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CHAPTER I 

INTRODUCTION 

1.1 Problem and Motivation 

Among all classification techniques, one outstanding classifier is a neural network. 

The advantages of using the neural network dealing with pattern classification problems 

are its robustness and its high predictive capability.  In the past decades, various types of 

neural network techniques have been employed to handle the real-world pattern 

classification problems. Especially, the one which involves in many fields of research is 

the multilayer perceptrons (MLP) network trained with the backpropagation (BP) 

learning algorithm.  The BP algorithm, which is performed under a supervised manner, is 

a concept of searching an optimal group of vectors in weight space that yields the lowest 

network’s error [1]. The MLP network with BP algorithm showed many successes in 

solving a large number of complicated problems. Nevertheless, to get a valid MLP 

network, it requires a long learning time.  

In this research, we present a new technique to reduce computational time of the BP 

algorithm called duplicate-sampling of difficult-to-classify scheme. The fundamental idea 

of the proposed technique based on a concept that each datum does not contain the same 

useful information. Thus, the difficulty in identifying the class of each datum should 

depend on the information it carried. We extend this concept to the BP learning and make 

an assumption that the data with higher useful information require small amount of 

learning time (small number of epochs) to be correctly classified by the network. On the 

other hand, the ones with less useful information require large amount of learning time 

(large number of epochs) to be correctly classified by the network. According to this 

assumption, we categorize data into two types which are difficult-to-classify data which 

requires a large number of epochs and easy-to-classify data which requires a small 

number of epochs. We try to reduce the BP learning time by intensifying the presentation 

of the difficult-to-classify data to the network; while, the presentation of the easy-to-

classify data to the network is not changed. Consequently, we utilize the information gain 

measurement as a tool to identify the difficult-to-classify and easy-to-classify data. Then, 

we duplicate the difficult-to-classify data. Hence, in each epoch of the BP learning 

process, the presentation of the difficult-to-classify data is emphasized.  
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1.2 Objective  

The objective of this study is to develop a learning scheme that requires less 

computational time than the standard backpropagation algorithm while still maintains the 

high predictive ability. 

1.3 Scope of Work and Constraints 

This study is constrained by the following conditions: 

 1. The study focuses on solving pattern classification problems. 

 2. The study concentrates on numeric data sets only. 

1.4 Literatures Related to Multilayer perceptron network and Backpropagation 

Algorithm. 

Jacobs, R.A. [2] presented techniques to modify the backpropagation algorithm 

called delta-bar-delta-learning rules. These rules intend to accelerate the convergence of 

backpropagation algorithm. This issue contains four important schemes: 

1. Every adjustable network parameter of the cost function should have its own 

individual learning-rate parameter.  

2. Every learning-rate parameter should be allowed to vary from one iteration to 

the next.  

3. When the derivative of the cost function with respect to a synaptic weight has 

the same algebraic sign for several consecutive iterations of the algorithm, the learning 

rate parameter for that particular weight should be increased. 

4. When the algebraic sign of the derivative of the cost function with respect to a 

particular synaptic weight alternated for several consecutive iterations of the algorithm, 

the learning-rate parameter for that weight should be decreased. 

 Salomon and van Hemmen [3] presented a method to accelerate the 

backpropagation algorithm called dynamic self-adaptation procedure. The underlying 

idea is to take the learning rate of the previous time step, increasing and decreasing it 

slightly, evaluating the cost function for both new values of the learning-rate parameter, 

and then choose the particular one that gives the lower value of the cost function. 

 LeCun Y. [4] described general rules for training any example with 

backpropagation algorithm called maximizing information content. The details of these 

rules are: 
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1. The use of an example should result in the largest, as possible, scale of training 

error. 

2. The use of an example should be radically different from all those previously 

used. 

In practice, the second rule can be performed, easily, by shuffling the order of 

examples presented to the multilayer perceptrons from one epoch to the next.  

LeCun [4] described a technique to make the BP algorithm perform faster called 

emphasizing scheme. This scheme is performed by presenting the difficult data to the 

MLP network more often than the easy ones. The difficult data are determined by 

examining the error of a particular datum in each epoch and comparing it with the error 

in the previous epoch. 

 Stone, M. [5] described a statistical technique to create any classification model 

with generalization as a goal. This technique is called cross validation. First, the data set 

is randomly split into training and test sets. The training set is further split into two 

disjoint subsets: 

1. Estimation subset. 

2. Validation subset. 

The motivation here is to validate the model on a data set different from the one 

used for the parameter estimation. In this way, we may use the training set to assess the 

performance of various candidate models, and, thereby, choose the best one. 

Morgan and Bourlard [6] presented a method to train multilayer perceptrons with 

backpropagation called early-stopping method. This technique is designed for 

encountering overfitting problem of neural network. The method suggested the stopping 

criterion for backpropagation algorithm. The learning process should be stopped when 

the mean squared error on training set decreases while the mean squared error of 

validating set increases.  

Suresh, Omkar and Mani [7] presented the MLP network with BP algorithm on 

network of workstation. This research tries to reduce the BP learning time under a 

concept of parallel computing. 

Arit Thammano and Asavin Meengen [8] presented a new classifier technique 

called new evolutionary neural network classifier. The technique applied the concepts of 
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fuzzy c-means algorithm and the evolutionary algorithm to the neural network. During 

training, the fuzzy c-means algorithm is used to form the clusters in the cluster layer 

(hidden layer) and the evolutionary algorithm plays role in optimizing those clusters and 

their parameters. Applying it to a test data, the class of any particular pattern is 

determined by examining which cluster node (each cluster node representing a different 

class) returns the maximum output value. 

1.5 Literatures Related to information gain. 

Ross Quinlan [9] presented a technique to construct a decision tree based on 

nominal data called Iterative Dichotomiser 3 (ID3) algorithm. This algorithm employs 

the information gain as a tool to select an appropriate attribute for branching nodes of a 

tree under a concept of getting the smallest tree as possible.  

Ross Quinlan [10] presented a C4.5 decision tree algorithm, the successor of the 

ID3 algorithm. The C4.5 still based on the principals used in ID3. The improvements of 

C4.5 over the ID3 are: an extending to discrete and continuous attributes, techniques for 

handling the missing values and rules for pruning trees.  

John T. Kent [11] investigated in using the information gain to measure 

correlation between two random quantities, X and Y, in a parametric model of 

dependence. The investigation aimed to measure the correlation for both the usual 

product-moment correlation coefficient for the bivariate normal model and the multiple 

correlation coefficients in the standard linear regression model. 

David J. C. Mackay [12] presented a technique to make a Bayesien learning 

framework more efficient called Information-Based Objective Functions for Active Data 

Selection. This technique described three different criterions to select salient data points 

from data space to gain more information during learning. 

Lisa Borland, Angel R. Plastino and Constantino Tsallis [13] discussed an issue 

of information gain within nonextensive thermostatics. The discussion is about the 

general properties and a consistent test for measuring the degree of correlation between 

random variables is proposed. Moreover, minimum entropy distributions are also 

discussed and the H-theorem is proved within the generalized context. 

 

http://en.wikipedia.org/wiki/ID3_algorithm
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1.6 Organization  

The thesis is organized as follows. Chapter 2 discusses the underlying idea of the 

pattern classification problems, the multilayer perceptron network, the backpropagation 

algorithm and the information gain in a decision tree algorithm. Chapter 3 explains the 

mathematical details of the backpropagation algorithm and the duplicate-sampling of 

difficult-to-classify scheme. Chapter 4 shows the experimental results. Finally, Chapter 5 

concludes the proposed scheme and suggests some possible future works.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER II 

THEORETICAL BACKGROUND 

 The purpose of this chapter is to describe the fundamental theory of the pattern 

classification problem, the multilayer perceptron network, the backpropagation 

algorithm and the information gain in a decision tree algorithm. 

2.1 Pattern Classification Problem 

Pattern classification or data classification is a process of constructing model 

from a data set with predefined class (training set or training sample). The constructed 

model will be used to predict a class of new data [14]. The training set is collected in a 

format as shown in Table 2.1. Each datum or pattern is described by attributes and one 

of the attributes is used to define a class of data called class label attribute.  

Table 2.1 Some parts of Iris data set.  

 

 

 

 

 

 

 

 

 

 

 

 

The Iris data set [15] contains three different classes. Each class refers to a 

type of iris plant, and each attribute refers to a physical detail of the iris plant. Each 

datum can be considered as a mathematical pattern such as the first instance which can 

be viewed as a pattern or a vector with a value of < 5.1, 3.5, 1.4, 0.2, 1 > where the 

last member (1) refers to its corresponding class (Iris-setosa). Pattern classification is a 

challenging problem. A number of mathematical models have been developed to solve 

it, and the famous one involved in this research is a neural network.  

