันที่ผ่านมาทั้งหมด (ยกเว้น Fast fluidized bed) อาจเรียกรวมกัน ว่า Captive fluidized bed เพราะอนุภาคของแข็งทั้งหมดซึ่งสัมผัสกับแก๊สจะถูกจำกัดบริเวณอยู่ ภายในระยะความสูงหนึ่งจากตัวกระจายแก๊สเท่านั้น หรือในบางกรณีที่มีการพัดพาเกิดขึ้นก็มี อนุภาคของแข็งเพียงเล็กน้อยเท่านั้นที่ถูกพัดพาไป

- Dilute-phase transport หรือ Pneumatic conveying

เป็นการขนถ่ายอนุภาคของแข็งด้วยแก๊ส ไม่มีการเปลี่ยนแปลงความเข้มข้นของของแข็งใน แนวแกนยกเว้นในส่วนล่างที่อนุภาคของแข็งมีความเร่ง และอนุภาคของแข็งบางส่วนอาจหยุดนิ่ง อยู่ใกล้ ๆ ผนังของหอทดลอง ความเร็วแก๊สที่ทำให้เบดในท่อเปลี่ยนจากเบดเจือจางเป็นเบด หนาแน่นเรียกว่า ความเร็วในการเกิดโซคกิ้ง (Choking velocity, $U_{c^{\prime}}$) ค่าความเร็วนี้สามารถหา ได้จากการทำการทดลอง โดยการปรับลดความเร็วแก๊สในระบบที่เป็นเฟสเจือจางและมีปริมาณ อนุภาคของแข็งในระบบคงที่ลงจนกระทั่งเบดเกิดการยุบตัวลงอย่างรวดเร็วเปลี่ยนจากเฟสเจือจาง เป็นเฟสหนาแน่น ซึ่งความเร็วแก๊สที่ทำให้เกิดการเปลี่ยนแปลงดังกล่าว คือความเร็วในการเกิด โซคกิ้งนั่นเอง ปริมาณของแข็งที่ไหลออกจากเบดภาวะนี้ คือ

$$G_{s,ch} = \rho_S (1 - \varepsilon_{ch}) (U_{ch} - U_t)$$
(2.13)

โดยค่า *ɛ_{ch}* หรืออัตราส่วนของปริมาตรของช่องว่างต่อปริมาตรของเบดในภาวะ Choking พบว่ามีค่าอยู่ระหว่าง 0.943 ถึง 0.987

2.2 ระบบฟลูอิไดซ์เบดแบบหมุนเวียน (Circulating fluidized bed: CFB) (เชิดชัย วุฒิการณ์ และ เกรียงไกร ตั้งสกุล, 2533)

ระบบฟลูอิไดซ์เบดแบบหมุนเวียน (Circulating fluidized bed: CFB) เป็นรูปแบบหนึ่ง ของเทคนิคฟลูอิไดซ์เบดที่มีพฤติกรรมที่มี Hydrodynamic ที่เรียกว่า Fast bed เป็นระบบที่มี ประสิทธิภาพสูง และเหมาะสมกับการใช้งาน

2.2.1ส่วนประกอบและลักษณะการทำงานของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียน (Basu, P. และ Fraser, S. A., 1991)

ระบบฟลูอิไดซ์เบดแบบหมุนเวียนซึ่งเป็นระบบที่อาศัยเทคนิคทางฟลูอิไดซ์เซชันมา ประยุกต์ใช้งาน ระบบจะประกอบด้วยส่วนที่สำคัญ 3 ส่วน ดังนี้

2.2.1.1 ท่อไรเซอร์ (Riser)

การไหลของของแข็งและของไหลในท่อไรเซอร์เป็นลักษณะหนึ่งของการสัมผัสกันระหว่าง ของไหลกับเม็ดของแข็ง โดยของไหลจะเคลื่อนที่ผ่านกลุ่มอนุภาคของแข็งที่อยู่เหนือ ตะแกรง รองรับ ซึ่งมี Hydrodynamic เป็นแบบฟลูอิไดเซชันที่ความความเร็วสูง (Fast fluidized bed) ซึ่งมี ความหนาแน่นบัลค์ต่ำอยู่ในภาว<mark>ะเฟสเบาบาง</mark>

2.2.1.2 ไซโคลนและส่วนที่ทำการแยกของแข็งกับแก๊ส (Cyclone and gas-solid separator) (Grace, J. R. และคณะ, 1997)

ไซโคลน เป็นอุปกรณ์ที่นิยมใช้กันมากในระบบของฟลูอิไดซ์เบดแบบหมุนเวียนเพื่อทำการ แยกของแข็งออกจากของไหล โดยอาศัยหลักการเหวี่ยง ซึ่งจะใช้แรงเหวี่ยงในแนวรัศมีในการ เหวี่ยงอนุภาคของแข็งให้กระทบกับผนังของไซโคลน จากนั้นอนุภาคของแข็งจะเคลื่อนที่ไปสู่ ส่วนล่างของไซโคลน เพื่อผ่านท่อป้อนกลับต่อไป ส่วนแก๊สและอนุภาคของแข็งขนาดเล็ก ๆ จะถูก แยกออกสู่ด้านบนของไซโคลน

ข้อดี ของไซโคลน คือ ไม่มีส่วนที่เป็นเครื่องจักรกล หลักการในการทำงานและโครงสร้าง เป็นแบบง่าย ๆ ดังนั้น ราคาจึงไม่แพง นอกจากนี้ค่าใช้จ่ายในการบำรุงรักษาน้อย

2.2.1.3 ท่อป้อนกลับและระบบการป้อนกลับของของแข็ง (Downcomer and return system) (Grace, J. R., 1982)

ในระบบของฟลูอิไดซ์เบดแบบหมุนเวียนทุกกระบวนการจะประกอบไปด้วยส่วนของระบบ ป้อนกลับ (Return system) ซึ่งการออกแบบจะแตกต่างกันตามกระบวนการผลิต โดยทั่วไปแบ่ง ออกเป็น 2 กระบวนการ คือ เตาเผาระบบฟลูอิไดซ์เบดแบบหมุนเวียน (Circulating fluidized bed combustion: CFBC) ดังแสดงในรูปที่ 2.5 (ก) และ Fluid catalytic cracking (FCC) ดังแสดงใน รูปที่ 2.5 (ข) ซึ่งทั้งสองระบบจะมีการออกแบบระบบหมุนเวียนที่แตกต่างกัน คือ CFBC ระบบ หมุนเวียนจะประกอบไปด้วย ไซโคลน ท่อป้อนกลับ และ Non – mechanical device เพื่อทำ หน้าที่ป้อนของแข็งกลับเข้าสู่เบด ส่วนกระบวนการ FCC ระบบป้อนกลับจะมีความสมบูรณ์ มากกว่าเนื่องจากตัวเร่งปฏิกิริยาจะมีการ Regenerate ที่ลูปก่อนที่จะเข้ามาสู่ท่อไรเซอร์
ในระบบฟลูอิไดซ์เบดแบบหมุนเวียนจะประกอบด้วย ส่วนของท่อป้อนกลับที่ทำหน้าที่ ป้อนกลับเม็ดของแข็งที่ได้จากไซโคลนกลับไปด้านล่างของท่อตรง หลังจากนั้นจะถูกป้อนสู่ระบบ การป้อนกลับของแข็ง เพื่อทำการหมุนเวียนเข้าสู่ท่อไรเซอร์

รูปที่ 2.5 (ก) เครื่อง CFB และ (ข) เครื่อง FCC (Grace, J. R., 1982)

2.2.2 ข้อดีและข้อเสียของการใช้เทคนิคฟลูอิไดเซชัน

การเปรียบเทียบข้อดีแล<mark>ะ</mark>ข้อเสียของการใช้เทคนิคฟลูอิไดเซชันกับเทคนิคอื่น ๆ สรุปได้ดังนี้ <u>ข้อดี</u>

 เนื่องจากเม็ดของแข็งเคลื่อนที่อยู่ตลอดเวลาทำให้เกิดการผสมกันได้อย่างรวดเร็วและ สม่ำเสมอ อุณหภูมิภายในเบดคงที่ตลอด

 มีการจัดเรียงตัวของเม็ดของแข็ง โดยเม็ดที่มีน้ำหนักน้อยจะอยู่ส่วนบน เม็ดที่มี น้ำหนักมากจะอยู่ส่วนล่าง ซึ่งสามารถนำไปใช้ในการแยกขนาดของเม็ดของแข็งได้ นอกจากนี้ แรงเสียดทานต่อการไหลของของไหลมีน้อยกว่ามาก

 จากคุณสมบัติที่คล้ายของไหล จึงสามารถทำงานแบบต่อเนื่องได้ คือปล่อยให้ ของแข็งไหลออกจากเบดและไหลเติมเข้ามาในเบดได้

 การที่เม็ดของแข็งไหลหมุนเวียนอยู่ภายในเบด เม็ดของแข็งนี้สามารถที่จะเป็นตัวนำ ความร้อนจากผนังแหล่งความร้อนให้กับของไหลได้มากกว่า เพราะมีสัมประสิทธิ์การถ่ายเทความ ร้อนที่สูงกว่า เมื่อเปรียบเทียบที่ความเร็วของของไหลค่าเดียวกัน ฟลูอิไดซ์เบดจึงเหมาะสมกับ กระบวนการที่มีปฏิกิริยาที่ให้ความร้อนหรือดูดความร้อนจำนวนมาก ๆ

5. อัตราการถ่ายเทมวลสารและพลังงานสูง เนื่องจากพื้นที่สัมผัสระหว่างเม็ดของแข็งกับ ของไหลมีมากเมื่อเทียบกับเบดนิ่ง 6. ที่ความเร็วของของไหลสูง ๆ การทำงานของฟลูอิไดซ์เบดจะเสียพลังงานน้อยกว่าเบด ที่อยู่กับที่มาก เพราะแรงเสียดทานและความดันลดมีค่าน้อยกว่า

7. สามารถกำจัดขนาดของตัวเร่งปฏิกิริยาที่มีขนาดเล็กมาก ๆ ได้โดยไม่ต้องหยุดการ ทำงานของเครื่อง

8. สามารถใช้ในการขนส่งเม็ดของแข็งจากที่หนึ่งไปยังอีกที่หนึ่งได้

<u>ข้อเสีย</u>

 เนื่องจากมีการผสมกันของเม็ดของแข็งอย่างรวดเร็ว อาจทำให้ระยะเวลาที่เม็ด ของแข็งสัมผัสและผสมกับของไหลสั้นเกินไป เบดอาจจะไม่ผสมกันเป็นเนื้อเดียวโดยตลอด แต่อาจ แก้ไขได้โดยใช้เบดหลายชั้น

 เกิดการขัดสีระหว่างของแข็งและภาชนะทำให้เกิดการสึกกร่อน ทำให้เม็ดของแข็งมี ขนาดเล็กลง

2.3 ทฤษฎีพื้นฐานของฝุ่นละออง (นพภาพร พานิช และคณะ, 2550)

ในการควบคุมฝุ่นละอองที่เกิดจากโรงงานอุตสาหกรรม โดยการใช้อุปกรณ์ดักฝุ่นนั้นต้อง เลือกใช้อุปกรณ์ดักฝุ่นให้เหมาะกับลักษณะของฝุ่น คุณสมบัติที่สำคัญที่สุดคือขนาดของฝุ่น เนื่องจากประสิทธิภาพในการจับฝุ่นขึ้นอยู่กับขนาดของฝุ่นหรืออนุภาค นอกจากนี้ต้องพิจารณา คุณลักษณะของกระแสแก๊ส รวมทั้งข้อจำกัดและค่าใช้จ่ายของอุปกณ์แต่ละชนิด

2.3.1 ลักษณะของฝุ่น (Particle Characteristics)

ฝุ่นละออง (Particulate Matter) หมายถึง อนุภาคของแข็ง หรือของเหลวที่แขวนลอยอยู่ ในอากาศหรือแก๊ส ถ้าเป็นอนุภาคที่มีขนาดเล็ก เรียกว่า แอโรโซล (Aerosol) ฝุ่นละอองที่เกิดจาก โรงงานอุตสาหกรรมมักเกิดจากกระบวนการเผาไหม้และกระบวนการผลิต โดยจะมีลักษณะ แตกต่างกัน ได้แก่ ขนาดของฝุ่น ปริมาณหรือความเข้มข้น รูปร่าง ความหนาแน่น และคุณสมบัติ อื่น ๆ เช่น การนำไฟฟ้า การกัดกร่อน การดูดความชื้น (Hygroscopic) การว่องไวต่อปฏิกริยา (Reactivity) และความเป็นพิษ (Toxicity) เป็นต้น คุณสมบัติเหล่านี้ต้องนำมาใช้พิจารณาเพื่อ เลือกอุปกรณ์จับฝุ่นให้ได้ประสิทธิภาพตามที่ต้องการ

ในการออกแบบอุปกรณ์ดักฝุ่น ข้อมูลที่สำคัญที่สุดคือขนาดของอนุภาคหรือฝุ่น โดยขนาด ของอนุภาค หมายถึง เส้นผ่านศูนย์กลาง (Diameter) ในกรณีที่อนุภาคเป็นทรงกลม แต่โดยทั่วไป อนุภาคมีรูปร่างหลายอย่าง นอกจากทรงกลมดังแสดงในรูปที่ 2.6

รูปที่ 2.6 รูปร่าง<mark>ต่าง ๆ ของอนุภาค (นพภาพร</mark> พานิช และคณะ, 2550)

2.3.2 กลไกในการจับฝุ่น (Particle Collection Mechanism)

ในอุปกรณ์ดักฝุ่นทุกชนิด จะต้องใส่แรงกระทำต่ออนุภาคเพื่อแยกอนุภาคออกจากกระแส แก๊ส และให้อนุภาคเคลื่อนที่ไปชนกับ Collector ซึ่งอาจเป็นพื้นผิว (Surface Collection) ได้แก่ ไซโคลน เครื่องดักฝุ่นแบบไฟฟ้าสถิตย์ หรือเป็นวัตถุ (Target Collector) เช่นเส้นใยในถุงกรอง หยดน้ำในสครับเบอร์ เป็นต้น

กลไกหรือแรงที่ใช้ในการจับอนุภาคมี 6 อย่างด้วยกัน (รูปที่ 2.7) ซึ่งแรงเหล่านี้ขึ้นอยู่กับ ขนาดของอนุภาคทั้งสิ้น ได้แก่

- (ก) แรงโน้มถ่วง (Gravity)
- (ข) แรงเหวี่ยง (Centrifugal Force)
- (ค) การกระทบเนื่องจากความเฉื่อย (Inertial Impaction)
- (ง) การสกัดกั้นโดยตรง (Direct Interception)
- (จ) การแพร่ (Diffusion)
- (ฉ) แรงไฟฟ้าสถิตย์ (Electrostatic Attraction)

การแยกโดยแรงโน้มถ่วง เป็นกลไกที่ง่ายที่สุด อนุภาคที่มีขนาดใหญ่เคลื่อนเข้ามาพร้อม กระแสแก๊สด้วยความเร็วต่ำ ทำให้แยกอนุภาคออกจากแก๊สได้เนื่องจากแรงโน้มถ่วง เช่น ในห้อง ตกอนุภาค

การแยกโดยแรงเหวี่ยง แก๊สที่เคลื่อนที่ในเครื่องมือที่มีรูปร่างโค้ง เช่น ไซโคลน ทำให้ กระแสแก๊สหมุนวนภายในไซโคลน และเกิดแรงเหวี่ยงอนุภาคไปยังผนังของเครื่อง เนื่องจาก โมเมนตัม อนุภาคจะสูญเสียพลังงานจลน์ที่นั้น และแยกออกจากกระแสแก๊ส อนุภาคจะตกลงไป ในถังพัก เนื่องจากแรงโน้มถ่วง ดังนั้นแรงเหวี่ยงและแรงโน้มถ่วงจึงเป็นแรงสำคัญในการแยกฝุ่นใน ไซโคลน ในถุงกรองและสครับเบอร์ มีกลไก 3 อย่าง ในการจับอนุภาค คือ การกระทบ การสกัดกั้น โดยตรง และการแพร่ในถุงกรองมีเส้นใยเป็นวัตถุที่เป็นเป้า (Target Object) จับอนุภาค ในสครับ เบอร์มีหยดน้ำซึ่งพ่นสู่กระแสแก๊สเป็นวัตถุเป้าหมาย

การกระทบ (Inertial Impaction) เกิดขึ้นในกรณีอนุภาคมีมวลมาก ไม่สามารถเคลื่อนที่ ตามเส้นกระแสแก๊สที่ไหลอ้อมวัตถุเป้าหมาย เนื่องจากความเฉื่อยของอนุภาค ดังนั้นอนุภาคจะชน วัตถุ อนุภาคยิ่งมีขนาดใหญ่หรือมวลมากย่อมถูกจับได้ง่ายขึ้น

การแยกด้วยแรงไฟฟ้าสถิตย์เกิดเมื่ออนุภาคที่มีประจุไฟฟ้าเคลื่อนที่ไปยังผิวเก็บหรือวัตถุ เป้าหมายที่มีประจุชนิดตรงกันข้าม <mark>ทำให้อนุภาคถู</mark>กจับไว้ เช่น อุปกรณ์ดักฝุ่นแบบไฟฟ้าสถิตย์

รูปที่ 2.7 กลไกทางกายภาพต่าง ๆ ที่มีอิทธิพลในการแยกอนุภาคของแข็งออกจากกระแสแก๊ส

2.3.3 ความสัมพันธ์ระหว่างขนาดของอนุภาคกับประสิทธิภาพการเก็บอนุภาค

การดับจับฝุ่นหรืออนุภาคเกิดจากกลไกต่าง ๆ ที่กล่าวมาแล้ว ซึ่งกลไกหรือแรงดังกล่าว ขึ้นกับขนาดของอนุภาค รูปที่ 2.8 แสดงความสัมพันธ์ระหว่างขนาดของอนุภาคกับประสิทธิภาพ ในการจับอนุภาค จะเห็นได้ว่าประสิทธิภาพในการจับอนุภาคที่มีขนาดใหญ่กว่า 100 ไมครอน มี ค่าสูงมากด้วยกลไกการกระทบด้วยแรงเฉื่อย แรงไฟฟ้าสถิตย์ และแรงโน้มถ่วง ค่าประสิทธิภาพใน การจับอนุภาคขนาด 10 – 100 ไมครอน ยังคงมีค่าสูงเนื่องจากแรงกระทบและ/หรือแรงไฟฟ้า สถิตย์ (ขึ้นอยู่กับชนิดของอุปกรณ์) ซึ่งขึ้นกับค่ากำลังสองของขนาดอนุภาค สำหรับอนุภาคที่มี ขนาดเล็กกว่า 10 ไมครอน จะมีค่าประสิทธิภาพลดลง เนื่องจากแรงเลื่อยและแรงไฟฟ้าสถิตย์ น้อยลงและมีค่าน้อยมากสำหรับอนุภาคขนาดประมาณ 3 ไมครอน จนถึง 0.3 ไมครอน

กรณีที่อนุภาคมีขนาดเล็กว่า 0.3 ไมครอน กลไกการแพร่เริ่มมีความสำคัญมากขึ้น ดังนั้น กราฟประสิทธิภาพเริ่มมีค่าสูงขึ้นในช่วงขนาดเล็กมาก ๆ พบว่าในช่วงขนาดอนุภาคระหว่าง 0.1 ถึง 0.5 ไมครอน ค่าประสิทธิภาพมีค่าต่ำมากเนื่องจากข้อจำกัดของกลไกต่าง ๆ ในช่วงขนาดนี้ ดังนั้นอนุภาคที่มีขนาดช่วงนี้กำจัดได้ยาก อาจต้องมีการปรับปรุงกระบวนการผลิตเพื่อเปลี่ยน ขนาดของฝุ่นละออง หรือใช้ระบบ Pretreatment เพื่อเพิ่มขนาดอนุภาคทำให้กำจัดได้ง่ายขึ้น

รูปที่ 2.8 ความสัมพันธ์ระหว่างขนาดของอนุภาคกับประสิทธิภาพในการจับฝุ่น (นพภาพร พานิช และคณะ, 2550)

2.3.4 ประสิทธิภาพในการจับฝุ่น (Effectiveness of Particle Collection)

ในอุปกรณ์ดักฝุ่น อนุภาคจะถูกแยกออกจากกระแสแก๊ส โดยการตก หรือสัมผัสและติดที่ ผิวหรือวัตถุ สมรรถนะของอุปกรณ์ในการแยกอนุภาคสามารถบอกได้ในรูปของปริมาณของฝุ่นที่ ถูกแยกและเก็บในอุปกรณ์ดักฝุ่นซึ่งเรียกว่าประสิทธิภาพการเก็บฝุ่นหรืออนุภาค (Effective Collection Efficiency) หรือปริมาณของฝุ่นที่ระบายออกจากอุปกรณ์ดักฝุ่น ซึ่งเรียกว่า Penetration โดยมีคำจำกัดความดังสมการ

ประสิทธิภาพการเก็บฝุ่น
$$\eta = 1 - \frac{C_o}{C_i}$$
 (2.14)

โดย

η = ประสิทธิภาพ
 C_i = ปริมาณของฝุ่นในกระแสแก๊สไหลเข้า, จำนวนหรือน้ำหนักต่อปริมาตร

C_o = ปริมาณของฝุ่นในกระแสแก๊สไหลออก, จำนวนหรือน้ำหนักต่อปริมาตร

เนื่องจากประสิทธิภาพในการจับฝุ่นขึ้นกับกลไกหรือแรงกระทำบนอนุภาค ซึ่งมีค่ามาก น้อยตามขนาดของอนุภาค และสภาวะการเดินเครื่อง (Operating Conditions) ดังนั้นประสิทธิภาพ ในการจับอนุภาคขนาดหนึ่ง ๆ เรียกว่า ประสิทธิภาพย่อย (Grade or Fractional Collection Efficiency) ซึ่งแสดงดังสมการที่ (2.15) และประสิทธิภาพรวมแสดงโดยสมการที่ (2.16)

ประสิทธิภาพย่อย
$$\eta_i(d_{pi}) = 1 - \frac{C(d_{pi})_o}{C(d_{pi})_i}$$
 (2.15)

โดย $C(d_{pi})_i = 1$ ริมาณของฝุ่นขนาด d_p ในกระแสแก๊สไหลเข้า $C(d_{pi})_o = 1$ ริมาณของฝุ่นขนาด d_p ในกระแสแก๊สไหลออก

ประสิทธิภาพรวม $\eta_M = 1 - \frac{C_o}{C_i}$

C_i = ปริมาณของฝุ่นทุกขนาดในกระแสแก๊สไหลเข้า
 C_a = ปริมาณของฝุ่นทุกขนาดในกระแสแก๊สไหลออก

ในการคำนวณหาประสิทธิภาพรวม (Overall Collection Efficiency) ของอุปกรณ์ดักฝุ่น จำเป็นต้องมีข้อมูลของขนาดของฝุ่น (Particle Size Distribution) ที่ไหลเข้าอุปกรณ์ และ Grade Efficiency Curve ของอุปกรณ์ดักฝุ่นนั้น ๆ เพื่อคำนวณหาประสิทธิภาพรวมได้จากสมการ

$$\eta_{M} = \sum_{i=1}^{n} \eta_{i}(d_{pi}) \cdot g_{i}(d_{pi})$$
(2.18)

โดย

 $\eta_M = 1$ ระสิทธิภาพรวม η_i $(d_{pi}) = 1$ ระสิทธิภาพในการจับฝุ่นขนาด d_{pi}

 $g_i(d_{pi})$ = สัดส่วนโดยมวล (Mass Fraction) ที่มีขนาด d_{pi}

2.3.5 อุปกรณ์ดักจับฝุ่น

อุปกรณ์ที่ใช้ในการดักจับฝุ่นที่เกิดจากกระบวนการผลิตในโรงงานอุตสาหกรรม มีหลายชนิด

ได้แก่

- ระบบคัดแยกโดยการตก เนื่องจากน้ำหนักฝุ่น (Gravity Settles)
- ไซโคลน (Cyclones)
- การดักจับด้วยหยดน้ำ หรือสครับเบอร์ (Wet Collectors or Scrubbers)
- ถุงกรอง (Fabric Filters)
- เครื่องดักฝุ่นแบบไฟฟ้าสถิตย์ (Electrostatic Precipitators)

(2.16)

ในการเลือกอุปกรณ์เหล่านี้ให้เหมาะสมกับประเภทของกระบวนการ จะต้องพิจารณาถึง ลักษณะสมบัติของฝุ่นละออง และกระแสแก๊สที่ต้องการบำบัด ประสิทธิภาพ (Performance) ที่ ต้องการ ตลอดจนค่าใช้จ่ายและราคาของอุปกรณ์

2.4 ไซโคลน (Cyclone)

ไซโคลนเป็นเครื่องมือสำหรับแยกอนุภาคขนาดใหญ่ออกจากกระแสแก๊สโดยใช้แรงหนี ศูนย์กลาง ซึ่งเกิดจากการทำให้กระแสแก๊สหมุนวน (Vortex) เนื่องจากรูปร่างลักษณะของไซโคลน กระแสแก๊สที่ไหลเข้าสู่ไซโคลนตามแนวสัมผัสหรือตามแนวแกนโดยผ่าน Vanes ไม่ว่ากรณีใดการ ทำงานของไซโคลนขึ้นกับความเฉื่อย (Inertia) ของอนุภาคที่จะเคลื่อนในแนวเส้นตรง เมื่อแก๊ส เปลี่ยนทิศทางแรงหนีศูนย์กลางจะเหวี่ยงอนุภาคไปยังผนังของไซโคลนและเคลื่อนลงถังพัก

2.4.1 กลไกในการจับอนุภาค (Collection Mechanisms)

กลไกที่ใช้เก็บอนุภาคในไซโคลนมี 2 อย่าง คือ

 แรงหนีศูนย์กลางหรือแรงเหวี่ยง ซึ่งเกิดจากการทำให้กระแสอากาศมีการหมุน ทำให้ อนุภาคถูกเหวี่ยงไปยังผนังของไซโคลน

2) แรงถ่วง เมื่ออนุ<mark>ภาคเคลื่อนถึงผนังของไซโคลนแล้ว</mark> อนุภาคที่หนักจะได้รับแรงถ่วงทำให้ อนุภาคตกลงไปที่ถังพักข้างล่าง

2.4.2 หลักการทำงาน

ไซโคลนประกอบด้วยส่วนรูปทรงกระบอก และมีปลายเป็นรูปโคน แสดงดังรูปที่ 2.9 อากาศเคลื่อนเข้าสู่ไซโคลนในแนวสัมผัสที่ใกล้ส่วนบนของเครื่องมือด้วยความเร็วประมาณ 30 เมตรต่อวินาที เมื่ออากาศผ่านเข้ามาในไซโคลนจะเกิดกระแสวน (เรียกว่า Main vortex) ซึ่งทำให้เกิด แรงหนีศูนย์กลางเหวี่ยงอนุภาคไปยังผนังของไซโคลน กระแสวนนี้จะเคลื่อนลงจนถึงจุดหนึ่งที่อยู่ เกือบปลายโคน อากาศจะหมุนกลับเป็นกระแสวนที่เล็กกว่าเดิม (เรียกว่า Core vortex) และเคลื่อนที่ ขึ้นไปตามตัวไซโคลน จนออกไปทางท่อออกที่อยู่ส่วนบนของเครื่อง นั่นคือมีกระแสวน 2 ชั้น (Double vortex) เกิดขึ้นในทิศทางเดียวกัน สำหรับอนุภาค ที่ถูกเหวี่ยงไปยังผนังของไซโคลนจะ เคลื่อนที่ลงไปยังส่วนปลายของโคนไปยังถังพัก (Hopper) เนื่องจากแรงโน้มถ่วง ส่วนอากาศที่ไม่มี อนุภาคก็จะหมุนออกไปทางท่อออกที่อยู่ส่วนบนของไซโคลน

ส่วนใหญ่ไซโคลนทำมาจากเหล็กคาร์บอน หรือโลหะ หรือเซรามิกใดก็ได้ตามการใช้งานใน ที่มีอุณหภูมิสูง การกัดกร่อนและสึกกร่อน แต่ผิวภายใน ต้องเรียบเนื่องจากไซโคลนเป็นเครื่องมือที่ ไม่มีส่วนที่เคลื่อนที่ ดังนั้นการเดินเครื่องจึงง่าย และไม่ต้องการการบำรุงรักษามากนัก ต้นทุนต่ำ ไซโคลนใช้ในงานหลายอย่าง เช่น ใช้แยกผลิตภัณฑ์ที่แห้ง หรือใช้ในการดักฝุ่นละอองซึ่งมีขนาด ใหญ่กว่า 10 ไมครอน จึงมักใช้เป็นอุปกรณ์ดักฝุ่นขนาดใหญ่ ก่อนส่งไปอุปกรณ์ดักฝุ่นที่มี ประสิทธิภาพสูง

ูรูปที่ 2.9 ส่วนประกอบของไซโคลน (นพภาพร พานิช และคณะ, 2550)

2.4.3 ชนิดของ<mark>ไซโคลน</mark>

ไซโคลนแบ่งเป็น 2 ชนิดใหญ่ ๆ ตามวิธีการให้แก้สเข้าสู่เครื่องเพื่อให้เกิดการหมุนวน คือ

 ไซโคลนที่แก๊สไหลเข้าตามแนวเส้นสัมผัส (Tangential Entry Cyclone) ทางเข้าอาจ เป็นทางเข้าด้านบน (Top inlet) หรือทางเข้าด้านล่าง (Bottom Inlet) แสดงในรูปที่ 2.10

2) ไซโคลนที่แก๊สไหลเข้าตามแนวแกน (Axial Entry Cyclone) แสดงในรูปที่ 2.11

รูปที่ 2.10 ไซโคลนซนิดอากาศไหลเข้าตามแนวสัมผัส (Tangential Entry Cyclone) (ก) ทางเข้าด้านบน (Top Inlet) และ (ข) ทางเข้าด้านล่าง (Bottom Inlet) (นพภาพร พานิช และคณะ, 2550)

รูปที่ 2.11 ไซโคลนซ<mark>นิดอากาศไหลเข้าตามแนวแกน</mark> (Axial Entry Cyclone) (นพภาพร พานิช และคณะ, 2550)

ไซโคลนที่แก๊สไหลเข้าตามแนวสัมผัส มักเป็นไซโคลนขนาดใหญ่ มีทางเข้าด้านบน (Top inlet) หรือด้านล่าง (Bottom inlet) ไซโคลนที่ใช้ในการดักฝุ่นโดยทั่วไปเป็นซนิดทางเข้าด้านบน (Top inlet) ส่วนไซโคลนซนิดทางเข้าด้านล่าง (Bottom inlet) มักใช้เก็บฝุ่นละอองที่ปนมากับหยด น้ำหลังจากผ่านสครับเบอร์ แก๊สไหลเข้ามาในแนวเส้นสัมผัสที่ด้านล่างของตัวไซโคลน และทำให้ เกิดการหมุนวนขึ้นและไหลออกทางท่อออกด้านบน ส่วนหยุดน้ำซึ่งมีขนาดใหญ่จะถูกเหวี่ยงไปยัง ผนังของไซโคลนและแยกออกจากกระแสแก๊ส

ไซโคลนชนิดท่อเข้าทางด้านบน (Top inlet) มีลักษณะท่อทางเข้ารูปร่างต่าง ๆ แสดงในรูป ที่ 2.12 ที่ใช้มากที่สุดคือท่อเข้าตามแนวเส้นสัมผัส (Tangential inlet)

รูปที่ 2.12 ชนิดของท่อทางเข้า (Inlet) ของไซโคลน (นพภาพร พานิช และคณะ, 2550)

ไซโคลนที่แก๊สไหลเข้าตามแนวแกนมักเป็นไซโคลนที่มีขนาดเล็ก ซึ่งมีประสิทธิภาพสูงกว่า ไซโคลนขนาดใหญ่ เนื่องจากกระแสแก๊สถูกหมุนในกระแสวนขนาดเล็กกว่า ดังนั้นกระแสแก๊สมีค่า ความเร็ว (Radial Velocity) สูงในไซโคลนขนาดเล็ก

ไซโคลนชนิดนี้มีทางแก๊สเข้าและออกในแนวแกนของไซโคลน ดังรูปที่ 2.11 กระแสแก๊ส ไหลเข้าสู่ไซโคลนโดยผ่านแผ่น Vane ทำให้เกิดการหมุน ซึ่งมีลักษณะเหมือนกับที่เกิดในไซโคลน ขนาดใหญ่คือแก๊สที่ไหลเข้าทำให้เกิดกระแสวนส่วนนอก (Outer Vortex) ซึ่งเคลื่อนลงไปยังส่วน ปลายโคน แล้วแก๊สหมุนกลับเป็นกระแสวนด้านใน (Inner Vortex) และเคลื่อนที่ผ่านท่อออกด้านบน

2.4.4 ขนาดและรูปร่างของไซโคลน

โดยทั่วไปไซโคลนสามารถจับฝุ่นที่มีขนาด 10 ไมครอน หรือใหญ่กว่าได้อย่างมีประสิทธิภาพ โดยไซโคลนที่ใช้กันโดยทั่วไปจับอนุภาคที่มีขนาดใหญ่กว่า 25 ไมครอนได้มากกว่าร้อยละ 90 แต่ ถ้าเป็นไซโคลนชนิดที่มีประสิทธิภาพสูง (High-Efficiency) จะมีขนาดเล็กสามารถจับอนุภาคที่มี ขนาดเล็กถึง 5 ไมครอนได้ ประสิทธิภาพของการจับอนุภาคแยกตามขนาดที่เรียกว่าประสิทธิภาพ ย่อย (Grade or Fractional Collection Efficiency) ของไซโคลน 3 ชนิด คือ ไซโคลนที่มี ประสิทธิภาพสูง (High Efficiency Cyclone) ไซโคลนที่ใช้กันทั่วไป (Conventional Cyclone) และ ไซโคลนที่รับอัตราการไหลสูง (High-Volume Cyclone) แสดงเป็นตัวอย่างในรูปที่ 2.15

ขนาดและรูปร่างของไซโคล<mark>นมีหลายแบบ ดังรู</mark>ปที่ 2.13 และตารางที่ 2.1 แสดงสัดส่วน ของไซโคลนมาตรฐานชนิดต่าง ๆ เช่น ไซโคลนชนิด Lapple Stairmand Swift เป็นต้น

รูปที่ 2.13 ประสิทธิภาพแยกตามขนาดของไซโคลนชนิดต่างๆ (นพภาพร พานิช และคณะ, 2550)

รูปที่ 2.14 สัดส่วนของไซโคลนมาตรฐาน (Lim, K. S. และคณะ, 2004)

		ไซ <mark>โคลนชนิด</mark>		ไซโคลนชนิด		ไซโคลนชนิด	
		ประสิทธิภาพสูง		ที่ใช้ทั่วไป		รับแก๊สปริมาณมาก	
		(1)*	(2)**	(3)***	(4)**	(5)	(6)
ขนาดของไซโคลน	D/D	1.0	1.0	1.0	1.0	1.0	1.0
ความสูงของท่อเข้า	a/D	0.5	0.44	0.5	0.5	0.75	0.8
ความกว้างของท่อเข้า	b/D	0.2	0.21	0.25	0.25	0.375	0.35
เส้นผ่านศูนย์กลางของท่อแก๊สออก	D _e /D	0.5	0.4	0.5	0.5	0.75	0.75
ความยาวของท่อแก๊สออก (Vortex Finder)	S/D	0.5	0.5	0.625	0.6	0.875	0.85
ความยาวของตัวไซโคลน 🏼	h/D	1.5	1.4	2.0	1.75	1.5	1.7
ความยาวของส่วนโคน	(H-h)/D	2.5	2.5	2.0	2.0	2.5	2.0
เส้นผ่านศูนย์กลางของท่อระบายฝุ่นออก	B/D	0.375	0.4	0.25	0.4	0.375	0.4
Dimension Factor	С	551.3	699.2	402.9	381.8		

ตารางที่ 2.1 ลักษณะขอ<mark>งไซโคลน</mark>

หมายเหตุ :

Stairmand Swift Lapple *** Lapple

รูปที่ 2.14 เป็นไซโคลนแบบที่อากาศไหลเข้าตามแนวสัมผัส แสดง 8 มิติ (dimensions) โดยมีอัตราส่วนของมิติทั้ง 7 (dimension ratio) คือ a/D, b/Dc, S/D, D_/D, h/D, (H-h)/D และ B/D บอกถึงโครงแบบของไซโคลน และมี 1 มิติ คือ D เป็นสิ่งที่บอกขนาดของไซโคลน

ประสิทธิภาพในการออกแบบไซโคลนโดยใช้โครงแบบ (Configuration) อื่น จะต้อง คำนึงถึงสิ่งต่อไปนี้

- 1. a ≤ S เพื่อป้องกันไม่ให้ฝุ่นที่เข้ามาหลุดออกไปยังท่อออกเลย
- 2. $B \leq (D D_p)/2$ เพื่อไม่ให้ค่าความดันลดมีค่ามากเกินไป
- H ≥ 3D เพื่อให้กระแสวนอยู่ภายในส่วนโคน
- 4. มุมของส่วนโคน ประมาณ 7 8° เพื่อช่วยให้ฝุ่นไหลลงง่าย
- 5. D/D ~ 0.4 0.5, H/ D ~ 8 10, และ S/D ~ 1 เพื่อให้ประสิทธิภาพมากที่สุด

2.4.5 ประสิทธิภาพการแยกของไซโคลน (Collection efficiency)

ประสิทธิภาพในการจับอนุภาคเป็นฟังก์ชั่นกับขนาดของอนุภาค นั่นคือประสิทธิภาพใน การจับอนุภาคขนาดใหญ่มีค่ามากกว่าของอนุภาคขนาดเล็ก ในการคำนวณประสิทธิภาพการจับฝุ่น ขนาดหนึ่ง เรียกว่าประสิทธิภาพย่อย (Grade or Fractional Efficiency) หาได้จากวิธี Semiempirical ของ Lapple

Lapple ใช้หลักการสมดุลของแรงเหวี่ยง และแรง drag ที่กระทำในไซโคลนเพื่อ คำนวณหาขนาดตัดของอนุภาค [d_p]_{out} ซึ่งเป็นขนาดของอนุภาคที่ถูกแยกด้วยประสิทธิภาพร้อยละ 50 คำนวณได้จาก Lapple (1951) ดังสมการ

$$[d_p]_{cut} = \sqrt{\frac{9\mu W}{2\pi N_e V_i (\rho_p - \rho_g)}}$$
(2.19)

โดยที่

i μ = ความหนืดของแก๊ส (ปาสคัล วินาที)

- N_e = จำนวนรอบของการหมุนของแก๊ส (Effective number of turns) ปกติมี ค่า 5 ถึง 10
- V_i = ความเร็วของแก๊สเข้าสู่ไซโคลน (เมตรต่อวินาที)
- $ho_{\scriptscriptstyle
 ho}$ = ความหนาแน่นของอนุภาค (กิโลกรัมต่อลูกบาศก์เมตร)
- $ho_{_{g}}$ = ความหนาแน่นของแก๊ส (กิโลกรัมต่อลูกบาศก์เมตร)
- W = ความกว้างของท่อเข้า (เมตร)

สำหรับค่าประสิทธิภาพรวมหาได้จากสมการ

$$\eta = \sum \eta_i w_i \tag{2.20}$$

เมื่อ η = 1

η = ประสิทธิภาพรวม

- *η*, = ประสิทธิภาพในการจับอนุภาคในแต่ละช่วงขนาด
- *w_i* = เปอร์เซ็นต์โดยน้ำหนักของอนุภาคในแต่ละช่วงขนาด

2.4.6 ค่าความความดันลด (Pressure Drop)

เป็นค่าที่บอกถึงพลังงานที่ใช้ในการแยกอนุภาคในไซโคลน ค่าความดันลด (Δ P) หาได้ จากวิธีของ Shepherd และ Lapple โดยสมการที่ 2.22

$$\Delta P = \frac{1}{2} \rho_g V_g^2 N_H \tag{2.22}$$

โดย ΔP = ความดันลด (ปาสคัล)

ρ_σ = ความหนาแน่นของแก๊ส (กิโลกรัมต่อลูกบาศก์เมตร)

V_g = ความเร็<mark>วของแก๊สขาเข้า (เม</mark>ตรต่อวินาที)

 N_{H} = จำนวน inlet velocity head ได้จากสมการที่ 2.23

$$N_H = K \frac{HW}{D_e^2}$$
(2.23)

K = 16 สำหรับไซโคลนที่มีท่อเข้าตามแนวเส้นสัมผัส (Tangential Inlet)
 หรือ 7.5 สำหรับไซโคลนที่มี Vane

H = ความสูงของท่อน้ำเข้า (เมตร)

W = ความกว้างของท่อน้ำเข้า (เมตร)

D_e = ขนาดของท่อแก๊สออก (เมตร)

ค่าความดันลดเป็นฟังก์ชั่นกับกำลังสองของความเร็วเข้า ถ้าแก๊สมีความเร็วสูงเกินไปจะทำ ให้ความดันลดสูงด้วย แต่ถ้าความเร็วต่ำจะทำให้ประสิทธิภาพของไซโคลนต่ำ อย่างไรก็ตามถ้าแก๊ส มีความเร็วสูงมากจะทำให้ประสิทธิภาพในการเก็บฝุ่นต่ำลง เนื่องจากเกิดการปั่นป่วนภายใน ไซโคลน (Turbulence) และมีอนุภาคฟุ้งกลับ การศึกษาการปั่นป่วนภายในไซโคลนนั้นทั่วไปจะใช้ เทคนิค Laser-Droppler Velocimetry (LDV) (Wang, J.J. และคณะ 2005) หรือ เทคนิค Stereoscopic particle image velocimetry (Stereo-PIV) (Liu, Z. และคณะ 2006) เพื่อหาความ เร็ซของอนุภาค และ ความแปรปรวนของความเร็วของอนุภาคภายในไซโคลน โดยทั่วไปความเร็ว ของแก๊สที่เหมาะสมมีค่าประมาณ 18.3 เมตรต่อวินาที

2.4.7 การออกแบบไซโคลน

การออกแบบไซโคลนประกอบด้วยการเลือกโครงแบบ (Configuration) แล้วหาขนาดของ ไซโคลน ประสิทธิภาพแยกตามขนาดค่าความดันลดและพลังงานที่ต้องใช้การคำนวณหาค่า ดังกล่าวจำเป็นต้องทราบอัตราการไหลของแก๊ส ส่วนประกอบอุณหภูมิและความดันของแก๊ส ปริมาณฝุ่นในกระแสแก๊ส (Grain loading) และลักษณะการกระจายขนาดของฝุ่น จากการออก และทำให้ได้ค่าประสิทธิภาพของการเก็บฝุ่นรวม ปริมาณฝุ่นที่ปล่อยออกจากไซโคลน รวมทั้ง ขนาดของฝุ่นด้วย เพื่อนำไปใช้ในการออกแบบเครื่องกำจัดฝุ่นต่อจากไซโคลนการหาขนาดของ ไซโคลนทำโดยการเลือก Configuration ration และความเร็วของแก๊สที่ไหลเข้า ทำให้หาขนาดและ สัดส่วนของไซโคลนได้ ในกรณีที่ต้องการให้ประสิทธิภาพในการเก็บฝุ่นมีค่าสูงควรให้ความเร็วของ แก๊สมีค่ามากที่สุด โดยไม่ทำให้ฝุ่นฟุ้งกระจายอีก โดย Kalen และ Zenz ได้ประมาณค่า V, ที่มาก ที่สุดที่จะเป็นได้ โดยใช้สมการที่ 2.24

$$MaxV_{1} = \frac{22.6g\mu P_{10}(B_{c}/D_{c})^{1.2}D_{c}^{0.201}}{P_{10}^{2}[1 - (B_{c}/D_{c})]}$$
(2.24)

