การวิเคราะห์เสถียรภาพความลาดของมวลหินเชิงความน่าจะเป็น กรณีศึกษาเหมืองหินปูนเขาวง จังหวัดสระบุรี

นาย ใกรวิทย์ ปุญโญกุล

คูนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมทรัพยากรธรณี ภาควิชาวิศวกรรมเหมืองแร่และปิโตรเลียม คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2553 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย PROBABILISTIC ROCK SLOPE STABILITY ANALYSIS : A CASE STUDY OF KHAOWONG LIMESTONE QUARRY SARABURI PROVINCE

Mr. Kraiwit Punyokun

ศูนย์วิทยุทรัพยากร

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Georesources Engineering Department of Mining and Petroleum Engineering Faculty of Engineering Chulalongkorn University Academic Year 2010 Copyright of Chulalongkorn University

หัวข้อวิทยานิพนธ์	การวิเคราะห์เสถียรภาพความลาดของมวลหินเชิงความ		
	น่าจะเป็น กรณีศึกษาเหมืองหินปูนเขาวง จังหวัดสระบุรี		
โดย	นายไกรวิทย์ ปุญโญกุล		
สาขาวิชา	วิศวกรรมทรัพยากรธรณี		
อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	ผู้ช่วยศาสตราจารย์ ดร. สุนทร พุ่มจันทร์		

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็นส่วน หนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

LOW HORE คณบดีคณะวิศวกรรมศาสตร์ (รองศาสตราจารย์ ดร.บุญสม เลิศหิรัญวงศ์) คณะกรรมการสอบวิทยานิพนธ์ ประธานกรรมการ (รองศาสตราจารย์ สฤทธิ์เดช พัฒนเศรษฐพงษ์) An อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก (ผู้ช่วยศาสตราจารย์ ดร.สุนทร พุ่มจันทร์) In the กรรมการ (ดร.พิพัฒน์ เหล่าวัฒนบัณฑิต) พระอาว อาว่าระกอง กรรมการภายนอกมหาวิทยาลัย (ดร.ทรงวุฒิ อาทิตย์ทอง)

ไกรวิทย์ ปุญโญกุล : การวิเคราะห์เสถียรภาพความลาดเชิงความน่าจะเป็น กรณีศึกษาเหมืองหินปูนเขาวง จังหวัดสระบุรี. (PROBABILISTIC ROCK SLOPE STABILITY ANALYSIS: A CASE STUDY OF KHAOWONG LIMESTONE QUARRY SARABURI PROVINCE) อ. ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ.ดร.สุนทร พุ่มจันทร์, 96 หน้า.

งานวิจัยนี้ได้นำเสนอการวิเคราะห์เสถียรภาพความลาดของมวลหินเชิงความน่าจะ เป็น วิธีวิเคราะห์ถูกพัฒนาจากการจำลองโครงสร้างชั้นหินคือ มุมเอียงเทและทิศทางของมุม เอียงเท รวมกับวิธีวิเคราะห์เสถียรภาพความลาดเชิงกำหนดและจลนศาสตร์เข้าด้วยกัน ผลลัพธ์ที่ได้จากการวิเคราะห์เป็นโอกาสของการพังทลาย (Probability of Failure) ข้อมูลที่ใช้ ประกอบการวิเคราะห์ประกอบด้วย แผนที่แสดงโครงสร้างของขั้นหินซึ่งถูกจำลองมาจากการ ประยุกต์ใช้แบบจำลองทางธรณีสถิติที่ชื่อว่า แบบจำลองเกาส์เชียน (Sequential Gaussian Simulation) รูปร่างและขนาดของความลาด และคุณสมบัติเชิงกลของมวลหิน การวิเคราะห์ เสถียรภาพความลาดเชิงความน่าจะเป็นถูกนำมาวิเคราะห์เสถียรภาพความลาดของเหมือง หินปูนเขาวง จ.สระบุรี ผลการศึกษาปรากฏว่า การวิเคราะห์เสถียรภาพความลาดเชิง จลนศาสตร์และเชิงกำหนดบ่งบอกว่าพื้นที่ศึกษามีโอกาสเกิดการพังทลายในรูปแบบของแบบ ระนาบและแบบรูปลิ่ม ขณะที่การวิเคราะห์เสถียรภาพความลาดเชิงความน่าจะเป็นบ่งบอกว่า พื้นที่เลี่ยงต่อการพังทลายในรูปแบบการพังทลายแบบระนาบปรากฏในบริเวณทางด้านเหนือ ของบ่อเหมือง โดยมีโอกาลของการเกิดลงลูดที่ 22 เปอร์เซ็นต์ การศึกษาในครั้งนี้จึงได้ น้ำเสนอวิธีการแก้ไขปัญหาเสถียรภาพความลาดในบริเวณที่อาจจะเกิดปัญหาในรูปของการ ลดความขั้นของผนังบ่อเหมือง และความสูงขั้นบันได กล่าวโดยสรุปการศึกษาในครั้งนี้ได้นำ วิธีการวิเคราะห์เสถียรภาพความลาดในรูปของความน่าจะเป็น ซึ่งเป็นวิธีการศึกษาที่ใกล้เคียง กับความเป็นจริงของสภาพความลาด และให้ผลลัพธ์ที่เป็นประโยชน์ต่อการประเมิน สถานภาพของการพังทลายของความลาดทั้งสามรูปแบบคือ การพังทลายแบบระนาบ การ พังทลายแบบรูปลิ่ม และการพังทลายแบบคะมำ ซึ่งข้อมูลเหล่านี้จะเป็นประโยชน์ต่อการวาง แผนการทำเหมืองเพื่อป้องกันปัญหาด้านเสถียรภาพขอบ่อเหมือง

5270228921 : MAJOR GEORESOURCES ENGINEERING KEYWORDS : ROCK SLOPE ANALYSIS / GEOSTATISTIC / PROBABILISTIC ANALYSIS KRAIWIT PUNYOKUN: PROBABILISTIC ROCK SLOPE STABILITY ANALYSIS: A CASE STUDY OF KHAOWONG LIMESTONE QUARRY SARABURI PROVINCE. ADVISOR: ASST.PROF.SUNTHORN PUMJAN, PhD., 96 pp.

A probabilistic rock slope analysis is introduced in this study. The probabilistic rock slope analysis was developed by combining the structural model of dip angle and dip direction of rock mass, the deterministic slope analysis and kinematic slope analysis. The measure of safety is expressed in terms of the probability of failure. Input to the model consists of rock structure realization maps generated from Seguential Gaussian Simulation (SGS), the slope geometry and rock strength properties. The model was applied to the rock slope at Khaowong limestone guarry at Saraburi province. The results of kinematic and deterministic slope analysis indicate the potential of plane failure and toppling failure in the studied area. The probabilistic rock slope analysis indicates potential plane failure in the northern area of the pitwall with maximum probability of failure of 22 percents. Recommendations for rock slope stabilization were also made by reducing the slope angle and bench height. In conclusion, the proposed method provides a powerful tool for drawing a detailed and realistic picture of rock slope stability condition under 3 slope failure modes which are plane failure, wedge failure and toppling failure. This information will benefit the mine planning in relation to slope stability prevention program.

จุฬาลงกรณ์มหาวิทยาลัย

Department : Mining and Petroleum Engineering Field of Study : Georesources Engineering Academic Year : 2010 Student's Signature Kraiwit Paryokum Advisor's Signature

กิตติกรรมประกาศ

วิทยานิพนธ์ฉบับนี้สำเร็จสมบูรณ์ได้ เนื่องด้วยความช่วยเหลือและคำแนะนำ ต่างๆ จากหลายๆ ฝ่าย ทางผู้วิจัยต้องขอขอบคุณบุคคลและองค์กรต่างๆ ซึ่งให้ความสนับสนุนและ ช่วยเหลือในทุกด้าน จนงานวิจัยสำเร็จลุล่วงไปด้วยดี ดังต่อไปนี้

ผศ.ดร.สุนทร พุ่มจันทร์ อาจารย์ที่ปรึกษาวิทยานิพนธ์ ที่คอยให้คำปรึกษาแนะนำ และคอยให้ความช่วยเหลือในด้านต่างๆ ทั้งด้านวิชาการ ด้านติดต่อประสานงาน รวมถึงการตรวจ แก้ไขข้อผิดพลาดในการทำวิจัย ตลอดจนคอยให้คำแนะนำและกำลังใจในการแก้ปัญหาต่างๆ ที่ เกิดขึ้นเสมอ

คณะกรรมการสอบวิทยานิพนธ์ทุกท่าน รศ. สฤทธิ์เดช พัฒนเศรษฐพงษ์ อ.ดร. พิพัฒน์ เหล่าวัฒนบัณฑิต และ ดร.ทรงวุฒิ อาทิตย์ทอง ที่ช่วยให้คำปรึกษาแนะนำด้านวิชาการ และ ข้อเสนอแนะในการทำวิทยานิพนธ์ ตลอดจนให้กำลังใจในการแก้ปัญหาต่างๆ ที่เกิดขึ้นเสมอ

คุณระวิน อยู่ใจ เจ้าหน้าที่ห้องปฏิบัติการภาควิชาวิศวกรรมเหมืองแร่และ ปิโตรเลียม ที่คอยให้ความช่วยเหลือและคำแนะนำในการทำงานวิจัยและทดสอบตัวอย่างเป็น อย่างดีมาโดยตลอด

ว.ศ.โสฐิติ จันทรเกตุ ที่อำนวยความสะดวกในการข้อมูล เก็บตัวอย่าง ออก ภาคสนาม ตลอดจนคอยให้คำแนะนำ ที่เป็นประโยชน์ต่อวิทยานิพนต์เล่มนี้

ภาควิชาวิศวกรรมเหมืองแร่และปิโตรเลียม คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย และ บริษัท เอสซีจี ซิเมนต์ จำกัด ซึ่งอนุเคราะห์สถานที่และเครื่องมือในการทำวิจัย จนงานวิจัยสำเร็จลุล่วงด้วยดี

พี่ๆ เพื่อนๆ ปริญญาโท และน้องๆ ปริญญาตรี ทุกท่านที่คอยให้ความช่วยเหลือ คำปรึกษา และกำลังใจเสมอมา

สุดท้ายนี้ ขอกราบขอบพระคุณ คุณพ่อกูลกิจ ปุญโญกุล และ คุณแม่รัชฎาภรณ์ ปุญโญกุล ที่คอยดูแลให้การสนับสนุนในทุกๆด้าน รวมทั้งคอยเป็นกำลังใจให้โดยตลอดจนสำเร็จ การศึกษาได้ด้วยดี

สารบัญ

บทคัด	าย่อภาษาไทย	٩
บทคัด	เย่อภาษาอังกฤษ	ବ
กิตติก	รรมประกาศ	ନ୍ଥ
สารบั	ល្អ	ป
สารบั	ุญตาราง	ผ
สารบั	, ญภาพ	ល្ង
รายกา	ารสัญลักษณ์และเครื่องหมาย	ฑ
ส่		
1	าเทบ้า	1
I	1 1ความเป็บบาฑคงปักเหา	1
	1 2 จุดประสงค์ของบาบวิจัย	2
	1.2 ขุดขุมขุตของโครงการ	2
	1 / ประโยสรร์ที่ดาดก่าจะได้รับ	2
2	ทบทวนวรรณกรรม และ งานวิจัยที่เกี่ยวข้อง	4
	2.1 การวิเคราะห์เสถียรภาพความลาดแบบจลนศาสตร์	4
	2.2 การวิเคราะห์เสถียรภาพเชิงกำหนด	5
	2.3 ธรณีสถิติ	11
	2.4 งานวิจัยที่เกี่ยวข้อง	18
3	วิธีดำเนินการศึกษา	22
	3.1 ขั้นตอนและวิธีดำเนินงานวิจัย	22
	3.2 พื้นที่ศึกษา	24
	3.3 ข้อมูลที่ใช้ในการศึกษา	28
	้- 3.4 อุปกรณ์ที่ใช้ในการศึกษา	28
	3.5 การวิเคราะห์เสถียรภาพด้วยวิธีจลนศาสตร์	29
	3.6 การวิเคราะห์เสถียรภาพด้วยวิธีการเชิงกำหนด	29
	3.7 การดำเนินการด้วยวิธีธรณีสถิติ	30
	3.8 การวิเคราะห์เสถียรภาพเชิงความน่าจะเป็น	31

หน้า

บทที่

4	ผลการศึกษา และ อภิปราย	32
	4.1 การทดสอบทางกลศาสตร์	32
	4.2 การวิเคราะห์เสถียรภาพมวลหินด้วยวิธีการจลนศาสตร์	34
	4.3 การวิเคราะห์เสถียรภาพมวลหินด้วยวิธีการเชิงกำหนด	40
	4.4 การวิเคราะห์เสถียรภา <mark>พมวลหินเชิงค</mark> วามน่าจะเป็น	51
	4.5 การแก้ไขปัญหาเสถี <mark>ยรภาพของบ่อเหมือง</mark>	67
5	สรุปผลการศึกษา แล <mark>ะ ข้อเสนอ</mark> แนะ	70
	5.1 สรุปผลการศึก <mark>ษา</mark>	70
	5.2 ข้อเสนอแนะ	72
รายกา	รอ้างอิง	73
ภาคผเ	Journan	75
	ภาคผนวก ก การตรวจสอบสถานที่ตั้ง	76
	ภาคผนวก ข การทด <mark>สอบ</mark> มวล <mark>หิน</mark>	84
ประวัติ	ผู้เขียนวิทยานิพนต์	96

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย หน้า

สารบัญตาราง

ตารางที่		หน้า
2.1	เกณฑ์การพิจารณาค่าสัมประสิทธ์ความปลอดภัย หรือค่า Factor of Safety	
	กรณีปกติใช้เฉพาะค่าตัวเลขดัชนีเป็นตัวแปรหลักในการตัดสินใจ	5
4.1	สรุปการทดสอบกลศาสตร์	34
4.2	สรุปการวิเคราะห์การพังท <mark>ลายแบบระนา</mark> บเชิงกำหนด	40
4.3	สรุปการวิเคราะห์ก <mark>ารพังทลาย</mark> รูปลิ่มเช <mark>ิงกำหนด</mark>	43
4.4	ผลการวิเคราะห์ <mark>การพังทลาย</mark> แบบคะม <mark>ำเชิงกำหนด</mark>	47
4.5	สถิติพื้นฐานของกา <mark>รวางตัวของหิน</mark>	53
4.6	เปรียบเทียบข้อมู <mark>ลภาคสนามและแบบจำลอ</mark> งที่ 14	57
ก1	ข้อมูลทิศทาง <mark>การวางตัวของหินบริเวณเหมืองหินปูนเข</mark> าวง	79
ข1	ผลการทดสอ <mark>บหาค่าความถ่วงจำเพาะของมวลรวม</mark>	84
ข2	แสดงผลการท <mark>ดลองการทดสอบดัชนีกดจุด แบบแท่งตั</mark> วอย่างรูปทรงกระบอก	87
13	แสดงผลการทด <mark>ลองการทดสอบดัชนีกด</mark> จุด แบบแท่งตัวอย่างรูปใดๆ	87
ข4	ผลการทดสอบกำลังอัด <mark>แกนเดียว</mark>	89
ข5	ผลการทดส <mark>อบกำลังอัดสามแกน</mark>	90
16	การทดสอบหาแรงเฉือนโดยตรงภายใต้แรงแนวตั้งขนาด 10 kN	92
ข7	การทดสอบห <mark>า</mark> แรงเฉือนโดยตรงภายใต้แรงแนวตั้งขนาด 15 kN	93
18	การทดสอบหาแรงเฉือนโดยตรงภายใต้แรงแนวตั้งขนาด 20 kN	94
19	ความเครียดแนวดิ่งและความเค้นเฉือน	95

ความเครียดแนวดิงและความเค้นเฉีอน.....

สารบัญภาพ

ภาพที่		หน้า
2.1	รูปแบบการพังทลาย กับ ข้อมูลโครงสร้างชั้นหินที่ฉายลงไปสเตริโอกราฟ	4
2.2	รูปแบบการพังทลายแบบระนาบ	6
2.3	้การพังทลายรูปลิ่ม	8
2.4	รูปแบบการพังทลายแบบค <mark>ะมำ</mark>	9
2.5	การวิเคราะห์แบบ <mark>คะมำ</mark>	10
2.6	พารามิเตอร์ในก <mark>ารค้นหาคู่ขอ</mark> งตัวอย่าง <mark>สำหรับคำนว</mark> ณแวริโอแกรม	13
2.7	แวริโอแกรมจ <mark>ากการทดลองได้ และ การจำลองแ</mark> วริโอแกรม	13
2.8	รูปแบบแวริโอ <mark>แกรมทั่วไป</mark>	14
2.9	แผนภาพการ <mark>ดำเนินการการจำลองธรณีสถิติแบบเกาซ์</mark> เชียน	17
2.10	สรุปวิธีการทำ <mark>แผนที่แสดงความเสี่ยงในการพังทลายขอ</mark> งมวลหิน	18
2.11	ขั้นตอนการประเมินเสถียรภาพของการขุดมวลหินก่อนการสร้างถนนผ่านภูเขา	
	ด้วยระบบสารสน <mark>เทศ</mark> ทางภู <mark>มิศาสตร์</mark>	20
2.12	ผลลัพธ์การประเมินเสถีย <mark>รภาพของการขุดม</mark> วลหินก่อนการสร้างถนนผ่านภูเขา	
	ด้วยระบบสารสนเทศทางภูมิศาสตร์	20
3.1	แผนภาพการด <mark>ำเนินงานวิจัย</mark>	23
3.2	บ่อเหมืองด้านทิศเหนือ ของเหมืองหินปูนเขาวง	24
3.3	ภาพถ่ายทางอากาศของเหมืองหินปูน บริษัท ปูนซิเมนต์ไทย (ท่าหลวง)	24
3.4	แผนที่แสดงภาพรวมเหมืองหิน N-1, N-2 และ O-1 ของเหมืองหินปูน	
	บริษัท ปูนซิเมนต์ไทย (ท่าหลวง)	27
4.1	สเตอริโอเน็ตการวางตัวหินปูนของเหมืองหินปูนเขาวง	35
4.2	สเตอริโอเน็ตการจัดกลุ่มของการวางตัวของชุดหิน	35
4.3	ผลวิเคราะห์การพังทลายแบบระนาบด้วยวิธีจลนศาสตร์	36
4.4	ผลวิเคราะห์การพังทลายรูปลิ่มด้วยวิธีจลนศาสตร์	37
4.5	ผลวิเคราะห์การพังทลายแบบคะมำด้วยวิธีจลนศาสตร์	37
4.6	ผลวิเคราะห์การพังทลายด้วยวิธีจลนศาสตร์	39
4.7	ผนังบ่อเหมืองที่มีโอกาสเกิดการพังทลายแบบระนาบ	41
4.8	รูปแบบการพังทลายแบบระนาบ	41

ภาพที่		หน้า
4.9	ผนังบ่อเหมืองที่มีโอกาสเกิดการพังทลายรูปลิ่ม	43
4.10	แบบจำลองการพังทลายรูปลิ่ม	44
4.11	ผลการวิเคราะห์การพังทลายรูปลิ่ม	44
4.12	ผนังบ่อเหมืองที่มีโอกาสเกิดการพังทลายแบบคะมำ	45
4.13	ผลการวิเคราะห์การพังทลายแบบคะมำเชิงกำหนดด้วยโปรแกรม	
	ROCKTOPPLE	46
4.14	ตัวอย่างการคำนวณ <mark>บล็อกที่ 6</mark> 1	46
4.15	กราฟความสัมพั <mark>นธ์ของแรงที่</mark> กระทำใน <mark>แต่ละบล็อก</mark>	49
4.16	ฮิสโทแกรมค่า <mark>สัมประสิทธิ์ความปลอดภัยในแต่ละบล็อ</mark> ก	50
4.17	การเตรียมข้อมูลมุมเท	52
4.18	การเตรียมข้อมูลท <mark>ิศทางการวางตัว</mark>	52
4.19	กราฟฮิสโทแกรมข <mark>องค่ามุมเทของมว</mark> ลหิน	53
4.20	กราฟฮิสโทแกรมข <mark>องค่า</mark> ทิศทางการวางตัวของมวลหิน	54
4.21	การเปลี่ยนแปลงข้อมูลด้วยวิธีธรณีสถิติของมุมเท	54
4.22	แบบจำลองแวริโอแ <mark>กรมของมุมเท</mark>	55
4.23	แบบจำลองแวริโอแกรมของค่าแนวการวางตัว	56
4.24	ตัวอย่างแบบจำลองมุมเท ลำดับที่ 1-5	57
4.25	ตัวอย่างแบบจำลองทิศทางการวางตัวของชั้นหิน ลำดับที่ 1-5	57
4.26	ตัวอย่างการซ้อนทับระหว่างแผนที่มุมเท และ หน้าเหมือง	58
4.27	การวิเคราะห์ความไวของค่ามุมเทในการวิเคราะห์การพังทลายแบบระนาบ	59
4.28	พื่นที่ทำการวิเคราะห์เสถียรภาพความลาดของมวลหินเชิงความน่าจะเป็น	60
4.29	ฮิตโทแกรมของโอกาสการพังทลายของบล็อกในตำแหน่ง E698215 และ	
	N1624485	61
4.30	แผนที่ความเสี่ยงต่อการพังทลายแบบระนาบ	62
4.31	พื่นที่ที่มีโอกาสการเกิดการพังทลายรูปลิ่ม	62
4.32	การวิเคราะห์เสถียรภาพของมวลหินรูปลิ่มเชิงความน่าจะเป็น	63
4.33	ฮิสโทแกรมของมุมเทด้านที่ 1	64
4.34	ฮิสโทแกรมของมุมเทด้านที่ 2	64
4.35	ฮิสโทแกรมของการวางตัวของชั้นหินด้านที่ 1	65

ภาพที่		หน้า
4.36	ฮิสโทแกรมของการวางตัวของชั้นหินด้านที่ 2	65
4.37	ฮิสโทแกรมอัตราของเสี่ยงความปลอดภัยในการวิเคราะห์เสถียรภาพการ	
	พังทลายรูปลิ่ม	66
4.38	การปรับความชั้นของผนังบ่อเพื่อลดการพังทลายแบบระนาบ	67
4.39	การปรับผนังบ่อบริเวณทางไปบ่อเหมือง N เมื่อมีความสูงขั้นบันไดเท่ากับ 10	
	เมตร	69
4.40	การปรับผนังบ่อที่มีโ <mark>อกาสการ</mark> พังทลายแบบคะมำเมื่อมีความสูงขั้นบันไดเท่ากับ	
	17 เมตร	69
ก1	บริเวณเหมือง O	76
ก2	บริเวณเหมือง N	76
ก3	หินปูนธรรมดา	76
ก4	หินปูนคุณภาพดี	77
ก5	หินแอนดิไซด์	77
ก6	โครงสร้างรูปประทุน <mark>ค</mark> ว่ำ <mark></mark>	77
ก7	การวัดความหนาของชั้นห <mark>ิน</mark>	78
ก8	การตรวจสอบสถานที่ตั้ง	78
ข1	รูปแบบการทดสอบหาค่าความถ่วงจำเพาะของมวลรวม	84
ข2	การทดสอบดัชนีกดจุดแบบแนวด้านหัวท้าย	85
ข3	การทดสอบดัชนีกดจุดแบบการแนวด้านข้าง	85
ข4	การทดสอบดัชนีกดจุดแบบแท่งตัวอย่างรูปใดๆ	86
ข5	ตัวอย่างหินหลังจากทำการทดสอบดัชนึกดจุดแบบหัวท้าย และ ด้านข้าง	86
ข6	ตัวอย่างหินหลังจากทำการทดสอบดัชนีกดจุดแบบตัวอย่างรูปใดๆ	87
ข7	การทดสอบกำลังอัดแกนเดียว	88
18	ลักษณะการแตกของตัวอย่าง	88
19	การทดสอบกำลังอัดสามแกน	89
ข10	แท่งหินตัวอย่างหลังทำการทดสอบ	90
ข11	กราฟการพังทลายตามทฎษฎี Mohr-Coulomb โดยใช้โปรแกรม RocLab	90
ข12	การทดสอบแรงเฉื่อนโดยตรง	91
ข13	ตัวอย่างก่อนการทดสอบแรงเฉือนโดยตรง	91

ภาพที่		หน้า
ข14	ตัวอย่างหลังจากการทดสอบแรงเฉือนโดยตรง	91
ข15	กราฟความสัมพันธ์ระหว่างการเคลื่อนที่และแรงเฉือน	95
ข16	กราฟความสัมพันธ์ระหว่างความเครียดแนวดิ่งและความเค้นเฉือน	95

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

รายการสัญลักษณ์และเครื่องหมาย

A	คือ ค่าระยะความยาวระนาบการพังทลาย
A ₁	คือ ความต่างของความสูงระหว่างมวลหินที่อยู่ติดกับบล็อกที่ 1
A _a	คือ สัดส่วนของขนาดรูปลิ่ม
α	คือ ความเร่งเนื่องจากการระเบิด
B _b	คือ สัดส่วนของขนาดรูปลิ่ม
β	คือ มุมลาดเอียง หรือมุมเอียงหน้าตัดความลาด
С	คือ ค่าโคอี <mark>ชันของระนาบ</mark>
C _A	คือ ค่าโคอีชันในระนาบ A
C _B	คือ ค่าโคฮีชันในระนาบ B
$C(u_0, u_0)$	คือ ค่าความแปรปรวนของ $y(u)$
Δx	คือ ความกว้างของมวลหินที่เกิดการพังทลายแบบคะมำ
F.S.	คือ ตัวประกอบสัมประสิทธ์ความปลอดภัย
γ	คือ หน่วยน้ำหนักของหิน
Υw	คือ หน่วยน้ำหนักของน้ำ
γ(h)	คือ แวริโอแกรม
$ar{\gamma}(v_{lpha},v_{eta})$	คือ ค่าเฉลี่ยของแวริโอแกรม($\gamma(\mathbf{h})$) ของตัวอย่าง
Н	คือ ความสูงขั้นบันได

