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CHAPTER 1

INTRODUCTION

Motivation and applications of computer simulations

In the past few years, computer technelogy has rapidly developed.
Computers play a significant role in many ficlds, including studies and research.
Especially Compurational Seience makes nse of computer simulations instead of
experiments for evaluwating interesting informations of systems, particularly, of
those systems for which experuments cannot be easily performed. Computer
simulations have been enlarged and merged into a new field of stochastic
simulations and extended to cover quantum mechanical as well as classical
systems.

The problems in statistical mechanics are exactly soluble. By this, a
complete specification of the microscopic properties of a system (such as a
Hamiltonian of an idealized model like the perfect gas or the Einstein crystal)
leads directly, and perhaps easily to a set of interesting results or macroscopic
properties. When not being exactly soluble, the problem succumb readily to
analysis based on a straightforward approximation scheme. Computers may have
an incidental and calculational part to play in such work: Computer simulations
have a valuable role to play in providing essentially exact results for problems in
statistical mechanics which would otherwise only be soluble by approximate
methods, or might be quite intractable. In this sense, computer simulation is a test
of theories and, historically, simulations have indeed discriminated between well-
founded approaches (such as integral equation theories) [1] and idea that are
plausible but, in the event, less successful (such as the old cell theories of liquid)
[2-3]. The results of computer simulations may also be compared with those of
real experiments

Computer simulations can fill the gap between theory and experiment. As
mentioned above, some quantities or behaviour may be impossible or difficult to
measure in an experiment. With computer simulations such quantities can be



computed. Computer simulations provided a direct route from the microscopic
details of a system to macroscopic properties of experimental interest.

Computer simulation methods, such as Monte Carlo (MC) practically
introduced by Metropolis [4], and Molecular Dynamics (MD), introduced by Alder
[5], are important tools for studying statistical and dynamical properties of liquids
and solutions. The results from Monte Carlo and Molecular Dynamics methods
have been published [for example,6-26], displayed the structural properties, for
example, molecular distribution, molecular orientation, coordination number and
energy distribution. Molecular Dynamics methods show not only the structural
properties but also the dynamical properties, for example, in terms of velocity
autocorrelation function, self diffussion coefficient, intramolecular geometry and
molecular motion.

A non-aqueous solvent system

Studies of the structure of aqueous solutions, particularly of salts in water,
have been possible for long time already, both by experimental and theoretical
approaches. Therefore, the solvation structure and related properties of numerous
systems are already known.

A non-aqueous solvent of widespread interest is ammonia. Several
differences between water and ammonia are compared. Water has the higher low-
frequency relative permittivity (80 versus 22 at 0° C) and the lower polanzability
(1.45 A3 versus 2.26 A3 ). Hydrogen bonding is more important in solvent-solvent
interactions in water than ammonia. In addition, the ammonia molecule is more
stable against dissociation in the liquid than the water. The equilibrium
concentrations of H' and OH™ in water are near 0.1 p.p.m. as compared to H' and
NH" concentrations of ‘10" p.p.m.. in ammonia. On the other hand, the water
molecule is more stable in the vapour phase.

Most studies of ammonia solution systems, have focussed on its solution
of alkali or alkali earth metals because of their remarkable properties such as high
electrical conductivity [27-29]. Alkali or alkali earth metals can be dissolved to
large amounts in liquid ammonia, showing the characteristics of liquid metals.
When the solution has the concentration range of metal between 1-3 mole percent
metal, the solution show the characteristics of solvated electron. Metal is dissolved
to metal 1ons and electrons that would be solvated by ammonia molecules. If the



concentration of the metal has the range between 3-8 mole percent metal, the
properties of the solution are typically of a transition state that cannot indicate the
exact characteristic. The metal-ammonia solutions containing more than 8 mole
percent metal may be described as a binary mixture of solvated metal ions and
solvent molecules, permeated by the free electron. These systems have been
studied and compared by means of both experimental and theoretical methods.
However, the study of most other metals in liquid ammonia is difficult or
impossible by contemporary experimental apparatus, which is not capable of
supplying results for very dilute solution. Therefore, considering solutions
containing little metal 1s more satisfactorily treated by theoretical than
experimental approaches. The dilute solution containing one cation or/and one
anion in a solvent is a good model and a useful tool for understanding the effect of
salt to the solvent species surrounding it.