ในที่นี้ใช้หน่วยเป็น ฟุต ปอนด์ และ วินาที เพราะเป็นสมการที่ได้จากผลการทดลองจาก สภาวะการเดินเครื่อง (Operating condition) และโครงแบบของไซโคลนที่ใช้จะทำให้คำนวณหา ค่า grade efficiency (η_i) และค่าประสิทธิภาพรวม (η_{tot}) ของไซโคลนจากขนาดของฝุ่นที่เข้าสู่ ไซโคลนได้ ตลอดจนปริมาณฝุ่นที่ปล่อยออกมา (Emission) หากปริมาณฝุ่นที่ปล่อยออกมามีค่า เกินกว่ามาตรฐานที่กำหนด จะต้องทำการออกแบบใหม่ โดยใช้ค่าความเร็วหรือโครงแบบอื่น นอกจากนี้อาจพิจารณาใช้ไซโคลนหลายตัวมาต่อแบบขนานหรืออนุกรมก็ได้

2.4.8 ผลของตัวแปรต่อสมรรถนะของไซโคลน

ปัจจัยที่มีผลต่อสมรรถนะของไซโคลน ได้แก่ ลักษณะของไซโคลน ลักษณะและสมบัติ ของแก๊ส และอนุภาค ดังได้สรุปไว้ในตารางที่ 2.2

G 0 1 0 1 0 0 0 0 0 0 C			
พารามิเตอร์	ความดันลด	ประสิทธิภาพ	
เพิ่มขนาดของไซโคลน	ରହରଏ	ରହରଏ	
เพิ่มความยาวของส่วนทรงกระบอก และส่วนโคน	ลดลงเล็กน้อย	1 เพิ่มขึ้น	
เพิ่มขนาดของท่ออากาศออก	ରହରଏ	ରହରଏ	
เพิ่มพื้นที่ท่ออากาศเข้า	เพิ่มขึ้น	ରହରଏ	
เพิ่มความเว็ว	เพิ่มขึ้น	เพิ่มขึ้น	
เพิ่มอุณหภูมิ	ରହରଏ	ରହରଏ	
ความเข้มข้นของฝุ่นมากขึ้น	ยิ่งลดลง	เพิ่มขึ้น	
เพิ่มขนาด และ/หรือความหนาแน่นของอนุภาค	ไม่มีผล	เพิ่มขึ้น	

ตารางที่ 2.2 ปัจจัยที่มีผล<mark>ต่</mark>อการเปลี่ยนแปลงสมรรถนะของไซโคลน

2.5 งานวิจัยที่เกี่ยวข้อง

Wang, S. และคณะ (1999) ศึกษากลไกการแยกของไซโคลนสี่เหลี่ยมที่มีปริมาณของแข็ง ขาเข้าสูง ซึ่งแสดงให้เห็นว่ากลไกการแยกของไซโคลนสี่เหลี่ยมนั้นมีความแตกต่างกันมากเมื่อ เทียบกับที่ปริมาณของแข็งขาเข้าต่ำ ปรากฏการณ์นี้เรียกว่าการแยกแบบทันที ซึ่งไม่เคยพบมาก่อน ในการทดลองไซโคลนสี่เหลี่ยม ปรากฏการณ์นี้จะขึ้นกับปริมาณของการไหลของแก๊สกับของแข็ง และปริมาณที่เพิ่มขึ้นจะทำให้เกิดการแยกทันทีหลังจากของแข็งผ่านเข้าสู่ไซโคลน แบบจำลองที่ เรียกว่าการแยกแบบทันทีได้ถูกแสดงในงานวิจัยนี้และแสดงการคำนวณของขีดจำกัดการเติม ของแข็งและประสิทธิภาพการแยกที่ซึ่งสามารถนำไปใช้ในการออกแบบและวิจัยไซโคลนสี่เหลี่ยม สำหรับเครื่องต้มน้ำฟลูอิไดซ์เบดแบบหมุนเวียนต่อไป

Hugi, E. และคณะ (2000) ได้ปรับปรุงประสิทธิภาพของไซโคลนที่ใช้ในการแยกอนุภาค ของแข็งในฟลูอิไดซ์เบดแบบหมุนเวียน ภายใต้เงื่อนไขการทดลองต่าง ๆ ในการออกแบบไซโคลน จะมีการออกแบบให้มีรูปร่างที่แตกต่างกัน 2 แบบ คือ แบบที่มี Vortex fin และ แบบที่ไม่มี โดย เลือกใช้อนุภาคที่มีขนาดอยู่ในช่วง 40 – 300 ไมโครเมตร จากการศึกษาพบว่าไซโคลนที่มี Slender cone (Strand) ที่ยาว และมี Upward shift จะมีประสิทธิภาพในการแยกอนุภาคที่มี ขนาด 40 ไมโครเมตร ได้ดีที่สุด คือ ร้อยละ 99.7 นอกจากนี้ยังพบว่า ความเร็วของของแข็งและ ความหนาแน่นของของแข็งในระบบก็มีส่วนสำคัญต่อประสิทธิภาพการแยกเช่นกัน

Gil, A. และคณะ (2001) ศึกษาประสิทธิภาพของการแยกของไซโคลนในฟลูอิไดซ์เบด แบบหมุนเวียนแบบใช้ความดัน โดยทำการศึกษาภายใต้ภาวะที่ใช้แก๊สที่มีความเร็ว อัตราการป้อน สูง และขนาดอนุภาคที่มีช่วงกว้าง การศึกษาเป็นการเปรียบเทียบแบบจำลองกับระดับ อุตสาหกรรม พบว่าภายใต้เงื่อนไขเดียวกันเมื่อทำในระดับแบบจำลองจะทำให้ได้ผลสอดคล้องกับ แบบที่ใช้ในอุตสาหกรรม

Bricout, V. และคณะ (2004) หาประสิทธิภาพของไซโคลนเมื่อทำการทดลองภายใน สภาวะที่คล้ายกันกับเครื่องฟลูอิไดซ์เบดแบบหมุนเวียนทั่วไป ที่สภาวะปริมาณของแข็งสูง ๆ พบว่า ความดันลดตกคร่อมไซโคลนกับความหนาแน่นของพลังงานจลน์ (Kinetic energy density) ของ แก๊สขาเข้าไม่ขึ้นกับตัวเลขสโต๊ก (Stokes number) ของอนุภาค และ ค่าของตัวเลขเรย์โนล์ด (Reynold number) จะขึ้นกับเส้นผ่านศูนย์กลางของไซโคลน จากงานวิจัยนี้พบว่าประสิทธิภาพ โดยรวมของไซโคลนและประสิทธิภาพโดยขนาดขึ้นอยู่กับตัวเลขสโต๊ก (stokes number) ของ อนุภาคและปริมาณของแข็งพบว่าผลของตัวเลขทั้ง 2 อย่างนี้มีความซับซ้อนมาก และการดักจับ เกิดได้ไม่ค่อยดี

Lee, K. W. และคณะ (2004) ศึกษาความสามารถของไซโคลน ที่มีท่อแก๊สออก (Vortex finder) แตกต่างกัน ถูกหาค่าเพื่อตรวจสอบผลของประสิทธิภาพในการแยกของรูปร่างของท่อแก๊ส

ออก ที่มีลักษณะเฉพาะ ท่อแก๊สออกทรงกระบอก 4 ตัว และทรงกรวย 6 ตัวได้ถูกออกแบบและใช้ งานเพื่อเปรียบเทียบประสิทธิภาพในการแยกของไซโคลนที่อัตราการไหล 30 และ 50 ลิตรต่อนาที ผลลัพธ์แสดงให้เห็นว่าท่อแก๊สออกทรงกรวยทั้งสองแบบที่มีเส้นผ่านศูนย์กลางแตกต่างกันนั้นจะมี ประสิทธิภาพในการแยกอยู่ระหว่างท่อแก๊สออกทรงกระบอกที่มีเส้นผ่านศูนย์กลางเดียวกัน และ ความดันลดต่อหน่วยอัตราการไหลมีค่าน้อยมาก ซึ่งควรจะพบในแบบทรงกรวย แต่ความยาวของ กรวยจะไม่ส่งผลต่อประสิทธิภาพในการแยกและความดันลดของไซโคลน

Su, Y. (2006) ศึกษาการไหลของแก๊สกับของแข็งในเครื่องแยกไซโคลนสี่เหลี่ยมซึ่งถูก ออกแบบไว้สำหรับเครื่องฟลูอิไดซ์เบดแบบหมุนเวียนขนาดใหญ่ โดยใช้เครื่องวิเคราะห์การ เคลื่อนที่ของอนุภาคแบบสามมิติ ค่าการกระจายของทิศทางการไหล ความเร็วผันผวน พลังงาน จลน์ปั่นป่วน ความรุนแรงของการปั่นป่วน และความปริมาณของอนุภาคถูกนำมาศึกษา การไหล แบบหมุนวนภายในไซโคลนแสดงในรูปแบบกระแสลมแบบแรนกิน (Rankine vortex) กระแสวน จะรุนแรงที่ส่วนกลางและจะเบาบางที่บริเวณใกล้ผนัง การเคลื่อนที่แบบกึ่งราบเรียบของอนุภาคจะ ปั่นป่วนมากขึ้นที่มุมเนื่องจากการชนกันระหว่างอนุภาคกับอนุภาคและอนุภาคกับผนังซึ่งจะทำให้ ค่าของพลังงานจลน์ปั่นป่วนและความรุนแรงของการปั่นป่วนสูงขึ้น ที่มุมเป็นบริเวณหลักที่เกิด ความดันลดและเป็นบริเวณที่เกิดการแยกมากที่สุด

Su, Y. และ Mao, Y. (2006) ศึกษาการใหลของแก๊สและของแข็งในไซโคลนสี่เหลี่ยม โดย การทดลองจะใช้เครื่องวิเคราะห์พลวัตของอนุภาคแบบสามมิติ (Three-dimensional particle dynamic analyzer, 3D-PDA) ในการตรวจสอบการไหลของแก๊ส ของแข็ง 2 เฟส ในไซโคลน สี่เหลี่ยมขนาดที่ใช้ในห้องปฏิบัติการซึ่งมีแก๊สออกในทิศทางลง โดยศึกษาในหลายกรณี ในเรื่อง ของความเร็วภายในที่แตกต่างกันและความเข้มข้นของอนุภาคต่าง ๆ ที่แตกต่างกัน อนุภาคที่ใช้ใน การทดสอบคือเม็ดแก้ว ขนาดเส้นผ่านศูนย์กลาง 30 - 40 ไมโครเมตร พบว่าการหมุนที่เกิดขึ้นที่มุม การใหลจะเปลี่ยนทิศทางอย่างชัดเจนและเมื่อให้ความร้อนกับผนัง อุณหภูมิของสารแขวนลอยจะ เพิ่มขึ้น สนามการไหลจะมีลักษณะเป็นเนื้อเดียวกันมากกว่าที่อุณหภูมิห้อง การหมุนเวียนที่บริเวณ มุมจะอ่อนลงและความแรงของการหมุนจะน้อยลงซึ่งทำให้ประสิทธิภาพเฉลี่ยในการแยกลดลง จากร้อยละ 81 ไปเป็นร้อยละ 76.5 สารแขวนลอยที่ชนผนังข้างขวาจะเป็นส่วนหลักของ ประสิทธิภาพการแยก ซึ่งความเร็วในทิศทางลงจะมากที่สุด ส่วนการไหลกลับจะพบที่บริเวณใจ กลางตัวแยกเหนือบริเวณแก๊สออก การเคลื่อนที่ Quasi-laminar motion ของอนุภาคจะทำให้การ เคลื่อนที่แบบบ่นปวน (Turbulent motion) ที่บริเวณมุมมีมากขึ้นเนื่องจากการขนกันของอนุภาค กับอนุภาคหรืออนุภาคกับผนัง ทำให้เกิดกราฟของพลังงานจลน์แบบบั่นปวน (Turbulent kinetic energy) และ ความเข้มของพลังงานแบบบั่นปวน (Turbulent intensity) บริเวณมุมก็เป็น บริเวณหลักที่ทำให้เกิดความดันลดและพบว่าเป็นประโยชน์ในการแยกอนุภาคส่วนใหญ่ เพราะ การไหลที่เปลี่ยนแปลงมากจะต้องใช้พลังงานจลน์ทั้งของอนุภาคและของแก๊สมาก

Lu, J. F. และคณะ (2007) หม้อน้ำชนิดฟลูอิไดซ์เบดแบบหมุนเวียนขนาด 220 ตันต่อ ชั่วโมง เครื่องแรกของจีนได้ถูกผลิตขึ้น โดยเป็นสิทธิบัตรการออกแบบของซินหัว เป็นไซโคลน สี่เหลี่ยมที่มีน้ำหล่อเย็น และแผ่นโค้งภายในซึ่งเกิดขึ้นจากประสบการณ์ในอดีตของหม้อน้ำชนิด ฟลูอิดไดซ์เบดแบบหมุนเวียนชนิดเดียวกันแต่มีความจุน้อยกว่า จากการสาธิตได้แสดงให้เห็นถึง ประสิทธิภาพของหม้อน้ำในการเปิดเครื่อง ความยืดหยุ่นในเรื่องเชื้อเพลิง ความยืดหยุ่นใน ความสามารถในการปรับเปลี่ยนอัตราส่วนลงบ่อยครั้ง สะดวกคล่องตัวและน่าเชื่อถือไว้วางใจได้ รายงานมีการเปรียบเทียบประสิทธิภาพของไซโคลนสี่เหลี่ยมชนิดมีน้ำหล่อเย็นกับไซโคลนชนิดอื่น ผ่านการวิเคราะห์เถ้าลอย จากผลการทดสอบพบว่าประสิทธิภาพโดยรวมของไซโคลนสี่เหลี่ยมนั้น มีความสามารถเท่าเทียมกับไซโคลนวงกลมในเรื่องสมดุลมวลและประสิทธิภาพการเผาไหม้ใน หม้อน้ำชนิดฟลูอิดไดซ์เบดแบบหมุนเวียน ซึ่งการสาธิตในครั้งนี้ถือเป็นเหตุการณ์ที่สำคัญใน ความก้าวหน้าของวงการหม้อน้ำในประเทศจีน

Raoufi, A. และคณะ (2008) ได้ใช้วิธีพลวัตของไหลเชิงการคำนวณ (Computational fluid dynamics, CFD) เพื่อทำนายและหาค่าผลกระทบของรูปร่าง และ ขนาดเส้นผ่านศูนย์กลาง ท่อแก๊สออก (Vortex finder) ต่อประสิทธิภาพ และ ขอบเขตการไหลของไซโคลน ขั้นตอนการ คำนวณของออยเลอร์เลียน ลากรอนเจียน (Eulerian – Lagrangian) ถูกใช้เพื่อทำนายการ เคลื่อนที่ของอนุภาคในไซโคลน ขอบเขตการไหลถูกคำนวณโดยใช้สมการค่าเฉลี่ยเรย์โนล์ด นา เวียร์ สโต๊คส์สามมิติ (3D Reynolds-averaged Naveir-Stokes) แบบจำลองการถ่ายโอน ความเครียดเรย์โนล์ (Reynold stress transport model, RSTM) ใช้ในการจำลองความเครียดเรย์ โนลด์ (Reynold stress) กฎข้อสองของนิวตันใช้ศึกษาวิถีการไหลของอนุภาคร่ามกับการจำลอง แรงลอยตัวและแรงโน้มถ่วงที่กระทำต่ออนุภาค ค่าความเร็วผันผวนถูกจำลองโดยใช้ DRW (discrete random walk) ท่อแก๊สออกที่มีรูปร่างทรงกระบอกที่แตกต่างกัน 4 แบบ และ รูปร่างทรง กรวยที่แตกต่างกัน 6 แบบ ถูกจำลองที่อัตราการไหล 30 50 และ 70 ลิตรต่อนาที ผลการคำนวณ เมื่อเปรียบเทียบกับผลการทดลองให้ผลออกสอดคล้องกันอย่างดี

Raoufi, A. และคณะ (2009) ได้ศึกษาวิธีการคำนวณการเคลื่อนที่ของของไหลเพื่อใช้ ทำนายและหาค่าการไหลภายในไซโคลนสี่เหลี่ยม พื้นที่การไหลถูกคำนวณโดยใช้สมการค่าเฉลี่ย เรย์โนล์ด นาเวียร์ สโต๊คส์สามมิติ (3D Reynolds-averaged Naveir-Stokes) แบบจำลองการถ่าย โอนความเครียดเรย์โนล์ด (Reynolds stress transport model RSTM) ถูกใช้ในการจำลอง ขั้นตอนเชิงคำนวณของออยเลอร์เรียน ลากรอนเจียนถูกใช้ในการทำนายทิศทางการโคจรใน ไซโคลน กฎข้อสองของนิวตันนำมาใช้ศึกษาทิศทางการโคจรของอนุภาคโดยกำหนดให้แรงลอยตัว และแรงโน้มถ่วงโลกที่เป็นแรงที่กระทำต่ออนุภาค ไซโคลนสี่เหลี่ยมสองแบบถูกนำมาศึกษา โดยที่ ไซโคลนทั้งสองถูกจำลองที่อัตราการไหลแตกต่างกันแถบสีของความดันและความเข้มข้นของการ ปั่นป่วนถูกแสดงที่ความเร็วขาเข้าไซโคลนที่แตกต่างกัน โดยศึกษาว่าความแตกต่างของโครงสร้าง และความเร็วขาเข้าที่แตกต่างจะส่งผลอย่างไรต่อความดันลด ประสิทธิภาพการแยกและรูปแบบ การไหลถูกนำไปเปรียบเทียบกับการทดลองและสอดคล้องกันเป็นอย่างดี

Safikhani, H. และคณะ (2010) ความคิดริเริ่มในการใช้ไซโคลนสี่เหลี่ยมเริ่มต้นตั้งแต่ช่วง ด้น 1990 เนื่องจากเกิดปัญหาบางอย่างในไซโคลนแบบทั่วไป ในโรงงานที่ใช้ฟลูอิไดซ์เบดแบบ หมุนเวียน ตัวอย่างเช่นปริมาตรที่ใหญ่มากและเวลาในการปิด-เปิดที่ใช้เวลานานของไซโคลน แต่ ปัจจุบันมีคำถามอื่นนอกเหนือจากเหตุผลหลักในการสร้างไซโคลนสี่เหลี่ยม นั่นคือ พฤติกรรมของ ไซโคลนสี่เหลี่ยมขนาดเล็ก งานวิจัยนี้ได้ทำการปรียบเทียบไซโคลนขนาดเล็ก 2 ตัวซึ่งมีเส้นผ่าน ศูนย์กลางไฮดรอลิกเท่ากัน แต่ตัวแรกจะมีรูปร่างเหลี่ยม ส่วนที่เหลือเป็นวงกลม สมการค่าเฉลี่ย เรย์โนลด์ส นาเวียร์ สโตกส์ กับแบบจำลองการปั่นป่วนของความเครียดของเรย์โนลด์ส ถูกแก้ สมการด้วยการใช้วิธีการจำกัดปริมาตรโดยขึ้นอยู่กับอัลกอริทึมของการปรับแก้ค่าความดันแบบซิม เปิลขอบเขตของการคำนวณ โดยกระบวนการคำนวณออยเลอร์เรียน-ลากรองจ์เจียน ถูกใช้ในการ พยากรณ์ร่องรอยการเดินทางของอนุภาคในไซโคลน และการผันแปรของความเร็วถูกจำลองด้วย การใช้ Discrete Random Walk ผลการทดลองพบว่าความดันลดในไซโคลนสี่เหลี่ยมขนาดเล็ก จะมีน้อยกว่าความดันลดในไซโคลนแบบทั่วไป รวมถึงประสิทธิภาพในการเก็บในแต่ละอัตราการ ไหลของไซโคลนสี่เหลี่ยมขนาดเล็กก็น้อยกว่าไซโคลนแบบทั่วไป แต่เมื่อเพิ่มอัตราการไหลความ แตกต่างนี้จะลดลง

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

บทที่ 3

แบบจำลองทางคณิตศาสตร์ เครื่องมือและอุปกรณ์การทดลอง

3.1 แบบจำลองทางคณิตศาสตร์และวิธีการสร้างแบบจำลองการไหล

3.1.1 แบบจำลองการไหลหลายวัฏภาคของแก๊สและของแข็ง (ชลธิชา อมรสิริรัตน์, 2551)

การสร้างแบบจำลองการไหลหลายวัฏภาค (Multiphase Flow Model) เช่น ระบบ ของเหลว-ของเหลว ของเหลว-แก๊ส แล<mark>ะแก๊ส-ข</mark>องแข็ง ในงานวิจัยนี้ใช้แนวคิดแบบออยเลอเลียน (Eulerian Approach) ซึ่งสนใจ<mark>การไหลแบบต่อเนื่อง ไม่</mark>ได้ทำการติดตามการเคลื่อนที่ของแต่ละ ้อนุภาค สำหรับระบบแก๊ส-ของแข็งนั้น จะนำแนวคิดแบบออยเลอเลียนมาใช้ได้เมื่อวัฏภาค ของแข็งมีสมบัติคล้ายของไหล ดังนั้นจึงได้มีการนำแบบจำลองทฤษฎีจลน์การไหลของของแข็ง (Kinetic Theory of Granular Flow: KTGF) มาใช้เพื่อกำหนดค่าความดันและความหนืดในวัฏ ภาคของแข็งโดยมีสมมติฐานว่า อนุภาคของแข็งมีพฤติกรรมคล้ายโมเลกุลแก๊ส จากทฤษฎีจลน์ ของแก๊ส (Kinetic Theory of Gas) โดยปกติแต่ละโมเลกุลของแก๊สมีการเคลื่อนที่อย่างไม่มี ระเบียบ (Random Motion) ด้วยความเร็วไม่เท่ากันและไม่คงที่ เนื่องจากโมเลกุลอาจจะกระทบ ้ผนังปะทะหรือชนกัน ความเร็วจึงเปลี่ยนแปลงงตลอดเวลาทุกครั้งที่มีการชนกัน และยังมีการถ่าย ้โอนโมเมนตัมและเปลี่ยนทิศทาง การเปลี่ยนทิศทางขึ้นอยู่กับลักษณะการชนของโมเลกุล ในสภาพ ที่แท้จริงนั้นแก๊สย่อมมีโอกาสชนกันห<mark>ลายลักษณะ และ</mark>ไม่เป็นระเบียบแล้วแต่ทิศทางและความเร็ว ของการชน แต่ความเร็วเฉลี่ยและพลังงานจลน์ของโมเลกุลทั้งหมดในแก๊สจำนวนหนึ่งนั้นมีค่าคงที่ ตลอดเวลาที่อุณหภูมิคงที่ การชนในลักษณที่ความเร็วเฉลี่ยและพลังงานจลน์เฉลี่ยคงที่นี้เรียกว่า การชนแบบยืดหยุ่น (Elastic Collision) แต่สำหรบอนุภาคของแข็งถือว่าเป็นการชนแบบไม่ยืดหยุ่น (Inelastic Collision) เพราะขณะที่ชนนอกจากมีการถ่ายโอนโมเมนตัมให้กันและกันแล้ว ยังมีการ สูญเสียทั้งความเร็วและพลังงานจลน์โดยพลังงานจลน์ที่เสียไปจะกลายเป็นความร้อน

การคำนวณลักษณะการไหลโดยทั่วไป จำเป็นต้องแก้สมการเชิงอนุพันธ์ที่สอดคล้องกับ สมการอนุรักษ์มวล โมเมนตัม พลังงานและสปีชีส์ของระบบแก๊สและของแข็ง เนื่องจากความ ซับซ้อนของสมการทำให้หาผลเฉลยเชิงวิเคราะห์ได้ยาก เทคนิคทางคณิตศาสตร์ที่เรียกว่า ระเบียบ วิธีเชิงตัวเลข (Numerical Method) จึงถูกนำมาใช้เพื่อเปลี่ยนระบบสมการเชิงอนุพันธ์ให้อยู่ในรูป ของระบบสมการพีชคณิต เพื่อหาผลเฉลยเชิงตัวเลข (Numerical Solution) สมการอนุรักษ์มวล โม เมนตัม พลังงาน และสปีชีส์ถูกพัฒนาขึ้นโดยใช้แนวคิดของออยเลอเลียน (Gidaspow, D., 1994) ซึ่งทำการแก้ปัญหาในแต่ละวัฏภาคไปพร้อม ๆ กัน แต่ทำการเชื่อมความสัมพันธ์ระหว่างวัฏภาค ผ่านทางสมการของแรงต้าน ในสมการอนุรักษ์โมเมนตัม

3.1.2 การสร้างแบบจำลองการไหลโดยโปรแกรม Gambit 2.3.16 และ Fluent 6.2.16

การจำลองการไหลหลายวัฏภาคของแก๊สและของแข็งในงานวิจัยนี้เป็นการจำลอง ภาวะการไหลภายในเครื่องแยกไซโคลน (Cyclone Separator) โดยจะทำการสร้างแบบจำลองเชิง เรขาคณิตเพื่อจำลองการไหลภายในเครื่องแยกไซโคลนการสร้างแบบจำลองเครื่องแยกไซโคลน เป็นการสร้างแบบจำลองกราฟิก เพื่อเป็นตัวแทนเครื่องปฏิกรณ์ตามรูปทรงจริงทางเรขาคณิต โปรแกรม Gambit ทำหน้าที่เดียวกับโปรแกรม Computer Aided Design (CAD) ทั่วไป เพื่อให้ ผู้ใช้สามารถสร้างแบบจำลองกราฟกของอุปกรณ์ที่ต้องการศึกษาเพื่อเป็นตัวกำหนดพื้นที่การเกิด กิจกรรมต่าง ๆ โดยผูใช้จะต้องกำหนดค่าขอบเขตต่าง ๆ เพื่อเป็นค่าตั้งต้นสำหรับการแก้ปัญหาเพื่อ หาผลเฉลยต่อไป เมื่อสร้างแบบจำลองเชิงเรขาคณิตเสร็จแล้ว จากนั้นจะทำการแบ่งปริมาตรของ อุปกรณ์เหล่านี้ออกเป็นหน่วยปริมาตรเล็ก ๆ จำนวนมากที่เชื่อมต่อกันเป็นอุปกรณ์ที่จะศึกษา จากนั้นข้อมูลดังกล่าวจะถูกส่งเข้าโปรแกรม Fluent เพื่อทำการคำนวณโดยใช้วิธีไฟไนต์วอลูม (Finite volume method) ในการจำลองสภาวะการณ์ต่อไป ดังนั้นเราสามารถแบ่งขั้นตอนการ สร้างแบบจำลองการไหลและการวิเคราะห์ผลที่ได้จากแบบจำลองเป็น 3 ขั้นตอนคือ

 การสร้างแบบจำลองเชิงเรขาคณิตที่กำหนดพื้นที่และขอบเขตการไหลด้วยโปรแกรม Gambit ซึ่งเป็นโปรแกรมที่ใช้ในการสร้างแบบจำลองเชิงเรขาคณิต (Pre-processing)

2. การส่งแบบจำลองที่ได้จากโปรแกรม Gambit ไปทำการคำนวณภายในโปรแกรม Fluent (Solver Execution)

3. วิเคราะห์ผลที่ได้จากการคำนวณแก้สมการสำหรับแบบจำลองการไหล (Postprocessing)

โดยในส่วนของการใช้โปรแกรม Gambit นั้นจะมีขั้นตอน 4 ขั้นตอนดังนี้

- 1. การสร้างรูปทรงแบบจำลอง (Geometry)
- 2. กำหนดความละเอียดในการคำนวณ (Mesh)
- 3. กำหนดชนิดของขอบเขต (Boundary types)
- 4. กำหนดช่วงของขอบเขต (Continuum types)

และในส่วนของโปรแกรม Fluent นั้นแบ่งได้เป็น 5 ส่วนดังนี้

- 1. เลือกสมการการคำนวณสำหรับแบบจำลอง (Models)
- 2. เลือกสารที่ใช้ในแบบจำลอง (Materials)
- 3. กำหนดเงื่อนไขสำหรับขอบเขตที่จะใช้กับแบบจำลอง (Boundary conditions)
- 4. กำหนดค่าเริ่มต้น (Initialize values)
- 5. กำหนดจำนวนรอบในการคำนวณซ้ำ (Iterations)

3.1.2.1 การสร้างแบบจำลองการไหลด้วยโปรแกรม Gambit และรายละเอียดของระบบ การสร้างแบบจำลองเชิงเรขาคณิตด้วยโปรแกรม Gambit สำหรับแบบจำลองการไหลที่ใช้ ในการศึกษาอุทกพลศาสตร์

รูปที่ 3.1 ไซโคลนแบบทั่วไป (ก) เครื่องแยกไซโคลนที่ใช้ในการศึกษาอุทกพลศาสตร์ใน ห้องปฏิบัติการจริง (ข) รูปวาดตัวแทนเครื่องแยกไซโคลนที่ใช้ในการจำลองเชิงเรขาคณิต

จากรูปที่ 3.1 (ก) แสดงเครื่องแยกไซโคลนที่ใช้กับระบบฟลูอิไดซ์เบดแบบหมุนเวียนที่ใช้ใน การศึกษาอุทกพลศาสตร์ในห้องปฏิบัติการจริง (ข) เป็นรูปวาดตัวแทนเครื่องแยกไซโคลนที่จะ นำไปใช้ในการสร้างแบบจำลองเชิงเรขาคณิตโดยโปรแกรม Gambit ต่อไปดังแสดงในรูปที่ 3.2

รูปที่ 3.2 รูปทรงของแบบจำลองการไหลของเครื่องแยกไซโคลนที่ใช้กับระบบฟลูอิไดซ์เบดแบบ หมุนเวียนที่ใช้ในการศึกษาอุทกพลศาสตร์ที่สร้างขึ้นในภายโปรแกรม Gambit การสร้างแบบจำลองการไหลของเครื่องแยกไซโคลนที่ใช้กับระบบฟลูอิไดซ์เบดแบบ หมุนเวียนแบ่งเป็น 3 กรณี คือ

- 1. แบบจำลองเครื่องแยกไซโคลนแบบทั่วไป
- 2. แบบจำลองเครื่องแยกไซโคลนแบบสี่เหลี่ยมแบบที่ 1
- 3. แบบจำลองเครื่องแยกไซโคลนแบบสี่เหลี่ยมแบบที่ 2

การออกแบบไซโคลนแบบสี่เหลี่ยมแบบที่ 1 นั้นทำการออกแบบคล้ายกับการออกแบบ ของ (Shams, M. และคณะ, 2009) และไซโคลนแบบสี่เหลี่ยมแบบที่ 2 นั้นทำการออกแบบคล้าย กับการออกแบบของ (Wang, S. และคณะ, 1999 และ Safikhani, H. และคณะ, 2010) โดยที่ แบบจำลองการไหลที่สร้างขึ้นใน 3 มิติ เมื่อทำการ mesh โดยใช้รูปทรงเหลี่ยมหกหน้า (hexagonal) เป็นตัวแทนปริมาตรเล็ก ๆ ของระบบจะมีจำนวนเซลล์ทั้งหมดในขอบเขตการไหลที่ ทำการศึกษาเท่ากับ 6395, 11746 และ 12296 เซลล์ตามลำดับ แสดงในรูปที่ 3.3

รูปที่ 3.3 แบบจำลองเครื่องแยกไซโคลนที่ใช้กับระบบฟลูอิไดซ์เบดแบบหมุนเวียนใน 3 มิติที่ใช้ใน การศึกษาอุทกพลศาสตร์ด้วยโปรแกรม Gambit และ ANSYS

3.1.2.2 การจำลองภาวะโดยโปรแกรม Fluent

การจำลองภาวะการไหลของแบบจำลองการไหลด้วยโปรแกรม Fluent เริ่มด้วยการนำ ข้อมูลขอบเขตการไหลจากแบบจำลองที่สร้างขึ้นโดยโปรแกรม Gambit เข้าสู่โปรแกรม Fluent หลังจากนั้นทำการกำหนดรูปแบบของการคำนวณ และทำการเลือกแบบจำลองการไหลที่จะใช้ คำนวณในการจำลองภาวะ และทำการกำหนดค่าขอบเขต และค่าเริ่มต้นในการจำลองภาวะโดยมี ขั้นตอนดังนี้

3.1.2.2.1 การกำหนดชนิดของเครื่องมือการแก้สมการ (Solver)

ในขั้นตอนแรกของการจำลองภาวะการไหลของแบบจำลองไซโคลน ต้องทำการกำหนด เครื่องมือการแก้สมการ โดยทำการเลือกจากเมนู Solver ภายในโปรแกรม Fluent โดยในการวิจัย ครั้งนี้เลือกตัวแก้ปัญหาแบบ Segregated มาใช้โดยวิธีการแก้ปัญหาแบบ Segregated นี้จะทำ การแก้ปัญหาสมการหลัก (Governing Equation) ไปเป็นลำดับทีละสมการ ดังแสดงในรูปที่ 3.4 เป็นแผนภาพแสดงกระบวนการแก้ปัญหาโดยรวมของวิธีการแก้ปัญหาแบบ Segregated

รูปที่ 3.4 แผนภาพกระบวนการแก้ปัญหาโดยรวมของวิธีแก้ปัญหาแบบ Segregated

(Fluent 6.2.16 User's Guide, 2003)

จากรูปที่ 3.4 กระบวนการแก้ปัญหาจะเริ่มที่โปรแกรมทำการรับค่าคุณสมบัติต่าง ๆ ของ แต่ละวัฏภาคที่ต้องใช้ในการคำนวณ โดยในขั้นตอนนี้ถ้าเป็นขั้นแรกของการคำนวณจะเป็นการรับ ค่าตั้งต้นที่ผู้ใช้งานกำหนดเข้ามาเพื่อที่จะใช้เป็นค่าตั้งต้นของการคำนวณ แต่ถ้าเป็นระหว่าง ขั้นตอนการคำนวณจะเป็นการรับค่าจากการคำนวณรอบก่อนหน้าที่ยังไม่ลู่เข้า เมื่อโปรแกรมรับค่า เข้ามาแล้วจะทำการแก้สมการโมเมนตัมเพื่อที่จะหาค่าความเร็ว หลังจากนั้นจะนำค่าความเร็วที่ได้ ไปทำการตรวจสอบและปรับค่าความดัน (Pressure-correction) เมื่อทำการปรับปรุงและแก้ไข เสร็จแล้วจะทำการปรับปรุงค่าคุณสมบัติต่าง ๆ ที่ใช้ในการคำนวณด้วยค่าที่คำนวณได้ใหม่และทำ การแก้ปัญหาสมการพลังงาน สมการรูปแบบการไหล และสมการเชิงสเกลาร์ (Scalar Equation) และในขั้นตอนสุดท้ายของการคำนวณจะทำการตรววจสอบค่าที่ได้ในรอบนั้นยังไม่ลู่เข้าจะทำการ นำค่าที่ได้กลับไปป็นค่าตั้งต้นสำหรับการคำนวณในรอบต่อไป (Iteration) จนกว่าค่าที่ได้จะลู่เข้า หรือเกินจำนวนรอบมากที่สุด (Max Iteration) ที่กำหนดไว้ โดยค่าที่ลู่เข้าแล้วจะนำไปทำการ ปรับปรุงค่าสมบัติต่าง ๆ ต่อไปเพื่อที่จะใช้ในการคำนวณตามขั้นเวลา (Time Step) ต่อไป โดยใน งานวิจัยนี้จะทำการแก้ปัญหาโดยใช้วิธีการแก้ปัญหาแบบ Segregated ของแบบจำลอง 3 มิติ สำหรับกรณีที่ใช้ในการศึกษาอุทกพลศาสตร์

สำหรับการแก้สมการหาหลายวัฏภาคใช้แบบจำลองหลายวัฏภาคแบบออยเลอเลียน (Eulerian Multiphase Model) เนื่องจากเป็นแบบจำลองในการคำนวณที่มีความเหมาะสมต่อ กระบวนการภายในฟลูไดซ์เบดแบบหมุนเวียน เพราะสามารถกำหนดให้วัฏภาคของแข็งมีลักษณะ เป็นเม็ด (Granular) และไม่จำเป็นต้องติดตามการเคลื่อนที่ของแต่ละอนุภาค ในส่วนของสมการ การคำนวณเกี่ยวกับรูปแบบการไหล ในงานวิจัยนี้จะเลือกใช้การไหลแบบปั่นป่วนในการจำลอง ภาวะ

3.1.2.2.2 การกำหนดคุณสมบัติของแต่ละวัฏภาคที่ใช้ในการจำลองภาวะ

หลังจากทำการออกแบบแบบจำลองการไหลของไซโคลนด้วยโปรแกรม Gambit แล้ว นำ แบบจำลองที่ได้มาทำการคำนวณในโปรแกรม Fluent เพื่อพิจารณาแบบจำลองไซโคลนที่ใช้ใน การศึกษาอุทกพลศาสตร์ ในงานวิจัยนี้จะใช้คุณสมบัติต่าง ๆ ของแต่ละวัฏภาคเช่นเดียวกันกับที่ใช้ ในห้องปฏิบัติการจริง

รายละเอียดของคุณสมบัติต่าง ๆ ของแต่ละวัฏภาคที่ใช้ในการศึกษาอุทกพลศาสตร์ถูก แสดงไว้ในตาราง 3.1 จากนั้นทำการกำหนดให้ วัฏภาคแก๊สเป็นวัฏภาคหลัก (Primary Phase) และวัฏภาคของแข็งเป็นวัฏภาครอง (Secondary Phase) โดยแบบจำลองการไหลที่ใช้ใน การศึกษาอุทกพลศาสตร์วัฏภาคของแก๊สคือ อากาศ วัฏภาคของแข็งคือ ทราย

ตารางที่ 3.1 ค่าคุณสมบัติต่าง ๆ ของวัฏภาคที่ใช้ในการจำลองภาวะใช้ในการศึกษาอุทก พลศาสตร์

Properties	Gas (Air)	Solid (Al ₂ O ₃)	Solid (Coal)
Density (kg/m ³)	1.225	2463	1381
Viscosity (kg/m•s)	1.7894x10 ⁻⁵	1.7894x10 ⁻⁵	1.7894x10 ⁻⁵
Diameter (m)	-	0.0001095	0.000073
Packing Limit*	-	0.63	0.63
Temperature (K)	298.15	298.15	298.15

หมายเหตุ *ค่ามากสุดที่โปรแกรม Fluent ยอมให้กำหนดเนื่องจากเป็นค่ามากสุดที่อนุภาคจะชิด กันได้มากสุด 3.1.2.2.3 การกำหนดค่าขอบเขตและสภาวะที่ใช้ในการจำลองภาวะ แบบจำลองไซโคลนที่ใช้ในการศึกษาอุทกพลศาสตร์

รูปที่ 3.5 ขอบเขตของแบบจำลองการไหลภายในไซโคลนแบบทั่วไปของเครื่องฟลูอิไดซ์เบดแบบ หมุนเวียนที่ใช้ในการศึกษาอุทกพลศาสตร์ และค่าสภาวะที่ใช้ในการจำลองภาวะ

งานวิจัยนี้ทำการจำลองภาวะภายในไซโคลนโดยโปรแกรม Fluent ผู้ใช้งานจะต้องทำการ กำหนดค่าสภาวะขอบเขตที่ใช้ในการจำลองโดยในงานวิจัยนี้ทำการกำหนดให้มีค่าความเร่ง เนื่องจากแรงดึงดูดของโลกเท่ากับ 9.81 เมตรต่อวินาทีกำลังสองในทิศทางติดลบของแกน z (กำหนดให้แกน z ทำมุมตั้งฉากกับผิวโลก) และค่าความดันแวดล้อมเท่ากับ 101325 ปาสคัล โดย ค่าขอบเขตของแต่ละขอบเขตของแบบจำลองการไหลจะถูกกำหนดโดยผู้ใช้งานเพื่อที่เป็นค่า เริ่มต้นในการจำลองภาวะ ดังในรูปที่ 3.5 ซึ่งแสดงรายละเอียดของแบบจำลองการไหลของไซโคลน และขอบเขตของแบบจำลองการไหล สมมติฐานที่ใช้ในการพัฒนาแบบจำลอง (แสดงดังรูปที่ 3.5)

1. แบบจำลองการไหลในส่วนแรกเป็นการไหลของแก๊ส-ของแข็งในสามมิติ

 ใช้แนวคิดออยเลอเลียน (Eulerian approach) และทำการจำลองภาวะแบบปั่นป่วน (Turbulent Model)

 ของแข็งที่ใช้ในการจำลองภาวะมีขนาดเส้นผ่านศูนย์กลางและสมบัติต่าง ๆ ทาง กายภาพเหมือนกัน

4. บริเวณทางเข้าอากาศจะถูกป้อนเข้ามาทางท่อขาเข้าด้านบนด้วยความเร็ว 10.9 13.0
 และ 15.0 เมตรต่อวินาทีตามลำดับ อาจาร์ เป็นของ

5. บริเวณผนังความเร็วในแนวสัมผัสและความเร็วในแนวปกติของแก็สและของแข็งถูก กำหนดให้มีค่าเท่ากับศูนย์ คือเป็นสภาวะที่ไม่มีการไถล (Non-slip condition) สำหรับความเร็ว ของอนุภาคของแข็งใช้เงื่อนไขขอบเขตของ Johnson and Jackson (1987) ค่าสัมประสิทธิ์การชน กันระหว่างอนุภาคของแข็ง (Restitution Coefficient) เท่ากับ 0.99 ส่วนค่าสัมประสิทธิ์การชนกัน ระหว่างผนังกับอนุภาคของแข็ง (Wall Restitution Coefficient)เท่ากับ 0.9 โดยที่ค่าสัมประสิทธิ์ สเปคิวลาริตี (Specularity Coefficient) เท่ากับ 0.5 ค่าต่าง ๆ ที่ใช้ในแบบจำลองเป็นค่าประมาณ ที่ใช้กันโดยทั่วไปสำหรับใช้กับวิธีพลวัตของไหลเชิงการคำนวณของระบบฟลูอิไดซ์เบดแบบ หมุนเวียน โดยที่ค่าสัมประสิทธิ์การชนกันระหว่างอนุภาค และ สัมประสิทธิ์การชนกันระหว่างผนัง กับอนุภาคของแข็งจะถูกกำหนดที่ค่าตั้งแต่ 0.9 ขึ้นไป (ชลธิชา อมรสิริรัตน์, 2551)

6. กำหนดให้ใช้สมการของ Gidaspow ในการคำนวณอันตรกิริยาระหว่างวัฏภาคของแรง ต้านการเคลื่อนที่ (Interphase Drag Coefficient)

- อันตรกิริยาระหว่างวัฏภาคของแรงต้านการเคลื่อนที่ (Interphase Drag Coefficient) Gidaspow (Fluent 6.3 User's Guide, 2006)

