

แบบแผนการสุม่ตวัอยา่งซ า้ของข้อมลูท่ียากตอ่การจดักลุม่

นาย ปริญญา เวียงสมทุร

วิทยานิพนธ์นีเ้ป็นสว่นหนึง่ของการศกึษาตามหลกัสตูรปริญญาวิทยาศาสตรมหาบณัฑิต
สาขาวิชาวิทยาการคณนา ภาควิชาคณิตศาสตร์
คณะวิทยาศาสตร์ จฬุาลงกรณ์มหาวิทยาลยั

ปีการศกึษา 2551
ลิขสิทธ์ิของจฬุาลงกรณ์มหาวิทยาลยั

DUPLICATE-SAMPLING OF DIFFICULT-TO-CLASSIFY SCHEME

 Mr. Parinya Weangsamoot

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Computational Science

Department of Mathematics
Faculty of Science

 Chulalongkorn University
Academic Year 2008

Copyright of Chulalongkorn University

vi

ACKNOWLEDGEMENT

 I am especially deeply grateful to many people who encourage me and help me

the course of this study, especially Professor Dr. Chidhanok Lursinsup and Assistant

Professor Dr. Krung Sinapiromsran. Their valuable suggestions and comments make this

work feasible and keep it in the right direction. I would also like to thank my committee

members for their corrections of my thesis as well as providing valuable comments at the

committee meeting.

 I would like to give a lot of thanks to people in the Advance Virtual and

Intelligence Computing (AVIC) Research Center who show me how to be a good

researcher. They always give me many useful suggestions and, of course, being my good

friends. Their experiences are very useful to me. Without them, I probably have a harder

time in doing my first thesis.

My special thanks go to my beloved parents. They always support me everything.

Their love and encouragement are the most important things in my life. Furthermore, I

also wish to express my special thanks to my younger brother and sister. They always

told me “keep going ahead, don’t give up”, these words are very encourage me.

Finally my deep appreciation goes to my girlfriend, Dtuk. She always stands

beside me, and always believes in my potential. Her love, care, encouragement and some

complaining keep me on the way to success. Without her, I don’t know what kind of

person I will be.

vii

CONTENTS

ABSTRACT (Thai) ... iv

ABSTRACT (English) ... v

ACKNOWLEDGEMENTS .. vi

CONTENTS ... vii

LIST OF TABLES .. ix

LIST OF FIGURES .. x

CHAPTER

I INTRODUCTION... 1

1.1 Problem and Motivation ... 1

1.2 Objective ... 2

1.3 Scope of Work and Constraints ... 2

1.4 Literatures Related to Multilayer Perceptrons Network and Back-Propagation

Algorithm .. 2

1.5 Literatures Related to information gain .. 4

1.6 Organization.. 5

II THEORITICAL BACKGROUND ... 6

2.1 Pattern Classification Problem .. 6

2.2 An Overview of Artificial Neural Network ... 7

2.3 Activation Function .. 9

2.4 Multilayer Perceptrons Network ... 11

2.5 An Overview of Backpropagation Algorithm ... 13

2.6 Information Gain in a Decision Tree Algorithm ... 14

III MATHEMATICAL MODEL AND ALGORITHM ... 15

3.1 Back-Propagation Algorithm ... 15

3.1.1 Forward Phase Computation .. 18

3.1.2 Backward Phase Computation ... 18

viii

3.1.3 Back-Propagation Algorithm Conclusion .. 24

3.2 Decision Tree Algorithm .. 27

3.3 The information gain as a tool to identify the difficult-to-classify and

easy-to-classify data .. 33

3.4 Duplicate-sampling of difficult-to-classify scheme .. 34

IV THE EXPERIMENTAL RESULTS ... 36

4.1 MLP Network Trained by the BP Algorithm compare with MLP

Network Trained by the Duplicate-sampling of difficult-to-classify scheme 36

4.2 Parameters Adjustment of Duplicate-Sampling of Difficult-to-Classify

Scheme .. 40

4.3 Comparing with the Well-Known Algorithms .. 43

V CONCLUSION .. 45

REFERENCES ... 47

CURRICULUM VITAE .. 49

ix

LIST OF TABLES

Table Page

2.1 Some parts of Iris data set .. 6

3.1 Sample data set ... 15

3.2 The Weather data set (nominal version) ... 28

3.3 Weather data set (numeric version) .. 32

4.1 Details of data sets used in the experiments ... 36

4.2 The optimal number of hidden nodes corresponding to each data 37

4.3 The comparison of the best accuracy of BP and the similar or higher accuracy

of the BP with the propose scheme ... 39

4.4 The comparison of the best accuracy of BP and the BP with the proposed

scheme ... 40

4.5 The details of the number of difficult-to-classify data and the used time 41

4.6 The classification performances obtained from varying the minimum instance 42

4.7 The classification performances obtained from varying the purity threshold 42

4.8 The classification performances obtained from varying the duplication rate 42

4.9 The classification performances obtained from various classification algorithms 44

x

LIST OF FIGURES

Figure Page

2.1 The human neurons .. 7

2.2 The artificial neuron ... 8

2.3 The structure of the artificial neurons with some mathematical notations 9

2.4 Various types of activation functions ... 10

2.5 The multilayer perceptron network .. 12

3.1 The design of the multilayer perceptron network ... 16

3.2 Matrix form of the first group of the adjustable weights .. 17

3.3 Matrix form of the second group of the adjustable weights 17

3.4 The graphical relations between E(n) and wkj .. 20

3.5 The separation of data set with respect to each attribute of the Weather data set .. 29

3.6 Subsets (A, B and C) obtained from separating the Weather data set by the

outlook attribute .. 31

3.7 The graphical view of the applied hyperplanes .. 34

3.8 The flow chart of training the MLP network by the BP with the duplicate

-sampling of difficult to classify scheme .. 35

4.1 The experimental results ... 38

CHAPTER I

INTRODUCTION

1.1 Problem and Motivation

Among all classification techniques, one outstanding classifier is a neural network.

The advantages of using the neural network dealing with pattern classification problems

are its robustness and its high predictive capability. In the past decades, various types of

neural network techniques have been employed to handle the real-world pattern

classification problems. Especially, the one which involves in many fields of research is

the multilayer perceptrons (MLP) network trained with the backpropagation (BP)

learning algorithm. The BP algorithm, which is performed under a supervised manner, is

a concept of searching an optimal group of vectors in weight space that yields the lowest

network’s error [1]. The MLP network with BP algorithm showed many successes in

solving a large number of complicated problems. Nevertheless, to get a valid MLP

network, it requires a long learning time.

In this research, we present a new technique to reduce computational time of the BP

algorithm called duplicate-sampling of difficult-to-classify scheme. The fundamental idea

of the proposed technique based on a concept that each datum does not contain the same

useful information. Thus, the difficulty in identifying the class of each datum should

depend on the information it carried. We extend this concept to the BP learning and make

an assumption that the data with higher useful information require small amount of

learning time (small number of epochs) to be correctly classified by the network. On the

other hand, the ones with less useful information require large amount of learning time

(large number of epochs) to be correctly classified by the network. According to this

assumption, we categorize data into two types which are difficult-to-classify data which

requires a large number of epochs and easy-to-classify data which requires a small

number of epochs. We try to reduce the BP learning time by intensifying the presentation

of the difficult-to-classify data to the network; while, the presentation of the easy-to-

classify data to the network is not changed. Consequently, we utilize the information gain

measurement as a tool to identify the difficult-to-classify and easy-to-classify data. Then,

we duplicate the difficult-to-classify data. Hence, in each epoch of the BP learning

process, the presentation of the difficult-to-classify data is emphasized.

2

1.2 Objective

The objective of this study is to develop a learning scheme that requires less

computational time than the standard backpropagation algorithm while still maintains the

high predictive ability.

1.3 Scope of Work and Constraints

This study is constrained by the following conditions:

 1. The study focuses on solving pattern classification problems.

 2. The study concentrates on numeric data sets only.

1.4 Literatures Related to Multilayer perceptron network and Backpropagation

Algorithm.

Jacobs, R.A. [2] presented techniques to modify the backpropagation algorithm

called delta-bar-delta-learning rules. These rules intend to accelerate the convergence of

backpropagation algorithm. This issue contains four important schemes:

1. Every adjustable network parameter of the cost function should have its own

individual learning-rate parameter.

2. Every learning-rate parameter should be allowed to vary from one iteration to

the next.

3. When the derivative of the cost function with respect to a synaptic weight has

the same algebraic sign for several consecutive iterations of the algorithm, the learning

rate parameter for that particular weight should be increased.

4. When the algebraic sign of the derivative of the cost function with respect to a

particular synaptic weight alternated for several consecutive iterations of the algorithm,

the learning-rate parameter for that weight should be decreased.

 Salomon and van Hemmen [3] presented a method to accelerate the

backpropagation algorithm called dynamic self-adaptation procedure. The underlying

idea is to take the learning rate of the previous time step, increasing and decreasing it

slightly, evaluating the cost function for both new values of the learning-rate parameter,

and then choose the particular one that gives the lower value of the cost function.

 LeCun Y. [4] described general rules for training any example with

backpropagation algorithm called maximizing information content. The details of these

rules are:

3

1. The use of an example should result in the largest, as possible, scale of training

error.

2. The use of an example should be radically different from all those previously

used.

In practice, the second rule can be performed, easily, by shuffling the order of

examples presented to the multilayer perceptrons from one epoch to the next.

LeCun [4] described a technique to make the BP algorithm perform faster called

emphasizing scheme. This scheme is performed by presenting the difficult data to the

MLP network more often than the easy ones. The difficult data are determined by

examining the error of a particular datum in each epoch and comparing it with the error

in the previous epoch.