CHAPTER 2

QUANTUM THEORY

A theoretical model has the concept of an approximate solution of the
Schrédinger's equation. It should possess a number of important characteristics.
First, it should be both unique and well defined. The procedure for obtaining an
energy and a wavefunction should be completely specified in terms of nuclear
positions, numbers and spins of the electrons in the molecule. The second
desirable feature is continuity, all potential surfaces should be continuous with
respect to nuclear displacements. Special procedures must not be used for
symmetrical molecules which might lead to results which are discontinuous with
those for structures in which the nuclei are slightly displaced to nonsymmetrical
positions. A theoretical model should also be unbiased. No appeal to "chemical
intuition" should be made in setting up the details of the calculation. For example,
while calculations in which electrons are assigned to certain "bond orbitals" might
be satisfactory for many molecules, there are not suitable for those nuclear
configurations where the locations of "bonds" are apt to be ambiguous. A theory
can only be used for the analysis of such concepts as bonding if presuppositions
have not been built into its formulation.

Another important requirement for a satisfactory theoretical model is size-
consistency, relative errors involved in a calculation should increase more or less
in proportion to the size of the molecule. This 1s particularly important if the
model is to be used in a comparative manner, relating properties of molecules of
different sizes. While it 1s generally not possible to satisfy this condition fully, it is
often possible to construct models that are size-consistent for infinitely separated
systems. This-means that application of the model to a system of several molecules
at infinite separation will yield properties that equal the sum of the same properties
for the individual molecules.



2.1 Quantum Mechanics Methods

Quantum mechanics methods are based on the following principles ;

- Nucleil and electrons are distinguished from each other.

- Electron-electron (usually averaged) and electron-nuclear
interactions are explicit.

- Interaction are governed by nuclear and electron charges (i.e.
potential energy) and electron motions.

- Interaction determine the spatial distribution of nuclei and
electrons and their energies.

The search for accurate electronic wavefunctions is usually based on
molecular orbital (MO) theory. Molecular quantum mechanical methods are
classified as either ab initio or semiempirical. Semiempirical methods use a
simpler Hamiltonian than the correct molecular Hamiltonian and use parameters
that compensate for neglecting some of the time consuming mathematical terms in
Schrédinger's equation. The parameters used by semiempirical methods can be
derived from experimental measurements or by performing ab initio calculations
on model systems. In contrast, an ab initio calculation uses the full Hamiltonian
and does not use experimental data other than the values of the fundamental

physical constants. The differences between these methods are described and list,
for example,

e Ab initio

- Limited to about fifty atoms and best performed using a high
performance computer.

- Can be applied to all kind of molecule, and molecular fragments
(e.g. catalytic components of an enzyme).

- Vacuum or implicit solvent environment.

- Can be used to study ground, transition, and excited states.



e Semiempirical

- Limited to some hundred atoms.

- Can be applied to mostly only to organic molecules, including
small oligomers (peptide, nucleotide, saccharide).

- Can be used to study ground, transition, and exited states
(certain methods).

2.2 The Schrédinger's equation

Schrédinger's equation addresses the following questions ;
- Where are the electrons and nuclei of a molecule in space?
==> configuration, conformation, size, shape, etc.
- Under a given set of conditions, what are their energies?
==> heat of formation, conformational stability, chemical
reactivity, spectral properties, etc.