 

Instance Sepal length Sepal width Petal length Petal width Class 

1 5.1 3.5 1.4 0.2 Iris-setosa 
2 4.9 3.0 1.4 0.2 Iris-setosa 
3 4.7 3.2 1.3 0.2 Iris-setosa 
4 4.6 3.1 1.5 0.2 Iris-setosa 
5 7.0 3.2 4.7 1.4 Iris-versicolor 
6 6.4 3.2 4.5 1.5 Iris-versicolor 
7 6.9 3.1 4.9 1.5 Iris-versicolor 
8 5.5 2.3 4.0 1.3 Iris-versicolor 
9 6.5 2.8 4.6 1.5 Iris-versicolor 

10 6.3 3.3 6.0 2.5 Iris-virginica 
11 5.8 2.7 5.1 1.9 Iris-virginica 
12 7.1 3.0 5.9 2.1 Iris-virginica 
13 6.3 2.9 5.6 1.8 Iris-virginica 
14 6.5 3.0 5.8 2.2 Iris-virginica 
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2.2 An Overview of Artificial Neural Network 

Human brain has a high ability in learning and solving many complicated 

problems. It is a highly complex organ of human which consists of billions of 

specially built cell called neurons. It is estimated that there are ten billion neurons in 

the human brain. The neuron consists of four major components which are soma, 

axon, dendrite and synapse as shown in Figure 2.1.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 The human neurons. 

Each single neuron is connected to others forming an enormous network called 

neural network. Any single neuron acts as an information-processing unit. When a 

particular neuron is stimulated by an input signal, the signal will be transmitted via the 

dendrite to the soma. Then, the input signal will be transmitted, again, via the axon to 

the other connected neurons. Before the signal will be transmitted from one neuron to 

others, the strength of the transmitted signal will be controlled (be improved or 

worsened) by the chemical and biological reaction called synaptic resistance. This 

reaction allows the neuron to control the strength of the transmitted signal. Therefore, 

any neuron can create a particular output signal (a signal with specific strength) 

corresponding to its input signal. By the processing of each neuron, the neural network 

is able to create a distinctive output signal to respond to a particular input signal. To 

get the distinctive output signal, the network has to learn to adjust the strength of the 

input signal during an internal signal transmission (transmitting signal from one neural 

in the network to others). As mentioned previously, the process that plays role in 
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adjusting strength of the transmitted signal is the synaptic resistance. This process can 

be considered, in a mathematical sense, as a process of weight adjustment where the 

weights refer to the chemical and biological factors. When the weights are changed, it 

is compared as an occurring of chemical and biological reactions that yields the 

altering of signal’s strength.       

The learning process of the neural network is a process of adjusting the 

weights of all neurons in the network. The purpose of the adjustment is to make the 

network able to create a particular output signal corresponding to its received input 

signal. The learning process of the neural network can be categorized into three 

categories as follows.    

1. Supervised learning. The neural network is forced to generate a specific 

target signal corresponding to each particular input signal (the weight adjustment 

process is performed with respect to a value of the target signal).  

2. Unsupervised learning. There is no a specific target signal for each input 

signal. The neural network learns by adjusting its weights equal to a value of the input 

signal (the weight adjustment process is performed with respect to a value of the input 

signal). 

3. Reinforcement learning. It is a combination of both previous learning 

schemes under the environment that the target output cannot be clarified. 

An artificial neuron is made up to mimic the human’s neuron in both sense of 

structure and function. Figure 2.2 shows structure of the artificial neuron. 

 

 

 

 

 

 

 

wi is a weight of a neuron, and ( )  is an activation function of the neuron. Similarly 

to the real neuron, a single artificial neuron connects to others to form a network 

called artificial neural network (ANN). In addition, the learning process of the ANN 

can also be performed under the three learning schemes as previously described. In the 

( ) 
 

 

Soma 
2w

1w  

1w  

3w

1w  

Synapse area Axon 

Figure 2.2 The artificial neuron. 
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( ) 

next section, we will describe the detail of its activation function, the vital part of the 

artificial neuron. 

2.3 Activation Function 

An activation function plays an important role in the learning process. The use 

of the artificial neuron with different activation function yields as the different value 

of the output signal. Figure 2.3 shows structure and some mathematical notations of 

the artificial neuron. 

 

 

 

 

 

 

 

1 2 j<x ,x ,...,x > refers to an input signal, 1 2 j<w ,w ,...,w > refers the adjustable weights, b 

is a bias, v is a linear combination of an input signal and weights, ( )v is an activation 

function and y is an output of neuron. When the artificial neuron is stimulated by the 

input signal (i.e., the input signal is presented to the neuron), each element of the input 

signal will be multiplied by the associated weight. Then, the results of each 

multiplication are summed together yielding an induced local field v (a linear 

combination of an input signal). Consequently, the induced local field can be defined 

by 

      ( )j j
j

v w x b   

The index j is the order of the members of the input signal. The bias b is presence to 

make the activation function set off from zero [16]. After getting the induced local 

field v, the computation of an output signal is performed as in equation 2.2.   

 

y is the output signal, and        is an activation function. Equations described 

above are the common computation to create an output signal of the artificial neuron. 

 

2w

1w
 

3w

1w
 

jw

1w
 

1w

1w
 


 

1x

1w
 

2x

1w
 

3x

1w
 

jx

1w
 

( )v

1w  
y  

b
1w

 

2.1  

2.2  ( )y v

Figure 2.3 The structure of the artificial neurons with some mathematical notations. 
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Many studies in the neural network have investigated on finding a better activation 

function. Consequently, a number of activation functions were created. In this thesis, 

we present just the three well-known activation functions which are Threshold 

function, Piecewise-linear function and Sigmoid function.  

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Threshold function. The mathematical definition of the activation function 

illustrated in Figure 2.4 (a) can be described by  

1 0
( )

0 0
if v

v
if v




 
  

This type of an activation function is known as the Heaviside Function in an 

engineering field. The output of this function is achievable in two values: getting on 

the value of 1 when the induced local field ( v ) is nonnegative value and getting on the 

value of 0 otherwise. 

 2. Piecewise-Linear Function. The mathematical definition of the activation 

function illustrated in Figure 2.4 (b) can be described by 

2.3  

  

 

Figure 2.4 (a) The threshold function. Figure 2.4 (b) The piecewise-linear  
function. 

Figure 2.4 (c) The Sigmoid function. 

Figure 2.4 Various types of activation functions. 
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 The result obtained from this form of an activation function possibly falls in 

two areas: non-saturation area, or saturation area. As in equation 2.4, if the value of 

the induced local field v is in range of              , the output of function still vary, and 

the amount of output is equal to the induced local field itself. On the other hand, if the 

value of the induced local field is larger or less than the restricted range, the output 

will be set to a value of one or zero, respectively. 

 3. Sigmoid Function. The S-shape graph illustrated in Figure 2.4 (c) is the 

most common form of an activation function used in the artificial neural networks. 

This form of an activation function is defined by  

1( )
1 exp( )

v
v





 

 
  is a slope parameter. Adjusting this parameter results in a changing of the slope of 

the S-shape graph. As shown in Figure 2.4 (c), the output of the sigmoid function is a 

continuous value between zero and one. When compared with the two previous 

functions, the altering of the output of the sigmoid function is smoother than the two 

previous functions. Accordingly, the use of the sigmoid function in the ANN yields a 

more refined output which makes it more popular.  

2.4 Multilayer perceptron network  

           The artificial neuron illustrated in Figure 2.2 can be mentioned as a perceptron. 

The perceptron is a single artificial neuron with the adjustable synaptic weights and a 

bias. It is a simple model used for the classification of patterns. The use of a single 

perceptron in classifying could achieve a high classification performance on linearly-

separable problems. However, it gives a low performance when dealing with 

nonlinearly-separable problems. The detail about why a single perceptron fail to solve 

nonlinearly-separable problems can be found in [1]. Commonly, to use perceptron 

handling real world problems, we connect a single perceptron together to form a 

11,
2

1 1( ) ,
2 2

10,
2

v

v v v

v




 




    






 2.4  

1 1( , )
2 2



2.5  
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network of perceptrons. There are various designs of the perceptrons networks. The 

famous one is the multilayer perceptrons (MLP) network as shown in Figure 2.5. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 The multilayer perceptron network. 

This type of a network consists of three basic layers: 

1. Input layer. This layer consists of a group of input nodes. A number of the 

input nodes are equal to a number of members of the input signal. This layer plays role 

in receiving the input pattern and constituting the input signal to apply to the next 

layer of network. The input node is sometime called source node. There is no 

computation in this layer. 

2. Hidden layer. This layer consists of a group of hidden nodes which are the 

perceptrons. The perceptrons receive the input signal from the input layer and perform 

the computation shown in equations 2.1 and 2.2 yielding the output signal. The output 

signals obtained from this layer will be sent to the next layer of the network. In 

addition, this layer of the network can be constructed more than one layer. However, 

the one-hidden node network is preferred, and it is successful in solving many 

complicated problems. 