_		o v	2	9	a	
P P	า แรงกระว	ทาด้า	นข้าวงข	เคงมวลหน	ทเ	n
'n ''						

- P_{n-1} คือ แรงกระทำด้านข้างของมวลหินที่ n-1
- Ø คือ มุมเสียดทานของมวลหิน
- Ø_A คือ มุมเสียดทานในระนาบ A
- Ø_B คือ มุมเสียดทานในระนาบ B
- ψ_p คือ มุมเทของระนาบ
- ψ_{f} คือ ความชั่นของผนังบ่อเหมือง
- ψ_A คือ มุมเทของระนาบ A
- ψ_B คือ มุมเทของระนาบ B
- ψ₅ คือ มุมเทของระนาบ 5
- Q คือ แรงกระทำตั้งฉ<mark>ากของมวลหินที่ n</mark>
- K, คือ ระยะที่เกิดแรงปฏิกิริยาที่ฐานของมวลหินที่ n
- L, คือ ระยะที่เกิดแรงกระทำด้านข้างของมวลหินที่ n-1
- M_n คือ ระยะที่เกิดแรงกระทำด้านข้างของมวลหินที่ n
- $m(u_0)$ คือ ค่าคาดหวังที่สุ่มตัวแปร y(u)
- n คือ ข้อมูลปฐมภูมิ
- N คือ ข้อมูลที่ถูกประเมินก่อนหน้า
- R_n คือ แรงปฏิกิริยาที่ฐานของมวลหินที่ n
- S คือ ระยะความกว้างของชั้นหินในชั้นหินกลุ่ม A
- S_b คือ ระยะความกว้างของชั้นหินในชั้นหินกลุ่ม B

σ_{SK}	คือ ค่าความแปรปรวนของค่าที่ถูกประเมินด้วยระบบคริ๊กกิ้ง
θ_{13}	คือ มุมระหว่างระนาบ 1 และ 3
$\theta_{na.nb}$	คือ มุมที่ตั้งฉากระหว่างระนาบ A และ B
θ_{2na}	คือ มุมระหว่างระนาบ 2 กับมุมตั้งฉากกับระนาบ A
U	คือ ค่าแรงยกตัว
V	คือ ค่าแรงผลักของน้ำ
(v_{α}, V)	คือ ค่าเฉลี่ยของแวริโอแกรม ($\gamma({ m h})$) ของตัวอย่าง (v_lpha,V)
W	คือ น้ำหนัก <mark>ของมวลสาร</mark>
Wα	คือ ค่าน้ำหนักการประเมิน
Х	คือ สัดส่วนของขนาดรูปลิ่ม
Y _n	คือ ขนาดของ <mark>มวลหินบล็อก n</mark>
\mathcal{Y}_{α}	คือ ข้อมูลที่เปลี่ยนให้เป็นการกระจายตัวแบบปรกติ
$y(u_0)$	คือ ค่าที่ถูกประเมิน
$[y(u_0)]^\circ$ SK	คือ ค่าเฉลี่ยของค่าที่ถูกประเมินด้วยระบบคริ๊กกิ้ง
Z	คือ ความสูงแนวดิ่งของรอยร้าวที่อยู่ในความลาด
Z _i	คือ ตัวแปรสุ่ม
Z _w	คือ ความสูงแนวดิ่งของระดีบน้ำในรอยร้าวที่อยู่ในความลาด

บทที่ 1 บทนำ

1.1ความเป็นมาของปัญหา

การพังทลายของบ่อเหมือง เป็นปัญหาที่สำคัญของการทำเหมืองแร่ที่เกิดขึ้นบ่อยครั้งมา ตั้งแต่อดีตจนถึงปัจจุบัน เนื่องจากการพังทลายของบ่อเหมืองมักส่งผลโดยตรงกับสิ่งแวดล้อม ค่าใช้จ่าย และความปลอดภัยของการทำเหมืองแร่ ดังนั้นจึงได้นำการวิเคราะห์เสถียรภาพความ ลาดมาใช้กับงานวิศวกรรมเหมืองแร่เพื่อประเมินความปลอดภัยความลาดของบ่อเหมือง ซึ่งการ ประเมินเสถียรภาพความลาดของบ่อเหมืองเพื่อช่วยทำให้เกิดความมั่นใจในการปฏิบัติงานในบ่อ เหมือง อีกทั้งยังป้องกันผลกระทบต่อสิ่งแวดล้อมกับบริเวณข้างเคียงของเหมืองแร่เมื่อบ่อเหมือง เกิดการพังทลาย

การประเมินเสถียรภาพความลาดของบ่อเหมืองมักจะใช้ดัชนีค่าสัมประสิทธ์ความ ปลอดภัย (F.S.) โดยค่าสัมประสิทธ์ความปลอดภัยมากกว่าหนึ่งนั้นถือว่าความลาดของมวลหินมี เสถียรภาพ โดยสูตรคำนวณค่าสัมประสิทธ์ความปลอดภัยนั้นได้รวมคุณสมบัติวัสดุทางธรรมชาติ ลักษณะรูปทรงเลขาคณิตของความลาดของบ่อเหมือง และโครงสร้างมวลหินที่เกิดในธรรมชาติ ซึ่ง สามารถคำนวณได้หลายวิธีการ เช่น การวิเคราะห์เชิงกำหนด (Deterministic Analysis) การ วิเคราะห์วิธีจลนศาสตร์ (Kinematic Analysis) และการวิเคราะห์ไฟไนต์อิลิเมนต์ (Finite Element Analysis) เป็นต้น เพื่อที่จะจำลองลักษณะทางธรรมชาติของมวลหินในหน้างานให้มีความ ใกล้เคียงกับธรรมชาติมากที่สุด ส่งผลให้ค่าสัมประสิทธ์ความปลอดภัยที่คำนวณได้มีความ น่าเชื่อถือ และสามารถนำผลวิเคราะห์ไปใช้วางแผนเสถียรภาพความลาดของบ่อเหมืองได้อย่าง เหมาะสม

ในการวิเคราะห์เสถียรภาพความลาดของบ่อเหมืองทั้งบ่อเพื่อหาโอกาสการพังทลายของ ความลาดของบ่อเหมือง มักจะเป็นงานที่มีค่าใช้จ่ายสูง เนื่องจากทั้งการเก็บข้อมูล การทดสอบเพื่อ หาคุณสมบัติวัสดุทางธรรมชาติ เช่น ค่าโคฮีชั่นซึ่งเป็นแรงยึดเหนี่ยวระหว่างมวลสาร และลักษณะ ของโครงสร้างมวลหินที่เกิดในธรรมชาติ เช่น ประเภทแนวแตกของโครงสร้างมวลหินโดยเฉพาะ โครงสร้างมวลหินเหล่านี้ล้วนมักจะมีความไม่แน่นอน และยังต้องตรวจสอบความลาดของบ่อ เหมืองหลายหน้างาน จึงจำต้องทำการทดสอบในห้องปฏิบัติการหลายครั้ง เพื่อให้ได้ข้อมูลที่มี
 ความน่าเชื่อถือ และสามารถใช้ผลทดสอบเป็นข้อมูลประกอบในการหาตัวประกอบค่าสัมประสิทธ์
 ความปลอดภัยได้เหมาะสม

นอกจากปัญหาความไม่แน่นอนของคุณสมบัติวัสดุทางธรรมชาติ และลักษณะของ โครงสร้างมวลหินในการวิเคราะห์เสถียรภาพความลาดของบ่อเหมืองทั้งเหมืองแล้ว ยังมีปัญหา เรื่องข้อมูลที่จะใช้วิเคราะห์เสถียรภาพความลาดซึ่งมีเป็นจำนวนมาก ทำให้ยากต่อการจัดการ ข้อมูล และอาจจะมีปัญหาในการแสดงผลเพื่อวางแผนและติดตามแก่ผู้ที่ปฏิบัติการแก้ปัญหา เสถียรภาพความลาดของบ่อเหมืองก็เป็นได้

งานวิจัยชิ้นนี้ให้ผลลัพธ์เป็นแผนที่ความเสี่ยงต่อการพังทลายของมวลหิน ซึ่งมาจากการ วิเคราะห์เสถียรภาพความลาดเชิงความน่าจะเป็น (Probabilistic Slope Analysis) และการ วิเคราะห์โดยวิธีนี้ได้นำเอาความไม่แน่นอนของลักษณะโครงสร้างของมวลหินจากแบบจำลองทาง ธรณีสถิติแบบเกาส์เชียนมาประกอบการวิเคราะห์เพื่อประเมินโอกาสการพังทลาย (Probability of Failure) และ สามารถนำไปสู่การกำหนดบริเวณที่มีเสถียรภาพต่ำของบ่อเหมืองเพื่อติดตามและ แก้ไขต่อไป

1.2 จุดประสงค์ของง<mark>านวิจัย</mark>

1.2.1 หาโอกาสการพังทลายด้วยรูปแบบต่างๆของบ่อเหมืองด้วยการวิเคราะห์เสถียรภาพ ความลาดของมวลหินเชิงความน่าจะเป็น

1.2.2 ระบุพื้นที่เสี่ยงต่อการเกิดพังทลายรูปแบบต่างๆ ของบ่อเหมืองด้วยการวิเคราะห์ เสถียรภาพความลาดของมวลหินเชิงความน่าจะเป็น

1.3 ขอบเขตของโครงการ

 1.3.1 การเลือกพื้นที่วิเคราะห์เสถียรภาพความลาดของการพังทลายของมวลหิน จะได้ จากการตรวจสอบเชิงธรณีวิทยาพื้นที่บ่อเหมือง และแผนที่การกระจายตัวของลักษณะของ โครงสร้างมวลหิน 1.3.2 การวิเคราะห์เสถียรภาพความลาดของมวลหินวิธีจลนศาสตร์ มีการวิเคราะห์ด้วย รูปแบบการพังทลายของมวลหินสามรูปแบบ คือ การพังทลายแบบระนาบ การพังทลายมวลหินรูป ลิ่ม และ การพังทลายมวลหินแบบคะมำ

1.3.3 การวิเคราะห์เสถียรภาพความลาดของมวลหินเชิงกำหนด มีการวิเคราะห์ด้วย รูปแบบการพังทลายของมวลหินสามรูปแบบ คือ การพังทลายแบบระนาบ การพังทลายมวลหินรูป ลิ่ม และ การพังทลายมวลหินแบบคะมำ

1.3.4 การวิเคราะห์เสถียรภาพความลาดของมวลหินเชิงความน่าจะเป็น มีการวิเคราะห์ ด้วยรูปแบบการพังทลายของมวลหินสองรูปแบบ คือ การพังทลายแบบระนาบ และ การพังทลาย มวลหินรูปลิ่ม โดยมีสองขั้นตอนหลัก คือ

1.3.4.1 การสร้างแบบจำลองด้วยธรณีสถิติ โดยการสร้างแบบจำลองของ โครงสร้างมวลหินโดยใช้ค่ามุมเท และการวางตัวแนวหินซึ่งถูกวิเคราะห์ด้วยการจำลองทางธรณี สถิติเพื่อสร้างแผนที่การกระจายตัวของลักษณะของโครงสร้างมวลหิน

1.3.4.2 การวิเคราะห์เสถียรภาพความลาดของมวลหินเชิงความน่าจะเป็น โดย การนำมุมเท และการวางตัวชั้นหินที่ถูกจำลองโดยวิธีธรณีสถิติมาคำนวณในแบบจำลองของการ พังทลายแบบระนาบ และการพังทลายมวลหินรูปลิ่ม เพื่อหาโอกาสการพังทลายในแต่ละรูปแบบ และ แผนที่การพังทลาย

1.3.5 การวิจัยนี้ใช้พื้นที่หน้าเหมืองปัจจุบันของเหมืองหินปูนเขาวง บริษัท ปูนซิเมนต์ไทย จำกัด (ท่าหลวง)

1.4 ประโยชน์ที่คาดว่าจะได้รับ

1.4.1 สามารถระบุพื้นที่เสี่ยงต่อการเกิดพังทลายรูปแบบต่างๆของบ่อเหมือง ด้วยการ วิเคราะห์เสถียรภาพความลาดของมวลหินเชิงความน่าจะเป็น

1.4.2 สามารถหาโอกาสการพังทลายด้วยรูปแบบต่างๆของพื้นที่ที่มีโอกาสเสี่ยง ด้วยการ วิเคราะห์เสถียรภาพความลาดของมวลหินเชิงความน่าจะเป็น

1.4.3 สามารถใช้ข้อมูลจากการวิเคราะห์เสถียรภาพความลาดของมวลหินเชิงความน่าจะเป็นใช้ในการจัดการปัญหาพื้นที่เสี่ยงเหล่านั้นได้อย่างมีประสิทธิ์ภาพมากขึ้น

บทที่ 2

ทบทวนวรรณกรรม และ งานวิจัยที่เกี่ยวข้อง

2.1 การวิเคราะห์เสถียรภาพความลาดแบบจลนศาสตร์ (Kinematic Analysis)

Hoek and Bray (1981) ได้นำเสนอการวิเคราะห์เสถียรภาพความลาดของมวลหินแบบ จลนศาสตร์ โดยแสดงความสัมพันธ์ระหว่างรูปแบบการพังทลาย ซึ่งจัดแบ่งไว้ 4 รูปแบบคือ การ พังทลายแบบวงกลม การพังทลายแบบระนาบ การพังทลายแบบรูปลิ่ม และ การพังทลายแบบ คะมำ กับข้อมูลโครงสร้างชั้นหินที่มี มุมเทชั้นหิน (dip angle) และเส้นระดับ (strike line) ที่ฉายลง ในสเตริโอกราฟ ดังแสดงตามรูปที่ 2.1

รูปที่ 2.1 รูปแบบการพังทลาย กับ ข้อมูลโครงสร้างชั้นหินที่ฉายลงในสเตริโอกราฟ (Hoek and Bray, 1981)

2.2 การวิเคราะห์เสถียรภาพเชิงกำหนด (Deterministic Analysis)

การหาเสถียรภาพความลาดด้วยวิธีเซิงกำหนด นิยมระบุเป็นดัชนีเชิงเสถียรภาพของ ตัวเลขไร้มิติที่มีชื่อเรียกทั่วไปว่า ค่าสัมประสิทธ์ความปลอดภัย (Factor of safety, F.S.) ทั้งนี้ค่า ตัวเลขสัมประสิทธ์ความปลอดภัยเท่ากับ 1.0 แสดงว่ามวลสารที่ตัดเป็นความลาดอยู่ตรงตำแหน่ง ขอบต่อเนื่อง (boundary) ระหว่างความมีเสถียรภาพกับความไม่มีเสถียรภาพ หรือกล่าวอีกนัย หนึ่งค่าตัวเลขสัมประสิทธ์ความปลอดภัยเท่ากับ 1.0 แสดงว่ามวลสารอยู่ในภาวะสมดูลพอดี

ในงานก่อสร้างที่มีโครงสร้างเป็นมวลสารเปราะที่เป็นดินหรือหิน ควรมีเกณฑ์เปื้องต้น เกี่ยวกับการกำหนดค่าสัมประสิทธ์ความปลอดภัยต่ำสุด เมื่อโครงสร้างมวลสารมีการใช้งานเป็น ความลาด จึงต้องมีการกำหนดค่าสัมประสิทธ์ความปลอดภัยในสภาวะต่างๆ เช่น ขนาดโครงสร้าง ของมวลสาร อายุการใช้งาน สภาพที่เกิดในขณะมีการใช้งาน หรือก่อนและหลังการใช้งาน โดย สรุปได้ในตารางที่ 2.1

Type of slopes	Required factor of Safety	
and Foundation	Short-term	Long-Term
	Stability	Stability
Slope of dams, levees, dike, and other	1.3	1.5
rock excavation or earthwork		
Earth retaining, supporting soil (rock)	1.5	2.0
structures		
Soil and rock foundations	2.0	3.0
Underground openings	4.0	8.0

ตารางที่ 2.1 เกณฑ์การพิจารณาค่าสัมประสิทธ์ความปลอดภัย หรือค่า Factor of Safety กรณีปกติ ใช้เฉพาะค่าตัวเลขดัชนีเป็นตัวแปรหลักในการตัดสินใจ (สง่า ตั้งชวาล, 2552)

การวิเคราะห์เสถียรภาพเชิงกำหนดจำแนกได้ตามรูปแบบของการพังทลาย 3 รูปแบบ คือ การพังทลายแบบระนาบ (Plane Failure Analysis) การพังทลายรูปลิ่ม (Wedge Failure Analysis) และการพังทะลายแบบคะมำ (Toppling Failure Analysis) ดังมีรายละเอียดต่อไปนี้ 2.2.1 การวิเคราะห์เสถียรภาพการพังทลายแบบระนาบ (Plane Failure Analysis) การพังทลายแบบระนาบเกิดจากการตัดความลาดในมวลหินที่สัมพันธ์กับระนาบการ วางตัวของชั้นหิน (Bedding Plane) การตัดความลาดในมวลหิน สามารถที่จะกำหนดระยะความ ยาวของหน้าความลาดได้ โดยระบุเป็นมุมความลาดที่มีค่าจำกัดหรือวัดได้ หรืออาจจะระบุเป็นสัม ประสิทธ์ในแนวราบต่อแนวดิ่งก็ได้ การวิเคราะห์ผลลัพธ์เชิงเสถียรภาพต้องหาโอกาสการพังทลาย ของมวลหินที่วางตัวบนระนาบเปราะบาง โดยระนาบเปราะบางอาจจะเป็นระนาบชั้นหินที่การ เกาะเกี่ยวของอนุภาคระหว่างชั้นหินส่วนบนของหินตะกอนชนิดหนึ่งกับหินส่วนล่างของหินตะกอน อีกชั้นหนึ่ง เมื่อมีแรงยึดเกาะกันไม่ดีพอจนไม่สามารถต้านแรงเฉือนตามแนวเปราะบางได้ จะทำให้ เกิดการไหลเลื่อนได้ง่ายขึ้น นอกจากระนาบชั้นหินที่สามารถทำให้เกิดการพังทลายได้แล้ว ยัง รวมถึง แนวแตก รอยร้าวเล็กๆ หรือ รอยเลื่อนอีกด้วย

จากรูปที่ 2.2 สามารถใช้นิยามของค่าสัมประสิทธ์ความปลอดภัยมาวิเคราะห์หาผลลัพธ์ ของความลาดทั่วไปได้ตามสมการดังนี้

$$F.S. = \frac{cA + [W(\cos\psi_p - \alpha\sin\psi_p) - U - (V\sin\psi_p)]\tan\emptyset}{W(\sin\psi_p + \alpha\sin\psi_p) + (V\cos\psi_p)}$$
(2.1)

กำหนดให้

c คือ ค่าโคฮีชันของระนาบ W คือ น้ำหนักของมวลสาร ψ_p คือ มุมเทของระนาบ และ
 Ø คือ มุมเสียดทานของมวลหิน โดยจากค่าความสัมพันธ์เชิงเรขาคณิตของภาพตัดขวางของ
 การพังทลายแบบระนาบสำหรับความลาดทั่วไปที่มีแรงดันน้ำเกี่ยวข้อง จะได้ค่าระยะความยาว
 ระนาบการพังทลาย (A) ค่าแรงยกตัว (U) ค่าแรงผลักของน้ำ (V) และ ค่าความสูงของรอยแตก
 เป็นสมการย่อยดังนี้

$$\mathbf{A} = (\mathbf{H} - \mathbf{z})\mathbf{cosec}\psi_{\mathbf{p}} \tag{2.2}$$

$$U = \frac{1}{2} \gamma_{w} Z_{w} (H - Z) cosec \psi_{p}$$
(2.3)

$$\mathbf{V} = \frac{1}{2} \gamma_{\mathbf{w}} (\mathbf{Z}_{\mathbf{w}})^2 \tag{2.4}$$

$$Z = H \left(1 - \sqrt{\cot \psi_{f} \cdot \tan \psi_{p}} \right)$$
(2.5)

ในกรณีที่รอยร้าวเกิดจากแรงดึงที่เกิดจากด้านบนของความลาด หาค่าน้ำหนักของมวล สารที่มีโอกาสไถลเลื่อนตามแนวระนาบหาได้จาก

$$W = \frac{1}{2}\gamma H^{2}\left[\left\{1 - \frac{Z^{2}}{H^{2}}\right\} \cdot \left(\cot\psi_{p}\right) - \left(\cot\psi_{f}\right)\right]$$
(2.6)

ในกรณีที่รอยร้าวเกิดจากแรงดึงที่เกิดจากด้านบนของความลาดที่ตัดเอียง หาค่าน้ำหนัก ของมวลสารที่มีโอกาสไถลเลื่อนตามแนวระนาบหาได้จาก

$$W = \frac{1}{2}\gamma H^{2}\left[\left\{1 - \frac{Z}{H}\right\}^{2} \cdot \left(\cot\psi_{p}\right) - \left(\cot\psi_{f}\right)\right]$$
(2.7)

2.2.2 การวิเคราะห์เสถียรภาพการพังทลายรูปลิ่ม (Wedge Failure Analysis) การพังทลายรูปลิ่มเกิดจากความไม่ต่อเนื่องของมวลหินสองระนาบที่มาตัดกันบนความ ลาด ทำให้เกิดเส้นตัดโดยมวลหินที่เกิดการพังทลายรูปลิ่มจะไถลออกจากความลาดในทิศทางที่ เส้นตัดนั้น การเกิดการพังทลายรูปลิ่มโดยทั่วไปจะเกิดได้ตามรูปที่ 2.3 โดยการวิเคราะห์แบบเชิง กำหนดของการพังทลายรูปลิ่มจะวิเคราะห์ได้จากคำนวณสัมประสิทธ์ความปลอดภัย โดยสามารถ คำนวณได้ตามสมการที่ 2.8 (Hoek, Bray and Boyd, 1973)

รูปที่ 2.3 การพังทลายรูปลิ่ม (Hoek and Bray, 1981)

$$F.S. = \frac{3}{\gamma_{R}H} (C_{A} + C_{B}Y) + \left(Aa - \frac{\gamma_{W}}{2\gamma_{R}}X\right) \tan \phi_{A} + \left(Bb - \frac{\gamma_{W}}{2\gamma_{R}}Y\right) \tan \phi_{B}$$
(2.8)

โดยกำหนดให้

 C_A และ C_B
 คือ ค่าโคอีชันในระนาบ A และ B

 Ø_Aและ Ø_B
 คือ มุมเสียดทานในระนาบ A และ B

 γ
 คือ หน่วยน้ำหนักของหิน

 Yw
 คือ หน่วยน้ำหนักของน้ำ

 H
 คือ ความสูงขั้นบันได

X, Y, A, และ B, คือ สัดส่วนของขนาดรูปลิ่ม ตามสมการที่ 2.9, 2.10, 2.11, 2.12

$$X = \frac{\sin \theta_{24}}{\sin \theta_{45} \cdot \cos \theta_{2na}} \tag{2.9}$$

$$Y = \frac{\sin\theta_{13}}{\sin\theta_{35}(\cos\theta_{1.nb})}$$
(2.10)

$$A_{a} = \frac{\{\cos\psi_{A} - \cos\psi_{B}(\cos\theta_{na.nb})\}}{\sin\psi_{5}(\sin^{2}\theta_{na.nb})}$$
(2.11)

$$B_{b} = \frac{\{\cos\psi_{B} - \cos\psi_{A}(\cos\theta_{na.nb})\}}{\sin\psi_{5}(\sin^{2}\theta_{na.nb})}$$
(2.12)

โดยที่กำหนดให้

ψ_A ແລະ ψ_B	คือ มุมเทของระนาบ A และ B
ψ_5	คือ มุมเทของระนาบหมายเลข 5
θ _{na.nb}	คือ มุมที่ตั้งฉากระหว่างระนาบ A และ B
θ_{13}	คือ มุมที่ตั้งฉากระหว่างระนาบ 1 และ 3

2.2.3 การวิเคราะห์เสถียรภาพการพังทลายแบบคะมำ (Toppling Failure Analysis)

การพังทลายแบบคะมำเกิดจากการตัดความลาดในมวลหินที่มีความไม่ต่อเนื่องจึงทำให้ มวลหินถูกแบ่งเป็นมวลย่อยๆหลายก้อน (Block) การวิเคราะห์แบบเชิงกำหนดของการพังทลาย แบบคะมำ จะอาศัยการแบ่งมวลของมวลใหญ่ออกเป็นมวลย่อยๆ นำแรงที่มวลแต่ละก้อนกระทำ ต่อกัน และแรงที่ผนังฐานกระทำกับมวลย่อยๆแต่ละก้อนนำมาใช้ในการคำนวณ โดยรูปแบบการ แบ่งมวลใหญ่เป็นมวลย่อยๆ โดยใช้ตัวแปร และเงื่อนไขต่างๆที่จะนำมาใช้ในการคำนวณจะเป็นไป ตามรูปที่ 2.4 และการวิเคราะห์การพังทลายแบบคะมำ จะมีการแบ่งลักษณะการเคลื่อนตัวของ มวลหินอยู่ 3 ลักษณะ คือ มวลหินมีเสถียรภาพ มวลหินมีการไถลเลื่อน และ มวลหินมีการคะมำ โดยการวิเคราะห์การพังทลายมวลหินที่มีการคะมำดังแสดงรูปที่ 2.5

รูปที่ 2.4 รูปแบบการพังทลายแบบคะมำ (Scavia, 1990)

รูปที่ 2.5 การวิเคราะห์แบบคะมำ (Hoek and Bray, 1981)