According to quantum mechanics [30], the energy and many properties of
a stationary state of a molecule can be obtained by solution of the Schrédinger
partial differential equation,

Hy = Epy O NJ . (2.1),

where y is the normalized total wavefunction of the system and H is the
Hamiltonian, a differential operator representing. the total energy. E is the
numerical value of the energy of the state that relative to a state in which the
constituent particles (nuclei and electrons) at infinitely separated and at rest.  is
the wavefunction. The square of the wavefunction, . (or |y|? if y is complex) is
interpreted as a measure of the probability distribution of the particles within the
molecule. The total energy is thus obtained, as expectative value of H,

E = <y[Hly >



The Hamiltonian H, like the energy in classical mechanics, is the sum of
kinetic and potential parts,

H = T+V

L e N Bl Wl W

i<j lj A<B

The kinetic energy operator T is the sum of differential operators and the
potential energy operator, V is the coulomb interaction.

T E "%ZM V3= Zvl ............. (2.4),
A
vl A -ZZE’”ZEL yyLals @.5),
A il lia i<j l“ij A<B AB
where V? = 52 + f?: + é‘: , T, M, Z, and m are distance, mass of nuclei,
ox" oyt Oz

charge of nuclei, and mass of electrons, respectively. A and B are nuclei, and 1, j
represent electrons.

2.3 Separation of nuclear motion : Born-Oppenheimer approximation

The first approximation of Schrédinger's equation is a non-relativistic
model of electrons in the system. The primary major step in simplifying the
general molecular problem in quantum mechanics is the separation of the nuclear
and electronic motions. Because the nuclear masses are much greater than those of
electrons, therefore, nucler move ‘much more slowly. As a consequence, the
electrons 1n a molecule adjust their distribution to changing nuclear position
rapidly. This make it a reasonable approximation to suppose that the electron
distribution depends only on the instantaneous position of the nuclei and not on
their velocities. This separation is frequently called the adiabatic or Bomn-
Oppenheimer approximation [31], therefore, the kinetic energy of the nuclei can
be neglected. The repulsion between the nuclei, thus becomes constant and can be



separately calculated. Consequently, the electronic Hamiltonian, corresponds to
motion of electrons only in the field of fix nuclei,

HeeE = i~ ' (2.6)
where T¢*¢ is the electronic kinetic-energy operator,
1
Telee = —=YVi i 2.7).
22 2.7)

2.4 Molecular orbital theory and linear combination of atomic orbital
(LCAO) approximation

Molecular orbital theory is an approach to molecular quantum mechanics
which use one-electron functions or orbitals to approximate the full wavefunction.
This approximate treatment of electron distribution and motion assigns individual
electrons to one-electron function termed spin orbitals. These comprise a product
of spatial functions, termed molecular orbital, and a spin function, (a or ).

For a wavefunction, this approximation is equivalent to setting up the n-
electron probability function as a product of n one-electron functions, 1.e.,

pelee = 3 (Dn(2)23(3) cenorsnss ) A e (2.8),

or as the product of spatial wavefunctions and spin wavefunctions of the form,

el = (1)(1)9) (2)B2).... 0p(n-1)ax(n-1) 0y p(mB(n)

This is so called the Hartree product. However, such a wavefunction is not
acceptable, as it does not have the property of antisymmetry that correctly follows
the Pauli antisymmetry principle. To ensure antisymmetry, the spin orbitals may
be arranged in a determinantal wavefunction, which is widely known as Slater
determinants,
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The one-electron spin-orbital are still fairly complicated functions. In
practical application of the theory, a further restriction is imposed, requiring that
the individual molecular orbitals be expressed as linear combinations of a finite set
of N prescribed one-electron functions knows as basis functions (¢). These
functions are often called atomic orbitals. A molecular orbital (¢;) is then obtained
by a linear combination of atomic orbitals (LCAO method),

0 = U0 N —— (2.11),

where ¢ ; are the molecular orbital expansion coefficients.