3.1.2.2.4 การกำหนดขึ้นเวลาและการจำลองภาวะ

ก่อนที่จะเริ่มทำการคำนวณผู้ใช้งานจะต้องไปทำการกำหนดค่าเริ่มต้น (Initialize) ที่ใช้ สำหรับการคำนวณก่อนเสมอ และต้องทำการกำหนดค่า Under-Relaxation ซึ่งเป็นค่าที่ทำให้ผล เฉลยที่ได้จากการคำนวณมีค่าไม่แกว่งมากจนเกินไป ที่ใช้ในการคำนวณแต่ละรอบของการ คำนวณ (Iteration) โดยทั่วไปจะใช้ค่าตามปกติที่ Fluent กำหนด และทำการคำนวณถ้าผลจาก การคำนวณไม่ลู่เข้า (diverged) จึงทำการปรับค่า Under-Relaxation จนกว่าคำตอบจะลู่เข้า (converged) สำหรับการจำลองภาวะในงานวิจัยนี้สำหรับแบบจำลองที่ไม่มีการถ่ายโอนความ ร้อนจะใช้ขั้นเวลา (Time Step) 0.001 วินาที เช่น การจำลองภาวะให้ได้เวลาการไหล (Flow Time) เท่ากับ 30 วินาที ต้องกำหนดให้โปรแกรมทำการคำนวณเท่ากับ 30000 ขั้นเวลา โดยกำหนดให้ทำ การคำนวณไม่เกิน 100 รอบต่อหนึ่งขั้นเวลา ในงานวิจัยนี้แบบจำลองที่ใช้เพื่อศึกษาอุทก พลศาสตร์ใช้เครื่องคอมพิวเตอร์ที่มีหน่วยประมวลผลกลางรุ่น Core 2 Duo ที่มีสัญญาณนาฬิกา เท่ากับ 2.0 กิกะเฮิร์ตซ์ มีหน่วยความจำแรม เท่ากับ 2 กิกะไบต์

3.2 เครื่องมือและอุปกรณ์

3.2.1. เครื่องฟลูอิไดซ์เบดแบบหมุนเวียน (CFB)

เครื่องฟลูอิไดซ์เบดแบบหมุนเวียนที่ใช้สำหรับงานวิจัยนี้แสดงในรูปที่ 3.6 และ 3.7 ประกอบด้วยส่วนต่างๆ ดังนี้

3.2.1.1 ตัวกระจายอากาศ (Air distributor)

ใช้เป็นแบบแผ่นตะแกรงแผ่นเดียว (Single perforated plate) ขนาดของรูตะแกรง 60 mesh

3.2.1.2 ท่อไรเซอร์ (Riser)

ทำจากท่ออะคริลิกใสขนาดเส้นผ่านศูนย์กลางภายใน 10 เซนติเมตร ความหนา 5 มิลลิเมตร สูง 6 เมตร ติดตั้งชุดวัดความดัน 15 จุดตลอดความสูงของท่อ โดยจุดที่ 1 กับจุดที่ 2 ห่างกัน 10 เซนติเมตร จุดที่ 2 ถึงจุดที่ 8 ห่างกันจุดละ 20 เซนติเมตร จุดที่ 8 ถึงจุดที่ 13 ห่างกันจุด ละ 60 เซนติเมตร และจุดที่ 13 ถึงจุดที่ 15 ห่างกันจุดละ 120 เซนติเมตร ทางออกของของแข็งจะ อยู่ส่วนบนสุดของท่อไรเซอร์ ซึ่งจะมีท่อที่ทำมุม 90 องศากับท่อไรเซอร์ ทำหน้าที่เชื่อมต่อกับ ไซโคลน

3.2.1.3 ไซโคลน (Cyclone)

3.2.1.3.1 ไซโคลนแบบทั่วไป (conventional cyclone) ทำจากเหล็กกล้าไร้สนิม (Stainless steel) มีลักษณะเป็นไซโคลนเดี่ยว แสดงรายละเอียดในรูปที่ 3.8 มีลักษณะดังนี้

- เส้นผ่านศูนย์กลาง เท่ากับ 16 เซนติเมตร
- ทางเข้าของอากาศและอนุภาค เท่ากับ 8x4 ตารางเซนติเมตร
- ความสูงของกระบอกไซโคลน เท่ากับ 32 เซนติเมตร
- ความสูงของกรวยไซโคลน เท่ากับ 32 เซนติเมตร
- เส้นผ่านศูนย์กลางและความยาวของท่อแก๊สออก เท่ากับ 8และ10 เซนติเมตร
- เส้นผ่านศูนย์กลางของทางออกของแข็ง เท่ากับ 4 เซนติเมตร

3.2.1.3.2 ไซโคลนทรงสี่เหลี่ยม (square cyclone) แบบที่ 1 ทำจากเหล็กกล้าไร้ สนิม (Stainless steel) มีลักษณะเป็นไซโคลนเดี่ยว แสดงรายละเอียดในรูปที่ 3.8 มีลักษณะดังนี้

- หน้าตัดเป็นรูปสี่เหลี่ยมจตุรัสซึ่งแต่ละด้านเท่ากับ 16 เซนติเมตร
- ทางเข้าของอากาศและอนุภาค เท่ากับ 8x4 ตารางเซนติเมตร
- ความสูงของทรงสี่เหลี่ยม เท่ากับ 32 เซนติเมตร

- ความสูงของทรงพีรามิดฐานสี่เหลี่ยม เท่ากับ 32 เซนติเมตร
- เส้นผ่านศูนย์กลางและความยาวของท่อแก๊สออก เท่ากับ 8และ10 เซนติเมตร
- หน้าตัดของทางออกของแข็งเท่ากับ 16x4 ตารางเซนติเมตร

3.2.1.3.3 ไซโคลนทรงสี่เหลี่ยม (square cyclone) แบบที่ 2 ทำจากเหล็กกล้าไร้ สนิม (Stainless steel) มีลักษณะเป็นไซโคลนเดี่ยว แสดงรายละเอียดในรูปที่ 3.8 มีลักษณะดังนี้

- หน้าตัดเป็นรูปสี่เหลี่ยมจตุรัสซึ่งแต่ละด้านเท่ากับ 16 เซนติเมตร
- ทางเข้าของอากาศและอนุภาค เท่ากับ 8x4 ตารางเซนติเมตร
- ความสูงของทรงสี่เหลี่ยม เท่ากับ 32 เซนติเมตร
- ความสูงของทรงพีรามิดฐานสี่เหลี่ยม เท่ากับ 32 เซนติเมตร
- เส้นผ่านศูนย์กลางและความยาวของท่อแก๊สออก เท่ากับ 8และ10 เซนติเมตร
- · หน้าตัดของทางออกของแข็งเท่ากับ 4x4 ตารางเซนติเมตร

งานวิจัยนี้ได้ออกแบบไซโคลนทรงสี่เหลี่ยมที่มีรูปร่างและลักษณะคล้ายกับ ไซโคลนสี่เหลี่ยมในงานวิจัยของ Shams, M. และคณะ, 2009 (ไซโคลนสี่เหลี่ยมแบบที่1) และ Wang, S. และคณะ, 1999 และ Safikhani, H. และคณะ, 2010 (ไซโคลนสี่เหลี่ยมแบบที่2) โดยที่ ไซโคลนสี่เหลี่ยมที่มีทางออกของแข็งแตกต่างกันนั้น ยังไม่เคยมีการนำมาศึกษาและเปรียบเทียบ ประสิทธิภาพการแยกเมื่อนำมาติดตั้งกับระบบฟลูอิไดซ์เบดแบบหมุนเวียนจริง จึงเป็นสาเหตุที่ทำ ให้สนใจศึกษาไซโคลนสี่เหลี่ยมทั้งสองแบบนี้

3.2.1.4 ระบบป้อนกลับข<mark>องแข็ง</mark> (Return system) ประกอบด้วย

3.2.1.4.1 ท่อป้อนกลับ (Downcomer)

ทำจากอะคริลิกใส ขนาดเส้นผ่านศูนย์กลางภายใน 6 เซนติเมตร หนา 5 มิลลิเมตร

3.2.1.4.2 ลูปซีล (Loop seal)

ทำจากอะคริลิกใส ขนาดเส้นผ่านศูนย์กลางภายใน 6 เซนติเมตร หนา 5 มิลลิเมตร ประกอบด้วยสองส่วนคือ ส่วนที่เป็นท่อนอน (Horizontal section) และส่วนที่เป็นท่อตรงตาม แนวดิ่ง หรือ ทำนบ (weir) โดยท่อนอนมีความยาว 20 เซนติเมตร ส่วนท่อตรงตามแนวดิ่งสูง 50 เซนติเมตร นอกจากนี้ยังมีส่วนที่ทำหน้าที่เติมอากาศอยู่ 3 ตำแหน่ง คือ อยู่บริเวณส่วนล่างของลูป ซีล 2 ตำแหน่ง (ส่วนที่อยู่ส่วนล่างของท่อป้อนกลับ เรียก "Supply chamber" และที่อยู่ส่วนล่าง ของ Weir เรียก "Recycle chamber") และส่วนของ vertical aeration อีก 1 ตำแหน่ง โดย vertical aeration จะอยู่สูงจากส่วนที่เป็นท่อนอนเป็นอัตราส่วนของความสูงต่อเส้นผ่านศูนย์กลาง เท่ากับ 2.5 3.2.1.5 เครื่องเป่าอากาศ (Blower)

สำหรับให้อากาศปฐมภูมิ (Primary air) ใช้มอเตอร์ 3 เฟส ขนาด 4 กิโลวัตต์ ใบพัดเส้น ผ่านศูนย์กลาง 60 เซนติเมตร ดังแสดงในรูปที่ 3.10

3.2.1.6 เครื่องอัดอากาศ (Air compressor)

สำหรับให้อากาศที่ลูปซีล แสดงในรูปที่ 3.9 ใช้มอเตอร์ 3 เฟส ใช้ไฟ 21.5 แอมแปร์ ขนาด 15 แรงม้า ใช้ลูกสูบ 3 ตัว และ Stroke 42 มิลลิเมตร ความเร็วรอบ 1455 รอบต่อนาทีที่ความถี่ 50 Hz และ 620 รอบต่อนาที ความดันที่ใช้งาน 12 กิโลกรัม / ตารางเซนติเมตร และความดันสูงสุด 12 กิโลกรัม / ตารางเซนติเมตร

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

-69 cm -

P16

Ð

Go to dust collector

....P21

Cyclone

10 cm.

P15…

21.5 cm.

รูปที่ 3.6 แผนผังของเครื่องฟลูอิไดซ์เบดแบบหมุนเวียน (จารุวรรณ บัติปัน, 2547)

รูปที่ 3.7 เครื่องจำลองฟลูอิไดซ์เบดแบบหมุนเวียน

รูปที่ 3.8 ไซโคลน

3.2.2 อุปกรณ์ควบคุมและอุปกรณ์วัด

อุปกรณ์ควบคุมอัตราการไหลของอากาศปฐมภูมิ (Primary air) โดยใช้ Globe valve ซึ่งเป็นวาล์วทองเหลืองขนาด 3 นิ้ว เป็นอุปกรณ์ควบคุม ดังแสดงในรูปที่ 3.10

 Flow meter ดังแสดงในรูปที่ 3.10 ทำหน้าที่วัดอัตราการไหลของอากาศปฐมภูมิ เป็น flow meter ชนิด orifice วัดค่าได้ระหว่าง 50 – 400 ลูกบาศก์เมตรต่อชั่วโมง ความแม่นยำ 5 % เต็มสเกล

 จุปรณ์วัดและควบคุมอัตราการไหลของอากาศที่ตำแหน่งช่องเติมอากาศบริเวณ ส่วนล่างของท่อป้อนกลับ (Supply chamber) คือ โรตามิเตอร์ ตัวโรตามิเตอร์ทำจากอะคริลิกใส สามารถทนความดันและอุณหภูมิสูงสุดได้ 100 psig และ 85 องศาเซลเซียส หน้าที่ควบคุมและ วัดปริมาณอากาศ โดยการควบคุมจะใช้ Metering valve ส่วนการวัดจะใช้ระบบลูกลอย ที่มีลูก ลอยทรงกลมทำจาก Stainless steel วัดค่าได้ในช่วง 10 – 100 ลิตรต่อนาที ความแม่นยำ 5 % เต็มสเกล

 จุปกรณ์วัดและควบคุมอัตราการไหลของอากาศที่ตำแหน่งช่องเติมอากาศบริเวณ ส่วนล่างของท่อตรงตามแนวดิ่ง (Recycle chamber) คือ โรตามิเตอร์ ตัวโรตามิเตอร์ทำจาก อะคริลิกใส สามารถทนความดันและอุณหภูมิสูงสุดได้ 100 psig และ 85 องศาเซลเซียส ทำทั้ง หน้าที่ควบคุมและวัดปริมาณอากาศ โดยการควบคุมจะใช้ metering valve ส่วนการวัดจะใช้ ระบบลูกลอย ที่มีลูกลอยทรงกลมทำจาก Stainless steel วัดค่าได้ในช่วง 10 - 100 ลิตรต่อนาที ความแม่นยำ 5 % เต็มสเกล

5. อุปกรณ์วัดและควบคุมอัตราการใหลของอากาศที่ตำแหน่งช่องเติมอากาศ (Aeration air) ใช้โรตามิเตอร์ ซึ่งเป็นอุปกรณ์ที่ทำหน้าที่ควบคุมและวัดปริมาณอากาศ โดยการควบคุมจะใช้ วาล์วเข็ม (needle valve) ส่วนการวัดจะใช้ระบบลูกลอย ที่มีลูกลอยทรงกลมทำจาก stainless steel วัดค่าได้ในช่วง 3 – 30 ลิตรต่อนาที ความแม่นยำ 3% เต็มสเกล

 Differential Pressure Transmitter (DPT) ดังแสดงในรูปที่ 3.11 เป็นอุปกรณ์ที่ทำ หน้าที่วัดความดันต่างระหว่างตำแหน่งสองตำแหน่ง โดยงานวิจัยนี้ใช้ Differential Pressure Transmitter (DPT) ที่มีช่วงการวัด 0-600 มิลลิเมตรน้ำ ความแม่นยำ 0.3% ตามลำดับ

 นาฬิกาจับเวลา ใช้สำหรับจับเวลาที่เบดเคลื่อนที่ในท่อป้อนกลับ ในหน่วยวินาที ทศนิยม 2 ตำแหน่ง

รูปที่ 3.9 เครื่องอัดอากาศ (Air Compressor)

รูปที่ 3.10 อุปกรณ์ควบคุมอัตราการไหลของอากาศปฐมภูมิของท่อไรเซอร์

รูปที่ 3.11 อุปกรณ์วัดความดัน Differential Pressure Transmitter (DPT)

3.2.3 เครื่องมือและอุปกรณ์อื่น ๆ

เครื่องบดละเอียด

แสดงในรูปที่ 3.12 (ก) ใช้หลักการเหวี่ยงใบมีดให้กระแทกกับถ่านหิน โดยมีมอเตอร์ขนาด 1.1 กิโลวัตต์ 1 เฟสเป็นตัวขับเคลื่อนใบมีด ความละเอียดของอนุภาคที่ผ่านการบดจะขึ้นอยู่กับ ขนาดตะแกรงที่ใช้ในการร่อน

2. เครื่องคัดขนาด

แสดงในรูปที่ 3.12 (ข) ใช้แ<mark>ยกทราย ถ่านหินแล</mark>ะชีวมวลที่ได้ออกเป็นช่วงต่างๆ

รูปที่ 3.12 เครื่องมือและอุปกรณ์อื่นๆ (ก) เครื่องบดละเอียด และ (ข) เครื่องคัดขนาด

3.3 วิธีการทดลอง

3.3.1 ศึกษาประสิทธิภาพของไซโคลนแบบทั่วไปและไซโคลนแบบสี่เหลี่ยมโดยใช้ แบบจำลองทางคณิตศาสตร์

สร้างแบบจำลองไซโคลนแบบทั่วไปและไซโคลนแบบสี่เหลี่ยมที่ถูกออกแบบมาเพื่อใช้กับ ระบบฟลูอิไดซ์เบดแบบหมุนเวียนด้วยโปรแกรม Gambit และ ANSYS และทำการจำลองภาวะ โดยโปรแกรม Fluent และคำนวณหาประสิทธิภาพการแยกของแข็งที่ได้จากแบบจำลอง

3.3.2 ศึกษาปัจจัยของความเร็วขาเข้าของไซโคลนและความหนาแน่นของอนุภาคที่ ส่งผลต่อการทำงานของไซโคลน

การเตรียมเบด

นำของแข็งชนิดต่าง ๆ คือ ทราย และ ถ่านหิน ที่มีขนาดเล็กกว่า 1 มิลลิเมตรไปคัดแยก ขนาดเพื่อให้ได้ขนาดที่ต้องการ นำค่าที่ได้จากการทดลองมาคำนวณหาความหนาแน่นของ ของแข็ง ความหนาแน่นบัลค์ของของแข็ง (แสดงวิธีการคำนวณในภาคผนวก ข)

การทดลอง

 นำทรายที่เตรียมไว้ดังตารางที่ 3.2 ปริมาณ 5 กิโลกรัม บรรจุทางด้านบนของไซโคลน ในเครื่องฟลูอิไดซ์เบดแบบหมุนเวียน

2. ศึกษาผลของค่าอัตราการป้อนอากาศปฐมภูมิ (Primary air, U)โดยปรับอัตราการ ป้อนอากาศปฐมภูมิในท่อไรเซอร์ เท่ากับ 175 ลูกบาศ์กเมตรต่อชั่วโมง

3. ปรับอัตราการไหลของอากาศบริเวณ Recycle chamber ที่มีผลต่ออัตราการไหล ย้อนกลับของของแข็งในลูปซีล โดยปรับอัตราการไหลของอากาศบริเวณ Supply chamber จน เกิดการเคลื่อนที่ของของแข็งจากท่อป้อนกลับเข้าสู่ลูปซีล แล้วปรับอัตราการไหลของ Recycle chamber เพื่อให้ได้อัตราการไหลของอากาศที่ Recycle chamber ซึ่งทำให้เกิดการไหลผ่านของ ของแข็งไปได้

 รอจนระบบเข้าสู่สมดุล สำหรับแต่ละค่าของการปรับเปลี่ยนอัตราการไหลของอากาศ คือ รอจนกว่าระดับการเคลื่อนที่ของเบดที่ท่อป้อนกลับจะมีค่าคงที่ จากนั้นวัดค่าความดันที่ ตำแหน่งต่างๆ ทั้ง 21 จุดรอบๆ เครื่อง ฟลูอิไดซ์เบดแบบหมุนเวียนแล้วปล่อยให้เครื่องทำงานไปอีก 2 ชั่วโมง

5. น้ำทรายที่เหลือหลังการทดลองออกมาจากระบบทางท่อป้อนกลับ

6. ปิดพักเครื่องประมาณ 1 ชั่วโมง เพื่อลดปัญหาที่เกิดจากไฟฟ้าสถิตเนื่องจากการ เสียดสีกันอย่างรุนแรงของทรายและผนังของเครื่องฟลูอิไดซ์เบดแบบหมุนเวียน
หมุนเวียนและเปลี่ยนค่าอัตราการป้อนอากาศปฐมภูมิ โดยปรับให้อัตราการป้อนอากาศปฐมภูมิ
 ในท่อไรเซอร์ เท่ากับ 200 ลูกบาศ์กเมตรต่อชั่วโมง

8. ทำการทดลองตามข้อ 3 ถึงข้อ 6

 น้ำทรายปริมาณ 5 กิโลกรัม บรรจุทางด้านบนของไซโคลนในเครื่องฟลูอิไดซ์เบดแบบ หมุนเวียนและเปลี่ยนค่าอัตราการป้อนอากาศปฐมภูมิ โดยปรับให้อัตราการป้อนอากาศปฐมภูมิ ในท่อไรเซอร์ เท่ากับ 230 ลูกบาศ์กเมตรต่อชั่วโมง

10. ทำการทดลองตามข้อ <mark>3 ถึงข้อ 6</mark>

11. ทำการทดลองซ้ำข้อ <mark>1 ถึงข้อ 10 อีกสองครั้งเพื</mark>่อนำค่าที่ได้มาเฉลี่ยกัน

12. เปลี่ยนตัวอย่างของแข็งเป็นของผสมระหว่างทรายกับถ่านหิน จากนั้นทำการทดลอง ตามข้อ 2 ถึงข้อ 11

3.3.3 ศึกษาประสิทธิภาพของไซโคลนแบบสี่เหลี่ยมเมื่อนำมาใช้กับระบบฟลูอิไดซ์เบด แบบหมุนเวียน

ทำการติดตั้งไซโคลนแบบสี่เหลี่ยมแทนที่ไซโคลนแบบทั่วไปในระบบฟลูอิไดซ์เบดแบบ หมุนเวียนและทำการทดลอง<mark>ต</mark>ามหัวข้อ 3.3.2

	<u>ส่วงขมาวอยองอนอวอ</u>	สัดส่วน	สัดส่วนโดยมวล		
	(ไมโครเมตร)	ทราย	ของผสม (ทราย+ถ่านหิน)		
	425-500	0.2	0.45		
	250-425	0.2	0.45		
281	150-250	0.2	0.33		
	75-150	0.2	0.33		
	ต่ำกว่า 75	0.2	0.34		
	ผลรวม	1.0	1.0		

ตารางที่ 3.2 แสดงสัดส่วนโดยน้ำหนั<mark>กของของแข็งที่ใช้ใ</mark>นการทดลอง

บทที่ 4

ผลการทดลองและการวิเคราะห์ผลการทดลอง

ผลจากการพัฒนาแบบจำลองคณิตศาสตร์ของแบบจำลองการไหลหลายวัฏภาคของแก๊สและ ของแข็งภายในเครื่องแยกไซโคลนที่ใช้กับระบบฟลูอิไดซ์เบดแบบหมุนเวียน สามารถใช้ในการทำนาย พฤติกรรมการไหลที่เกิดขึ้นได้ในระดับหนึ่ง ในส่วนของการวิเคราะห์นั้นจะนำผลจากการจำลองภาวะ ไปวิเคราะห์เพื่อที่ตรวจสอบความถูกต้องกับผลการทดลอง โดยในงายวิจัยนี้จะทำการจำลองภาวะด้วย แบบจำลองที่พัฒนาขึ้นที่ภาวะเดียวกันกับการทดลอง ในส่วนแรกของงานวิจัยจะพิจารณาผลของ รูปแบบความดันและประสิทธิภาพในการแยกของแข็งของของเครื่องแยกไซโคลน

4.1 ผลการจำลองภาวะในแบบจำลองการไหลของเครื่องแยกไซโคลน

ในงานวิจัยนี้ได้ทำการศึกษาประสิทธิภาพของเครื่องแยกไซโคลนโดยใช้แบบจำลองทาง คณิตศาสตร์เข้ามาร่วมด้วยเพื่อใช้ทำนายประสิทธิภาพของไซโคลนที่ได้ออกแบบไว้ก่อนแล้ว การ จำลองภาวะในส่วนนี้จะทำการจำลองภาวะอุทกพลศาสตร์ของการไหลภายในเครื่องแยกไซโคลน โดย ใช้แนวคิดแบบออยเลอเลียน และแบบจำลองการไหลเป็นแบบปั่นป่วนในการจำลองภาวะการไหล เพื่อที่จะตรวจสอบความถูกต้องของแบบจำลองการไหล โดยสภาวะที่ใช้ในแบบจำลองได้จากผลของ ความเร็วอากาศและความดันลดตกคร่อมไซโคลนที่ได้จากสภาวะจริงของไซโคลนแบบทั่วไป ผลที่ได้ จากการจำลองภาวะจะถูกนำไปเปรียบเทียบกับผลการทดลองจริง

4.1.1 ผลการจำลองภาวะในแบบจำลองการไหลของเครื่องแยกไซโคลนแบบทั่วไป

จากผลการทดลองในหัวข้อ 4.3 ในส่วนการทดลองของไซโคลนแบบทั่วไป ได้นำสภาวะการ ทดลองดังกล่าวนำมาเป็นสภาวะที่ใช้ในแบบจำลองทางคณิตศาสตร์ของไซโคลนแบบทั่วไป โดยสร้าง แบบจำลองไซโคลนแบบทั่วไปโดยใช้โปรแกรม Gambit 2.3.16 และนำไปคำนวณด้วยโปรแกรม Fluent 6.2.16 ซึ่งสภาวะในการทดลองที่ใช้อัตราป้อนอากาศเท่ากับ 175 200 และ 230 ลูกบาศก์เมตร ต่อชั่วโมง จะถูกกำหนดเป็นความเร็วอากาศขาเข้าไซโคลนเป็น 10.9 13.0 และ 15.0 เมตรต่อวินาที โดยความดันลดตกคร่อมไซโคลนจะกำหนดโดยใช้ค่าความดันลดตกคร่อมไซโคลนที่ได้จากการทดลอง จริง คือ 68.6 107.8 และ 148 ปาสคัลตามลำดับ ซึ่งผลการทดลองที่ได้จากแบบจำลองทาง คณิตศาสตร์สามารถแสดงดังนี้

ความเร็วอากาศ 15.0 เมตรต่อวินาที

รูปที่ 4.1 อัตราการไหลเชิงมวลของไซโคลนแบบทั่วไปที่ได้จากการจำลอง

จากรูปที่ 4.1 เป็นกราฟแสดงอัตราการไหลของมวลที่ตำแหน่งทางออกแก๊ส (gas-outlet) และ ตำแหน่งทางออกของแข็ง (solid-outlet) ของแบบจำลองไซโคลนแบบทั่วไป พบว่าที่ความเร็วอากาศ เขาเข้าเท่ากับ 10.9 เมตรต่อวินาที อนุภาคของแข็งที่ใช้ศึกษาคือทรายที่มีขนาดอนุภาค 109.5 ไมโครเมตร ความหนาแน่นของอนุภาค 2463 กิโลกรัมต่อลูกบาศก์เมตร ความดันตกคร่อมไซโคลน เท่ากับ 68.6 ปาสคัล พบว่าระบบจะเข้าสู่สภาวะคงตัว (steady state) ที่เวลาเฉลี่ย 10 ถึง 30 วินาที จึงทำการจำลองให้ได้ภาวะการไหลเท่ากับ 30 วินาที ในทุกกรณีของการจำลองที่ศึกษา

จากการทดลองแบบจำลองที่ความเร็วอากาศขาเข้าเท่ากับ 13.0 และ 15.0 เมตรต่อวินาที ตามลำดับ อนุภาคของแข็งที่ใช้ศึกษาคือทรายที่มีขนาดอนุภาค 109.5 ไมโครเมตร ความหนาแน่นของ อนุภาค 2463 กิโลกรัมต่อลูกบาศก์เมตร ความดันตกคร่อมไซโคลนเท่ากับ 107.8 และ 148.0 ปาสคัล พบว่าระบบจะเข้าสู่สภาวะคงตัว (steady state) ที่เวลาเฉลี่ย 11 ถึง 30 วินาที เช่นเดียวกับ แบบจำลองที่มีความเร็วอากาศเท่ากับ 10.9 เมตรต่อวินาที

เมื่อนำผลที่ได้จากแบบจำลองทางคณิตศาสตร์ของไซโคลนแบบทั่วไปที่ใช้ความเร็วอากาศ เท่ากับ 10.9 13.0 และ 15.0 เมตรต่อวินาทีมาหาประสิทธิภาพการแยกของไซโคลน และเปรียบเทียบ กับประสิทธิภาพที่ได้จากการทดลองจริง

ตารางที่ 4.1 ประสิทธิภาพของไซโคลนแบบทั่วไปที่ได้จากการทดลองและแบบจำลองคณิตศาสตร์

ด้ตราการป้อนอากาสปสบกบิ	ความเร็วขาเข้า	ร้อยละของประสิทธิภาพการแยก		
(ลูกบาศก์เมตรต่อชั่วโมง)	ไซโคลน (เมตรต่อวินาที)	การทดลอง	การจำลอง	
175	10.9	97.8	99.5	
200	13.0	96.8	99.4	
230	15.0	95.1	98.9	

จฺฬาลงกรณมหาวทยาลย

จากตารางที่ 4.1 และ รูปที่ 4.2 พบว่าประสิทธิภาพของไซโคลนแบบทั่วไปที่ได้จากการทดลอง จะมีประสิทธิภาพลดลงเล็กน้อยคือร้อยละ 97.8 96.8 และ 95.1 เมื่อใช้อัตราการป้อนอากาศปฐมภูมิที่ เพิ่มขึ้นคือ 175 200 และ 230 ลูกบาศก์เมตรต่อชั่วโมง และเมื่อเปรียบเทียบประสิทธิภาพของไซโคลน ที่ได้จากแบบจำลองคณิตศาสตร์ที่ใช้อนุภาคของแข็งเป็นทรายขนาดอนุภาค 109.5 ไมโครเมตร ความ หนาแน่นของอนุภาค 2463 กิโลกรัมต่อลูกบาศก์เมตร โดยกำหนดให้ความเร็วขาเข้าของไซโคลน เท่ากับ 10.9 13.0 และ 15.0 เมตรต่อวินาทีตามลำดับนั้น แบบจำลองทางคณิตศาสตร์จะให้ผลของ ประสิทธิภาพการแยกเท่ากับร้อยละ 99.5 99.4 และ 98.9 ตามลำดับ ซึ่งค่าที่ได้ใกล้เคียงกับผลการ ทดลองจริง ต่างกันเพียงร้อยละ 2 ถึง 4 โดยผลที่ได้นั้นพบว่าประสิทธิภาพการแยกของไซโคลนจะ ลดลงเล็กน้อยถ้าความเร็วอากาศขาเข้าไซโคลนเพิ่มสูงขึ้น

ด้วยเหตุนี้การสร้างแบบจำลองไซโคลนแบบสี่เหลี่ยมที่ออกแบบไว้ก่อนหน้านี้ ด้วยแบบจำลอง ทางคณิตศาสตร์ เพื่อหาประสิทธิภาพของไซโคลนแบบสี่เหลี่ยม ก่อนที่จะนำไปสร้างและใช้งานจริงกับ ระบบฟลูอิไดซ์เบดแบบหมุนเวียนนั้น จึงเป็นสิ่งที่น่าสนใจในการศึกษาต่อไป

4.1.2 ผลการจำลองภาวะในแบบจำลองการไหลของเครื่องแยกไซโคลนแบบสี่เหลี่ยม

จากตารางที่ 4.1 และ 4.2 นั้นแสดงให้เห็นถึงประสิทธิภาพและแนวโน้มของประสิทธิภาพของ ไซโคลนแบบทั่วไปที่ได้จากการทดลองจริงและจากแบบจำลองทางคณิตศาสตร์ที่ได้ผลออกมามีค่า ใกล้เคียงกันนั้น ผู้วิจัยจึงสร้างแบบจำลองทางคณิตศาสตร์ของไซโคลนแบบสี่เหลี่ยม (1) ด้วยโปรแกรม Gambit 2.3.16 และคำนวณด้วยโปรแกรม Fluent 6.2.16 เช่นเดียวกับแบบจำลองไซโคลนแบบทั่วไป โดยใช้ภาวะในการจำลองแบบเดียวกับที่ใช้กับแบบจำลองไซโคลนแบบทั่วไป เพื่อศึกษาประสิทธิภาพ และแนวโน้มที่ได้จากการทดลองที่สภาวะต่างๆ

ด้ตราการป้อบอากาสปรบกบิ	ความเร็วขา	ร้อยละของประสิทธิภาพการแยก		
(ดอบเวสอ์เมตรต่อชั่วโบง)	เข้าไซโ <mark>คลน</mark>	ไซโคลนแบบทั่วไป	ไซโคลนสี่เหลี่ยม(1)	
(มีเเก เมเเซชตรดเราเชชง)	(เมตรต่อวินาที)	(การจำลอง)	(การจำลอง)	
175	10.9	<mark>99</mark> .5	97.9	
200	13.0	99.4	99.4	
230	15.0	98.9	99.1	

ตารางที่ 4.2 ประสิทธิภาพของไซโคลนแบบทั่วไปที่ได้จากแบบจำลองคณิตศาสตร์

รูปที่ 4.3 กราฟแสดงความสัมพันธ์ระหว่างความเร็วอากาศขาเข้าไซโคลนกับประสิทธิภาพการแยกของ ไซโคลนที่ได้จากแบบจำลองทางคณิตศาสตร์ โดยตัวอย่างที่ใช้ในการศึกษาคือทรายที่มีขนาดอนุภาค เฉลี่ย 109.5 ไมโครเมตร

จากตารางที่ 4.2 และ รูปที่ 4.3 พบว่าประสิทธิภาพของไซโคลนแบบสี่เหลี่ยม (1) ที่ได้จาก แบบจำลองคณิตศาสตร์ ที่ใช้อนุภาคของแข็งเป็นทรายขนาดอนุภาค 109.5 ไมโครเมตร ความ หนาแน่นของอนุภาค 2463 กิโลกรัมต่อลูกบาศก์เมตร โดยกำหนดให้ความเร็วขาเข้าของไซโคลน เท่ากับ 10.9 13.0 และ 15.0 เมตรต่อวินาทีนั้น ให้ประสิทธิภาพเท่ากับ ร้อยละ 97.9 99.4 และ 99.1 ตามลำดับ ซึ่งมีค่าใกล้เคียงกับผลของแบบจำลองไซโคลนแบบทั่วไป จากผลการศึกษาในขั้นต้นนี้ ผู้วิจัยจึงได้สร้างไซโคลนแบบสี่เหลี่ยมเพื่อนำไปใช้กับระบบฟลูอิไดซ์เบดแบบหมุนเวียนต่อไป

4.2 ผลการศึกษาอุทกพลศาสตร์ภายในไรเซอร์ของแบบจำลองฟลูอิไดซ์เบดแบบหมุนเวียน จากการศึกษาแบบจำลองในหัวข้อ 4.1 ได้ทำการสร้างไซโคลนสี่เหลี่ยม 2 แบบ รูปที่ 4.4 แสดงไซโคลนแบบต่าง ๆ ซึ่งใช้ศึกษาในงานวิจัยนี้

(ก)

(1)

(ค)

รูปที่ 4.4 แสดงไซโคลนแบบต่างๆ ที่ใช้ในการศึกษา (ก) ไซโคลนแบบทั่วไป (ข) ไซโคลนสี่เหลี่ยม (1) และ (ค) ไซโคลนสี่เหลี่ยม (2)

ในการทดลองจริงได้ทำการบันทึกความดันที่จุดต่างๆ ขณะการทดลอง ภายในระบบฟลูอิไดซ์ เบดแบบหมุนเวียนเพื่อหารูปแบบการไหลของอนุภาคภายในท่อไรเซอร์ จากรูปที่ 4.5 แสดงจุดที่ทำการ วัดความดันสถิตรอบๆ เครื่องฟลูอิไดซ์เบดแบบหมุนเวียน โดยสัญลักษณ์ในแต่ละจุด อธิบายได้ดังนี้

P_{DB} คือ ความดันที่ส่วนล่างของท่อป้อนกลับ (มิลลิเมตรน้ำ)

P_{ot} คือ ความดันที่ส่วนบนของท่อป้อนกลับ (มิลลิเมตรน้ำ)

P_{RB} คือ ความดันที่ส่วนล่างของท่อไรเซอร์ (มิลลิเมตรน้ำ)

P_{RT} คือ ความดันที่ส่วนบนของท่อไรเซอร์ (มิลลิเมตรน้ำ)

L₂ คือ ความดันที่ส่วนที่ทำให้เกิดฟลูอิไดซ์ของลูปซีล (มิลลิเมตรน้ำ)

บริเวณที่ทำการวัดความดันเพื่อหาค่าความดันลดของไซโคลนเพื่อที่จะนำไปกำหนดใน แบบจำลอง จะทำการวัดที่บริเวณทางออกแก๊ส และ ทางออกของแข็ง แสดงในรูปที่ 4.5

รูปที่ 4.5 ตำแหน่งที่วัดความดันหลักๆ รอบเครื่องฟลูอิไดซ์เบดแบบหมุนเวียน (จารุวรรณ บัติปัน, 2547)

4.2.1 ผลของความดันสถิตรอบ ๆ เครื่องฟลูอิไดซ์เบดแบบหมุนเวียนที่ใช้ไซโคลนแบบ ทั่วไปในการทดลอง

รูปที่ 4.6 กราฟแสดงผลของความดันสถิตรอบๆ ลูปของฟลูอิไดซ์เบดแบบหมุนเวียน ที่อัตราการป้อน อากาศปฐุมภูมิต่าง ๆ (ตัวอย่างคือทราย)

รูปที่ 4.6 แสดงความสัมพันธ์ระหว่างความดันสถิตกับความสูงของเครื่องฟลูอิไดซ์เบดแบบ หมุนเวียน โดยในการทดลองเลือกใช้เบดที่เป็นทรายที่มีขนาดอนุภาคเฉลี่ยเท่ากับ 109.5 ไมโครเมตร สภาวะในการศึกษา คือ อัตราการป้อนอากาศปฐมภูมิ (Primary air flow rate) เท่ากับ 175 200 และ 230 กิโลกรัมต่อ ลูกบาศก์เมตร พบว่าจุดที่ให้ความดันสูงคือ ในส่วนของ Weir section (ที่จุด L₂) และ บริเวณส่วนล่างของท่อป้อนกลับ (ที่จุด P_{DB}) โดยส่วนของท่อไรเซอร์ความดันที่ได้จะมีค่าลดลงตลอด ความสูงของท่อ ทั้งนี้เนื่องจากภาวะที่เกิดในท่อไรเซอร์มี 2 ภาวะคือ เฟสหนาแน่น (Dense phase) ที่ บริเวณส่วนล่างของท่อ ทำให้ความดันในท่อไรเซอร์ส่วนล่างมีค่าสูงกว่าท่อไรเซอร์ส่วนบนซึ่งเป็นภาวะ เฟสเจือจาง (Dilute phase) ส่วนความดันคร่อมทางออกของท่อไรเซอร์หรือทางเข้าไซโคลน พบว่าค่า ความดันจะลดลงเนื่องจากการเปลี่ยนทิศทางการไหลของของผสมในอากาศ

รูปที่ 4.7 กราฟแสดงผลของสัดส่วนช่องว่างภายในท่อไรเซอร์ของฟลูอิไดซ์เบดแบบหมุนเวียน ที่อัตรา การป้อนอากาศปฐมภูมิต่าง ๆ (ตัวอย่างคือทราย)

จากผลของความดันที่จุดต่างๆ ของท่อไรเซอร์ สามารถนำไปหาค่าสัดส่วนช่องว่างเพื่อดู รูปแบบการไหลภายในท่อไรเซอร์ได้ รูปที่ 4.7 แสดงความสัมพันธ์ระหว่างสัดส่วนช่องว่าง (voidage) ภายในท่อไรเซอร์กับความสูงของเครื่องฟลูอิไดซ์เบดแบบหมุนเวียน โดยอนุภาคที่ใช้ศึกษาคือทราย ภาวะที่ศึกษา คือ อัตราการป้อนอากาศปฐมภูมิเท่ากับ 175 200 และ 230 กิโลกรัมต่อลูกบาศก์เมตร พบว่าสัดส่วนช่องว่าง (voidage) ภายในท่อไรเซอร์ส่วนล่างมีสัดส่วนช่องว่างที่น้อยกว่าส่วนบนของท่อ ไรเซอร์ ซึ่งสัดส่วนช่องว่างอากาศที่น้อยหมายถึงมีปริมาณของแข็งอยู่มาก คือเป็นเฟสหนาแน่น (Dense phase) และสัดส่วนช่องว่างอากาศที่มากหมายถึงมีปริมาณของแข็งน้อย คือเป็นเฟสเจือจาง (Dilute phase) ซึ่งรูปแบบการไหลแบบนี้เรียกว่า ฟลูอิไดเซชันความเร็วสูง (Fast fluidization) (สมศักดิ์ ดำรงค์เลิศ, 2528)

รูปที่ 4.8 กราฟแสดงผลของความดันสถิตรอบๆ ลูปของฟลูอิไดซ์เบดแบบหมุนเวียน ที่อัตราการป้อน อากาศปฐมภูมิต่าง ๆ (ตัวอย่างคือของผสมระหว่างทรายกับถ่านหิน)

รูปที่ 4.9 กราฟแสดงผลของสัดส่วนช่องว่างภายในท่อไรเซอร์ของฟลูอิไดซ์เบดแบบหมุนเวียน ที่อัตรา การป้อนอากาศปฐมภูมิต่าง ๆ (ตัวอย่างคือของผสมระหว่างทรายกับถ่านหิน)

รูปที่ 4.8 แสดงความสัมพันธ์ระหว่างความดันสถิตกับความสูงของเครื่องฟลูอิไดซ์เบดแบบ หมุนเวียน โดยในการทดลองเลือกใช้เบดที่เป็นของผสมระหว่างทรายกับถ่านหิน ภาวะในการศึกษา คือ อัตราการป้อนอากาศปฐมภูมิเท่ากับ 175 200 และ 230 กิโลกรัมต่อลูกบาศก์เมตร พบว่าลักษณะ ของความดันสถิตบริเวณรอบลูปของเครื่องฟลูอิไดซ์เบดแบบหมุนเวียน ในกรณีที่ใช้อนุภาคเป็นของ ผสมระหว่างทรายกับถ่านหิน จะมีลักษณะของความดันสถิตที่คล้ายกันกับการทดลองที่ใช้อนุภาคเป็น ทรายคือ จุดที่ให้ความดันสูงคือ Weir section (ที่จุด L₂) และ บริเวณส่วนล่างของท่อป้อนกลับ (ที่จุด P_{DB}) โดยส่วนของท่อไรเซอร์ความดันที่ได้จะมีค่าลดลงตลอดความสูงของท่อ ทั้งนี้เนื่องจากภาวะที่เกิด ในท่อไรเซอร์มี 2 ภาวะคือ เฟสหนาแน่น ที่บริเวณส่วนล่างของท่อไรเซอร์ และ เฟสเจือจางที่บริเวณ ส่วนบนของท่อไรเซอร์

รูปที่ 4.9 แสดงความสัมพันธ์ระหว่างสัดส่วนช่องว่าง ภายในท่อไรเซอร์กับความสูงของเครื่อง ฟลูอิไดซ์เบดแบบหมุนเวียน โดยในการทดลองเลือกใช้เบดที่เป็นของผสมระหว่างทรายกับถ่านหิน ภาวะในการศึกษา คือ อัตราการป้อนอากาศปฐมภูมิเท่ากับ 175 200 และ 230 กิโลกรัมต่อลูกบาศก์ เมตร พบว่าสัดส่วนช่องว่าง ภายในท่อไรเซอร์ส่วนล่างมีสัดส่วนช่องว่างที่น้อยกว่าส่วนบนของท่อไร เซอร์ ซึ่งสัดส่วนช่องว่างอากาศที่น้อยหมายถึงมีปริมาณของแข็งอยู่มาก คือเป็นเฟสหนาแน่น และ สัดส่วนช่องว่างอากาศที่มากหมายถึงมีปริมาณของแข็งน้อย คือเป็นเฟสเจือจาง เช่นเดียวกับการ ทดลองที่ใช้อนุภาคเป็นทราย ซึ่งเป็นรูปแบบการไหล แบบฟลูอิไดเซชันความเร็วสูง

4.2.2 ผลของความดันสถิตรอบ ๆ เครื่องฟลูอิไดซ์เบดแบบหมุนเวียนที่ใช้ไซโคลนแบบ สี่เหลี่ยม (1) ในการท_{ดลอง}

รูปที่ 4.10 กราฟแสดงผลของความดันสถิตรอบ ๆ ลูปของฟลูอิไดซ์เบดแบบหมุนเวียน ที่อัตราการป้อน อากาศปฐมภูมิต่าง ๆ (ตัวอย่างคือทราย)

รูปที่ 4.11 กราฟแสดงผลของสัดส่วนช่องว่างภายในท่อไรเซอร์ของฟลูอิไดซ์เบดแบบหมุนเวียน ที่อัตรา การป้อนอากาศปฐมภูมิต่าง ๆ (ตัวอย่างคือทราย)

รูปที่ 4.12 กราฟแสดงผลของความดันสถิตรอบ ๆ ลูปของฟลูอิไดซ์เบดแบบหมุนเวียน ที่อัตราการป้อน อากาศปฐมภูมิต่าง ๆ (ตัวอย่างคือของผสมระหว่างทรายกับถ่านหิน)