3. Output layer. This layer is the last layer of the network. It consists of a 

group of output nodes. The output signals obtained from the hidden layer act as the 

input signals in this layer. After receiving the input signal, the output nodes perform 

the same computation as similar in the hidden nodes yielding the output signal. The 
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output signal obtained from this layer is determined as the output signal of the 

network. 

            According to the three layers of the MLP network, the input signals fed to the 

network will be sent forward through the entire network, layer by layer. Therefore, the 

MLP network is sometime called the feed forward network. In the next section, the 

learning process of the network will be described. 

2.5 An Overview of Backpropagation Algorithm.  

 As in the previous explanation, the learning process is a process of adjusting 

weights. A number of learning algorithms have been developed to apply with the MLP 

network. The most famous learning algorithm is the backpropagation (BP) algorithm. 

This algorithm is the supervised learning scheme. It requires a specific target output 

for each input signal. To understand well in the underlying idea of this algorithm, the 

concept of the propagation signals should be informed first. The signals propagating 

through the network can be categorized into two types: 

1. Function signal. The signals propagating forward from different layers are 

called function signal or sometime called forward signal after its direction of 

propagation.  

2. Error signal. As we described that the backpropagation learning algorithm is 

performed under the supervised learning scheme which means each input signal has 

its associated output signal (target signal). The target signals can be either set by the 

backpropagation algorithm itself or set by user, and the assigned values should be in a 

possible range of the current-using activation function. Equation 2.6 shows the 

definition of the error signal. 

  k k ke d y    

yk is the output signal obtained from forward process corresponding to the output node 

k, dk is the target signal corresponding to the output node k, and ek is the error signal 

corresponding to the output node k, respectively. The error signal will be sent 

backward through the network to all neurons (perceptrons) in the network, it is 

sometime called backward signal. The error signal is sent backward to each neuron to 

use in the weight adjustment process. The amount of weight change depends on a 

value of the error signal itself. Furthermore, the error signal is also used to determine 

the performance of learning. A smaller value of error means better learning.   

2.6  
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The BP algorithm consists of two main phases: forward phase and backward 

phase. The forward phase is the processes of receiving the input signal, propagating 

the signal forward through various layers of the network till yielding the output signal. 

The backward phase is the processes of computing the error signal and sending the 

error signal backward to all neurons (perceptrons) in the network.  

The BP algorithm is an iterative technique. The forward and backward phases 

are iteratively performed until the satisfying value of error is met. In the next chapter 

we will show the full mathematical details of the backpropagation algorithm.  

2.6 Information Gain in a Decision Tree Algorithm 

The construction of a decision tree is a recursive process. It bases on a divide-

and-conquer technique. In this section, how the information gain help in constructing 

a decision tree and how the finished decision tree classify data are given.  

Information gain is a measure used to determine the relevance of the attributes 

of a data set with respect to the target class. It was used in a decision tree algorithm 

[9], [10] as a criterion to select a proper attribute for branching nodes of a decision 

tree. When the decision tree algorithm was applied to handle a numeric data set, each 

decision node can be considered as a hyperplane that is orthogonal to a standard ei 

vector (the vector that represents the ith axis) of a data space. The complete decision 

tree can be referred to a group of hyperplanes that partition the data space into 

subspaces. According to this view point, a problem of constructing the decision tree 

can be viewed as a technique that recursively select the most relevant attribute for 

constructing a splitting hyperplane. The information gain is involved in a process of 

determining the most relevant attribute in which the attribute that gives the highest 

information gain will be selected. The split subspace that contains only one target 

class is called a pure subspace. The decision tree can easily identify instances in this 

subspace to be that unique value of the target class. For an impure subspace, the 

decision tree identifies instance in this subspace by following the majority class. In the 

next chapter, we will show the full steps of the decision tree construction.  

 

 



CHAPTER III 

MATHEMATICAL MODEL AND ALGORITHM 

3.1 Backpropagation Algorithm 

As we described in the previous chapter, the most famous learning algorithm 

used to train the MLP network is the backpropagation (BP) algorithm. The learning 

process can be viewed as a method of adjusting weights to create a specific output 

signal associating to a particular input signal. Equation 3.1 shows the computation 

used in the weight adjustment process. 

new oldw w w   

wold is a weight before adjusting, wnew is a new weight obtained from adjusting and 

w  is a degree of weight change. The delta weight can be either positive or negative 

value depending on to increase or decrease the old weight (wold).  Table 3.1 shows a 

sample data set. 

Table 3.1 Sample data set. 

 

 

 

 

This data set was created to illustrate how to construct a multilayer perceptron 

network to handle the real data set. The sample data set contains three attributes 

(feature 1, 2 and 3) and two classes (A, B). The target signal for class A was set as a 

vector of two dimensions with a value of <1, 0>. For class B, the output target was set 

as a vector of two dimensions with a value of <0, 1>. Suppose we have n classes of 

data, the output targets will be the vectors of n members as following: <1, 0, …, 0> 

for the 1st class, <0, 1, …, 0> for the 2nd class and going on with this pattern. Hence, 

we get <0, 0, …,1> for the nth class. This is the way commonly used to establish the 

target signals. 

We have the data set whose each input signal consists of three members (not 

including the class label attribute), and there are two classes of data. Hence, the design 

of the multilayer perceptron network should be as the one shown in Figure 3.1.   

 

3.1 

Number Feature1 Feature2 Feature3 Class 

1 1.0 0.5 0.0 A 
2 0.7 0.6 0.2 A 
3 0.7 0.5 0.7 B 
4 0.5 0.6 1.0 B 
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Figure 3.1 The design of the multilayer perceptron network. 

 

In Figure 3.1, the network consists of three layers. The input layer consists of 

three input nodes and another one bias node. A number of input nodes are designed to 

fit a size of the input signal (a vector with 3 members). The hidden layer contains 

three hidden nodes and one bias node. This layer of the network is allowed to have 

more than one layer, and a number of hidden nodes in each layer are adjustable. 

Finally, the output layer consists of two output nodes. A number of output nodes are 

equal to a number of classes.  

The definitions of each notation are as follows: xi refers to each element of the 

input signal, w is an adjustable weight of the neuron where the related superscript is a 

group of weights, and the related subscript is an order of the associated neuron nodes. 

For example 1
11w  is an adjustable weight which belongs to group one and corresponds 

to the connection between the first hidden node and the first input node.  

There are two groups of weights in the network: the first group is a group of 

weights between the input layer and the hidden layer, the second group locates 
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between the hidden layer and the output layer. Both groups can be viewed in a matrix 

form as shown below. 

 

 

 

Figure 3.2 Matrix form of the first group of the adjustable weights. 

 

 

 

Figure 3.3 Matrix form of the second group of the adjustable weights. 

The data in the first column of both groups are biases. This first group of 

weights is sometimes called the hidden-layer weights, and the second group of 

weights is sometimes called the output-layer weights. The bias nodes were assigned 

by a value of 1 which makes the multiplications between the inputs and the biases 

equal to values of the biases themselves. During the learning process, all of weights in 

both groups are adjusted by using equation 3.1. In accordance with equation 3.1, the 

backpropagation algorithm can be considered as a method to find appropriate delta 

weights ( w ) for all weights in the network. When applying w  to the old weights 

(wold), the network with a new group of weights will produce a smaller value of error. 

As described in the previous chapter, the backpropagation algorithm consists of two 

main phases: the forward phase and the backward phase. More precise details of these 

two phases are described in the following sections. 

3.1.1 Forward phase computation 

 The forward phase of backpropagation algorithm begins from receiving an 

input signal and following by the computation of the hidden layer and the computation 

of the output layer until yielding the output signal. The first computation occurs in the 

hidden layer, there is no any computation in the input layer. Equation 3.2 shows the 

computation of the induced local filed of each neuron in the hidden layer.   

0
1

n

j i ji j
i

v x w w


   

vj refers to the induced local field corresponding to the hidden node j, xi refers to a 

member of the input signal corresponding to the input node i, wji is an adjustable 

3.2 
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w w w w
w w w w
w w w w

 
 
 
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weight corresponding to the hidden node i and the input node j, and w j0 is a bias of 

the hidden node j. 

 In equation 3.2, each member of the input signal is multiplied by an associated 

weight. Then the results are summed together, and added by a bias to produce an 

induced local field (vj). The induced local field will be used to calculate the output 

signal of the hidden neuron. Equation 3.3 shows the computation of the output signal.  

( )j jy v  

          is an activation function where the input of function is an induced local field 

obtained from equation 3.2, and yj is an output signal of the hidden node j.  

After getting all output signals from the hidden nodes, these output signals will 

be transmitted to the next layer of the network. Equation 3.4 shows the computation of 

the induced local field of the output neurons (output nodes). 