การวิเคราะห์การพังทลายของมวลหินในแต่ละบล็อกเป็นแบบการคะมำนั้น จะต้อง คำนวณหาค่า P_{n-1} ตามสมการที่ 2.13 ซึ่งเป็นตัวบ่งชี้ว่ามีแรงดันเพื่อให้บล็อกหินเลื่อนขึ้นด้านบน ตามรูปที่ 2.5b การวิเคราะห์การพังทลายของมวลหินในแต่ละบล็อกเป็นแบบการไถลนั้นจะต้อง คำนวณหาค่า P_{n-1} ตามสมการที่ 2.14 ซึ่งเป็นตัวบ่งชี้ว่ามีแรงดันให้มวลหินไถลมากกว่าแรงดันต้าน การไถล ตามรูปที่ 2.5c และมวลหินในบล็อกที่มีเสถียรภาพค่า P_{n-1} จะมีค่าเท่ากับ 0

$$P_{n-1} = \frac{P_n(M_n - \Delta x \cdot \tan \phi) + (W_n/2)(y_n \cdot \sin \alpha - \Delta x \cdot \cos \alpha)}{L_n}$$
(2.13)

$$P_{n-1} = P_n - \frac{W_n(\tan\phi\cos\alpha - \sin\alpha)}{1 - \tan^2\phi}$$
(2.14)

การคำนวณค่าสัมประสิทธ์ความปลอดภัยของแต่ละบล็อกสามารถคำนวณได้จากสมการ ที่ 2.15 โดยค่าสัมประสิทธ์ความปลอดภัยมาจาก ค่ามุมที่เกิดการไถลในแต่ละบล็อก และ ค่ามุม เสียดทานที่ทำเกิดเสถียรภาพ

$$F. S._{toppling} = \frac{Tan \phi_{avilable}}{Tan \phi_{required}}$$
(2.15)

2.3 ธรณีสถิติ

2.3.1 หลักการของธรณีสถิติ

วิชาธรณีสถิติได้เริ่มต้นขึ้นมาจากการศึกษาโดย Krige (1951) และ Matheron (1955) ซึ่ง ได้พยายามปรับปรุงการคำนวณปริมาณสำรองแร่ทองคำในการทำเหมืองแร่ให้มีความถูกต้องมาก ขึ้น ต่อมา Matheron (1971) ได้พัฒนาวิธีการดังกล่าวขึ้น โดยนำเสนอทฤษฎีตัวแปรภูมิภาค ซึ่ง เป็นทฤษฎีทางคณิตศาสตร์ที่ไม่เพียงแต่สรุปเกี่ยวกับตัวแปรจากพื้นฐานทางสถิติของข้อมูลเท่านั้น แต่ยังคำนึงถึงขนาดและตำแหน่งในมิติของข้อมูลตัวอย่างที่เก็บมาด้วย โดยมีสมมุติฐานว่าตัวแปร ทางธรณีวิทยาจะถูกกำหนดด้วยตำแหน่ง และขนาดของตัวอย่าง หรือขอบเขตที่แต่ละตัวอย่างมี อิทธิพลต่อกัน

การศึกษาตัวแปรภูมิภาคจะกระทำจากการเก็บตัวอย่างในสนาม และนำมาเป็นตัวแทน เพื่อใช้อธิบายภาพลักษณ์ที่แท้จริงของประชากร แต่ตัวแปรภูมิภาคจะมีประชากรจำนวนมาก และ ไม่ทราบค่าที่แท้จริงเป็นส่วนใหญ่ การศึกษาทางสถิติพื้นฐานจึงมีความจำเป็นเบื้องต้นในการ วิเคราะห์ลักษณะการแจกแจงของข้อมูล เพื่อดูความจำเป็นในการเปลี่ยนรูปแบบของข้อมูลให้ เหมาะสมก่อน นอกจากนี้ในการวัดความต่อเนื่องของตัวแปร แวริโอแกรมได้ผนวกพารามิเตอร์ทาง สถิติ เช่น ค่าเฉลี่ย ค่าความแปรปรวน สัมประสิทธิ์ของสหสัมพันธ์ และความแปรปรวนร่วมเอาไว้ ด้วยจึงทำให้จำเป็นต้องศึกษาลักษณะพื้นฐานทางสถิติของข้อมูลก่อนที่จะนำมาทำธรณีสถิติ

การประเมินค่าตัวแปรด้วยวิธีการคริกกิ้ง (Kriging) ได้ถูกพิสูจน์ทางคณิตศาสตร์ว่าเป็นตัว ประเมินที่เที่ยงตรง และให้วาเรียนซ์หรือความผิดพลาดในการประเมินต่ำที่สุด ซึ่งวาเรียนซ์ของการ ประเมินนี้มีคุณค่าในการกำหนดคุณภาพของสิ่งที่คำนวณได้ และสามารถนำไปใช้คำนวณความ น่าจะเป็นและขอบเขตความเชื่อมั่นของค่าที่คาดหมายไว้

2.3.2 แวริโอแกรม

แวริโอแกรม (Variogram) คือฟังก์ชันทางคณิตศาสตร์ที่แสดงความแปรปรวนของตัวแปรที่ มีค่าเกี่ยวข้องกับตำแหน่งที่อยู่ หรืออีกนัยหนึ่งแสดงความสัมพันธ์ระหว่างค่าความแปรปรวนกับ ระยะทางและทิศทาง

2.3.2.1 การสร้างแวริโอแกรม

แวริโอแกรมที่สร้างจะต้องกำหนดพารามิเตอร์พื้นฐาน ได้แก่ ค่ามุมทิศทาง (Direction) ค่าระยะห่างระหว่างข้อมูล (Lag) จำนวนค่าระยะห่างระหว่างข้อมูล (Number of lags) ระยะขนาด (Bandwidth) และ มุมเบนแบน (Tolerance Angle) ตามรูปที่ 2.7 การสร้างแวริ โอแกรมสำหรับการใช้งานจริงนั้นเริ่มจากการสร้าง แวริโอแกรมทดลอง (Experimental variogram) ซึ่งเป็นพังก์ชันไม่ต่อเนื่องจึงต้องมีการจำลองให้มีความสัมพันธ์เชิงคณิตศาสตร์มา อธิบายแวริโอแกรมทดลองได้นั้นๆ

จุฬาลงกรณมหาวทยาลย

รูปที่ 2.6 พารามิเตอร์ในก<mark>ารค้นหาคู่ของตัวอ</mark>ย่างสำหรับคำนวณแวริโอแกรม

(พันธ์ลพ หัตถโกศล, 2540)

รูปที่ 2.7 แวริโอแกรมจากการทดลองได้ และ การจำลองแวริโอแกรม

(พันธ์ลพ หัตถโกศล, 2540)

2.3.2.2 องค์ประกอบแวริโอแกรม

แวริโอแกรมจะประกอบไปด้วย ระยะอิทธิพล (Range) ค่าของความแปรปรวน คงที่ (Sill) และความแปรปรวนนักเก็ต (Nugget Variance) โดย ระยะอิทธิพลคือ ระยะขอบเขต ของความสัมพันธ์ของข้อมูล โดยข้อมูลที่อยู่ใกล้กันจะมีความสัมพันธ์มากกว่าข้อมูลที่ไกลออกไป เมื่อห่างเกินกว่าระยะหนึ่งก็จะไม่มีความสัมพันธ์อีกต่อไป ค่าของความแปรปรวนคงที่คือ เมื่อ ระยะห่างมากกว่าระยะอิทธิพลข้อมูลจะไม่มีความสัมพันธ์กัน และความแปรปรวนนักเก็ตคือ ค่าคงที่เกิดจากความผิดพลาดในการเก็บข้อมูลหรือ ระยะห่างระหว่างข้อมูล โดยองค์ประกอบ ทั้งหมดดังแสดงในรูปที่ 2.8

รูปที่ 2.8 รูปแบบแวริโอแกรมทั่วไป (พันธ์ลพ หัตถโกศล, 2540)

2.3.3 การประเมินแบบคริกกิ้ง (Krigging Estimation)

วิธีการประเมินแบบคริกกิ้งเป็นเครื่องมือทางธรณีสถิติในการประเมินค่าของบล็อกโดย อาศัยค่าสังเกตของตัวอย่างที่อยู่รอบๆบล็อก คริกกิ้งเป็นวิธีประเมินเชิงเส้นตรงที่ไม่ลำเอียงและให้ ค่าวาเรียนซ์ของการประเมินหรือความผิดพลาดในการประเมินน้อยที่สุด โดยทั่วไปจะใช้เขียนใน รูปเป็นสมการที่ 2.16 ได้ดังนี้

$$\sum_{\alpha=1}^{n} \left[w_{\alpha} \bar{\gamma} \left(v_{\alpha}, v_{\beta} \right) \right] + u = \bar{\gamma} \left(v_{\alpha}, V \right); i = 1, 2, \dots, n$$
(2.16)

$$\sum_{\alpha=1}^{n} w_{\alpha} = 1 \tag{2.17}$$

กำหนดให้ w_{α} คือ ค่าน้ำหนักการประเมิน $\bar{\gamma}(v_{\alpha},v_{\beta})$ คือ ค่าเฉลี่ยของแวริโอแกรม ($\gamma(h)$) ของระหว่างตัวอย่าง (v_{α},v_{β}) $\bar{\gamma}(v_{\alpha},V)$ คือ ค่าเฉลี่ยของแวริโอแกรม ($\gamma(h)$) ของ ระหว่างตัวอย่างกับบล็อกที่ทำการประเมิน (v_{α},V)

2.3.4 การจำลองธรณีสถิติแบบเกาซ์เซียน (Sequential Gaussian Simulation) แบบจำลองธรณีสถิติแบบเกาซ์เซียนคือ การใช้ฟังก์ชันการแจกแจงสะสมแบบมีเงื่อนไข (Conditional cumulative distribution function, CCDF) มาสร้างแบบจำลอง (Realization) ที่ สามารถเดาค่าในบล็อกที่ไม่รู้ค่าได้หลายแบบจำลองที่แตกต่างกัน โดยใช้สมการที่ 2.18 เป็นการ

อธิบายจำลองธรณีสถิติแบบเกาซ์เซียน โดยการประเมินค่าในบล็อกครั้งแรกด้วยตัวแปรสุ่ม (Z_i) ที่ มีเงื่อนไขของข้อมูลปฐมภูมิ (n) และการประเมินครั้งครั้งต่อไปจะประเมินค่าในบล็อกนั้นด้วยตัว แปรสุ่มที่มีเงื่อนไขของข้อมูลปฐมภูมิ และข้อมูลที่ถูกประเมินมาก่อน (*N*)

$$F \{Z_1 \leq z_1 \mid n\}$$
$$F \{Z_n \leq z_n \mid n+1\}$$

$$F \{Z_n \le z_n \mid n+N-1\}$$
 (2.18)

กำหนดให้ Z_i คือ ตัวแปรสุ่ม, z_i คือ ค่าประมาณการที่ Z_i n คือ ข้อมูลปฐมภูมิ และ N คือ ข้อมูลที่ถูกประเมินมาก่อน

การประเมินค่าในแต่ละครั้งจะใช้ตัวแปรสุ่ม สุ่มค่าในฟังก์ชันการแจกแจงสะสมแบบมี เงื่อนไขที่มีการแจกแจงปรกติ โดยฟังก์ชันการแจกแจงสะสมแบบมีเงื่อนไขจะได้จากการคำนวณ ค่าเฉลี่ยและความแปรปรวนด้วยระบบคริ๊กกิ้ง ตามสมการที่ 2.19 และ 2.20

$$[y(u_0)]^{\circ}SK = m(u_0) + \sum_{\alpha=1}^{N} w_{\alpha}[y_{\alpha} - m(u_{\alpha})]$$
(2.19)

กำหนดให้ $[y(u_0)]^\circ$ SK คือ ค่าเฉลี่ยของค่าที่ถูกประเมินด้วยระบบคริ๊กกิ้ง $y(u_0)$ คือ ค่าที่ถูกประเมิน $m(u_0)$ คือ ค่าคาดหวังที่สุ่มตัวแปร $y(u) w_{\alpha}$ คือ ค่าน้ำหนักการประเมินด้วย ระบบคริ๊กกิ้งและ y_{α} คือ ข้อมูลที่เปลี่ยนให้เป็นการกระจายตัวแบบปรกติ

$$\sigma_{SK}^{2} = C(u_{0}, u_{0}) - \sum_{\alpha=1}^{N} w_{\alpha} C(u_{0}, u_{\alpha})$$
(2.20)

กำหนดให้ σ_{SK} คือ ค่าความแปรปรวนของค่าที่ถูกประเมินด้วยระบบคริ๊กกิ้ง C(u₀,u₀) คือ ค่าความแปรปรวนของระหว่างจุดที่ทำการประเมิน C(u₀,u₀) คือ ค่าความแปรปรวนของ ระหว่างจุดที่ทำการประเมินกับตัวอย่างที่ใช้ในการประเมินและ w_α คือ ค่าน้ำหนักการประเมิน ด้วยระบบคริ๊กกิ้ง

การดำเนินการการจำลองธรณีสถิติแบบเกาซ์เซียน ดำเนินการโดยการนำข้อมูลปฐมภูมิ มาเปลี่ยนให้อยู่ในรูปแบบการกระจายตัวแบบปรกติโดยใช้ฟังก์ชัน Normal score transform โดยค่า ของข้อมูลจะมีค่าประมาณ 3 ถึง -3 และมีการแจกแจงแบบปรกติ ระบุตำแหน่งของบล็อกที่จะถูก คำนวณแบบสุ่ม (Define simulation block) ค้นหาข้อมูลที่ใกล้เคียงในระยะค้นหากับบล็อกที่ถูก ระบุ เมื่อมีจำนวนข้อมูลที่จะใช้คำนวณมากพอก็จะคำนวณด้วยระบบคริ๊กกิ้ง โดยคำนวณค่าเฉลี่ย และความแปรปรวน เพื่อสร้างพังก์ชันการแจกแจงสะสมแบบมีเงื่อนไข และสุ่มค่าจากพังก์ชันได้ แต่ถ้าข้อมูลมีไม่มากพอก็จะประเมินค่าจากพังก์ชันการแจกแจงของข้อมูลเดิม การดำเนินการการ จำลองธรณีสถิติแบบเกาซ์เซียนจะคำนวณบล็อกต่อไปจนกระทั่งหมดขอบเขตที่กำหนดไว้ โดยใช้ ค่าของข้อมูลปฐมภูมิ และข้อมูลที่ประเมินในครั้งก่อน เมื่อประเมินค่าเสร็จ ค่าที่ประเมินได้จะถูก เปลี่ยนกลับให้เป็นค่าเดิมอีกครั้งหนึ่ง โดยตามการดำเนินการการจำลองธรณีสถิติแบบเกาซ์เซียน แสดงในรูปที่ 2.9

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

รูปที่ 2.9 แผนภาพการดำเนินการการจำลองธรณีสถิติแบบเกาซ์เซียน

2.4 งานวิจัยที่เกี่ยวข้อง

Gokceoglu (1999) ได้ศึกษาเสถียรภาพความลาดของมวลหินในบริเวณบริเวณอะทิน แด็กซ์ (Altindag) ในประเทศตุรกี โดยการนำข้อมูลความไม่ต่อเนื่องของมวลหินที่แปลความหมาย ให้เป็นแผนที่มุมเอียงเท (Dip Angle) และทิศทางมุมเทเอียง (Dip Direction) หลังจากนั้นทำการ ประมวลผลด้วยโปรแกรม KINAN (Eastman, 1992) โดยโปรแกรมจะประมวลผลด้วยวิธีวิเคราะห์ เสถียรภาพความลาดแบบจลนศาสตร์ และแบบจำลองเส้นขันความสูง (Digital Elevation Models) ซึ่งผลลัพธ์จะแสดงในรูปแบบแผนที่แสดงความเสี่ยงในการพังทลายของมวลหินใน รูปแบบต่างๆ แล้วมาประมวลผลเพื่อหาโอกาส และตำแหน่งของการพังทลายของมวลหินรูปแบบ ต่างๆ ในบริเวณอะทินแด็กซ์ (Altindag) โดยแสดงขั้นตอนการศึกษาเสถียรภาพความลาดของมวล หินในบริเวณ อะทินแด็กซ์ ตามรูปที่ 2.10

รูปที่ 2.10 สรุปวิธีการทำแผนที่แสดงความเสี่ยงในการพังทลายของมวลหิน (Gokceoglu,1999)

Pumjan (1999) ได้ศึกษาเสถียรภาพของความลาดแบบความน่าจะเป็นเชิงพื้นที่ (Localized Probabilistic) ซึ่งเป็นวิธีที่สามารถจะประเมินความเสี่ยงของการพังทลายของความ ลาดที่ค่าความเชื่อมั่นที่กำหนดไว้ได้ โดยการวิเคราะห์เชิงความน่าจะเป็นในพื้นที่เฉพาะจะใช้ค่า กำลังอัดของวัสดุที่ได้จากการสร้างแบบจำลองธรณีสถิติแบบเกาซ์เซียนตัวแปรร่วม (Sequential Gaussian Co-simulation) ซึ่งสามารถให้ฟังก์ชันตัวแปรร่วมของค่ากำลังอัดวัสดุเชิงสถิติได้ในรูป ของค่าความเชื่อมแน่น (Cohesion) และมุมเสียดทานของมวลหิน (Friction Angle) ได้ในทุกๆจุด ของพื้นที่ศึกษา ซึ่งการวิจัยชิ้นนี้มีการประยุกต์กับตัวอย่างของพื้นผิวของเหมืองถ่านหิน

Gunther (2003) ได้ทำการศึกษาการวิเคราะห์คุณสมบัติรูปทรงเลขาคณิต และ คุณสมบัติทางจลนศาสตร์ และพัฒนาโปรแกรมชื่อว่า SLOPE MAP[®] ซึ่งพัฒนาจาก Quick Basic[®] โดยการสร้างโมเดลโครงสร้างของมวลหิน และการวิเคราะห์อัตราความเค้นและ ความเครียดของหน้าลาดในแต่ละพื้นที่ เพื่อที่จะประเมินเสถียรภาพของความลาดชันเชิงเขาที่เป็น หินแข็ง นอกจากนี้ในงานวิจัยยังได้ทดลองใช้โปรแกรม SLOPE MAP[®] มาประยุกต์ใช้กับการ ประเมินเสถียรภาพของความลาดชันเชิงเขาบริเวณที่กักเก็บน้ำโอเก้อ (Oker) ประเทศเยอรมนี

Kim (2004) ได้ศึกษาการประเมินเสถียรภาพของการขุดมวลหินก่อนการสร้างถนนผ่าน ภูเขา ด้วยระบบสารสนเทศทางภูมิศาสตร์ โดยระบบสารสนเทศทางภูมิศาสตร์มีข้อดีคือ สามารถ วิเคราะห์ข้อมูลปริมาณมากและพื้นที่ใหญ่ โดยการนำแผนที่หลายๆรูปแบบเช่น แผนที่ภูมิประเทศ แผนที่ทิศทางของการขุดเจาะความลาดชัน แผนที่มุมเสียดทานภายในของชั้นหิน และแผนที่การ วางตัวของชั้นหิน มาซ้อนทับกัน แล้วแบ่งเป็นพื้นที่ย่อยซึ่งเรียกว่าโพลิกอน (Polygon) โดยจะ ประเมินแต่ละโพลิกอนด้วยวิธีการวิเคราะห์แบบจลนศาสตร์ ก่อนเพื่อที่จะหาพื้นที่มีความ ปลอดภัยสูง หลังจากนั้นจึงทำการวิเคราะห์โพลิกอน ที่เหลือซึ่งเป็นพื้นที่มีความเสี่ยงด้วยวิธีเชิง กำหนด เพื่อหาค่าสัมประสิทธ์ความปลอดภัย โดยค่าสัมประสิทธ์ความปลอดภัยน้อยกว่าค่าสัม ประสิทธ์ความปลอดภัยของการออกแบบ จะหมายถึงบริเวณที่มีความไม่ปลอดภัยจากการ พังทลายของมวลหิน โดยขั้นตอนการประเมินและผลลัพธ์ดังแสดงในรูปที่ 2.11 และ2.12

รูปที่ 2.11 ขั้นตอนการประเมินเสถียรภาพของการขุดมวลหินก่อนการสร้างถนน ผ่านภูเขาด้วยระบบสารสนเทศทางภูมิศาสตร์ (Kim,2004)

รูปที่ 2.12 ผลลัพธ์การประเมินเสถียรภาพของการขุดมวลหินก่อนการสร้างถนน ผ่านภูเขาด้วยระบบสารสนเทศทางภูมิศาสตร์ (Kim,2004)
ส่งา ตั้งชวาล (2541) ได้ศึกษาความน่าเชื่อถือของการขุดเจาะพื้นดิน โดยการวางแผน และการประเมินจะทำโดยการขุดเจาะในวัสดุเปราะ (ดินหรือหิน) โดยใช้เครื่องจักรหรือระเบิด การ ประเมินความน่าเชื่อถือได้ถูกประยุกต์ใช้ในการทำนายการพังทลายของมวลหินในขณะที่อยู่ใน กระบวนการขุดเจาะ การประเมินเสถียรภาพของหน้าที่ทำการขุดเจาะด้วยเครื่องจักรทำได้ด้วยวิธี เชิงกำหนด และสถิติ ส่วนการประเมินความเสี่ยงอันเนื่องจากการระเบิดหินคำนึงจากผลกระทบ ต่อสิ่งแวดล้อมหลังจากการระเบิด

สงวน ซูข้าง อดิศักดิ์ บุญบาตร และกิตติเทพ เฟื้องขจร (2551) ได้ศึกษาเสถียรภาพและ การออกแบบบ่อเหมืองสุดท้ายที่บริษัท ปูนซิเมนต์นครหลวง จำกัด โดยมีการออกสำรวจ ภาคสนาม การทดสอบกลศาสตร์ของหิน และสร้างแบบจำลองเชิงคณิตศาสตร์ด้วยโปรแกรม คอมพิวเตอร์ เพื่อหามุมเทสูงสุดของบ่อเหมืองสุดท้ายที่เหมืองหินปูนของบริษัทปูนซิเมนต์นคร หลวง จำกัด ซึ่งการหามุมเทสูงสุดนั้นจะต้องคำนึงถึงเสถียรภาพของมวลหินระยะยาวหลังจากการ ปิดเหมืองไปแล้วและปริมาณสำรองของแหล่งแร่หินปูนสูงสุด ผลการศึกษาพบว่ามวลหินของ เหมืองหินปูนสามารถแบ่งออกเป็นสองกลุ่มคือ มวลหินที่มีรอยแตกไม่มากและมวลหินที่มีรอยแตก มาก สำหรับมวลหินที่มีรอยแตกไม่มากควรมีมุมเทของความสูงขั้นบันไดระหว่าง 70 ถึง 80 องศา และมุมเทของความลาดระหว่าง 49 ถึง 56 องศา สำหรับมวลหินที่มีรอยแตกมาก ควรมีมุมเทของ ขั้นบันได ไม่เกิน 60 องศา และมุมเทของความลาดระหว่าง 43 องศา

กิติเทพ เฟื้องขจร (2551) ได้ศึกษาเสถียรภาพบ่อเหมือง O และ N ที่เหมืองหินปูนเขาวง ของบริษัทปูนซิเมนต์ไทย (ท่าหลวง) จำกัด โดยได้ทำการศึกษาด้วยวิธีวิเคราะห์เสถียรภาพความ ลาดเชิงกำหนด วิธีการวิเคราะห์เสถียรภาพความลาดแบบจลนศาสตร์ และวิเคราะห์เสถียรภาพ ความลาด โดยจากการศึกษาพบว่า บ่อเหมือง O และ N มีเสถียรภาพ

บทที่ 3

วิธีดำเนินการศึกษา

3.1 ขั้นตอนและวิธีดำเนินงานวิจัย

ขั้นตอนและวิธีการดำเนินงานวิจัย โดยภาพรวมงานวิจัยเริ่มด้วยการตรวจสอบสถานที่ตั้ง และการเก็บข้อมูลภาคสนามในบ่อเหมือง ตัวอย่างมวลหินที่ถูกเก็บจะถูกนำมาทดสอบเพื่อหา คุณสมบัติทางกลศาสตร์ต่างๆ เช่น การทดสอบกำลังอัดแกนเดียว การทดสอบกำลังอัดสามแกน การทดสอบค่าความถ่วงจำเพาะ การทดสอบดัชนีกดจุด และ การทดสอบความเค้นเฉือนแบบ โดยตรง นอกจากมวลหินแล้วยังมีข้อมูลการวางตัวของมวลหินที่ถูกเก็บจากบ่อเหมืองเพื่อเป็น ข้อมูลในการสร้างแผนที่การวางตัวของมวลหินด้วยการจำลองธรณีสถิติ โดยการจำลองธรณีสถิติ จะใช้วิธีการจำลองแบบเกาส์เซียนเพื่อสร้างแผนที่หลายแบบจำลอง

ในการวิจัยนี้มีการวิเคราะห์เสถียรภาพความลาด 3 วิธีด้วยกันคือ การวิเคราะห์เสถียรภาพ ความลาดแบบจลนศาสตร์ การวิเคราะห์เสถียรภาพความลาดเชิงกำหนด และการวิเคราะห์ เสถียรภาพความลาดเชิงความน่าจะเป็น โดยการวิเคราะห์เสถียรภาพความลาดแบบจนศาสตร์จะ วิเคราะห์การพังทลายสามรูปแบบด้วยกันคือ การพังทลายแบบระนาบ การพังทลายรูปลิ่ม และ การพังทลายแบบคะมำ และ การวิเคราะห์เสถียรภาพความลาดเชิงกำหนดจะวิเคราะห์การ พังทลายสามรูปแบบด้วยกัน คือ การพังทลายแบบระนาบ การพังทลายรูปลิ่ม และการพังทลาย แบบคะมำ เช่นกัน

การวิเคราะห์เสถียรภาพความลาดเชิงความน่าจะเป็น จะใช้แบบจำลองการวิเคราะห์ เสถียรภาพความลาดเชิงกำหนด และการจำลองธรณีสถิติแบบเกาส์เซียน มาคำนวณค่าสัมประ สิทธ์ความปลอดภัย และหาโอกาสการเกิดพังทลายในแต่ละบล๊อก โดยโอกาสการพังทลายแต่ละ บล๊อกจะถูกสร้างเป็นแผนที่โอกาสการพังทลาย (Probability of Failure Map) เพื่อแสดงพื้นที่และ โอกาสต่อความเสี่ยงของการพังทลาย การวิเคราะห์เสถียรภาพความลาดเชิงความน่าจะเป็นจะ วิเคราะห์การพังทลายสองรูปแบบด้วยกันคือ การพังทลายแบบระนาบและการพังทลายรูปลิ่ม เนื่องจากข้อจำกัดของข้อมูลและโอกาสในการเกิดการพังทลาย การสร้างแผนที่โอกาสพังทลาย สามารถสร้างได้เพียงจากการวิเคราะห์การพังทลายแบบระนาบ แผนภาพแสดงภาพรวมการ ดำเนินงานวิจัยดังแสดงในรูปที่ 3.1