รูปที่ 4.13 กราฟแสดงผลของสัดส่วนช่องว่างภายในท่อไรเซอร์ของฟลูอิไดซ์เบดแบบหมุนเวียน ที่อัตรา การป้อนอากาศปฐมภูมิต่าง ๆ (ตัวอย่างคือของผสมระหว่างทรายกับถ่านหิน)

จากรูปที่ 4.10 และ 4.12 แสดงความสัมพันธ์ระหว่างความดันสถิตกับความสูงของเครื่องฟลูอิ ไดซ์เบดแบบหมุนเวียน โดยในการทดลองเลือกใช้เบดที่เป็นทรายและของผสมระหว่างทรายกับถ่านหิน ภาวะในการศึกษา คือ อัตราการป้อนอากาศปฐมภูมิเท่ากับ 175 200 และ 230 กิโลกรัมต่อลูกบาศก์ เมตร จะเห็นว่า จุดที่ให้ความดันสูงคือ ในส่วนของ Weir section (ที่จุด L₂) และ บริเวณส่วนล่างของ ท่อป้อนกลับ (ที่จุด P_{DB}) โดยส่วนของท่อไรเซอร์ความดันที่ได้จะมีค่าลดลงตลอดความสูงของท่อ ทั้งนี้ เนื่องจากภาวะที่เกิดในท่อไรเซอร์มี 2 ภาวะคือ เฟสหนาแน่น (Dense phase) ที่บริเวณส่วนล่างของ ท่อ ทำให้ความดันในท่อไรเซอร์ส่วนล่างมีค่าสูงกว่าท่อไรเซอร์ส่วนบนซึ่งเป็นภาวะเฟสเจือจาง (Dilute phase) ส่วนความดันคร่อมทางออกของท่อไรเซอร์หรือทางเข้าไซโคลน พบว่าค่าความดันจะลดลง เนื่องจากการเปลี่ยนทิศทางการไหลของของผสมในอากาศ

จากรูปที่ 4.11 และ 4.13 จะเห็นว่าสัดส่วนช่องว่าง (voidage) ภายในท่อไรเซอร์ส่วนล่างมี สัดส่วนช่องว่างที่น้อยกว่าส่วนบนของท่อไรเซอร์ ซึ่งสัดส่วนช่องว่างอากาศที่น้อยหมายถึงมีปริมาณ ของแข็งอยู่มาก คือเป็นเฟสหนาแน่น (Dense phase) และสัดส่วนช่องว่างอากาศที่มากหมายถึงมี ปริมาณของแข็งน้อย คือเป็นเฟสเจือจาง (Dilute phase)

4.2.3 ผลของความดันสถิตรอบ ๆ เครื่องฟลูอิไดซ์เบดแบบหมุนเวียนที่ใช้ไซโคลนแบบ สี่เหลี่ยม (2) ในการทดลอง

รูปที่ 4.14 กราฟแสดงผลของความดันสถิตรอบ ๆ ลูปของฟลูอิไดซ์เบดแบบหมุนเวียน ที่อัตราการป้อน อากาศปฐมภูมิต่าง ๆ (ตัวอย่างคือทราย)

รูปที่ 4.15 กราฟแสดงผลของสัดส่วนช่องว่างภายในท่อไรเซอร์ของฟลูอิไดซ์เบดแบบหมุนเวียน ที่อัตรา การป้อนอากาศปฐมภูมิต่าง ๆ (ตัวอย่างคือทราย)

รูปที่ 4.16 กราฟแสดงผลของความดันสถิตรอบ ๆ ลูปของฟลูอิไดซ์เบดแบบหมุนเวียน ที่อัตราการป้อน อากาศปฐมภูมิต่าง ๆ (ตัวอย่างคือของผสมระหว่างทรายกับถ่านหิน)

รูปที่ 4.17 กราฟแสดงผลของสัดส่วนช่องว่างภายในท่อไรเซอร์ของฟลูอิไดซ์เบดแบบหมุนเวียน ที่อัตรา การป้อนอากาศปฐมภูมิต่าง ๆ (ตัวอย่างคือของผสมระหว่างทรายกับถ่านหิน)

จากรูปที่ 4.14 และ 4.16 แสดงความสัมพันธ์ระหว่างความดันสถิตกับความสูงของเครื่องฟลูอิ ไดซ์เบดแบบหมุนเวียน โดยในการทดลองเลือกใช้เบดที่เป็นทรายและของผสมระหว่างทรายกับถ่านหิน ภาวะในการศึกษา คือ อัตราการป้อนอากาศปฐมภูมิเท่ากับ 175 200 และ 230 กิโลกรัมต่อลูกบาศก์ เมตร จะเห็นว่า จุดที่ให้ความดันสูงคือ ในส่วนของ Weir section (ที่จุด L₂) และ บริเวณส่วนล่างของ ท่อป้อนกลับ (ที่จุด P_{DB}) โดยส่วนของท่อไรเซอร์ความดันที่ได้จะมีค่าลดลงตลอดความสูงของท่อ ทั้งนี้ เนื่องจากภาวะที่เกิดในท่อไรเซอร์มี 2 ภาวะคือ เฟสหนาแน่น (Dense phase) ที่บริเวณส่วนล่างของ ท่อ ทำให้ความดันในท่อไรเซอร์ส่วนล่างมีค่าสูงกว่าท่อไรเซอร์ส่วนบนซึ่งเป็นภาวะเฟสเจือจาง (Dilute phase) ส่วนความดันคร่อมทางออกของท่อไรเซอร์หรือทางเข้าไซโคลน พบว่าค่าความดันจะลดลง เนื่องจากการเปลี่ยนทิศทางการไหลของของผสมในอากาศ

จากรูปที่ 4.15 และ 4.17 จะเห็นว่าสัดส่วนช่องว่าง (voidage) ภายในท่อไรเซอร์ส่วนล่างมี สัดส่วนช่องว่างที่น้อยกว่าส่วนบนของท่อไรเซอร์ ซึ่งสัดส่วนช่องว่างอากาศที่น้อยหมายถึงมีปริมาณ ของแข็งอยู่มาก คือเป็นเฟสหนาแน่น (Dense phase) และสัดส่วนช่องว่างอากาศที่มากหมายถึงมี ปริมาณของแข็งน้อย คือเป็นเฟสเจือจาง (Dilute phase)

4.3 ผลการศึกษาอัตราการป้อนอากาศปฐมภูมิที่ส่งผลต่อความเร็วขาเข้าและความดันลดตก คร่อมไซโคลนแบบทั่วไป

เป็นการศึกษาการเปลี่ยนแปลงของความเร็วขาเข้าและความดันลดตกคร่อมไซโคลนเมื่อใช้ อัตราการป้อนอากาศปฐมภูมิในค่าต่างๆ

4.3.1 ผลของอัตราการป้อนอากาศปฐมภูมิที่ส่งผลต่อความเร็วขาเข้าของไซโคลน

เพื่อศึกษาผลของอัตรากา<mark>ร</mark>ป้อนอากาศปฐมภูมิที่เพิ่มขึ้นจะส่งผลอย่างไรต่อความเร็วอากาศ ขาเข้าไซโคลน และ ประสิทธิภาพของไซโคลน

อัตราการป้อนอากาศปฐมภูมิ (ลูกบาศก์เมตรต่อวินาที)

รูปที่ 4.18 กราฟแสดงความสัมพันธ์ระหว่างอัตราการป้อนอากาศปฐมภูมิที่อัตราการป้อนอากาศต่างๆ กับความเร็วขาเข้าของไซโคลนแบบทั่วไป จากกราฟในรูปที่ 4.18 แสดงความสัมพันธ์ระหว่างอัตราการป้อนอากาศปฐมภูมิกับความเร็ว ขาเข้าของไซโคลนพบว่า เมื่อเพิ่มอัตราการป้อนอากาศปฐมภูมิจาก 175 ถึง 230 ลูกบาศก์เมตรต่อ ชั่วโมงจะส่งผลให้ความเร็วขาเข้าของไซโคลนมีค่าเพิ่มขึ้นจาก 10.9 ถึง 15.0 เมตรต่อวินาที ซึ่งผลของ ความเร็วอากาศขาเข้าไซโคลนที่ได้นี้จะถูกนำไปใช้ในทุกๆ แบบจำลองทางคณิตศาสตร์ของเครื่องแยก ไซโคลนแบบต่างๆ ที่ใช้ในการศึกษานี้ เพื่อศึกษาผลกระทบของความเร็วอากาศขาเข้าของไซโคลนและ ความหนาแน่นของอนุภาคที่แตกต่างกันนั้นส่งผลอย่างไรต่อประสิทธิภาพการแยกของแข็งของไซโคลน

4.3.2 ผลของอัตราการป้อนอากาศปฐมภูมิที่ส่งผลต่อความดันลดตกคร่อมไซโคลน

4.3.2.1 ผลของอัตราการป้อนอากาศปฐมภูมิที่ส่งผลต่อความดันลดตกคร่อมไซโคลนทั่วไป เพื่อศึกษาถึงอิทธิพลของอัตราการป้อนอากาศปฐมภูมิที่ส่งผลต่อความดันลดตก คร่อมไซโคลนแบบทั่วไป และ เปรียบเทียบกับผลของความดันลดตกคร่อมไซโคลนแบบทั่วไป ที่ได้จากการทดลอง และ ที่ได้จากการคำนวณของ Muschelknautz and Greif (1997) (Basu, P., 2006) ซึ่งเป็นการคำนวณความดันลดสำหรับไซโคลนแบบทั่วไปที่ใช้ในระบบฟลูอิ ไดซ์เบดแบบหมุนเวียนที่ใช้ในอุตสาหกรรม

ดากาสประเภทิ	<u>ดการแร๊กตาเต้าใสโดดร</u> เ	ความดันลด (ปาสคัล)			
ับ III เศบ ขู้ผมูม (ดกบาศก์เบตรต่อชั่วโบง)	(เมตรต่อวิมาที่)	การทดลอง		Muschelknautz	
		ทราย	ของผสม	and Greif 1997	
175	10.9	68.6	68.6	104.5	
200	13.0	107.8	107.8	176.7	
230	15.0	147.0	156.8	235.2	

ตารางที่ 4.3 แสดงค่าความดันล<mark>ดตกคร่อมไซโคลนแบบทั่วไปที่ได้จ</mark>ากการทดลองและการคำนวณ

จุฬาลงกรณ่มหาวิทยาลัย

รูปที่ 4.19 กราฟแสดงความสัมพันธ์ระหว่างอัตราการป้อนอากาศปฐมภูมิที่อัตราการป้อนต่างๆ กับ ความดันลดตกคร่อมไซโคลนแบบทั่วไป

ตารางที่ 4.3 แสดงค่าความดันลดตกคร่อมไซโคลนแบบทั่วไปที่ได้จากการทดลอง และ การคำนวณ รูปที่ 4.19 แสดงความสัมพันธ์ระหว่างอัตราการป้อนอากาศปฐมภูมิกับ ความดันลดตกคร่อมไซโคลนแบบทั่วไป พบว่าเมื่อเพิ่มอัตราการป้อนอากาศปฐมภูมิจะทำให้ ความดันลดตกคร่อมไซโคลนจะมีค่าเพิ่มสูงขึ้นคือ 68.6 107.8 และ 147.0 ปาสคัลตามลำดับ (ตัวอย่างคือทราย) และ 68.6 107.8 และ 156.8 ปาสคัลตามลำดับ (ตัวอย่างคือของผสม ระหว่างทรายกับถ่านหิน) จึงสรุปได้ว่าเมื่อเพิ่มอัตราการป้อนอากาศปฐมภูมินอกจากจะทำให้ ความเร็วอากาศขาเข้าของไซโคลนเพิ่มสูงขึ้น ความเร็วที่เพิ่มสูงขึ้นยังส่งผลต่อความดันลดตก คร่อมไซโคลนด้วย นอกจากนี้ยังพบว่าในการทดลองที่ใช้ตัวอย่างของแข็งแตกต่างกันนั้นจะไม่ ส่งผลต่อความดันลดของไซโคลนที่สภาวะการทดลองเดียวกัน โดยค่าความดันลดที่วัดได้จาก การทดลองมีค่าน้อยกว่าที่ได้จากการคำนวณในกรณีที่ความเร็วอากาศขาเข้าไซโคลนเท่ากับ 10.9 13.0 และ 15.0 เมตรต่อวินาที ซึ่งจะได้ค่าความดันลดเท่ากับ 104.5 176.7 และ 235.2 ปาสคัล ตามลำดับ ซึ่งค่าความดันลดที่ได้จากการคำนวณนั้นจะมีค่าสูงกว่าค่าที่ได้จากการ ทดลองในแบบจำลองฟลูอิไดซ์เบดแบบหมุนเวียนประมาณ 40 – 70 ปาสคัล

4.3.2.2 ผลของอัตราการป้อนอากาศปฐมภูมิที่ส่งผลต่อความดันลดตกคร่อมไซโคลนแบบ

รูปที่ 4.20 แสดงความสัมพันธ์ระหว่างอัตราการป้อนอากาศปฐมภูมิกับความดนลดตกคร่อมไซโคลน แบบต่างๆ (ตัวอย่างคือทราย)

รูปที่ 4.21 แสดงความสัมพันธ์ระหว่างอัตราการป้อนอากาศปฐมภูมิกับความดนลดตกคร่อมไซโคลน แบบต่างๆ (ตัวอย่างคือของผสมระหว่างทรายกับถ่านหิน)

จากรูปที่ 4.20 และ 4.21 พบว่าเมื่อมีการเพิ่มอัตราการป้อนอากาศปฐมภูมิคือ 175 200 และ 230 ลูกบาศก์เมตรต่อชั่วโมงตามลำดับ จะทำให้ความดันลดตกคร่อมไซโคลนทุก แบบเพิ่มสูงขึ้น ซึ่งจากผลการทดลองพบว่าไซโคลนแบบสี่เหลี่ยมจะให้ค่าความดันลดตกคร่อม ไซโคลนที่มีค่าน้อยกว่าไซโคลนแบบทั่วไปในทุกๆแบบของไซโคลนแบบสี่เหลี่ยม และค่าความ ดันลดตกคร่อมไซโคลนของไซโคลนแบบสี่เหลี่ยมทั้งสองแบบนั้นมีค่าใกล้กันในทุกสภาวะการ ทดลอง ความดันลดตกคร่อมไซโคลนที่ลดต่ำลงเช่นนี้จะมีผลทำให้ความดันภายในระบบ ลดลง ซึ่งจะเป็นผลดีต่อระบบฟลูอิไดซ์เบดแบบหมุนเวียน เพราะความดันลดที่ต่ำลงจะทำให้ พลังงานภายที่ใช้ในระบบจะลดลงด้วย

4.4 ผลการศึกษาเปรียบเทียบไซโคลนแบบทั่วไปกับไซโคลนแบบสี่เหลี่ยมที่ได้จากการทดลอง

4.4.1 ผลของประสิทธิภาพของ<mark>ไซโคลนแบบทั่วไปและ</mark>ไซโคลนแบบสี่เหลี่ยมที่ได้จากการ ทดลอง

งานวิจัยนี้ได้ทำการศึกษาประสิทธิภาพการแยก (Collection efficiency) ของไซโคลนแบบ ต่างๆ เมื่อนำมาใช้กับระบบฟลูอิไดซ์เบดแบบหมุนเวียน ที่อัตราการป้อนอากาศปฐมภูมิ 3 ค่า คือ 175 200 และ 230 ลูกบาศก์เมตรต่อชั่วโมง โดยของแข็งที่ใช้ในการทดลองคือทรายและของผสมระหว่าง ทรายกับถ่านหิน ประสิทธิภาพของไซโคลนแบบต่างๆ สามารถคำนวณได้จากปริมาณของแข็งที่เหลือ หลังจากทำการทดลองที่สภาวะต่างๆ เป็นเวลา 2 ชั่วโมง

อัตราการป้อนอากาศปฐมภูมิ	ร้อยละของประสิทธิภาพการแยก	
(ลูกบาศก์เมตรต่อชั่วโมง)	ทราย	ของผสม
175	97.8	98.0
200	96.8	96.4
230	95.1	96.2
	1910	6 1 1 1

ตารางที่ 4.4 แสดงประสิทธิภาพขอ<mark>งไซโคลนแบบทั่วไปที่สภาวะ</mark>ต่างๆ

ตารางที่ 4.4 แสดงประสิทธิภาพของไซโคลนแบบทั่วไปที่อัตราการป้อนอากาศปฐมภูมิที่ 175 200 และ 230 ลูกบาศก์เมตรต่อชั่วโมง ของแข็งที่ใช้ในการศึกษาคือทรายและของผสมระหว่างทราย กับถ่านหิน พบว่าประสิทธิภาพของไซโคลนแบบทั่วจะมีค่าลดลงเล็กน้อยเมื่อเพิ่มอัตราการป้อนอากาศ ปฐมภูมิ ทั้งในตัวอย่างที่เป็นทรายและของผสมระหว่างทรายกับถ่านหิน โดยในตัวอย่างทรายจะให้ ประสิทธิภาพเท่ากับ 97.8 96.8 และ 95.1 ตามลำดับ ส่วนในตัวอย่างของผสมระหว่างถ่านหินกับ ทรายจะให้ประสิทธิภาพเท่ากับ 98.0 96.4 และ 96.2 ตามลำลับ

อัตราการป้อนอากาศปฐมภูมิ	ร้อยละของประสิทธิภาพการแยก	
(ลูกบาศก์เมตรต่อชั่วโมง)	ทราย	ของผสม
175	94.0	96.0
200	91.8	94.4
230	87.4	94.0

ตารางที่ 4.5 แสดงประสิทธิภาพของไซโคลนแบบสี่เหลี่ยม (1) ที่สภาวะต่างๆ

ตารางที่ 4.5 แสดงประสิทธิภาพของไซโคลนสี่เหลี่ยม (1) ที่อัตราการการป้อนอากาศปฐมภูมิ ที่ 175 200 และ 230 ลูกบาศก์เมตรต่อชั่วโมง ของแข็งที่ใช้ในการศึกษาคือทรายและของผสมระหว่าง ทรายกับถ่านหิน พบว่าประสิทธิภาพของไซโคลนสี่เหลี่ยม (1) จะมีค่าลดลงเมื่อเพิ่มอัตราการป้อน อากาศปฐมภูมิ ทั้งในตัวอย่างที่เป็นทรายและของผสมระหว่างทรายกับถ่านหิน โดยในตัวอย่างทราย จะให้ประสิทธิภาพเท่ากับ 94.0 91.8 และ 87.4 ตามลำดับ ส่วนในตัวอย่างของผสมระหว่างถ่านหิน กับทรายจะให้ประสิทธิภาพเท่ากับ 96.0 94.4 และ 94.0 ตามลำลับ

ตารางที่ 4.6 แสดงประสิทธิภาพขอ<mark>งไซโคลนแบบสี่เหลี่ยม (2) ที่</mark>สภาวะต่างๆ

อัตราการป้อนอากาศปฐมภูมิ	<u>ร้อยละของประสิทธิภาพการแยก</u>	
(ลูกบาศก์เมตรต่อชั่วโมง)	ทราย	ของผสม
175	93.2	96.6
200	90.9	95.0
230	87.5	94.2

ตารางที่ 4.6 แสดงประสิทธิภาพของไซโคลนสี่เหลี่ยม (2) ที่อัตราการป้อนอากาศปฐมภูมิที่ 175 200 และ 230 ลูกบาศก์เมตรต่อชั่วโมง ของแข็งที่ใช้ในการศึกษาคือทรายและของผสมระหว่าง ทรายกับถ่านหิน พบว่าประสิทธิภาพของไซโคลนสี่เหลี่ยม (1) จะมีค่าลดลงเมื่อเพิ่มอัตราการป้อน อากาศปฐมภูมิ ทั้งในตัวอย่างที่เป็นทรายและของผสมระหว่างทรายกับถ่านหิน โดยในตัวอย่างทราย จะให้ประสิทธิภาพเท่ากับ 93.2 90.9 และ 87.5 ตามลำดับ ส่วนในตัวอย่างของผสมระหว่างถ่านหิน กับทรายจะให้ประสิทธิภาพเท่ากับ 96.6 95.0 และ 94.2 ตามลำลับ

รูปที่ 4.22 กราฟแสดงอัตราการป้อนอากาศปฐมภูมิที่สภาวะต่างๆ กับประสิทธิภาพของไซโคลนแต่ละ ชนิด (ตัวอย่างคือทราย)

รูปที่ 4.23 กราฟแสดงอัตราการป้อนอากาศปฐมภูมิที่สภาวะต่างๆ กับประสิทธิภาพของไซโคลนแต่ละ ชนิด (ตัวอย่างคือของผสมระหว่างทรายกับถ่านหิน)

รูปที่ 4.22 และ 4.23 เป็นกราฟแสดงความสัมพันธ์ระหว่างอัตราการป้อนอากาศปฐมภูมิที่ สภาวะต่างๆ คือ 175 200 และ 230 ลูกบาศก์เมตรต่อชั่วโมง กับประสิทธิภาพของไซโคลนที่ได้จากการ ทดลอง โดยตัวอย่างที่ใช้ศึกษาคือทรายและของผสมระหว่างทรายกับถ่านหินตามลำดับ

จากกราฟพบว่าประสิทธิภาพของไซโคลนแบบทั่วไปจะให้ค่าประสิทธิภาพการแยกที่สูงกว่า ไซโคลนสี่เหลี่ยมทั้งสองแบบ โดยที่ไซโคลนสี่เหลี่ยมทั้งสองแบบนั้นมีประสิทธิภาพในการแยกที่ ใกล้เคียงกัน

4.4.2 ผลของประสิทธิภาพของไซโคลนแบบทั่วไปและไซโคลนแบบสี่เหลี่ยมที่ได้จาก แบบจำลองทางคณิตศาสตร์

จากผลการทดลองข้างต้นพบว่าประสิทธิภาพของไซโคลนสี่เหลี่ยมทั้งสองแบบนั้นให้ ประสิทธิภาพที่ต่ำกว่าไซโคลนแบบทั่วไป ซึ่งไม่เป็นไปตามสมมุติฐานที่ตั้งไว้ก่อนหน้านี้ จึงได้ทำการ ทดลองแบบจำลองไซโคลนเดิม โดยใช้ค่าความดันลดตกคร่อมไซโคลนที่วัดได้จากการทดลองจริงใน แต่ละการทดลอง เพื่อดูประสิทธิภาพการแยกของไซโคลนที่ได้จากแบบจำลองทางคณิตศาสตร์เมื่อใช้ ความดันลดตกคร่อมไซโคลนค่าเดียวกับการทดลองจริง

	ความเร็วขาเข้าไซโคลน	คว <mark>ามดันลด</mark>	ร้อยละของประสิทธิภาพการเ		ภาพการแยก
	(เมตรต่อวินาที)	(ปาสคัล)	ทราย*	ทราย**	ถ่านหิน***
ไซโคลนแบบทั่วไป	10.9	68.6	99.5	89.5	87.7
	13.0	107.8	99.4	89.8	85.1
	15.0	147.0	98.9	87.9	81.3
ไซโคลนสี่เหลี่ยม (1)	10.9	39.2	100	99.8	97.7
	1 <mark>3</mark> .0	78.4	100	99.6	97.5
	15.0	98.0	100	97.5	97.4
ไซโคลนสี่เหลี่ยม (2)	10.9	49.0	98.8	85.1	79.2
	13.0	68.6	96.2	87.1	75.5
	15.0	98.0	78.8	80.4	67.3

ตารางที่ 4.7 แสดงสภาวะที่ใช้ในแบบจำลองทางคณิตศาสตร์ของไซโคลนแบบต่างๆ

* อนุภาคของแข็งคือทราย ขนาดอนุภาค 109.5 ไมโครเมตร ความหนาแน่นอนุภาคเท่ากับ 2463 กิโลกรัมต่อลูกบาศก์เมตร

- ** อนุภาคของแข็งคือทราย ขนาดอนุภาค 73 ไมโครเมตรความหนาแน่นอนุภาคเท่ากับ 2463
 กิโลกรัมต่อลูกบาศก์เมตร
- *** อนุภาคของแข็งคือถ่านหิน ขนาดอนุภาค 73 ไมโครเมตร ความหนาแน่นอนุภาคเท่ากับ 1381 กิโลกรัมต่อลูกบาศก์เมตร

	ความเร็วขาเข้าไซโคลน	ความดันลด	ร้อยละของประสิ	ทธิภาพการแยก
	(เมตรต่อวินาที)	(ปาสคัล)	การทดลอง	การจำลอง
	10.9	68.6	97.8	99.5
ไซโคลนแบบทั่วไป	13.0	107.8	96.8	99.4
	15.0	147.0	95.1	98.9
	10 <mark>.9</mark>	39.2	94.0	100
ไซโคลนสี่เหลี่ยม (1)	13.0	78.4	91.8	100
	15.0	98.0	87.4	100
	10.9	49.0	93.2	98.8
ไซโคลนสี่เหลี่ยม (2)	13.0	68.6	90.9	96.2
	15.0	98.0	87.5	78.8

ตารางที่ 4.8 แสดงประสิทธิภาพของไซโคลนแต่ละชนิดที่ได้จากการทดลองจริงและจากแบบจำลอง ทางคณิตศาสตร์ อนุภาคที่ใช้ศึกษาคือทรายขนาดอนุภาค 109.5 ไมโครเมตร

ตารางที่ 4.7 แสดงสภาวะที่ใช้ในแบบจำลองทางคณิตศาสตร์ของไซโคลนแบบต่างๆ โดย แบบจำลองของไซโคลนแต่ละแบบจะใช้ค่าความดันลดตกคร่อมไซโคลนที่วัดได้จากการทดลองจริงมา ใช้ในการคำนวณ ผลที่ได้พบว่าไซโคลนสี่เหลี่ยม (1) จะให้ประสิทธิภาพการแยกของแข็งที่สูงที่สุดใน ทุกสภาวะการทดลองคือร้อยละ 100 สำหรับทุกการทดลองที่ใช้ทรายขนาดอนุภาค 109.5 ไมโครเมตร และร้อยละ 97.7 97.5 และ 97.4 ตามลำดับ สำหรับการทดลองที่ใช้ถ่านหินขนาดอนุภาค 73 ไมโครเมตร โดยไซโคลนที่ให้ประสิทธิภาพการแยกของแข็งรองลงมาคือไซโคลนแบบทั่วไปคือร้อยละ 99.5 99.4 และ 98.9 ตามลำดับ สำหรับการทดลองที่ใช้กรายขนาดอนุภาค 109.5 ไมโครเมตร และ ร้อยละ 88.7 85.1 และ 81.3 ตามลำดับ สำหรับการทดลองที่ใช้ถ่านหินขนาดอนุภาค 73 ไมโครเมตร ส่วนไซโคลนที่ให้ประสิทธิภาพการแยกต่ำที่สุดสำหรับสภาวะการทดลองที่ศึกษาคือไซโคลนสี่เหลี่ยม (2) ซึ่งให้ประสิทธิภาพการแยกของแข็งเท่ากับร้อยละ 98.8 96.2 และ 78.8 ตามลำดับ สำหรับการ ทดลองที่ใช้ทรายขนาดอนุภาค 109.5 ไมโครเมตรและร้อยละ 79.2 75.5 และ 67.3 ตามลำดับ สำหรับ การทดลองที่ใช้ถ่านหินขนาดอนุภาค 73 ไมโครเมตร

ผลที่ได้จากการศึกษาแบบจำลองทางคณิตศาสตร์เมื่อใช้ความดันลดตกคร่อมไซโคลนที่วัดได้ จากการทดลองจริงไปศึกษานั้น ยังให้ผลการทดลองไม่เป็นไปตามผลการทดลองที่ได้จากการทดลอง จริง โดยการทดลองจริงนั้นไซโคลนแบบทั่วไปให้ประสิทธิภาพที่ดีที่สุด ส่วนไซโคลนแบบสี่เหลี่ยมทั้ง สองแบบนั้น ให้ผลของประสิทธิภาพการแยกที่ใกล้เคียงกัน ซึ่งถ้าเปรียบเทียบกับผลการทดลองที่ได้ จากแบบจำลองทางคณิตศาสตร์พบว่าไซโคลนสี่เหลี่ยม (1) นั้นจะให้ประสิทธิภาพการแยกที่สูงที่สุด รองลงมาคือไซโคลนแบบทั่วไป และ ไซโคลนสี่เหลี่ยม (2) ตามลำดับ

จากตางรางที่ 4.8 แสดงประสิทธิภาพของไซโคลนแต่ละชนิดที่ได้จากการทดลองจริงและจาก แบบจำลองทางคณิตศาสตร์ อนุภาคที่ใช้ศึกษาคือทรายขนาดอนุภาค 109.5 ไมโครเมตร พบว่าในการ ทดลองจริงไซโคลนสี่เหลี่ยม (1) และ (2) ให้ประสิทธิภาพที่ใกล้เคียงกัน และ ให้ประสิทธิภาพต่ำกว่า ไซโคลนแบบทั่วไป โดยผลที่ได้จากแบบจำลองทางคณิตศาสตร์พบว่ามีเพียงไซโคลนแบบทั่วไป และ ไซโคลนสี่เหลี่ยม (2) เท่านั้น ที่ให้ผลการทดลองสอดคล้องกับผลที่ได้จากการทดลองจริงคือ ไซโคลน แบบทั่วไปให้ประสิทธิภาพการแยกที่ดีกว่า แต่ในกรณีของไซโคลนแบบที่วไปให้จากการทดลองจริงคือ ไซโคลน แบบทั่วไปให้ประสิทธิภาพการแยกที่ดีกว่า แต่ในกรณีของไซโคลนแบบทั่วไป ซึ่งไม่สอดคล้องกับผลการจำลองที่ได้ นั้นให้ผลลัพธ์ของประสิทธิภาพการแยกที่สูงกว่าไซโคลนแบบทั่วไป ซึ่งไม่สอดคล้องกับผลการทดลอง จริงที่ซึ่งมีประสิทธิภาพการแยกต่ำกว่าไซโคลนแบบทั่วไป ดังนั้นผู้วิจัยจึงได้ทำการศึกษาผลกระทบของ ทางออกของของแข็งบริเวณส่วนล่างของไซโคลนสี่เหลี่ยม (1) ว่าส่งผลอย่างไรต่อประสิทธิภาพการ แยกของแข็งของไซโคลนแบบที่ (1)

4.4.3 การศึกษาผลกระทบของทางออกของแข็งบริเวณส่วนล่างของไซโคลนที่ส่งผลต่อ ประสิทธิภาพการแยกของแข็งของไซโคลน

เนื่องจากผลการทดลองจริงและผลการทดลองที่ได้จากแบบจำลองทางคณิตศาสตร์ของ ไซโคลนสี่เหลี่ยม (1) นั้นให้ผลที่ไม่สอดคล้องกัน ผู้วิจัยจึงได้ทำการศึกษาผลของขนาดของทางออก ของแข็งบริเวณส่วนล่างของไซโคลนสี่เหลี่ยม (1) ซึ่งในขั้นตอนการสร้างและติดตั้งไซโคลนสี่เหลี่ยม (1) นั้น ต้องประกอบเข้ากับส่วนของท่อป้อนกลับของแข็ง (downcomer) ซึ่งมีเส้นผ่านศูนย์กลางของท่อ ป้อนกลับของแข็งเท่ากับ 6 เซนติเมตร ทำให้จำเป็นต้องบีบช่องทางออกของแข็งของไซโคลนสี่เหลี่ยม (1) เพื่อให้สามารถต่อเข้ากับท่อป้อนกลับของแข็ง (downcomer) ได้แสดงดังรูปที่ 4.24

รูปที่ 4.24 แสดงไซโคลนสี่เหลี่ยม (1) และส่วนของทางออกของแข็งซึ่งถูกลดขนาดลงเพื่อติดตั้งเข้ากับ ระบบฟลูอิไดซ์เบดแบบหมุนเวียนในส่วนของท่อป้อนกลับของแข็ง (downcomer)

รูปที่ 4.25 แสดงแบบจำลองทางคณิตศาสตร์ของไซโคลนสี่เหลี่ยม (1) ที่มีขนาดของทางออกของแข็ง ต่างกัน (ก) แบบจำลองไซโคลนสี่เหลี่ยม (1) แบบเดิม และ (ข) แบบจำลองไซโคลนสี่เหลี่ยม (1) ที่ สร้างขึ้นจริง

้ได้มีการสร้างแบบจำล<mark>องทางคณิตศาสตร์ของไซโคลนสี่เหลี่</mark>ยม (1) ที่มีการลดขนาดทางออก ของแข็งก่อนต่อเข้ากับท่อป้อนก<mark>ลับของแข็ง (downcomer)</mark> แสดงดังรูปที่ 4.25 เพื่อเปรียบเทียบ ประสิทธิภาพของไซโคลนสี่เหลี่ย<mark>ม</mark> (1) <mark>เมื่อมีขนาดทา</mark>งอ<mark>อก</mark>ของแข็งที่แตกต่างกัน ซึ่งผลที่ได้จาก ทดลองของแบบจำลองทางคณิตศาสตร์ที่ได้นั้นแสดงในตารางที่ 4.9

ตารางที่ 4.9 แสดงประสิทธิภาพของไซโคลนสี่เหลี่ยม (1) ที่มีขนาดของทางออกของแข็งต่างกัน ที่ได้ จากแบบจำลองทางคณิตศาส<mark>ต</mark>ร์ อนุภาคที่ใช้ศึกษาคือทรายขนาดอ<mark>นุ</mark>ภาค 109.5 ไมโครเมตร

ମ୍	ความเร็วขาเข้าไซโคลน (เมตรต่อวินาที)	ความดันลด (ปาสคัล)	ร้อยละของประสิทธิภาพการแยก
*ไซโคลนสี่เหลี่ยม (1)	10.9	39.2	100
9.00	13.0	78.4	100
	15.0	98.0	100
**ไซโคลนสี่เหลี่ยม (1)	10.9	49.0	96.0
	13.0	68.6	95.6
	15.0	98.0	95.9

รูปที่ 4.25 (ก) รูปที่ 4.25 (ข)

ตารางที่ 4.10 แสดงประสิทธิภาพที่ได้จากแบบจำลองทางคณิตศาสตร์ของไซโคลนแบบทั่วไปและ ไซโคลนสี่เหลี่ยม (1) ที่มีขนาดของทางออกของแข็งต่างกัน อนุภาคที่ใช้ศึกษาคือทรายขนาดอนุภาค 109.5 ไมโครเมตร

ความเว็วขาเข้าไซโคลน	ร้อยละของประสิทธิภาพการแยก				
(เมตรต่อวินาที)	ไซโคลนแบบทั่วไป	*ไซโคลนสี่เหลี่ยม (1)	**ไซโคลนสี่เหลี่ยม (1)		
10.9	99.5	100	96.0		
13.0	99.4	100	95.6		
15.0	98.9	100	95.9		
* รูปท 4.25 (ก) ** รูปที่ 4.25 (ข) 1 เมืองแบบแบบ เมืองแบบแบบ เมืองและ เมือง เม เมือง เม เม เมือง เม เม เม เม เม เม เม เม เม เม เม เม เม	$ \begin{array}{c} 02 \\ 00 \\ 98 \\ 96 \\ 94 \\ 92 \\ 90 \\ 10 \\ 11 \\ 11 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$	 ไซโคลนแบบทั่วไป *ไซโคลนสี่เหลี่ยม(1) **ไซโคลนสี่เหลี่ยม(1) 			
* อาไซี่ 4 25 (ว.)					
** ฐปที่ 4.25 (ข)					
รูปที่ 4.26 กราฟแสดงประสิทธิภาพของไซโคลนแบบทั่วไปและไซโคลนสีเหลี่ยม (1)					
ที่มีทางออกของแข็งขนาดต่างกัน					

จากตารางที่ 4.9 พบว่าประสิทธิภาพของไซโคลนสี่เหลี่ยม (1) ที่มีการลดขนาดทางออก ของแข็งก่อนต่อเข้ากับท่อป้อนกลับของแข็ง (downcomer) จะมีประสิทธิภาพการแยกของแข็งลดลง เมื่อเทียบกับไซโคลนสี่เหลี่ยม (1) แบบเดิม ตารางที่ 4.10 เป็นตารางแสดงประสิทธิภาพของไซโคลน แบบทั่วไปและไซโคลนสี่เหลี่ยม (1) ทั้งสองแบบ พบว่านอกจากประสิทธิภาพของไซโคลนสี่เหลี่ยม (1) ที่มีการลดขนาดทางออกของแข็งก่อนต่อเข้ากับท่อป้อนกลับของแข็ง (downcomer) จะมีประสิทธิภาพ การแยกของแข็งลดลงเมื่อเทียบกับไซโคลนสี่เหลี่ยม (1) แบบเดิมแล้ว ยังมีประสิทธิภาพการแยก ของแข็งที่น้อยกว่าไซโคลนแบบทั่วไปด้วย ดังแสดงในรูปที่ 4.26 จึงไปสอดคล้องกับผลการทดลองจริง ของไซโคลนสี่เหลี่ยม (1) ซึ่งให้ประสิทธิภาพต่ำกว่าไซโคลนแบบทั่วไป

ความเร็วขาเข้าไซโคลน 13.0 เมตรต่อวินาที

ความเร็วขาเข้าไซโคลน 15.0 เมตรต่อวินาที

รูปที่ 4.27 คอนทัวร์ความเร็วของของแข็ง (ถ่านหิน) ตามแนวแกน Z ของไซโคลนแบบทั่วไป ที่เวลา 30 วินาที

ความเร็วขาเข้าไซโคลน 10.9 เมตรต่อวินาที

ความเร็วขาเข้าไซโคลน 15.0 เมตรต่อวินาที

-4.35e+00

รูปที่ 4.28 คอนทัวร์ความเร็วของของแข็ง (ถ่านหิน) ตามแนวแกน Y ของไซโคลนสี่เหลี่ยม (1) ที่สร้างขึ้นจริง ที่เวลา 30 วินาที

ความเร็วขาเข้าไซโคลน 15.0 เมตรต่อวินาที รูปที่ 4.29 คอนทัวร์ความเร็วของของแข็ง (ถ่านหิน) ตามแนวแกน Y ของไซโคลนสี่เหลี่ยม (2) ที่เวลา 30 วินาที

จากรูปที่ 4.27 - 4.29 แสดงตัวอย่างคอนทัวร์ความเร็วของของแข็งตามแนวแกน ของไซโคลน แบบต่างๆ อนุภาคของแข็งคือถ่านหินขนาด 73 ไมโครเมตร ที่ความเร็วขาเข้าไซโคลน 10.9 13.0 และ 15.0 เมตรต่อวินาทีตามลำดับ พบว่าความเร็วตามแนวแกนของไซโคลนแบบทั่วไปที่ได้จากแบบจำลอง จะมีค่าความเร็วที่น้อยกว่าความเร็วตามแนวแกนของไซโคลนแบบสี่เหลี่ยมทั้งสองแบบ ซึ่งสอดคล้อง กับผลการศึกษาของ Safikhani, H. และคณะ, 2010 ซึ่งกล่าวไว้ว่าความเร็วตามแนวแกนที่บริเวณท่อ แก๊สออกของไซโคลนสี่เหลี่ยมที่สูงกว่าไซโคลนแบบทั่วไปนั้น ทำให้อนุภาคของแข็งมีโอกาสที่จะหลุดไป จากไซโคลนไปทางบริเวณท่อแก๊สออกของไซโคลนเพิ่มขึ้น เป็นสาเหตุให้ประสิทธิภาพของไซโคลน สี่เหลี่ยมต่ำกว่าไซโคลนแบบทั่วไป

4.5 ผลการศึกษาความหนาแน่นของอนุภาคของแ<mark>ข็งที่ส่งผล</mark>ต่อประสิทธิภาพของไซโคลน

เพื่อศึกษาว่าความหนาแน่นของอนุภาคที่ต่างกันนั้นมีผลต่อประสิทธิภาพการแยกของไซโคลน อย่างไร ดังนั้นในทุกการทดลองได้นำอนุภาคของแข็งที่เหลืออยู่ในระบบฟลูอิไดซ์เบดแบบหมุนเวียนไป ทำการคัดขนาดหาปริมาณของแข็งที่เหลืออยู่ในแต่ละช่วงขนาด เพื่อนำไปหาประสิทธิภาพย่อยของ ของแข็งในแต่ละช่วง แล้วนำค่าประสิทธิภาพย่อยของอนุภาคที่อยู่ในช่วงขนาดเดียวกันแต่มีความ หนาแน่นของอนุภาคต่างกัน (ตารางที่ 3.1) มาเปรียบเทียบกัน ที่สภาวะการทดลองที่สภาวะเดียวกัน

4.5.1 ผลของประสิทธิภาพย่อยของไซโคลนแบบทั่วไปที่ใช้กับเครื่องฟลูอิไดซ์เบดแบบ หมุนเวียน

จากรูปที่ 4.30 และ 4.31 แสดงประสิทธิภาพย่อยของอนุภาคในช่วงขนาดต่าง ๆ ที่ได้จาก ไซโคลนแบบทั่วไป โดยตัวอย่างที่ใช้ในการศึกษาคือทราย (รูปที่ 4.30) และของผสมระหว่างทรายกับ ถ่านหิน (รูปที่ 4.31) พบว่าอนุภาคในช่วงที่มีขนาดเล็กจะให้ผลของประสิทธิภาพการแยกที่น้อยกว่า อนุภาคในช่วงที่มีขนาดใหญ่ ซึ่งจะเห็นได้ชัดว่าของแข็งที่มีอนุภาคขนาดใหญ่จะถูกแยกด้วยเครื่องแยก ไซโคลนได้เกือบทั้งหมด ส่วนอนุภาคขนาดเล็กจะมีประสิทธิภาพในการแยกที่ลดลงมาตามลำดับ

จุฬาลงกรณ่มหาวิทยาลัย

รูปที่ 4.30 แสดงประสิทธิภาพย่อยของอนุภาคของแข็งในแต่ล<mark>ะช่วงขนาด ตัวอย่างคือทราย</mark>

รูปที่ 4.31 แสดงประสิทธิภาพย่อยของอนุภาคของแข็งในแต่ละช่วงขนาด ตัวอย่างคือของผสมระหว่าง ทรายกับถ่านหิน

จากรูปที่ 4.30 และ 4.31 แสดงให้เห็นว่าประสิทธิภาพการแยกของแข็งจะลดลงเมื่ออนุภาคมี ขนาดลดลง เมื่อพิจารณาประสิทธิภาพย่อยในช่วงขนาดของอนุภาคที่มีขนาดเล็ก 3 ช่วง คือ ช่วงขนาด ที่ต่ำกว่า 75 75 – 150 และ 150 – 250 ไมโครเมตร ในการทดลองที่ใช้อนุภาคต่างชนิดกัน โดยอนุภาค ที่ใช้ศึกษาคือ ทราย และ ถ่านหิน (ตารางที่ 3.2) นำมาเปรียบเทียบกันดังแสดงในรูปที่ 4.32 พบว่า ประสิทธิภาพย่อยในช่วงขนาดของอนุภาค 3 ช่วง ของไซโคลนแบบทั่วไปนั้น ในตัวอย่างที่เป็นทรายจะ มีประสิทธิภาพการแยกที่สูงกว่าตัวอย่างที่เป็นถ่านหินในทุกช่วงขนาดและทุกสภาวะของการทดลอง เนื่องจากอนุภาคของแข็งที่มีความหนาแน่นของอนุภาคสู่งจะถูกแยกได้ด้วยแรงเหวี่ยงหรือแรงกระแทก ได้ดีกว่าอนุภาคของแข็งที่มีความหนาแน่นของอนุภาคต่ำ

(ข) อัตราการป้อนอากาศปฐมภูมิ 200 ลูกบาศก์เมตรต่อชั่วโมง

(ค) อัตราการป้อนอากาศปฐมภูมิ 230 ลูกบาศก์เมตรต่อชั่วโมง รูปที่ 4.32 เปรียบเทียบประสิทธิภาพย่อยของอนุภาคทรายและถ่านหินในแต่ละช่วงขนาด ที่อัตราการ ป้อนอากาศ 175 200 และ 230 ลูกบาศก์เมตรต่อชั่วโมง