2.5 Basis functions

The quality of the molecular orbitals is related to the quality of the basis
functions used. Two types of atomic basis functions have recieved widespead use,
Slater-type atomic orbital (STOs) [32] and the Gaussian-type atomic functions
(GTOs). The STOs are labelled like hydrogen atomic orbitals and are mostly used
for the calculations of small molecules. The type form of STOs is denoted by the
expression,

51 INFU-Brive=to ¥ O 0 1 O L 2.12);
where g, n, Y|, are the exponent coefficient, principle quantum number and the
angular part of the wavefunction, respectively.

The GTOs are expressed as,

$° = Nr"Vexp(-8, )Y, (0.6) 000 e 2.13).



Gaussian-type functions were introduced into molecular orbital
computations by Boy [33]. They are less satisfactory than STOs as representations
of atomic orbitals, particularly, because they do not have a cusp at the origin.
Nevertheless, they have the important advantage that all integrals in the
computations can be evaluated explicitly without recourse to numerical
integration.

2.6 Hartree-Fock theory and Hartree-Fock self-consistent-field
methods

Since we have deseribed how a determinantal wavefunction may be
constructed from molecular orbitals, and in turn, how the orbitals may be
expanded in terms of a set of basis functions. It remains to specify a method for
fixing the expansion coefficients. This is the realm of Hartree-Fock theory.

Hartree-Fock theory is based on the variational method in quantum
mechanics [34]. This method may be applied to determine optimum orbitals in
single-determinant wavefunctions. We select a basis set for orbital expansion, and
the coefficients ¢ ; may then be adjusted to minimize the expectation value of the
energy E,

OE
Oc

= 0 (Al (2.14).
78|

The resulting value of E will then be as close to the exact energy as is
possible within the limitations imposed by the single-determinant wavefunction
and the particular basis set employed. We first deal with these equation for close-
shell systems, The variational condition leads to a set of algebraic equation for c;
were derived independently for the close-shell wavefunction (obtained from Slater
determinant) by Roothaan [35] and by Hall [36].- The Roothaan-Hall equation are
in form,

N
Z(F,uv_gispu)cm = 0 p=123..N  «cocws (2.15),
v=1

10
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N N ,

b chisyucui = 1 s (2.16).
u=lv=1

where, ¢; is the one-electron energy of molecular orbital ¢;, S, are the elements

of NxN matrix, termed the overlap matrix,

Sii S f PP, Ddx dygdzy (2.17),
and Fpu are the elements of another NxN matrix, termed the Fock-matrix,
L ho=L
Fup® = HATH + P, [(uvlAio—=(pAvo)] ... (2.18).
). H =25 Ao )

Here, H;fg' 1s a matrix representing the energy of a single electron in a

field of "bare" nuclei. Its elements are,

I 4 ACOTC
H‘;L = ¢#(1)H (I)Qf'u(l)dxldyldzl ........... (219),
core 1 5 n M ZA
Wy, Ve (2.20).
j=1 Ailrm

Here, Z, is the atomic number of atom A and summation is carried out
over all atoms. The quantities ( pv | Ao ) are two electron repulsion integrals,

4 1§ 4.«
(ﬂdim - Jj¢p(1}¢v(l)(_)¢j’(2)¢a(2)dx1dyldzldx2dy2dz2
2

The elements of the one-electron density matrix, P s have the form

occ =
Pip = 22(:/1ir:c,.i I i
i=1

(S0
(8]
8]
—



The Roothaan-Hall equation can be written more compactly as the single
matrix equation,

FC = SCe

where F is the Fock operator matrix, C is the matrix of the linear combination

coefficients ¢ ;, S is the overlap matrix and € is the diagonal matrix of the one-

electron-energy eigenvalues.

A guess 1s made for the set of molecular orbital expansion coefficients to
construct a trial molecular orbitals. The first matrix of the Fock-operator is
constructed using the first guess of ¢ ;. From the first approximation of the Fock-

matrix, the new matrix of C can be obtained by solving the Roothaan-Hall
equations. The process i1s repeated until the linear combination coefficients C
approach constant values, normally 10 Hartree, yielded the total electronic
energy. This technique is frequently called self-consistent-field (SCF) procedure.