 Stone, M. [5] described a statistical technique to create any classification model

with generalization as a goal. This technique is called cross validation. First, the data set

is randomly split into training and test sets. The training set is further split into two

disjoint subsets:

1. Estimation subset.

2. Validation subset.

The motivation here is to validate the model on a data set different from the one

used for the parameter estimation. In this way, we may use the training set to assess the

performance of various candidate models, and, thereby, choose the best one.

Morgan and Bourlard [6] presented a method to train multilayer perceptrons with

backpropagation called early-stopping method. This technique is designed for

encountering overfitting problem of neural network. The method suggested the stopping

criterion for backpropagation algorithm. The learning process should be stopped when

the mean squared error on training set decreases while the mean squared error of

validating set increases.

Suresh, Omkar and Mani [7] presented the MLP network with BP algorithm on

network of workstation. This research tries to reduce the BP learning time under a

concept of parallel computing.

Arit Thammano and Asavin Meengen [8] presented a new classifier technique

called new evolutionary neural network classifier. The technique applied the concepts of

4

fuzzy c-means algorithm and the evolutionary algorithm to the neural network. During

training, the fuzzy c-means algorithm is used to form the clusters in the cluster layer

(hidden layer) and the evolutionary algorithm plays role in optimizing those clusters and

their parameters. Applying it to a test data, the class of any particular pattern is

determined by examining which cluster node (each cluster node representing a different

class) returns the maximum output value.

1.5 Literatures Related to information gain.

Ross Quinlan [9] presented a technique to construct a decision tree based on

nominal data called Iterative Dichotomiser 3 (ID3) algorithm. This algorithm employs

the information gain as a tool to select an appropriate attribute for branching nodes of a

tree under a concept of getting the smallest tree as possible.

Ross Quinlan [10] presented a C4.5 decision tree algorithm, the successor of the

ID3 algorithm. The C4.5 still based on the principals used in ID3. The improvements of

C4.5 over the ID3 are: an extending to discrete and continuous attributes, techniques for

handling the missing values and rules for pruning trees.

John T. Kent [11] investigated in using the information gain to measure

correlation between two random quantities, X and Y, in a parametric model of

dependence. The investigation aimed to measure the correlation for both the usual

product-moment correlation coefficient for the bivariate normal model and the multiple

correlation coefficients in the standard linear regression model.

David J. C. Mackay [12] presented a technique to make a Bayesien learning

framework more efficient called Information-Based Objective Functions for Active Data

Selection. This technique described three different criterions to select salient data points

from data space to gain more information during learning.

Lisa Borland, Angel R. Plastino and Constantino Tsallis [13] discussed an issue

of information gain within nonextensive thermostatics. The discussion is about the

general properties and a consistent test for measuring the degree of correlation between

random variables is proposed. Moreover, minimum entropy distributions are also

discussed and the H-theorem is proved within the generalized context.

http://en.wikipedia.org/wiki/ID3_algorithm

5

1.6 Organization

The thesis is organized as follows. Chapter 2 discusses the underlying idea of the

pattern classification problems, the multilayer perceptron network, the backpropagation

algorithm and the information gain in a decision tree algorithm. Chapter 3 explains the

mathematical details of the backpropagation algorithm and the duplicate-sampling of

difficult-to-classify scheme. Chapter 4 shows the experimental results. Finally, Chapter 5

concludes the proposed scheme and suggests some possible future works.

CHAPTER II

THEORETICAL BACKGROUND

 The purpose of this chapter is to describe the fundamental theory of the pattern

classification problem, the multilayer perceptron network, the backpropagation

algorithm and the information gain in a decision tree algorithm.

2.1 Pattern Classification Problem

Pattern classification or data classification is a process of constructing model

from a data set with predefined class (training set or training sample). The constructed

model will be used to predict a class of new data [14]. The training set is collected in a

format as shown in Table 2.1. Each datum or pattern is described by attributes and one

of the attributes is used to define a class of data called class label attribute.

Table 2.1 Some parts of Iris data set.

The Iris data set [15] contains three different classes. Each class refers to a

type of iris plant, and each attribute refers to a physical detail of the iris plant. Each

datum can be considered as a mathematical pattern such as the first instance which can

be viewed as a pattern or a vector with a value of < 5.1, 3.5, 1.4, 0.2, 1 > where the

last member (1) refers to its corresponding class (Iris-setosa). Pattern classification is a

challenging problem. A number of mathematical models have been developed to solve

it, and the famous one involved in this research is a neural network.

Instance Sepal length Sepal width Petal length Petal width Class

1 5.1 3.5 1.4 0.2 Iris-setosa
2 4.9 3.0 1.4 0.2 Iris-setosa
3 4.7 3.2 1.3 0.2 Iris-setosa
4 4.6 3.1 1.5 0.2 Iris-setosa
5 7.0 3.2 4.7 1.4 Iris-versicolor
6 6.4 3.2 4.5 1.5 Iris-versicolor
7 6.9 3.1 4.9 1.5 Iris-versicolor
8 5.5 2.3 4.0 1.3 Iris-versicolor
9 6.5 2.8 4.6 1.5 Iris-versicolor

10 6.3 3.3 6.0 2.5 Iris-virginica
11 5.8 2.7 5.1 1.9 Iris-virginica
12 7.1 3.0 5.9 2.1 Iris-virginica
13 6.3 2.9 5.6 1.8 Iris-virginica
14 6.5 3.0 5.8 2.2 Iris-virginica

7

2.2 An Overview of Artificial Neural Network

Human brain has a high ability in learning and solving many complicated

problems. It is a highly complex organ of human which consists of billions of

specially built cell called neurons. It is estimated that there are ten billion neurons in

the human brain. The neuron consists of four major components which are soma,

axon, dendrite and synapse as shown in Figure 2.1.

Figure 2.1 The human neurons.

Each single neuron is connected to others forming an enormous network called

neural network. Any single neuron acts as an information-processing unit. When a

particular neuron is stimulated by an input signal, the signal will be transmitted via the

dendrite to the soma. Then, the input signal will be transmitted, again, via the axon to

the other connected neurons. Before the signal will be transmitted from one neuron to

others, the strength of the transmitted signal will be controlled (be improved or

worsened) by the chemical and biological reaction called synaptic resistance. This

reaction allows the neuron to control the strength of the transmitted signal. Therefore,

any neuron can create a particular output signal (a signal with specific strength)

corresponding to its input signal. By the processing of each neuron, the neural network

is able to create a distinctive output signal to respond to a particular input signal. To

get the distinctive output signal, the network has to learn to adjust the strength of the

input signal during an internal signal transmission (transmitting signal from one neural

in the network to others). As mentioned previously, the process that plays role in

8

adjusting strength of the transmitted signal is the synaptic resistance. This process can

be considered, in a mathematical sense, as a process of weight adjustment where the

weights refer to the chemical and biological factors. When the weights are changed, it

is compared as an occurring of chemical and biological reactions that yields the

altering of signal’s strength.

The learning process of the neural network is a process of adjusting the

weights of all neurons in the network. The purpose of the adjustment is to make the

network able to create a particular output signal corresponding to its received input

signal. The learning process of the neural network can be categorized into three

categories as follows.

1. Supervised learning. The neural network is forced to generate a specific

target signal corresponding to each particular input signal (the weight adjustment

process is performed with respect to a value of the target signal).

2. Unsupervised learning. There is no a specific target signal for each input

signal. The neural network learns by adjusting its weights equal to a value of the input

signal (the weight adjustment process is performed with respect to a value of the input

signal).

3. Reinforcement learning. It is a combination of both previous learning

schemes under the environment that the target output cannot be clarified.

An artificial neuron is made up to mimic the human’s neuron in both sense of

structure and function. Figure 2.2 shows structure of the artificial neuron.

wi is a weight of a neuron, and ()  is an activation function of the neuron. Similarly

to the real neuron, a single artificial neuron connects to others to form a network

called artificial neural network (ANN). In addition, the learning process of the ANN

can also be performed under the three learning schemes as previously described. In the

() 

Soma
2w

1w

1w

3w

1w

Synapse area Axon

Figure 2.2 The artificial neuron.

9

() 

next section, we will describe the detail of its activation function, the vital part of the

artificial neuron.

2.3 Activation Function

An activation function plays an important role in the learning process. The use

of the artificial neuron with different activation function yields as the different value

of the output signal. Figure 2.3 shows structure and some mathematical notations of

the artificial neuron.

1 2 j<x ,x ,...,x > refers to an input signal, 1 2 j<w ,w ,...,w > refers the adjustable weights, b

is a bias, v is a linear combination of an input signal and weights, ()v is an activation

function and y is an output of neuron. When the artificial neuron is stimulated by the

input signal (i.e., the input signal is presented to the neuron), each element of the input

signal will be multiplied by the associated weight. Then, the results of each

multiplication are summed together yielding an induced local field v (a linear

combination of an input signal). Consequently, the induced local field can be defined

by

 ()j j
j

v w x b 

The index j is the order of the members of the input signal. The bias b is presence to

make the activation function set off from zero [16]. After getting the induced local

field v, the computation of an output signal is performed as in equation 2.2.

y is the output signal, and is an activation function. Equations described

above are the common computation to create an output signal of the artificial neuron.

2w

1w

3w

1w

jw

1w

1w

1w



1x

1w

2x

1w

3x

1w

jx

1w

()v

1w
y

b
1w

2.1

2.2 ()y v

Figure 2.3 The structure of the artificial neurons with some mathematical notations.