4.5.2 ผลของประสิทธิภาพย่อยของไซโคลนสี่เหลี่ยม (1) และ (2) ที่ใช้กับเครื่องฟลูอิไดซ์ เบดแบบหมุนเวียน

จากรูปที่ 4.33 แสดงประสิทธิภาพย่อยของอนุภาคในช่วงขนาดต่าง ๆ ที่ได้จากไซโคลน สี่เหลี่ยม (1) และ (2) โดยตัวอย่างที่ใช้ในการศึกษาคือทราย รูปที่ 4.33 (ก) และ (ค) และตัวอย่างที่เป็น ของผสมระหว่างทรายกับถ่านหิน รูปที่ 4.33 (ข) และ (ง) นั้นให้ผลการทดลองที่คล้ายกับไซโคลนแบบ ทั่วไป โดยพบว่าอนุภาคในช่วงที่มีขนาดเล็กจะให้ผลของประสิทธิภาพการแยกที่น้อยกว่าอนุภาค ในช่วงที่มีขนาดใหญ่ ซึ่งจะเห็นได้ชัดว่าของแข็งที่มีอนุภาคขนาดใหญ่จะถูกแยกด้วยเครื่องแยก ไซโคลนได้เกือบทั้งหมด ส่วนอนุภาคขนาดเล็กจะมีประสิทธิภาพในการแยกที่ลดลงมาตามลำดับ

รูปที่ 4.33 แสดงประสิทธิภาพย่อยของอนุภาคของแข็งในแต่ละช่วงขนาด ไซโคลนสี่เหลี่ยม (1) (ก) ตัวอย่างคือทราย (ข) ตัวอย่างคือของผสมระหว่างทรายกับถ่านหิน ไซโคลนสี่เหลี่ยม (2) (ค) ตัวอย่างคือทราย (ง) ตัวอย่างคือของผสมระหว่างทรายกับถ่านหิน

(ก) อัตราการป้อ<mark>นอากาศปฐมภูมิ 175 ลู</mark>กบาศก์เมตรต่อชั่วโมง

(ข) อัตราการป้อนอากาศปฐมภูมิ 200 ลูกบาศก์เมตรต่อชั่วโมง

(ค) อัตราการป้อนอากาศปฐมภูมิ 230 ลูกบาศก์เมตรต่อชั่วโมง รูปที่ 4.34 เปรียบเทียบประสิทธิภาพย่อยของอนุภาคทรายและถ่านหินในแต่ละช่วงขนาด ที่อัตราการ ป้อนอากาศ 175 200 และ 230 ลูกบาศก์เมตรต่อชั่วโมง

จากรูปที่ 4.36 แสดงให้เห็นว่าประสิทธิภาพการแยกของแข็งจะลดลงเมื่ออนุภาคมีขนาดลดลง เมื่อพิจารณาประสิทธิภาพย่อยในช่วงขนาดของอนุภาคที่มีขนาดเล็ก 3 ช่วง คือ ช่วงขนาดที่ต่ำกว่า 75 75 – 150 และ 150 – 250 ไมโครเมตร ในการทดลองที่ใช้อนุภาคต่างชนิดกัน โดยอนุภาคที่ใช้ศึกษา คือ ทราย และ ถ่านหิน (ตารางที่ 3.2) นำมาเปรียบเทียบกันดังแสดงในรูปที่ 4.34 พบว่าประสิทธิภาพ ย่อยในช่วงขนาดของอนุภาค 3 ช่วง ของไซโคลนสี่เหลี่ยม (1) และ (2) นั้น ในตัวอย่างที่เป็นทรายจะมี ประสิทธิภาพการแยกที่สูงกว่าตัวอย่างที่เป็นถ่านหินในทุกช่วงขนาดและทุกสภาวะของการทดลอง คล้ายกับการทดลองของไซโคลนแบบทั่วไป จึงสามารถสรุปได้ว่าความหนาแน่นของอนุภาคของแข็ง เป็นปัจจัยหนึ่งที่ส่งผลต่อประสิทธิภาพการแยกของไซโคลน โดยที่อนุภาคที่มีความหนาแน่นของ อนุภาคสูงจะสามารถถูกแยกด้วยไซโคลนแบบทั่วไปได้ดีกว่าอนุภาคที่มีความหนาแน่นต่ำกว่าในช่วง ขนาดของอนุภาคเดียวกัน

4.5.3 ผลของประสิทธิภาพการแยกของไซโคลนแบบทั่วไปกับไซโคลนสี่เหลี่ยม (1) และ (2) ที่ได้จากแบบจำลองทางคณิตศาสตร์ ที่อนุภาคมีความหนาแน่นต่างกัน

จากตารางที่ 4.11 แสดงประสิทธิภาพการแยกของไซโคลนแบบต่างๆ ที่อนุภาคของแข็งมี ความหนาแน่นต่างกัน โดยกำหนดให้ขนาดของอนุภาคเท่ากับ 73 ไมโครเมตร สภาวะที่ใช้ในการ ทดลองแสดงในตารางที่ 4.7 ผลการทดลองที่ได้พบว่าไซโคลนทุกแบบจะให้ประสิทธิภาพการแยกใน ตัวอย่างทรายสูงกว่าในตัวอย่างถ่านหิน ไซโคลนแบบทั่วไปที่ความเร็วขาเข้าไซโคลนเท่ากับ 10.9 13.0 และ 15.0 เมตรต่อวินาที ตัวอย่างทราย ให้ประสิทธิภาพร้อยละ 89.5 89.8 และ 87.5 ตามลำดับ ตัวอย่างถ่านหิน ให้ประสิทธิภาพร้อยละ 87.7 85.1 และ 81.3 ตามลำดับ ไซโคลนสี่เหลี่ยม (1) ที่ ความเร็วขาเข้าไซโคลนเท่ากับ 10.9 13.0 และ 15.0 เมตรต่อวินาที ตัวอย่างทราย ให้ประสิทธิภาพร้อย ละ 87.2 82.4 และ 80.2 ตามลำดับ ตัวอย่างถ่านหิน ให้ประสิทธิภาพร้อยละ 75.7 75.1 และ 74.1 ตามลำดับ ไซโคลนสี่เหลี่ยม (2) ที่ความเร็วขาเข้าไซโคลนเท่ากับ 10.9 13.0 และ 15.0 เมตรต่อวินาที ตัวอย่างทราย ให้ประสิทธิภาพร้อยละ 85.1 87.1 และ 80.4 ตามลำดับ ตัวอย่างถ่านหิน ให้ ประสิทธิภาพร้อยละ 79.2 75.5 และ 67.3 ตามลำดับ

ความเร็ว	ร้อยละของประสิทธิภาพการแยกของไซโคลน					
ขาเข้าไซโคลน	ไซโคลนแบบทั่วไป		ไซโคลนสี่เหลี่ยม (1)**		ไซโคลนสี่เหลี่ยม (2)	
(เมตรต่อวินาที)	ทราย	ถ่านหิน	ทราย	ถ่านหิน	ทราย	ถ่านหิน
10.9	89.5	87.7	87.2	75.7	85.1	79.2
13.0	89.8	85.1	82.4	75.1	87.1	75.5
15.0	87.5	81.3	80.2	74.1	80.4	67.3

ตารางที่ 4.11 ประสิทธิภาพการแยกของไซโคลนแบบต่างๆ ที่อนุภาคของแข็งมีความหนาแน่นต่างกัน ขนาดของอนุภาคของแข็ง 73 ไมโครเมตร

** รูปที่ 4.25 (ข)
บทที่ 5

สรุปผลการทดลองและข้อเสนอแนะ

5.1 สรุปผลการทดลอง

จากงานวิจัยนี้ได้ทำการศึกษา ออกแบบและสร้างเครื่องแยกไซโคลนสำหรับใช้กับระบบ ฟลูอิไดซ์เบดแบบหมุนเวียน โดยได้ทำการศึกษาตัวแปรที่ส่งผลต่อประสิทธิภาพการแยกของ ไซโคลน ได้แก่ รูปทรงของไซโคลน ความเร็วขาเข้าไซโคลน และ ความหนาแน่นของอนุภาค ของแข็ง ซึ่งไซโคลนที่ถูกสร้างสำหรับใช้ในงานวิจัยนี้มี 3 แบบ ได้แก่ ไซโคลนแบบทั่วไป ไซโคลน สี่เหลี่ยม (1) และ ไซโคลนสี่เหลี่ยม (2) โดยในขั้นตอนการทดลองนั้นได้ทำการทดลองจริงกับเครื่อง ฟลูอิไดซ์เบดแบบหมุนเวียนควบคู่ไปกับการใช้วิธีพลวัตของไหลเชิงการคำนวณ (Computational Fluid Dynamics, CFD) โดยใช้โปรแกรม Gambit 2.3.16 Fluent 6.2.16 และ ANSYS 12.0 เพื่อ สร้างแบบจำลองไซโคลนแบบต่าง ๆ

5.1.1 ผลการจำลองภาวะในแบบจำลองการไหลของเครื่องแยกไซโคลน

ผลการจำลองภาวะในแบบจำลองการไหลของเครื่องแยกไซโคลนทั้ง 3 แบบ คือ ไซโคลน แบบทั่วไป ไซโคลนสี่เหลี่ยม (1) และ ไซโคลนแบบสี่เหลี่ยม (2) โดยใช้แนวคิดออยเลอเลียน (Eulerian approach) และทำการจำลองภาวะแบบปั่นป่วน (Turbulent Model) ของแข็งที่ใช้ใน การจำลองภาวะมีขนาดเส้นผ่านศูนย์กลางและสมบัติทางกายภาพเท่ากัน คือทรายที่ใช้มีขนาด เส้นผ่านศูนย์กลาง 109.5 ไมโครเมตร ความหนาแน่นของอนุภาค 2463 กิโลกรัมต่อลูกบาศก์เมตร ที่ภาวะการทดลองเดียวกัน ใช้อันตรกิริยาระหว่างวัฏภาคของแรงต้านการเคลื่อนที่ของ Gidaspow พบว่าวิธีพลวัตของไหลเชิงการคำนวณ (Computational Fluid Dynamics, CFD) นั้นเป็นโปแกรม ที่มีความเหมาะสมสำหรับใช้ในการศึกษาประสิทธิภาพการแยกของไซโคลนได้เป็นอย่างดี

5.1.2 การศึกษาอัตราการป้อนอากาศปฐมภูมิที่ส่งผลต่อความเร็วขาเข้าและความดันลด ตกคร่อมไซโคลน

พบว่าอัตราการป้อนอากาศปฐมภูมิที่บริเวณส่วนล่างของท่อไรเซอร์ที่อัตราการการไหล ของอากาศที่แตกต่างกันคือ 175 200 และ 230 ลูกบาศก์เมตรต่อชั่วโมงนั้น จะส่งผลต่อความเร็ว ขาเข้าไซโคลนและความดันลดตกคร่อมไซโคลน โดยเมื่ออัตราการป้อนอากาศปฐมภูมิเพิ่มสูงขึ้น จะส่งผลให้ความเร็วขาเข้าไซโคลนจะเพิ่มสูงขึ้นคือ 10.9 13.0 และ 15.0 เมตรต่อวินาที และความ ดันลดตกคร่อมไซโคลนมีค่าเพิ่มขึ้นตามไปด้วย กรณีของไซโคลนแบบทั่วไปความดันลดที่ได้มีค่า เท่ากับ 68.6 107.8 และ 147.0 ปาสคัล ตามลำดับ ไซโคลนสี่เหลี่ยมแบบที่ 1 ความดันลดที่ได้มี ค่าเท่ากับ 39.2 78.4 และ 98.0 ปาสคัล ตามลำดับ ไซโคลนสี่เหลี่ยมแบบที่ 2 ความดันลดที่ได้มี ค่าเท่ากับ 49.0 68.6 และ 98.0 ปาสคัล ตามลำดับ ซึ่งผลของความดันลดที่ได้นั้น พบว่าความดัน ลองของไซโคลนแบบสี่เหลี่ยมทั้งสองแบบจะมีค่าที่ใกล้เคียงกัน และมีค่าน้อยกว่าไซโคลนแบบ ทั่วไปประมาณ 20 ถึง 50 ปาสคัล เมื่อเทียบกับค่าความดันลดที่ได้จากไซโคลนแบบทั่วไปที่อัตรา การป้อนอากาศปฐมภูมิต่างๆ

5.1.3 การศึกษาเปรียบเทียบไซโคลนแบบทั่วไปกับไซโคลนแบบสี่เหลี่ยมที่ได้จากการ ทดลองและจากแบบจำลอง

เนื่องผลของแบบจำลองทางคณิตศาสตร์ของไซโคลนสี่เหลี่ยม (1) และ (2) ที่ภาวะการ จำลองเดียวกับไซโคลนแบบทั่วไปนั้น ให้ประสิทธิภาพการแยกที่ใกล้เคียงกับไซโคลนแบบทั่วไป จึง ได้ทำการสร้างไซโคลนสี่เหลี่ยมทั้ง 2 แบบ เพื่อนำมาทดลองกับระบบฟลูอิไดซ์เบดแบบหมุนเวียน พบว่าไซโคลนสี่เหลี่ยมที่ออกแบบ และ สร้างเพื่อใช้กับระบบฟลูอิไดซ์เบดแบบหมุนเวียนนั้น ให้ ประสิทธิภาพการแยกที่มีค่าใกล้เคียงกันและประสิทธิภาพการแยกที่ได้นั้นมีค่าต่ำกว่าไซโคลน แบบทั่วไป โดยที่ไซโคลนแบบทั่วไป จะให้ประสิทธิภาพการแยกในกรณีที่ตัวอย่างเป็นทรายเท่ากับ ร้อยละ 97.8 96.8 และ 95.1 ตามลำดับ และในกรณีที่ตัวอย่างเป็นของผสมระหว่างทรายกับถ่าน หินเท่ากับร้อยละ 98.0 96.4 และ 96.2 ตามลำดับ ไซโคลนสี่เหลี่ยมแบบที่ 1 จะให้ประสิทธิภาพ การแยกในกรณีที่ตัวอย่างเป็นทรายเท่ากับร้อยละ 94.0 91.8 และ 87.4 ตามลำดับ และในกรณีที่ ตัวอย่างเป็นของผสมระหว่างทรายกับถ่านหินเท่ากับร้อยละ 96.0 94.4 และ 94.0 ตามลำดับ ไซโคลนสี่เหลี่ยมแบบที่ 2 จะให้ประสิทธิภาพการแยกในกรณีที่ตัวอย่างเป็นทรายเท่ากับร้อยละ 93.2 90.9 และ 87.5 ตามลำดับ และในกรณีที่ตัวอย่างเป็นของผสมระหว่างทรายกับถ่านหิน เท่ากับร้อยละ 96.6 95.0 และ 94.2 ตามลำดับ โดยผลที่ได้จากแบบจำลองที่ทำที่ภาวะจริงของ ไซโคลนแต่ละแบบนั้น ให้ผลที่สอดคล้องกับผลที่ได้จากการทดลองจริง

5.2 ข้อเสนอแนะ

 จากการจำลองไซโคลนสี่เหลี่ยม (1) ที่มีทางออกของแข็งที่มีขนาดแตกต่างกัน พบว่า ประสิทธิภาพการแยกของไซโคลนสี่เหลี่ยม (1) ที่มีการบีบทางออกของแข็งนั้น จะให้ประสิทธิภาพ ที่ต่ำกว่าไซโคลนสี่เหลี่ยม (1) ที่ออกแบบไว้ ดังนั้นการทำให้ท่อตกกลับของแข็ง (downcomer) บริเวณส่วนที่เชื่อมต่อกับไซโคลนมีขนาดเท่ากับท่อออกของแข็งของไซโคลนสี่เหลี่ยม (1) แล้ว อาจ ส่งผลให้ประสิทธิภาพการแยกของไซโคลนสี่เหลี่ยม (1) มีค่าสูงขึ้นสอดคล้องกับผลของ แบบจำลองที่ได้

2. ศึกษาไซโคลนสี่เหลี่ยมที่มีปริมาตรเท่ากับไซโคลนแบบทั่วไป

รายการอ้างอิง

ภาษาไทย

- ้ จารุวรรณ บัติปัน. <u>พฤติกรรมการไหลของแก๊สและของแข็งในฟลูอิไดซ์เบดแบบหมุนเวียนที่มีลูป</u>
 - <u>ซีล</u>. วิทยานิพนธ์ปริญญามหาบัณฑิต ภาควิชาเคมีเทคนิค คณะวิทยาศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย, 2547.
- ชลธิชา อมรสิริรัตน์. <u>การจำลองซีเอฟดีของแกซิฟายเออร์ฟลูอิไดซ์เบดแบบหมุนเวียน</u>. วิทยานิพนธ์ ปริญญามหาบัณฑิต. ภาควิชาเคมีเทคนิค คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย, 2551.
- เชิดชัย วุฒิการณ์ และ เกรียงไกร ตั้งสกุล. <u>การออกแบบสร้างเพื่อศึกษาการทำงานของฟลูอิไดซ์</u> <u>เบดชนิดหมุนเวียน</u> วิทยานิพนธ์ปริญญาบัณฑิต ภาควิชาวิศวกรรมเคมี คณะ วิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าธนบุรี, 2533.
- นพภาพร พานิช และคณ<mark>ะ. <u>ตำราระบบบำบัดมลพิษอากาศ</u>. กรุงเทพฯ: กรมโรงงานอุตสาหกรรม,</mark> 2550

สมศักดิ์ ดำรงค์เลิศ. <u>ฟลูอิไดเซชั่น</u>. กรุงเทพฯ: สำนักพิมพ์จุฬาลงกรณ์มหาวิทยาลัย, 2528

ภาษาอังกฤษ

- Basu, P. <u>Combustion and Gasification in Fludized Beds</u>. Boca Raton: CRC/Taylor & Francis, 2006
- Basu, P. and Fraser, S. A. <u>Circulating Fluidized Bed Boilers: Design and Operations</u>. USA: Reed Publishing, 1991
- Bricout, V. and Louge, M. Y. Measurements of cyclone performance under conditions analogous to pressurized circulating fluidization. <u>Chemical Engineering Science</u>. 59 (2004): 3059-3070
- Fluent 6.2.16 User's Guide [Electronic Documentation], Fluent, 2003

Fluent 6.3 User's Guide [Electronic Documentation], Fluent, 2006

- Gidaspow, D., <u>Multiphase Flow and Fluidization: Continuum and Kinetic Theory</u> <u>Description</u> New York: Academic Press, 1994.
- Gil, A., Romeo, L. M. and Cortes, C. Cold flow model of a PFBC cyclone. <u>Powder</u> <u>Technology</u>. 117 (2001): 207-220
- Grace, J.R. <u>Fluidized bed hydrodynamic.</u> Chapter 8.1 in Handbook of multiphase flow. Washington: Hemisphere, 1982.

- Grace, J. R., Avidan, A. A. and Knowlton, T. M. <u>Circulating Fludized Beds</u>. London;New York: Blackie Academic & Professional, 1997
- Hugi, E. and Reh, L. Focus on solids strand formation improves separation performance of highly loaded circulating fluidized bed recycle cyclones. <u>Chemical</u> <u>Engineering and Processing</u>. 39 (2000): 263-27
- Kunii, D. and Levenspiel, O. <u>Fluidization Engineering 2nd Edition</u>. Stoneham: Butterworth - Heinemann, 1991
- Lim, K. S., Kim, H. S. and Lee, K. W. Characteristics of the collection efficiency for a cyclone with different vortex finder shapes. Journal of Aerosol Science. 35 (2004): 743-754
- Liu, Z., Jiao, J., Zheng, Y., Zhang, Q. and Jia, L. Investigation of turbulence characteristics in a gas cyclone by stereoscopic PIV. <u>AIChE Journal</u>. 52 (2006): 4150-4160
- Lu, J. F., Zhang, J. S., Zhang, H., Liu, Q. and Yue, G. X. Performance evaluation of a 220t/h CFB boiler with water-cooled square cyclones. <u>Fuel Processing</u> <u>Technology</u>. 88 (2007): 129-135
- Raoufi, A., Shams, M., Farzaneh, M. and Ebrahimi, R. Numerical simulation and optimization of fluid flow in cyclone vortex finder. <u>Chemical Engineering and Processing</u>. 47 (2008): 128-137
- Raoufi, A., Shams, M. and Kanani, H. CFD analysis of flow field in square cyclones. <u>Powder Technology</u>. 191 (2009): 349-357
- Safikhani, H., Shams, M. and Dashti, S. Numerical simulation of square cyclones in small sizes. <u>Advanced Powder Technology</u>. (2010): (In Press)
- Su, Y. X. The turbulent characteristics of the gas-solid suspension in a square cyclone separator. <u>Chemical Engineering Science</u>. 61 (2006): 1395-1400
- Su, Y. X. and Mao, Y. R. Experimental study on the gas-solid suspension flow in a square cyclone separator. <u>Chemical Engineering Journal</u>. 121 (2006): 51-58
- Wang, J.J., Wang, L.Z. and Liu, C.W. Effect of a stick on the gas turbulence structure in a cyclone separator. <u>Aerosol Science and Technology</u>. 39 (2005): 713-721
- Wang, S., Fang, M. X., Luo, Z. Y., Li, X. T., Ni, M. J. and Cen, K. F. Instantaneous separation model of a square cyclone. <u>Powder Technology</u>. 102 (1999): 65-70

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

<mark>ภาค</mark>ผนวก

ภาคผนวก ก ทฤษฎีเกี่ยวกับอนุภาค

1. การจำแนกประเภทของอนุภาคด้วยวิธีของ Geldart (Grace, J. R. และคณะ, 1997)

งานวิจัยทั่วไปจะจำแนกขนาดของอนุภาคออกเป็นกลุ่มๆ ซึ่งวิธีที่นิยมใช้กันมากก็คือ Geldart powder classification เป็นการจำแนกขนาดของอนุภาคด้วยวิธีของ Geldart โดยอาศัย ค่าผลต่างของความหนาแน่นของของแข็งกับแก๊สและขนาดอนุภาคเฉลี่ยดังแสดงในรูปที่ ผ1 ลักษณะของอนุภาคในแต่ละกลุ่มอธิบายได้ดังนี้

- Group C คือ เป็นของแข็งที่มีขนาดเล็กมาก (Cohesive หรือ very fine powders) ของแข็งกลุ่มนี้จะเกิดฟลูอิไดซ์ได้ยาก เนื่องจากแรงดึงดูดระหว่างอนุภาค จะสูงมากและมักจะจับตัวกันเป็นก้อน
- Group A คือ Aeratable เป็นของแข็งที่มีขนาดเล็กและความหนาแน่นต่ำ สามารถทำ ให้เกิดฟลูอิไดซ์ได้ง่ายเป็นฟลูอิไดซ์เบดแบบสม่ำเสมอ (Smooth fluidization) ที่ความเร็วแก๊สต่ำๆ และที่ความเร็วแก๊สสูงๆ ก็สามารถ ควบคุมการเกิดฟองได้
- Group B คือ Sandlike เป็นของแข็งที่มีขนาด อยู่ในช่วง 40 < dp < 500 ไมโครเมตร และ ความหนาแน่นในช่วง 1.4 < ρs < 4 กรัมต่อลูกบาศก์เซนติเมตร การเกิดฟลูอิไดซ์ยังเกิดได้ง่าย แต่อิทธิพลของฟองจะสูงขึ้น และฟองจะมี การโต
- Group D คือ Spoutable ของแข็งที่มีขนาดใหญ่และหรือความหนาแน่นสูง ดังนั้นจึง เกิดฟลูอิไดซ์ได้ยาก

รูปที่ ก1 การจำแนกกลุ่มของของแข็งโดยวิธีของ Geldart (Grace, J. R. และคณะ, 1997)

2. ลักษณะของอนุภาค

เนื่องจากอนุภาคที่ใช้ในการทดลองมีรูปร่างลักษณะต่างกันจึงจำเป็นต้องสร้าง ความสัมพันธ์ระหว่างอนุภาคที่ใช้ทดลองกับอนุภาคทรงกลมเพื่อสะดวกในการคำนวณและกล่าว อ้าง

2.1 การหาขนาดของอนุภาค (d_p)

การหาขนาดของอนุภาคสามารถหาได้ 2 วิธี ดังนี้

2.1.1 เมื่อทราบปริมาตรของอนุภาค จะได้

$$d_{sph} = \left[\frac{6V}{\pi}\right]^{1/3} \tag{(n1)}$$

และ

Particle sphericity,
$$\phi = rac{a$$
ัดส่วนของพื้นผิวทรงกลม (ก2)

จากข้อกำหนดด้านบน สามารถหาขนาดของอนุภาค (*d*_p) ที่แขวนลอยในเครื่องปฏิกรณ์ ได้จากสมการ

$$d_p = \phi d_{sph} \tag{n3}$$

2.1.2 Screen analysis เป็นการหาค่า *d*_p โดยอาศัยกวามสัมพันธ์ระหว่างค่า *d*_p กับ *d*_{scr} ดังนี้

 $d_p = d_{scr}$ เมื่ออนุภาคไม่เป็นทรงกลม มีลักษณะยาวมากแต่ต้องมีอัตราส่วนไม่เกิน 2:1

 $d_{_p} = \phi^2 d_{_{scr}}$ เมื่ออนุภาคไม่เป็นทรงกลม มีลักษณะสั้นด้านยาวด้าน แต่ต้องมีอัตราส่วนไม่ น้อยกว่า 1:2

2.2 การหา Sauter mean diameter (d_{sm})

เป็นการหาขนาดเฉลี่ยของกลุ่มอนุภาคที่ศึกษา เนื่องจากในงานวิจัยทั่วไปจะใช้ขนาดของ อนุภาคของแข็งเป็นช่วง โดยค่า Sauter mean diameter สามารถหาได้จากสมการดังต่อไปนี้

$$d_{sm} = \frac{1}{\sum \frac{x_i}{d_{pi}}}$$
(n4)

- 3. สมการอนุรักษ์พื้นฐาน (Fluent 6.2.16; User's Guide, 2003 และ 2006)
- สมการอนุรักษ์มวล

_

วัฏภาคแก๊ส

$$\frac{\partial(\varepsilon_g \rho_g)}{\partial t} + \nabla \cdot (\varepsilon_g \rho_g v_g) = 0 \tag{15}$$

วัฏภาคของแข็ง

$$\frac{\partial(\varepsilon_s \rho_s)}{\partial t} + \nabla \cdot (\varepsilon_s \rho_s v_s) = 0 \tag{16}$$

$$\mathcal{E}_g + \mathcal{E}_s = 1$$
 (n7)

เมื่อ

- ε_s คือ สัดส่วนของปริมาตรในวัฏภาคของแข็ง
- ho_s คือ ความหนาแน่นของวัฏภาคของแข็ง (กิโลกรัมต่อลูกบาศก์เมตร)
- ho_{g} คือ ความห<mark>นาแน่นของวัฏภาคของ</mark>แก๊ส (กิโลกรัมต่อลูกบาศก์เมตร)
- v_s คือ ความเร็วของวัฏภาคของแข็ง (เมตรต่อวินาที)
- v ศือ ความเร็วของวัฏภาคของแก๊ส (เมตรต่อวินาที)
- t คือ เวลา (วินาที)
- สมการอนุรักษ์โมเมนตัม

วัฏภาคแก๊ส

$$\frac{\partial(\varepsilon_g \rho_g v_g)}{\partial t} + \nabla \cdot (\varepsilon_g \rho_g v_g v_g) = \nabla \cdot \tau_g - \varepsilon_g \nabla P + \varepsilon_g \rho_g g + \beta (v_g - v_s)$$
(18)

วัฏภาคของแข็ง

$$\frac{\partial(\varepsilon_s \rho_s v_s)}{\partial t} + \nabla \cdot (\varepsilon_s \rho_s v_s v_s) = \nabla \cdot \tau_s - \varepsilon_s \nabla P_s + \varepsilon_s \rho_s g + \beta (v_g - v_s)$$
(19)

เมื่อ

- τ คือ ความเค้นเทนเซอร์ (Tensor Stress)
- β คือ สัมประสิทธิ์ของแรงต้านการเคลื่อนที่ระหว่างวัฏภาค (Interphase Drag Coefficient)
- P คือ ความดัน (พาสคัล)

g คือ ความเร่งเนื่องจากแรงโน้มถ่วง (เมตรต่อวินาทีกำลังสอง)

สมการอนุรักษ์พลังงานเนื่องจากการแกว่างจากความปั้นป่วน (Turbulent Fluctuating Energy, *θ*_)

วัฏภาคของแข็ง

$$\frac{3}{2}\frac{\partial}{\partial t}(\varepsilon_s\rho_s\theta_s) + \nabla\cdot(\varepsilon_s\rho_s\nu_s\theta_s) = T_s:\nabla\nu_s + \nabla\cdot(\kappa_s\nabla\theta_s) - \gamma_s - 3\beta\theta_s \tag{10}$$

เมื่อ พจน์ทางซ้ายมือของสมการคืออัตราการเปลี่ยนแปลงพลังงานแกว่งสุทธิ พจน์แรกทางขวามือของสมการคือพลังงานแกว่างเนื่องจากความเค้น พจน์ที่สองทางขวามือของสมการคือพลังงานแกว่งเนื่องจากการนำ พจน์ที่สามทางขวามือของสมการคือพลังงานแกว่งเนื่องจากการชนแบบไม่ ยืดหยุ่น

พจน์ที่สี่ทางขวามือของสมการคือพลังงานแกว่งเนื่องจากแรงเสียดทานระหว่าง ของแข็งกับแก๊ส

$$\theta_s = \frac{1}{3} \left\langle v_s^{\prime 2} \right\rangle \tag{n11}$$

ν′ คือ ความเร็วที่แปรผันไปจากความเร็วเฉลี่ย (Fluctuating Velocity)

4. การคำนวณค่าความดันลดตกคร่อมไซโคลนของ (Muschelknautz and Greif, 1997) (Basu, P., 2006)

ความดันลดตกคร่อมไซโคลนเป็นตัวแปรที่สำหรับในการออกแบบไซโคลน (Muschelknautz และ Greif, 1997) ได้เสนอหลักการสำหรับคำนวณความดันลดรวมในไซโคลน, ΔP ที่ใช้ในระบบฟลูอิไดซ์เบดแบบหมุนเวียน ดังนี้

$$\Delta P_c = \Delta P_f + \Delta P_e \tag{n22}$$

- ความดันลดเนื่องจากแรงเสียดทานบนผนังของไซโคลน (Pressure drops due to friction on the cyclone wall, ΔP_f)

$$\Delta P_{f} = f_{w} \frac{A_{R}}{V_{b}} \frac{\rho_{g}}{2} (u_{a}u_{i})^{1.5}$$
(123)

เมื่อ A_R คือ พื้นที่ของผนังภายในของไซโคลน, ตารางเมตร

f,, คือ สัมประสิทธิ์แรงเสียดทาน

หาได้จากสมการ

น_a คือ ความเร็วผิวสัมผัสที่รัศมีของตัวไซโคลน, เมตรต่อวินาที

- *u*, คือ ความเร็วผิวสัมผัสที่รัศมีทางออก, เมตรต่อวินาที
- $ho_{_g}$ คือ ความหนาแน่ของแก๊ส, กิโลกรัมต่อลูกบาศก์เมตร
- สัมประสิทธิ์แรงเสียดทาน , $f_{\scriptscriptstyle w}$ หาได้จากสมการ

$$f_w = f_0 + f_s \tag{n24}$$

$$f_s = 2f_0\sqrt{C_e} \tag{n25}$$

- C_e คือ สัดส่วนโดยมวลของของแข็งในของแขวนลอยขาเข้า มีค่าอยู่ในช่วง 0.001 10
- f_0 คือ แรงเสียดทานของแก๊สสะอาด
- f_s คือ แรงเสียดทานของของแข็ง
- ความเร็วผิวสัมผัสที่รัศมีทางออก, *น_{ี่เ}*หาได้จากสมการ

$$u_i = \frac{u_a r_i}{r_i + \frac{f_w}{2} \frac{A_R}{V_{gas}} u_a \sqrt{r_a r_i}}$$
(n26)

- r_a คือ รัศมีของไซโคลน, เมตร
- r; คือ รัศมีของท่อแก๊สออก, เมตร
- $V_{\scriptscriptstyle gas}$ คือ การไหลของแก๊สทั้งหมดภายในไซโคลน, ลูกบาศก์เมตรต่อวินาที
- ความเร็วผิวสัมผัสที่รัศมีของตัวไซโคลน, u_a หาได้จากสมการ

$$u_a = \frac{V_e r_e}{r_a \alpha} \tag{n27}$$

- r_e คือ รัศมีของแกนขาเข้า, ตารางเมตร
- $V_{_{b}}\,$ คือ การไหลของแก๊สผ่านตัวไซโคลน, ลูกบาศก์เมตรต่อวินาที
- $V_e^{}$ คือ ความเร็วขาเข้าไซโคลน, เมตรต่อวินาที
- α คือ สัมประสิทธิ์การหดตัวสำหรับการไหลของแก๊สภายในไซโคลน (Contraction coefficient for gas flow into the cyclone)
- สัมประสิทธิ์การหดตัวสำหรับการไหลของแก๊สภายในไซโคลน, α หาได้จากสมการ

$$\alpha = \frac{1}{\beta} \left[1 - \sqrt{1 - 4 \left[\frac{\beta}{2} - \left(\frac{\beta}{2} \right)^2 \right] \sqrt{1 - \frac{1 - \beta^2}{1 + C_e} (2\beta - \beta^2)}} \right]$$
(n28)

- การสูญเสียทางอุทกพลศาสตร์ในกระแสวนภายใน (Hydrodynamic loss in the inner vortex, ΔP_e)

หาได้จากสมการ
$$\Delta P_e = \left[2 + 3\left(\frac{u_i}{v_i}\right)^{4/3} + \left(\frac{u_i}{v_i}\right)^2\right] \frac{\rho_g v_i^2}{2}$$
(n29)

- เมื่อ *u_i* คือ ความเร็วผิวสัมผัสที่รัศมีทางออก, เมตรต่อวินาที
 - v_i คือ ความเร็วเฉลี่ยในท่อแก๊สออก, เมตรต่อวินาที
 - ho_{g} คือ ความหนาแน่นของแก๊ส, กิโลกรัมต่อลูกบาศก์เมตร

 v_i

- ความเร็วเฉลี่ยในท่อแก๊สออก, v_i หาได้จากสมการ

$$=\frac{V_{gas}}{\pi r_i^2} \tag{n30}$$

ภาคผนวก ข ตัวอย่างการคำนวณ

1. วิธีการหาความหนาแน่นของอนุภาค

- 1. เตรียมกระบอกตวงที่แห้งขนาด 100 มิลลิลิตร บันทึกน้ำหนักกระบอกตวง
- 2. ใส่ทรายลงในกระบอกตวงดังกล่าวให้ได้ระดับ 100 มิลลิลิตร บันทึกน้ำหนักที่ได้
- 3. ทำซ้ำข้อ 1 และ 2 อย่างน้อย 3 ครั้ง
 - ข้อมูลของน้ำหนักทร<mark>ายที่บันทึกได้</mark>
 - สำหรับข้อมูลชุดที่ 1 เท่ากับ 130.7 กรัม

สำหรับข้อมูลชุดที่ 2 เท่ากับ 132.7 กรัม

- สำหรับข้อมูลชุดที่ 3 เท่า<mark>กับ 132.2 กร</mark>ัม
- 4. นำกระบอกตวงขนาด 250 มิลลิลิตร เติมน้ำลงไปปริมาตร 100 มิลลิลิตร แล้วบรรจุ ทรายที่มีปริมาตรเท่ากับ 100 มิลลิลิตร ในการทดลองครั้งใดครั้งหนึ่งมาแทนที่ด้วยน้ำ ในกระบอกตวงขนาด 250 มิลลิลิตร บันทึกปริมาตรของน้ำที่เพิ่มขึ้น
 - ข้อมูลของปริมาตรน้ำที่เพิ่มขึ้นที่บันทึกได้ สำหรับข้อมูลชุดที่ 1 เท่ากับ 53.2 กรัม สำหรับข้อมูลชุดที่ 2 เท่ากับ 53.4 กรัม

สำหรับข้อมูลชุดที่ 3 เท่ากับ 54.0 กรัม

ρ

จากสมการหาความหนาแน่น

$$=\frac{m}{v}$$

(ข1)

- สามารถคำนวณหาความหนาแน่นอนุภาคของทรายได้เท่ากับ 2.463 กรัมต่อมิลลิลิตร หรือ 2463 กิโลกรัมต่อลูกบาศก์เมตร
- 6. สำหรับอนุภาคชนิดอื่น ๆ ก็ใช้วิธีเดียวกัน

2. วิธีหาความหนาแน่นบัลค์ของทราย

- 1. เตรียมกระบอกตวงที่แห้งขนาด 100 มิลลิลิตร
- ใส่ทรายเทลงในกระบอกตวง บันทึกน้ำหนักอย่างน้อย 3 ครั้ง ข้อมูลที่ได้จากวิธีการหาความหนาแน่นบัลค์ทรายข้างต้น มีดังนี้
 - 1. น้ำหนักกระบอกตวงแห้ง เท่ากับ 110.32 กรัม
 - 2. น้ำหนักกระบอกตวงแห้ง + ทราย 100 มิลลิลิตร

- สำหรับข้อมูลชุดที่ 1 เท่ากับ 241.1 กรัม
- สำหรับข้อมูลชุดที่ 2 เท่ากับ 243.0 กรัม

สำหรับข้อมูลชุดที่ 3 เท่ากับ 242.6 กรัม

3. น้ำหนักทรายที่มีปริมาตร 100 มิลลิลิตร

สำหรับข้อมูลชุดที่ 1 เท่ากับ 130.7 กรัม

สำหรับข้อมูลชุดที่ 2 เท่ากับ 132.7 กรัม

สำหรับข้อมูลชุดที่ 3 เท่ากับ 132.2 กรัม

- จากสมการหาความหนาแน่น (ข1) สามารถคำนวณหาความหนาแน่นบัลค์ของทราย ได้เท่ากับ 1.319 กรัมต่อมิลลิลิตร หรือ 1319 กิโลกรัมต่อลูกบาศก์เมตร
- 4. สำหรับอนุภาคชนิดอื่น ๆ ก็ใช้วิธีเดียวกัน

3. การหาความหนาแน่นเฉลี่ยของของผสม

จากข้อมูลที่ได้จากการทดลองเมื่อนำทรายผสมกับถ่านหินในอัตราส่วนต่างๆ สามารถ คำนวณหาค่า ความหนา<mark>แน่นเฉลี่ยได้ดังนี้</mark>

สมมุติ อัตราส่วนของทรายต่อถ่านหิน เท่ากับ 9 : 1

ความหนาแน่นของทรายเท่ากับ 2463 กิโลกรัมต่อลูกบาศก์เมตร

ความหนา<mark>แน่นของถ่านหินเท่ากับ</mark> 1381 กิโลกรัมต่อลูกบาศก์เมตร

ดังนั้น ความหนาแน่นเฉลี่ยของของผสมมีค่าดังนี้

$$\rho_{mixture} = \frac{1}{10} \times 1381 + \frac{9}{10} \times 2463$$
 $\rho_{mixture} = 2354 \, \hat{n}$ โลกรัมต่อลูกบาศก์เมตร

4. การหาสัดส่วนช่องว่าง (Voidage, ε_{o}) ในท่อไรเซอร์

สามารถหาสัดส่วนช่องว่าง (Voidage, ε_o) ได้จากสมการ

$$\varepsilon_{o} = 1 - \varepsilon_{s}$$

(ข2)

โดยที่ *ɛ*, คือ สัดส่วนของแข็ง ซึ่งสามารถหาได้จากสมการ

$$\varepsilon_{s} = \frac{\Delta P}{\Delta H g \rho_{p}}$$

ซึ่ง ΔP คือ ความดันลดคร่อมจุด (ปาสคัล)

 ΔH คือ ผลต่างความสูงระหว่าง 2 จุด (เมตร)

g คือ แรงโน้มถ่วงโลก (เมตรต่อวินาที²)

 $ho_{\tt r}$ คือ ความหนาแน่นของอนุภาคของแข็ง, กิโลกรัมต่อลูกบาศก์เมตร

สมมุติ ΔP = 225.4 ΔH = 0.3 g = 9.81 ρ_p =2463

จะได้ค่าสัดส่วนของแข็ง, ε_{s} เท่ากับ 0.0311 และสัดส่วนช่องว่าง, ε_{o} = 0.9689

5. การหาขนาดของอนุภาคเฉลี่ย

ข้อมูลแสดงสัดส่วนโดยน้ำหนักของการกระจายขนาดทรายที่ใช้ทดลอง โดยจะทำการคัด ขนาดของทรายให้อยู่ในช่วงนี้ แต่ปรับเปลี่<mark>ยนสัดส่ว</mark>นโดยน้ำหนัก

ช่วงขนาดของทราย (ไมโครเมตร)	ขนาดอนุภาคเฉลี่ย (ไมโครเมตร)	สัดส่วนโดยมวลของทราย
425 - 500	462.5	0.2
250 - 425	337.5	0.2
150 – 250	200	0.2
75-150	112.5	0.2
ขนาดต่ำกว่า 75	37.5	0.2

จากสมการ Sauter mean diameter, d_{sm} สมการ (ก4)

$$d_{Sm} = \frac{1}{\sum \frac{x_i}{d_{pi}}}$$

แทนค่าต่างๆ ในสมการข้างต้น จะได้

$$d_{Sm} = \frac{1}{\frac{0.2}{462.5} + \frac{0.2}{337.5} + \frac{0.2}{200} + \frac{0.2}{112.5} + \frac{0.2}{37.5}}$$

ดังนั้น Sauter diameter เท่ากับ 109.5 ไมโครเมตร

สำหรับการหาขนาดอนุภาคอื่นๆกทำเช่นเดียวกัน

การคำนวณอัตราการไหลย้อนกลับของถ่านหิน, G

จากข้อมูลที่ได้จากการทดลองเมื่อทำการป้อนอากาศเข้าตำแหน่งป้อนอากาศ เบดจะเกิด การเคลื่อนที่ในท่อป้อนกลับ สมมุติ ทำการหาอัตราการไหลย้อนกลับของทรายขนาด 109.5 ไมโครเมตร ความหนาแน่นบัลค์เท่ากับ 1319 กิโลกรัมต่อลูกบาศก์เมตร ได้ระยะทาง 1 เซนติเมตร

$$G_s =
ho_B$$
(ความเร็วเบด)

= 1319(0.05/3.6) = 18.32 กิโลกรัมต่อตารางเมตร วินาที

ภาคผนวก ค

ข้อมูลผลการทดลอง

1. สมบัติทางกายภาพของอนุภาคของแข็งที่ใช้ในการทดลอง

ตารางที่ ค1 สมบัติทางกายภาพของอนุภาคของแข็งที่ใช้ในการทดลอง

คุณสมบัติ	ทราย	ถ่านหิน	ของผสม
ความหนาแน่นอนุภาค (กิโลกรัมต่อลูกบาศก์เมตร)	2463	1381	2355
ความหนาแน่นบัลค์ (กิโล <mark>กรัมต่อลูกบ</mark> าศก์เมตร)	1319	674	1255
ขนาดอนุภาคเฉลี่ย (ไมโครเมตร)	109.5	73.0	273.6

ผลของอัตราการไหลย้อนกลับของอนุภาคของแข็งที่ใช้ศึกษาที่สภาวะการทดลอง ต่าง ๆ

ตารางที่ ค2 แสดงอัตราการใหลย้อนกลับของแข็ง (Solid recycle rate) ของทรายและของผสม ระหว่างทรายกับถ่านหินที่อัตราการป้อนอากาศต่างๆ