รูปที่ 3.1 แผนภาพการดำเนินงานวิจัย

3.2 พื้นที่ศึกษา

3.2.1 ข้อมูลทั่วไปของเหมืองเขาวง

เหมืองหินปูนเขาวง เป็นเหมืองหินปูนของบริษัทปูนซิเมนต์ไทย (ท่าหลวง) จำกัด โดยเริ่ม เปิดเหมืองประมาณปี พ.ศ. 2524 เพื่อผลิตหินปูนป้อนให้แก่โรงงานปูนซีเมนต์เขาวงและท่าหลวง ปัจจุบันมีการทำเหมืองเพื่อผลิตหินปูนประมาณปีละ 9 ล้านตัน โดยส่งให้โรงงานปูนซีเมนต์ท่า หลวง และ โรงงานปูนซีเมนต์เขาวงซึ่ง มีกำลังการผลิตปูนซีเมนต์วันละ 18,000 ตัน ภาพบ่อเหมือง และภาพถ่ายทางอากาศดังแสดงในรูปที่ 3.2 และ 3.3

รูปที่ 3.2 <mark>บ่อเหมืองด้านทิศเหนือ ขอ</mark>งเหมืองหินปูนเขาวง

3.2.2 ที่ตั้งพื้นที่ศึกษา

พื้นที่ศึกษาอยู่ในเหมืองหินปูนเขาวง ของบริษัทปูนซิเมนต์ไทย (ท่าหลวง) จำกัดตั้งอยู่ที่ ตำบลเขาวง อำเภอพระพุทธบาท จังหวัดสระบุรี มีขอบเขตอยู่ในพิกัด 1622500-1626500 N และ 693000 -700000 E ครอบคลุมพื้นที่ 42 ตารางกิโลเมตร

รูปที่ 3.3 ภาพถ่ายทางอากาศของเหมืองหินปูน บริษัท ปูนซิเมนต์ไทย (ท่าหลวง)

3.2.3 ลักษณะธรณีวิทยาทั่วไป

แหล่งหินปูนเขาวงในพื้นที่ประทานบัตรเป็นชั้นหินที่ประกอบเป็นปีกด้านใต้ของโครงสร้าง รูปประทุนคว่ำ โดยมีแกนชั้นหินโค้งประทุน อยู่ในแนวเกือบตะวันตก - ตะวันออก วางตัวอยู่ในที่ ราบด้านเหนือ หินปูนเขาวงทั้งหมดถูกจัดลำดับอยู่ในหน่วยหินเขาขาด ซึ่งจัดรวมอยู่ในหินชุด ราชบุรี มีอายุอยู่ในช่วงยุคเพอร์เมียน และมีหน่วยหินที่มีอายุอ่อนกว่าแต่เป็นหินชุดราชบุรี เหมือนกัน ชื่อหน่วยหินซับบอนวางตัวอยู่เหนือหน่วยหินเขาขาด โดยพบการสัมผัสและการแผ่ กระจายของหินหน่วยนี้ลงไปทางทิศตะวันออกเฉียงใต้ ที่สำคัญมีการแทรกตัวขึ้นมาแผ่กระจาย ของหินอัคนีชนิดหินแอนดิไซด์ คือ หน่วยหินเขาใหญ่ต่อแนวกันไปอย่างกว้างขวาง ทั้งทางด้าน ทิศตะวันตกเฉียงเหนือ – ตะวันออกเฉียงใต้ โดยเฉพาะบริเวณพื้นที่ประทานบัตรด้านตะวันออก จึงเป็นไปได้ว่าหินแอนดิไซด์ชุดนี้มีอิทธิพลต่อการเกิดพนังแทรกชั้น และพนังแทรกตัวในหินปูน ของพื้นที่ประทานบัตร

หินส่วนใหญ่ในบริเวณพื้นที่ประทานบัตรเป็นหินปูนสีเทาอ่อนถึงเทาแก่เนื้อละเอียดถึงหยาบ มาก มีแนวการวางตัวของชั้นหินประมาณตะวันออก - ตะวันตก เอียงเทไปทางทิศตะวันตกเฉียงใต้ ค่อนไปทางทิศใต้ด้วยมุมเอียงเทตั้งแต่ 40–70 องศา ความหนาของแต่ละชั้นหินจาก 0.10 ถึง มากกว่า 3 เมตรขึ้นไป มีชั้นหินชนิดซิลิกาสูงของหินดินดานและหินเชิร์ต เกิดแทรกสลับเป็นลาย (Lamination) หรือแถบ (Band) อยู่ด้วย หินปูนบางส่วนถูกแปรสภาพตกผลึกใหม่ (Re -Crystallization) พบอยู่ใกล้เคียงหรือสัมผัสอยู่กับหินแอนดิไซด์ที่แทรกหรือตัดขึ้นมาภายหลังใน โครงสร้างรูปพนังแทรกชั้น และพนังหิน

3.2.4 ธรณีวิทยา<mark>แห</mark>ล่งแร่และการลำดับชั้นหิน

จากผลการเจาะสำรวจในปี 2539 และปี 2546 และการสำรวจธรณีวิทยาพื้นผิวในปี 2543 พบว่าชั้นหินในพื้นที่ประทานบัตรมีการวางตัวเรียงลำดับซ้อนกันเป็นชั้น ๆ มีมุมเอียงเทไปทางทิศ ใต้ ลักษณะของหินในบริเวณพื้นที่ประทานบัตรเป็นหินปูน สีเทาอ่อนถึงเทาแก่ เนื้อละเอียดถึง หยาบมาก มีชั้นหินชนิดซิลิกาสูงของหินดินดานและหินเชิร์ตเกิดแทรกสลับ พบหินแอนดิไซด์ที่ แทรกหรือตัดขึ้นมาภายหลังในโครงสร้างรูปพนังแทรกชั้น และพนังบริเวณพื้นที่ประทานบัตร สามารถแบ่งชั้นหินออกได้ 4 กลุ่ม คือ หินปูนธรรมดา หินปูนคุณภาพดี หินซิลิกาสูง และหิน แอนดิไซด์ 3.2.4.1 หินปูนธรรมดา มีสีเทาถึงสีเทาเข้มเนื้อหยาบถึงละเอียด ส่วนมากเนื้อหินมี ลักษณะละเอียดมาก มีลักษณะเป็นชั้นบาง ๆ ถึงความหนาตั้งแต่ 0.50 - 5.00 เมตร บางบริเวณ แสดงลักษณะของชั้นหินบาง ๆ ชัดเจน หินปูนกลุ่มนี้มีสีเข้ม แบ่งแยกได้ชัดเจนกับหินปูนคุณภาพ ดีซึ่งมีสีเทาอ่อน และบางส่วนมีลักษณะค่อย ๆ เปลี่ยนไปเป็นหินปูนคุณภาพดี พบกระจายทั่วไป ในพื้นที่ประทานบัตร

3.2.4.2 หินปูนคุณภาพดี มีสีเทาขาวเนื้อละเอียดถึงหยาบ ส่วนใหญ่เป็นหินปูนเนื้อ ละเอียด เป็นชั้นบาง ๆ หลาย ๆ ชั้น มีบางบริเวณที่พบเป็นชั้นหนา โดยที่หินปูนคุณภาพดีนี้พบ แทรกอยู่ในชั้นของหินปูนธรรมดา พบกระจายอยู่ทั่วไปโดยเฉพาะตอนกลางของพื้นที่ประทานบัตร ด้านตะวันออกและด้านใต้ของพื้นที่ประทานบัตรด้านตะวันตก

3.2.4.3 หินปูนซิลิก้าสูงหรือหินปูนคุณภาพต่ำ ประกอบด้วยชั้นหินบางมากถึงหนา ความ หนาแต่ละชั้นมีตั้งแต่ 10 เซนติเมตร ถึง 50 เซนติเมตร โดยมีหินหลายชนิดวางสลับกัน ประกอบไปด้วยหินจำพวกซิลิก้าแทรก หินเชิร์ต (Chert - bedded) และหินปูนซิลิก้าสูง ซึ่งจะพบ มากทางด้านตอนกลางของพื้นที่ประทานบัตร กลุ่มหินซิลิก้าสูงมีความหนารวมตั้งแต่ 2 - 30 เมตร แทรกอยู่ระหว่างชั้นหินปูนธรรมดาและหินปูนคุณภาพดี โดยรวมแล้วหินซิลิก้าสูงมีสีเทา แก่ถึงดำ เนื้อละเอียดถึงเนียน โดยมีสายแร่แคลไซท์สีขาวเล็ก ๆ ตัดผ่านเป็นร่างแห

3.2.4.4 หินแอนดีไซด์ เป็นหินภูเขาไฟที่แทรกขึ้นมาภายหลังมีอายุอ่อนที่สุด มีเนื้อหินมี เขียวอ่อนถึงเขียวแก่ เนื้อละเอียดถึงหยาบ บางบริเวณพบเป็นจุดหรือดอกขาว ๆ ของแร่เฟลดิ์ สปาร์ เนื้อหินมีความแข็งตั้งแต่แข็งมากจนถึงผุมากในบางบริเวณ ส่วนมากเกิดแทรกขึ้นมาตาม พนัง หรือ พนังแทรกชั้นได้ง่ายกว่าที่จะดันผ่าทะลุชั้นหินปูนขึ้นมา หินภูเขาไฟกลุ่มนี้มีความหนา ตั้งแต่ 0.50 เมตร ถึง 20 เมตร และมีการเปลี่ยนแปลงทางด้านข้างที่สัมผัสกับหินปูนขณะแทรก ขึ้นมา เกิดการแปรสภาพในตัวหินปูนดั้งเดิมกลายเป็นหินอ่อนได้ในบางบริเวณ

รูปที่ 3.4 แผนที่แสดงภาพรวมเหมืองหิน N-1,N-2 และ O-1 ของเหมืองหินปูนเขาวงบริษัท ปูนซิเมนต์ไทย (ท่าหลวง)

3.3 ข้อมูลที่ใช้ในการศึกษา

3.3.1 ข้อมูลการวางตัวของมวลหิน เป็นค่าที่เก็บข้อมูลด้วยเข็มทิศบรันตัน และจีพีเอส โดยเก็บค่ามุมเทและแนวการวางตัวขอมวลหิน และตำแหน่งของข้อมูล การเก็บข้อมูลจะใช้แบบ สุ่มโดยให้ครอบคลุมพื้นที่ศึกษาทั้งหมด

3.3.2 ข้อมูลธรณีเทคนิคของมวลหิน โดยทำการทดสอบทางกลศาสตร์ของหิน เพื่อที่จะหา คุณสมบัติเชิงกลของตัวอย่างหินปูนของเหมืองเขาวง โดยข้อมูลทางธรณีเทคนิคของมวลหินจะเป็น ตัวแทนในการคำนวณในแบบจำลองทางคณิตศาสตร์ การทดสอบมีด้วยกัน 5 การทดสอบ คือ การหาค่าความถ่วงจำเพาะ การทดสอบดัชนีจุด การทดสอบกำลังอัดแกนเดียว การทดสอบกำลัง อัดสามแกน และการทดสอบหาแรงเฉือนโดยตรง

3.4 อุปกรณ์ที่ใช้ในการศึกษา

3.4.1 อุปกรณ์ที่ใช้ในการเก็บตัวอย่างภาคสนาม ได้แก่ เข็มทิศบรันตัน จีพีเอส และ ค้อน ธรณี

3.4.2 อุปกรณ์ทดสอบทางธรณีเทคนิค ได้แก่เครื่องเจาะมวลหิน อุปกรณ์ทดสอบการหา ค่าความถ่วงจำเพาะ เครื่องทดสอบดัชนึกดจุด เครื่องทดสอบกำลังอัด และเครื่องทดสอบหาแรง เฉือนโดยตรง

3.4.3 อุปกรณ์ในการประมวลผลข้อมูลได้แก่ เครื่องคอมพิวเตอร์และโปรแกรมสำหรับ ประมวลผลข้อมูล โดยมีโปรแกรม Microsoft Excel[®] เป็นโปรแกรมจัดการข้อมูล โปรแกรม Dips 4.0 เป็นโปรแกรมพล๊อตมุมเทและทิศทางการวางตัวของมวลหินลงไปในสเตอริโอเน็ต และประเมิน การพังทลายแบบจลนศาสตร์ โปรแกรม Plane 2.0 เป็นโปรแกรมคำนวณเสถียรภาพการพังทลาย แบบระนาบ โปรแกรม SWedge 4.0 เป็นโปรแกรมคำนวณเสถียรภาพการพังทลายรูปลิ่ม โปรแกรม ROCKTOPPLE 1.0 เป็นโปรแกรมคำนวณเสถียรภาพการพังทลายแบบคะมำ และ โปรแกรม SGeMs เป็นโปรแกรมจำลองแวริโอแกรม ดำเนินการครั๊กกิ้ง และแบบจำลองเกาส์เซียน

3.5 การวิเคราะห์เสถียรภาพด้วยวิธีจลนศาสตร์ (Kinematic)

การวิเคราะห์เสถียรภาพด้วยวิธีจลนศาสตร์ จะดำเนินการด้วยโปรแกรม Dips 4.0 โดย วิธีการนี้จะใช้การนำมุมเท และการวางตัวของมวลหินมาพล็อตลงในสเตอริโอเน็ตเพื่อที่จะ วิเคราะห์รูปแบบการพังทลายแบบต่างๆที่เกิดขึ้นในบ่อเหมือง โดยเริ่มจากการพล็อตวางตัวของ แนวหินในภาพรวม และการกำหนดกลุ่มให้กับการวางตัว โดยการพล็อตโพล (pole) ของมุมเท และทิศทางการวางตัวของมวลหินลงในสเตอริโอเน็ตทั้งหมด แล้วจึงหาบริเวณที่มีความหนาแน่น ของข้อมูลมากที่สุดเป็นตัวแทนของการวางตัวของแนวหินภาพรวม และจำแนกกลุ่มการวางตัวของ มวลหินเพื่อที่จะหารูปแบบการพังทลายแบบต่างๆที่มีโอกาสเกิดขึ้นในบ่อเหมืองได้แก่ การ พังทลายแบบระนาบ การพังทลายรูปลิ่ม และการพังทลายแบบคะมำ

3.6 การวิเคราะห์เสถียรภาพด้วยวิธีการเชิงกำหนด

3.6.1 การวิเคราะห์การพังทลายเชิงกำหนดแบบระนาบ การคำนวณค่าสัมประสิทธิ์ความ ปลอดภัยแบบเชิงกำหนดดังที่กล่าวไว้ในบทที่ 2 ซึ่งคุณสมบัติเชิงกลของมวลหินที่ใช้ประกอบการ คำนวณได้จากการทดสอบธรณีเทคนิค นอกจากนั้นกำหนดให้สภาวะการวิเคราะห์การพังทลายมี
4 สภาพ คือ สภาพหินอิ่มตัวด้วยน้ำ (Z_w = 100 เปอร์เซ็นต์) สภาพหินมีน้ำบางส่วน (Z_w = 50 เปอร์เซ็นต์) สภาพหินแห้ง (Z_w = 0 เปอร์เซ็นต์) และไม่มีรอยแตกและสภาพแห้ง

3.6.2 การวิเคราะห์การพังทลายเชิงกำหนดรูปลิ่ม โดยใช้มุมเทและการวางตัวของมวลหิน โดยได้จากการวิเคราะห์เสถียรภาพด้วยวิธีจลนศาสตร์ และคุณสมบัติเชิงกลของมวลหินที่ใช้ ประกอบการคำนวณได้จากการทดสอบธรณีเทคนิค การคำนวณค่าสัมประสิทธิ์ความปลอดภัย แบบเชิงกำหนดดังกล่าวไว้ในบทที่ 2 นอกจากนี้ยังกำหนดให้สภาวะการวิเคราะห์การพังทลายมี 3 สภาพคือ สภาพหินอิ่มตัวด้วยน้ำ (Z_w = 100 เปอร์เซ็นต์) สภาพหินมีน้ำบางส่วน (Z_w = 50 เปอร์เซ็นต์) และสภาพหินแห้งและไม่มีรอบแตก

3.6.3 การวิเคราะห์การพังทลายแบบคะมำเชิงกำหนด จะใช้โปรแกรม ROCKTOPPLE 1.00 ในการวิเคราะห์การพังทลายแบบคะมำ ข้อมูลมุมเทและการวางตัวของมวลหินได้จากการ วิเคราะห์เสถียรภาพด้วยวิธีจลนศาสตร์ และคุณสมบัติเชิงกลของมวลหินที่ใช้ประกอบการคำนวณ ได้จากการทดสอบธรณีเทคนิคการคำนวณค่าสัมประสิทธิ์ความปลอดภัยแบบเชิงกำหนดังกล่าวไว้ ในบทที่ 2

3.7 การดำเนินการด้วยวิธีธรณีสถิติ

3.7.1 การเตรียมข้อมูลก่อนดำเนินการด้วยวิธีธรณีสถิติ ก่อนดำเนินการจะต้องเตรียม ข้อมูลที่ได้จากการเก็บตัวอย่างได้แก่ มุมเทและทิศทางการวางตัว จำนวน 359 ตัวอย่าง และพื้นที่ จำลองที่ครอบคลุมพื้นที่เหมือง 1,560 เมตร X 660 เมตร โดยมีขนาดบล็อกเท่ากับ 10 เมตร X 10 เมตร

3.7.2 การคำนวณค่าสถิติพื้นฐานของข้อมูลได้แก่ ค่าสูงสุด ค่าต่ำสุด ค่าเบี่ยงเบน มาตรฐาน ค่าความเบ้ และฮิสโทแกรม เพื่อหาค่าผิดปรกติและลักษณะการแจกแจงของข้อมูล

3.7.3 การเปลี่ยนรูปแบบข้อมูล การนำฮิสโทแกรมของข้อมูลปฐมภูมิมาเปลี่ยนรูปแบบให้ มีการกระจายตัวแบบปรกติ โดยส่งข้อมูลในฟังก์ชันการแจกแจงสะสมของข้อมูลเดิมไปยังโดเมน ใหม่ชื่อว่า โดเมนเกาส์เชียน

3.7.4 การนำข้อมูลแต่ละชุดมาสร้างแวริโอแกรม โดยทำการสร้างแวริโอแกรมแบบรวมทิศ (Ommidirection variogram) แวริโอแกรมที่สร้างจะต้องกำหนดพารามิเตอร์พื้นฐาน ได้แก่ค่ามุม ทิศทาง (Direction) ค่าระยะห่างระหว่างข้อมูล (Lag Spacing) จำนวนจุด (Number of Lags) และค่าเบนแบน (Angular Tolerance) การทำงานขั้นตอนนี้จะทำการเปลี่ยนตัวแปรดังกล่าวไป เรื่อยๆจนกว่าจะได้แวริโอแกรมที่มีโครงสร้างและความหมายชัดเจน

3.7.5 การจำลองแวริโอแกรม การนำแวริโอแกรมที่สร้างมาเลือกให้มีความเหมาะสมกับ รูปแบบแวริโอแกรมได้แก่ แบบเส้นตรง แบบสเฟียริคัล แบบเอ็กซ์โปเนนเชียล หรือแบบเกาส์เซียน เพื่อกำหนดพารามิเตอร์พื้นฐานได้แก่ ระยะอิทธิพล ค่าของความแปรปรวนคงที่ความแปรปรวน นักเก็ต เพื่อที่จะนำพารามิเตอร์พื้นฐานเหล่านี้ใช้ประกอบในการสร้างแบบจำลอง

3.7.6 การสร้างแบบจำลองเกาส์เซียน การจำลองนั้นจะต้องนำพารามิเตอร์ ได้แก่ รูปแบบแวริโอแกรม ระยะอิทธิพล ค่าของความแปรปรวนคงที่ ความแปรปรวนนักเก็ตระยะการ ค้นหา และจำนวนข้อมูลที่ถูกคำนวณในระยะค้นหา และจำนวนแบบจำลองที่ต้องการ

3.8 การวิเคราะห์เสถียรภาพเชิงความน่าจะเป็น

3.8.1 การวิเคราะห์การพังทลายแบบระนาบเชิงความน่าจะเป็น

3.8.1.1 การวิเคราะห์ความไว จะใช้ข้อมูลมุมเทตั้งแต่ 29 – 64 องศา โดยคำนวณ จากสูตรคำนวณค่าสัมประสิทธิ์ความปลอดภัยแบบเชิงกำหนดดังรายละเอียดในบทที่ 2 โดยการ วิเคราะห์นี้จะวิเคราะห์ในสภาพ 4 สภาพ คือ สภาพหินอิ่มตัวด้วยน้ำ (Z_w = 100 เปอร์เซ็นต์) สภาพ หินมีน้ำบางส่วน (Z_w = 50 เปอร์เซ็นต์) สภาพหินแห้ง (Z_w = 0 เปอร์เซ็นต์) และไม่มีรอยแตกและ สภาพแห้ง

3.8.1.2 การวิ<mark>เคราะห์เส</mark>ถียรภาพ<mark>ความลาดข</mark>องมวลหินเชิงความน่าจะเป็น

3.8.1.2.1 การเลือกพื้นที่ๆมีโอกาสการเกิดการพังทลายแบบระนาบ ตาม

ข้อมูลธรณีวิทยา ธรณีเท<mark>คนิค แผนที่จากการจำ</mark>ล<mark>องด้วยธรณีสถิติ แ</mark>ละ การสำรวจสถานที่ตั้ง

3.8.1.2.2 การค<mark>ำนวณพบว่าโอกาส</mark>การพังทลายในแต่ละบล็อกในพื้นที่

เป้าหมาย โดยจะใช้ข้อมูลมุมเทจากแบบจำลองเกาส์เซียนในแต่ละบล็อกมาคำนวณค่า สัมประสิทธิ์ความปลอดภัยแบบเชิงกำหนด โดยจะคำนวณทุกบล็อกในพื้นที่ภายใต้สภาวะที่มี อาจจะก่อให้เกิดการพังทลายตามการวิเคราะห์ความไว และนำเสนอตัวอย่างฮิสโทแกรมของใน โอกาสการพังทลายของบล็อกหนึ่งบล็อก

3.8.1.2.3 แผนที่เสถียรภาพความลาดของมวลหินเชิงความน่าจะเป็น โดยสร้างในลักษณะใช้เส้นขันความสูง (Contour) ที่บ่งบอกโอกาสการพังทลายของแต่ละบล็อก และนำมาซ้อนทับกับแผนที่ภูมิประเทศ โดยแสดงออกมาเป็นพื้นที่เสี่ยงต่อการพังทลายของความ ลาด

3.8.2 การวิเคราะห์การพังทลายรูปลิ่มความน่าจะเป็น

3.8.2.1 การวิเคราะห์เสถียรภาพความลาดของมวลหินเชิงความน่าจะเป็น 3.8.2.1.1 การเลือกพื้นที่ๆมีโอกาสการเกิดการพังทลายรูปลิ่ม ตามข้อมูล

ธรณีวิทยา ธรณีเทคนิค แผนที่จากการจำลองด้วยธรณีสถิติ และการสำรวจสถานที่ตั้ง 3.8.2.1.2 การคำนวณโอกาสการพังทลายในแต่ละบล็อกในพื้นที่ เป้าหมาย โดยจะใช้ข้อมูลมุมเทจากแบบจำลองเกาส์เซียนในแต่ละบล็อกมาคำนวณค่า สัมประสิทธิ์ความปลอดภัยแบบเชิงกำหนด และนำเสนอตัวอย่างฮิสโทแกรมของในโอกาสการ พังทลายของบล็อก

บทที่ 4

ผลการศึกษาและอภิปราย

4.1 การทดสอบทางกลศาสตร์

การทดสอบทางกลศาสตร์ประกอบด้วย 5 การทดสอบ คือ การหาค่าความถ่วงจำเพาะ การทดสอบดัชนีจุด การทดสอบกำลังอัดแกนเดียว การทดสอบกำลังอัดสามแกน และการทดสอบ หาแรงเฉือนโดยตรง

4.1.1 การทดสอบหาค่าความถ่วงจำเพาะของหินปูน

การทดสอบหาค่าความถ่วงจำเพาะของหินปูน เพื่อศึกษาหาค่าความถ่วงจำเพาะ (Specific Gravity) การดูดซึมน้ำ (Absorption) ของมวลรวม การทดสอบอ้างอิงโดยมาตรฐาน ASTM C 127 (American Standard for Testing and Materials) จากการทดสอบพบว่า ตัวอย่าง หินปูนมีค่าเฉลี่ยเท่ากับ 2.70 มีค่าการดูดซึมน้ำเฉลี่ยเท่ากับ 0.29

4.1.2 การทดสอบดัชนีกดจุด

การทดสอบดัชนีกดจุดมีวัตถุประสงค์เพื่อหาความแข็งแรงของวัสดุเช่นเดียวกับการ ทดสอบกำลังอัดแกนเดียว เพื่อนำมาคำนวณหาค่าอัตราส่วนความปลอดภัย การทดสอบดัชนีกด จุดใช้ตัวอย่างที่เป็นแท่งทรงกระบอก และแท่งตัวอย่างรูปใดๆ มาทำการทดสอบ ซึ่งผลการทดสอบ พบว่า กรณีตัวอย่างที่เป็นแท่งทรงกระบอกได้ค่าดัชนีกดจุดเฉลี่ยเท่ากับ 2.60 โดยเทียบเคียงกับ กำลังอัดแกนเดียวเฉลี่ยเท่ากับ 84.10 เมกกะปาสคาล และกรณีตัวอย่างแบบรูปใดๆ ได้ค่าดัชนีกด จุดเฉลี่ยเท่ากับ 10.17 โดยเทียบเคียงกับกำลังอัดแกนเดียวเฉลี่ยเท่ากับ 258.85 เมกกะปาสคาล