10

Many studies in the neural network have investigated on finding a better activation

function. Consequently, a number of activation functions were created. In this thesis,

we present just the three well-known activation functions which are Threshold

function, Piecewise-linear function and Sigmoid function.

1. Threshold function. The mathematical definition of the activation function

illustrated in Figure 2.4 (a) can be described by

1 0
()

0 0
if v

v
if v




 


This type of an activation function is known as the Heaviside Function in an

engineering field. The output of this function is achievable in two values: getting on

the value of 1 when the induced local field (v) is nonnegative value and getting on the

value of 0 otherwise.

 2. Piecewise-Linear Function. The mathematical definition of the activation

function illustrated in Figure 2.4 (b) can be described by

2.3

Figure 2.4 (a) The threshold function. Figure 2.4 (b) The piecewise-linear
function.

Figure 2.4 (c) The Sigmoid function.

Figure 2.4 Various types of activation functions.

11

 The result obtained from this form of an activation function possibly falls in

two areas: non-saturation area, or saturation area. As in equation 2.4, if the value of

the induced local field v is in range of , the output of function still vary, and

the amount of output is equal to the induced local field itself. On the other hand, if the

value of the induced local field is larger or less than the restricted range, the output

will be set to a value of one or zero, respectively.

 3. Sigmoid Function. The S-shape graph illustrated in Figure 2.4 (c) is the

most common form of an activation function used in the artificial neural networks.

This form of an activation function is defined by

1()
1 exp()

v
v





 

 is a slope parameter. Adjusting this parameter results in a changing of the slope of

the S-shape graph. As shown in Figure 2.4 (c), the output of the sigmoid function is a

continuous value between zero and one. When compared with the two previous

functions, the altering of the output of the sigmoid function is smoother than the two

previous functions. Accordingly, the use of the sigmoid function in the ANN yields a

more refined output which makes it more popular.

2.4 Multilayer perceptron network

 The artificial neuron illustrated in Figure 2.2 can be mentioned as a perceptron.

The perceptron is a single artificial neuron with the adjustable synaptic weights and a

bias. It is a simple model used for the classification of patterns. The use of a single

perceptron in classifying could achieve a high classification performance on linearly-

separable problems. However, it gives a low performance when dealing with

nonlinearly-separable problems. The detail about why a single perceptron fail to solve

nonlinearly-separable problems can be found in [1]. Commonly, to use perceptron

handling real world problems, we connect a single perceptron together to form a

11,
2

1 1() ,
2 2

10,
2

v

v v v

v




 




    






 2.4

1 1(,)
2 2



2.5

12

network of perceptrons. There are various designs of the perceptrons networks. The

famous one is the multilayer perceptrons (MLP) network as shown in Figure 2.5.

Figure 2.5 The multilayer perceptron network.

This type of a network consists of three basic layers:

1. Input layer. This layer consists of a group of input nodes. A number of the

input nodes are equal to a number of members of the input signal. This layer plays role

in receiving the input pattern and constituting the input signal to apply to the next

layer of network. The input node is sometime called source node. There is no

computation in this layer.

2. Hidden layer. This layer consists of a group of hidden nodes which are the

perceptrons. The perceptrons receive the input signal from the input layer and perform

the computation shown in equations 2.1 and 2.2 yielding the output signal. The output

signals obtained from this layer will be sent to the next layer of the network. In

addition, this layer of the network can be constructed more than one layer. However,

the one-hidden node network is preferred, and it is successful in solving many

complicated problems.

3. Output layer. This layer is the last layer of the network. It consists of a

group of output nodes. The output signals obtained from the hidden layer act as the

input signals in this layer. After receiving the input signal, the output nodes perform

the same computation as similar in the hidden nodes yielding the output signal. The

13

output signal obtained from this layer is determined as the output signal of the

network.

 According to the three layers of the MLP network, the input signals fed to the

network will be sent forward through the entire network, layer by layer. Therefore, the

MLP network is sometime called the feed forward network. In the next section, the

learning process of the network will be described.

2.5 An Overview of Backpropagation Algorithm.

 As in the previous explanation, the learning process is a process of adjusting

weights. A number of learning algorithms have been developed to apply with the MLP

network. The most famous learning algorithm is the backpropagation (BP) algorithm.

This algorithm is the supervised learning scheme. It requires a specific target output

for each input signal. To understand well in the underlying idea of this algorithm, the

concept of the propagation signals should be informed first. The signals propagating

through the network can be categorized into two types:

1. Function signal. The signals propagating forward from different layers are

called function signal or sometime called forward signal after its direction of

propagation.

2. Error signal. As we described that the backpropagation learning algorithm is

performed under the supervised learning scheme which means each input signal has

its associated output signal (target signal). The target signals can be either set by the

backpropagation algorithm itself or set by user, and the assigned values should be in a

possible range of the current-using activation function. Equation 2.6 shows the

definition of the error signal.

 k k ke d y 

yk is the output signal obtained from forward process corresponding to the output node

k, dk is the target signal corresponding to the output node k, and ek is the error signal

corresponding to the output node k, respectively. The error signal will be sent

backward through the network to all neurons (perceptrons) in the network, it is

sometime called backward signal. The error signal is sent backward to each neuron to

use in the weight adjustment process. The amount of weight change depends on a

value of the error signal itself. Furthermore, the error signal is also used to determine

the performance of learning. A smaller value of error means better learning.

2.6

14

The BP algorithm consists of two main phases: forward phase and backward

phase. The forward phase is the processes of receiving the input signal, propagating

the signal forward through various layers of the network till yielding the output signal.

The backward phase is the processes of computing the error signal and sending the

error signal backward to all neurons (perceptrons) in the network.

The BP algorithm is an iterative technique. The forward and backward phases

are iteratively performed until the satisfying value of error is met. In the next chapter

we will show the full mathematical details of the backpropagation algorithm.

2.6 Information Gain in a Decision Tree Algorithm

The construction of a decision tree is a recursive process. It bases on a divide-

and-conquer technique. In this section, how the information gain help in constructing

a decision tree and how the finished decision tree classify data are given.

Information gain is a measure used to determine the relevance of the attributes

of a data set with respect to the target class. It was used in a decision tree algorithm

[9], [10] as a criterion to select a proper attribute for branching nodes of a decision

tree. When the decision tree algorithm was applied to handle a numeric data set, each

decision node can be considered as a hyperplane that is orthogonal to a standard ei

vector (the vector that represents the ith axis) of a data space. The complete decision

tree can be referred to a group of hyperplanes that partition the data space into

subspaces. According to this view point, a problem of constructing the decision tree

can be viewed as a technique that recursively select the most relevant attribute for

constructing a splitting hyperplane. The information gain is involved in a process of

determining the most relevant attribute in which the attribute that gives the highest

information gain will be selected. The split subspace that contains only one target

class is called a pure subspace. The decision tree can easily identify instances in this

subspace to be that unique value of the target class. For an impure subspace, the

decision tree identifies instance in this subspace by following the majority class. In the

next chapter, we will show the full steps of the decision tree construction.

CHAPTER III

MATHEMATICAL MODEL AND ALGORITHM

3.1 Backpropagation Algorithm

As we described in the previous chapter, the most famous learning algorithm

used to train the MLP network is the backpropagation (BP) algorithm. The learning

process can be viewed as a method of adjusting weights to create a specific output

signal associating to a particular input signal. Equation 3.1 shows the computation

used in the weight adjustment process.

new oldw w w 

wold is a weight before adjusting, wnew is a new weight obtained from adjusting and

w is a degree of weight change. The delta weight can be either positive or negative

value depending on to increase or decrease the old weight (wold). Table 3.1 shows a

sample data set.

Table 3.1 Sample data set.

This data set was created to illustrate how to construct a multilayer perceptron

network to handle the real data set. The sample data set contains three attributes

(feature 1, 2 and 3) and two classes (A, B). The target signal for class A was set as a

vector of two dimensions with a value of <1, 0>. For class B, the output target was set

as a vector of two dimensions with a value of <0, 1>. Suppose we have n classes of

data, the output targets will be the vectors of n members as following: <1, 0, …, 0>

for the 1st class, <0, 1, …, 0> for the 2nd class and going on with this pattern. Hence,

we get <0, 0, …,1> for the nth class. This is the way commonly used to establish the

target signals.

We have the data set whose each input signal consists of three members (not

including the class label attribute), and there are two classes of data. Hence, the design

of the multilayer perceptron network should be as the one shown in Figure 3.1.

3.1

Number Feature1 Feature2 Feature3 Class

1 1.0 0.5 0.0 A
2 0.7 0.6 0.2 A
3 0.7 0.5 0.7 B
4 0.5 0.6 1.0 B

16

Figure 3.1 The design of the multilayer perceptron network.

In Figure 3.1, the network consists of three layers. The input layer consists of

three input nodes and another one bias node. A number of input nodes are designed to

fit a size of the input signal (a vector with 3 members). The hidden layer contains

three hidden nodes and one bias node. This layer of the network is allowed to have

more than one layer, and a number of hidden nodes in each layer are adjustable.

Finally, the output layer consists of two output nodes. A number of output nodes are

equal to a number of classes.

The definitions of each notation are as follows: xi refers to each element of the

input signal, w is an adjustable weight of the neuron where the related superscript is a

group of weights, and the related subscript is an order of the associated neuron nodes.

For example 1
11w is an adjustable weight which belongs to group one and corresponds

to the connection between the first hidden node and the first input node.

There are two groups of weights in the network: the first group is a group of

weights between the input layer and the hidden layer, the second group locates

17

between the hidden layer and the output layer. Both groups can be viewed in a matrix

form as shown below.