Q	อัตราการไหลย้อนกลับของของแข็ง					
อัตราการป้อนอากาศป _ฐ มภูมิ	มิ (กิโลกรัมต่อตารางเมตรวินาที)					
(ลูกบาศก์เมตรต่อชั่วโมง)	ไซโคลนแบบทั่วไป ไซโคลนส์			เหลี่ยม (1)	ลี่ยม (1) ไซโคลนสี่เหลี่ยม	
ศาเย่	ทราย	ของผสม	ทราย	ของผสม	ทราย	ของผสม
175	18.3	8.5	18.3	8.5	18.3	8.5
200	18.5	8.7	18.4	8.7	18.4	8.6
230	18.5	8.9	18.4	8.8	18.4	8.9

3. ผลของความดันสถิต (Static Pressure) รอบ ๆ ลูปของฟลูอิไดซ์เบดแบบหมุนเวียน

แสดงค่าความดันสถิตที่ตำแหน่งความสูงต่างๆ ของแบบจำลองฟลูอิไดซ์เบดแบบ
 หมุนเวียนที่ใช้เครื่องแยกไซโคลนแบบทั่วไป ที่อัตราการป้อนอากาศปฐมภูมิต่าง ๆ กัน

ตารางที่ ค3 แสดงค่าความดันสถิตที่ตำแหน่งความสูงต่างๆ ที่อัตราการป้อนอากาศปฐมภูมิต่าง ๆ โดยตัวอย่างที่ใช้ทดลองคือทราย

ติวแหน่ง	อากาศปฐมภูมิ	อากาศปฐมภูมิ	อากาศปฐมภูมิ	ความสูง
и периял	175 ลูกบาศก์เมตร	200 ลูกบาศก์เมตร	230 ลูกบาศก์เมตร	(เซนติเมตร)
	ต่อชั่วโมง	ต่อชั่วโมง	ต่อชั่วโมง	
1	320	350	380	-10
2	276	300	330	0
3	225	240	280	20
4	192	220	265	40
5	180	210	257	60
6	170	200	249	80
7	160	192	240	100
8	150	185	233	120
9	140	178	220	160
10	130	170	210	200
11	120	165	200	240
12	114	161	195	280
13	112	158	190	320
14	110	153	182	440
15	105	142	168	560
16	82	120	143	590
17	85	124	147	530
18	410	430	550	20
19	530	560	640	10
20	183	240	295	40
21	78	113	132	600

ຕິດແຜນໃຫ	อากาศปฐมภูมิ	อากาศปฐมภูมิ	อากาศปฐมภูมิ	ความสูง
ตาแทนง	175 ลูกบาศก์เมตร	200 ลูกบาศก์เมตร	230 ลูกบาศก์เมตร	(เซนติเมตร)
	ต่อชั่วโมง	ต่อชั่วโมง	ต่อชั่วโมง	
1	250	270	300	-10
2	210	235	270	0
3	174	210	240	20
4	156	195	220	40
5	146	185	205	60
6	138	175	192	80
7	132	165	180	100
8	12 <mark>6</mark>	156	170	120
9	115	148	160	160
10	110	140	150	200
11	105	132	142	240
12	100	126	134	280
13	95	120	128	320
14	84	117	122	440
15	66	113	118	560
16	41	88	90	590
17	44	83	68	530
18	440	550	590	20
19	540	430	570	10
20	181	230	260	40
21	37	72	53	600

ตารางที่ ค4 แสดงค่าความดันสถิตที่ตำแหน่งความสูงต่างๆ ที่อัตราการป้อนอากาศปฐมภูมิต่าง ๆ โดยตัวอย่างที่ใช้ทดลองคือ ของผสมระหว่างทรายกับถ่านหิน แสดงค่าความดันสถิตที่ตำแหน่งความสูงต่างๆ ของแบบจำลองฟลูอิไดซ์เบดแบบ
 หมุนเวียนที่ใช้เครื่องแยกไซโคลนแบบสี่เหลี่ยม (1) ที่อัตราการป้อนอากาศปฐมภูมิต่าง ๆ กัน

ตารางที่ ค5 แสดงค่าความดันสถิตที่ตำแหน่งความสูงต่างๆ ที่อัตราการป้อนอากาศปฐมภูมิต่าง ๆ โดยตัวอย่างที่ใช้ทดลองคือทราย

ติวแหย่น	อากาศปฐมภูมิ	อากาศปฐมภูมิ	อากาศปฐมภูมิ	ความสูง
M IPPUMA	175 ลูกบาศก์เมตร	200 ลูกบาศก์เมตร	230 ลูกบาศก์เมตร	(เซนติเมตร)
	ต่อชั่วโมง	ต่อชั่วโมง	ต่อชั่วโมง	
1	290	310	330	-10
2	250	265	290	0
3	220	242	260	20
4	210	231	247	40
5	201	221	235	60
6	193	215	223	80
7	185	210	212	100
8	178	206	201	120
9	170	198	190	160
10	165	190	180	200
11	160	184	170	240
12	154	179	163	280
13	150	174	158	320
14	135	160	145	440
15	120	140	130	560
16	91	111	105	590
17	94	114	103	530
18	500	520	550	20
19	580	600	610	10
20	222	243	260	40
21	90	106	93	600

	ନ			
ຕິດແຜນໃຫ	อากาศปฐมภูมิ	อากาศปฐมภูมิ	อากาศปฐมภูมิ	ความสูง
ตาแทนง	175 ลูกบาศก์เมตร	200 ลูกบาศก์เมตร	230 ลูกบาศก์เมตร	เซนติเมตร
	ต่อชั่วโมง	ต่อชั่วโมง	ต่อชั่วโมง	
1	260	280	320	-10
2	210	240	270	0
3	174	205	240	20
4	156	185	220	40
5	146	173	200	60
6	1 <mark>3</mark> 8	165	180	80
7	132	158	170	100
8	126	153	160	120
9	115	146	150	160
10	110	140	138	200
11	105	134	124	240
12	100	128	115	280
13	95	120	109	320
14	78	115	103	440
15	60	95	86	560
16	32	71	63	590
17	33	73	65	530
18	520	520	440	20
19	500	590	500	10
20	170	220	230	40
21	28	65	55	600

ตารางที่ ค6 แสดงค่าความดันสถิตที่ตำแหน่งความสูงต่างๆ ที่อัตราการป้อนอากาศปฐมภูมิต่าง ๆ โดยตัวอย่างที่ใช้ทดลองคือของผสมระหว่างทรายกับถ่านหิน แสดงค่าความดันสถิตที่ตำแหน่งความสูงต่างๆ ของแบบจำลองฟลูอิไดซ์เบดแบบ
 หมุนเวียนที่ใช้เครื่องแยกไซโคลนแบบสี่เหลี่ยม (2) ที่อัตราการป้อนอากาศปฐมภูมิต่าง ๆ กัน

ตารางที่ ค7 แสดงค่าความดันสถิตที่ตำแหน่งความสูงต่างๆ ที่อัตราการป้อนอากาศปฐมภูมิต่าง ๆ โดยตัวอย่างที่ใช้ทดลองคือทราย

	ควา			
ຕົວແຈນໄຈ	อากาศปฐมภูมิ	อากาศปฐมภูมิ	อากาศปฐมภูมิ	ความสูง
ИТЫИИЛ	175 ลูกบาศก์เมตร	200 ลูกบาศก์เมตร	230 ลูกบาศก์เมตร	(เซนติเมตร)
	ต่อชั่วโมง	ต่อชั่วโมง	ต่อชั่วโมง	
1	300	310 330		-10
2	250	262	281	0
3	22 <mark>5</mark>	235	245	20
4	212	220	220	40
5	200	210	210	60
6	190	202	201	80
7	180	196	192	100
8	172	190	184	120
9	165	184	174	160
10	159	179	165	200
11	151	173	160	240
12	146	165	156	280
13	140	158	151	320
14	120	140	147	440
15	100	120	140	560
16	64	88	102	590
17	61	92	105	530
18	500	520	540	20
19	600	620	645	10
20	223	240	245	40
21	56	85	95	600

	ความดัน (มิลลิเมตรน้ำ)				
	อากาศปฐมภูมิ	อากาศปฐมภูมิ	อากาศปฐมภูมิ	ความสูง	
ตาแทนง	175 ลูกบาศก์เมตร	200 ลูกบาศก์เมตร	230 ลูกบาศก์เมตร	(เซนติเมตร)	
	ต่อชั่วโมง	ต่อชั่วโมง	ต่อชั่วโมง		
1	240	270	320	-10	
2	180	235	270	0	
3	155	210	240	20	
4	142	195	220	40	
5	131	185	200	60	
6	125	175	180	80	
7	120	165	170	100	
8	115	156	160	120	
9	110	148	150	160	
10	105	140	138	200	
11	100	132	124	240	
12	95	126	115	280	
13	92	120	109	320	
14	85	117	103	440	
15	75	112	86	560	
16	44	88	63	590	
17	47	83	65	530	
18	360	550	440	20	
19	440	430	500	10	
20	170	230	230	40	
21	43	75	55	600	

ตารางที่ ค8 แสดงค่าความดันสถิตที่ตำแหน่งความสูงต่างๆ ที่อัตราการป้อนอากาศปฐมภูมิต่าง ๆ โดยตัวอย่างที่ใช้ทดลองคือของผสมระหว่างทรายกับถ่านหิน

ผลการศึกษาอัตราการป้อนอากาศปฐมภูมิที่ส่งผลต่อความเร็วขาเข้า ความดันลดตก คร่อม และ ประสิทธิภาพของไซโคลน

ตารางที่ ค9 แสดงค่าความเร็วขาเข้าไซโคลนที่อัตราการป้อนอากาศปฐมภูมิต่างๆ

อัตราการป้อนอากาศปฐมภูมิ	ความเร็วขาเข้าไซโคลน
(ลูกบาศก์เมตรต่อชั่วโมง)	(เมตรต่อวินาที)
175	10.9
200	13.0
230	15.0

ตารางที่ ค10 แสดงค่าความดันคร่อมไซโคลนแบบทั่วไป ที่อัตราการการป้อนอากาศปฐมภูมิต่างๆ

00000	<mark>ความดันลด</mark> (P17-P21)				
ีย 111 เค ปสบกบิ	ทราย		ของผสม		คำนวณ
<u>т</u> %9191	มิลลิเมตรน้ำ	ปาสคัล	<mark>มิลลิเมตรน้ำ</mark>	ปาสคัล	ปาสคัล
175	7	68.6	7	68.6	104.5
200	11	107.8	11	107.8	176.7
230	15	147.0	15	147.0	235.2

ตารางที่ ค11 แสดงค่า<mark>คว</mark>ามดันคร่อมไซโคลนสี่เหลี่ยม (1) ที่อัตราการการป้อนอากาศปฐมภูมิ ต่างๆ

		ความดันลด(P17-P21)				
ł.	อากาศ	ทราย		ของผสม		
	ี่ ⊓ พื่ษา ใช	มิลลิเมตรน้ำ	ปาสคัล	มิลลิเมตรน้ำ	ปาสคัล	
	175	4	39.1	5	49.0	
	200	8	78.4	8	78.4	
	230	10	98.0	10	98.0	

ตารางที่ ค12 แสดงค่าความดันคร่อมไซโคลนสี่เหลี่ยม (2) ที่อัตราการการป้อนอากาศปฐมภูมิ ต่างๆ

റൊര്	ความดันลด(P17-P21)					
ับ III เศ ปฐากบิ	ทราย		ของผสม			
កង្គមរាស	มิลลิเมตรน้ำ	ปาสคัล	มิลลิเมตรน้ำ	ปาสคัล		
175	5	49.0	4	39.1		
200	7	68.6	8	78.4		
230	10	98.0	10	98.0		

ตารางที่ที่ ค13 แสดงปริมาณของของแข็งที่เหลืออยู่ในระบบภายหลังการทดลอง และ ประสิทธิภาพการแยกของไซโคลนที่สภาวะต่างๆ ของไซโคลนแบบทั่วไป

อากาศ	<mark>น้ำหนักคง</mark> เเ	หลือ (กรัม)	ร้ <mark>อย</mark> ละประสิ	ทธิภาพการแยก
ปฐมภูมิ	ทราย	ของผสม	ทราย	ของผสม
175	4890	4900	97.8	98.0
200	4840	4820	96.8	96.4
230	4755	4810	95.1	96.2

ตารางที่ ค14 แสดงปริมาณของของแข็งที่เหลืออยู่ในระบบภายหลังการทดลอง และ ประสิทธิภาพ การแยกของไซโคลนที่สภาวะต่างๆ ของไซโคลนสี่เหลี่ยม (1)

อากาศ	น้ำหนักคงเข	หลือ (กรัม)	ร้อยละประสิง	ทธิภาพการแยก
ปฐมภูมิ	ทราย	ของผสม	ทราย	ของผสม
175	4700	4800	94.0	96.0
200	4590	4720	91.8	94.4
230	4370	4700	87.4	94

อากาศ	น้ำหนักคงเเ	หลือ (กรัม)	ร้อยละประสิเ	<u>ุ</u> กธิภาพการแยก
ปฐมภูมิ	ทราย	ของผสม	ทราย	ของผสม
175	4660	4830	93.2	96.6
200	4545	4750	90.9	95.0
230	4375	4710	87.5	94.2

ตารางที่ ค15 แสดงปริมาณของของแข็งที่เหลืออยู่ในระบบภายหลังการทดลอง และ ประสิทธิภาพ การแยกของไซโคลนที่สภาวะต่างๆ ของไซโคลนสี่เหลี่ยม (2)

ตารางที่ ค16 แสดงปริมาณของแข็งที่เหลือ ประสิทธิภาพย่อย แล<mark>ะประสิทธิภ</mark>าพรวมของไซโคลนแบบทั่วไป ที่ได้จากการทดลองที่สภาวะอัตราการป้อนอากาศปฐม ภูมิ 175 ลูกบาศก์เมตรต่อชั่วโมง

ช่องขนาดขององ อาด		ทราย	19230	ของผสม		
(ไมโครเมตร)	ปริมาณของแข็ง เริ่มต้น	ปริมาณของแข็งที่ เหลือ	ประสิทธิภาพย่อย	ปริมาณของแข็ง เริ่มต้น	ปริมาณของแข็งที่ เหลือ	ประสิทธิภาพย่อย
425-500	1000.00	999.5	99.95	2250.00	2250.0	100.00
250-425	1000.00	998.7	99.87	2250.00	2248.0	99.91
150-250	1000.00	996.3	99.63	166.00	152.0	91.57
75-150	1000.00	991.7	99.17	166.00	140.0	84.34
ต่ำกว่า 75	1000.00	903.8	90.38	168.00	110.0	65.48
ผลรวม	5000.00	4890.00	- 07	5000.00	4900.00	-

ตารางที่ ค17 แสดงปริมาณของแข็งที่เหลือ ประสิทธิภาพย่อย แล<mark>ะประสิทธิภ</mark>าพรวมของไซโคลนแบบทั่วไป ที่ได้จากการทดลองที่สภาวะอัตราการป้อนอากาศปฐม ภูมิ 200 ลูกบาศก์เมตรต่อชั่วโมง

ช่องขนาดของอาเกาด		ทราย	19230	ของผสม		
(ไมโครเมตร)	ปริมาณของแข็ง เริ่มต้น	ปริมาณของแข็งที่ เหลือ	ประสิทธิภาพย่อย	ปริมาณของแข็ง เริ่มต้น	ปริมาณของแข็งที่ เหลือ	ประสิทธิภาพย่อย
425-500	1000.00	855.3	85.53	168.00	70.0	41.67
250-425	1000.00	989.0	98.90	166.00	112.0	67.47
150-250	1000.00	997.3	99.73	166.00	140.0	84.34
75-150	1000.00	998.5	99.85	2250.00	2248.0	99.91
ต่ำกว่า 75	1000.00	999.9	99.99	2250.00	2250.0	100.00
ผลรวม	5000.00	4840.00	- 07	5000.00	4820.00	-

ดูนยวทยทรพยากร

จุฬาลงกรณ่มหาวิทยาลัย

ตารางที่ ค18 แสดงปริมาณของแข็งที่เหลือ ประสิทธิภาพย่อย แล<mark>ะประสิทธิภ</mark>าพรวมของไซโคลนแบบทั่วไป ที่ได้จากการทดลองที่สภาวะอัตราการป้อนอากาศปฐม ภูมิ 230 ลูกบาศก์เมตรต่อชั่วโมง

ช่องขนาดของอนอาด		ทราย	19239	ของผสม		
(ไมโครเมตร)	ปริมาณของแข็ง เริ่มต้น	ปริมาณของแข็งที่ เหลือ	ประสิทธิภาพย่อย	ปริมาณของแข็ง เริ่มต้น	ปริมาณของแข็งที่ เหลือ	ประสิทธิภาพย่อย
425-500	1000.00	999.90	99.99	2250.00	2250.0	100.00
250-425	1000.00	999.50	99.95	2250.00	2243.0	99.69
150-250	1000.00	998.30	99.83	166.00	138.0	83.13
75-150	1000.00	975.70	97.57	166.00	108.0	65.06
ต่ำกว่า 75	1000.00	781.60	78.16	168.00	71.0	42.26
ผลรวม	5000.00	4755.00		5000.00	4810.00	-

ศูนยวทยทรพยากร

จุฬาลงกรณ์มหาวิทยาลัย

ตารางที่ ค19 แสดงปริมาณของแข็งที่เหลือ และ ประสิทธิภาพย่อยของไซโคลนสี่เหลี่ยม (1) ที่ได้จากการทดลองที่สภาวะอัตราการป้อนอากาศปฐมภูมิ 175 ลูกบาศก์ เมตรต่อชั่วโมง

ส่วงขนาดของอนกาด		ทราย	19739	ของผสม		
(ไมโครเมตร)	ปริมาณของแข็ง เริ่มต้น	ปริมาณของแข็งที่ เหลือ	ประสิทธิภาพย่อย	ปริมาณของแข็ง เริ่มต้น	ปริมาณของแข็งที่ เหลือ	ประสิทธิภาพย่อย
425-500	1000.00	999.5	99.95	2250.00	2250.0	100.00
250-425	1000.00	988.7	98.87	2250.00	2230.0	99.11
150-250	1000.00	980.3	98.03	166.00	134.0	80.72
75-150	1000.00	900.7	90.07	166.00	118.0	71.08
ต่ำกว่า 75	1000.00	830.8	83.08	168.00	68.0	40.48
ผลรวม	5000.00	4700.00		5000.00	4800.00	-

ศูนยวทยทรพยากร ซาลงอรณ์แหววิทยาลั

ตารางที่ ค20 แสดงปริมาณของแข็งที่เหลือ และ ประสิทธิภาพย่อยของไซโคลนสี่เหลี่ยม (1) ที่ได้จากการทดลองที่สภาวะอัตราการป้อนอากาศปฐมภูมิ 200 ลูกบาศก์ เมตรต่อชั่วโมง

ส่วงขนาดของอนกาด		ทราย	19230	ของผสม		
(ไมโครเมตร)	ปริมาณของแข็ง เริ่มต้น	ปริมาณของแข็งที่ เหลือ	ประสิทธิภาพย่อย	ปริมาณของแข็ง เริ่มต้น	ปริมาณของแข็งที่ เหลือ	ประสิทธิภาพย่อย
425-500	1000.00	999.9	99.99	2250.00	2248.0	99.91
250-425	1000.00	985.9	98.59	2250.00	2218.0	98.58
150-250	1000.00	958.3	95.83	166.00	118.0	71.08
75-150	1000.00	882.9	88.29	166.00	86.0	51.81
ต่ำกว่า 75	1000.00	763.0	76.30	168.00	50.0	29.76
ผลรวม	5000.00	4590.00		5000.00	4720.00	-

ุ ดูนยวทยทรพยากร ซาลงอรณ์แหววิทยาลั

ตารางที่ ค21 แสดงปริมาณของแข็งที่เหลือ และ ประสิทธิภาพย่อยของไซโคลนสี่เหลี่ยม (1) ที่ได้จากการทดลองที่สภาวะอัตราการป้อนอากาศปฐมภูมิ 230 ลูกบาศก์ เมตรต่อชั่วโมง

ส่วงขนาวคุณค.งคน กาค		ทราย	19230	ของผสม		
(ไมโครเมตร)	ปริมาณของแข็ง เริ่มต้น	ปริมาณของแข็งที่ เหลือ	ประสิทธิภาพย่อย	ปริมาณของแข็ง เริ่มต้น	ปริมาณของแข็งที่ เหลือ	ประสิทธิภาพย่อย
425-500	1000.00	996.9	99.69	2250.00	2244.0	99.73
250-425	1000.00	970.9	97.09	2250.00	2210.0	98.22
150-250	1000.00	908.3	90.83	166.00	117.0	70.48
75-150	1000.00	816.4	81.64	166.00	82.0	49.40
ต่ำกว่า 75	1000.00	677.5	67.75	168.00	47.0	27.98
ผลรวม	5000.00	4370.00	- 0.7	5000.00	4700.00	-

ดูนยวทยทรพยากร

งหาลงกรณ์มหาวิทยาลัย

ตารางที่ ค22 แสดงปริมาณของแข็งที่เหลือ และ ประสิทธิภาพย่อยของไซโคลนสี่เหลี่ยม (2) ที่ได้จากการทดลองที่สภาวะอัตราการป้อนอากาศปฐมภูมิ 175 ลูกบาศก์ เมตรต่อชั่วโมง

ช่องขนาดของอนกาด		ทราย	19230	ของผสม		
(ไมโครเมตร)	ปริมาณของแข็ง เริ่มต้น	ปริมาณของแข็งที่ เหลือ	ประสิทธิภาพย่อย	ปริมาณของแข็ง เริ่มต้น	ปริมาณของแข็งที่ เหลือ	ประสิทธิภาพย่อย
425-500	1000.00	999.5	99.95	2250.00	2250.0	100.00
250-425	1000.00	987.8	98.78	2250.00	2236.0	99.38
150-250	1000.00	972.2	97.22	166.00	140.0	84.34
75-150	1000.00	900.1	90.01	166.00	126.0	75.90
ต่ำกว่า 75	1000.00	800.4	80.04	168.00	78.0	46.43
ผลรวม	5000.00	4660.00		5000.00	4830.00	-

ดูนยวทยทรพยากร

จุฬาลงกรณ่มหาวิทยาลัย

ตารางที่ ค23 แสดงปริมาณของแข็งที่เหลือ และ ประสิทธิภาพย่อยของไซโคลนสี่เหลี่ยม (2) ที่ได้จากการทดลองที่สภาวะอัตราการป้อนอากาศปฐมภูมิ 200 ลูกบาศก์ เมตรต่อชั่วโมง

ส่วงขนาวคุณค.งคน กาค		ทราย	19239	ของผสม		
(ไมโครเมตร)	ปริมาณของแข็ง เริ่มต้น	ปริมาณของแข็งที่ เหลือ	ประสิทธิภาพย่อย	ปริมาณของแข็ง เริ่มต้น	ปริมาณของแข็งที่ เหลือ	ประสิทธิภาพย่อย
425-500	1000.00	999.9	99.99	2250.00	2248.0	99.91
250-425	1000.00	980.2	98.02	2250.00	2222.0	98.76
150-250	1000.00	949.3	94.93	166.00	122.7	73.92
75-150	1000.00	870.6	87.06	166.00	94.3	56.81
ต่ำกว่า 75	1000.00	745.0	74.50	168.00	63.0	37.50
ผลรวม	5000.00	4545.00		5000.00	4750.00	-

ศูนยวทยทรพยากร

จุฬาลงกรณ่มหาวิทยาลัย

ตารางที่ ค24 แสดงปริมาณของแข็งที่เหลือ และ ประสิทธิภาพย่อยของไซโคลนสี่เหลี่ยม (2) ที่ได้จากการทดลองที่สภาวะอัตราการป้อนอากาศปฐมภูมิ 230 ลูกบาศก์ เมตรต่อชั่วโมง

ช่วงขนาดของอนุภาค (ไมโครเมตร)		ทราย	19230	ของผสม			
	ปริมาณของแข็ง เริ่มต้น	ปริมาณของแข็งที่ เหลือ	ประสิทธิภาพย่อย	ปริมาณของแข็ง เริ่มต้น	ปริมาณของแข็งที่ เหลือ	ประสิทธิภาพย่อย	
425-500	1000.00	997.6	99.76	2250.00	2244.0	99.73	
250-425	1000.00	970.9	97.09	2250.00	2209.7	98.21	
150-250	1000.00	909.9	90.99	166.00	117.3	70.66	
75-150	1000.00	817.8	81.78	166.00	85.0	51.20	
ต่ำกว่า 75	1000.00	678.8	67.88	168.00	54.0	32.14	
ผลรวม	5000.00	4375.00	- 07	5000.00	4710.00	-	

พา้ลงกรณ์มหาวิทยาลัย

		การทดลอง		การจำลอง		ไซโคลนสี่เหลี่ยม
						(1)
	อัตราการป้อนอากาศปฐมภูมิ	ทราย	ของผสม	ทรายขนาด	ทรายขนาด	ถ่านหินขนาด
	(ลูกบาศก์เมตรต่อชั่วโมง)			109.5 ใมโครเมตร	73 ไมโครเมตร	73 ไมโครเมตร
ไซโคลนแบบทั่วไป	175	97.8	98.0	99.5	89.5	87.7
	200	96.8	96.4	99.4	89.8	85.1
	230	95.1	96.2	98.9	87.5	81.3
ไซโคลนสี่เหลี่ยม (1)	175	94.0	96.0	100	99.8	97.7
	200	91.8	94.4	100	99.6	97.5
	230	87.4	94	100	97.5	97.4
ไซโดดบดี่บนดี่ยบ (1)	175	94.0	96.0	96.0	87.1	75.7
เบเกิดหลายคาย (1) (แก้ไขพางออกของบขึ้ง)	200	91.8	94.4	95.6	82.4	75.1
(11111111111111111111111111111111111111	230	87.4	94	95.9	80.2	74.1
ไซโคลนสี่เหลี่ยม (2)	175	93.2	96.6	98.8	85.1	79.2
	200	90.9	95.0	96.2	87.1	75.5
	230	87.5	94.2	78.8	80.4	67.3

ตารางที่ ค25 แสดงตารางประสิทธิภาพการแยกของไซโคลนทั้<mark>ง 3 แบบ ที่ได้จา</mark>กการทดลอง และ จากแบบจำลอง ที่สภาวะการทดลองต่าง ๆ

5. ข้อมูลที่ได้จากการจำลองภาวะ

 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที อนุภาค ของแข็งที่ใช้คือทราย ขนาดเส้นผ่านศูนย์กลาง 109.5 ไมโครเมตร

ตารางที่ ค26 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 10.9 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 68.6 ปาสคัล

เวลา	อัตราการไหลเชิงมวล (กิโลกรัมต่อวินาที)		สัดส่วา	ิ่มโดยมวล	ร้อยอะประสิทธิภาพ	
(วินาที)	ท่อแก๊สออก	ทางต _ุ กกลับ ของแข็ง	<mark>ท่อแก๊สออ</mark> ก	ทางตกกลับ ของแข็ง	- 9 [] [] [2 [2] [2] [2] [2] [2] [2	
0	0	0	0	0	0	
1	0	2.1957932	0	1	100	
2	0.005355696	2.0925088	0.002553	0.997447073	99.744707	
3	0.00720798	1.8931646	0.003793	0.99620707	99.620707	
4	0.005743126	1.9503343	0.002936	0.997063958	99.706396	
5	0.004677442	1.9860731	0.00235	0.997650413	99.765041	
6	0.013330211	1.9 <mark>824759</mark>	0.006679	0.993320889	99.332089	
7	0.006363783	1.9709984	0.003218	0.996781681	99.678168	
8	0.014427048	1.9507192	0.007341	0.992658537	99.265854	
9	0.009921577	1.9589882	0.005039	0.994960878	99.496088	
10	0.008745294	1.9748667	0.004409	0.995591227	99.559123	
11	0.011120333	1.9845424	0.005572	0.994427749	99.442775	
12	0.007880453	1.9528246	0.004019	0.995980807	99.598081	
13	0.010755867	1.9769324	0.005411	0.994588756	99.458876	
14	0.009269495	1.9685875	0.004687	0.995313365	99.531336	
15	0.01281552	1.9672444	0.006472	0.993527711	99.352771	
16	0.010568636	1.9622862	0.005357	0.994642973	99.464297	
17	0.009975922	1.9672809	0.005045	0.994954665	99.495467	
18	0.011390158	1.9625587	0.00577	0.99422976	99.422976	
19	0.010796559	1.9660258	0.005462	0.994538427	99.453843	
20	0.010272787	1.9661613	0.005198	0.994802363	99.480236	
21	0.010078485	1.964884	0.005103	0.994896873	99.489687	
22	0.010710078	1.966663	0.005416	0.994583684	99.458368	
23	0.009631944	1.9652047	0.004877	0.995122663	99.512266	
24	0.010336709	1.9661875	0.00523	0.994770259	99.477026	
25	0.009931289	1.9659969	0.005026	0.994973862	99.497386	
26	0.010584012	1.9660463	0.005355	0.994645427	99.464543	
27	0.009786887	1.9652253	0.004955	0.995044645	99.504464	
28	0.010355927	1.9667717	0.005238	0.994762135	99.476214	
29	0.011142332	1.967207	0.005632	0.994367864	99.436786	
30	0.011521969	1.9646239	0.005831	0.994169474	99.416947	

เวลา (วินาที)	อัตราการไหลเชิงมวล (กิโลกรัมต่อวินาที)		สัดส่วา	ิ่มโดยมวล	ร้อยเอะเปอะสิทธิออก
	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	1.078°11°24ND111M
0	0	0	0	0	0
1	0.005219889	3.0633178	0.001701	0.9982989	99.82989
2	0.008515798	3.00 <mark>69373</mark>	0.002824	0.997175948	99.717595
3	0.011469294	2.9856381	0.003827	0.996173212	99.617321
4	0.008738374	3.0200856	0.002885	0.997114928	99.711493
5	0.013182274	3.053973	0.004298	0.995702117	99.570212
6	0.012661359	3.105773	0.00406	0.995939835	99.593983
7	0.015909702	3.124089	0.005067	0.994933214	99.493321
8	0.009611111	3.1369965	0.003054	0.996945564	99.694556
9	0.010903822	3.1433885	0.003457	0.99654318	99.654318
10	0.010170083	3.1570876	0.003211	0.996788994	99.678899
11	0.012095785	3 <mark>.1619</mark> 375	0.003811	0.996189144	99.618914
12	0.009330628	3.1586802	0.002945	0.997054736	99.705474
13	0.038868994	3.2064433	0.011977	0.988023034	98.802303
14	0.03349774	3.1589956	0.010493	0.989507342	98.950734
15	0.016069047	3.1478612	0.005079	0.994921175	99.492118
16	0.014655932	3.1238914	0.00467	0.995330345	99.533035
17	0.007515959	3.1411135	0.002387	0.997612943	99.761294
18	0.009494561	3.1490314	0.003006	0.99699399	99.699399
19	0.014448792	3.1617286	0.004549	0.995450886	99.545089
20	0.011398633	3.1636124	0.00359	0.996409892	99.640989
21	0.03168539	4.4407539	0.007085	0.992915412	99.291541
22	0.047391791	3.1734838	0.014714	0.985286054	98.528605
23	0.030458793	3.1371264	0.009616	0.990384223	99.038422
24	0.017903015	3.1343989	0.005679	0.994320653	99.432065
25	0.011291427	3.116132	0.00361	0.996389543	99.638954
26	0.007848248	3.1405931	0.002493	0.997507259	99.750726
27	0.015612864	3.1646924	0.004909	0.995090766	99.509077
28	0.011200881	3.1506927	0.003542	0.99645754	99.645754
29	0.013936047	3.168072	0.00438	0.995620361	99.562036
30	0.01982215	6.7912807	0.00291	0.99708973	99.708973

ตารางที่ ค27 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 13.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 107.8 ปาสคัล
เวลา	อัตราการไห (กิโลกรัมต่	ลเชิงมวล อวินาที)	สัดส่วา	ิ่มโดยมวล	ร้อยอะประสิทธิภาพ
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	9.0.0.9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
0	0	0	0	0	0
1	0.003389994	3.40538 <mark>93</mark>	0.000994	0.999005511	99.900551
2	0.014169144	3.32 <mark>59969</mark>	0.004242	0.995757952	99.575795
3	0.02822578	3.3777516	0.008287	0.991712869	99.171287
4	0.029664159	3.3810687	0.008697	0.991302702	99.13027
5	0.026105663	3.4290569	0.007556	0.992444447	99.244445
6	0.041545592	3.4954982	0.011746	0.988254148	98.825415
7	0.041471832	3.5274701	0.01162	0.988379796	98.83798
8	0.035357751	3.5567408	0.009843	0.990156798	99.01568
9	0.047573127	3.5920928	0.013071	0.98692926	98.692926
10	0.047276221	3.59093	0.012994	0.987005624	98.700562
11	0.055586059	3.598156	0.015213	0.98478654	98.478654
12	0.047835406	3.5976274	0.013122	0.986878098	98.68781
13	0.041069899	3.6031082	0.01127	0.988729997	98.873
14	0.039879315	3.608546	0.010931	0.989069445	98.906944
15	0.041296817	3.6156168	0.011293	0.988707194	98.870719
16	0.042234384	3.6201975	0.011532	0.988468213	98.846821
17	0.041879006	3.6246793	0.011422	0.988578115	98.857812
18	0.040438734	3.6245568	0.011034	0.988966226	98.896623
19	0.034518845	3.6250577	0.009432	0.99056753	99.056753
20	0.038143612	3.6314104	0.010395	0.989605382	98.960538
21	0.036230359	3.6316559	0.009878	0.990122278	99.012228
22	0.039070349	3.6361964	0.010631	0.989369384	98.936938
23	0.03813241	3.636188	0.010378	0.989621915	98.962191
24	0.041318901	3.63888	0.011227	0.988772645	98.877264
25	0.03953724	3.6370726	0.010754	0.989246278	98.924628
26	0.040067621	3.6379015	0.010894	0.989106047	98.910605
27	0.03888103	3.6364586	0.010579	0.989421106	98.942111
28	0.041578609	3.6407275	0.011291	0.988708541	98.870854
29	0.044163015	3.6407175	0.011985	0.988015075	98.801508
30	0.03953724	3.6370726	0.010754	0.989246278	98.924628

ตารางที่ ค28 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 15.0 เมตรต่อวินาที, ความดันลดตกคร่อมไซโคลน 147.0 ปาสคัล

 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไป ที่เวลา 0-30 วินาที อนุภาค ของแข็งที่ใช้คือทราย ขนาดเส้นผ่านศูนย์กลาง 73 ไมโครเมตร

ตารางที่ ค29 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 10.9 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 68 ปาสคัล

เวลา	อัตราการไหลเชิงมวล (กิโลกรัมต่อวินาที)		สัดส่วนโดยมวล		ล้อยอะเปละสิทธิภาพ
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	<mark>ท่อแก๊สออ</mark> ก	ทางตกกลับ ของแข็ง	. 1.00M°01°2M00111M
0	0	0	0	0	0
1	0.12290772	2.1634398	0.053757	0.946242765	94.624277
2	0.23114148	2.3744571	0.08871	0.911290449	91.129045
3	0.29542646	2.3972797	0.109714	0.89028641	89.028641
4	0.28827688	2.4007831	0.107204	0.892796411	89.279641
5	0.28337947	2.3784277	0.106461	0.893538693	89.353869
6	0.28097406	2.3825605	0.105489	0.894510826	89.451083
7	0.27736756	2.3950989	0.103787	0.896212894	89.621289
8	0.22631189	2.3768632	0.086937	0.913063132	91.306313
9	0.19315802	2 <mark>.3775208</mark>	0.075139	0.924861084	92.486108
10	0.38100711	2.4 <mark>65</mark> 7836	0.133837	0.866162585	86.616258
11	0.29647768	2.4170318	0.10926	0.890740135	89.074013
12	0.27081972	2.4128292	0.100915	0.899085265	89.908526
13	0.28991151	2.412559	0.107276	0.892723525	89.272353
14	0.27618206	2.4053819	0.102993	0.897007096	89.70071
15	0.24782769	2.3925438	0.093861	0.906139083	90.613908
16	0.35439786	2.4414237	0.12676	0.873240172	87.324017
17	0.28643426	2.41381	0.106077	0.893922833	89.392283
18	0.27757713	2.4233882	0.10277	0.897230399	89.72304
19	0.28148651	2.4067335	0.104711	0.895288887	89.528889
20	0.2658374	2.3926294	0.099997	0.900003491	90.000349
21	0.35064644	2.3881407	0.12803	0.871970174	87.197017
22	0.27486306	2.4084382	0.102435	0.897565337	89.756534
23	0.27486306	2.4084382	0.102435	0.897565337	89.756534
24	0.27486306	2.4084382	0.102435	0.897565337	89.756534
25	0.27486306	2.4084382	0.102435	0.897565337	89.756534
26	0.27486306	2.4084382	0.102435	0.897565337	89.756534
27	0.27486306	2.4084382	0.102435	0.897565337	89.756534
28	0.27486306	2.4084382	0.102435	0.897565337	89.756534
29	0.27486306	2.4084382	0.102435	0.897565337	89.756534
30	0.27486306	2.4084382	0.102435	0.897565337	89.756534

เวลา	อัตราการไหลเชิงมวล (กิโลกรัมต่อวินาที)		สัดส่วเ	เโดยมวล	tono en lor den a com
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	1.0702712201011111
0	0	0	0	0	0
1	0.11798788	2.41772 <mark>96</mark>	0.04653	0.953469627	95.346963
2	0.22666369	2.80 <mark>23281</mark>	0.074831	0.925168602	92.51686
3	0.34084806	2.7908633	0.108838	0.891162364	89.116236
4	0.36131877	2.8408408	0.112836	0.887164033	88.716403
5	0.33251271	2.8080709	0.105876	0.894123911	89.412391
6	0.32037824	2.8406887	0.101351	0.898648701	89.86487
7	0.32323116	2.8501685	0.101856	0.89814357	89.814357
8	0.33020866	2.8560719	0.103635	0.896365479	89.636548
9	0.33535463	2.8636253	0.104832	0.895168261	89.516826
10	0.32220295	2.8623595	0.101177	0.898823479	89.882348
11	0.32817209	2.866312	0.102731	0.897269142	89.726914
12	0.32219669	2.85969	0.10126	0.898740363	89.874036
13	0.32641786	2.8614743	0.102393	0.897606994	89.760699
14	0.31665981	2.8564868	0.099794	0.900206373	90.020637
15	0.32046416	2.8615417	0.100711	0.899288633	89.928863
16	0.32638213	2.8615808	0.10238	0.897620475	89.762048
17	0.32296774	2.8609872	0.101436	0.898563973	89.856397
18	0.32670552	2.8655775	0.102342	0.897657721	89.765772
19	0.32859194	2.861227	0.103013	0.896987275	89.698728
20	0.32171521	2.8609414	0.101084	0.898916142	89.891614
21	0.32220715	2.8570771	0.101346	0.898654186	89.865419
22	0.32595584	2.8570976	0.102404	0.897596491	89.759649
23	0.32674903	2.8603148	0.102524	0.897476471	89.747647
24	0.32724214	2.8595407	0.102687	0.897312695	89.73127
25	0.33125454	2.8613176	0.103758	0.896242113	89.624211
26	0.32291964	2.8646362	0.101306	0.898693652	89.869365
27	0.32033843	2.8580232	0.100787	0.899212718	89.921272
28	0.32918811	2.8579922	0.103285	0.89671494	89.671494
29	0.32702935	2.8631089	0.102513	0.897487405	89.748741
30	0.32464892	2.8622682	0.101869	0.89813073	89.813073

ตารางที่ ค30 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 13.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 120.0 ปาสคัล

เวลา	อัตราการไหลเชิงมวล (กิโลกรัมต่อวินาที)		สัดส่วา	ิ่มโดยมวล	ล้อยอายุโละสิทธิภาพ
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	1.67.8° T1°2 ND11 I M
0	0	0	0	0	0
1	0.12699676	2.6218107	0.046201	0.953799325	95.379933
2	0.35016677	3.13 <mark>606</mark>	0.100443	0.899557088	89.955709
3	0.41543996	3. <mark>2541976</mark>	0.11321	0.88678992	88.678992
4	0.45291114	3.2485304	0.122 <mark>361</mark>	0.877639256	87.763926
5	0.45790252	3.2191212	0.124531	0.87546925	87.546925
6	0.46531495	3.219497	0.126279	0.873720842	87.372084
7	0.44959682	3.2406001	0.121835	0.878164545	87.816455
8	0.44281939	3.2304711	0.120551	0.879448851	87.944885
9	0.45818108	3.2210069	0.124533	0.875466793	87.546679
10	0.44149604	3.2486346	0.119642	0.880357612	88.035761
11	0.42947233	3.2388439	0.117076	0.882923853	88.292385
12	0.42492837	3.2220418	0.116515	0.88348455	88.348455
13	0.42110586	3.2 <mark>2</mark> 74482	0.115417	0.884582809	88.458281
14	0.43004146	3.2205586	0.1178	0.882199788	88.219979
15	0.4519254	3.2124956	0.123328	0.876672085	87.667209
16	0.46652406	3.2386672	0.125911	0.874089075	87.408907
17	0.43898115	3.2462308	0.11912	0.880880352	88.088035
18	0.43337914	3.2447808	0.117825	0.882175015	88.217501
19	0.44393402	3.2260723	0.120963	0.87903726	87.903726
20	0.45984375	3.2264733	0.124743	0.875256592	87.525659
21	0.44523555	3.2465053	0.120603	0.879396857	87.939686
22	0.44341606	3.2448704	0.120223	0.879777218	87.977722
23	0.43387148	3.2258058	0.118555	0.881445426	88.144543
24	0.4522357	3.2167845	0.123258	0.876742107	87.674211
25	0.45907387	3.2412295	0.124064	0.875936153	87.593615
26	0.43721738	3.2467811	0.11868	0.88131988	88.131988
27	0.43376723	3.2341447	0.11826	0.881740009	88.174001
28	0.45681784	3.2189322	0.124279	0.87572119	87.572119
29	0.45532539	3.2443886	0.12307	0.87692957	87.692957
30	0.47331896	3.2384686	0.127518	0.872482206	87.248221

ตารางที่ ค31 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 15.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 147.0 ปาสคัล

 ข้อมูลอัตราการไหลเซิงมวลจากแบบจำลองไซโคลนแบบทั่วไป ที่เวลา 0-30 วินาที อนุภาค ของแข็งที่ใช้คือถ่านหิน ขนาดเส้นผ่านศูนย์กลาง 73 ไมโครเมตร

ตารางที่ ค32 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 10.9 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 68.6 ปาสคัล