4.1.3 การทดสอบกำลังอัดแกนเดียว

การทดสอบกำลังอัดแกนเดียวมีวัตถุประสงค์เพื่อหาความแข็งแรงของวัสดุ ตามมาตรฐาน ASTM D7012-07 เพื่อนำมาคำนวณหาปัจจัยตัวคูณความปลอดภัย การทดสอบกำลังอัดแกน เดียว ใช้หินปูนที่ได้จากภาคสนามจำนวน 6 ตัวอย่าง ผลการทดสอบพบว่าค่ากำลังอัดแกนเดียว อย่างระหว่าง 27.23 เมกกะปาสคาล ถึง 194.44 เมกกะปาสคาล และมีค่าเฉลี่ยกำลังอัดแกนเดียว เท่ากับ 66.67 เมกกะปาสคาล

4.1.4 การทดสอบกำลังอัดสามแกน

การทดสอบกำลังอัดสามแกนมีวัตถุประสงค์เพื่อหาค่ากำลังเฉือนสูงสุดของวัสดุ ตาม มาตรฐาน ASTM เพื่อนำมาคำนวณหาปัจจัยตัวคูณความปลอดภัย การทดสอบกำลังอัดสามแกน ใช้ตัวอย่างหินปูนจำนวน 6 ตัวอย่าง ให้อยู่สภาวะความดัน (Confining Pressure) ที่ 500 800 1,000 1,400 1,800 และ 2,000 ปอนด์ต่อตารางนิ้ว (psi) ตามลำดับ และใช้โปรแกรม RocLab[®] ในการประมวลหาค่าโคฮีชั่น และค่ามุมเสียดทานตามทฤษฎีการพังทลายของมอร์-คูลอมบ์ (Mohr-Coulomb) ผลการทดสอบพบว่ามี ค่าโคฮีชั่นมีค่าเท่ากับ 0.536 เมกกะปาสคาล และค่ามุม เสียดทาน มีค่าเท่ากับ 48.70 องศา

4.1.5 การทดสอบความเค้นเฉือนแบบโดยตรง

กาดสอบสอบความเค้นเฉือนแบบโดยตรงได้ทำการทดสอบตามมาตรฐาน ASTM D5607 โดยการหาความเค้นเฉือนที่เหลืออยู่โดยหาได้จากการให้ความเค้นเท่ากับ 1.97, 2.95 และ 3.94 เมกกะปาสคาล ผลการทดสอบพบว่า มีค่าโคฮีชั่น เท่ากับ 0.125 เมกกะปาสคาล และ ค่ามุมเสียด ทานเท่ากับ 38.5 องศา

4.1.6 สรุปการทด<mark>สอบกลศาสตร์</mark>

ตารางที่ 4.1 สรุปค่าคุณสมบัติเชิงกลศาสตร์ พบว่าค่าการทดสอบมีค่าสอดคล้องกันเป็น อย่างดีกับค่าอ้างอิงจากการทดสอบแหล่งเดี่ยวกันและแหล่งใกล้เคียง นอกจากนี้ยังพบว่าค่าความ ถ่วงจำเพาะมีค่าใกล้เคียงค่าอ้างอิงเนื่องจากแหล่งหินปูนแหล่งใกล้เคียงกัน ค่าประมาณกำลังอัด แกนเดียวของการทดสอบดัชนีกดจุดมีค่าที่สอดคล้องกันคือมากกว่าค่าที่ได้จากการทดสอบกำลัง อัดแกนเดียว ค่าการทดสอบกำลังอัดสามแกนเพื่อหาค่าแรงเฉือนสูงที่สุด (Peak Shear strength) พบว่ามีค่าที่ใกล้เคียงกัน โดยค่าโคฮีชันอยู่ในขอบเขตของค่าอ้างอิง และมุมเสียดทานมีค่ามากกว่า เล็กน้อย นอกจากนี้พบว่าค่าการทดสอบความเค้นเฉือนแบบโดยตรงมีค่าน้อยกว่าค่าอ้างอิง เล็กน้อย โดยค่าโคฮีชันมีค่าน้อยกว่าค่าต่ำที่สุดของค่าอ้างอิงประมาณ 0.1 เมกกะปาสคาล และ มุมเสียดทาน 1 องศา

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

การทดสอบ	ผลการทดสอบ	ค่าอ้างอิง	
ค่าความถ่วงจำเพาะ	2.70	2.76-2.79 ²	
ค่าการทดสอบดัชนีกดจุด	I _s = 2.60 Mpa (84.10 MPa)	I _s = 3.418 Mpa (81.91	
		MPa) ¹	
ค่าการทดสอบกำลังอัดแกน	66.67 MPa	50.3-64.9 MPa ²	
เดียว	3311/122		
ค่าการทดสอบกำลังอัดสาม	โคฮีชัน = 0.536 MPa	โคฮีชัน = 0.38-0.76 MPa ¹	
แกน	มุมเสียดทาน = 48.70 องศา	มุมเสียดทาน = 48องศา ¹	
(Peak Shear strength)			
ค่าการทดสอบความเค้นเ <mark>ฉือน</mark>	โคฮีชัน = 0.125 MPa	โคฮีชัน = 0.22-0.76 MPa ¹	
แบบโดยตรง	มุมเสียดทาน = 38.5 องศา	มุมเสียดทาน = 39-49.9	
		องศา ¹	

ตารางที่ 4.1 สรุปการทดสอบกลศาสตร์

¹กิตติเทพ เฟื้องข<mark>จร, 2552</mark>

² สงวน ชูช้าง อดิศักดิ์ บุญบาตร และกิตติเทพ เพื่องขจร,2551

4.2 การวิเคราะห์เสถียรภาพมว<mark>ลหินด้วยวิธีการจลน</mark>ศาสตร์ (Kinematic Analysis)

วิเคราะห์จลนศาสตร์เป็นวิธีวิเคราะห์เสถียรภาพความลาดอย่างหนึ่ง ซึ่งจะเป็นการนำค่า มุมลาดเอียงของหินและทิศทางการวางตัวของของผนังบ่อเหมืองที่สนใจมาพล็อตลงในสเตอริโอ เน็ต เพื่อที่จะหารูปแบบการพังทลายแบบต่างๆที่เกิดขึ้นในบ่อเหมือง สำหรับการวิเคราะห์ จลนศาสตร์จะใช้โปรแกรม Dips 5.1

จากการพล็อตสเตอริโอเน็ตมุมเท และทิศทางการวางตัวของชั้นหินจำนวน 359 จุดรอบ เหมืองหินปูนเขาวงพบว่า การวางตัวของชุดหินส่วนใหญ่มีมุมเทเท่ากับ 57 องศา และ ทิศทาง วางตัวเท่ากับ 195 องศา โดยมีความหนาแน่นของข้อมูลเท่ากับ 25.62 เปอร์เซ็นต์ ดังแสดงในรูปที่ 4.1

รูปที่ 4.1 สเตอริโอเน็ตการวางตัวหินปูนของเหมืองหินปูนเขาวง

เนื่องจากการเก็บข้อมูลต้องเก็บกระจายให้ครอบคลุมพื้นที่ศึกษาทั้งหมด ข้อมูลส่วนใหญ่ จะกระจุกตัวที่ 195/57 (ทิศทางการวางตัว/มุมเท) การจำแนกชุดหินทำได้โดยการสร้างขอบเขต การวางตัวของชั้นหิน และหาค่าเฉลี่ยของมุมเทและทิศทางการวางตัวของชั้นหิน การวางตัวของชุด หินสามารถจำแนกได้ 3 กลุ่มคือ ชุดหินกลุ่ม 1 หรือ GROUP 1 (194/60) ชุดหินกลุ่ม 2 หรือ GROUP 2 (101 /54) และ ชุดหินกลุ่ม 3 หรือ GROUP 3 (20/65) โดยมีการวางตัวที่มีมุมเทเท่ากับ 60 54 และ 65 องศา ตามลำดับ และทิศทางการวางตัวของชั้นหินเท่ากับ 194 101 และ 20 ตามลำดับ ดังแสดงในรูปที่ 4.2

รูปที่ 4.2 สเตอริโอเน็ตการจัดกลุ่มของการวางตัวของชุดหิน

4..2.1 การวิเคราะห์การพังทลายแบบระนาบด้วยวิธีจลนศาสตร์

การวิเคราะห์การพังทลายด้วยวิธีจลนศาสตร์แบบระนาบ ดังแสดงในรูปที่ 4.3 พบว่ามี โอกาสการเกิดการพังทลายแบบระนาบกับผนังบ่อเหมือง (195/70) กับ ชุดหินกลุ่ม 1 (194/60) โดยชุดหินกลุ่ม 1 อยู่บริเวณที่ไม่มีเสถียรภาพ คือ อยู่ระหว่างผนังบ่อเหมืองกับกรวยเสียดทานที่มี มุม 38.5 องศา (จากข้อมูลการทดสอบหาแรงเฉือนโดยตรง) โดยค่ามุมเทของระนาบมีค่าอยู่ ระหว่างค่าความชันผนังบ่อและมุมเสียดทาน ซึ่งเป็นรูปแบบที่เกิดการพังทลายแบบระนาบ

รูปที่ 4.3 ผลวิเคราะห์การพังทลายแบบระนาบด้วยวิธีจลนศาสตร์

4.2.2 การวิเคราะห์การพังทลายรูปลิ่มด้วยวิธีจลนศาสตร์

การวิเคราะห์การพังทลายรูปลิ่มด้วยวิธีจลนศาสตร์ดังแสดงรูปที่ 4.4 พบว่ามีโอกาสการ เกิดการพังทลายรูปลิ่มค่อนข้างน้อย โดยมีโอกาสเกิดจากชุดหินกลุ่ม 1 (194/60) ตัดกับชุดหินกลุ่ม 2 (101/54) สัมพันธ์กับผนังบ่อเหมือง (165/70) ทิศทางการเคลื่อนที่ของมวลหินตเท่ากับ 320 องศา (ตามลูกศร) แต่เนื่องจากระนาบการพังทลายระหว่างชุดหินกลุ่ม 1 และชุดหินกลุ่ม 2 มี จุดตัดอยู่นอกกรวยเสียดทาน ทำให้มวลหินรูปลิ่มจะตัดเข้าไปในผนังบ่อไม่ได้อยู่บริเวณที่มีความ เสี่ยงต่อการพังทลาย ทำให้มีโอกาสเกิดการพังทลายรูปลิ่มค่อนข้างน้อย

รูปที่ 4.4 ผลวิเคราะห์การพังทลายรูปลิ่มด้วยวิธีจลนศาสตร์

4.2.3 การวิเคราะห์การพังทลายแบบคะมำด้วยวิธีจลนศาสตร์

ผลวิเคราะห์การพังทลายด้วยวิธีจลนศาสตร์ดังแสดงรูปที่ 4.5 พบว่ามีโอกาสการเกิดการ
 พังทลายแบบคะมำระหว่างผนังบ่อเหมือง (195/70) กับชุดหินกลุ่ม 3 (20/65) เนื่องจากชุดหินกลุ่ม
 3 กับผนังบ่อเหมืองมีการวางตัวที่ตรงข้ามกันทำให้เกิดการพังทลายแบบคะมำได้

รูปที่ 4.5 ผลวิเคราะห์การพังทลายแบบคะมำด้วยวิธีจลนศาสตร์

4.2.4 สรุปผลการวิเคราะห์เสถียรภาพการพังทลายด้วยวิธีจลนศาสตร์

การวิเคราะห์เสถียรภาพการพังทลายด้วยวิธีจลนศาสตร์ เป็นการใช้โครงสร้างของชั้นหิน อธิบายการเกิดการพังทลาย ผลปรากฏว่าเสถียรภาพความลาดบริเวณหน้าเหมืองมีโอกาสเกิดการ พังทลายในสองรูปแบบคือ การพังทลายแบบระนาบและการพังทลายแบบคะมำ โดยการวิเคราะห์ เสถียรภาพการพังทลายแบบระนาบ บ่งซึ่ว่าค่ามุมเทของระนาบมีค่าอยู่ระหว่างค่าความชันผนังบ่อ และมุมเสียดทาน ซึ่งเป็นรูปแบบที่เกิดการพังทลายแบบระนาบ และการวิเคราะห์เสถียรภาพการ พังทลายแบบคะมำบ่งชี้ว่า ชุดหินกลุ่ม 3 กับ ผนังบ่อเหมืองมีการวางตัวที่ตรงข้ามกัน ทำให้มี โอกาสเกิดการพังทลายแบบคะมำได้ ผลการวิเคราะห์ยังบ่งชี้ว่าเสถียรภาพความลาดบริเวณหน้า เหมืองไม่มีโอกาสเกิดการพังทลายรูปลิ่ม เนื่องจากระนาบการพังทลายระหว่างชุดหินกลุ่ม 1 และ ชุดหินกลุ่ม 2 มีจุดตัดอยู่นอกกรวยเสียดทาน ทำให้มวลหินรูปลิ่มจะตัดเข้าไปในผนังบ่อไม่ได้อยุ่บริ เวณที่มีความเสี่ยงต่อการพังทลาย กล่าวโดยสรุปการวิเคราะห์เสถียรภาพการพังทลายด้วยวิธี จลนศาสตร์ในแต่ละตำแหน่งของบ่อเหมืองพบว่ามีความสอดคล้องกันดีกับการวิเคราะห์การ พังทลายด้วยวิธีจลนศาสตร์แบบภาพรวม(รูปที่4.6)

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

รูปที่ 4.6 ผลวิเคราะห์การพังทลายด้วยวิธีจลนศาสตร์

4.3 การวิเคราะห์เสถียรภาพมวลหินด้วยวิธีการเชิงกำหนด (Deterministic Analysis)

4.3.1 การวิเคราะห์การพังทลายเชิงกำหนดแบบระนาบ

การวิเคราะห์การพังทลายเชิงกำหนดแบบระนาบจะใช้มุมเทเป็นตัวแปรหลักในการ วิเคราะห์ เพราะสูตรการคำนวณค่าสัมประสิทธิ์ความปลอดภัยแบบเชิงกำหนดมีมุมเทเป็นปัจจัย หลัก โดยค่ามุมเทที่นำมาใช้ในการคำนวณจะนำมาจากการวิเคราะห์จนศาสตร์เชิงภาพรวม ซึ่ง เท่ากับ 60 องศา และกำหนดให้ตัวแปรอื่นๆคงที่คือ ความสูงของขั้นบันไดเท่ากับ 17 เมตร ความ ชันของผนังบ่อเท่ากับ 70 องศา ค่าโคฮีชั่นเท่ากับ 125 กิโลพัสคาล มุมเสียดทานเท่ากับ 38.5 องศา และค่าความถ่วงจำเพาะของหินเท่ากับ 2.7 โดยวิเคราะห์ในกรณีที่ สภาพหินอิ่มตัวด้วยน้ำ (Z_w = 100 เปอร์เซ็นต์) สภาพหินมีน้ำบางส่วน (Z_w = 50 เปอร์เซ็นต์) สภาพหินแห้ง (Z_w = 0 เปอร์เซ็นต์) และไม่มีรอยแตกและสภาพแห้ง โดยสรุปผลการวิเคราะห์ได้ดังตารางที่ 4.2

สภาพของมวล <mark>หิน</mark>	เปอร์เซ็นต์การอ <mark>ิ่</mark> มตัว	สัมประสิทธิ์ความ		
	ด้วยน้ำ	ปลอดภัย		
มีรอยแตกและอิ่มตัวไปด้วยน้ำ	100	2.81		
มีร _้ อยแตกและมีน้ำบางส่วน	50	3.45		
มีรอยแตกและหินแห้ง	0	3.62		
ไม่มีรอยแตกและหินแห้ง	0	3.98		

ตารางที่ 4.2 <mark>สรุปการวิเคราะห์การพังท</mark>ลายแบบระนาบเชิงกำหนด

จากการวิเคราะห์การพังทลายแบบระนาบเชิงกำหนดพบว่า บ่อเหมืองโดยภาพรวมมีค่า สัมประสิทธิ์ความปลอดภัยต่ำสุดเท่ากับ 2.811 และเมื่อเปรียบเทียบกับค่าสัมประสิทธิ์ความ ปลอดภัยที่กำหนดควรมีค่ามากกว่า 1.5 ทำให้สรุปได้ว่าบ่อเหมืองโดยรวมมีเสถียรภาพและมี ความปลอดภัยต่อการพังทลายแบบระนาบ

4.3.1.1 ตัวอย่างการวิเคราะห์การพังทลายเชิงกำหนดแบบระนาบ

ตัวอย่างการวิเคราะห์การพังทลายเชิงกำหนดแบบระนาบ กำหนดให้ค่าโคฮีชั่น เท่ากับ 125 กิโลพัสคาล มุมเสียดทานเท่ากับ 38.5 องศา มุมเทของชั้นหินเท่ากับ 60 องศา ความ สูงขั้นบันไดเท่ากับ 17 เมตร ความชันของผนังบ่อ 70 องศา ค่าความเร่งของคลื่นเนื่องจากการ ระเบิดเท่ากับ 0.1g และสภาพชั้นหินอิ่มตัวด้วยน้ำ (Z_w = 100 เปอร์เซ็นต์) ผลจากการวิเคราะห์ การพังทลายเชิงกำหนดแบบระนาบพบว่<mark>ามีค่าส</mark>้มประสิทธิ์ความปลอดภัยเท่ากับ 2.81

รูปที่ 4.7 ผนังบ่อเหมืองที่มีโอกาสเกิดการพังทลายแบบระนาบ

รูปที่ 4.8 รูปแบบการพังทลายแบบระนาบ

กำหนดให้

H = 17 เมตร
$$\psi_{p}$$
 = 60 องศา ψ_{f} = 70 องศา $lpha$ = 0.1g และ Z $_{_{
m w}}$ = 100 เปอร์เซ็นต์

จากสมการที่ 2.2, 2.3, 2.4, 2.5 แทนค่าได้เท่ากับ

$$Z = H \left(1 - \sqrt{\cot \psi_{f} \cdot \tan \psi_{p}} \right) = 3.50$$

$$A = (H - z) \csc \psi_{p} = 15.58$$

$$U = \frac{1}{2} \gamma_{w} Z_{w} (H - Z) \csc \psi_{p} = 276.74$$

$$V = \frac{1}{2} \gamma_{w} (Z_{w})^{2} = 60.61$$

$$W = \frac{1}{2} \gamma H^{2} \left[\left\{ 1 - \frac{Z^{2}}{H^{2}} \right\} \cdot \left(\cot \psi_{p} \right) - \left(\cot \psi_{f} \right) = 717.54$$

จากสมการที่ 2.1 สามารถคำนวณค่าอัตราส่วนความปลอดภัยได้เท่ากับ

F.S. = $\frac{cA + [W(\cos\psi_p - \alpha \sin\psi_p) - U - (V\sin\psi_p)]\tan\phi}{W(\sin\psi_p + \alpha \sin\psi_p) + (V\cos\psi_p)}$

$$F.S. = \frac{1930.659}{686.72} = 2.81$$

4.3.2 การวิเคราะห์การพังทลายรูปลิ่ม

การวิเคราะห์การพังทลายเชิงกำหนดรูปลิ่มจะใช้มุมเทและการวางตัวของมวลหินเป็นตัว แปรที่สำคัญ เพราะสูตรการคำนวณค่าสัมประสิทธิ์ความปลอดภัยแบบเชิงกำหนดมีทั้งมุมเทและ การวางตัวของมวลหินเป็นตัวแปรสำคัญในการวิเคราะห์ จากการวิเคราะห์จลนศาสตร์สามารถ กำหนดระนาบการพังทลายคือ ระนาบที่ 1 คือ กลุ่ม 1 (194/60) และระนาบที่ 2 คือ กลุ่ม 2 (101/54) นอกจากนี้กำหนดให้ตัวแปรอื่นๆคงที่คือ ความสูงของขั้นบันไดเท่ากับ 17 เมตร ความชัน ของผนังบ่อเหมืองเท่ากับ 70 องศา และผนังบ่อเหมืองวางตัวแนว 165 องศา ค่าโคฮีชั่นเท่ากับ 125 กิโลพัสคาล มุมเสียดทานเท่ากับ 38.5 องศา ค่าความถ่วงจำเพาะของหินเท่ากับ 2.7 โดย วิเคราะห์ในกรณีที่สภาพหินอิ่มตัวด้วยน้ำ (Z_w = 100 เปอร์เซ็นต์) และไม่มีรอยแตกและสภาพแห้ง ซึ่งสรุปได้ดังตารางที่ 4.3

สภาพของมวลหิน	เปอร์เซ็นต์การอิ่มตัว	ส้มประสิทธิ์ความ		
	ด้วยน้ำ	ปลอดภัย		
อิ่มตัวไปด้วยน้ำ	100	1.66		
มีน้ำบางส่วน	50	4.61		
แห้ง	0	4.69		

ตารางที่ 4.3 สรุปการวิเคราะห์การพังทลายรูปลิ่มเชิงกำหนด

จากการวิเคราะห์การพังทลายรูปลิ่มเชิงกำหนดพบว่า บ่อเหมืองโดยรวมมีค่าสัมประสิทธิ์ ความปลอดภัยต่ำสุดคือหินอิ่มตัวไปด้วยน้ำซึ่งมีสัมประสิทธ์ความปลอดภัยเท่ากับ 1.668 ซึ่งค่า สัมประสิทธิ์ความปลอดภัยที่คำนวณได้เมื่อมีค่ามากกว่าค่าสัมประสิทธิ์ความปลอดภัยที่กำหนด คือ 1.5 ทำให้สรุปได้ว่าบ่อเหมืองโดยรวมมีเสถียรภาพและมีความปลอดภัยต่อการพังทลายรูปลิ่ม

4.3.2.1 ตัวอย่างการวิเคราะห์การพังทลายเชิงกำหนดรูปลิ่ม

ตัวอย่างการวิเคราะห์การพังทลายเชิงกำหนดรูปลิ่ม กำหนดให้ค่าโคฮีชั่นทั้งสอง ระนาบเท่ากับ 125 กิโลพัสคาล มุมเสียดทานทั้งสองระนาบเท่ากับ 38 องศา มุมเทของชั้นหินกลุ่ม หนึ่งเท่ากับ 60 องศา ทิศทางการวางตัวของชั้นหินกลุ่มหนึ่งเท่ากับ 194 องศา มุมเทของชั้นหิน กลุ่มสองเท่ากับ 54 องศา ทิศทางการวางตัวของชั้นหินกลุ่มสองเท่ากับ 102 องศา ความสูง ขั้นบันได เท่ากับ 17 เมตร มุมเทของขั้นบันได 70 องศา และ สภาพชั้นหินมีน้ำบางส่วน (Z_w = 50 เปอร์เซ็นต์) ผลจากการวิเคราะห์การพังทลายเชิงกำหนดรูปลิ่ม พบว่ามีค่าสัมประสิทธิ์ความ ปลอดภัยเท่ากับ 4.61 พื้นที่วิเคราะห์แบบจำลองและผลการวิเคราะห์ดังแสดงในรูปที่ 4.9-4.11

รูปที่ 4.9 ผนังบ่อเหมืองที่มีโอกาสเกิดการพังทลายรูปลิ่ม

รูปที่ 4.11 ผลการวิเคราะห์การพังทลายรูปลิ่ม

4.3.3 การวิเคราะห์การพังทลายแบบคะมำเชิงกำหนด

การวิเคราะห์การพังทลายเชิงกำหนดแบบคะมำจะใช้โปรแกรม ROCKTOPPLE 1.00 การ วิเคราะห์การพังทลายแบบคะมำ ข้อมูลที่จำเป็นต้องใช้คือ มุมเทและการวางตัวของมวลหิน เพราะ จำเป็นจะต้องจำลองโครงสร้างของผนังบ่อเหมืองให้มีสภาพจริงมากที่สุด โดยมุมเทและการวางตัว ของมวลหินที่ได้มาจากการวิเคราะห์จลนศาสตร์เชิงภาพรวม คือ ระนาบฐานมีมุมเทเท่ากับ 20 องศา การวางตัวที่ 195 องศา และ ระนาบตั้งฉากมีทิศทางเดียวกับกลุ่ม 3 คือ มุมเทเท่ากับ 63 องศา และการวางตัวที่ 20 องศา และ ระนาบตั้งฉากมีทิศทางเดียวกับกลุ่ม 3 คือ มุมเทเท่ากับ 63 องศา และการวางตัวที่ 20 องศา จะถูกนำมาใช้ในการวิเคราะห์การพังทลายเชิงกำหนดแบบคะมำ นอกจากนี้กำหนดให้ ความสูงขั้นบันไดเท่ากับ 17 เมตร ความชันของผนังบ่อเหมืองเท่ากับ 70 องศา และทิศทางการวางตัวของผนังบ่อเหมืองเท่ากับ 195 องศา ระยะห่างของแต่ละมวลหิน เท่ากับ 0.2 เมตร ทำให้แบบจำลองมีบล็อกหินจำนวน 72 บล็อก มุมเสียดทานของมวลหินเท่ากับ 38 องศา และค่าความถ่วงจำเพาะของหินเท่ากับ 2.7 ผนังบ่อเหมืองที่ใช้ในการวิเคราะห์ดังแสดง ในรูปที่ 4.12