Figure 3.2 Matrix form of the first group of the adjustable weights.

Figure 3.3 Matrix form of the second group of the adjustable weights.

The data in the first column of both groups are biases. This first group of

weights is sometimes called the hidden-layer weights, and the second group of

weights is sometimes called the output-layer weights. The bias nodes were assigned

by a value of 1 which makes the multiplications between the inputs and the biases

equal to values of the biases themselves. During the learning process, all of weights in

both groups are adjusted by using equation 3.1. In accordance with equation 3.1, the

backpropagation algorithm can be considered as a method to find appropriate delta

weights (w) for all weights in the network. When applying w to the old weights

(wold), the network with a new group of weights will produce a smaller value of error.

As described in the previous chapter, the backpropagation algorithm consists of two

main phases: the forward phase and the backward phase. More precise details of these

two phases are described in the following sections.

3.1.1 Forward phase computation

 The forward phase of backpropagation algorithm begins from receiving an

input signal and following by the computation of the hidden layer and the computation

of the output layer until yielding the output signal. The first computation occurs in the

hidden layer, there is no any computation in the input layer. Equation 3.2 shows the

computation of the induced local filed of each neuron in the hidden layer.

0
1

n

j i ji j
i

v x w w


 

vj refers to the induced local field corresponding to the hidden node j, xi refers to a

member of the input signal corresponding to the input node i, wji is an adjustable

3.2

10 11 12 03

20 21 22 23

30 31 32 33

w w w w
w w w w
w w w w

 
 
 
  

10 11 12 13

20 21 22 23

w w w w
w w w w
 
 
 

18

weight corresponding to the hidden node i and the input node j, and w j0 is a bias of

the hidden node j.

 In equation 3.2, each member of the input signal is multiplied by an associated

weight. Then the results are summed together, and added by a bias to produce an

induced local field (vj). The induced local field will be used to calculate the output

signal of the hidden neuron. Equation 3.3 shows the computation of the output signal.

()j jy v

 is an activation function where the input of function is an induced local field

obtained from equation 3.2, and yj is an output signal of the hidden node j.

After getting all output signals from the hidden nodes, these output signals will

be transmitted to the next layer of the network. Equation 3.4 shows the computation of

the induced local field of the output neurons (output nodes).

0
1

n

k j kj k
j

v y w w


 

vk is the induced local field corresponding to the output node k, yj is an output signal

of the hidden node i or an input signal of the output node j, wkj is an adjustable weight

corresponding to the output node k and the hidden node j, and wk0 is a bias of the

output node j.

 In equation 3.4, the computation is similar to the computation of the hidden

neuron where the output signals of the hidden neurons act as the input signals in this

layer. Similarly, the output signal of the output neuron can be calculated by the same

way.

 ()k ky v

 is an activation function where the input of function is an induced local field

obtained from equation 3.4, and yk is an output signal of the output node k (output

neuron k). The output signals obtained from the output layer are determined as the real

output signal of the network.

3.1.2 Backward Phase Computation

In the backward phase of the backpropagation algorithm, an error signal will

be sent backward to all neurons in a network. The purpose of sending the error signal

backward is to find the effect to the error of each weight. Moreover, the size of a

related delta weight in equation 3.1 depends on amount of this effect. In fact, the key

3.3

3.4

()jv

3.5

()kv

19

of the backward phase is to find the appropriate delta weights (w) for all weights in

the network. When applying these delta weights to the weights (wold), the network

with a new group of weights (wnew) will produce a smaller value of error. Equation 3.6

shows the definition of the error signal corresponding to any particular output node.

 k k ke d y 

dk is the output target for the output node k, yk is the output signal from the output

node k and ke is the error signal corresponding to the output node k.

 Equation 3.6 shows the produced error corresponding to each output node. In

order to estimate the error of network, we use the cost function (()C ) which is

defined by

 2
1 2

1

1(, ,...,)
2

n

n k
k

C e e e e


   

From equation 3.7, the input of the cost function is a vector of errors. The

related subscript is an order of the output node. Equation 3.7 is the computation of the

error associated with only one input signal. Adding an order of the input signal to

equation 3.7, we get

 2

1

1() ()
2

n

k
k

E n e n


 

n is an order of input signals in a training set. Consequently, E(n) is the network’s

error with respect to the nth input signal. In order to compute the network’s error with

respect to all input signals in the training set, we use a mean square error (Eav) which

is defined by

1

1 ()
N

av
n

E E n
N 

 

N is a number of input signals in a training set.

The degree of a delta weight applied to any single weight is determined by the

amount of an effect to the error of the weight itself. This effect is determined by a rate

of change of the error with respect to a rate of change of that particular weight.

Accordingly, we use the differentiation of the error (E(n)) with respect to the

particular weight as shown in equation 3.10 to find an appropriate value of delta

weight.

()
kj

kj

E nw
w




  


 3.7

 3.9

 3.6

 3.8

 3.10

20

 We called equation 3.10 a delta rule. It shows that the degree of delta weight

(w) depends on the differentiation. E(n) is the error corresponding to the nth input

signal. wkj is the adjustable weight corresponding to the output node k and the hidden

node j. kjw is the delta weight used to apply to the associated weight (wkj).  is a

learning rate which plays role in controlling a degree of ,kjw . Its value lies in range

of [0,1]. The network’s error E(n) can be expressed as a function of the weight (wkj).

Graphs illustrating the relation between E(n) and wkj can be plotted as shown in Figure

3.4.

As shown in Figure 3.4, adding minus sign to ensures that a direction of

the delta weight is opposite to the increasing direction of the error. Furthermore, the

weight adjustment process can be considered as a process of moving weights in a

direction that decreases the error. The step size of the move is controlled by the

learning rate (). To find the solution of equation 3.10 we start from equation 3.8,

differentiating both sides with respect to ek(n) then we get

 () ()
() k

k

E n e n
e n





()n denotes the correspondence to the nth input signal. Differentiating both

side of equation 3.6 with respect to ()ky n , we get

() 1
()

k

k

e n
y n


 


 3.11

 3.12

()

kj

E n
w






Figure 3.4 (a) In case of increasing
function

Figure 3.4 (b) In case of decreasing
function

Figure 3.4 The graphical relations between E(n) and wkj.

21

Differentiating equation 3.5 with respect to ()kv n , we get

() (())
()

k
k k

k

y n v n
v n







Differentiating equation 3.4 with respect to ()kjw n , we get

() ()
()

k
j

kj

v n y n
w n





The use of equations 3.11 to 3.14 in 3.10 yields

() () (()) ()
() k k j

kj

E n e n v n y n
w n




 


 Equation 3.15 shows the solution of
()
()kj

E n
w n



. Replacing this solution in

equation 3.10, we get

 () (()) ()kj k k jw e n v n y n  

 Equation 3.16 can be rewritten in another equivalent form which intends to

show the delta weight kjw in a term of a local gradient (()k n).

 () ()kj k jw n y n 

()k n is the local gradient of the output node k which is defined by

()()
()

() ()()
() () ()

() (())

k
k

k k

k k k

k k k

E nn
v n

e n y nE n
e n y n v n

e n v n






 



 

  



Equation 3.17 shows the computation of the delta weight used to update the

output layer weights. According to equation 3.17, k refers to the related output node

and j refers to the related hidden node, respectively. The computation of the delta

weights for updating the hidden layer weights is similar to equation 3.17, except the

local gradient which is computed differently.

 () ()ji j iw n y n 

Equation 3.19 shows the computation of delta weights used to update the

hidden layer weights. j refers to the related hidden node, i refers to the related input

node. The local gradient of hidden node ()j n is computed by

 3.13

 3.14

 3.15

 3.19

 3.16

 3.18

 3.17

22

()()
()

()()
() ()

() (())
()

j
j

j

j j

j j
j

E nn
v n

y nE n
y n v n
E n v n
y n






 




 

 


 



From equation 3.8 we have

 2

1

1() ()
2

n

k
k

E n e n


 

k refers to the kth output node, n denotes the correspondence to the nth input

signal.

1

()() ()
() ()

n
k

k
kj j

e nE n e n
y n y n




 


Applying chain rule for the partial derivative () / ()k je n y n  ,we get

1

() ()() ()
() () ()

n
k k

k
kj k j

e n v nE n e n
y n v n y n

 


  


From equations 3.5 and 3.6

() () ()
() (())

k k k

k k k

e n d n y n
d n v n

 

 

 Hence

 () (())
()

k
k k

k

e n v n
v n




 


From equation 3.4,

 0
1

n

k j kj k
j

v y w w


 

Hence

() ()
()

k
kj

j

v n w n
y n





By using equations 3.25 and 3.27 in equation 3.23, we get

 1

1

() () (()) ()
()

() ()

n

k k k kj
kj

n

k kj
k

E n e n v n w n
y n

n w n










 









 3.20

 3.21

 3.22

 3.23

 3.24

 3.25

 3.26

 3.27

 3.28

23

By using equation 3.28 in equation 3.20, we get the local gradient of hidden

node as

1

() (()) () ()
n

j j j k kj
k

n v n n w n  


  

 In order to compute the local gradient for both output node and hidden node, it

needs the first derivative of an activation function. The derivative form of the

activation function will be shown in the next section.

The backpropagation algorithm is an iterative technique. All data (input signal)

in a training set will be presented to the network one by one. When all input signals

are presented to the network, we called an epoch. The backward phase can be

performed in two ways: sequential mode and batch mode. Sequential mode performs

the backward phase instantaneously after the forward phase of each input signal

(update one by one). Batch mode performs backward phase after all input signals were

presented to the network (update epoch by epoch). The sequential mode is more

popular than the batch mode, particularly for solving pattern classification problem,

for two reasons [1]. First, the algorithm is easy to implement. Second, it provides an

effective solution to large and difficult problems.