เวลา	อัตราการไหลเชิงมวล (กิโลกรัมต่อวินาที)		สัดส่วนโดยมวล		ร้อยอาประสิทธิภาพ
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	1.000×01×000111M
0	0	0	0	0	0
1	0.11860328	0.90007359	0.116429	0.883571245	88.35712
2	0.1544769	0.97385687	0.136907	0.863092904	86.30929
3	0.13903597	0.99813098	0.122265	0.877734778	87.77348
4	0.14123002	1.012367	0.122426	0.877574216	87.75742
5	0.14078011	1.0131015	0.122006	0.87799432	87.79943
6	0.14038818	1.0129379	0.121725	0.878275379	87.82754
7	0.14398083	1.014164	0.12432	0.875679771	87.56798
8	0.14429995	1.013092	0.124677	0.875323178	87.53232
9	0.14391804	1.0151012	0.124172	0.875827739	87.58277
10	0.14259426	1.0 <mark>1</mark> 44156	0.123244	0.876756227	87.67562
11	0.14542386	1. <mark>0168791</mark>	0.125117	0.874883	87.4883
12	0.14458789	1.0137497	0.124824	0.875176381	87.51764
13	0.13978308	1.0153636	0.121009	0.878991056	87.89911
14	0.14330998	1.0152428	0.123697	0.876302588	87.63026
15	0.14062443	1.0122068	0.121982	0.878018199	87.80182
16	0.14238104	1.0149168	0.123029	0.876971135	87.69711
17	0.14314091	1.0163817	0.123448	0.87655186	87.65519
18	0.14222728	1.0175581	0.122632	0.877367587	87.73676
19	0.14146584	1.0166065	0.122156	0.877843693	87.78437
20	0.13960953	1.0168208	0.120725	0.879275451	87.92755
21	0.14337887	1.0161637	0.123651	0.876348766	87.63488
22	0.14376263	1.0153836	0.124025	0.875975415	87.59754
23	0.14375882	1.0118905	0.124397	0.875603423	87.56034
24	0.1420438	1.0115254	0.123134	0.876865818	87.68658
25	0.1416816	1.0124922	0.122756	0.877244138	87.72441
26	0.14187151	1.0099984	0.123166	0.876833739	87.68337
27	0.14048645	1.0096673	0.122146	0.8778542	87.78542
28	0.14416648	1.0109158	0.124811	0.875189428	87.51894
29	0.1413285	1.0113227	0.122612	0.87738832	87.73883
30	0.14233591	1.0138832	0.123105	0.876895384	87.68954

เวลา	อัตราการไหลเชิงมวล (กิโลกรัมต่อวินาที)		สัดส่วา	นโดยมวล	ร้อยอะเอะสิทธิออะเ
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	1.000201220101110
0	0	0	0	0	0
1	0.19907711	1.2603621	0.136407	0.863593421	86.359342
2	0.27852789	1.527 <mark>1205</mark>	0.154254	0.84574633	84.574633
3	0.29214999	1.5 <mark>865346</mark>	0.155508	0.844492263	84.449226
4	0.30333734	1.622811	0.157484	0.842516107	84.251611
5	0.29927841	1.6334088	0.154851	0.845149071	84.514907
6	0.29540384	1.6504811	0.15181	0.84819049	84.819049
7	0.29365361	1.6558166	0.150633	0.84936748	84.936748
8	0.29426113	1.656467	0.150847	0.849153183	84.915318
9	0.2885181	1.656619	0.148328	0.851672101	85.16721
10	0.29081923	1.6620182	0.148921	0.851078628	85.107863
11	0.28920069	1. <mark>6</mark> 593319	0.14842	0.851580265	85.158027
12	0.29081362	1.6626098	0.148874	0.851126173	85.112617
13	0.29145297	1.6609745	0.149277	0.850722767	85.072277
14	0.29109025	1.6633952	0.148934	0.851065532	85.106553
15	0.28979257	1.6617719	0.148492	0.85150756	85.150756
16	0.29259381	1.6628025	0.149634	0.85036598	85.036598
17	0.28859636	1.6630484	0.147873	0.852126593	85.212659
18	0.28871876	1.6630914	0.147924	0.852076413	85.207641
19	0.29130593	1.6630306	0.149056	0.850943824	85.094382
20	0.29019871	1.6631993	0.148561	0.851439026	85.143903
21	0.28796992	1.6633921	0.147574	0.852426194	85.242619
22	0.29098335	1.6630652	0.148913	0.851086939	85.108694
23	0.28796992	1.6633921	0.147574	0.852426194	85.242619
24	0.29098335	1.6630652	0.148913	0.851086939	85.108694
25	0.29078567	1.6630957	0.148825	0.851175371	85.117537
26	0.29124793	1.6630501	0.149029	0.850970566	85.097057
27	0.28886566	1.6633892	0.147965	0.852034862	85.203486
28	0.29018325	1.6631715	0.148556	0.851443651	85.144365
29	0.29096553	1.663028	0.148908	0.851091866	85.109187
30	0.289487	1.6633127	0.148242	0.851757966	85.175797

ตารางที่ ค33 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 13.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 107.8 ปาสคัล

เวลา	อัตราการไ (กิโลกรัม	หลเชิงมวล ต่อวินาที)	สัดส่วา	ิ่มโดยมวล	ร้อยอายุโอรสิทธิ์ออณ
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	1.67.8° T1°2 ND11 IM
0	0	0	0	0	0
1	0.38243768	1.913467 <mark>3</mark>	0.166574	0.833426173	83.342617
2	0.52624971	2.278 <mark>5585</mark>	0.187624	0.812375867	81.237587
3	0.51266122	2. <mark>419889</mark>	0.174818	0.825182458	82.518246
4	0.56725186	2.5887008	0.17974	0.820259706	82.025971
5	0.5893957	2.6540065	0.181721	0.818278566	81.827857
6	0.61441606	2.6697326	0.187085	0.812914663	81.291466
7	0.6132822	2.6733024	0.186602	0.813398322	81.339832
8	0.61732078	2.6801779	0.187209	0.812791197	81.27912
9	0.6122449	2.6 <mark>81764</mark> 4	0.185866	0.814133828	81.413383
10	0.61317277	2.6863565	0.185836	0.814163561	81.416356
11	0.61353832	2. <mark>6894</mark> 46	0.185753	0.81424728	81.424728
12	0.61646539	2.6924987	0.186302	0.813698374	81.369837
13	0.61657625	2.6 <mark>9</mark> 38038	0.186255	0.813744573	81.374457
14	0.61612386	2.6941803	0.186123	0.813876964	81.387696
15	0.61711043	2.695899	0.186269	0.813731158	81.373116
16	0.61730468	2.6968968	0.18626	0.813739544	81.373954
17	0.61885279	2.6967208	0.18665	0.813349705	81.33497
18	0.6193347	2.6967952	0.186764	0.813235694	81.323569
19	0.61940932	2.6957254	0.186843	0.81315712	81.315712
20	0.61880022	2.6956425	0.186698	0.813301881	81.330188
21	0.61837131	2.6951537	0.18662	0.813379616	81.337962
22	0.6183275	2.6960275	0.18656	0.813439568	81.343957
23	0.61893195	2.695632	0.186731	0.813268967	81.326897
24	0.61965561	2.6964538	0.186862	0.813137767	81.313777
25	0.61782902	2.6952708	0.186481	0.813519346	81.351935
26	0.61761212	2.6957695	0.186399	0.813600668	81.360067
27	0.61760795	2.6960616	0.186382	0.813618123	81.361812
28	0.6199156	2.6960385	0.186949	0.813050609	81.305061
29	0.61919922	2.6963327	0.186757	0.813242872	81.324287
30	0.61846447	2.6958058	0.186607	0.813393471	81.339347

ตารางที่ ค34 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 15.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 147.0 ปาสคัล

 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (1) ที่เวลา 0-30 วินาที อนุภาคของแข็งที่ใช้คือทราย ขนาดเส้นผ่านศูนย์กลาง 109.5 ไมโครเมตร ตารางที่ ค35 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (1) ที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 10.9 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 68.6 ปาสคัล

เวลา	อัตราการไเ (กิโลกรัมต	หลเชิงมวล ข่อวินาที)	สัดส่วเ	ิ่มโดยมวล	ร้อยอะบุโระสิทธิกาพ
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	<mark>ท่อแก๊ส</mark> ออก	ทางตกกลับ ของแข็ง	9.0.0.9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
0	0	0	0	0	0
1	0.10954364	2.4373004	0.043012	0.956988477	95.698848
2	0.10160274	2.5540488	0.038259	0.961740937	96.174094
3	0.085991025	2.5272975	0.032905	0.967094707	96.709471
4	0.077785425	2.6345246	0.028679	0.971321337	97.132134
5	0.053640902	2.7473788	0.01915	0.980849509	98.084951
6	0.090920962	2.5748026	0.034107	0.965892577	96.589258
7	0.086972579	2.5728557	0.032699	0.967301431	96.730143
8	0.043860011	2. <mark>3779</mark> 612	0.01811	0.981889658	98.188966
9	0.061974775	2.6810203	0.022594	0.977406166	97.740617
10	0.099036634	2.6822472	0.035608	0.964391756	96.439176
11	0.075431727	2.6018322	0.028175	0.971825069	97.182507
12	0.062240656	2.5627396	0.023711	0.976289096	97.62891
13	0.019562902	1.6956816	0.011405	0.988594686	98.859469
14	0.06092871	2.5757344	0.023108	0.976891735	97.689173
15	0.04195331	2.5882592	0.015951	0.98404946	98.404946
16	0.04392923	2.6008563	0.01661	0.983390249	98.339025
17	0.050168622	2.6374307	0.018667	0.981333296	98.13333
18	0.044647224	2.5356452	0.017303	0.982696836	98.269684
19	0.052322991	2.6505358	0.019358	0.980641611	98.064161
20	0.057751607	2.624938	0.021528	0.978472498	97.84725
21	0.054445453	2.6699452	0.019984	0.980015548	98.001555
22	0.048887704	2.6658609	0.018008	0.981991812	98.199181
23	0.068402708	2.5654397	0.025971	0.974029309	97.402931
24	0.086508386	2.5085204	0.033336	0.966663805	96.66638
25	0.06569127	2.6333373	0.024339	0.975661143	97.566114
26	0.056276586	2.5859256	0.021299	0.978700878	97.870088
27	0.073288426	2.6134138	0.027278	0.972721791	97.272179
28	0.050939523	2.6752758	0.018685	0.98131493	98.131493
29	0.047396764	2.5755982	0.01807	0.981930288	98.193029
30	0.059371799	2.6009104	0.022318	0.977682143	97.768214

เวลา	อัตราการไหลเชิงมวล (กิโลกรัมต่อวินาที)		สัดส่วา	นโดยมวล	2010×10×20200
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	1.0.0.9.0.001111.1.1.1.1.1.1.1.1.1.1.1.1
0	0	0	0	0	0
1	0.016295139	4.3202615	0.003758	0.996242378	99.624238
2	0.008697976	4.235 <mark>6763</mark>	0.002049	0.997950705	99.79507
3	0.021746237	4. <mark>7259593</mark>	0.00458	0.995419632	99.541963
4	0.02263739	4.4039207	0.005114	0.994886006	99.488601
5	0.032710914	4.4221401	0.007343	0.992657237	99.265724
6	0.02135393	4.396183	0.004834	0.9951661	99.51661
7	0.038045142	4.3976541	0.008577	0.991422966	99.142297
8	0.034245007	4.4720387	0.007599	0.99240061	99.240061
9	0.018155679	4. <mark>417273</mark>	0.004093	0.995906669	99.590667
10	0.033060767	4.520165	0.007261	0.992739045	99.273905
11	0.036959492	4. <mark>35525</mark> 37	0.008415	0.991585224	99.158522
12	0.019520724	<mark>4.313</mark> 4427	0.004505	0.995494833	99.549483
13	0.018141594	4. <mark>3911309</mark>	0.004114	0.995885581	99.588558
14	0.017990746	4.3113 <mark>012</mark>	0.004156	0.995844414	99.584441
15	0.02710785	4.349854	0.006193	0.993806697	99.38067
16	0.028476171	4.5269418	0.006251	0.993748944	99.374894
17	0.019240661	4.3833842	0.00437	0.99562973	99.562973
18	0.032320648	4.5677757	0.007026	0.992973919	99.297392
19	0.037153166	4.3771687	0.008417	0.991583494	99.158349
20	0.024782393	4.4536772	0.005534	0.994466313	99.446631
21	0.012757664	4.3506536	0.002924	0.997076218	99.707622
22	0.023049349	4.3584824	0.005261	0.994739431	99.473943
23	0.02054929	4.3964152	0.004652	0.995347644	99.534764
24	0.018812429	4.2617507	0.004395	0.995605151	99.560515
25	0.04783548	4.5808043	0.010335	0.989665327	98.966533
26	0.023236817	4.4974837	0.00514	0.994859931	99.485993
27	0.025384665	4.4645619	0.005654	0.994346332	99.434633
28	0.035319112	4.4527717	0.00787	0.992130482	99.213048
29	0.020958103	4.3513556	0.004793	0.995206633	99.520663
30	0.029644273	4.3518419	0.006766	0.993234197	99.32342

ตารางที่ ค36 ข้อมูลอัตราการไหลเซิงมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (1) ที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 13.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 107.8 ปาสคัล

เวลา	อัตราการไหลเชิงมวล (กิโลกรัมต่อวินาที)		สัดส่วา	นโดยมวล	20102102802000	
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	1.00000100000111M	
0	0	0	0	0	0	
1	0.090431966	8.86321 <mark>26</mark>	0.0101	0.989899983	98.989998	
2	0.088283554	8.8875742	0.009836	0.990164332	99.016433	
3	0.071039267	8.8557806	0.007958	0.992042041	99.204204	
4	0.092275739	8.8452225	0.010325	0.98967544	98.967544	
5	0.083353229	8.8484612	0.009332	0.990667828	99.066783	
6	0.080180489	8.8745899	0.008954	0.991046059	99.104606	
7	0.076064177	8.836113	0.008535	0.991465141	99.146514	
8	0.07921844	8.8842955	0.008838	0.991162122	99.116212	
9	0.0777613	8.8549099	0.008705	0.991294732	99.129473	
10	0.086496517	8.8452768	0.009684	0.990315863	99.031586	
11	0.081443876	8. <mark>8</mark> 57 <mark>4</mark> 419	0.009111	0.990888811	99.088881	
12	0.083310418	8.8650494	0.00931	0.990689867	99.068987	
13	0.082066305	8.8 <mark>6</mark> 07941	0.009177	0.99082326	99.082326	
14	0.087850183	8.8743515	0.009802	0.990197701	99.01977	
15	0.08064612	8.8387 <mark>585</mark>	0.009042	0.990958352	99.095835	
16	0.08660505	8.867198	0.009672	0.990327568	99.032757	
17	0.084304206	8.9091167	0.009374	0.990626014	99.062601	
18	0.08914382	8.8825684	0.009936	0.990063901	99.00639	
19	0.078023545	8.8799086	0.00871	0.991290005	99.129	
20	0.069783807	8.8425875	0.00783	0.992170007	99.217001	
21	0.061544069	8.8052664	0.006941	0.993059052	99.305905	
22	0.063304331	8.7679453	0.007168	0.992831781	99.283178	
23	0.075064593	8.7306242	0.008525	0.991475443	99.147544	
24	0.066824855	8.6933031	0.007628	0.992371703	99.23717	
25	0.078585117	8.655982	0.008997	0.991002975	99.100298	
26	0.070345379	8.6186609	0.008096	0.991904094	99.190409	
27	0.062105641	8.6813398	0.007103	0.992896892	99.289689	
28	0.063865903	8.8440187	0.00717	0.992830407	99.283041	
29	0.061543069	8.7066976	0.007019	0.992981138	99.298114	
30	0.082613573	8 4693765	0.00966	0 990339842	99.033984	

ตารางที่ ค37 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (1) ที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 15.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 147.0 ปาสคัล ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (1) ที่เวลา 0-30 วินาที อนุภาคของแข็งที่ใช้คือทราย ขนาดเส้นผ่านศูนย์กลาง 109.5 ไมโครเมตร ตารางที่ ค38 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (1) ที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 10.9 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 39.1 ปาสคัล

อัตราการไหลเชิงมวล เวลา (กิโลกรัมต่อวินาที) สัดส่วนโดยม		ิโดยมวล	ร้อยอะบุโระสิทธิกาพ		
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	<mark>ท่อแก๊ส</mark> ออก	ทางตกกลับ ของแข็ง	900920926979
0	0	0	0	0	100
1	0	3.2522914	0	1	100
2	0	3.1836395	0	1	100
3	0	3.1773298	0	1	100
4	0	3.1821375	0	1	100
5	0 🥖	3.1768415	0	1	100
6	0	3.1782093	0	1	100
7	0	3.1783001	0	1	100
8	0	3.1789312	0	1	100
9	0	3.1789234	0	1	100
10	0	3.1758859	0	1	100
11	0	3.1786501	0	1	100
12	0	3.1791 <mark>515</mark>	0	1	100
13	0	3.1793172	0	1	100
14	0	3.1791425	0	1	100
15	0	3.1793611	0	1	100
16	0	3.1749487	0	1	100
17	0	3.1780221	0	1	100
18	0	3.1780605	0	1	100
19	0	3.1796694	0	1	100
20	0	3.1781952	0	1	100
21	0	3.1806598	0	1	100
22	0	3.1808233	0	1	100
23	0	3.1786718	0	1	100
24	0	3.1789327	0	1	100
25	0	3.1790032	0	1	100
26	0	3.1787133	0	1	100
27	0	3.1763289	0	1	100
28	0	3.1790302	0	1	100
29	0	3.1781392	0	1	100
30	0	3.1791358	0	1	100

เวลา	อัตราการไหลเชิงมวล (กิโลกรัมต่อวินาที)		สัดส่วา	นโดยมวล	อ้อยอะเปละสิทธิภาพ
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	9.0.0.0.0.1091 IM
0	0	0	0	0	100
1	0	5.1168942	0	1	100
2	0	5.128 <mark>68</mark> 4	0	1	100
3	0	5.1271992	0	1	100
4	0	5.149971	0	1	100
5	0	5.0989633	0	1	100
6	0	5.1013241	0	1	100
7	0	5.1226182	0	1	100
8	0 🤞	5.1357799	0	1	100
9	0	5.124373	0	1	100
10	0	5.1492119	0	1	100
11	0	5. <mark>11530</mark> 45	0	1	100
12	0	5.1182938	0	1	100
13	0	5.1 <mark>1</mark> 97982	0	1	100
14	0	5.119338	0	1	100
15	0	5.1251135	0	1	100
16	0	5.1273899	0	1	100
17	0	5.1390123	9.29E-14	1	100
18	4.77E-13	5.1390123	3.03E-10	1	100
19	1.56E-09	5.1268473	3.03E-10	1	100
20	1.01E-08	5.1165233	1.97E-09	0.999999998	100
21	2.15E-08	5.1413064	4.18E-09	0.999999996	100
22	3.76E-08	5.1279588	7.34E-09	0.999999993	100
23	7.12E-08	5.125289	1.39E-08	0.999999986	100
24	1.15E-07	5.1238589	2.25E-08	0.999999977	100
25	1.50E-07	5.1161504	2.94E-08	0.999999971	100
26	1.73E-07	5.1305876	3.38E-08	0.999999966	100
27	1.98E-07	5.126009	3.87E-08	0.999999961	100
28	2.14E-07	5.1438828	4.17E-08	0.999999958	100
29	2.39E-07	5.1035457	4.68E-08	0.999999953	100
30	2 64F-07	5 122498	5 15E-08	0 999999948	0 9999999

ตารางที่ ค39 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (1) ที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 13.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 78.4 ปาสคัล

ตารางที่	ค40	ข้อมูล	อัตราก'	ารไหลเจ้	ชิงมวลจ	ากแบบ	จำลอง	ไซโคลนเ	เบบสี่เห	เลี้ยม ((1) ที่เ	เวลา 0	- 30
วินาที ค	วามเร็	เวอาก	าศขาเข้	í ำ 15.0	เมตรต่อ	เวินาที่ เ	ความดั	นลดตกค	เร่อมไซโ	โคลน	98.0	ปาสคั	ล

เวลา	อัตราการ (กิโลกรัม	ใหลเชิงมวล เต่อวินาที)	สัดส่วา	นโดยมวล	ร้อยอาประสิทธิกาพ	
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง		
0	0	0	0	0	0	
1	0	5.9126363	0	1	100	
2	0	5.911 <mark>2792</mark>	0	1	100	
3	0	5.9 <mark>194031</mark>	0	1	100	
4	0	5.9043164	0	1	100	
5	0	5.9308138	0	1	100	
6	0	5.9577703	0	1	100	
7	0	5.8895855	0	1	100	
8	3.37E-09 🤞	5.9634151	5.66E-10	0.999999999	100	
9	1.70E-07	5.9449077	2.85E-08	0.999999971	100	
10	5.03E-07	5.8631711	8.58E-08	0.999999914	100	
11	5.41E-07	5. <mark>9346</mark> 576	9.12E-08	0.999999909	100	
12	3.01E-07	5.9940934	5.01E-08	0.99999995	100	
13	5.95E-07	5.9526029	1E-07	0.9999999	100	
14	5.53E-07	5.9153724	9.34E-08	0.999999907	100	
15	5.03E-07	5.9290757	8.48E-08	0.999999915	100	
16	1.08E-06	5.9079313	1.83E-07	0.999999817	100	
17	8.58E-07	5.9074092	1.45E-07	0.999999855	100	
18	1.10E-06	5.9080276	1.86E-07	0.999999814	100	
19	1.11E-06	5.8884459	1.88E-07	0.999999812	100	
20	1.30E-06	5.9877877	2.18E-07	0.999999782	100	
21	1.75E-06	5.8976626	2.96E-07	0.999999704	100	
22	2.33E-06	5.8694243	3.98E-07	0.999999602	100	
23	1.88E-06	5.8819485	3.2E-07	0.99999968	100	
24	5.70E-06	5.888321181	9.67E-07	0.999999033	100	
25	6.27E-06	5.884258466	1.07E-06	0.999998934	100	
26	6.85E-06	5.880195751	1.16E-06	0.999998835	100	
27	7.43E-06	5.876133036	1.26E-06	0.999998736	100	
28	8.00E-06	5.872070321	1.36E-06	0.999998637	100	
29	8.58E-06	5.868007606	1.46E-06	0.999998538	100	
30	9.16E-06	5.863944891	1.56E-06	0.999998438	100	

 ข้อมูลอัตราการไหลของมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (1) ที่เวลา 0-30 วินาที อนุภาคของแข็งที่ใช้คือทราย ขนาดเส้นผ่านศูนย์กลาง 73 ไมโครเมตร ตารางที่ ค41 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (1) ที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 10.9 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 39.1 ปาสคัล

เวลา	อัตราการไเ (กิโลกรัมเ	ุ่งลเชิงมวล ข่อวินาที)	สัดส่วเ	ิ่มโดยมวล	ว้อยอะประสิทธิกาพ	
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	<mark>ท่อแก๊ส</mark> ออก	ทางตกกลับ ของแข็ง	9.0.0.9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	
0	0	0	0	0	0	
1	0	3.3633399	0	1	100	
2	0.007687692	3.4849515	0.002201	0.997798887	99.779889	
3	0.038045015	2.8553994	0.013149	0.986851306	98.685131	
4	0.011555279	3.3634722	0.003424	0.996576242	99.657624	
5	0.000730622	3.3564193	0.000218	0.999782368	99.978237	
6	0.004687095	3.3918729	0.00138	0.998620046	99.862005	
7	0.018674692	3.2576802	0.0057	0.994300162	99.430016	
8	0.011191428	3.3784554	0.003302	0.99669835	99.669835	
9	0.044628859	3.0668011	0.014344	0.98565648	98.565648	
10	0.00687734	4.5123615	0.001522	0.998478208	99.847821	
11	0.008730592	3.3677061	0.002586	0.997414259	99.741426	
12	0.003840644	3.5862005	0.00107	0.998930195	99.89302	
13	0.008251064	3.3656025	0.002446	0.99755441	99.755441	
14	0.003834928	3.3544905	0.001142	0.998858083	99.885808	
15	0.003586197	3.3290787	0.001076	0.998923925	99.892393	
16	0.000303381	3.3744316	8.99E-05	0.999910102	99.99101	
17	0.006684697	2.1542444	0.003093	0.996906564	99.690656	
18	0.007301793	3.3675592	0.002164	0.997836417	99.783642	
19	0.01051502	3.1387913	0.003339	0.996661163	99.666116	
20	0.005382382	3.3776121	0.001591	0.998408989	99.840899	
21	0.006254536	3.3354347	0.001872	0.998128331	99.812833	
22	0.002311834	3.3682952	0.000686	0.999314119	99.931412	
23	0.004244356	3.39856	0.001247	0.998752689	99.875269	
24	0.00805557	3.3941023	0.002368	0.997632218	99.763222	
25	0.003952809	3.3779099	0.001169	0.998831174	99.883117	
26	0.015804501	3.0898132	0.005089	0.994910996	99.4911	
27	0.011553094	4.6402984	0.002484	0.997516453	99.751645	
28	0.008290746	3.3716588	0.002453	0.99754708	99.754708	
29	0.002236838	3.369936	0.000663	0.999336678	99.933668	
30	0.035709724	3.5118823	0.010066	0.989934095	98.99341	

เวลา	อัตราการไเ (กิโลกรัมเ	ุ่งลเชิงมวล ข่อวินาที)	สัดส่วเ	ิ่มโดยมวล	ร้อยอะบุโระสิทธิกาพ	
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	1.65827122811011111	
0	0	0	0	0	0	
1	5.17E-05	4.095634	1.26E-05	0.999987366	99.998737	
2	0.01485715	4.0814805	0.003627	0.996373065	99.637307	
3	0.014703115	4.082015	0.003589	0.996411002	99.6411	
4	0.013725471	4.082458	0.003351	0.996649205	99.664921	
5	0.014796821	4.0828509	0.003611	0.996388948	99.638895	
6	0.014367312	4.0869217	0.003503	0.996496879	99.649688	
7	0.01374998	4.0816569	0.003357	0.996642585	99.664259	
8	0.013547797	4.0865698	0.003304	0.996695754	99.669575	
9	0.013581719	4.0856662	0.003313	0.996686778	99.668678	
10	0.013822244	4.0841942	0.003373	0.996627089	99.662709	
11	0.015284915	4.080409	0.003732	0.996268052	99.626805	
12	0.01545753	<mark>4.0826402</mark>	0.003772	0.996228121	99.622812	
13	0.015918134	4.0822253	0.003884	0.996115769	99.611577	
14	0.015513582	4.0809078	0.003787	0.996212894	99.621289	
15	0.015565725	4.0795703	0.003801	0.996198972	99.619897	
16	0.015430979	4.0822873	0.003766	0.996234251	99.623425	
17	0.015415978	4.079886	0.003764	0.996235692	99.623569	
18	0.015512619	4.0831161	0.003785	0.996215169	99.621517	
19	0.014939751	4.0851407	0.003644	0.99635623	99.635623	
20	0.014756273	4.0812745	0.003603	0.996397421	99.639742	
21	0.01565684	4.0834193	0.00382	0.996180398	99.61804	
22	0.015354593	4.0864291	0.003743	0.996256606	99.625661	
23	0.014904651	4.086381	0.003634	0.996365859	99.636586	
24	0.015734866	4.0820775	0.00384	0.996160179	99.616018	
25	0.015679346	4.0813537	0.003827	0.996173	99.6173	
26	0.015331596	4.0812082	0.003743	0.996257428	99.625743	
27	0.015380898	4.0841813	0.003752	0.996248161	99.624816	
28	0.014879344	4.0806923	0.003633	0.996366968	99.636697	
29	0.014756696	4.0894523	0.003596	0.996404497	99.64045	
30	0.015019192	4.0822301	0.003666	0.996334323	99.633432	

ตารางที่ ค42 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 13.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 78.4 ปาสคัล

เวลา (วินาที)	อัตราการไ (กิโลกรัม	หลเชิงมวล ต่อวินาที)	สัดส่วเ	ิโดยมวล	ร้อยอะประสิทธิภาพ	
	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	90064×119×64411191 144	
0	0	0	0	0	0	
1	2.57E-05	3.99217 <mark>6</mark>	6.44E-06	0.999994	99.99936	
2	0.009956	3.96 <mark>8695</mark>	0.002502	0.997498	99.74976	
3	0.039465	3.287503	0.011862	0.988138	98.81378	
4	0.101553	4.152527	0.023872	0.976128	97.61281	
5	0.06324	4.041527	0.015406	0.984594	98.45936	
6	0.035932	3.531854	0.010071	0.989929	98.99288	
7	0.090483	4.426213	0.020033	0.979967	97.9967	
8	0.086887 🤞	3.32556	0.025462	0.974538	97.45383	
9	0.070709	3.94356	0.017614	0.982386	98.23855	
10	0.084344 🥌	4.264499	0.019395	0.980605	98.06055	
11	0.077842	3. <mark>5</mark> 44489	0.021489	0.978511	97.85106	
12	0.075752	3.710031	0.020009	0.979991	97.99905	
13	0.096094	4. <mark>13</mark> 6216	0.022705	0.977295	97.72951	
14	0.101361	4.241726	0.023338	0.976662	97.66616	
15	0.131284	3.707668	0.034198	0.965802	96.58021	
16	0.12499	4.139483	0.02931	0.97069	97.06905	
17	0.095152	4.438139	0.02099	0.97901	97.90105	
18	0.087683	3.60214	0.023763	0.976237	97.62366	
19	0.10141	3.732981	0.026447	0.973553	97.35526	
20	0.126734	4.064226	0.03024	0.96976	96.97602	
21	0.134644	4.178996	0.031213	0.968787	96.87865	
22	0.098057	3.667517	0.02604	0.97396	97.39595	
23	0.078148	3.872317	0.019782	0.980218	98.02179	
24	0.103543	3.776517	0.026310	0.973690	97.36894	
25	0.103649	3.736492	0.026514	0.973486	97.34859	
26	0.103755	3.696467	0.026717	0.973283	97.32824	
27	0.103861	3.656442	0.026920	0.973080	97.30789	
28	0.103967	3.616417	0.027124	0.972876	97.28754	
29	0.104073	3.576393	0.027327	0.972673	97.26719	
30	0.104179	3.536368	0.027531	0.972469	97.24684	

ตารางที่ ค43 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 15.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 98.0 ปาสคัล

 7. ข้อมูลอัตราการไหลของมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (1) ที่เวลา 0-30 วินาที อนุภาคของแข็งที่ใช้คือถ่านหิน ขนาดเส้นผ่านศูนย์กลาง 73 ไมโครเมตร ตารางที่ ค44 ข้อมูลอัตราการไหลเซิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 10.9 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 39.1 ปาสคัล

เวลา	อัตราการไเ (กิโลกรัมต	หลเชิงมวล ต่อวินาที)	สัดส่วา	ิ่มโดยมวล	ร้อยอะบุโระสิทธิกาพ
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	9.0.0.9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
0	0	0	0	0	0
1	0.006881855	1.9068848	0.003596	0.996404026	99.640403
2	0.025561579	1.7561625	0.014347	0.985653458	98.565346
3	0.0344177	1.7338934	0.019464	0.9805364	98.05364
4	0.033916168	1.7575432	0.018932	0.981067855	98.106786
5	0.033662062	1.7422954	0.018954	0.981045682	98.104568
6	0.035455499	1.7 <mark>47748</mark> 7	0.019883	0.980116972	98.011697
7	0.034522649	<mark>1.7474678</mark>	0.019373	0.980626917	98.062692
8	0.034434509	<mark>1.749</mark> 8	0.019299	0.980700682	98.070068
9	0.034103233	<mark>1.7465107</mark>	0.019153	0.980847486	98.084749
10	0.034477394	1.7486249	0.019336	0.980664377	98.066438
11	0.034559771	1.7465439	0.019404	0.980596429	98.059643
12	0.034445196	1.7494899	0.019309	0.980691452	98.069145
13	0.033707395	1.7477133	0.018922	0.981078363	98.107836
14	0.03416615	1.7490846	0.019159	0.980840524	98.084052
15	0.034278948	1.7479706	0.019234	0.980766471	98.076647
16	0.034132808	1.748117	0.019152	0.980848471	98.084847
17	0.034346186	1.7480776	0.019269	0.980730629	98.073063
18	0.034564581	1.7479059	0.019391	0.98060861	98.060861
19	0.034332182	1.7478852	0.019264	0.980736255	98.073625
20	0.034160614	1.7487741	0.01916	0.980840233	98.084023
21	0.034048658	1.7477317	0.019109	0.980890654	98.089065
22	0.033420995	1.7478933	0.018762	0.981238013	98.123801
23	0.034020063	1.7493947	0.019076	0.9809242	98.09242
24	0.034309868	1.7486458	0.019243	0.980756746	98.075675
25	0.033986751	1.7472292	0.019081	0.980919354	98.091935
26	0.034028511	1.7481052	0.019094	0.980905748	98.090575
27	0.03443028	1.7489147	0.019307	0.980693427	98.069343
28	0.03429383	1.7468488	0.019254	0.980746163	98.074616
29	0.034162387	1.7478862	0.01917	0.980829711	98.082971
30	0.034195658	1.7492954	0.019173	0.98082656	98.082656

เวลา	อัตราการไเ (กิโลกรัมเ	ุ่งลเชิงมวล ข่อวินาที)	สัดส่วา	ิ่มโดยมวล	้อยอะเอาสิทธิออะเ	
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	1.67.8122.811011111	
0	0	0	0	0	0	
1	0.014101763	2.41905 <mark>3</mark> 1	0.005796	0.99420433	99.420433	
2	0.033693388	2.23 <mark>6807</mark> 1	0.01484	0.98516037	98.516037	
3	0.045829237	2.244154	0.020013	0.979987086	97.998709	
4	0.046944503	2.2512398	0.020427	0.979573221	97.957322	
5	0.047162998	2.2507007	0.020525	0.979475285	97.947528	
6	0.046280921	2.2512603	0.020144	0.979856326	97.985633	
7	0.047399253	2.2527227	0.020607	0.979392722	97.939272	
8	0.047525421	2.2515223	0.020672	0.979328215	97.932821	
9	0.046389963	2.2542434	0.020164	0.979836004	97.9836	
10	0.047536362	2.2533522	0.02066	0.979339998	97.934	
11	0.046835117	2.2508407	0.020384	0.979616308	97.961631	
12	0.046980515	2.2509396	0.020445	0.979555201	97.95552	
13	0.046728812	2.2507071	0.02034	0.97966045	97.966045	
14	0.046916626	2.2509243	0.020418	0.9795823	97.95823	
15	0.046846338	2.2509499	0.020388	0.979612493	97.961249	
16	0.046779085	2.251049	0.020358	0.979642043	97.964204	
17	0.046767823	2.2511086	0.020353	0.979647372	97.964737	
18	0.046888754	2.251637	0.020399	0.97960051	97.960051	
19	0.04652812	2.2504237	0.020256	0.979743537	97.974354	
20	0.046806704	2.2510271	0.02037	0.979630074	97.963007	
21	0.046701916	2.2509747	0.020326	0.979674287	97.967429	
22	0.046630833	2.2516191	0.02029	0.979710286	97.971029	
23	0.046638474	2.2522671	0.020287	0.979712749	97.971275	
24	0.046910845	2.2511253	0.020413	0.97958655	97.958655	
25	0.046970334	2.25207	0.02043	0.979569591	97.956959	
26	0.046575464	2.2516766	0.020266	0.979734397	97.97344	
27	0.047095906	2.2504988	0.020498	0.979502083	97.950208	
28	0.046986878	2.2501853	0.020454	0.979545774	97.954577	
29	0.04703974	2.2514036	0.020466	0.979534088	97.953409	
30	0.04693773	2.2508652	0.020427	0.979572778	97.957278	

ตารางที่ ค45 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 13.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 78.4 ปาสคัล

เวลา	อัตราการไเ (กิโลกรัมเ	ุ่งลเชิงมวล ข่อวินาที)	สัดส่วา	ิ่มโดยมวล	ร้อยอายุโอรสิทธิ์ออต	
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	1.07.0222001110	
0	0	0	0	0	0	
1	0.023491537	3.33845 <mark>45</mark>	0.006987	0.993012518	99.30125	
2	0.04824312	3.228 <mark>5318</mark>	0.014723	0.985277255	98.52773	
3	0.054316234	3.2 <mark>619388</mark>	0.016379	0.983621213	98.36212	
4	0.056867763	3.2574878	0.017158	0.982841985	98.2842	
5	0.059006713	3.2548802	0.017806	0.982194108	98.21941	
6	0.060153417	3.2546816	0.018147	0.98185327	98.18533	
7	0.059663408	3.2539885	0.018005	0.981994666	98.19947	
8	0.060501404	3.2564173	0.01824	0.981759757	98.17598	
9	0.05964968	3.2558076	0.017991	0.982008611	98.20086	
10	0.05985811	3.2564659	0.01805	0.981950464	98.19505	
11	0.059655894	3.2534082	0.018006	0.98199374	98.19937	
12	0.060159761	<mark>3.2534568</mark>	0.018155	0.981844682	98.18447	
13	0.059879471	3.2546971	0.018065	0.981934504	98.19345	
14	0.060160059	3.2555864	0.018144	0.981856255	98.18563	
15	0.059988923	3.2548399	0.018097	0.981902859	98.19029	
16	0.060084436	3.2540658	0.01813	0.981870334	98.18703	
17	0.059840214	3.2537708	0.018059	0.981941087	98.19411	
18	0.060254917	3.2557857	0.018171	0.981829258	98.18293	
19	0.060166195	3.2542248	0.018153	0.981846983	98.1847	
20	0.060005665	3.2545509	0.018104	0.981896322	98.18963	
21	0.06001965	3.2539051	0.018111	0.98188865	98.18887	
22	0.060506053	3.2527995	0.018262	0.981738463	98.17385	
23	0.059903178	3.2541366	0.018076	0.981924424	98.19244	
24	0.059854776	3.2534249	0.018065	0.981934886	98.19349	
25	0.05951044	3.2546577	0.017956	0.982043627	98.20436	
26	0.060056284	3.2544196	0.018119	0.981880609	98.18806	
27	0.060025152	3.2536521	0.018114	0.981885637	98.18856	
28	0.0599485	3.2536769	0.018092	0.981908486	98.19085	
29	0.059763346	3.2534814	0.018038	0.981962291	98.19623	
30	0.059662189	3.253515	0.018008	0.981992454	98.19925	

ตารางที่ ค46 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 15.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 98.0 ปาสคัล

 ข้อมูลอัตราการไหลของมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (2) ที่เวลา 0-30 วินาที อนุภาคของแข็งที่ใช้คือทราย ขนาดเส้นผ่านศูนย์กลาง 109.5 ไมโครเมตร ตารางที่ ค47 ข้อมูลอัตราการไหลเซิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 10.9 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 49.0 ปาสคัล

เวลา	อัตราการไเ (กิโลกรัมต	ุ่งสเชิงมวล ข่อวินาที)	สัดส่วเ	ิ่มโดยมวล	ร้อยอาประสิทธิกาพ	
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	<mark>ท่อแก๊สออ</mark> ก	ทางตกกลับ ของแข็ง	9.0.0.9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	
0	0	0	0	0	0	
1	0	2.5026898	0	1	100	
2	0.029163862	2.5912199	0.01113	0.988870385	98.887039	
3	0.032709174	2.5144262	0.012842	0.987158447	98.715845	
4	0.031471312	2.5415049	0.012231	0.987768518	98.776852	
5	0.031120326	2.553658	0.01204	0.987960157	98.796016	
6	0.029517421	2.5465455	0.011458	0.988541654	98.854165	
7	0.029363567	2.5445936	0.011408	0.988592053	98.859205	
8	0.029383995	2. <mark>5493</mark> 016	0.011395	0.988605049	98.860505	
9	0.029692834	2.5480037	0.011519	0.988480865	98.848087	
10	0.029774217	2.5463986	0.011558	0.988442461	98.844246	
11	0.029306121	2.5481758	0.01137	0.988629941	98.862994	
12	0.029559258	2.5478 <mark>365</mark>	0.011469	0.988531347	98.853135	
13	0.029636864	2.5477245	0.011499	0.988501083	98.850108	
14	0.029448068	2.5472341	0.011429	0.988571323	98.857132	
15	0.029922564	2.5477209	0.011608	0.988391504	98.83915	
16	0.029503467	2.5478587	0.011447	0.988552844	98.855284	
17	0.029708611	2.5469232	0.01153	0.988469982	98.846998	
18	0.029508794	2.548594	0.011446	0.988554066	98.855407	
19	0.029876279	2.5475469	0.011592	0.98840847	98.840847	
20	0.029841911	2.5478468	0.011577	0.988422997	98.8423	
21	0.029909816	2.546998	0.011607	0.988393137	98.839314	
22	0.030262712	2.5474439	0.01174	0.988259831	98.825983	
23	0.029532794	2.5476565	0.011459	0.988540697	98.85407	
24	0.029895883	2.5465913	0.011603	0.98839665	98.839665	
25	0.02983997	2.5476813	0.011577	0.988422998	98.8423	
26	0.029600726	2.5478699	0.011484	0.988515591	98.851559	
27	0.029849036	2.5472491	0.011582	0.988417579	98.841758	
28	0.029701753	2.5477843	0.011524	0.988476464	98.847646	
29	0.029615389	2.5471153	0.011493	0.988506603	98.85066	
30	0.029999411	2.5477681	0.011638	0.988362251	98.836225	

เวลา	อัตราการไเ (กิโลกรัมเ	หลเชิงมวล ต่อวินาที)	สัดส่วา	ิ่มโดยมวล	้อยอะเอาสิทธิออะเ	
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	1.6582712281191.1M	
0	0	0	0	0	0	
1	0.058063727	3.59331 <mark>8</mark>	0.015902	0.984098149	98.409815	
2	0.098090172	3.89 <mark>18271</mark>	0.024585	0.975415487	97.541549	
3	0.14091919	3.9313195	0.034605	0.965395155	96.539515	
4	0.13728411	3.9153755	0.033875	0.966124934	96.612493	
5	0.14010343	3.9164968	0.034537	0.965462845	96.546285	
6	0.14991052	3.9324446	0.036722	0.963278422	96.327842	
7	0.14935322	3.9211888	0.036691	0.963308763	96.330876	
8	0.1852406	3.92804	0.045035	0.954965241	95.496524	
9	0.12999174	3. <mark>937206</mark> 7	0.031961	0.968038997	96.8039	
10	0.13113552	3.9410954	0.032202	0.967797622	96.779762	
11	0.15443406	3.9503214	0.037623	0.962376794	96.237679	
12	0.16026239	<mark>3.9352264</mark>	0.039131	0.960868556	96.086856	
13	0.13741606	3.9553018	0.033576	0.966424253	96.642425	
14	0.16703029	3.9370842	0.040698	0.959301747	95.930175	
15	0.15299658	3.947763	0.037309	0.962690673	96.269067	
16	0.17197175	3.943222	0.041789	0.958210534	95.821053	
17	0.14732942	3.9412546	0.036034	0.963965662	96.396566	
18	0.15742855	3.9399869	0.038421	0.961578573	96.157857	
19	0.14573303	3.9414997	0.035656	0.964344328	96.434433	
20	0.1701193	3.9432387	0.041358	0.958642233	95.864223	
21	0.15108959	3.9370351	0.036958	0.963041834	96.304183	
22	0.16719516	3.9448185	0.04066	0.959339834	95.933983	
23	0.16436997	3.9382744	0.040064	0.959935604	95.99356	
24	0.15700889	3.9428277	0.038296	0.961703622	96.170362	
25	0.14686824	3.9361577	0.03597	0.96402956	96.402956	
26	0.15253745	3.9475245	0.037204	0.962796306	96.279631	
27	0.14371534	3.9400642	0.035192	0.964808252	96.480825	
28	0.15495199	3.9553518	0.037698	0.962301572	96.230157	
29	0.15681882	3.940135	0.038277	0.961723069	96.172307	
30	0.15690696	3.9498563	0.038207	0.961793035	96.179304	

ตารางที่ ค48 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 13.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 78.4 ปาสคัล