0
1

n

k j kj k
j

v y w w


   

vk is the induced local field corresponding to the output node k, yj is an output signal 

of the hidden node i or an input signal of the output node j, wkj is an adjustable weight 

corresponding to the output node k and the hidden node j, and wk0 is a bias of the 

output node j. 

 In equation 3.4, the computation is similar to the computation of the hidden 

neuron where the output signals of the hidden neurons act as the input signals in this 

layer. Similarly, the output signal of the output neuron can be calculated by the same 

way.  

   ( )k ky v  

          is an activation function where the input of function is an induced local field 

obtained from equation 3.4, and yk is an output signal of the output node k (output 

neuron k). The output signals obtained from the output layer are determined as the real 

output signal of the network.  

3.1.2 Backward Phase Computation 

In the backward phase of the backpropagation algorithm, an error signal will 

be sent backward to all neurons in a network. The purpose of sending the error signal 

backward is to find the effect to the error of each weight. Moreover, the size of a 

related delta weight in equation 3.1 depends on amount of this effect. In fact, the key 

3.3 

3.4 

( )jv

3.5 

( )kv
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of the backward phase is to find the appropriate delta weights ( w ) for all weights in 

the network. When applying these delta weights to the weights (wold), the network 

with a new group of weights (wnew) will produce a smaller value of error. Equation 3.6 

shows the definition of the error signal corresponding to any particular output node.  

   k k ke d y   

dk is the output target for the output node k, yk  is the output signal from the output 

node k and ke is the error signal corresponding to the output node k.  

 Equation 3.6 shows the produced error corresponding to each output node. In 

order to estimate the error of network, we use the cost function ( ( )C  ) which is 

defined by 

   2
1 2

1

1( , ,..., )
2

n

n k
k

C e e e e


     

From equation 3.7, the input of the cost function is a vector of errors. The 

related subscript is an order of the output node. Equation 3.7 is the computation of the 

error associated with only one input signal. Adding an order of the input signal to 

equation 3.7, we get     

  2

1

1( ) ( )
2

n

k
k

E n e n


        

n is an order of input signals in a training set. Consequently, E(n) is the network’s 

error with respect to the nth input signal. In order to compute the network’s error with 

respect to all input signals in the training set, we use a mean square error (Eav) which 

is defined by  

   
1

1 ( )
N

av
n

E E n
N 

   

N is a number of input signals in a training set.  

The degree of a delta weight applied to any single weight is determined by the 

amount of an effect to the error of the weight itself. This effect is determined by a rate 

of change of the error with respect to a rate of change of that particular weight. 

Accordingly, we use the differentiation of the error (E(n)) with respect to the 

particular weight as shown in equation 3.10 to find an appropriate value of delta 

weight.   

( )
kj

kj

E nw
w




  


  

 3.7 

 3.9 

 3.6 

 3.8 

 3.10 
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 We called equation 3.10 a delta rule. It shows that the degree of delta weight 

( w ) depends on the differentiation. E(n) is the  error corresponding to the nth input 

signal. wkj is the adjustable weight corresponding to the output node k and the hidden 

node j. kjw is the delta weight used to apply to the associated weight (wkj).   is a 

learning rate which plays role in controlling a degree of ,kjw . Its value lies in range 

of [0,1].  The network’s error E(n) can be expressed as a function of the weight (wkj).  

Graphs illustrating the relation between E(n) and wkj can be plotted as shown in Figure 

3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Figure 3.4, adding minus sign to            ensures that a direction of 

the delta weight is opposite to the increasing direction of the error. Furthermore, the 

weight adjustment process can be considered as a process of moving weights in a 

direction that decreases the error. The step size of the move is controlled by the 

learning rate ( ). To find the solution of equation 3.10 we start from equation 3.8, 

differentiating both sides with respect to ek(n) then we get 

   ( ) ( )
( ) k

k

E n e n
e n





 

( )n denotes the correspondence to the nth input signal. Differentiating both 

side of equation 3.6 with respect to ( )ky n , we get 

( ) 1
( )

k

k

e n
y n


 


  

 3.11 

 3.12 

( )

kj

E n
w






Figure 3.4 (a) In case of increasing 
function 

Figure 3.4 (b) In case of decreasing 
function 
 

  

Figure 3.4 The graphical relations between E(n) and wkj. 



21 
 

Differentiating equation 3.5 with respect to ( )kv n , we get 

( ) ( ( ))
( )

k
k k

k

y n v n
v n







 

Differentiating equation 3.4 with respect to ( )kjw n , we get 

( ) ( )
( )

k
j

kj

v n y n
w n





 

The use of equations 3.11 to 3.14 in 3.10 yields  

   
( ) ( ) ( ( )) ( )
( ) k k j

kj

E n e n v n y n
w n




 


 

 Equation 3.15 shows the solution of 
( )
( )kj

E n
w n



. Replacing this solution in 

equation 3.10, we get 

   ( ) ( ( )) ( )kj k k jw e n v n y n    

 Equation 3.16 can be rewritten in another equivalent form which intends to 

show the delta weight kjw in a term of a local gradient ( ( )k n ). 

   ( ) ( )kj k jw n y n   

( )k n is the local gradient of the output node k which is defined by 

  

( )( )
( )

( ) ( )( )
( ) ( ) ( )

( ) ( ( ))

k
k

k k

k k k

k k k

E nn
v n

e n y nE n
e n y n v n

e n v n






 



 

  



   

Equation 3.17 shows the computation of the delta weight used to update the 

output layer weights.  According to equation 3.17, k refers to the related output node 

and j refers to the related hidden node, respectively. The computation of the delta 

weights for updating the hidden layer weights is similar to equation 3.17, except the 

local gradient which is computed differently.  

  ( ) ( )ji j iw n y n   

Equation 3.19 shows the computation of delta weights used to update the 

hidden layer weights. j refers to the related hidden node, i refers to the related input 

node. The local gradient of hidden node ( )j n is computed by 

 3.13 

 3.14 

 3.15 

 3.19 

 3.16 

 3.18 

 3.17 
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( )( )
( )

( )( )
( ) ( )

( ) ( ( ))
( )

j
j

j

j j

j j
j

E nn
v n

y nE n
y n v n
E n v n
y n






 




 

 


 



 

From equation 3.8 we have 

  2

1

1( ) ( )
2

n

k
k

E n e n


   

k  refers to the kth output node, n denotes the correspondence to the nth input 

signal. 

  
1

( )( ) ( )
( ) ( )

n
k

k
kj j

e nE n e n
y n y n




 
  

Applying chain rule for the partial derivative ( ) / ( )k je n y n  ,we get 

  
1

( ) ( )( ) ( )
( ) ( ) ( )

n
k k

k
kj k j

e n v nE n e n
y n v n y n

 


  
  

From equations 3.5 and 3.6 

( ) ( ) ( )
( ) ( ( ))

k k k

k k k

e n d n y n
d n v n

 

 
 

 Hence 

   ( ) ( ( ))
( )

k
k k

k

e n v n
v n




 


 

From equation 3.4, 

  0
1

n

k j kj k
j

v y w w


   

Hence  

  
( ) ( )
( )

k
kj

j

v n w n
y n





 

By using equations 3.25 and 3.27 in equation 3.23, we get 

  1

1

( ) ( ) ( ( )) ( )
( )

( ) ( )

n

k k k kj
kj

n

k kj
k

E n e n v n w n
y n

n w n










 








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By using equation 3.28  in equation 3.20, we get the local gradient of hidden 

node as 

  
1

( ) ( ( )) ( ) ( )
n

j j j k kj
k

n v n n w n  


       

 In order to compute the local gradient for both output node and hidden node, it 

needs the first derivative of an activation function. The derivative form of the 

activation function will be shown in the next section.  

The backpropagation algorithm is an iterative technique. All data (input signal) 

in a training set will be presented to the network one by one. When all input signals 

are presented to the network, we called an epoch. The backward phase can be 

performed in two ways: sequential mode and batch mode. Sequential mode performs 

the backward phase instantaneously after the forward phase of each input signal 

(update one by one). Batch mode performs backward phase after all input signals were 

presented to the network (update epoch by epoch). The sequential mode is more 

popular than the batch mode, particularly for solving pattern classification problem, 

for two reasons [1]. First, the algorithm is easy to implement. Second, it provides an 

effective solution to large and difficult problems.  

The learning ability of the network is determined by the error produced during 

learning. The network’s error determine by using the mean squared error shown in 

equation 3.9. To stop learning process, the error should converge to a sufficiently 

small value. In practice, one simple and effective stopping criterion used to determine 

the convergence of the network’s error is the absolute rate of change of the mean 

squared error. This stopping criterion bases on an idea that when the absolute rate of 

change of the mean squared error per epoch is sufficiently small, the error is assumed 

to be converged. The rate of change of error is typically considered to be small enough 

if it lies in the range of 0.1% to 1% per epoch, sometimes a small value like 0.01% is 

used. The absolute rate of change of the mean squared error per epoch is defined by 

 

 
( 1) ( ) 100 a small valuedefined by user

( 1)
(the popular one is 0.01)

av av

av

E m E m
E m
 

 
  

m denotes the mth epoch of the learning process. 