รูปที่ 4.12 ผนังบ่อเหมืองที่มีโอกาสเกิดการพังทลายแบบคะมำ

รูปที่ 4.13 ผลการวิเคราะห์การพังทลายแบบคะมำเชิงกำหนดด้วยโปรแกรม

F. S.toppling $= \frac{Tan\phi_{avilable}}{Tan\phi_{required}} = \frac{8.9}{0.79} = 11.2$

รูปที่ 4.14 ตัวอย่างการคำนวณบล๊อกที่ 61

	coc	dinate								
Name	Х	Y	Pn-1T	Pn-1S	Pn-1	Rn	Sn	S/R	F.S	Results
Block 1	0.0	0.0	0.0	0.0	0.0	6.7	0.7	0.1	7.1	Stable
Block 2	0.4	0.0	-7.6	-47.2	0.0	16.4	1.9	0.1	6.9	Stable
Block 3	0.8	0.0	-3.1	-79.2	0.0	27.5	3.1	0.1	7.0	Stable
Block 4	1.2	59.4	75.4	-105.0	0.0	104.5	66.2	0.6	1.2	Sliding
Block 5	1.8	204.2	235.1	59.4	59.4	165.9	151.3	0.9	0.9	Sliding
Block 6	2.1	183.2	2 <mark>04.2</mark>	34.5	204.2	34.7	-15.3	0.4	1.8	Toppling
Block 7	2.5	164.0	183.2	-32.9	183.2	52.8	-11.7	0.2	3.6	Toppling
Block 8	2.8	150.3	164.0	-32.3	16 <mark>4.0</mark>	52.2	-6.7	0.1	6.1	Toppling
Block 9	3.1	138.7	150.3	-51.6	150.3	56.7	-4.2	0.1	10.6	Toppling
Block 10	3.4	124.5	138.7	-208.8	138.7	104.0	-1.4	0.0	57.3	Toppling
Block 11	3.9	112.5	124.5	-244.3	124.5	113.9	1.7	0.0	51.7	Toppling
Block 12	4.3	101.8	112.5	-274.9	112.5	121.9	3.9	0.0	24.9	Toppling
Block 13	4.7	90.4	1 <mark>01.8</mark>	-429.5	101.8	170.8	8.7	0.1	15.6	Toppling
Block 14	5.2	83.0	90 <mark>.4</mark>	-231.5	90.4	102.9	4.7	0.0	17.3	Toppling
Block 15	5.5	74.3	83.0	-344.7	83.0	138.2	7.6	0.1	14.4	Toppling
Block 16	5.9	66.6	74.3	-367.4	74.3	144.1	9.0	0.1	12.6	Toppling
Block 17	6.2	63 <mark>.</mark> 1	66.6	-427.6	66.6	167.1	15.5	0.1	8.5	Toppling
Block 18	6.7	59.7	63.1	-386.4	63.1	151.7	13.9	0.1	8.7	Toppling
Block 19	7.2	56.7	59.7	-525.3	59.7	199.1	19.6	0.1	8.0	Toppling
Block 20	7.8	53.7	56.7	-340.0	56.7	133.9	12.2	0.1	8.6	Toppling
Block 21	8.3	50.7	53.7	-353.5	53.7	137.5	12.6	0.1	8.6	Toppling
Block 22	8.7	47.6	50.7	-402.6	50.7	153.5	14.4	0.1	8.4	Toppling
Block 23	9.2	44.9	47.6	-441.4	47.6	166.1	16.0	0.1	8.2	Toppling
Block 24	9.8	42.0	44.9	-310.0	44.9	119.6	10.8	0.1	8.7	Toppling
Block 25	10.2	39.5	42.0	-246.1	42.0	96.8	8.5	0.1	9.0	Toppling
Block 26	10.5	36.8	39.5	-347.4	39.5	130.8	12.1	0.1	8.5	Toppling
Block 27	11.0	34.2	36.8	-266.2	36.8	101.9	9.0	0.1	8.9	Toppling
Block 28	11.4	31.7	34.2	-251.1	34.2	95.9	8.5	0.1	8.9	Toppling
Block 29	11.7	29.3	31.7	-298.0	31.7	111.4	10.3	0.1	8.6	Toppling

ตารางที่ 4.4 ผลการวิเคราะห์การพังทลายแบบคะมำเชิงกำหนด

	codi	nate								
Name	Х	Y	Pn-1T	Pn-1S	Pn-1	Rn	Sn	S/R	F.S	Results
Block 30	12.2	26.9	29.3	-268.7	29.3	100.5	9.1	0.1	8.7	Toppling
Block 31	12.6	24.7	26.9	-235.8	26.9	88.4	7.8	0.1	8.9	Toppling
Block 32	12.9	22.4	24.7	-334.6	24.7	121.8	11.6	0.1	8.3	Toppling
Block 33	13.4	20.8	22.4	-432.2	22.4	155.6	15.9	0.1	7.7	Toppling
Block 34	14.1	20.3	20.8	-492.0	20.8	176.8	19.2	0.1	7.3	Toppling
Block 35	14.8	18.3	20.3	-299.6	20.3	108.5	10.3	0.1	8.3	Toppling
Block 36	15.3	16.4	18.3	-296.4	18.3	106.8	10.2	0.1	8.3	Toppling
Block 37	15.8	14.8	16.4	-340.2	16.4	121.6	12.1	0.1	7.9	Toppling
Block 38	16.3	13.2	14.8	-299.9	<mark>14.8</mark>	107.1	10.5	0.1	8.1	Toppling
Block 39	16.8	11.3	13.2	-209.7	13.2	75.1	6.7	0.1	8.8	Toppling
Block 40	17.2	9.6	11.3	-269.7	11.3	95.3	9.1	0.1	8.3	Toppling
Block 41	17.7	8.3	9.6	-322.3	9.6	<mark>113.4</mark>	11.5	0.1	7.8	Toppling
Block 42	18.2	6.9	<mark>8</mark> .3	-266.9	8.3	93.6	9.2	0.1	8.1	Toppling
Block 43	18.7	5.4	6. <mark>9</mark>	-243.0	6.9	84.8	8.1	0.1	8.2	Toppling
Block 44	19.2	3.9	5.4	-202.3	5.4	70.2	6.5	0.1	8.5	Toppling
Block 45	19.6	3.9	3.9	-332.6	3.9	116.5	13.0	0.1	7.1	Toppling
Block 46	20.2	3.6	3.9	-284.3	3.9	99.4	10.8	0.1	7.2	Toppling
Block 47	20.8	3.4	3.6	-272.6	3.6	95.4	10.5	0.1	7.2	Toppling
Block 48	21.4	2.3	3.4	-173.1	3.4	59.9	5.8	0.1	8.2	Toppling
Block 49	21.8	1.7	2.3	-206.6	2.3	71.6	7.4	0.1	7.6	Toppling
Block 50	22.3	1.4	1.7	-209.7	1.7	72.8	7.9	0.1	7.3	Toppling
Block 51	22.8	1.1	1.4	-193.1	1.4	67.1	7.3	0.1	7.3	Toppling
Block 52	23.3	0.4	1.1	-133.8	1.1	45.9	4.5	0.1	8.1	Toppling
Block 53	23.7	0.3	0.4	-158.1	0.4	54.8	6.0	0.1	7.2	Toppling
Block 54	24.1	0.0	0.3	-138.8	0.3	47.9	5.1	0.1	7.4	Toppling
Block 55	24.5	0.0	-0.6	-160.2	0.0	55.5	6.2	0.1	7.0	Stable
Block 56	25.1	0.1	-0.1	-128.6	0.0	44.7	5.1	0.1	6.9	Stable
Block 57	25.5	0.0	0.1	-99.6	0.1	34.4	3.8	0.1	7.2	Toppling
Block 58	25.9	0.0	-0.2	-98.5	0.0	34.1	3.8	0.1	7.0	Stable

ตารางที่ 4.4 ผลการวิเคราะห์การพังทลายแบบคะมำเชิงกำหนด (ต่อ)

	codinate									
Name	Х	Y	Pn-1T	Pn-1S	Pn-1	Rn	Sn	S/R	F.S	Results
Block 59	26.3	0.0	-1.9	-144.8	0.0	50.2	5.6	0.1	7.0	Stable
Block 60	26.9	0.0	-0.9	-106.7	0.0	37.0	4.2	0.1	7.0	Stable
Block 61	27.3	0.0	-1.9	-116.1	0.0	40.2	4.5	0.1	7.0	Stable
Block 62	27.9	0.0	-0.8	-73.4	0.0	25.4	2.9	0.1	7.0	Stable
Block 63	28.3	0.0	-4.5	-120.1	0.0	<mark>41.</mark> 6	4.7	0.1	7.0	Stable
Block 64	29.0	0.0	-2.3	-79.3	0.0	27.5	3.1	0.1	7.0	Stable
Block 65	29.6	0.0	-4.1	-90.8	0.0	31.5	3.6	0.1	7.0	Stable
Block 66	30.2	0.0	-1.4	-51.0	0.0	17.7	2.0	0.1	6.9	Stable
Block 67	30.6	0.0	- 2.0	-50.7	0.0	17.6	2.0	0.1	6.9	Stable
Block 68	31.1	0.0	<mark>-2.6</mark>	<mark>-</mark> 42.2	0.0	14.7	1.7	0.1	6.9	Stable
Block 69	31.6	0.0	-1.0	-22.6	0.0	7.9	0.9	0.1	6.8	Stable
Block 70	32.0	0.0	-2.6	-27.3	0.0	9.5	1.1	0.1	6.8	Stable
Block 71	32.5	0.8	<mark>-</mark> 3.2	<mark>-16.9</mark>	0.0	6.8	1.5	0.2	3.5	Stable
Block 72	33.0	0.0	-1 <mark>.7</mark>	0.8	0.8	-0.8	-0.8	0.9	0.9	Sliding

ตารางที่ 4.4 ผลการวิเคราะห์การพังทลายแบบคะมำเชิงกำหนด (ต่อ)

รูปที่ 4.15 กราฟความสัมพันธ์ของแรงที่กระทำในแต่ละบล๊อก

รูปที่ 4.16 ฮิสโทแกรมค่าสัมประสิทธิ์ความปลอดภัยในแต่ละบล็อก

จากผลการวิเคราะห์เสถียรภาพการพังทลายแบบคะมำด้วยโปรแกรม TOPPLE 1.0 พบว่า บล็อกที่มีเสถียรภาพจำนวน 19 บล็อก บล็อกที่เกิดการคะมำจำนวน 50 บล็อก และบล็อก ที่เกิดการไถลจำนวน 3 บล็อก โดยรูปที่ 4.15 แสดงกราฟความสัมพันธ์ของแรงกระทำในแต่ละ บล็อกพบว่าค่า R_N มีค่ามากกว่า S_N ทั้งหมด แสดงให้เห็นว่าผนังบ่อมีโอกาสเกิดการ พังทลายแบบคะมำนั้นเอง เนื่องจากค่า R_N เป็นแรงที่อยู่ในแนวตั้งฉากกับบล็อกทำให้เกิดการ เคลื่อนตัวออกไปจากผนังบ่อเหมือง และ จากฮิสโทแกรมค่าสัมประสิทธิ์ความปลอดภัยในแต่ละ บล็อก (รูปที่ 4.16) พบว่ามีค่า F.S. บล็อกที่มีค่าอัตราส่วนความปลอดภัยน้อยกว่าอัตราส่วนความ ปลอดภัยที่กำหนด (F.S_{ortical} =1.5) จำนวน 3 บล็อก บล็อกเหล่านี้มีโอกาสเกิดการไถลของมวลหิน มาได้

สรุปการวิเคราะห์เสถียรภาพการพังทลายแบบคะมำคือ มวลหินบนความลาดของผนังบ่อ ไม่เกิดการเคลื่อนไหวลงมา เนื่องจากบริเวณด้านล่างของความลาดมีมวลหินที่มีเสถียรภาพอยู่ ถึงแม้ว่าจะมีมวลหินบางส่วนเกิดการไถลลงมา แต่มวลหินบริเวณด้านล่างของความลาดจะช่วย ค้ำยันมวลหินที่เกิดการไถลลงมาให้มีเสถียรภาพ ทำให้เกิดเสถียรภาพของความลาดในภาพรวม

4.3.4 สรุปการวิเคราะห์การพังทลายของมวลหินเชิงกำหนด

ผลการวิเคราะห์การพังทลายแบบระนาบเชิงกำหนดพบว่า ความลาดในภาพรวมมี เสถียรภาพดี โดยมีค่าสัมประสิทธิ์ความปลอดภัยเท่ากับ 2.8 - 3.9 ผลการวิเคราะห์การพังทลาย รูปลิ่มพบว่า ค่าสัมประสิทธิ์ความปลอดภัยใกล้เคียงกับค่าสัมประสิทธิ์ความปลอดภัยกำหนด (F.S_{critical} =1.5) โดยมีค่าสัมประสิทธิ์ความปลอดภัยเท่ากับ 1.6 - 3.6 และผลการวิเคราะห์การ พังทลายแบบคะมำพบว่า มีโอกาสการเกิดการคะมำของมวลหินบริเวณตอนกลางของความลาด จำนวน 50 บล็อก มีบล็อกที่เกิดการไถลจำนวน 3 บล็อก และมีบล็อกที่มีเสถียรภาพจำนวน 19 บล็อก แต่เมื่อพิจารณาในภาพรวมมวลหินค่อนข้างมีเสถียรภาพ

4.4 การวิเคราะห์เสถียรภาพมวลหินเชิงความน่าจะเป็น

ถึงแม้ว่าในการประเมินค่าสัมประสิทธิ์ความปลอดภัยด้วนวิธีเชิงกำหนดจะมีค่าเกินค่า สัมประสิทธิ์ความปลอดภัยกำหนดแต่ก็ยังมีโอกาสเกิดการพังทลาย เนื่องจากความไม่แน่นอน ทางด้านธรณีวิทยา และ ความคลาดเคลื่อนจากการทดสอบ ดังนั้นการประเมินเสถียรภาพความ ลาดเชิงความน่าจะเป็น ซึ่งให้ผลลัพธ์เป็นโอกาสการเกิดการพังทลายของความลาดจะให้ข้อมูล ด้านเสถียรความลาดที่ใกล้เคียงกับความเป็นจริงมากกว่า

การวิเคราะห์เสถียรภาพมวลหินเชิงความน่าจะเป็นประกอบด้วยกันสองส่วนคือ การ จำลองโครงสร้างการวางตัวของชั้นหินโดยสร้างแบบจำลองทางธรณีสถิติแบบเกาส์เซียน และการ วิเคราะห์เสถียรภาพความลาดเชิงความน่าจะเป็น โดยค่าการวางตัวของชั้นหินที่ได้จากการจำลอง ธรณีสถิติแบบเกาส์เซียนจะถูกนำมาใช้ในการวิเคราะห์เสถียรภาพเชิงความน่าจะเป็นเพื่อหา โอกาสการพังทลายของมวลหิน

4.4.1 การดำเนินการด้วยวิธีธรณีสถิติ

4.4.1.1 การเตรียมข้อมูลก่อนดำเนินการด้วยวิธีธรณีสถิติ โดยการสร้างพื้นที่ จำลองที่ครอบคลุมพื้นที่บ่อเหมืองขนาด 1,560 เมตร X 660 เมตร โดยมีขนาดบล็อกเท่ากับ 10 เมตร X 10 เมตร จัดรูปแบบข้อมูล และนำข้อมูลเข้าโปรแกรม SGEMsเพื่อดำเนินการธรณีสถิติ แบบเกาส์เชียน รูปที่ 4.17 และ 4.18 แสดงการเตรียมข้อมูลมุมเทและทิศทางการวางตัวก่อน ป้อนเข้าสู่โปรแกรม

0

รูปที่ 4.17 การเตรียมข้อมูลมุมเท

รูปที่ 4.18 การเตรียมข้อมูลทิศทางการวางตัว

4.4.1.2 การคำนวณค่าสถิติพื้นฐานของข้อมูล

ค่าสถิติพื้นฐานซึ่งประกอบด้วย ค่าสูงสุด ค่าต่ำสุด ค่าเฉลี่ย ค่าเบี่ยงแบน มาตราฐาน และค่าความแปรปรวน ของมุมเทและทิศทางการวางตัวของชั้นหิน ดังแสดงในตาราง ที่ 4.5

จุฬาลงกรณมหาวิทยาลัย

	Minimum Maximu		Mean	Standard	Variance
	(deg)	(deg)	(deg)	Deviation(SD)	(R^2)
Dip angle	29	90	59.54	12.61	159.18
Dip Direction	5	358	117.03	58.54	3428.68

ตารางที่ 4.5 สถิติพื้นฐานของการวางตัวของหิน

4.4.1.2.1 ค่ามุมเทของมวลหิน จากข้อมูลค่ามุมเทของมวลหินจำนวน

359 ตัวอย่างพบว่า ค่ามุมเทของมวลหินมีค่าอยู่ในช่วง 29-90 องศา มีค่าเฉลี่ยมุมเทของมวลหิน เท่ากับ 59.54 องศา ค่าเบี่ยงเบนมาตรฐานเท่ากับ 12.61 องศา และความแปรปรวนของข้อมูล เท่ากับ 152.18

รูปที่ 4.19 กราฟฮิสโทแกรมของค่าความลาดชั้นของมวลหิน

4.4.1.2.2 ค่าทิศทางการวางตัวของมวลหิน จากข้อมูลค่ามุมเทของมวล หินจำนวน 359 ตัวอย่างพบว่า ค่ามุมเทของมวลหินมีค่าอยู่ในช่วง 5-358 องศา มีค่าเฉลี่ยมุมเท ของมวลหินเท่ากับ 117.03 องศา ค่าเบี่ยงเบนมาตรฐานเท่ากับ 58.54 องศา และความแปรปรวน ของข้อมูลเท่ากับ 3,428

รูปที่ 4.20 กราฟฮิสโทแกรมของค่<mark>าทิศทางการวางตัวของมวลหิน</mark>

4.4.1.3 <mark>การเปลี่ยนรูปแบบของข้อมูล</mark>

การจำลองธรณีสถิติแบบเกาส์เซียนจำเป็นต้องเปลี่ยนรูปแบบของข้อมูลจากแบบ ธรรมดาเป็นรูปแบบขอบเขตเกาส์เซียน (Gaussian Domain) วิธีการเปลี่ยนรูปแบบของข้อมูลทำ ได้โดยการสร้างฟังก์ชันการแจกแจงสะสมของข้อมูลเดิม ส่งข้อมูลในฟังก์ชันการแจกแจงสะสมของ ข้อมูลเดิมไปยังฟังก์ชันการแจกแจงสะสมของขอบเขตเกาส์เซียน การเปลี่ยนรูปแบบของข้อมูลดัง แสดงในรูปที่ 4.21

รูปที่ 4.21 การเปลี่ยนแปลงข้อมูลด้วยวิธีธรณีสถิติของมุมเท

4.4.1.4 การจำลองแวริโอแกรม

การคำนวณและการจำลองแวริโอแกรม จะต้องใช้ค่ามุมเทและค่าทิศทางการ วางตัวของชั้นหิน ที่มีการเปลี่ยนรูปแบบของข้อมูลให้อยู่ในรูปของการแจกแจงแบบปรกติแล้วมา คำนวณ และจำลองรูปแบบแวริโอแกรมที่เกิดขึ้นด้วยโปแกรม SGEMs ดังนี้ 4.4.1.4.1การจำลองแวริโอแกรมของมุมเท

การหาความสัมพันธ์ของแวริโอแกรมได้ค่าจาก จำนวนค่าระยะห่าง ระหว่างข้อมูล (Number of Lag) จำนวน 30 ค่า ระยะห่างระหว่างข้อมูล (Lag separation) เท่ากับ 2 เมตร และระยะเผื่อระหว่างข้อมูล (Lag tolerance) เท่ากับ 1 เมตร โดยมีการค้นหาจุด ข้างเคียงได้ค่าจากทิศทาง(Azimuth) เท่ากับ 0 องศา มุมเท (Dip) เท่ากับ 0 องศา มุมเบี่ยงแบน (Tolerance) เท่ากับ 30 องศา และระยะขนาด (Band width) เท่ากับ 15 เมตร

แวริโอแกรมของมุมเทสามารถจำลองด้วยแบบจำลองเกาส์เชียน

(Gaussian) ซึ่งประกอบด้วยค่าความแปรปรวนคงที่เท่ากับ 0.7 ค่าความแปรปรวนนักเก็ตเท่ากับ 0.4 ระยะอิทธิพลเท่ากับ 31.5 เมตรโดยแบบจำลองแวริโอแกรมนี้ จะถูกใช้ในการคำนวณใน แบบจำลองธรณีสถิติแบบเกาส์เซียน

รูปที่ 4.22 แบบจำลองแวริโอแกรมของมุมเท

4.4.1.4.2 การจำลองแวริโอแกรมของค่าแนวการวางตัว

การหาความสัมพันธ์ของแวริโอแกรมได้ค่าจาก จำนวนค่าระยะห่าง

ระหว่างข้อมูล (Number of Lag) จำนวน 40 ค่า ระยะห่างระหว่างข้อมูล (Lag separation) เท่ากับ 2 เมตร และระยะเผื่อระหว่างข้อมูล (Lag tolerance) เท่ากับ 1 เมตร โดยมีการค้นหาจุด ข้างเคียงได้จากค่าจากทิศทาง (Azimuth) เท่ากับ 0 องศา มุมเท (Dip) เท่ากับ 0 องศา มุมเบี่ยง แบน (Tolerance) เท่ากับ 50 องศา และระยะขนาด (Band width) เท่ากับ 25 เมตร

แวริโอแกรมของค่าทิศทางการวางตัวของชั้นหินสามารถจำลองด้วย แบบจำลองเอ็กโปเนนเชียล (Exponential) ซึ่งประกอบด้วยค่าความแปรปรวนคงที่เท่ากับ 1.6 ค่า ความแปรปรวนนักเก็ตเท่ากับ 0.1 และระยะอิทธิพลเท่ากับ 78 เมตรโดยแบบจำลองแวริโอแกรมนี้ จะถูกใช้ในการคำนวณของแบบจำลองธรณีสถิติแบบเกาส์เซียน

รูปที่ 4.23 แบบจำลองแวริโอแกรมของค่าแนวการวางตัว

4.4.1.5 การประมาณค่าโดยธรณีสถิติแบบจำลองเกาส์เซียน (Sequential Gaussian simulation)

การศึกษานี้ใช้โปรแกรม Stanford Geostatistical Modeling Software (SGEMs) มาใช้ในการสร้างแบบจำลอง โดยเริ่มจากการแบ่งย่อยมวลหินเป็นบล็อกขนาด 10 X 10 เมตร ขนาดของบล็อกกำหนดโดยความสูงขั้นบันไดและแบบการทำเหมืองเป็นหลัก โดยมีจำนวน บล็อกรวมทั้งสิ้น 10,269 บล็อก มีพื้นที่ครอบคลุมพื้นที่ 1.52 ตารางกิโลเมตร กำหนดระยะการ ค้นหาเท่ากับ 300 เมตร และจำนวนข้อมูลที่ถูกคำนวณมากที่สุดที่ 5 ข้อมูล จะได้แบบจำลองมุมเท และทิศทางการวางตัวของชั้นหิน 50 แบบจำลอง โดยรูปที่ 4.24 และ 4.25 แสดงตัวอย่าง แบบจำลองมุมเทและทิศทางการวางตัวของชั้นหิน (แบบจำลองที่ 1-5) จากการเปรียบเทียบสถิติ ระหว่างค่าที่ได้จากการเก็บภาคสนามกับแบบจำลองที่ได้จากวิธีธรณีสถิติ พบว่าค่าของแต่ละตัว แปรใกล้เคียงกัน นอกจากนี้พบว่าแบบจำลองที่ได้จากธรณีสถิติ จะมีค่าความแปรปรวนน้อยกว่า ค่าที่เก็บมาจริง ตารางที่ 4.6 แสดงตัวอย่างการเปรียบเทียบข้อมูลสถิติระหว่างข้อมูลทางสถิติของ ข้อมูลจริงและข้อมูลทางสถิติของแบบจำลองที่ 14

รูปที่ 4.25 ตัวอ<mark>ย่างแบบจำลองทิศทางการวางตัวขอ</mark>งชั้นหิน ลำดับที่ 1-5 ตารางที่ 4.6 เปรียบเทียบข้อมูลภาคสนามและแบบจำลองที่ 14

9	Number of	Minimum	Maximum	Mean	Standard	Variance
	data	(deg)	(deg)	(deg)	Deviation(SD)	(R ²)
Original dip angle	359	29	90	59.54	12.61	159.18
dip angle Realization N.14	10296	0.47	90	58.13	6.01	36.16
Original dip direction	359	5	358	183.96	48.51	2353.52
dip direction Realization N.14	10296	5	315	187.47	24.98	624.33

4.4.1.6 สรุปการดำเนินการธรณีสถิติ

การจำลองธรณีสถิติแบบเกาส์เซียนพบว่า แบบจำลองที่ได้จากการจำลองนั้นมี ค่าที่ใกล้เคียงกับความเป็นจริง เนื่องจากค่าเฉลี่ย ค่าสูงสุด และค่าต่ำสุดมีค่าใกล้เคียงกัน แต่มีค่า เบี่ยงเบนมาตรฐานลดลง แสดงว่าช่วงของค่าที่ได้จากการจำลองแคบกว่าข้อมูลปฐมภูมิ รูปที่ 4.26 แสดงการนำแผนที่มุมเทที่ได้จากการจำลองมาซ้อนทับกับแผนที่ภูมิประเทศของหน้าเหมือง ปัจจุบัน พบว่ามีความสอดคล้องกันดีกับหน้าเหมืองปัจจุบัน โดยค่ามุมเทและการวางตัวของชั้น หินบริเวณที่เก็บมาจะมีค่าใกล้เคียงกับแผนที่แบบจำลองธรณีสถิติแบบเกาส์เซียน และ บริเวณที่ ห่างออกไปจากจุดที่เก็บตัวอย่างจะพบว่าค่ามุมเท และการวางตัวของชั้นหินมีค่าแตกต่างไปจาก ค่าในหน้างานจริงเล็กน้อย

รูปที่ 4.26 ตัวอย่างการซ้อนทับระหว่างแผนที่มุมเท และ หน้าเหมือง

4.4.2 การวิเคราะห์เสถียรภาพแบบระนาบเชิงความน่าจะเป็น

เนื่องจากมีตัวแปรหลายตัวที่มีผลต่อเสถียรภาพของผนังบ่อเหมือง และความไม่แน่นอน ของตัวแปรเหล่านั้นได้นำมาใช้ประกอบการวิเคราะห์แบบเชิงกำหนด วิธีการการวิเคราะห์ เสถียรภาพความลาดของมวลหินเชิงความน่าจะเป็น ได้นำเอาตัวแปรที่ไม่แน่นอนมาประยุกต์ใช้ กับการวิเคราะห์เสถียรภาพเชิงกำหนดได้