The learning ability of the network is determined by the error produced during

learning. The network’s error determine by using the mean squared error shown in

equation 3.9. To stop learning process, the error should converge to a sufficiently

small value. In practice, one simple and effective stopping criterion used to determine

the convergence of the network’s error is the absolute rate of change of the mean

squared error. This stopping criterion bases on an idea that when the absolute rate of

change of the mean squared error per epoch is sufficiently small, the error is assumed

to be converged. The rate of change of error is typically considered to be small enough

if it lies in the range of 0.1% to 1% per epoch, sometimes a small value like 0.01% is

used. The absolute rate of change of the mean squared error per epoch is defined by

(1) () 100 a small valuedefined by user

(1)
(the popular one is 0.01)

av av

av

E m E m
E m
 

 


m denotes the mth epoch of the learning process.

 3.29

 3.30

24

3.1.3 Backpropagation algorithm conclusion

 As we described, the backward phase of the backpropagation algorithm

requires the first derivative of the activation function. In this section we first show the

derivative form of the logistic function which is commonly used in the multilayer

perceptron network. The logistic function is defined by

1(()) 0 ()

1 exp(())j j j
j

v n a and v n
av n

      
 

()jv n is the input of function. It is a linear combination of the input signals (induced

local field) corresponding to the neuron node j and the nth input.

 Differentiating equation 3.31 with respect to vj(n), we get

 2

exp(())
(())

1 exp(())
j

j j

j

a av n
v n

av n



 

   

 As described in equation 3.2 that (()),j j jy v n hence we can express

(())j jv n as

(()) ()[1 ()]j j j jv n ay n y n  

 Consider the local gradient of the output node k which is defined by

 () () (())k k k kn e n v n 

The error of the output node k is defined by

() () ()k k ke n d n y n 

 By using equation 3.33 and equation 3.35 in equation 3.34, we get

 () [()] ()[1 ()]k k k k kn a d y n y n y n   

 Now, consider the local gradient of hidden node j which is defined by

 () (()) () ()j j j k kj
k

n v n n w n   

By using equation 3.33 in equation 3.37, we get

 () ()[1 ()] () ()j j j k kj
k

n ay n y n n w n   

 The back propagation algorithm basically consists of five main processes as

follows:

1. The process of initialization. Randomly initialize weights and biases for the

network.

 3.32

 3.33

 3.34

 3.35

 3.36

 3.37

 3.31

 3.38

25

2. The presentation of training example. Randomly select a training example

(input data or input signal) to present to the network.

3. The forward phase computation.

 3.1 Compute the induced local field vj(n) of all hidden nodes by

 0
1

() () ()
m

j ji i j
i

v n w n y n w


 

n denotes the correspondence to the nth input signal, iy is the ith element of the

input signal which corresponds to the ith node, jiw is the weight which corresponds to

the hidden node j and the input node i , 0jw is a bias of the hidden node j, and m is a

number of the input nodes in the input layer of the network, not including the bias

node.

3.2 Compute the output signals of all hidden nodes j by

 (())j j jy v n

jy is the output signal of the hidden node j , j is the activation function of the

hidden node j , and ()jv n is the induced local field of the hidden node j .

3.3 Compute the induced local field ()kv n of all output nodes by

 0
1

() () ()
m

k kj j k
j

v n w n y n w


 

yj is the output signal of the hidden node j, wkj is the weight which corresponds

to the output node k and the hidden node j, wk0 is the bias of the output node k, and m

is a number of the hidden nodes in the hidden layer of the network, not including the

bias node.

 3.4 Compute the output signals of all output nodes k by

 (())k k ky v n

yk is the output signal of the output node k, k is the activation function of the

output node k , and ()kv n is the induced local field of the hidden node k .

3.5 Compute the error signals of all output nodes by

 () () ()k k ke n d n y n 

 3.39

 3.40

 3.41

 3.42

 3.43

26

ke is the error signal which corresponds to the output node k , kd is the target

signal which corresponds to the output node k , and ky is the output signal from the

output node k .

 4. The backward phase computation.

 4.1 Compute the local gradients of all output nodes by

 () () (())k k k kn e n v n 

()k n is the local gradient of the output node k , ()ke n is the error signal which

corresponds to the output node k , ()k  is the first derivative of the activation

function of the output node k , and ()kv n is the induced local field of the output node

k .

 4.2 Compute the local gradients of all hidden nodes by

 () (()) () ()
m

j j j k kj
k

n v n n w n   

()j n is the local gradient of the hidden node j , (())j jv n is the first

derivative of the activation function of the hidden node j, ()k n is the local gradient of

the output node k , ()kjw n is the weight which corresponds to the output node k and

the hidden node j , and m is a number of the output nodes in the output layer.

 4.3 Updating weights.

 4.3.1 Update the adjustable weights of the output nodes by

 (1) () ((1)) () ()kj kj kj k jw n w n w n n y n      

kjw is the weight which corresponds to the output node k and the hidden node

j, wk 0 is the bias,  is a momentum (see Notes 1 and 2), kjw is the delta weight

corresponding to the output node k and the hidden node j, 0kw is used for updating

the bias,  is a learning rate, k is the local gradient of the output node k , and jy is the

output value of hidden node j. In case of j = 0, it is the signal from the bias node which

is equal to the bias itself.

 4.3.2 Update the weights of the hidden nodes by

 (1) () ((1)) () ()ji ji ji j iw n w n w n n y n      

 3.44

 3.46

 3.45

 3.47

27

, ,n   are defined as similar as in equation 3.46, jiw is the weight

corresponding to the hidden node j and the input node i, wj 0 is the bias, jiw is the

delta weight corresponding to the hidden node j and the input node i, 0jw is used for

updating the bias, j is the local gradient of the hidden node j, and iy is the input value

corresponding to the input node i. In case of i = 0 it is the signal from the bias node.

 5. The process of examining the error of the network.

The second, third and fourth processes described above will be repeated until

all data (input signal) in the training set are presented to the network (reached an

epoch of learning). Then the process of examining the error will start.

 5.1 Compute the mean squared error by

1

1 ()
N

av
n

E E n
N 

 

 5.2 Compute the absolute rate of change of the mean squared error by

 (1) () 100 .
(1)

av av

av

E m E m The stop criterion
E m
 

 


m is the mth epoch of learning process. If the conditioned-equation 3.49 is true

then terminate the learning process; otherwise, repeat steps 2, 3 and 4 until the

stopping criterion is met. Sometimes the learning process is terminated by both

stopping criterion and a specific number of epochs. This manner ensures that the

learning process will be stop anyway. It is possible that the stopping criterion is unable

to be met.

 Notes 1: equations 3.46 and 3.47 are similar to equation 3.1 (new oldw w w )

by (1)w n is equal to neww , ()w n is equal to oldw , and () ()n y n is equal to w .

However, there is a different term which is ((1))w n   , the previous weight

((1)w n ) multiplied by a momentum (). Including this term has a stabilizing

effect to the convergence of the error, see [1] for full detail of how the momentum

works.

 Notes 2: The Momentum and the learning rate have to be set in a range of

[0,1].

 3.48

 3.49

28

3.2 Decision Tree Algorithm

Decision tree algorithm is a divide-and-conquer technique. Its construction

processes can be performed recursively. Information gain is employed to find a proper

attribute for branching nodes of a tree in each round of computation. Suppose we have

a training data as shown in Table 3.2.

Table 3.2 The Weather data set (nominal version).

The data set consists of four attributes, two classes of data (Yes or No) and

fourteen data. In order to find the information gain of each attribute. We first find the

information value of the data set. The information value is used to measure the purity

of a data set in a unit called bit. For example,

 info(weather data set) = info (9,5)

9 is a number of Yes and 5 is a number of No in the data set, respectively. For

any positive or zero integers p and q, info(p,q) is defined by

(,) (,)p qinfo p q entropy
p q p q


 

where

(,) - log() - log()p q p p q qentropy
p q p q p q p q p q p q


     

 From equation 3.51 and equation 3.52, hence

 9 5(9,5) (,)
14 14

info entropy

3.50

3.51

3.52

3.53

Number Outlook Temperature Humidity Windy Class

1 Sunny Hot High FALSE No
2 Sunny Hot High TRUE No
3 overcast Hot High FALSE Yes
4 Rainy Mild High FALSE Yes
5 Rainy Cool Normal FALSE Yes
6 Rainy Cool Normal TRUE No
7 overcast Cool Normal TRUE Yes
8 Sunny Mild High FALSE No
9 Sunny Cool Normal FALSE Yes
10 Rainy Mild Normal FALSE Yes
11 Sunny Mild Normal TRUE Yes
12 overcast Mild High TRUE Yes
13 overcast Hot Normal FALSE Yes
14 Rainy Mild High TRUE No

29

9 5 9 9 5 5(,) log() log()

14 14 14 14 14 14
0.940

entropy

bits

  



The data set with a smaller information value is determined as a purer data set.

The information value can be applied to determine the purity of data set with respect

to only one attribute. Figure 3.5 shows subsets obtained from separating the Weather

data set by its attributes.

3.54

cool
mild hot

Temperature

yes
yes
no
no

yes
yes
yes
yes
no
no

yes
yes
yes
no

 (a) separating by
Outlook attribute.

 (b) separating by Temperature
attribute.