 

 3.29 

 3.30 



24 
 
3.1.3 Backpropagation algorithm conclusion 

 As we described, the backward phase of the backpropagation algorithm 

requires the first derivative of the activation function. In this section we first show the 

derivative form of the logistic function which is commonly used in the multilayer 

perceptron network. The logistic function is defined by 

     
1( ( )) 0 ( )

1 exp( ( ))j j j
j

v n a and v n
av n

      
 

 

( )jv n is the input of function. It is a linear combination of the input signals (induced 

local field) corresponding to the neuron node j and the nth input.  

 Differentiating equation 3.31 with respect to vj(n), we get 

   2

exp( ( ))
( ( ))

1 exp( ( ))
j

j j

j

a av n
v n

av n



 

   

 

 As described in equation 3.2 that ( ( )),j j jy v n  hence we can express 

( ( ))j jv n as 

( ( )) ( )[1 ( )]j j j jv n ay n y n    

 Consider the local gradient of the output node k which is defined by 

   ( ) ( ) ( ( ))k k k kn e n v n   

The error of the output node k is defined by 

( ) ( ) ( )k k ke n d n y n   

 By using equation 3.33 and equation 3.35 in equation 3.34, we get 

   ( ) [ ( )] ( )[1 ( )]k k k k kn a d y n y n y n     

 Now, consider the local gradient of hidden node j which is defined by 

   ( ) ( ( )) ( ) ( )j j j k kj
k

n v n n w n     

By using equation 3.33 in equation 3.37, we get 

   ( ) ( )[1 ( )] ( ) ( )j j j k kj
k

n ay n y n n w n     

 The back propagation algorithm basically consists of five main processes as 

follows: 

1. The process of initialization. Randomly initialize weights and biases for the 

network.  

 3.32 

 3.33 

 3.34 

 3.35 

 3.36 

 3.37 

 3.31 

 3.38 
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2. The presentation of training example. Randomly select a training example 

(input data or input signal) to present to the network. 

3. The forward phase computation.  

 3.1 Compute the induced local field vj(n) of all hidden nodes by 

   0
1

( ) ( ) ( )
m

j ji i j
i

v n w n y n w


   

n  denotes the correspondence to the nth input signal, iy is the ith element of the 

input signal which corresponds to the ith node, jiw is the weight which corresponds to 

the hidden node j and the input node i , 0jw is a bias of the hidden node j, and m is a 

number of the input nodes in the input layer of the network, not including the bias 

node. 

3.2 Compute the output signals of all hidden nodes j by 

      ( ( ))j j jy v n  

jy is the output signal of the hidden node j , j is the activation function of the 

hidden node j , and ( )jv n is the induced local field of the hidden node j . 

3.3 Compute the induced local field ( )kv n of all output nodes by 

 0
1

( ) ( ) ( )
m

k kj j k
j

v n w n y n w


   

yj is the output signal of the hidden node j, wkj is the weight which corresponds 

to the output node k and the hidden node j, wk0 is the bias of the output node k, and m 

is a number of the hidden nodes in the hidden layer of the network, not including the 

bias node. 

 3.4 Compute the output signals of all output nodes k by 

                ( ( ))k k ky v n  

yk is the output signal of the output node k, k is the activation function of the 

output node k , and ( )kv n is the induced local field of the hidden node k . 

3.5 Compute the error signals of all output nodes by 

 ( ) ( ) ( )k k ke n d n y n    
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ke is the error signal which corresponds to the output node k , kd is the target 

signal which corresponds to the output node k , and ky is the output signal from the 

output node k . 

 4. The backward phase computation.  

 4.1 Compute the local gradients of all output nodes by 

   ( ) ( ) ( ( ))k k k kn e n v n   

( )k n is the local gradient of the output node k , ( )ke n is the error signal which 

corresponds to the output node k , ( )k  is the first derivative of the activation 

function of the output node k , and ( )kv n is the induced local field of the output node 

k . 

 4.2 Compute the local gradients of all hidden nodes by 

   ( ) ( ( )) ( ) ( )
m

j j j k kj
k

n v n n w n     

( )j n  is the local gradient of the hidden node j , ( ( ))j jv n  is the first 

derivative of the activation function of the hidden node j, ( )k n is the local gradient of 

the output node k , ( )kjw n is the weight which corresponds to the output node k and 

the hidden node j , and m is a number of the output nodes in the output layer. 

 4.3 Updating weights.   

 4.3.1 Update the adjustable weights of the output nodes by  

   ( 1) ( ) ( ( 1)) ( ) ( )kj kj kj k jw n w n w n n y n        

kjw is the weight which corresponds to the output node k  and the hidden node 

j, wk 0 is the bias,  is a momentum (see Notes 1 and 2), kjw is the delta weight 

corresponding to the output node k  and the hidden node j, 0kw  is used for updating 

the bias,   is a learning rate, k is the local gradient of the output node k , and jy is the 

output value of hidden node j. In case of j = 0, it is the signal from the bias node which 

is equal to the bias itself.  

 4.3.2 Update the weights of the hidden nodes by 

   ( 1) ( ) ( ( 1)) ( ) ( )ji ji ji j iw n w n w n n y n        
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, ,n    are defined as similar as in equation 3.46, jiw  is the weight 

corresponding to the hidden node j and the input node i, wj 0 is the bias, jiw is the 

delta weight corresponding to the hidden node j and the input node i, 0jw  is used for 

updating the bias, j is the local gradient of the hidden node j, and iy is the input value 

corresponding to the input node i.  In case of i = 0 it is the signal from the bias node. 

 5. The process of examining the error of the network.  

The second, third and fourth processes described above will be repeated until 

all data (input signal) in the training set are presented to the network (reached an 

epoch of learning). Then the process of examining the error will start. 

 5.1 Compute the mean squared error by 

1

1 ( )
N

av
n

E E n
N 

   

 5.2 Compute the absolute rate of change of the mean squared error by 

   ( 1) ( ) 100 .
( 1)

av av

av

E m E m The stop criterion
E m
 

 


 

m is the mth epoch of learning process. If the conditioned-equation 3.49 is true 

then terminate the learning process; otherwise, repeat steps 2, 3 and 4 until the 

stopping criterion is met. Sometimes the learning process is terminated by both 

stopping criterion and a specific number of epochs. This manner ensures that the 

learning process will be stop anyway. It is possible that the stopping criterion is unable 

to be met. 

 Notes 1: equations 3.46 and 3.47 are similar to equation 3.1 ( new oldw w w  ) 

by ( 1)w n  is equal to neww , ( )w n is equal to oldw , and ( ) ( )n y n is equal to w . 

However, there is a different term which is ( ( 1))w n   , the previous weight 

( ( 1)w n   ) multiplied by a momentum ( ). Including this term has a stabilizing 

effect to the convergence of the error, see [1] for full detail of how the momentum 

works. 

 Notes 2: The Momentum and the learning rate have to be set in a range of 

[0,1]. 

 

 

 3.48 

 3.49 
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3.2 Decision Tree Algorithm 

Decision tree algorithm is a divide-and-conquer technique. Its construction 

processes can be performed recursively. Information gain is employed to find a proper 

attribute for branching nodes of a tree in each round of computation. Suppose we have 

a training data as shown in Table 3.2.  

Table 3.2 The Weather data set (nominal version). 

 

 

 

 

 

 

 

 

 

 

 

 

The data set consists of four attributes, two classes of data (Yes or No) and 

fourteen data. In order to find the information gain of each attribute. We first find the 

information value of the data set. The information value is used to measure the purity 

of a data set in a unit called bit. For example, 

 info(weather data set) = info (9,5)                               

9 is a number of Yes and 5 is a number of  No in the data set, respectively. For 

any positive or zero integers p and q, info(p,q) is defined by 

( , ) ( , )p qinfo p q entropy
p q p q


 

 

where 

( , ) - log( ) - log( )p q p p q qentropy
p q p q p q p q p q p q


     

 

 From equation 3.51 and equation 3.52, hence 

  9 5(9,5) ( , )
14 14

info entropy   

3.50 

3.51 

3.52 

3.53 

Number Outlook Temperature Humidity Windy Class 

1 Sunny Hot High FALSE No 
2 Sunny Hot High TRUE No 
3 overcast Hot High FALSE Yes 
4 Rainy Mild High FALSE Yes 
5 Rainy Cool Normal FALSE Yes 
6 Rainy Cool Normal TRUE No 
7 overcast Cool Normal TRUE Yes 
8 Sunny Mild High FALSE No 
9 Sunny Cool Normal FALSE Yes 
10 Rainy Mild Normal FALSE Yes 
11 Sunny Mild Normal TRUE Yes 
12 overcast Mild High TRUE Yes 
13 overcast Hot Normal FALSE Yes 
14 Rainy Mild High TRUE No 
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9 5 9 9 5 5( , )  log( ) log( )

14 14 14 14 14 14
0.940

entropy

bits

  



  

The data set with a smaller information value is determined as a purer data set. 