2.7 Basis set superposition error (BSSE)

Performing of SCF procedure, the interaction energy, AE between species
A and species B are defined by the formula,

AE = EAB (1') - (EA + EB) ........... (224),

where E, and Eg are the total energies of the isolated species A and B,
respectively. Eag (1) is the total e€nergy when the species A and B are brought to
the internuclear at distance r. If finite basis sets are used to calculate molecular and
atomic energies, an erroneous result for AE would be obtained when the above
formula is used.

The erroneous result is called the basis set superposition error [37]. The
reason 1s from the fact that at the finite separation of two species sites A and B, the
basis set located on B improves the incomplete basis set on A, consequently,
lowers the essentially energy of species A, and vice versa. To estimate this effect,
one will calculate the energy of species A by keeping all basis sets on the site

12
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species A and B but remove the species B by representing of the ghost orbital on
species B at the distance r. This quantities are denoted as E,g) and Ep,).
Therefore, the corrected interaction energies formula, AE would be

AEC = EAB (1') - [EA(B) + EB(A]] ........... (225)

2.8 Interaction potential in the statistical simulation

Quality of the results obtained from a computer simulation of Monte Carlo
or Molecular Dynamics 1s depends mainly on the quality of the potential functions
used. In general, the potential energy of the system containing N atoms may be
derived into terms depending on the coordinates of individual atoms, pair, triplet,
etc.,

AE & Y E )+ 22 Es(r,r)+ 22 2 E(r,r,0)+....

1= 1)<k

The first term, E,(r;), represents the effect of an external field (for
example, the container wall). The second term, Ey(ri,1j), represents the pair
potential, is the most important term depends only on the magnitude of the pair
separation rjj = [r-rj|, known as the pairwise additive approximation. The
remaining term are three-body term, E;, four-body term, E,, etc., often meant to as
non-additive corrections. In case of condensed systems, three-body term may be
become very significant. However, involving the time consuming on a computer,
this term was not included. Four-body term or higher are expected to be small in
comparison to E;; Ej.

Fortunately, ' the pairwise approximation gives @ a' remarkably good
description of liquid properties because the average three-body effects can be
partially include by defining an "effective" pair potential. By this, the potential
energy can be written in the form,

AB = YEBEMIZIESET 0 s (2.27).

1<)
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One of the commonly function used is a simple Lennard-Jone 12-6
potential,

VY@ = 44(o/n)*-(o/D)°] (2.28)

where € and o are the appropriate parameters. This provides a reasonable
description of attractive tail of the form 1/r%, and repulsive interaction of the form
1/r12,

There are some proposes of investigating general properties of liquids, and
for comparison with theory. Three forms, which although unrealistic and very
simple and convenient to use in computer simulation, are

a) The hard-sphere potential

0 (r<O)
Wl CR AV 2.29
y { 0 (oS0 22
b) The square-well potential
00 (r<oy)
VW) =0/, 000 e (2.30),
0 (0, 1)
¢) The soft-sphere potential
V(@) =, o/t (2.31).

where m is a parameter, often chosen to be an integer. The soft-sphere potentials

contain no attractive part. The differences of these three potentials are shown in
Fig. 19,
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Figure 2.1 a) The hard-sphere potential ; b) The square-well potential ;
¢) The soft-sphere potential with repulsion parameter K=1

2.9 Specification of the system for this study

The Molecular Dynamics simulation have been performed for three
systems, consisting of,

1) One K™ and 215 ammonia molecules at an ‘average temperature
of 240 K, without consideration of long-range interaction,

2) One I" and 215 ammonia molecules at an average temperature
of 240 K, without consideration of long-range interaction,

3) One K", one I” and 214 ammonia molecules at an average
temperature of 240 K, taken into account long-range interaction by applying
Ewald summation methods for ions.
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2.9.1 Intermolecular potential energy functions

The intermolecular potential energy functions have the concept of the
potential energy surface for molecules, defined by the Born-Oppenheimer
approximation for the separation of electronic and nuclear motion. Therefore, the
potential energy surface can equal be thought of as the potential for the movement
of atoms within a molecule or atoms in collision with one another.