เวลา	อัตราการไ (กิโลกรัม	หลเชิงมวล ต่อวินาที)	สัดส่วา	นโดยมวล	อ้อยอะเอะสิทธิภณ	
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	. 1.กฏณ [∞] การช (เกิร) เพ	
0	0	0	0	0	0	
1	0.28341195	5.5450544	0.048625	0.951374524	95.137452	
2	1.046984	6.256 <mark>1722</mark>	0.14336	0.856639517	85.663952	
3	1.3075248	6.5 <mark>120859</mark>	0.167211	0.832789016	83.278902	
4	1.5232818	6.5435309	0.188833	0.811166832	81.116683	
5	1.5511454	6.5832968	0.190689	0.809311399	80.93114	
6	1.7126328	6.6014156	0.205993	0.794007357	79.400736	
7	1.7942901	6.5617094	0.214731	0.785269243	78.526924	
8	1.7850043	6.5346127	0.214554	0.785446337	78.544634	
9	1.7956027	6.5147033	0.216069	0.783930616	78.393062	
10	1.7622216	6.5089874	0.213055	0.786945101	78.69451	
11	1.7536803	6. <mark>5181</mark> 789	0.212006	0.787994421	78.799442	
12	1.7572273	6.5205731	0.212282	0.787718088	78.771809	
13	1.7540941	6.5205331	0.211985	0.788015332	78.801533	
14	1.7531236	6.5208592	0.211884	0.788116117	78.811612	
15	1.7548318	6.5212936	0.212035	0.787964571	78.796457	
16	1.7547925	6.5209813	0.21204	0.787960311	78.796031	
17	1.7547674	6.5208087	0.212042	0.787958279	78.795828	
18	1.7551861	6.5209332	0.212078	0.787921605	78.79216	
19	1.7546989	6.5208011	0.212035	0.787964606	78.796461	
20	1.7547851	6.5207472	0.212045	0.787955018	78.795502	
21	1.7548084	6.5209689	0.212042	0.78795848	78.795848	
22	1.7549844	6.5208254	0.212062	0.787938046	78.793805	
23	1.7549481	6.5208812	0.212057	0.787942932	78.794293	
24	1.7548649	6.5209231	0.212048	0.787951927	78.795193	
25	1.7549268	6.5208349	0.212056	0.787943773	78.794377	
26	1.7549909	6.5207567	0.212064	0.787935666	78.793567	
27	1.7547177	6.5208035	0.212037	0.787962878	78.796288	
28	1.7548347	6.5208788	0.212046	0.787953667	78.795367	
29	1.7549899	6.5208898	0.212061	0.787939172	78.793917	
30	1.7550249	6.5206509	0.21207	0.787929718	78.792972	

ตารางที่ ค49 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 15.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 98.0 ปาสคัล

 ข้อมูลอัตราการไหลของมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (2) ที่เวลา 0-30 วินาที อนุภาคของแข็งที่ใช้คือทราย ขนาดเส้นผ่านศูนย์กลาง 73 ไมโครเมตร ตารางที่ ค50 ข้อมูลอัตราการไหลเซิงมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (2) ที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 10.9 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 49.0 ปาสคัล

เวลา	อัตราการไ (กิโลกรัมเ	หลเชิงมวล ต่อวินาที)	สัดส่วเ	ิ่มโดยมวล	ร้อยอาประสิทธิกาพ	
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	
0	0	0	0	0	0	
1	0.23038855	2.73964	0.077571	0.922428843	92.242884	
2	0.4059948	3.1013446	0.115756	0.884244222	88.424422	
3	0.50912011	3.1752958	0.138182	0.861817959	86.181796	
4	0.53959662	3.1838493	0.144919	0.855081387	85.508139	
5	0.56517202	3.1860719	0.150663	0.849337438	84.933744	
6	0.42734718	3.0712812	0.122147	0.877852937	87.785294	
7	0.56819397	3.2720027	0.14796	0.852040398	85.20404	
8	0.55333513	3.1 <mark>625</mark> 443	0.148911	0.851089052	85.108905	
9	0.56850642	3 <mark>.1899383</mark>	0.151261	0.848738917	84.873892	
10	0.54847872	3.1 <mark>7</mark> 73877	0.147208	0.852791631	85.279163	
11	0.56281108	3.1699522	0.150776	0.84922401	84.922401	
12	0.5558126	3.1723764	0.149084	0.850916196	85.09162	
13	0.56604719	3.1616635	0.151848	0.848151523	84.815152	
14	0.555094	3.1504641	0.1498	0.850199623	85.019962	
15	0.54506797	3.1505795	0.147489	0.852510832	85.251083	
16	0.54989272	3.1633129	0.148091	0.851908896	85.19089	
17	0.54301077	3.1631832	0.146514	0.853485604	85.34856	
18	0.55740005	3.1494117	0.150372	0.849628174	84.962817	
19	0.55878264	3.1605718	0.150236	0.849763541	84.976354	
20	0.55724913	3.1616993	0.149841	0.85015949	85.015949	
21	0.55136436	3.1619658	0.148482	0.85151755	85.151755	
22	0.55226928	3.1529555	0.149051	0.850948508	85.094851	
23	0.55352962	3.1595144	0.149077	0.850922958	85.092296	
24	0.56011939	3.1586456	0.15062	0.849380267	84.938027	
25	0.54521191	3.1453919	0.14773	0.852270268	85.227027	
26	0.55746752	3.1607449	0.149929	0.850071094	85.007109	
27	0.55846041	3.1597004	0.150198	0.849801975	84.980198	
28	0.54604381	3.1501884	0.14773	0.852270155	85.227016	
29	0.55776441	3.1633148	0.149893	0.850106816	85.010682	
30	0.56345689	3.1614826	0.151266	0.848733948	84.873395	

เวลา	อัตราการไ (กิโลกรัม	หลเชิงมวล ต่อวินาที)	สัดส่วน	โดยมวล	ร้อยเอรรไอรสิทธิภาพ
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ี่ 1.ถุฎีข∽า1∿ช เบอิ่า I.M
0	0	0	0	0	0
1	0.38891095	3.1941767	0.108541	0.89145927	89.145927
2	0.5915783	3.623 <mark>1217</mark>	0.140361	0.859639286	85.963929
3	0.74563283	3.6768541	0.1686	0.831399653	83.139965
4	0.77630866	3.6575513	0.175086	0.824913582	82.491358
5	0.78566486	3.6541541	0.176959	0.82304124	82.304124
6	0.51679462	3.4739518	0.129498	0.870501764	87.050176
7	0.48097938	3.5845547	0.118307	0.881693433	88.169343
8	0.56488764	3.7618728	0.130557	0.869443283	86.944328
9	0.73111409	3. <mark>913142</mark> 2	0.157423	0.842576713	84.257671
10	0.75899303	3.8500519	0.164675	0.835325313	83.532531
11	0.5731355	3.7344148	0.133054	0.866946301	86.69463
12	0.91517591	3.8628376	0.191539	0.808461004	80.8461
13	0.56689537	3.6793008	0.133507	0.866493363	86.649336
14	0.65839058	3.8130522	0.147243	0.852756568	85.275657
15	0.38341877	3.718502	0.093473	0.906527017	90.652702
16	0.65083975	3.8202658	0.145566	0.854434268	85.443427
17	0.4464334	3.6631527	0.108632	0.891367795	89.136779
18	0.39727032	3.7976217	0.094703	0.905296652	90.529665
19	0.54360586	3.9209895	0.121759	0.878240733	87.824073
20	0.56168073	3.9581552	0.12427	0.875729841	87.572984
21	0.57261759	3.8619061	0.129127	0.870872808	87.087281
22	0.56069386	3.8516636	0.127074	0.872926465	87.292647
23	0.39727032	3.7976217	0.094703	0.905296652	90.529665
24	0.526848807	3.900502557	0.118655857	0.881344174	88.13441771
25	0.534290578	3.916659964	0.119738821	0.880261255	88.02612593
26	0.541732348	3.932817371	0.120821786	0.879178336	87.91783414
27	0.549174118	3.948974779	0.12190475	0.878095417	87.80954236
28	0.556615889	3.965132186	0.122987714	0.877012499	87.70125057
29	0.564057659	3.981289593	0.124070679	0.87592958	87.59295879
30	0.571499429	3.997447	0.125153643	0.874846661	87.484667

ตารางที่ ค51 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (2) ที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 13.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 78.4 ปาสคัล

เวลา	อัตราการไ (กิโลกรัม	หลเชิงมวล ต่อวินาที)	สัดส่วา	นโดยมวล	ร้อยอายุโอะสิทธิ์ ออย
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	1.0.0.00010.00011111
0	0	0	0	0	0
1	0.4586581	3.6041842	0.112891	0.887109057	88.710906
2	0.8035754	4.118 <mark>1393</mark>	0.163271	0.836728569	83.672857
3	0.96376407	4.1 <mark>153345</mark>	0.189751	0.810248993	81.024899
4	1.0024657	4.1053324	0.196262	0.80373819	80.373819
5	1.0147617	4.1009083	0.198363	0.801636599	80.16366
6	0.99580288	4.0951128	0.195604	0.804396116	80.439612
7	0.99789268	4.1038141	0.1956	0.804400229	80.440023
8	1.0015758	4.1050768	0.196132	0.803868428	80.386843
9	1.0058142	4.1081743	0.196679	0.803320989	80.332099
10	1.0011092	4.1043091	0.196088	0.803912404	80.39124
11	1.0019342	4.1053352	0.196178	0.803821941	80.382194
12	0.99692291	<mark>4.1043296</mark>	0.195427	0.804572915	80.457291
13	1.0017405	4.1040092	0.196199	0.803801487	80.380149
14	1.0038292	4.102622	0.196581	0.803419408	80.341941
15	1.0054804	4.1044025	0.196772	0.803228289	80.322829
16	1.005484	4.1053276	0.196737	0.803263341	80.326334
17	1.0022392	4.1025343	0.196334	0.803666274	80.366627
18	1.0042253	4.1091037	0.196394	0.803606359	80.360636
19	0.99734664	4.1039543	0.195508	0.804491707	80.449171
20	1.0008323	4.1058187	0.195986	0.804013961	80.401396
21	1.0034115	4.1094222	0.196253	0.803746502	80.37465
22	0.99800128	4.1038356	0.195616	0.80438393	80.438393
23	1.0012319	4.1056404	0.196056	0.803944207	80.394421
24	1.0009398	4.1065106	0.195976	0.804023589	80.402359
25	0.99933791	4.1068439	0.195711	0.804288616	80.428862
26	1.0005121	4.1064129	0.195913	0.804087176	80.408718
27	1.0010947	4.1048598	0.196064	0.803935836	80.393584
28	1.0001562	4.1031785	0.195981	0.804019086	80.401909
29	1.0038104	4.1072006	0.196402	0.803598466	80.359847
30	1.001967	4,1068497	0.196125	0.803874936	80.387494

ตารางที่ ค52 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (2) ที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 15.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 98.0 ปาสคัล 10. ข้อมูลอัตราการไหลของมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (2) ที่เวลา 0-30 วินาที
อนุภาคของแข็งที่ใช้คือถ่านหิน ขนาดเส้นผ่านศูนย์กลาง 73 ไมโครเมตร
ตารางที่ ค53 ข้อมูลอัตราการไหลเซิงมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (2) ที่เวลา 0 – 30
วินาที ความเร็วอากาศขาเข้า 10.9 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 49.0 ปาสคัล

เวลา	อัตราการไหลเชิงมวล (กิโลกรัมต่อวินาที)		สัดส่วนโดยมวล		ร้อยอะบุโระสิทธิกาพ
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	90092092097991141
0	0	0	0	0	0
1	0.15916164	1.0222834	0.134718	0.865282231	86.528223
2	0.24655899	1.2106773	0.169196	0.830803699	83.08037
3	0.30960059	1.1738138	0.208708	0.791291906	79.129191
4	0.29437101	1.1704004	0.200967	0.799032799	79.90328
5	0.29649863	1.1365321	0.206903	0.79309681	79.309681
6	0.30318832	1.1 <mark>46018</mark> 7	0.20921	0.790790194	79.079019
7	0.3025049	1.1433958	0.209216	0.790784457	79.078446
8	0.29904473	1.1 <mark>4271</mark> 07	0.207417	0.7925829	79.25829
9	0.29948747	1.1450977	0.207317	0.792682719	79.268272
10	0.30097687	1.1 <mark>4</mark> 49938	0.208149	0.791851331	79.185133
11	0.30016491	1.1451335	0.207684	0.792316308	79.231631
12	0.30001307	1.1445379	0.207686	0.79231396	79.231396
13	0.30034134	1.1447885	0.20783	0.792169996	79.217
14	0.30034247	1.1449471	0.207808	0.792192183	79.219218
15	0.30014196	1.1450138	0.207688	0.792311688	79.231169
16	0.30028942	1.1449887	0.207773	0.792227243	79.222724
17	0.30021214	1.1448374	0.207752	0.792247856	79.224786
18	0.30053058	1.1446986	0.207947	0.792053341	79.205334
19	0.30061272	1.1447184	0.207989	0.792011176	79.201118
20	0.30007169	1.1449975	0.207652	0.792347874	79.234787
21	0.29986471	1.1448635	0.207558	0.79244213	79.244213
22	0.30017057	1.1447181	0.207747	0.792253496	79.22535
23	0.30022055	1.1445222	0.207802	0.792197919	79.219792
24	0.30041501	1.1446667	0.207888	0.792112094	79.211209
25	0.3005707	1.1447513	0.207961	0.792038937	79.203894
26	0.30047867	1.1448119	0.207902	0.79209809	79.209809
27	0.30023867	1.144937	0.207752	0.79224763	79.224763
28	0.29997042	1.1448798	0.207614	0.792386494	79.238649
29	0.30008137	1.1446807	0.207703	0.792297032	79.229703
30	0.33477271	1.1514311	0.225254	0.774746433	77.474643

เวลา	อัตราการไ (กิโลกรัม	หลเชิงมวล ต่อวินาที)	สัดส่วา	นโดยมวล	อ้อยเอรง โอรสิทธิ์ ออกเม
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	1.0.0.00010.00011111
0	0	0	0	0	0
1	0.26106122	1.5476296	0.144337	0.855662882	85.566288
2	0.55333346	1.85 <mark>8301</mark>	0.229443	0.770556662	77.055666
3	0.57910281	1.7799445	0.245482	0.754518357	75.451836
4	0.55018014	1.7444103	0.239773	0.760227302	76.02273
5	0.57291138	1.7332423	0.248427	0.751572766	75.157277
6	0.56836224	1.7380538	0.246427	0.75357341	75.357341
7	0.56637579	1.7323925	0.246382	0.753617712	75.361771
8	0.56178552	1.7301673	0.245112	0.754887834	75.488783
9	0.56358534	1.73501	0.245187	0.754813155	75.481315
10	0.56571925	1.73 <mark>47366</mark>	0.245916	0.754083848	75.408385
11	0.56358784	1.7335727	0.245341	0.754658923	75.465892
12	0.56345266	1.7342935	0.24522	0.754780284	75.478028
13	0.56396985	1.7 <mark>3</mark> 36738	0.245456	0.754544248	75.454425
14	0.56335813	1.7340204	0.245218	0.754782191	75.478219
15	0.56498313	1.7339636	0.245757	0.754242618	75.424262
16	0.56343538	1.7338988	0.245256	0.754743831	75.474383
17	0.56452692	1.7348182	0.245516	0.754483607	75.448361
18	0.56353724	1.7336087	0.245321	0.754679391	75.467939
19	0.56339878	1.7343929	0.245191	0.754808591	75.480859
20	0.56415457	1.7336178	0.245522	0.754477607	75.447761
21	0.5634141	1.7340882	0.245229	0.75477104	75.477104
22	0.56538624	1.7342057	0.245864	0.754136275	75.413628
23	0.56322676	1.733815	0.245197	0.75480343	75.480343
24	0.5639931	1.7348639	0.245336	0.754663687	75.466369
25	0.56361055	1.7336006	0.245346	0.754654443	75.465444
26	0.56343472	1.7342988	0.245213	0.754786743	75.478674
27	0.56417239	1.7336428	0.245526	0.754474428	75.447443
28	0.56337476	1.734058	0.245219	0.754780741	75.478074
29	0.56530106	1.734231	0.245833	0.754166915	75.416692
30	0 5632723	1 7338591	0 245207	0.754793174	75 479317

ตารางที่ ค54 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (2) ที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 13.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 78.4 ปาสคัล

เวลา	อัตราการไ (กิโลกรัม	หลเชิงมวล ต่อวินาที)	สัดส่วา	นโดยมวล	อ้อยเอรง โอรสิทธิ์ ออกเม
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	1.000×01×0000110
0	0	0	0	0	0
1	0.79740441	2.969045 <mark>6</mark>	0.211712	0.788287537	78.828754
2	1.5082037	3.162 <mark>8432</mark>	0.322883	0.677116558	67.711656
3	1.4718093	3.0720589	0.323911	0.67608891	67.608891
4	1.5178647	3.1352732	0.326202	0.673797611	67.379761
5	1.515375	3.1304748	0.326178	0.673821784	67.382178
6	1.5164516	3.1239858	0.326791	0.67320934	67.320934
7	1.5154327	3.1270537	0.326427	0.673573045	67.357304
8	1.5176923	3.1241951	0.326956	0.673044137	67.304414
9	1.5179371	3.1247916	0.326949	0.673050657	67.305066
10	1.5156896	3.1226587	0.326774	0.673226437	67.322644
11	1.5184478	3.1236806	0.327102	0.672898363	67.289836
12	1.5167568	3.1222396	0.326958	0.67304204	67.304204
13	1.5160611	3. <mark>12</mark> 2716	0.326823	0.673176558	67.317656
14	1.5165187	3.1236959	0.326821	0.673179189	67.317919
15	1.5167581	3.1229284	0.32691	0.673090391	67.309039
16	1.5174299	3.124068	0.326927	0.673073234	67.307323
17	1.5165523	3.1236086	0.326832	0.673168165	67.316817
18	1.5163119	3.1235547	0.326801	0.673199247	67.319925
19	1.5175464	3.1236417	0.326974	0.67302631	67.302631
20	1.5155661	3.1236887	0.326683	0.673316909	67.331691
21	1.5172149	3.1235895	0.326929	0.673070707	67.307071
22	1.5179449	3.1238017	0.32702	0.6729798	67.29798
23	1.5175755	3.123487	0.326989	0.673011191	67.301119
24	1.5179735	3.1233172	0.327058	0.672941516	67.294152
25	1.5174315	3.1236532	0.326956	0.673043782	67.304378
26	1.5167078	3.1239138	0.326833	0.673167103	67.31671
27	1.5168145	3.1239948	0.326843	0.673157331	67.315733
28	1.5159757	3.1234446	0.32676	0.673240275	67.324028
29	1.5168345	3.1235008	0.32688	0.673119634	67.311963
30	1.5160937	3,1235085	0.326772	0.673227653	67.322765

ตารางที่ ค55 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (2) ที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 15.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 98.0 ปาสคัล 11. ข้อมูลอัตราการไหลของมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (1) สร้างจริง ที่เวลา 0 – 30

วินาที อนุภาคของแข็งที่ใช้คือทราย ขนาดเส้นผ่านศูนย์กลาง 109.5 ไมโครเมตร ตารางที่ ค56 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (1) ที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 10.9 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 39.1 ปาสคัล

เวลา	อัตราการไหลเชิงมวล (กิโลกรัมต่อวินาที)		สัดส่วเ	ิเโดยมวล	ร้อยอาประสิทธิกาพ
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	<mark>ท่อแก๊สออ</mark> ก	ทางตกกลับ ของแข็ง	9.0.0.9.0.0.1°.1 IM
0	0	0	0	0	0
1	0.073263124	2.7485337	0.025963	0.974036712	97.403671
2	0.1189905	3.0054066	0.038084	0.961915692	96.191569
3	0.1470494	3.129709	0.044876	0.955123515	95.512351
4	0.15765074	3.1804762	0.047227	0.952772695	95.277269
5	0.14983283	3.2004104	0.044723	0.955277029	95.527703
6	0.13963482	3.2093291	0.041695	0.958305069	95.830507
7	0.11845548	3.2036574	0.035657	0.964343331	96.434333
8	0.13963482	3.2093291	0.041695	0.958305069	95.830507
9	0.11845548	3.2036574	0.035657	0.964343331	96.434333
10	0.12370066	3. <mark>2</mark> 23758	0.036954	0.963046397	96.30464
11	0.13897343	3.2345762	0.041195	0.958804984	95.880498
12	0.12703991	3.2273 <mark>262</mark>	0.037873	0.962126999	96.2127
13	0.13121928	3.224335	0.039105	0.960894902	96.08949
14	0.13525592	3.2268169	0.04023	0.95977008	95.977008
15	0.13673206	3.2433913	0.040452	0.959548204	95.95482
16	0.14327726	3.2441335	0.042297	0.957703016	95.770302
17	0.14202619	3.2413297	0.041978	0.958022096	95.80221
18	0.14761013	3.2344379	0.043645	0.95635481	95.635481
19	0.12915163	3.231555	0.03843	0.961570097	96.15701
20	0.13371304	3.2316999	0.039732	0.96026846	96.026846
21	0.13498655	3.2346444	0.04006	0.959940257	95.994026
22	0.14191009	3.2358208	0.042013	0.957986561	95.798656
23	0.1217759	3.2295766	0.036336	0.963663655	96.366366
24	0.12889904	3.229918	0.038376	0.961623679	96.162368
25	0.1217759	3.2295766	0.036336	0.963663655	96.366366
26	0.15400656	3.2275643	0.045543	0.954457095	95.44571
27	0.14695954	3.2270904	0.043556	0.956444172	95.644417
28	0.15140307	3.225816	0.044831	0.955169307	95.516931
29	0.14319815	3.2204804	0.042572	0.957428111	95.742811
30	0.1501449	3.2209156	0.044539	0.955460633	95.546063

เวลา	อัตราการไเ (กิโลกรัมเ	หลเชิงมวล ต่อวินาที)	สัดส่วา	นโดยมวล	อ้อยอะเปละสิทธิภาพ
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	9.0.0.9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
0	0	0	0	0	0
1	0.099063426	3.06863 <mark>36</mark>	0.031273	0.968726988	96.872699
2	0.21715763	3.51 <mark>33162</mark>	0.058212	0.941788191	94.178819
3	0.18321761	3.5892377	0.048567	0.951432795	95.14328
4	0.1894058	3.6705761	0.049069	0.95093091	95.093091
5	0.18100014	3.7367125	0.0462	0.953799536	95.379954
6	0.16941682	3.7644424	0.043066	0.956933685	95.693369
7	0.1661578	3.796875	0.041927	0.95807307	95.807307
8	0.15217157	3.8128357	0.038379	0.961621364	96.162136
9	0.16503541	3.825269	0.041359	0.958640897	95.86409
10	0.16674371	3.8306758	0.041713	0.958287163	95.828716
11	0.18018544	3.8404906	0.044815	0.955185288	95.518529
12	0.18366964	3.8400636	0.045647	0.954353425	95.435343
13	0.18900333	3. <mark>8</mark> 40415	0.046906	0.953094141	95.309414
14	0.17324662	3.8292923	0.043284	0.956715819	95.671582
15	0.17355807	3.8387861	0.043256	0.956743972	95.674397
16	0.1737292	3.8376527	0.043309	0.956690935	95.669093
17	0.17484479	3.8400631	0.043549	0.956451108	95.645111
18	0.19138028	3.8396373	0.047477	0.952523085	95.252308
19	0.1669203	3.834214	0.041718	0.958281755	95.828176
20	0.17201601	3.8404155	0.042871	0.957129235	95.712923
21	0.17995672	3.8418384	0.044745	0.955254628	95.525463
22	0.17966504	3.8400915	0.044696	0.955304497	95.53045
23	0.16918407	3.8363438	0.042238	0.957762354	95.776235
24	0.17780203	3.844696	0.044202	0.955798106	95.579811
25	0.17791805	3.8410766	0.044269	0.955730707	95.573071
26	0.1765497	3.8349905	0.04401	0.955989547	95.598955
27	0.1656234	3.8372264	0.041376	0.958623629	95.862363
28	0.1801995	3.8486426	0.044727	0.955272633	95.527263
29	0.16957557	3.8415895	0.042276	0.957724111	95.772411
30	0.17323059	3.8449354	0.043112	0.956888145	95.688814

ตารางที่ ค57 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 13.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 78.4 ปาสคัล

เวลา	อัตราการไหลเชิงมวล (กิโลกรัมต่อวินาที)		สัดส่วา	นโดยมวล	ร้อยอางประสิทธิภาพ
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	9.0.0.9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
0	0	0	0	0	0
1	0.097734012	3.18210 <mark>63</mark>	0.029798	0.970201594	97.020159
2	0.16391557	3.50 <mark>31104</mark>	0.0447	0.955300134	95.530013
3	0.17667353	3.6384935	0.046308	0.953691797	95.36918
4	0.17280637	3.6989615	0.044632	0.95536758	95.536758
5	0.17729212	3.7597499	0.045032	0.954968192	95.496819
6	0.15943366	3.772362	0.04055	0.959450166	95.945017
7	0.15380186	3.787817	0.03902	0.960980027	96.098003
8	0.16380887	3.8079686	0.041243	0.958756786	95.875679
9	0.164039	3. <mark>813186</mark> 6	0.041245	0.95875542	95.875542
10	0.1585737	3.8169632	0.039887	0.960112633	96.011263
11	0.16730985	3. <mark>8255</mark> 913	0.041902	0.958098174	95.809817
12	0.17269112	3.8258319	0.043189	0.956811273	95.681127
13	0.17255276	3.8215053	0.043202	0.956797634	95.679763
14	0.1687979	3.8307295	0.042204	0.957795539	95.779554
15	0.16474913	3.8282075	0.04126	0.958740065	95.874007
16	0.1687979	3.8307295	0.042204	0.957795539	95.779554
17	0.16230461	3.8282971	0.040672	0.959328286	95.932829
18	0.16634478	3.8359632	0.041562	0.958437786	95.843779
19	0.1663098	3.8283823	0.041633	0.958367304	95.83673
20	0.16123855	3.8282523	0.040416	0.959584179	95.958418
21	0.16537157	3.835887	0.04133	0.958670112	95.867011
22	0.16921832	3.830112	0.042312	0.957688336	95.768834
23	0.15437105	3.8267148	0.038776	0.961223883	96.122388
24	0.16061307	3.8338065	0.040209	0.959790636	95.979064
25	0.16574478	3.8329902	0.041449	0.958550696	95.85507
26	0.16130011	3.8326643	0.040386	0.959614034	95.961403
27	0.1656234	3.8372264	0.041376	0.958623629	95.961403
28	0.1801995	3.8486426	0.044727	0.955272633	95.862363
29	0.16957557	3.8415895	0.042276	0.957724111	95.527263
30	0.17323059	3.8449354	0.043112	0.956888145	95.772411

ตารางที่ ค58 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 15.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 98.0 ปาสคัล

12. ข้อมูลอัตราการไหลของมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (1) สร้างจริง ที่เวลา 0-30

วินาที อนุภาคของแข็งที่ใช้คือทราย ขนาดเส้นผ่านศูนย์กลาง 73 ไมโครเมตร ตารางที่ ค59 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 10.9 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 39.1 ปาสคัล

เวลา	อัตราการไ (กิโลกรัมเ	หลเชิงมวล ต่อวินาที)	สัดส่วเ	ิ่มโดยมวล	ล้อยอะเปละสิทธิภาพ
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของ <mark>แข็ง</mark>	<mark>ท่อแก๊ส</mark> ออก	ทางตกกลับ ของแข็ง	3.ถียญรั⊓ <u>1</u> รัช เเ⊡่1 1 เม
0	0	0	0	0	0
1	0.29041228	2.2746344	0.113219	0.886780899	88.67809
2	0.42085025	2.6708169	0.136124	0.863875951	86.387595
3	0.4770852	2.8577521	0.143061	0.856938988	85.693899
4	0.39609891	2.5467796	0.134596	0.86540426	86.540426
5	0.46419013	2.9140968	0.137404	0.862596002	86.2596
6	0.42763939	2.9254994	0.127534	0.872465944	87.246594
7	0.48291183	2.9206915	0.141883	0.858117476	85.811748
8	0.44184521	2.9242387	0.131264	0.868736127	86.873613
9	0.45191574	2.9230309	0.133903	0.866096923	86.609692
10	0.47121382	2.9243925	0.138772	0.861228371	86.122837
11	0.44918746	2.9359317	0.132695	0.867305274	86.730527
12	0.41404647	2.9127641	0.124457	0.875542517	87.554252
13	0.3488059	2.8650308	0.108533	0.891467448	89.146745
14	0.45485738	2.9662895	0.132955	0.867045352	86.704535
15	0.4755533	2.9221253	0.139964	0.86003582	86.003582
16	0.44896254	2.9247808	0.133075	0.866924512	86.692451
17	0.42218706	2.9305482	0.125923	0.874076828	87.407683
18	0.43711933	2.9260063	0.129974	0.870025869	87.002587
19	0.45926958	2.9256091	0.135683	0.86431727	86.431727
20	0.42230552	2.9311643	0.125931	0.874069086	87.406909
21	0.43165237	2.9307442	0.128376	0.871623599	87.16236
22	0.4378114	2.9219918	0.130309	0.869691356	86.969136
23	0.44185939	2.9306536	0.131018	0.868982153	86.898215
24	0.45410284	2.9300485	0.134185	0.865814854	86.581485
25	0.42850414	2.9229722	0.127855	0.872144662	87.214466
26	0.44590679	2.9295063	0.132104	0.867895639	86.789564
27	0.44130105	2.9356692	0.13068	0.869320421	86.932042
28	0.43329382	2.9296699	0.128843	0.871157153	87.115715
29	0.42932075	2.9278851	0.12788	0.872119623	87.211962
30	0.43329382	2.9296699	0.128843	0.871157153	87.115715

เวลา	อัตราการไหลเชิงมวล (กิโลกรัมต่อวินาที)		สัดส่วา	นโดยมวล	ร้อยอายุโละสิทธิภาพ
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ายยุตราวระทุกษาเพ
0	0	0	0	0	0
1	0.39609891	2.5467796	0.134596	0.86540426	86.540426
2	0.63594741	2.991 <mark>068</mark> 4	0.175336	0.824663734	82.466373
3	0.69665676	3. <mark>1</mark> 31753	0.18197	0.818029729	81.802973
4	0.68375283	3.1936896	0.176341	0.823658805	82.365881
5	0.70442384	3.2586217	0.177748	0.822251894	82.225189
6	0.71262145	3.2803383	0.178469	0.82153052	82.153052
7	0.70951211	3.287744	0.1775	0.822500213	82.250021
8	0.7223053	3.298789	0.179629	0.820370962	82.037096
9	0.71429205	3.295886	0.17812	0.821880216	82.188022
10	0.70846081	3.2987192	0.176798	0.82320215	82.320215
11	0.71058828	3.2988286	0.17723	0.822770168	82.277017
12	0.70109218	3.2986493	0.175284	0.824715626	82.471563
13	0.70423812	3.3058214	0.175618	0.824382128	82.438213
14	0.70437598	3.3093047	0.175494	0.824506224	82.450622
15	0.70736092	3.313 <mark>0579</mark>	0.175942	0.824057903	82.40579
16	0.70478982	3.3103929	0.175531	0.824468805	82.446881
17	0.70264268	3.309855	0.175114	0.824886458	82.488646
18	0.70647192	3.3109293	0.175853	0.824147034	82.414703
19	0.70694876	3.3111413	0.175941	0.824058508	82.405851
20	0.70572609	3.3103395	0.175726	0.824274262	82.427426
21	0.70698661	3.3122592	0.1759	0.824099684	82.409968
22	0.70728362	3.3120298	0.175971	0.824028747	82.402875
23	0.70412838	3.3104494	0.175393	0.824607115	82.460711
24	0.70251036	3.3098757	0.175085	0.824914565	82.491456
25	0.7073344	3.3089159	0.176118	0.823881893	82.388189
26	0.71211821	3.3129621	0.17692	0.823079751	82.307975
27	0.71023399	3.3122587	0.176566	0.823434362	82.343436
28	0.69986737	3.3078578	0.17463	0.825370418	82.537042
29	0.70026249	3.3061378	0.174786	0.825214048	82.521405
30	0.71024561	3.3116503	0.176595	0.823405273	82.340527

ตารางที่ ค60 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 13.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 78.4 ปาสคัล

เวลา	อัตราการไ (กิโลกรัม	หลเชิงมวล ต่อวินาที)	สัดส่วเ	ิ่มโดยมวล	ร้อยอายุโอะสิทธิ์ออม
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	1.ถศพ≏ฅ1≏ฆพษา เพ
0	0	0	0	0	0
1	0.57477313	2.9187727	0.164524	0.835475715	83.547571
2	0.82030177	3.41 <mark>7798</mark>	0.193554	0.806445857	80.644586
3	0.87961644	3.5 <mark>323482</mark>	0.199371	0.800629309	80.062931
4	0.92791885	3.6151612	0.204249	0.795751156	79.575116
5	0.91455501	3.6359725	0.200978	0.7990222	79.90222
6	0.90032917	3.6682038	0.197072	0.802928166	80.292817
7	0.9063006	3.6922188	0.197085	0.802914695	80.291469
8	0.94536078	3.724901	0.202421	0.797578632	79.757863
9	0.88464165	3. <mark>674268</mark>	0.194047	0.805953239	80.595324
10	0.89455539	3.6870348	0.19525	0.804750021	80.475002
11	0.94577324	3.7131631	0.203002	0.796998033	79.699803
12	0.91044784	3.7096825	0.197061	0.802938927	80.293893
13	0.90654361	3.7 <mark>1</mark> 26827	0.196254	0.803745574	80.374557
14	0.91428083	3.7205973	0.197261	0.802738971	80.273897
15	0.91789335	3.7224569	0.197807	0.802193089	80.219309
16	0.91487277	3.7225013	0.197283	0.802717496	80.27175
17	0.91126686	3.7207313	0.196733	0.803267007	80.326701
18	0.91038239	3.7208009	0.196577	0.803423373	80.342337
19	0.91185111	3.7234204	0.19672	0.803279892	80.327989
20	0.91141921	3.7207317	0.196759	0.803240605	80.324061
21	0.91502166	3.7227006	0.1973	0.802700203	80.27002
22	0.90940493	3.720715	0.196411	0.803589336	80.358934
23	0.9127326	3.721242	0.196965	0.803034613	80.303461
24	0.91417146	3.7217011	0.197195	0.802804877	80.280488
25	0.90808988	3.7228127	0.196093	0.803906503	80.39065
26	0.91311336	3.723033	0.196955	0.803044751	80.304475
27	0.91440588	3.7240047	0.197138	0.802862238	80.286224
28	0.91119331	3.7202408	0.196741	0.803258928	80.325893
29	0.90938902	3.7212694	0.196384	0.803615612	80.361561
30	0.91453487	3.7242198	0.197151	0.802849054	80.284905

ตารางที่ ค61 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 15.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 98.0 ปาสคัล

13. ข้อมูลอัตราการไหลของมวลจากแบบจำลองไซโคลนแบบสี่เหลี่ยม (1) สร้างจริง ที่เวลา 0-30

วินาที อนุภาคของแข็งที่ใช้คือถ่านหิน ขนาดเส้นผ่านศูนย์กลาง 73 ไมโครเมตร ตารางที่ ค62 ข้อมูลอัตราการไหลเซิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 10.9 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 39.1 ปาสคัล

เวลา	อัตราการไหลเชิงมวล (กิโลกรัมต่อวินาที)		สัดส่วนโดยมวล		ร้อยอะบุโระสิทธิกาพ
(วินาที)	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	<mark>ท่อแก๊ส</mark> ออก	ทางตกกลับ ของแข็ง	90092092097991141
0	0	0	0	0	0
1	0.30411771	1.0802416	0.219681	0.780318803	78.03188
2	0.41672209	1.3218886	0.239687	0.760313167	76.031317
3	0.45521221	1.4149237	0.243411	0.756588702	75.65887
4	0.46254778	1.4310369	0.244271	0.755729023	75.572902
5	0.46374848	1.4383149	0.243813	0.756186631	75.618663
6	0.46243787	1.4 <mark>41896</mark> 9	0.242834	0.757165664	75.716566
7	0.46243998	1.4440901	0.242556	0.757444173	75.744417
8	0.46230662	1. <mark>4446</mark> 654	0.24243	0.757570318	75.757032
9	0.46233553	1.4450727	0.242389	0.757610603	75.76106
10	0.46233061	1.4 <mark>4</mark> 51437	0.242378	0.75762158	75.762158
11	0.4622815	1.4451699	0.242356	0.757644415	75.764441
12	0.46227926	1.4451795	0.242353	0.757646524	75.764652
13	0.46228033	1.4452093	0.24235	0.757649886	75.764989
14	0.46227992	1.4451921	0.242352	0.757647863	75.764786
15	0.46226671	1.4452081	0.242345	0.757655143	75.765514
16	0.46229517	1.4452081	0.242356	0.757643839	75.764384
17	0.46236256	1.4452286	0.24238	0.757619678	75.761968
18	0.46229857	1.4451956	0.242359	0.7576409	75.76409
19	0.4623161	1.4451938	0.242366	0.757633709	75.763371
20	0.46234432	1.4452053	0.242376	0.757623962	75.762396
21	0.46230921	1.4452064	0.242362	0.757638046	75.763805
22	0.4622854	1.4451787	0.242356	0.757643984	75.764398
23	0.4623282	1.4452055	0.24237	0.757630389	75.763039
24	0.46224892	1.4451985	0.242339	0.75766099	75.766099
25	0.46234262	1.445207	0.242375	0.757624853	75.762485
26	0.46226552	1.4452016	0.242345	0.75765479	75.765479
27	0.46227399	1.4451928	0.24235	0.757650308	75.765031
28	0.46233293	1.4452118	0.242371	0.757629311	75.762931
29	0.46226951	1.44519	0.242348	0.757651731	75.765173
30	0.46231031	1.4452024	0.242363	0.757637101	75.76371

เวลา (วินาที)	อัตราการไหลเชิงมวล (กิโลกรัมต่อวินาที)		สัดส่วนโดยมวล		้อยอะเอะสิทธิออะเ
	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	1.ถอตราวรุชมองเวง
0	0	0	0	0	0
1	0.35390255	1.13849 <mark>9</mark>	0.237136	0.762863721	76.286372
2	0.45707473	1.368 <mark>6504</mark>	0.250352	0.749647566	74.964757
3	0.48079133	1.4 <mark>244518</mark>	0.252352	0.747648307	74.764831
4	0.48484457	1.4428816	0.251511	0.748488879	74.848888
5	0.48351479	1.4543657	0.249507	0.750492978	75.049298
6	0.48411372	1.4589536	0.249149	0.750850773	75.085077
7	0.48432583	1.4616227	0.248889	0.751110668	75.111067
8	0.48436356	1.4621735	0.248833	0.751166536	75.116654
9	0.48448718	1.4626906	0.248815	0.751184928	75.118493
10	0.484395 🥌	1.4629595	0.248745	0.751254843	75.125484
11	0.48459923	1. <mark>4628</mark> 563	0.248837	0.751162878	75.116288
12	0.48464996	1.4629347	0.248847	0.751153329	75.115333
13	0.48472381	1.4 <mark>6</mark> 30547	0.24886	0.75114018	75.114018
14	0.48429045	1.4629942	0.2487	0.751299611	75.129961
15	0.48445597	1.462 <mark>9838</mark>	0.248766	0.751234427	75.123443
16	0.48428687	1.4629633	0.248703	0.751297046	75.129705
17	0.48459211	1.4629438	0.248823	0.751176804	75.11768
18	0.48442343	1.4630661	0.248743	0.751257492	75.125749
19	0.48449963	1.4629607	0.248785	0.751214634	75.121463
20	0.48469776	1.4630444	0.248851	0.75114891	75.114891
21	0.48464713	1.4629805	0.24884	0.751160272	75.116027
22	0.48448846	1.4629599	0.248781	0.751218841	75.121884
23	0.48449269	1.4630032	0.248777	0.751222741	75.122274
24	0.48444229	1.4628857	0.248773	0.751227173	75.122717
25	0.48447406	1.4630454	0.248765	0.751235318	75.123532
26	0.4846144	1.4630573	0.248817	0.751182707	75.118271
27	0.48434013	1.4630371	0.248714	0.751285923	75.128592
28	0.48447365	1.463024	0.248767	0.751232742	75.123274
29	0.48464134	1.4630135	0.248833	0.751166721	75.116672
30	0.48455432	1.4630005	0.248801	0.751198624	75.119862

ตารางที่ ค63 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 13.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 78.4 ปาสคัล
เวลา (วินาที)	อัตราการไหลเซิงมวล (กิโลกรัมต่อวินาที)		สัดส่วนโดยมวล		้อยอะเอาสีขอออย
	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	ท่อแก๊สออก	ทางตกกลับ ของแข็ง	าขยตรบรรดทธภาพ
0	0	0	0	0	0
1	0.41989365	1.2728658	0.248053	0.751947242	75.194724
2	0.53345984	1.509 <mark>5989</mark>	0.261108	0.73889158	73.889158
3	0.5519529	1.5 <mark>641228</mark>	0.260838	0.739162025	73.916203
4	0.55788422	1.5799747	0.260955	0.739045353	73.904535
5	0.55714226	1.5899545	0.259486	0.740513669	74.051367
6	0.55666059	1.5930287	0.258949	0.741050675	74.105068
7	0.55753499	1.5956831	0.258931	0.741068964	74.106896
8	0.55732125	1.5961102	0.258806	0.741193875	74.119387
9	0.55763751	1.5964876	0.25887	0.741130398	74.11304
10	0.55742353	1.5969814	0.258737	0.741263343	74.126334
11	0.55739474	1. <mark>5968</mark> 393	0.258744	0.741256182	74.125618
12	0.55751419	1.5969175	0.258776	0.741224476	74.122448
13	0.55757868	1.5 <mark>9</mark> 69313	0.258796	0.741203947	74.120395
14	0.55751836	1.5968438	0.258786	0.741214188	74.121419
15	0.55703616	1.5967376	0.258633	0.741367376	74.136738
16	0.55739641	1.5968508	0.258743	0.741256989	74.125699
17	0.55762798	1.5969303	0.258813	0.741186866	74.118687
18	0.55742562	1.596936	0.258743	0.741257171	74.125717
19	0.55752528	1.5968673	0.258785	0.74121463	74.121463
20	0.55744308	1.5968521	0.258759	0.741241087	74.124109
21	0.55744517	1.5968763	0.258757	0.741243274	74.124327
22	0.55751067	1.596867	0.25878	0.741219621	74.121962
23	0.55749077	1.596849	0.258776	0.741224306	74.122431
24	0.55750155	1.5968876	0.258775	0.741225233	74.122523
25	0.55750442	1.5968194	0.258784	0.741216054	74.121605
26	0.55747718	1.5969075	0.258764	0.741236008	74.123601
27	0.55754924	1.596833	0.258798	0.741202267	74.120227
28	0.55763561	1.5969052	0.258819	0.741181226	74.118123
29	0.55750155	1.5968256	0.258782	0.741217786	74.121779
30	0.55753523	1.5968757	0.258788	0.741212216	74.121222

ตารางที่ ค64 ข้อมูลอัตราการไหลเชิงมวลจากแบบจำลองไซโคลนแบบทั่วไปที่เวลา 0 – 30 วินาที ความเร็วอากาศขาเข้า 15.0 เมตรต่อวินาที ความดันลดตกคร่อมไซโคลน 98.0 ปาสคัล

ประวัติผู้เขียนวิทยานิพนธ์

นายณัฐพงศ์ อิ่มแสงจันทร์ เกิดวันที่ 11 มิถุนายน พ.ศ. 2527 สำเร็จการศึกษาปริญญาตรี วิทยาศาสตรบัณฑิต ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยศิลปากร ในปีการศึกษา 2548 และเข้าศึกษาต่อในหลักสูตรวิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมีเทคนิค ภาควิชาเคมีเทคนิค คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย เมื่อ พ.ศ. 2549