The information value can be applied to determine the purity of data set with respect 

to only one attribute. Figure 3.5 shows subsets obtained from separating the Weather 

data set by its attributes.   
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 (d) separating by Windy attribute. 
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          Figure 3.5 The separation of data set with respect to each attribute of the 
Weather data set. 
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In order to compute the information value with respect to the outlook attribute, 

the information values with respect to each possible value of the outlook attribute are 

required. 

The information value with respect to outlook = sunny is computed by  

info(2,3) = 0.971 bits 

 2 is a numbers of yes and 3 is a numbers of no with respect to outlook = to 

sunny. 

Similarly, the information values with respect to outlook = overcast and 

outlook = rainy are computed by 

info(4,0) = 0.0 bits 

info(3,2) = 0.971 bits 

The information value of the outlook attribute can be calculated as follows  

5 4 5( ) ( ) ( ) ( )
14 14 14
5 4 5= ×0.971+ ×0.0 + 0.971

14 14 14
= 0.693

info outlook info sunny info overcast info rainy

bits

  

 According to equation 3.55, the fraction 5
14

 multiplied by info(sunny), 5 is a 

number of data that outlook = sunny, and 14 is a number of all data in a data set. For 

the other fractions 4
14

and 5
14

 can be explained in the same way. 

The information values of the other attributes can be computed similarly. The 

results are as follows. 

info(temperature) = 0.911 bits 

info(humidity) = 0.788 bits 

info(windy) = 0.892 bits  

The information gain with respect to attribute A is defined by 

  gain(A)= info(data set) - info(A) 

Hence, gain(outlook) is computed by 

 gain(outlook) = info(weather data set) - info(outlook) 

            = 0.940-0.693 

            = 0.247 bits 

The information gains of others are as follows: 

 gain(temperature) = 0.029 bits 

3.55 

3.56 
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 gain(humidity) = 0.152 bits 

 gain(windy) = 0.048 bits  

  The attribute that yields the highest information gain is the outlook attribute. 

This indicates that separating the data set by the outlook attribute yields the purest 

subset. Hence it is proper to be used in a branching process. 

 

    

 

 

 

 

 

 

 

Figure 3.6 Subsets (A, B and C) obtained from separating the Weather data set 

by the outlook attribute. 

 Three possible values of the outlook attribute were used to split the Weather 

data set into three subsets as shown in Figure 3.6. Now, the decision tree consists of 

one root node with three branches. To create other child nodes, the process of finding 

the appropriate attribute will be performed again on each of the three separated subsets 

A, B and C.  

The manner of constructing a decision tree described above will be performed 

continually until the stopping criterion is met. There are two stopping criterions used 

to terminate the decision tree algorithm.  

1. Stop when the separated subsets are pure (there is only one class) such as 

the subset B in Figure 3.6. There is only class yes in this subset, so there is no any 

further process to perform on this branch. 

2. Stop when there is no attribute left to be considered. Any used attribute will 

not be considered as the candidate attribute again in the process performed on its child 

nodes. In Figure 3.6, the outlook attribute will not be considered as the candidate 

attribute in the process performed on the subset A and C.   

In pattern classification problem, most data sets contain numeric attributes. In 

order to extend the information gain to numeric data, the process is slightly different. 

Subset A  Subset B  Subset C 

rainy 
overcast 

sunny 

Outlook 

yes 
yes 
no 
no 
no 

yes 
yes 
yes 
yes 

yes 
yes 
yes 
no 
no 
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In numeric attribute, the data set splitting is restricted to be a binary split and not 

allowed to split data of the same class. Table 3.3 shows the numeric version of the 

Weather data set. 

Table 3.3 Weather data set (numeric version) 

 

 

 

 

 

 

 

 

 

 

 

 

This data set contains two nominal attributes: Temperature and Humidity. 

Now, we will show the computation of gain(temperature). 

 

 

 

 The temperature data are sorted by value, and the repeated values (72, 75) are 

collapsed together. There are 8 possible splitting areas as marked by arrows. A 

splitting point can be any value lying in the boundary of the splitting areas. Such as in 

the first splitting area which lies in range of [64, 65], the splitting point can be easily 

chosen by using a mean value of its boundary which is 64.5. So, according to the 

temperature attribute, we have 8 possible splitting points. These splitting points are 

candidates for the proper splitting point. The information value of each splitting point 

is computed based on the information value of its left side and right side as follows  

 ( ) (  ) (  )p qinfo temperature info left side info right side
p q p q

 
 

 

p is a number of data on the left side and q is a number of data on the right side. The 

splitting point that gives the lowest information value will be determined as the 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

64 65 68 69 70 71 72 75 80 81 83 85 
yes no yes yes yes no no yes no yes yes  no 

       yes yes 

Instance Outlook Temperature Humidity Windy Class 

1 sunny 85 85 FALSE No 
2 sunny 80 90 TRUE No 
3 overcast 83 86 FALSE Yes 
4 Rainy 70 96 FALSE Yes 
5 Rainy 68 80 FALSE Yes 
6 Rainy 65 70 TRUE No 
7 overcast 64 65 TRUE Yes 
8 sunny 72 95 FALSE No 
9 sunny 69 70 FALSE Yes 
10 Rainy 75 80 FALSE Yes 
11 sunny 75 70 TRUE Yes 
12 overcast 72 90 TRUE Yes 
13 overcast 81 75 FALSE Yes 
14 Rainy 71 91 TRUE No 

 

3.57 
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6 8(71.5) (4,2) (5,3)
14 14
0.939

info info info

bits

 

  

information value of the temperature attribute. Similarly to the nominal attribute, the 

information gain of the numeric attribute is computed by 

 gain(the selected attribute) = info(weather data set) – info(the selected 

attribute) 

For example, gain(temperature) can be computed as follows. First step is the 

computation of info(temperature). As we have eight possible splitting points, so we 

will get eight possible information values. The computation of the information value 

of the fourth splitting point which is 71.5 is computed by.    

 info(left side of 71.5) = info(4,2)              

4 is a number of yes and 2 is a number of no on the left side of the splitting 

point. 

Similarly, the information of the right side is computed by 

info(right side of 71.5) = info(5,3) 

Hence 

 

 

 

 After getting all information values, the lowest one will be used to represent 

the info(temperature). When getting the info(temperature), now we can compute the 

gain(temperature) by using equation 3.58. The info(weather data set) is computed in 

the same way as describe in the computation of the nominal attribute. 

Note: the important differences between a numerical splitting and a nominal 

splitting are a number of splitting. The numerical splitting is restricted to be a binary 

split while a number of splitting of the nominal splitting depends on a number of the 

possible values of that nominal attribute. Additional, the used numeric attribute can be 

used again in the process of finding the appropriate attribute performed on its child 

nodes while we cannot do this in a nominal attribute.  

3.3 The information gain as a tool to identify the difficult-to-classify and easy-to-

classify data 

In this research, we use the information gain as a rapid tool to distinguish 

between difficult-to-classify and easy-to-classify data. We apply a new parameter to 

control a minimum number of data in subspaces called minimum instances per area. If 

a number of data in subspace obtained from splitting by a hyperplane is less than this 

3.58 
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parameter, the process will remove that hyperplane and stop the constructing process 

on that subspace. Figure 1 shows the graphical view of the applied hyperplanes on the 

Iris data set [15]. 

 

 

 

 

 

 

 

 

 

 

For the purpose of demonstration in 2-dimensions, we have removed two out 

of four attributes of the Iris data set. Three different symbols represent the different 

classes. As shown in Figure 1, data space is partitioned by hyperplanes into five 

subspaces.  Subspace number 1, 2 and 5 are pure subspaces. Data fallen in this areas 

are correctly classified corresponding to its target class. We call data located in these 

subspaces as easy-to-classify data. For subspace number 3 and 4, they are impure 

subspaces. The data fallen in these areas are more difficult to classify when compared 

with the data located in the pure subspaces. How difficult to classify these data 

depends on the impurity of the subspaces they fallen in. We include the entropy 

measurement (for more detail of the entropy, see [10] and [17]) to determine the level 

of impurity. Furthermore, we add a parameter called impurity threshold to use for 

identifying the difficult-to-classify data from the impure subspaces. If the entropy of 

the current-determined subspace is higher than the impurity threshold, we identify 

data located in this area as the difficult-to-classify data. 

3.4 Duplicate-sampling of difficult-to-classify scheme 

In each epoch of the standard BP learning, each datum will be used only once 

to present to the network. Our proposed scheme emphasizes the learning of the 

Figure 3.7. The graphical view of the applied hyperplanes 
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difficult-to-classify data by presenting them to the network more often than usual. 