In this study, the Molecular Dynamics simulations of dilute solution
system containing one K', one I', and one KI in liquid ammonia will be
performed. The intermolecular pair potential functions for K'-ammonia, I'-
ammonia, K'-I", and ammonia-ammonia are required. The ammonia-ammonia
intermolecular pair potential was obtained from literature [26] details given in
Table 2.1, using a flexible model for ammonia by Spirko [38],

Table 2.1 Ammonia-ammonia intermolecular potential, energies are given
in units of kcal/mol and distances in A .

Vian() = 213.74/r + 802340.66/r12 - 195.88/16
Vau(r) = -71.24/r + 0.15007{exp[-4.6(r-2.4)] - 0.003exp[-2.3(r-2.4)]}
Viu(r) = 23.75/r +700.32exp(-3.7r)

The other intermolecular pair potentials had to be newly developed using
ab initio calculations, in which the BSSE was corrected by applying the
counterpoise method.

2.9.2 Construction of the intermolecular pair potential functions

To construct the K+-ammonia, ["-ammonia and K'-I" intermolecular pair
potentials by means of quantum mechanical calculations, the following steps are
proposed ; (1) finding of the suitable basis set for the quantum chemical
calculations, (i1) selection of dimer geometries, (iit) performance of the SCF
calculations, corrected by applying the counterpoise method, (iv) fitting of



computed interaction energies to analytical functions, and (v) testing and
improving of the quality of the functions.

(1) Finding of the suitable basis sets

We chose several kind of basis sets for the investigated systems. For the
K*-ammonia and I"-ammonia systems, ammonia with bond lengths and bond angle
from experiment [39] (N-H distance = 1.0124A and H-N-H angle = 106.7°) was
fixed at the origin of cartesian coordinate system, then, moved the ion (K™ or I') at
numerous positions (see details in the step (i1)). For K*-I" system, we fixed one ion
(K" or I') at the origin, then, put the another one at various distances.

Each basis sets used, we calculated total energies of each monomer,
ammonia molecule and ion, and stabilization energies for pair of species and
evaluated the BSSE by applying the counterpoise procedure. The best basis sets
should give the lowest BSSE value at the corresponding distance, therefore, we
compare and select the best one for the model systems.

(11) Selection of geometries

For the K -ammonia and I -ammonia system, we fixed the ammonia
molecule at the origin of cartesian coordinate system, then, ion (K" or I") was
placed at numerous positions within the space around ammonia molecule, where

0°<6<180° and 0°<$<60° (according to its C;y symmetry) as shown in Fig. 2.2.
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Figure 2.2 Definition of geometric variables for the configurations of ion-
ammonia system

Due to the Cyy symmetry of the ammonia molecule, only one-sixth of the
whole space around molecule is required. Varying of the distance, r is based on the
fact that it is necessary to extend the points to a distance where interaction energy
approach zero. It should normally be at least equal to the cut-off limit employed in
the simulation (see CHAPTER 3), except cases where the interaction energy
approach zero before reaching this cut-off limit. The nearest distance also should
relate to interparticle repulsion for low-temperature simulations for the reason that
molecule would not reach at such configurations. By the way, it is very simply
applied for K'-I" system by fixing one ion (K' or I') at the origin; then, the
another ion was moved.

(ii1) Performance of the SCF calculations

This calculations were performed by using Gaussian92 program. The
suitable basis sets, selected from the step (i) are the extended basis sets with
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double zeta quality, and taken from reference [40] for K* and I', and the DZP
basis sets from reference [41] for ammonia molecule. Number of energy points to
construct the intermolecular potential functions are depended on the complexity of
the system. The BSSE i1s corrected for all data points.