4.4.2.1 การวิเคราะห์ความไว

จากการวิเคราะห์ความไวตามรูปที่ 4.27 พบว่า ค่ามุมเทในช่วง 34- 49 องศา เป็นช่วงที่ค่าสัมประสิทธิ์ความปลอดภัยต่ำ เนื่องจากค่าแรงเสียดทานการเคลื่อนตัวของมวลหิน และแรงเคลื่อนตัวของมวลหินมีค่าใกล้เคียงกัน ช่วงมุมเทน้อยกว่า 34 องศาพบว่า มีค่า สัมประสิทธิ์ความปลอดภัยสูงขึ้นโดยแปรผกผันกับค่ามุมเท เนื่องจากระนาบที่จะเกิดการไถลเลื่อน มีความยาวมากทำให้เกิดแรงเสียดทานการเคลื่อนตัวของมวลหินมากขึ้น และช่วงมุมเทมากกว่า 49 องศาพบว่า มีค่าสัมประสิทธิ์ความปลอดภัยสูงขึ้นโดยแปรผันตามค่ามุมเท เนื่องจากมวลที่จะ เกิดการไถลเลื่อนในความลาดมีน้ำหนักน้อยทำให้แรงเคลื่อนตัวของมวลหินมากขึ้น และช่วงมุมเทมากกว่า 19 องศาพบว่า มีค่าสัมประสิทธิ์ความปลอดภัยสูงขึ้นโดยแปรผันตามค่ามุมเท เนื่องจากมวลที่จะ เกิดการไถลเลื่อนในความลาดมีน้ำหนักน้อยทำให้แรงเคลื่อนตัวของมวลหินมีน้อยตามไปด้วย จาก การวิเคราะห์กรณีที่สภาพอิ่มตัวด้วยน้ำ (Z_w = 100 เปอร์เซ็นต์) หินมีน้ำบางส่วน (Z_w = 50 เปอร์เซ็นต์) สภาพหินแห้ง (Z_w = 0 เปอร์เซ็นต์) และสภาพไม่มีรอยแตกและสภาพแห้ง พบว่าทุก กรณีให้ค่าสัมประสิทธิ์ความปลอดภัยเกินค่าที่กำหนดคือ 1.5 ยกเว้นกรณีที่มีสภาพหินอิ่มตัวด้วย น้ำ (Z_w = 100 เปอร์เซ็นต์) นอกจากมีค่าสัมประสิทธิ์ความปลอดภัยต่ำที่สุดแล้ว พบว่าค่า สัมประสิทธิ์ความปลอดภัยมีค่าน้อยกว่า 1.5 ในช่วงของค่าของมุมเทระหว่าง 29-49 องศา ซึ่งเป็น กรณีที่มีความเสี่ยงเกิดการพังทลายแบบระนาบ กรณีนี้จะถูกนำไปใช้ในการวิเคราะห์เสถียรภาพ ความลาดของมวลหินเชิงความน่าจะเป็น

ฐปที่ 4.27 การวิเคราะห์ความไวของค่ามุมเทในการวิเคราะห์การพังทลายแบบระนาบ

4.4.2.2 การวิเคราะห์เสถียรภาพความลาดของมวลหินเชิงความน่าจะเป็น จากการสำรวจลักษณะโครงสร้างการวางตัวของชั้นหินสัมพันธ์กับหน้าเหมือง พบว่า พื้นที่ที่จะมีโอกาสการเกิดการพังทลายแบบระนาบอยู่บริเวณทางด้านเหนือของบ่อเหมืองมี ขนาดพื้นที่ 290X520 เมตร ดังแสดงในรูปที่ 4.28

รูปที่ 4.28 พื้นที่ทำกา<mark>รวิเคราะห์เสถียรภาพความลาดขอ</mark>งมวลหินเชิงความน่าจะเป็น

จากการวิเคราะห์ความไวพบว่า กรณีที่มวลหินเต็มไปด้วยน้ำและมีรอบแตกบน ผนังเป็นกรณีที่มีความเสี่ยงต่อการพังทลาย ซึ่งจะถูกใช้ในการวิเคราะห์เสถียรภาพความลาดของ มวลหินเชิงความน่าจะเป็น โดยแผนที่มุมเทที่ได้จากแบบจำลองธรณีสถิติจะถูกนำไปใช้ ประกอบการคำนวณหาค่าสัมประสิทธิ์ความปลอดภัยของบล็อกนั้นๆ ดังนั้นภายในบล็อกเดียวกัน จะสามารถคำนวณหาค่าสัมประสิทธิ์ความปลอดภัยได้หลายค่าตามจำนวนแบบจำลองที่ใช้ และ พังชันการกระจายตัวของสัมประสิทธิ์ความปลอดภัยสามารถสร้างได้จากกลุ่มของค่าสัมประสิทธิ์ ความปลอดภัยที่คำนวณไว้แล้ว ในที่สุดโอกาสการพังทลายจะคำนวณจากพื้นที่ใต้กราฟที่มีค่า สัมประสิทธิ์ความปลอดภัยต่ำกว่าค่าที่กำหนด รูปที่ 4.29 แสดงตัวอย่างการคำนวณหบว่าโอกาสการ พังทลายของบล็อกที่อยู่ในตำแหน่ง E698215 และ N1624485 ผลการคำนวณพบว่าโอกาสการ พังทลายเท่ากับ 18 เปอร์เซ็นต์ ที่ค่าสัมประสิทธิ์ความปลอดภัยกำหนดเท่ากับ 1.5 ภายใต้สภาวะ อิ่มตัวด้วยน้ำ และ มีรอยร้าวบนผนังบ่อ

รูปที่ 4.29 ฮิสโทแกรมของโอกาสการพังทลายของบล๊อกในตำแหน่ง E698215 และ N1624485

4.4.2.3 แผนที่เสถียรภาพความลาดของมวลหินเชิงความน่าจะเป็น การสร้างแผนที่ความเสี่ยงประกอบด้วย การนำค่าโอกาสการพังทลายจากการ
วิเคราะห์เสถียรภาพความลาดของมวลหินเชิงความน่าจะเป็นในแต่ละบล็อกมาพล็อตเป็นเส้นชัน ความสูง (Contour) ประกอบในแผนที่บ่อเหมือง โดยการวิเคราะห์เสถียรภาพความลาดของมวล
หินเชิงความน่าจะเป็นในสภาวะที่ชั้นหินมีน้ำบางส่วน ชั้นหินแห้ง และไม่มีรอยแตกบนผนังบ่อ
พบว่ามีโอกาสการเกิดการพังทลายเข้าใกล้ 0 เปอร์เซ็นต์ แต่ว่ากรณีที่สภาวะอิ่มไปด้วยน้ำ (Z_w =
100 เปอร์เซ็นต์) พบว่ามีโอกาสเกิดการพังทลาย โดยบ่งบอกโอกาสการพังทลายของมวลหินด้วย
เส้นระดับความสูงแบ่งตามสีตามรูปที่ 4.30 พบว่าพื้นที่ศึกษามีโอกาสการพังทลายของมวลหินด้วย
เส้นระดับความสูงแบ่งตามสีตามรูปที่ 4.30 พบว่าพื้นที่ศึกษามีโอกาสการพังทลายสูงที่สุดเท่ากับ
22 เปอร์เซ็นต์ โดยแสดงเป็นเส้นระดับสีน้ำตาล ผลที่ได้ระบุได้ว่าผนังบ่อระดับความสูงที่ +260
บริเวณมุมตะวันตกเฉียงเหนือ เป็นพื้นที่ที่มีความเสี่ยงในการพังทลายของมวลหิน และผนังบ่อที่มี

รูปที่ 4.30 แผนที่ความเสี่ยงต่อการพังทลายแบบระนาบ

4.4.3 การวิเคราะห์การพังทลายรูปลิ่ม

 4.4.3.1 การวิเคราะห์เสถียรภาพความลาดของมวลหินเชิงความน่าจะเป็น พื้นที่ทำการวิเคราะห์มีพื้นที่ขนาด 1,500 X 700 เมตร และมีความสูงทั้งหมด
 เท่ากับ 170 เมตร ในพื้นที่ดังกล่าวพบว่ามีโอกาสการเกิดการพังทลายรูปลิ่มเพียงแห่งเดียว คือ บล็อก N698560 E1624540 ซึ่งแสดงในรูปที่ 4.31

รูปที่ 4.31 พื้นที่ที่มีโอกาสการเกิดการพังทลายรูปลิ่ม

การวิเคราะห์เสถียรภาพความลาดของมวลหินเชิงความน่าจะเป็นของการพังทลายรูปลิ่ม เริ่มจากการนำมุมเทและทิศทางการวางตัวของชั้นหินของหน้าที่ 1 และ 2 ที่ถูกสร้างขึ้นด้วย แบบจำลองธรณีสถิติแบบเกาส์เซียนในบล็อกที่ N698550 E1624540 และ N698560 E1624540 จำนวน 50 ค่าจาก 50 แบบจำลอง มาคำนวณหาค่าสัมประสิทธิ์ความปลอดภัยด้วยวิธีการ วิเคราะห์เสถียรภาพความลาดเชิงกำหนด เพื่อที่จะหาโอกาสการพังทลายของมวลหินในการ เปรียบเทียบกับค่าสัมประสิทธิ์ความปลอดภัยที่กำหนดไว้เท่ากับ 1.5 ดังที่แสดงในรูปที่ 4.32 โดย การกระจายตัวของข้อมูลมุมเทและทิศทางการวางตัวของชั้นหิน ดังแสดงในรูปที่ 4.33 - 4.36

รูปที่ 4.32 การวิเคราะห์เสถียรภาพของมวลหินรูปลิ่มเชิงความน่าจะเป็น

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

รูปที่ 4.33 ฮิสโทแกรมของมุมเทด้านที่ 1

มุมเทมวลหินหน้าที่ 1 มีค่าอยู่ในช่วง 66.36-70.37องศา มีค่าเฉลี่ยมุมเทของมวลหิน เท่ากับ 68.52 องศา ค่าเบี่ยงเบนมาตรฐานเท่ากับ 0.79 องศา และ มีการกระจายตัวแบบไวบลู (Weibull Distribution)

มุมเทมวลหินหน้าที่ 2 มีค่าอยู่ในช่วง 66.40-68.54องศา มีค่าเฉลี่ยมุมเทของมวลหิน เท่ากับ 66.40 องศา ค่าเบี่ยงเบนมาตราฐานเท่ากับ 0.91 องศา และ มีการกระจายตัวแบบล็อกนอ มอล (Lognormal Distribution)

รูปที่ 4.35 ฮิสโทแกรมของการวางตัวของชั้นหินด้านที่ 1 ทิศทางการวางตัวของมวลหินหน้าที่ 1 มีค่าอยู่ในช่วง 104.51- 110.56 องศา มีค่าเฉลี่ย ทิศทางการวางตัวของมวลหินเท่ากับ 107.39 องศา ค่าเบี่ยงเบนมาตราฐานเท่ากับ 1.19 องศา และ มีการกระจายตัวแบบปรกติ (Normal Distribution)

รูปที่ 4.36 ฮิสโทแกรมของการวางตัวของชั้นหินด้านที่ 2

ทิศทางการวางตัวของมวลหินหน้าที่ 2 มีค่าอยู่ในช่วง 179.65 – 184.34 องศา มีค่าเฉลี่ย ทิศทางการวางตัวของมวลหินเท่ากับ 182.10 องศา ค่าเบี่ยงเบนมาตรฐานเท่ากับ 1.17 องศา และ มีการกระจายตัวแบบปรกติ (Normal Distribution)

จากการวิเคราะห์เสถียรภาพมวลหินรูปลิ่มเชิงความน่าจะเป็น พบว่าค่าสัมประสิทธิ์ความ ปลอดภัยอยู่ในช่วง 7.49 – 12.29 มีค่าเฉลี่ยเท่ากับ 9.43 และ ค่าเบี่ยงเบนมาตรฐานเท่ากับ 1.11 ตามรูปที่ 4.37 เมื่อนำมาเปรียบเทียบกันค่าสัมประสิทธิ์ความปลอดภัยกำหนดที่ 1.5 พบว่า โอกาส การพังทลายเข้าใกล้ 0 เปอร์เซ็น บ่งชี้ว่าผนังบ่อที่ตำแหน่ง N698560 E1624540 มีความปลอดภัย ต่อการพังทลายรูปลิ่ม

รูปที่ 4.37 ฮิสโทแกรมอัตราของเสี่ยงความปลอดภัยในการวิเคราะห์ เสถียรภาพการพังทลายรูปลิ่ม

4.4.4 สรุปการวิเคราะห์เสถียรภาพความลาดของมวลหินเชิงความน่าจะเป็น
 จากกการวิเคราะห์เสถียรภาพมวลหินแบบระนาบเชิงความน่าจะเป็นพบว่า พื้นที่ที่มีความ
 เสี่ยงต่อการพังทลายคือบริเวณทิศเหนือของเหมือง โดยมีโอกาสการพังทลายสูงสุดเท่ากับ 22
 เปอร์เซ็นต์ และการวิเคราะห์เสถียรภาพมวลหินรูปลิ่มเชิงความน่าจะเป็นพบว่า ผนังบ่อบริเวณที่
 ตำแหน่ง N698560 E1624540 มีความปลอดภัยต่อการพังทลายรูปลิ่ม

4.5 การแก้ไขปัญหาเสถียรภาพของบ่อเหมือง

4.5.1การแก้ปัญหาการพังทลายแบบระนาบบริเวณทางทิศเหนือของบ่อเหมือง

จากการวิเคราะห์ความไวของค่ามุมเทในการวิเคราะห์การพังทลายแบบระนาบ พบว่ามุม เทของมวลหินที่มีผลต่อค่าสัมประสิทธิ์ความปลอดภัยมากที่สุด คือ 40 องศา หมายความว่าเป็น มุมที่ก่อให้เกิดค่าสัมประสิทธิ์ความปลอดภัยน้อยที่สุด

การแก้ปัญหาการพังทลายแบบระนาบบริเวณทางทิศเหนือของบ่อเหมือง ทำได้โดยการ ปรับลดความชันของผนังบ่อในบริเวณที่มีโอกาสเกิดการพังทลาย โดยผนังบ่อมีความชันลดลงจาก 70 องศา เหลือ 60 องศา โดยใช้มุมเทของชั้นหินที่มีค่าเท่ากับ 40 องศา และ ชั้นหินมีสภาวะอิ่มตัว ด้วยน้ำดังรูปที่ 4.37

กำหนดให้

H = 17 เมตร ψ_p = 40 องศา ψ_f = 60 องศาlpha = 0.1g และ Z_w = 100 เปอร์เซ็นต์

จากสมการที่ 2.2, 2.3, 2.4, 2.5 แทนค่าได้เท่ากับ

$$Z = H \left(1 - \sqrt{\cot \psi_{f} \cdot \tan \psi_{p}} \right) = 5.37$$
$$A = (H - z) \operatorname{cosec} \psi_{p} = 18.47$$

$$U = \frac{1}{2} \gamma_{w} Z_{w} (H - Z) \operatorname{cosec} \psi_{p} = 487.06$$
$$V = \frac{1}{2} \gamma_{w} (Z_{w})^{2} = 141.76$$
$$W = \frac{1}{2} \gamma H^{2} [\left\{ 1 - \frac{Z^{2}}{H^{2}} \right\} \cdot (\operatorname{cot} \psi_{p}) - (\operatorname{cot} \psi_{f}) = 2,028.861$$

จากสมการที่ 2.1 สามารถคำนวณค่าอัตราส่วนความปลอดภัยได้เท่ากับ

 $F. S. = \frac{cA + [W(\cos\psi_p - \alpha \sin\psi_p) - U - (V\sin\psi_p)]\tan\phi}{W(\sin\psi_p + \alpha \sin\psi_p) + (V\cos\psi_p)}$ $F. S. = \frac{3,005.62}{1.541.81} = 1.94$

จากการแก้ปัญหาการพังทลายแบบระนาบบริเวณทางทิศเหนือของบ่อเหมืองด้วยวิธีการ ปรับลดความชั้นของผนังบ่อเหมือง พบว่าค่าสัมประสิทธิ์ความปลอดภัยเพิ่มขึ้นจาก 1.36 เป็น 1.94 โดยควรทำการลดความชั้นของผนังบ่อเหมืองในบริเวณที่มีความเสี่ยงทั้งหมดของพื้นที่

4.5.2 การแก้ปัญหาการพังทลายแบบคะมำบริเวณทางไปบ่อเหมือง N เนื่องจากการวางสานพานลำเลียงสินแร่ใหม่บริเวณที่มีพื้นที่ที่มีโอกาสการพังทลายแบบ คะมำ จึงจำเป็นจะต้องลดความสูงผนังบ่อจาก 17 เมตร เหลือ 10 เมตร การลดความสูงผนังบ่อ เหมืองทำให้ผนังบ่อมีเสถียรภาพมากขึ้นแต่ก็ยังคงมีโอกาสเกิดการคะมำขึ้น ดังนั้นก็ควรจะปรับ ความชันของผนังบ่อลงจาก 70 องศา เป็น 65 องศา เพื่อให้มวลหินมีเสถียรภาพมากขึ้นตามรูปที่ 4.38 โดยจากการคำนวณตามพารามิเตอร์ขั้นต้นเพื่อที่จะออกแบบความชัน และความสูงของผนัง บ่อเหมืองด้วยโปรแกรม ROCKTOPPLE 1.0 ปรากฏว่าผนังบ่อที่ถูกออกแบบมานั้นมีเสถียรภาพดี ทุกบล๊อก

สำหรับความสูงผนังบ่อจาก 17 เมตรที่มีโครงสร้างของชั้นหินเช่นเดียวกับพื้นที่นี้ ควรปรับ ความชันของผนังบ่อเหมืองโดยให้ทำการลดความชันให้เท่ากับ 60 องศา เพื่อให้มวลหินมี เสถียรภาพ โดยจากการคำนวณตามพารามิเตอร์ขั้นต้นเพื่อที่จะออกแบบความชันและความสูง ของผนังบ่อเหมืองด้วยโปรแกรม ROCKTOPPLE 1.0 ปรากฏว่าผนังบ่อที่ถูกออกแบบมานั้นมี เสถียรภาพดีทุกบล็อก

รูปที่ 4.39 การปรับผนังบ่อบริเวณทางไปบ่อเหมือง N เมื่อมีความสูงขั้นบันไดเท่ากับ 10

รูปที่ 4.40 การปรับผนังบ่อที่มีโอกาสการพังทลายแบบคะมำเมื่อมีความสูงขั้นบันได เท่ากับ 17 เมตร

4.5.3 สรุปการแก้ไขปัญหาเสถียรภาพของบ่อเหมือง

การแก้ปัญหาเสถียรภาพของบ่อเหมืองควรจะกำหนดให้ ความชันของผนังบ่อไม่เกิน 60 องศา สำหรับผนังบ่อที่มีทิศทางการวางตัวของชั้นหินมีการวางตัวไปทิศทางเดียวกันกับผนังบ่อ กำหนดให้ความชันของผนังบ่อไม่เกิน 60 องศา สำหรับผนังบ่อที่มีทิศทางการวางตัวของชั้นหินมี การวางตัวไปทิศทางตรงกันข้ามกับผนังบ่อ โดยที่ความสูงขั้นบันไดไม่เกิน 17 เมตร และ กำหนดให้ความชันของผนังบ่อไม่เกิน 65 องศา สำหรับผนังบ่อที่มีทิศทางการวางตัวของชั้นหินมี การวางตัวไปทิศทางตรงกันข้ามกับผนังบ่อ โดยที่ความสูงขั้นบันไดไม่เกิน 17 เมตร และ

บทที่ 5

สรุปผลการศึกษา และ ข้อเสนอแนะ

5.1 สรุปผลการศึกษา

การศึกษาในครั้งนี้เป็นการวิเคราะห์เสถียรภาพความลาดของมวลหินที่เหมืองหินปูนเขาวง จังหวัดสระบุรี ใน 3 รูปแบบ คือ การวิเคราะห์เสถียรภาพความลาดแบบจลนศาสตร์ การ วิเคราะห์สถียรภาพความลาดเชิงกำหนด และ การวิเคราะห์เสถียรภาพความลาดเชิงความน่าจะ เป็น โดยการศึกษามุ่งขยายผลการศึกษาเสถียรภาพความลาดแบบจลนศาสตร์และเชิงกำหนด เพื่อนำไปสู่การวิเคราะห์เชิงความน่าจะเป็น

5.1.1 การวิเคราะห์เสถียรภาพความลาดแบบจลนศาสตร์

การวิเคราะห์เสถียรภาพการพังทลายด้วยวิธีจลนศาสตร์ในภาพรวมพบว่า มวลหินมี โอกาสเกิดการพังทลายสองรูปแบบ คือ การพังทลายแบบระนาบและการพังทลายแบบคะมำ โดย การวิเคราะห์เสถียรภาพการพังทลายแบบระนาบบ่งซี้ว่าค่ามุมเทของระนาบมีค่าอยู่ระหว่างค่า ความชันผนังบ่อและมุมเสียดทาน ซึ่งเป็นรูปแบบที่เกิดการพังทลายแบบระนาบ และการวิเคราะห์ เสถียรภาพการพังทลายแบบคะมำบ่งชี้ว่า ชุดหินกลุ่ม 3 กับ ผนังบ่อเหมืองมีการวางตัวที่ตรงข้าม กัน ทำให้เกิดการพังทลายแบบคะมำได้ และผลการวิเคราะห์ยังบ่งบอกว่ามวลหินบริเวณหน้า เหมืองไม่มีโอกาสเกิดการพังทลายรูปลิ่ม เนื่องจากระนาบการพังทลายระหว่างชุดหินกลุ่ม 1 และ ชุดหินกลุ่ม 2 มีจุดตัดอยู่นอกกรวยเสียดทาน ทำให้มวลหินรูปลิ่มจะตัดเข้าไปในผนังบ่อไม่ได้อยู่ บริเวณที่มีความเสี่ยงต่อการพังทลาย

การวิเคราะห์เสถียรภาพการพังทลายด้วยวิธีจลนศาสตร์ในแต่ละตำแหน่งของบ่อเหมือง พบว่ามีความสอดคล้องกันดีกับการวิเคราะห์การพังทลายด้วยวิธีจลนศาสตร์แบบภาพรวม โดย พื้นที่ในบ่อเหมืองมีโอกาสเกิดการพังทลายสองแบบคือ การพังทลายแบบระนาบและการพังทลาย แบบคะมำ และ พื้นที่ส่วนใหญ่มีเสถียรภาพ

5.1.2 การวิเคราะห์เสถียรภาพความลาดเชิงกำหนด

การวิเคราะห์การพังทลายแบบระนาบเชิงกำหนดพบว่ามวลหินมีเสถียรภาพดี โดยมีค่า ส้มประสิทธิ์ความปลอดภัยอยู่ระหว่าง 2.8 - 3.9 ผลการวิเคราะห์การพังทลายรูปลิ่มพบว่า ค่า ส้มประสิทธิ์ความปลอดภัยใกล้เคียงกับค่าส้มประสิทธิ์ความปลอดภัยกำหนด (F.S_{critcal} =1.5) โดย มีค่าส้มประสิทธิ์ความปลอดภัยอยู่ระหว่าง 1.6 - 3.6 และผลการวิเคราะห์การพังทลายแบบคะมำ พบว่า มีโอกาสการเกิดการคะมำของมวลหินบริเวณตอนกลางของความลาดจำนวน 50 บล็อก มี บล็อกที่เกิดการไถลจำนวน 3 บล็อก และมีบล็อกที่มีเสถียรภาพจำนวน 19 บล็อก ในภาพรวมผนัง บ่อเหมืองที่ใช้ในการวิเคราะห์การพังทลายแบบคะมำยังคงมีเสถียรภาพ

5.1.3 การวิเคราะห์เสถียรภาพความลาดเชิงความน่าจะเป็น

แบบจำลองธรณีสถิติแบบเกาส์เชียนพบว่า แบบจำลองที่ให้ค่ามุมเทและทิศ ทางการวางตัวของชั้นหินใกล้เคียงกับความเป็นจริง แต่มีค่าเบี่ยงเบนมาตราฐานน้อยกว่าและมี ความสอดคล้องกันดีกับหน้าเหมืองปัจจุบัน

การวิเคราะห์เสถียรภาพมวลหินแบบระนาบเชิงความน่าจะเป็น ซึ่งนำค่าที่ได้จาก แบบจำลองธรณีสถิติแบบเกาส์เซียนมาประกอบการวิเคราะห์พบว่า มีความเสี่ยงต่อการพังทลาย บริเวณทิศเหนือของบ่อเหมืองโดยมีโอกาสการพังทลายสูงที่สุดเท่ากับ 22 เปอร์เซ็นต์ และการ วิเคราะห์เสถียรภาพมวลหินรูปลิ่มความน่าจะเป็นพบว่า ผนังบ่อเหมืองที่ตำแหน่ง N698560 E1624540 มีความปลอดภัยต่อการพังทลายรูปลิ่ม

การศึกษาในครั้งนี้ได้แสดงวิธีการและผลการศึกษาเสถียรภาพความลาดของมวลหินโดย มุ่งเน้นไปสู่วิธีการศึกษาเสถียรภาพความลาดเซิงความน่าจะเป็น โดยรูปแบบการศึกษาเสถียรภาพ เชิงความน่าจะเป็นที่นำเสนอมีองค์ประกอบที่สำคัญ คือ ได้รวมเอาความไม่แน่นอน (Uncertainty) ของโครงสร้างของมวลหินในรูปของมุมเทและทิศทางการวางตัว มาประกอบในระเบียบการ วิเคราะห์โดยอาศัยแบบจำลองธรณีสถิติ แผนที่แบบจำลองโครงสร้างของมวลหินประกอบกับการ ประยุกต์ใช้การวิเคราะห์เสถียรภาพความลาดเชิงกำหนด เพื่อนำไปสู่การประเมินโอกาสการ พังทลาย (Probability of Failure) เชิงพื้นที่ และท้ายที่สุดให้ผลลัพธ์เป็นแผนที่โอกาสการพังทลาย