Increasing the presentation of the difficult-to-classify data is performed by duplicating 

them before starting the learning process. Consequently, the complete process of 

training the network by the BP learning with the proposed scheme can be illustrated as 

follows:  

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 The flow chart of training the MLP network by the BP with 
the duplicate-sampling of difficult to classify scheme. 

Training Set 
 

Distinguish the difficult-to-classify and the 
easy-to-classify data using the information 

gain measurement    

easy-to-classify data 

Start the BP learning 

Feed all data to the network 
 

Duplicated 

difficult-to-classify data 



CHAPTER IV 

THE EXPERIMENT RESULTS 

The experiments were divided into three categories, depending on their 

different objectives. The first experiment was set up to compare the computational 

time and the classification performance between the MLP network trained by the 

standard BP algorithm and the MLP network trained by the BP algorithm with 

duplicate-sampling of difficult-to-classify scheme. The second experiment was set up 

to show an effect to the classification performance from adjusting parameters of the 

proposed scheme. Finally, the third experiment was set up to compare the 

classification performance of the MLP network trained by the proposed scheme with 

the well-known classification algorithms, including support vector machine, RBF 

network, J48 decision tree, NaïveBayes and Nearest Neighbor.  

Data sets used in these experiments were taken from UCI Repository [15]. The 

details of all data sets are shown in Table 4.1.  

Table 4.1 Details of data sets used in the experiments. 
 

 
 
  
 
 

 

 

 

 

4.1 MLP Network Trained by the BP Algorithm compare with MLP Network 

Trained by the Duplicate-sampling of difficult-to-classify scheme 

In this research, we concentrate on the classification of a numeric data set. So, 

we removed two nominal attributes from the Vowel data set before using it. The data 

sets were split into training and test set in a ratio of 2:1. We performed two processes 

to each experiment. 

1. Process of finding an optimal number of hidden nodes. This process aim to 

find the best number of hidden nodes for each data set. We construct the one-

hidden layer MLP networks with a various number of hidden nodes ranging 

from one to thirty. Then, we train all of them, using the training set, with the 

Name Data Features Classes Training set/Testing set 

Liver 345 6 2 227/118 
Diabetes 768 8 2 506/262 
Iris 150 4 3 99/51 
Heart-Statlog 270 13 2 178/92 
Ionosphere 351 34 2 231/120 
Vehicle 846 18 4 558/288 
Balance-scale 625 4 3 412/213 
Vowel 990 10 11 653/337 
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Table 4.2 The optimal number of hidden nodes corresponding to each data 
set  

standard BP algorithm by fixing the parameters as follows: a constant of the 

logistic function = 0.5, learning rate = 0.3 and number of epochs = 1000. The 

number of hidden nodes that gives the highest accuracy on the test set is 

determined as the optimal number for the corresponding data set. The results 

of this process are shown in Table 4.2. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

2. Process of training and testing. We used an optimal number of hidden nodes 

from the first process to construct two copies of the networks. One was trained 

by the standard BP algorithm, and another one was trained by the BP algorithm 

with the duplicate-sampling of difficult-to-classify scheme. We temporarily 

stopped the learning process at various points, every 250 epochs. At each 

stopping, we applied the test set to the network. The learning process was 

completely stopped when the classification accuracy showed no improvement 

while the network’s error on training set was dropping. The results of this 

process were shown in Figure 4.1. 

The parameters of the proposed scheme were set as follows: a number of 

duplication = 1, minimum instance per area = 4 and the impurity threshold = 0.2. 

According to the more popular sequential mode of BP algorithm over the batch mode 

in solving pattern classification problem [1], so we used the sequential mode in our 

experiment. 

For figure 4.1, the x-axis denotes a number of epochs, and the y-axis denotes a 

percentage of accuracy on the test set.  The continuous line represents the accuracy of 

the network trained by the standard BP, and the dotted line represents the accuracy of 

the standard BP with the duplicate-sampling of difficult-to-classify scheme. 

Data set 

Number of optimal hidden 

nodes 

Liver 6 

Diabetes 1 

Iris 2 

Heart-Statlog 9 

Ionosphere 2 

Vehicle 14 

Balance-scale 12 

Vowel 23 
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Figure 4.1.5 Ionosphere data set result. 

 
Figure 4.1.6 Vehicle data set result. 

Figure 4.1.4 Heart-Statlog data set result. 

Figure 4.1.1 Liver data set result. Figure 4.1.2 Diabetes data set result. 

Figure 4.1.3 Iris data set result. 

 
Figure 4.1.7 Balance Scale data set result.  Figure 4.1.8 Vowel data set result. 

Figure 4.1 The experimental results. 
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We examine the highest performance of the standard BP compared with the BP 

with the proposed scheme. If the BP with the proposed scheme achieves the same or 

higher accuracy by requiring less number of epochs, we assume that it shows a 

computational time improvement. Since the number of data per epoch of the BP with 

the proposed scheme is larger than the standard BP, we will assume the improvement 

when the actual computation time also shows the improvement. The comparisons of 

the performance of both techniques are shown in Table 4.3 and 4.4. Table 4.3 shows 

the comparison of the best accuracy of the standard BP and the similar or higher 

accuracy of the BP with the proposed scheme. According to this table, it shows the 

computational time improvement occurring on 6 data sets: Liver, Diabete, Heart-

Statlog, Vehicle, Blance-Scale and Vowel. Only two data sets (Iris and Ionosphere) 

use a little longer computational time. Table 4.4 shows the comparison of the best 

classification performance of both techniques. From this table, it shows the 

classification performance improvement occurring on 7 data sets, except the Iris data 

set which shows the same accuracy at 100%. In table 4.5, the details of the number of 

difficult-to-classify data and time used in identifying them are shown corresponding to 

each data set.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: 

1. * denotes the improvement of computational time. 
2. Time is measured in seconds. 
3. The actual time of the BP with the proposed scheme is already included the 

time used in finding the difficult-to-classify data. 
 
 
 

 Standard BP BP with the proposed scheme 

 Best accuracy Epochs Actual time 

Similar or 

higher accuracy Epochs Actual time 

Liver 74.58 1250 9.05 77.97 500 5.31* 

Diabetes 80.15 750 11.047 80.53 250 5.266* 

Iris 100 250 0.938 100 250 1.141 

Heart-Statlog 82.61 500 23.172 83.7 250 18.06* 

Ionosphere 90.83 250 30.28 89.17 250 31.4 

Vehicle 84.03 2750 794.24 83.68 1750 649.35* 

Balance-Scale 94.84 1250 97.813 95.31 1000 85.49* 

Vowel 89.61 5000 2018.78 92.28 750 607.7* 
 

Table 4.3 The comparison of the best accuracy of BP and the similar or higher  
accuracy of the BP with the propose scheme. 
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Note: * denotes the improvement of classification performance. 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

4.2 Parameters Adjustment of Duplicate-Sampling of Difficult-to-Classify 

Scheme 

 This section aims to show the effect to the classification performance from 

adjusting the parameters of the proposed scheme. The duplicate-sampling of difficult-

to-classify scheme consists of three adjustable parameters which are a minimum 

instance, a purity threshold and a duplication rate. The definitions of each parameter 

are defined as follows: 

1. The minimum instance is a least number of data allowed to be split into a 

subspace by the plane of the duplicate sampling scheme. 

2. Purity threshold is a least information value criterion used to determine 

whether the data in the mixed sub-domain are difficult-to-classify or not. If the 

considered subspace has a higher or equal information value when comparing with the 

threshold, the data in that subspace will be determined as the difficult-to-classify data. 

 Standard BP BP with the proposed scheme 

 Best accuracy Epochs Actual time Best  accuracy Epochs Actual time 

Liver 74.58 1250 9.05 78.81* 1000 10.17 
Diabetes 80.15 750 11.047 80.92* 250 5.266 
Iris 100 250 0.938 100 250 1.141 
Heart-Statlog 82.61 500 23.172 86.96* 500 35.9 
Ionosphere 90.83 250 30.28 92.50* 500 62.79 
Vehicle 84.03 2750 794.24 85.07* 2500 916.43 
Balance-Scale 94.84 1250 97.813 95.31* 1000 85.49 
Vowel 89.61 5000 2018.78 95.55* 2500 2007.36 

 

Table 4.4 The comparison of the best accuracy of BP and the BP with  
the proposed scheme. 

Table 4.5 The details of the number of difficult-to-classify 
data and the used time. 

 Number of difficult-to-classify data Used time 

Liver 90          (39.65% of training data) 0.2 
Diabetes 146        (28.85% of training data) 0.62 
Iris 14          (14.14% of training data) 0.03 
Heart-Statlog 42          (23.60% of training data) 0.02 
Ionosphere 19          (8.23% of training data) 0.81 
Vehicle 190        (34.05% of training data) 1.58 
Balance-Scale 135        (32.77% of training data) 0.22 
Vowel 402        (61.56% of training data) 1.85 
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3. The duplication rate is a number of duplications of the difficult-to-classify 

data. 