 (c) separating by Humidity
attribute.

true false

Windy

yes
yes
yes
yes
yes
yes
no
no

yes
yes
yes
no
no
no

 (d) separating by Windy attribute.

rainy
overcast

sunny

 Outlook

yes
yes
no
no
no

yes
yes
yes
yes

yes
yes
yes
no
no

normal high

Humidity

yes
yes
yes
no
no
no
no

yes
yes
yes
yes
yes
yes
no

 Figure 3.5 The separation of data set with respect to each attribute of the
Weather data set.

30

In order to compute the information value with respect to the outlook attribute,

the information values with respect to each possible value of the outlook attribute are

required.

The information value with respect to outlook = sunny is computed by

info(2,3) = 0.971 bits

 2 is a numbers of yes and 3 is a numbers of no with respect to outlook = to

sunny.

Similarly, the information values with respect to outlook = overcast and

outlook = rainy are computed by

info(4,0) = 0.0 bits

info(3,2) = 0.971 bits

The information value of the outlook attribute can be calculated as follows

5 4 5() () () ()
14 14 14
5 4 5= ×0.971+ ×0.0 + 0.971

14 14 14
= 0.693

info outlook info sunny info overcast info rainy

bits

  

 According to equation 3.55, the fraction 5
14

 multiplied by info(sunny), 5 is a

number of data that outlook = sunny, and 14 is a number of all data in a data set. For

the other fractions 4
14

and 5
14

 can be explained in the same way.

The information values of the other attributes can be computed similarly. The

results are as follows.

info(temperature) = 0.911 bits

info(humidity) = 0.788 bits

info(windy) = 0.892 bits

The information gain with respect to attribute A is defined by

 gain(A)= info(data set) - info(A)

Hence, gain(outlook) is computed by

 gain(outlook) = info(weather data set) - info(outlook)

 = 0.940-0.693

 = 0.247 bits

The information gains of others are as follows:

 gain(temperature) = 0.029 bits

3.55

3.56

31

 gain(humidity) = 0.152 bits

 gain(windy) = 0.048 bits

 The attribute that yields the highest information gain is the outlook attribute.

This indicates that separating the data set by the outlook attribute yields the purest

subset. Hence it is proper to be used in a branching process.

Figure 3.6 Subsets (A, B and C) obtained from separating the Weather data set

by the outlook attribute.

 Three possible values of the outlook attribute were used to split the Weather

data set into three subsets as shown in Figure 3.6. Now, the decision tree consists of

one root node with three branches. To create other child nodes, the process of finding

the appropriate attribute will be performed again on each of the three separated subsets

A, B and C.

The manner of constructing a decision tree described above will be performed

continually until the stopping criterion is met. There are two stopping criterions used

to terminate the decision tree algorithm.

1. Stop when the separated subsets are pure (there is only one class) such as

the subset B in Figure 3.6. There is only class yes in this subset, so there is no any

further process to perform on this branch.

2. Stop when there is no attribute left to be considered. Any used attribute will

not be considered as the candidate attribute again in the process performed on its child

nodes. In Figure 3.6, the outlook attribute will not be considered as the candidate

attribute in the process performed on the subset A and C.

In pattern classification problem, most data sets contain numeric attributes. In

order to extend the information gain to numeric data, the process is slightly different.

Subset A Subset B Subset C

rainy
overcast

sunny

Outlook

yes
yes
no
no
no

yes
yes
yes
yes

yes
yes
yes
no
no

32

In numeric attribute, the data set splitting is restricted to be a binary split and not

allowed to split data of the same class. Table 3.3 shows the numeric version of the

Weather data set.

Table 3.3 Weather data set (numeric version)

This data set contains two nominal attributes: Temperature and Humidity.

Now, we will show the computation of gain(temperature).

 The temperature data are sorted by value, and the repeated values (72, 75) are

collapsed together. There are 8 possible splitting areas as marked by arrows. A

splitting point can be any value lying in the boundary of the splitting areas. Such as in

the first splitting area which lies in range of [64, 65], the splitting point can be easily

chosen by using a mean value of its boundary which is 64.5. So, according to the

temperature attribute, we have 8 possible splitting points. These splitting points are

candidates for the proper splitting point. The information value of each splitting point

is computed based on the information value of its left side and right side as follows

 () () ()p qinfo temperature info left side info right side
p q p q

 
 

p is a number of data on the left side and q is a number of data on the right side. The

splitting point that gives the lowest information value will be determined as the

64 65 68 69 70 71 72 75 80 81 83 85
yes no yes yes yes no no yes no yes yes no

 yes yes

Instance Outlook Temperature Humidity Windy Class

1 sunny 85 85 FALSE No
2 sunny 80 90 TRUE No
3 overcast 83 86 FALSE Yes
4 Rainy 70 96 FALSE Yes
5 Rainy 68 80 FALSE Yes
6 Rainy 65 70 TRUE No
7 overcast 64 65 TRUE Yes
8 sunny 72 95 FALSE No
9 sunny 69 70 FALSE Yes
10 Rainy 75 80 FALSE Yes
11 sunny 75 70 TRUE Yes
12 overcast 72 90 TRUE Yes
13 overcast 81 75 FALSE Yes
14 Rainy 71 91 TRUE No

3.57

33

6 8(71.5) (4,2) (5,3)
14 14
0.939

info info info

bits

 



information value of the temperature attribute. Similarly to the nominal attribute, the

information gain of the numeric attribute is computed by

 gain(the selected attribute) = info(weather data set) – info(the selected

attribute)

For example, gain(temperature) can be computed as follows. First step is the

computation of info(temperature). As we have eight possible splitting points, so we

will get eight possible information values. The computation of the information value

of the fourth splitting point which is 71.5 is computed by.

 info(left side of 71.5) = info(4,2)

4 is a number of yes and 2 is a number of no on the left side of the splitting

point.

Similarly, the information of the right side is computed by

info(right side of 71.5) = info(5,3)

Hence

 After getting all information values, the lowest one will be used to represent

the info(temperature). When getting the info(temperature), now we can compute the

gain(temperature) by using equation 3.58. The info(weather data set) is computed in

the same way as describe in the computation of the nominal attribute.

Note: the important differences between a numerical splitting and a nominal

splitting are a number of splitting. The numerical splitting is restricted to be a binary

split while a number of splitting of the nominal splitting depends on a number of the

possible values of that nominal attribute. Additional, the used numeric attribute can be

used again in the process of finding the appropriate attribute performed on its child

nodes while we cannot do this in a nominal attribute.

3.3 The information gain as a tool to identify the difficult-to-classify and easy-to-

classify data

In this research, we use the information gain as a rapid tool to distinguish

between difficult-to-classify and easy-to-classify data. We apply a new parameter to

control a minimum number of data in subspaces called minimum instances per area. If

a number of data in subspace obtained from splitting by a hyperplane is less than this

3.58

34

parameter, the process will remove that hyperplane and stop the constructing process

on that subspace. Figure 1 shows the graphical view of the applied hyperplanes on the

Iris data set [15].

For the purpose of demonstration in 2-dimensions, we have removed two out

of four attributes of the Iris data set. Three different symbols represent the different

classes. As shown in Figure 1, data space is partitioned by hyperplanes into five

subspaces. Subspace number 1, 2 and 5 are pure subspaces. Data fallen in this areas

are correctly classified corresponding to its target class. We call data located in these

subspaces as easy-to-classify data. For subspace number 3 and 4, they are impure

subspaces. The data fallen in these areas are more difficult to classify when compared

with the data located in the pure subspaces. How difficult to classify these data

depends on the impurity of the subspaces they fallen in. We include the entropy

measurement (for more detail of the entropy, see [10] and [17]) to determine the level

of impurity. Furthermore, we add a parameter called impurity threshold to use for

identifying the difficult-to-classify data from the impure subspaces. If the entropy of

the current-determined subspace is higher than the impurity threshold, we identify

data located in this area as the difficult-to-classify data.

3.4 Duplicate-sampling of difficult-to-classify scheme

In each epoch of the standard BP learning, each datum will be used only once

to present to the network. Our proposed scheme emphasizes the learning of the

Figure 3.7. The graphical view of the applied hyperplanes

35

difficult-to-classify data by presenting them to the network more often than usual.

Increasing the presentation of the difficult-to-classify data is performed by duplicating

them before starting the learning process. Consequently, the complete process of

training the network by the BP learning with the proposed scheme can be illustrated as

follows:

Figure 3.8 The flow chart of training the MLP network by the BP with
the duplicate-sampling of difficult to classify scheme.

Training Set

Distinguish the difficult-to-classify and the
easy-to-classify data using the information

gain measurement

easy-to-classify data

Start the BP learning

Feed all data to the network

Duplicated

difficult-to-classify data

CHAPTER IV

THE EXPERIMENT RESULTS

The experiments were divided into three categories, depending on their

different objectives. The first experiment was set up to compare the computational

time and the classification performance between the MLP network trained by the

standard BP algorithm and the MLP network trained by the BP algorithm with

duplicate-sampling of difficult-to-classify scheme. The second experiment was set up

to show an effect to the classification performance from adjusting parameters of the

proposed scheme. Finally, the third experiment was set up to compare the

classification performance of the MLP network trained by the proposed scheme with

the well-known classification algorithms, including support vector machine, RBF

network, J48 decision tree, NaïveBayes and Nearest Neighbor.

Data sets used in these experiments were taken from UCI Repository [15]. The

details of all data sets are shown in Table 4.1.

Table 4.1 Details of data sets used in the experiments.

4.1 MLP Network Trained by the BP Algorithm compare with MLP Network

Trained by the Duplicate-sampling of difficult-to-classify scheme

In this research, we concentrate on the classification of a numeric data set. So,

we removed two nominal attributes from the Vowel data set before using it. The data

sets were split into training and test set in a ratio of 2:1. We performed two processes

to each experiment.