(1v) Fitting of computed interaction energies

All points of interaction energies of the pairs obtained from SCF
procedure with BSSE correction, were fitted, using a multidimensional non-linear
least-square procedure of the form,

AE -

FIT

O8RSO e (2.32),
1

=

" |

where f(r;) denotes for potential energy function of r;, the distance between the i-th
atom of ammonia and ion (K or I", n=4) or between the K™ and I" (n=1). The
result was formed in mathematical equation. The typical form and adjustable
parameters for each function will be given in CHAPTER 4.

(v) Testing and inproving of the functions

The procedure suggested by Beveridge [42] was used for testing the
functions obtained from SCF calculations. The quality of the functions will be
considered in two ways. First, the standard deviation of the interaction energies
obtained from SCF method, AEgcp (equivalent to AE and AE. from equation
(2.24) and (2.25), respectively), and from the optimized function, AEgt, should
give the acceptable value, normally with a range of 5 % [43]. In addition, the
minimum energy point that shown the corresponding between the stabilization

energy and distance obtained from AEgcr and AEg;r have to be take place at same
distance:

2.9.3 Investigation of non-additivity of pair potentials

To investigate how much the three-body effect influences the
intermolecular pair potential, SCF calculations only for K'-(NH;), complexes

with n = 2,3,4,6 and 8 were performed. Due to a weak interaction between I” and
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ammonia, the non-additivity effect will not be considered. The K" was fixed at the
origin of cartesian coordinate system and ammonia molecules were positioned as
Cy, D3y, Ty, Oy, and cubic symmetries with respect to nitrogen atoms for n = 2, 3,
4, 6 and 8, respectively. The geometries of their complexes are shown in Fig. 2.3.

(1) (i) (ii1)

(iv) (v)

Figure 2.3 Geometries of their K+—(NH3),, complexes, (1) n=1, (ii) n=2,
(111) n=3, (iv) n=4, (v) n=6 and (vi) n=8



21

The n K -nitrogen distances were optimized simultaneously. The average

binding energy per ammonia molecule, AE,;, is computed as,
AE,,, = {EML,]-EM]-E[L.}/n ... (2.33),

where E[ML_], E[M] and E[L,] denote the total energies calculated from the SCF
method for the complexes in the K'-(NH;), configurations, for K and for n
ammonia molecules in the corresponding I(Jr-(NI-Ig,),[l configurations, respectively.

The ab initio calculations have been performed on a high performance
workstation (IBM RISC/6000) at the Austrian-Thai Center for Computer Assisted
Chemical Education and Research, Department of Chemistry, Faculty of Science,
Chulalongkorn University.

In order to evaluate possible errors of the assumption of pairwise
additivity of interaction due to many-body effects, average pair interaction
energies between K* and ammonia molecules in K'-(NH;), configurations were
calculated and defined as,

AE s = i{E[MLi]-E[M]—E[Li]}/n ........... (2.34),

i=1

where E[ML, ] and E[L;] are the total energies of any of the K*-(NH;) pairs in the
K*-(NH;), complexes and of the ammonia monomer.

The corresponding percentage of non-additivity, %E; and %E,, together
with the ligand-ligand repulsion energies, AE,;, have been defined,

%E, = 1000—-AELTY/AELTH 0 (2.35)

%E;) = | 1000+ AE_[1/|AE

JSNNNS e

AE, = E(L)—0E@ — = ... (2.37).



CHAPTER 3

MOLECULAR DYNAMICS METHOD

Computer simulations provide a direct route from the microscopic details
of a system (the masses of the atoms, the interaction between them, molecular
geometry etc.) to macroscopic properties of experimental interest (the equation of
state, transport coefficients, structural order parameters, and so on).