We performed this experiment by analyzing the parameters one by one. During 

one parameter is being varied, the others are fixed. The results obtained from this 

experiment will be compared with the results in the previous experiment which we 

used the default parameter setting (minimum instance = 4, purity threshold = 0.2 and 

duplication rate = 2). Varying parameter was performed by: 

1. The minimum instance was varied from 4 to 20, increasing by 4. 

2. The purity threshold was varied from 0.2 to 1, increasing by 0.2. 

3. The duplication rate was varied from 1 to 5, increasing by 1.   

The Ionosphere data is selected to use in this task, and the obtained results are 

shown in Table 4.6. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Note:  

1. the ones marked by * refer to the highest value related to each varied value 

of the minimum instance. 

 2. the percentage of difficult-to-classify data are estimated with respect to a 

number of data in a training set. 

 

 

 

Number of Minimum Instance 

Epochs 4(default) 8 12 16 20 

250 89.17 93.33 94.17* 90.83 88.33 

500 92.5* 93.33 92.50 91.67 90.00 

750 92.5* 93.33 91.67 90.83 93.33 

1000 92.5* 93.33 91.67 93.33* 95.00 

1250 91.67 93.33 91.67 92.50 94.17* 

1500 91.67 94.17* 91.67 91.67 94.17* 

1750 91.67 94.17* 91.67 91.67 94.17* 

2000 91.67 94.17* 91.67 91.67 94.17* 
Percentage of 

8.23% 29.00% 38.53% 43.72% 46.75%  Difficult-to-classify data 

 

Table 4.6 The classification performances obtained from varying the 

minimum instance. 
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Table 4.7 The classification performances obtained from varying the purity 

threshold. 

 

 

 

 

 

 
 
 
 
 
 
 

Note: the ones marked by * refer to the highest value related to each varied 

value of the purity threshold. 

Table 4.8 The classification performances obtained from varying the 

duplication rate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: the ones marked by * refer to the highest value related to each varied 

value of the duplication rate. 

 According to Table 4.6, by increasing the minimum instance, a number of the 

difficult-to-classify data will be increased. From the obtained results, they show that 

when a number of difficult-to-classify data increases, the classification performance of 

the trained network seem to be improved. 

Number of Purity Threshold 

Epochs 0.2(default) 0.4 0.6 0.8 1 

250 89.17 89.17 89.17 86.67 88.33 

500 92.5* 92.5* 92.5* 90 91.67* 

750 92.5* 92.5* 92.5* 90 91.67* 

1000 92.5* 92.5* 92.5* 90.83* 91.67* 

1250 91.67 91.67 91.67 90.83* 91.67* 

1500 91.67 91.67 91.67 90 91.67* 

1750 91.67 91.67 91.67 90 91.67* 

2000 91.67 91.67 91.67 90 91.67* 
Percentage of 

Difficult-to-classify data 8.23% 8.23% 8.23% 3.46% 1.73% 
 

Number of Duplication Rate 

Epochs 1(default) 2 3 4 5 

250 89.17 87.5 89.17 89.17 86.67 
500 92.50* 90* 86.67 86.67 89.17 
750 92.50* 89.17 87.5 87.5 88.33 
1000 92.50* 89.17 86.67 86.67 90.83* 
1250 91.67 89.17 88.33 88.33 90.83* 
1500 91.67 89.17 90* 90* 89.17 
1750 91.67 89.17 90* 90* 88.33 
2000 91.67 89.17 90* 90* 87.5 
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According to Table 4.7, the obtained results show that when the purity 

threshold is increased, a number of difficult-to-classify data will be decreased and the 

classification performance is subsequently decreased. 

According to Table 4.8, when the duplication rate is increased, the 

classification performance is dropped. A high number of duplication rate could change 

the distribution of the training data and yields as a worse predictive performance of 

the network. 

We would like to present the parameters of the duplicate-sampling of difficult-

to-classify scheme as a tool to increase or decrease a number of difficult-to-classify 

data. There is no a certain number of difficult-to-classify data to guarantee the 

improvement of classification performance. However, adjusting theses parameters 

could help validate the classification performance of a trained network until the 

satisfactory performance is met.      

4.3 Comparing with the Well-Known Algorithms 

 The algorithms involved in benchmarking are the normalized Gaussian radial 

basis function network, the C4.5 decision tree, Naive Bayes classifier using estimator 

classes, Nearest-neighbor-like algorithm, a support vector machine trained by the John 

Platt's sequential minimal optimization algorithm. To implement these algorithms, we 

used Weka software (version 3.4). For the C4.5 decision tree, the Naïve Bayes 

classifier and the Nearest-neighbor algorithm we used the default parameters setting. 

For the RBF network we set a number of clustering equal to a number of classes in the 

data sets. Finally, for the SVM we varied the exponent used in a polynomial kernel 

function (from 1to10, increasing by one), then selected the best performance. The 

experimental results are shown in Table 4.9. 

Note: the training and test sets used in the experiment are same as the ones 

used in the previous experiments.  

 

 

 

 

 



44 
 

 

 

 

 

 
 
 
 

 From the results shown in Table 4.9, the MLP network trained by the 

Duplicate-sampling of difficult-to-classify scheme achieves the highest accuracy in 

five data sets. However, maybe, the classification performances obtained from the 

benchmarked algorithms are not their best. But, we would like to point out that the 

MLP network trained by the Duplicate-sampling of difficult-to-classify scheme is 

better than the standard BP algorithm and achieves a high level of classification 

performance.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 Note: * refer to the best classification performances related to each data set.

  

 

Data Sets RBF Network J48-Tree Naïve Bayes 

Nearest 

Neighbor SVM 

MLP trained by 

the BP 

MLP trained by the 

proposed scheme 

Liver 74.57 72.03 77.12 65.25 61.02 74.58 78.81* 

Diabetes 77.10 76.72 77.48 74.81 79.77 80.15 80.92* 

Iris 100.00* 98.04 98.04 98.04 98.04 100.00* 100.00* 

Heart-Statlog 86.96* 72.83 85.87 76.09 84.78 82.61 86.96* 

Ionosphere 94.17 87.50 86.67 95.00* 92.50 90.83 94.17 

Vehicle 68.06 70.83 40.28 54.86 79.51 84.03 85.07 

Balance-Scale 97.65 92.02 91.08 100.00* 95.31 94.84 95.31 

Vowel 86.35 77.15 67.66 83.09 93.47 89.61 95.55* 

 

Table 4.9 The classification performances obtained from various classification 

algorithms. 



CHAPTER V 

CONCLUSION 

In the structure of the MLP network, each of non-linear neuron can be referred 

to a hyperplane in a decision space [1]. According to this view point, the trained MLP 

network classifies the unseen data by examining their positions in the decision space 

compared with the positions of the hyperplanes. The BP learning can be considered as 

a method to iteratively adjust positions of the hyperplanes. The purpose of adjustment 

is to make those hyperplanes separate the training patterns drawn from different 

classes. In this research, we propose a technique to reduce the computational time of 

the BP learning called duplicate-sampling of difficult-to-classify scheme.  

The proposed scheme bases on a concept of difficult-to-classify and easy-to-

classify data. The difficult-to-classify data in our view point are the data that requires 

more number of epochs to be recognized by the network when compared with the 

easy-to-classify data. We utilize the information gain to distinguish these two types of 

data. Then, we duplicate the difficult-to-classify data while do nothing to the difficult-

to-classify data. Consequently, during BP learning, the difficult-to-classify data will 

be emphasized by the network. 

The experiments were performed on eight data sets taken from UCI repository. 

According to the obtained results, the experiments performed on six out of eight data 

sets (Liver, Diabete, Heart-Statlog, Vehicle, Blance-Scale and Vowel) show the 

learning time improvement. For the classification performance, the improvement 

occurs on seven data sets, except the Iris data set which shows the same accuracy at 

100%.  Our conclusions on the duplicate-sampling of difficult-to-classify scheme are 

as follows: 

1. The proposed technique makes the BP algorithm require less number of 

epochs in learning.  

2. The MLP network trained by the BP algorithm with the duplicate-

sampling of difficult-to-classify scheme achieves a higher or equal predictive 

ability when compared with the standard BP.  
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Future Work 

In this research, we restrict our study to numeric data. However, in the real 

world problems, many data sets contain nominal attributes. The extending of the 

duplicate-sampling of difficult-to-classify scheme to the nominal attributes is an 

interesting direction to be addressed. Furthermore, the study of applying the proposed 

scheme to other classifiers as well as a problem of using a new measure such as the 

gain ratio, gini index etc., to distinguish data are interesting issues to be investigated. 
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