1. Process of finding an optimal number of hidden nodes. This process aim to

find the best number of hidden nodes for each data set. We construct the one-

hidden layer MLP networks with a various number of hidden nodes ranging

from one to thirty. Then, we train all of them, using the training set, with the

Name Data Features Classes Training set/Testing set

Liver 345 6 2 227/118
Diabetes 768 8 2 506/262
Iris 150 4 3 99/51
Heart-Statlog 270 13 2 178/92
Ionosphere 351 34 2 231/120
Vehicle 846 18 4 558/288
Balance-scale 625 4 3 412/213
Vowel 990 10 11 653/337

37

Table 4.2 The optimal number of hidden nodes corresponding to each data
set

standard BP algorithm by fixing the parameters as follows: a constant of the

logistic function = 0.5, learning rate = 0.3 and number of epochs = 1000. The

number of hidden nodes that gives the highest accuracy on the test set is

determined as the optimal number for the corresponding data set. The results

of this process are shown in Table 4.2.

2. Process of training and testing. We used an optimal number of hidden nodes

from the first process to construct two copies of the networks. One was trained

by the standard BP algorithm, and another one was trained by the BP algorithm

with the duplicate-sampling of difficult-to-classify scheme. We temporarily

stopped the learning process at various points, every 250 epochs. At each

stopping, we applied the test set to the network. The learning process was

completely stopped when the classification accuracy showed no improvement

while the network’s error on training set was dropping. The results of this

process were shown in Figure 4.1.

The parameters of the proposed scheme were set as follows: a number of

duplication = 1, minimum instance per area = 4 and the impurity threshold = 0.2.

According to the more popular sequential mode of BP algorithm over the batch mode

in solving pattern classification problem [1], so we used the sequential mode in our

experiment.

For figure 4.1, the x-axis denotes a number of epochs, and the y-axis denotes a

percentage of accuracy on the test set. The continuous line represents the accuracy of

the network trained by the standard BP, and the dotted line represents the accuracy of

the standard BP with the duplicate-sampling of difficult-to-classify scheme.

Data set

Number of optimal hidden

nodes

Liver 6

Diabetes 1

Iris 2

Heart-Statlog 9

Ionosphere 2

Vehicle 14

Balance-scale 12

Vowel 23

38

Figure 4.1.5 Ionosphere data set result.

Figure 4.1.6 Vehicle data set result.

Figure 4.1.4 Heart-Statlog data set result.

Figure 4.1.1 Liver data set result. Figure 4.1.2 Diabetes data set result.

Figure 4.1.3 Iris data set result.

Figure 4.1.7 Balance Scale data set result. Figure 4.1.8 Vowel data set result.

Figure 4.1 The experimental results.

39

We examine the highest performance of the standard BP compared with the BP

with the proposed scheme. If the BP with the proposed scheme achieves the same or

higher accuracy by requiring less number of epochs, we assume that it shows a

computational time improvement. Since the number of data per epoch of the BP with

the proposed scheme is larger than the standard BP, we will assume the improvement

when the actual computation time also shows the improvement. The comparisons of

the performance of both techniques are shown in Table 4.3 and 4.4. Table 4.3 shows

the comparison of the best accuracy of the standard BP and the similar or higher

accuracy of the BP with the proposed scheme. According to this table, it shows the

computational time improvement occurring on 6 data sets: Liver, Diabete, Heart-

Statlog, Vehicle, Blance-Scale and Vowel. Only two data sets (Iris and Ionosphere)

use a little longer computational time. Table 4.4 shows the comparison of the best

classification performance of both techniques. From this table, it shows the

classification performance improvement occurring on 7 data sets, except the Iris data

set which shows the same accuracy at 100%. In table 4.5, the details of the number of

difficult-to-classify data and time used in identifying them are shown corresponding to

each data set.

Note:

1. * denotes the improvement of computational time.
2. Time is measured in seconds.
3. The actual time of the BP with the proposed scheme is already included the

time used in finding the difficult-to-classify data.

 Standard BP BP with the proposed scheme

 Best accuracy Epochs Actual time

Similar or

higher accuracy Epochs Actual time

Liver 74.58 1250 9.05 77.97 500 5.31*

Diabetes 80.15 750 11.047 80.53 250 5.266*

Iris 100 250 0.938 100 250 1.141

Heart-Statlog 82.61 500 23.172 83.7 250 18.06*

Ionosphere 90.83 250 30.28 89.17 250 31.4

Vehicle 84.03 2750 794.24 83.68 1750 649.35*

Balance-Scale 94.84 1250 97.813 95.31 1000 85.49*

Vowel 89.61 5000 2018.78 92.28 750 607.7*

Table 4.3 The comparison of the best accuracy of BP and the similar or higher
accuracy of the BP with the propose scheme.

40

Note: * denotes the improvement of classification performance.

4.2 Parameters Adjustment of Duplicate-Sampling of Difficult-to-Classify

Scheme

 This section aims to show the effect to the classification performance from

adjusting the parameters of the proposed scheme. The duplicate-sampling of difficult-

to-classify scheme consists of three adjustable parameters which are a minimum

instance, a purity threshold and a duplication rate. The definitions of each parameter

are defined as follows:

1. The minimum instance is a least number of data allowed to be split into a

subspace by the plane of the duplicate sampling scheme.

2. Purity threshold is a least information value criterion used to determine

whether the data in the mixed sub-domain are difficult-to-classify or not. If the

considered subspace has a higher or equal information value when comparing with the

threshold, the data in that subspace will be determined as the difficult-to-classify data.

 Standard BP BP with the proposed scheme

 Best accuracy Epochs Actual time Best accuracy Epochs Actual time

Liver 74.58 1250 9.05 78.81* 1000 10.17
Diabetes 80.15 750 11.047 80.92* 250 5.266
Iris 100 250 0.938 100 250 1.141
Heart-Statlog 82.61 500 23.172 86.96* 500 35.9
Ionosphere 90.83 250 30.28 92.50* 500 62.79
Vehicle 84.03 2750 794.24 85.07* 2500 916.43
Balance-Scale 94.84 1250 97.813 95.31* 1000 85.49
Vowel 89.61 5000 2018.78 95.55* 2500 2007.36

Table 4.4 The comparison of the best accuracy of BP and the BP with
the proposed scheme.

Table 4.5 The details of the number of difficult-to-classify
data and the used time.

 Number of difficult-to-classify data Used time

Liver 90 (39.65% of training data) 0.2
Diabetes 146 (28.85% of training data) 0.62
Iris 14 (14.14% of training data) 0.03
Heart-Statlog 42 (23.60% of training data) 0.02
Ionosphere 19 (8.23% of training data) 0.81
Vehicle 190 (34.05% of training data) 1.58
Balance-Scale 135 (32.77% of training data) 0.22
Vowel 402 (61.56% of training data) 1.85

41

3. The duplication rate is a number of duplications of the difficult-to-classify

data.

We performed this experiment by analyzing the parameters one by one. During

one parameter is being varied, the others are fixed. The results obtained from this

experiment will be compared with the results in the previous experiment which we

used the default parameter setting (minimum instance = 4, purity threshold = 0.2 and

duplication rate = 2). Varying parameter was performed by:

1. The minimum instance was varied from 4 to 20, increasing by 4.

2. The purity threshold was varied from 0.2 to 1, increasing by 0.2.

3. The duplication rate was varied from 1 to 5, increasing by 1.

The Ionosphere data is selected to use in this task, and the obtained results are

shown in Table 4.6.

Note:

1. the ones marked by * refer to the highest value related to each varied value

of the minimum instance.

 2. the percentage of difficult-to-classify data are estimated with respect to a

number of data in a training set.

Number of Minimum Instance

Epochs 4(default) 8 12 16 20

250 89.17 93.33 94.17* 90.83 88.33

500 92.5* 93.33 92.50 91.67 90.00

750 92.5* 93.33 91.67 90.83 93.33

1000 92.5* 93.33 91.67 93.33* 95.00

1250 91.67 93.33 91.67 92.50 94.17*

1500 91.67 94.17* 91.67 91.67 94.17*

1750 91.67 94.17* 91.67 91.67 94.17*

2000 91.67 94.17* 91.67 91.67 94.17*
Percentage of

8.23% 29.00% 38.53% 43.72% 46.75% Difficult-to-classify data

Table 4.6 The classification performances obtained from varying the

minimum instance.

42

Table 4.7 The classification performances obtained from varying the purity

threshold.

Note: the ones marked by * refer to the highest value related to each varied

value of the purity threshold.

Table 4.8 The classification performances obtained from varying the

duplication rate.

Note: the ones marked by * refer to the highest value related to each varied

value of the duplication rate.

 According to Table 4.6, by increasing the minimum instance, a number of the

difficult-to-classify data will be increased. From the obtained results, they show that

when a number of difficult-to-classify data increases, the classification performance of

the trained network seem to be improved.

Number of Purity Threshold

Epochs 0.2(default) 0.4 0.6 0.8 1

250 89.17 89.17 89.17 86.67 88.33

500 92.5* 92.5* 92.5* 90 91.67*

750 92.5* 92.5* 92.5* 90 91.67*

1000 92.5* 92.5* 92.5* 90.83* 91.67*

1250 91.67 91.67 91.67 90.83* 91.67*

1500 91.67 91.67 91.67 90 91.67*

1750 91.67 91.67 91.67 90 91.67*

2000 91.67 91.67 91.67 90 91.67*
Percentage of

Difficult-to-classify data 8.23% 8.23% 8.23% 3.46% 1.73%

Number of Duplication Rate

Epochs 1(default) 2 3 4 5

250 89.17 87.5 89.17 89.17 86.67
500 92.50* 90* 86.67 86.67 89.17
750 92.50* 89.17 87.5 87.5 88.33
1000 92.50* 89.17 86.67 86.67 90.83*
1250 91.67 89.17 88.33 88.33 90.83*
1500 91.67 89.17 90* 90* 89.17
1750 91.67 89.17 90* 90* 88.33
2000 91.67 89.17 90* 90* 87.5

43

According to Table 4.7, the obtained results show that when the purity

threshold is increased, a number of difficult-to-classify data will be decreased and the

classification performance is subsequently decreased.