จากสมมุติฐานและระดับของข้อมูลที่ใช้ประกอบการวิเคราะห์ในแบบจำลอง ทำให้มีความ เชื่อมั่นว่าผลลัพธ์ที่ได้มาน่าจะใกล้เคียงกับสภาพของเสถียรภาพความลาดในพื้นที่จริง และการ ประเมินโอกาสการพังทลายเชิงพื้นที่นอกจากสามารถประเมินเสถียรภาพตามรายละเอียดและ ความน่าจะเป็นของพื้นที่แล้ว ผลลัพธ์ที่ได้ยังนำไปสู่ขั้นตอนการแก้ไขหรือปรับเสถียรภาพความ ลาดได้อย่างมีประสิทธิภาพ 5.1.4 การแก้ไขปัญหาเสถียรภาพของบ่อเหมือง

การแก้ปัญหาเสถียรภาพของบ่อเหมืองควรจะกำหนดให้ ความขันของผนังบ่อไม่เกิน 60 องศาสำหรับผนังบ่อที่มีทิศทางการวางตัวของชั้นหินมีการวางตัวไปทิศทางเดียวกันกับผนังบ่อ กำหนดให้ความชันของผนังบ่อไม่เกิน 60 องศา สำหรับผนังบ่อที่มีทิศทางการวางตัวของชั้นหินมี การวางตัวไปทิศทางตรงกันข้ามกับผนังบ่อ โดยที่ความสูงขั้นบันไดไม่เกิน 17 เมตร และ กำหนดให้ความชันของผนังบ่อไม่เกิน 65 องศา สำหรับผนังบ่อที่มีทิศทางการวางตัวของชั้นหินมี การวางตัวไปทิศทางตรงกันข้ามกับผนังบ่อ โดยที่ความสูงขั้นบันไดไม่เกิน 17 เมตร และ

5.2 ข้อเสนอแนะ

5.2.1 การปรับปรุงโมเดลการศึกษา โดยการเพิ่มตัวแปรและความไม่แน่นอน (Uncertainty) ของตัวแปรประกอบ การวิเคราะห์เสถียรภาพมวลหิน นอกจากโครงสร้างทาง ธรณีวิทยาแล้วยังมีแรงสั่นสะเทือนจากการระเบิด ค่าคลาดเคลื่อนจากการทดลอง ค่าคุณสมบัติ ทางกลศาสตร์ของหินในแต่ละพื้นที่เป็นต้น ได้ซึ่งทำให้โมเดลมีความใกล้เคียงกับสภาพจริงมากขึ้น

5.2.2 การปรับปรุงโมเดลโดยการสร้างให้อยู่ในชุดคำสั่งเดียวกัน การศึกษานี้ได้ใช้ โปรแกรมย่อยหลายโปรแกรม ทำให้ผู้ที่จะศึกษาในภายหลังทำงานด้วยความยุ่งยาก การนำ โปรแกรมย่อยหลายโปรแกรมเหล่านั้นมารวมเป็นชุดคำสั่งเดียวกัน จะทำให้ทำงานได้ง่ายขึ้น และ สามารถปรับปรุงตัวแปรเมื่อหน้าเหมืองเปลี่ยนแปลงไปได้รวดเร็วขึ้น

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

รายการอ้างอิง

<u>ภาษาไทย</u>

กิตติเทพ เฟื้องขจร, 2552. <u>การศึกษาเสถียรภาพและออกแบบผนังบ่อทางทิศตะวันออก</u> <u>ของเหมือง "O" และเส้นทางขนส่งระหว่างเหมือง "O" และ "N" ของบริษัทปูนซิ</u> <u>เมนต์ไทย (ท่าหลวง) จำกัด.</u>หน่วยวิจัยกลศาสตร์กลศาสตร์ สำนัก วิศวกรรมศาสตร์ มห<mark>าวิทยาลัยเท</mark>คโนโลยีสุรนารี

พันธุ์ลพ หัตถโกศล. 2540<mark>. <u>ธรณีสถิติ</u>. คณะวิศวก</mark>รรมศาสตร์ มหาลัยเชียงใหม่

- วุฒิพันธุ์ วงษ์มงคล. 2546. <u>การประยุกต์ใช้วิธีธรณีสถิติในการศึกษาค่านำไฟฟ้าของชั้น</u> <u>ดินสนามบริเวณอำเภอบ้านไผ่ จังหวัดขอนแก่น</u>. วิทยานิพนธ์ปริญญา มหาบัณฑิต สาขาวิชาเทคโนโลยีที่เหมาะสมเพื่อพัฒนาทรัพยากรและสิ่งแวดล้อม มหาวิทยาลัยมหิดล
- สง่า ตั้งชวาล. 2<mark>541. <u>เสถียรภาพของการขุดเจาะ</u> พิมพ์ครั้งที่ 1สำนักพิมพ์จุฬาลงกรณ์ มหาวิทยาลัย.</mark>
- สง่า ตั้งชวาล. 255<mark>2. <u>ธรณีเทคนิคเซิงวิเคราะห์</u>. พิมพ์ครั้งที่ 1 สำนักพิมพ์จุฬาลงกรณ์ มหาวิทยาลัย.</mark>

<u>ภาษาอังกฤษ</u>

- Choochang S., Boonbatr A. and Fuenkajorn K. 2009. Stability analysis and design of the final pit walls of SCCC limestone quarry ,proceeding of the second Thailand symposium on rock mechanic,:293-308.
- Giani G., 1992. <u>Rock Slope Stability Analysis</u>. A.A. Balkema Publishers, Old Post Road, Brookfield, VT05036, USA
- Gokceoglu C., 2000, Discontinuity controlled probabilistic slope failure risk maps of the Altindag (settlement) region in Turkey , <u>Engineering Geology</u>, 55, (March 2000): 277-296
- GÜNTHER A., 2003, SLOPEMAP: programs for automated mapping of geometrical and kinematical properties of hard rock hill slopes, <u>Computers & Geosciences</u>, 29,: 865-875.

- Hoek and Blay, 1981. <u>Rock Slope Engineering</u>, Elsevier science publishers ltd,. New York, NY 10010, USA
- Kelkar M. and Perez G., 2002. <u>Applied geostatistic for reservoir</u> <u>characterization</u>.
- Kesimal A., Ercildi B. and Cihangir F., 2008. Environmental impacts of blastinduced acceleration on slope instability at a lime stone quarry, <u>Environmental Geology</u>: 381-389.
- Kim K., Geographic Information System (GIS) based stability analysis of rock cut slopes, , <u>Geosciences Journal</u> ,: 391-400
- Pumjan S., 1998. A localized probabilistic approach slope stability analysis, <u>Doctoral Dissertation</u>, Michigan technological university.
- Pumjan S. and Young D., 1999. Geotechnical site characterization in localized probabilistic terms, <u>Proceeding of 37th U.S. Rock mechanics symposium</u>
- Totone B.,2008, <u>User manual for ROCKTOPPLE: A speadsheet-based program</u> for probabilistic block toppling analysis, Geomechanic Research Group, Department of civil engineering, University of Toronto.

ภาคผนวก

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

ภาคผนวก ก การตรวจสอบสถานที่ตั้ง

ก1 การสำรวจสถานที่ตั้งบริเวณเหมืองหินปูนเขาวง

รูปที่ ก1บริเวณเหมือง O

รูปที่ ก2 บริเวณเหมือง N

รูปที่ ก3 หินปูนธรรมดา

รูปที่ ก4 หินปูนคุณภาพดี

รูปที่ ก5 หินแอนดิไซด์

รูปที่ ก6 โครงสร้างรูปประทุนคว่ำ

รูปที่ ก7 การวัดความหนาของชั้นหิน

1				
	E	N	Dip Direction	Dip
	699043	1624069	165	82
	699043	1624084	202	62
	699041	1624085	204	70
	699043	1624086	199	58
	699209	1624289	205	73
	699211	1624289	215	58
	699215	1624285	202	78
	699221	1624283	205	66
	699225	1624282	200	72
	699228	1624280	214	75
	699225	1624266	200	65
	699226	1624257	197	64
	699228	1624260	207	58
	699238	1624262	190	85
-	699251	1624245	200	79
	699252	1624246	210	84
	699253	1624234	212	66
	699256	1624234	188	67
	699266	1624235	197	63
	699267	1624231	200	70
	699103	1624396	210	74
	699028	1624439	194	57
	699033	1624428	205	60
	699037	1624423	205	55
	699044	1624414	204	62
1	699048	1624401	255	72
	699047	1624398	269	65
	699053	1624396	202	76
	699053	1624394	195	45
	699054	1624394	199	58
	699056	1624393	358	90
	699057	1624390	210	57
	699059	1624388	198	50
	699056	1624381	210	47
	699059	1624379	202	65
	699059	1624376	205	49
	699062	1624374	205	67

ตารางที่ ก1 ข้อมูลทิศทางการวางตัวของหินบริเวณเหมืองหินปูนเขาวง

Dip

Dip Direction

Е

Ν

E	Ν	Dip Direction	Dip	
699063	1624374	205	60	
699062	1624372	207	46	
699062	1624369	200	58	
699068	1624367	210	75	
699077	1624356	205	90	
699088	1624353	205	60	
699091	1624354	205	60	
699093	1624358	205	58	
699101	1624360	190	70	
699102	1624348	194	74	
699106	1624355	200	60	
699106	1624354	19 <mark>5</mark>	60	
699129	1624346	310	29	
699111	1624349	315	30	
699126	1624339	315	30	
699122	1624327	<mark>305</mark>	32	
699406	1624043	190	45	
699414	1624046	2 <mark>06</mark>	40	
699441	1624049	215	55	
699344	1624049	214	53	
699302	1624079	187	51	
699181	1624110	205	54	
699223	1624255	130	57	
699287	1624188	204	50	
699093	1624355	205	69	
697926	1624280	180	47	
697930	1624321	190	55	
697946	1624349	180	65	
698040	1624449	198	54	
698109	1624434	174	40	
698142	1624420	195	42	
698264	1624354	198	45	
698222	1624369	195	50	
698174	1624400	180	61	
699322	1624165	175	55	
699306	1624148	173	69	
699325	1624157	205	55	
699318	1624159	175	75	
699310	1624172	165	65	

E	Ν	Dip Direction	Dip
699310	1624174	178	60
699307	1624181	191	76
699305	1624179	279	41
699300	1624177	271	36
699302	1624182	276	34
699297	1624183	276	41
699294	1624174	184	55
699295	1624182	170	44
699296	1624184	180	77
699296	1624188	200	58
699291	1624182	197	52
699291	1624186	189	46
699291	1624189	204	52
699288	1624188	194	48
699296	1624193	194	51
699445	1624150	193	59
699447	1624149	186	51
699444	1624139	194	64
699430	1624153	180	60
699434	1624148	200	67
699431	1624153	202	53
699412	1624138	195	62
698917	1624321	177	44
698920	1624318	182	50
698930	1624237	209	51
698927	1624233	210	52
698929	1624320	216	50
698930	1624316	189	62
698936	1624316	186	64
698977	1624317	172	76
698975	1624314	198	73
698984	1624314	211	29
698986	1624318	214	65
698987	1624302	200	54
698984	1624304	255	70
698573	1624488	88	52
698584	1624485	88	65
698563	1624484	101	45
698568	1624492	170	75

E	Ν	Dip Direction	Dip
698573	1624491	165	70
698567	1624487	182	83
698553	1624487	200	55
698777	1624588	185	82
698774	1624588	183	81
698773	1624590	186	84
698766	1624589	202	69
698766	1624587	229	51
698756	1624576	186	31
698745	1624580	191	61
698742	1624580	195	63
698737	1624581	20 <mark>2</mark>	71
698739	1624586	199	85
698719	1624583	174	54
698727	1624583	169	54
698710	1624587	221	62
698683	1624576	174	76
698683	1624577	179	70
698674	1624575	174	68
698669	1624577	198	60
698666	1624574	197	66
698664	1624577	189	71
698660	1624579	184	79
698654	1624579	185	74
698649	1624586	188	56
698648	1624570	202	56
698646	1624580	106	74
698644	1624557	85	61
698644	1624560	103	66
698645	1624565	106	52
698634	1624573	104	61
698641	1624563	102	76
698637	1624555	84	73
698634	1624562	95	77
698630	1624578	108	56
698614	1624557	218	64
698611	1624561	223	42
698604	1624591	210	54
698605	1624573	224	44

	E	Ν	Dip Direction	Dip
	698602	1624573	229	65
	698604	1624554	83	44
	698603	1624558	97	36
	698604	1624573	99	37
	698605	1624550	81	41
	698599	1624534	101	59
	698595	1624557	232	29
	698582	1624550	202	71
	698575	1624548	227	67
	698570	1624561	230	43
	698570	1624555	232	39
	698565	1624537	193	59
	698564	1624539	212	71
	698561	1624531	203	70
A.Z.	698557	1624558	198	67
	698552	1624562	196	66
	698555	1624559	210	44
	698530	1624565	25	59
	698534	1624563	24	81
Lalasa IA	698539	1624548	15	72
GREEN WARD	698540	1624549	31	81
EN SINGLAS	698544	1624547	31	81
	698538	1624541	5	66
	698544	1624530	26	68
	698539	1624539	24	61
	69 <mark>855</mark> 1	1624542	18	70
0100 čon o	698552	1624529	23	64
ยทอพย	698546	1624518	20	51
4	698553	1624525	23	64
โมหากิ	698558	1624506	21	56
9 1 I A 19 9	698558	1624508	105	54
	698547	1624456	216	48
	698542	1624453	198	42
	698541	1624452	190	42
	698530	1624452	190	45
	698500	1624445	180	55
	698495	1624440	185	58
	698486	1624440	195	76
	698483	1624440	190	42

E	Ν	Dip Direction	Dip
698551	1624485	160	30
698535	1624584	120	50
698534	1624600	115	38
698538	1624603	192	33
698594	1624575	125	31
698604	1624567	175	50
698598	1624577	195	55
698599	1624582	182	62
698603	1624585	175	45
698634	1624587	200	51
698662	1624601	189	35
698701	1624606	20 <mark>2</mark>	39
698721	1624602	200	74
698173	1624390	186	58
698167	1624399	195	44
698159	1624409	190	61
698154	1624408	193	57
698142	1624425	<mark>19</mark> 7	53
698139	1624404	195	46
698132	1624412	189	62
698128	1624419	193	62
698123	1624415	192	59
698119	1624419	188	56
698110	1624420	175	57
698091	1624434	200	50
698078	1624438	194	66
698072	1624432	185	67
698069	1624436	198	70
698049	1624444	204	71
698007	1624460	210	60
697999	1624464	180	65
698031	1624214	195	70
698058	1624203	185	82
698102	1624191	175	35
698193	1624196	5	41
698207	1624197	5	47
698225	1624186	75	35
698226	1624184	180	66
698239	1624182	180	72

E	Ν	Dip Direction	Dip
698245	1624175	173	72
698278	1624177	11	80
698285	1624176	170	75
698297	1624176	195	64
698312	1624168	200	70
698330	1624168	175	45
698377	1624167	165	70
698381	1624162	194	46
698383	1624165	190	50
698394	1624160	177	44
698401	1624156	190	40
698412	1624158	182	45
698417	1624155	184	46
698431	1624150	195	52
698436	1624149	170	36
698867	1624194	195	71
698874	1624191	192	67
698857	1624192	188	68
698848	1624195	196	66
698850	1624206	200	69
698840	1624202	205	57
698839	1624202	194	62
698839	1624200	186	67
698792	1624219	202	58
69 <mark>878</mark> 8	1624222	195	55
698775	1624226	203	53
698771	1624223	199	52
698762	1624228	192	63
698750	1624231	195	57
698747	1624234	192	60
698689	1624241	188	53
698683	1624243	201	64
698675	1624246	192	57
698667	1624245	193	52
698665	1624247	204	51
698465	1624272	195	79
698457	1624275	189	70
698450	1624280	190	72
698441	1624276	182	71

E	Ν	Dip Direction	Dip
698439	1624267	185	59
698421	1624270	189	72
698422	1624280	198	69
698406	1624279	185	75
698401	1624275	189	66
698394	1624290	186	68
698395	1624293	193	75
697578	1623918	175	61
697589	1623909	192	63
697590	1623913	191	69
697585	1623930	195	59
697580	1623925	18 <mark>6</mark>	53
697581	1623918	195	65
697592	1623925	189	71
697598	1623924	186	56
697611	1623927	201	61
697611	1623924	188	61
697613	1623930	<mark>19</mark> 9	62
697613	1623931	170	65
697622	1623925	187	58
697625	1623923	193	54
697629	1623926	188	63
697633	1623923	186	64
697641	1623926	191	54
697646	1623922	204	54
697648	1623926	186	70
697655	1623924	191	63
697660	1623924	201	75
697665	1623926	193	70
697676	1623930	195	50
697688	1623927	186	58
697691	1623929	191	60
697696	1623936	196	75
697695	1623929	195	55
697738	1623913	189	60
697743	1623916	185	58
697745	1623915	186	72
697749	1623914	184	65
697754	1623914	187	64

E	Ν	Dip Direction	Dip
697775	1623940	189	84
697730	1623941	202	63
697727	1623939	198	65
697712	1623947	196	62
697680	1623947	184	65
697668	1623942	187	55
697651	1623940	196	48
697641	1623949	190	60
697598	1623941	193	68
697585	1623937	192	63
697520	1623935	185	58
697498	1623938	195	60

ยทรัพยากร เ์มหาวิทยาลัย

ภาคผนวก ข การทดสอบมวลหิน

ข1 ผลการทดสอบหาค่าความถ่วงจำเพาะของมวลรวม

รูปที่ ข1 รูปแบบการ<mark>ทดสอบหาค่าควา</mark>มถ่วงจำเพาะของมวลรวม

Determination	Sample 1	Sample 2
Weight of SSD Sample , B (g)	3140.6	2048.9
Weight of Sample in Water , C (g)	1982.9	1279.1
Weight of Oven-Dry Sample in Air, A(g)	3138.1	2038.5
Bulk Specific Gravity (Oven – Dry)	2.15	2.65
Bulk Specific Gravity (SSD)	2.15	2.66
Apparent Specific Gravity	2.72	2.68
Absorption (%)	0.08	0.51
Average Bulk Specific Gravity (Oven – Dry)	2.40	
Average Bulk Specific Gravity (SSD)	2.40	
Average Apparent Specific Gravity	2.70	
Average Absorption (%)	0.29	

ตารางที่ ข1 ผลการทดสอบหาค่าความถ่วงจำเพาะของมวลรวม

ข2 การทดสอบดัชนีกดจุด

รูปที่ ข2 การทดสอบดัชนีกดจุดแบบแนวด้านหัวท้าย

รูปที่ ข3 การทดสอบดัชนีกดจุดแบบการแนวด้านข้าง

รูปที่ ข4 การทดสอบดัชนีกดจุดแบบแท่งตัวอย่างรูปใด ๆ

รูปที่ ข5 ตัวอย่างหินหลังจากทำการทดสอบดัชนึกดจุดแบบหัวท้าย และ ด้านข้าง

รูปที่ ข6 ตัวอย่างหินหลัง<mark>จากทำการทดสอบ</mark>ดัชนึกดจุดแบบตัวอย่างรูปใด ๆ

Axial Tes <mark>t (k</mark> N)	ls (MPa)	UCS	Diametral (kN)	ls(55)	UCS
0.5	0.17	3.97	6	1.98	47.60
2.3	0.76	18.25	7.5	2.48	59.50
15	4.96	119.01	12	3.97	95.21
6.5	2.15	51.57	10.5	3.47	83.31
15	4.96	119.01	17	5.62	134.88
Average	2.60	62.36	Average	3.50	84.10

ตารางที่ ข2 แสดงผลการ<mark>ทดลองการทดส</mark>อบดัชนีกดจุด แบบแท่งตัวอย่างรูปทรงกระบอก

ตารางที่ ข3 แสดงผลการทดลองการทดสอบดัชนึกดจุด แบบแท่งตัวอย่างรูปใด ๆ

Irregular (kN)	Remark	ls (MPa)	UCS
13	D = 4cm	8.13	195.00
15	D = 3cm	16.67	400.00
18	D = 3.8cm	12.47	299.17
16	D = 3.7cm	11.69	280.50
14	D = 5.3cm	4.98	119.62
15	D = 4.6cm	7.09	258.86

ข3 การทดสอบกำลังอัดแกนเดียว

รูปที่ ข7 การทดสอบกำลังอัดแกนเดียว

รูปที่ ข8 ลักษณะการแตกของตัวอย่าง

					compressive Strength
Sample	D (mm)	L(MM)	Stress (KN)	Area(m2)	(kN/m ²)
1	55	120.5	98.8	0.00237	41582.49
2	55	119	96.1	0.00237	40446.12
3	55	118.5	175.8	0.00237	73989.89
4	55	119	64.7	0.00237	27230.64
5	55	118	46.2	0.00237	19444.44
6	55	118	54.5	0.00237	22937.7
Average					37605.21

ตารางที่ ข4 ผลการทดสอบกำลังอัดแกนเดียว

ข4 การทดสอบกำลังอัดสามแกน

รูป ข9 การทดสอบกำลังอัดสามแกน

รูป ข10 แท่งหินตัวอย่างหลังทำการทดสอบ

ตารางที่ ข5 ผลการทดสอบกำลังอัดสามแกน

psi	MPa	Stress (kN)
500	3.447	129.92
800	5.515	1 <mark>64.33</mark>
1000	6.894	147.91
1400	9.653	232.21
1800	12.409	229.2
2000	13.789	230.89
716	9 11 3	no

รูปที่ ข11 กราฟการพังทลายตามทฎษฎี Mohr-Coulomb โดยใช้โปรแกรม RocLab

ข5 การทดสอบแรงเฉือนโดยตรง

รูปที่ ข12 การทดสอบแรงเฉือนโดยตรง

รูปที่ ข13 ตัวอย่างก่อนการทดสอบแรงเฉือนโดยตรง

รูปที่ ข14 ตัวอย่างหลังจากการทดสอบแรงเฉือนโดยตรง

Vertical Stress(MPa) =		1.97	
Shear Force Hor. displace		Shear Stress	
(kN)	(mm)	(MPa)	
2	0.02	0.39	
4	0.05	0.79	
6	0.26	1.18	
8	5.18	1.58	
10	5.77	1.97	
12	6.05	2.36	
14	6.24	2.76	
16	6.37	3.15	
18	6.51	3.54	
20	6.63	3.94	
22	6.72	4.33	
24	6.84	4.73	
26	6.95	5.12	
28	7.04	5.51	
30	8.11	5.91	
32	8.24	6.30	
34	8.32	6.70	2
36	8.41	7.09	ଗ
38	8.53	7.48	
40	8.61	7.88	

ตารางที่ ข6 การทดสอบหาแรงเฉือนโดยตรงภายใต้แรงแนวตั้งขนาด 10 kN
Vertical Stress(MPa) =		2.95
Shear Force	Hor. displace	Shear Stress
(kN)	(mm)	(MPa)
2	0	0.39
4	0.02	0.79
6	0.12	1.18
8	0.48	1.58
10	1.12	1.97
12	1.74	2.36
14	2.11	2.76
16	2.28	3.15
18	2.49	3.54
20	2.51	3.94
22	2.66	4.33
24	2.76	4.73
26	2.83	5.12
28	2.95	5.51
30	3.06	5.91
32	3.12	6.30
34	3.21	6.70
36	3.32	7.09
38	3.39	7.48
40	3.49	7.88

ตารางที่ ข7 การทดสอบหาแรงเฉือนโดยตรงภายใต้แรงแนวตั้งขนาด 15 kN

Vertical Stress(Vertical Stress(MPa) =	
Shear Force	Hor. displace	Shear Stress
(kN)	(mm)	(MPa)
2	0.05	0.39
4	0.03	0.79
6	0.07	1.18
8	0.31	1.58
10	0.55	1.97
12	1.31	2.36
14	1.76	2.76
16	2.02	3.15
18	2.21	3.54
20	2.29	3.94
22	2.42	4.33
24	2.54	4.73
26	2.62	5.12
28	2.71	5.51
30	2.82	5.91
32	2.93	6.30
34	2.99	6.70
36	3.08	7.09
38	3.15	7.48
40	3.26	7.88

ตารางที่ ข8 การทดสอบหาแรงเฉือนโดยตรงภายใต้แรงแนวตั้งขนาด 20 kN

รูปที่ ข15 กราฟความสัมพันธ์ระหว่างการเคลื่อนที่และ แรงเฉือน

4	4	4	<i>ହ</i> ସ
ตารางท ข) ความเครยดแบ	วดงและควาร	แเคบเฉจบ
		00140001011010	

Vertical Stress(MPa)	Shear Stress (MPa)
1.97	1.58
2.95	2.76
3.94	3.15

รูปที่ ข16 กราฟความสัมพันธ์ระหว่างความเครียดแนวดิ่งและความเค้นเฉือน

ประวัติผู้เขียนวิทยานิพนธ์

นายไกรวิทย์ ปุญโญกุล เกิดวันที่ 2 เมษายน 2530 ที่จังหวัดพังงา สำเร็จการระดับ มัธยมศึกษาตอนต้นที่โรงเรียนทับปุดวิทยา จังหวัดพังงา ระดับประกาศนียบัตรวิชาซีพ สาขาโยธา ที่มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ และระดับปริญญาตรีวิศวกรรมศาสตร บัณฑิต สาขาวิศวกรรมทรัพยากรธรณี คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ในภาคปี การศึกษา 2551

ปัจจุบันได้เข้ารับการศึกษาต่อในหลักสูตรวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชา วิศวกรรมทรัพยากรธรณี ภาควิชาวิศวกรรมเหมืองแร่และปิโตรเลียม คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ในปีการศึกษา 2552 และยังเป็นวิศวกร สังกัดส่วนทรัพยากรธรณีและ เหมือง ฝ่ายวิศวกรรมและเทคนิค บริษัท เอสซีจี ซิเมนต์ จำกัด