According to Table 4.8, when the duplication rate is increased, the

classification performance is dropped. A high number of duplication rate could change

the distribution of the training data and yields as a worse predictive performance of

the network.

We would like to present the parameters of the duplicate-sampling of difficult-

to-classify scheme as a tool to increase or decrease a number of difficult-to-classify

data. There is no a certain number of difficult-to-classify data to guarantee the

improvement of classification performance. However, adjusting theses parameters

could help validate the classification performance of a trained network until the

satisfactory performance is met.

4.3 Comparing with the Well-Known Algorithms

 The algorithms involved in benchmarking are the normalized Gaussian radial

basis function network, the C4.5 decision tree, Naive Bayes classifier using estimator

classes, Nearest-neighbor-like algorithm, a support vector machine trained by the John

Platt's sequential minimal optimization algorithm. To implement these algorithms, we

used Weka software (version 3.4). For the C4.5 decision tree, the Naïve Bayes

classifier and the Nearest-neighbor algorithm we used the default parameters setting.

For the RBF network we set a number of clustering equal to a number of classes in the

data sets. Finally, for the SVM we varied the exponent used in a polynomial kernel

function (from 1to10, increasing by one), then selected the best performance. The

experimental results are shown in Table 4.9.

Note: the training and test sets used in the experiment are same as the ones

used in the previous experiments.

44

 From the results shown in Table 4.9, the MLP network trained by the

Duplicate-sampling of difficult-to-classify scheme achieves the highest accuracy in

five data sets. However, maybe, the classification performances obtained from the

benchmarked algorithms are not their best. But, we would like to point out that the

MLP network trained by the Duplicate-sampling of difficult-to-classify scheme is

better than the standard BP algorithm and achieves a high level of classification

performance.

 Note: * refer to the best classification performances related to each data set.

Data Sets RBF Network J48-Tree Naïve Bayes

Nearest

Neighbor SVM

MLP trained by

the BP

MLP trained by the

proposed scheme

Liver 74.57 72.03 77.12 65.25 61.02 74.58 78.81*

Diabetes 77.10 76.72 77.48 74.81 79.77 80.15 80.92*

Iris 100.00* 98.04 98.04 98.04 98.04 100.00* 100.00*

Heart-Statlog 86.96* 72.83 85.87 76.09 84.78 82.61 86.96*

Ionosphere 94.17 87.50 86.67 95.00* 92.50 90.83 94.17

Vehicle 68.06 70.83 40.28 54.86 79.51 84.03 85.07

Balance-Scale 97.65 92.02 91.08 100.00* 95.31 94.84 95.31

Vowel 86.35 77.15 67.66 83.09 93.47 89.61 95.55*

Table 4.9 The classification performances obtained from various classification

algorithms.

CHAPTER V

CONCLUSION

In the structure of the MLP network, each of non-linear neuron can be referred

to a hyperplane in a decision space [1]. According to this view point, the trained MLP

network classifies the unseen data by examining their positions in the decision space

compared with the positions of the hyperplanes. The BP learning can be considered as

a method to iteratively adjust positions of the hyperplanes. The purpose of adjustment

is to make those hyperplanes separate the training patterns drawn from different

classes. In this research, we propose a technique to reduce the computational time of

the BP learning called duplicate-sampling of difficult-to-classify scheme.

The proposed scheme bases on a concept of difficult-to-classify and easy-to-

classify data. The difficult-to-classify data in our view point are the data that requires

more number of epochs to be recognized by the network when compared with the

easy-to-classify data. We utilize the information gain to distinguish these two types of

data. Then, we duplicate the difficult-to-classify data while do nothing to the difficult-

to-classify data. Consequently, during BP learning, the difficult-to-classify data will

be emphasized by the network.

The experiments were performed on eight data sets taken from UCI repository.

According to the obtained results, the experiments performed on six out of eight data

sets (Liver, Diabete, Heart-Statlog, Vehicle, Blance-Scale and Vowel) show the

learning time improvement. For the classification performance, the improvement

occurs on seven data sets, except the Iris data set which shows the same accuracy at

100%. Our conclusions on the duplicate-sampling of difficult-to-classify scheme are

as follows:

1. The proposed technique makes the BP algorithm require less number of

epochs in learning.

2. The MLP network trained by the BP algorithm with the duplicate-

sampling of difficult-to-classify scheme achieves a higher or equal predictive

ability when compared with the standard BP.

46

Future Work

In this research, we restrict our study to numeric data. However, in the real

world problems, many data sets contain nominal attributes. The extending of the

duplicate-sampling of difficult-to-classify scheme to the nominal attributes is an

interesting direction to be addressed. Furthermore, the study of applying the proposed

scheme to other classifiers as well as a problem of using a new measure such as the

gain ratio, gini index etc., to distinguish data are interesting issues to be investigated.

REFERENCES

[1] Haykin S. Neural networks: A comprehensive foundation. 2nd ed. Upper Saddle

River, NJ.: Prentice-Hall, 1999.

[2] Jacobs, R. A. Increased rates of convergence through learning rate adaptation.

Neural networks 1(1998): 295-307.

[3] Solomon, R., and Van Hemmen, J. L. Accelerating backpropagation through

dynamic self-adaptation, Neural networks 9(1996): 589-601.

[4] LeCun, Y. Efficient learning and second-Order methods, A Tutorial at NIPS

93. Denver, 1993.

[5] Stone, M. Cross-validation: A review, Mathematische operationforschung

statistischen: Serie statistics 9(1978): 127-139.

[6] Morgan, N., and Bourlard, H. Continuous speech recognition using multilayer

percptrons with hidden Markov models, IEEE International Conference

on Acoustics, Speech, and Signal Processing. 1(1990): 413-416.

[7] Suresh, S., and Omkar, S. N., and Mani, V. Parallel implementation of back-

proppagation algorithm in networks of workstation, IEEE Trans, on

Parallel and Distributed Systems. 24-34 Jan., 2005.

[8] Thammano, A., and Meengen, A. A New evolutionary neural network

classifier, 9th PAKDD Conference. 18-20 May., Hanoi: Vietnam, 2005.

[9] Quinlan, J. R. Machine learning. Vol. 1. Sydney: University of Sydney, 1975.

[10] Quinlan, J. R. C4.5 programs for machine learning. San Mateo, CA.:

Morgan Kaufmann, 1992.

[11] Kent, J. T. Information gain and a general measure of correlation, Biometrika.

70,1 (1983): 163-173.

[12] Mackay, D. J. C. Information-based objective functions for active data

selection, Neural computation. 4(1992): 590-604.

48

[13] Borland, L., and Plastino, A. R., and Tsallis C., Information gain within

nonextensive thermostatistics, J.Math.Phys. 39(1998), 6490-6501.

[14] Han, j., and Kamber, M. Data mining concepts and techniques. Morgan

Kaufmann, 2001.

[15] Blake, C. L., and Merz, C. J. UCI repository of machine learning database

[online] Available from: http://www.ics.uci.edu/~mlearn/MLReposito

ry.html [15/01/2007].

[16] Wesley, H. I. Matlab Supplement to Fuzzy and Neural Approaches in

Engineering. John Wiley & Sons, 1997.

[17] Witten, I. H., and Frank, E., Data Mining Practical Machine Learning Tools

and Techniques. Elsevier Publishing Company, 2005.

http://www.ics.uci.edu/~mlearn/MLReposito

CURRICULUM VITAE

 Mr. Parinya Weangsamoot was born in November 12, 1980, in Roi-Et,

Thailand. He received a bachelor degree in Medical Science from the Department of

Medical Science, Faculty of Medicine, Khonkean University, Thailand in 2002.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	CHAPTER I INTRODUCTION
	1.1 Problem and Motivation
	1.2 Objective
	1.3 Scope of Work and Constraints
	1.4 Literatures Related to Multilayer Perceptrons Network and Back-Propagation Algorithm
	1.5 Literatures Related to information gain
	1.6 Organization

	CHAPTER II THEORITICAL BACKGROUND
	2.1 Pattern Classification Problem
	2.2 An Overview of Artificial Neural Network
	2.3 Activation Function
	2.4 Multilayer Perceptrons Network
	2.5 An Overview of Backpropagation Algorithm
	2.6 Information Gain in a Decision Tree Algorithm

	CHAPTER III MATHEMATICAL MODEL AND ALGORITHM
	3.1 Back-Propagation Algorithm
	3.2 Decision Tree Algorithm
	3.3 The information gain as a tool to identify the difficult-to-classify and easy-to-classify data
	3.4 Duplicate-sampling of difficult-to-classify scheme

	CHAPTER IV THE EXPERIMENTAL RESULTS
	4.1 MLP Network Trained by the BP Algorithm compare with MLP Network Trained by the Duplicate-sampling of difficult-to-classify scheme
	4.2 Parameters Adjustment of Duplicate-Sampling of Difficult-to-Classify Scheme
	4.3 Comparing with the Well-Known Algorithms

	CHAPTER V CONCLUSION
	References
	Vita