For a system of N atoms, let us use the abbreviation I" for a particular
point in phase space which has 6N dimensions, and suppose that we can write the
instantaneous value of some properties A (it might be the potential energy, density,
heat capacity etc.) as a function A(T"). This function will change because of the
involving in time of the system. It is reasonable to assume that the experimentally

observable 'microscopic' property A is really the time average of A(I) taken
over a long time interval:

Agps F ShZGme - 0 (1)) >1ime

1 t obs
lim —]  A(T(t)dt
Tobs tops O

In fact, we clearly cannot hope to extend the integration for a long infinite
time, but might be satisfied to average over a long finite time tg,, as the equations
of motion are usually solved on a step-by-step basis, i.e. a large finite number T,

of time steps, of length 8t = ty /Ty, are taken. In this case, we may write the
equation (3.1) in the form,

]_ r|:|lu
WA AL T1+1A- T A0S 1Sl (3.2).

Tabs T=1
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In the summation, t simply stands for an index running over the
succession of time steps.

The calculation of time average by Molecular Dynamics method is not the
approach to thermodynamic properties implicit in conventional mechanics.
Because of the complexity of the time evolutional of I'(t) for large number of
molecules. Gibbs suggested replacing the time average by the ensemble average.
We regard an ensemble as a collection of points I' in phase space that are
distributed according to a probability density p(I'). This function is determined by
the chosen fixed macroscopic parameters (NPT, NVT etc.), so we use the notation
PNPT> PNVT> OF, In general, p.,.. Each point represents a typical system at any
particular instant of time and evolved in time. According to the usual mechanic
equations of motion, each system quite independently of the other systems.
Consequently, in general, the phase space density pen(I") will change with time.
To be useful, the prescription should satisfy some sensible conditions ;

a) the probability density pe,(I') for the ensemble of interest
should not change as the system evolves;

b) any 'reasonable’ starting distribution p(I") should tend to this
stationary solution as the simulation proceeds;

c) we should be able to argue that ergodicity holds, even though
we cannot hope to prove this for realistic systems.

If these conditions are satisfied, then we should be able to generate, from
an initial state, a succession of state points which, in the long term, are sampled in
accordance with the desired probability density pe,(I'). In this circumstances, the
ensemble average will be equal to a kind of 'time average',

1 rdn
Agyy = SAZ = —2 A(®) e @-Pe--(3.3).
Tobs =1

Molecular Dynamis is concerned with molecular motion and time
evolution. The aim of a Molecular Dynamics simulation is to compute
macroscopic properties of a chemical system assuming essentially that the
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microscopic interaction potentials between the atoms and molecules constituting
the system are known. The following assumptions for classical Molecular
Dynamics simulations are required;

- The atoms and molecules constituting the chemical system are
represented (modelled) by point masses and rigid bodies subject to the law of
classical mechanics.

- The interaction potential between the point masses and/or rigid
bodies under the influence of their mutual (and possible additional external) forces
and torques are representative of the motions of the atoms and molecules in the
chemical system.

- Statistical averages taken over an ensemble of phase space point
of the trajectories over a sufficient length of time reproduce the structural and
dynamical properties of the system.

For the simulation of homogeneous (or bulk) liquids, a few more
assumptions have to be made. These assumptions are stricted to the method where
the number of particles and the density are kept constant during the simulation, as
the method that i1s most often used in studies of model system of real liquids.
There are two general assumptions;

- Number of particles used in the simulation are finited, usually a
few hundred or less than ten thousand, and contained in a regular cell, normally a
box with a constant density. This construction called, periodic boundary condition.

- The minimum distance convention is applied. This is a
prescription for how the interaction potentials, and thus the interparticle forces,
exerted by all particles j on a given particle 1 are to be computed, normally knows
as cut-off limit.

3.1 Molecular Dynamics procedure

The steps in Molecular Dynamics simulation can be summarized as in
Fig. 3.1
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calculate interaction energy, F,
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not equilibrium

move particles by force F,

to the new configurations, U

stored coordinates of all particles

calculate properties of solution

Figure 3.1 The step in Molecular Dynamics simulation.

The actual simulation starts with reading in the starting configurations,

velocities, forces and accelerations. The initial configuration has two simply
forms, one uses the random configurations and another one starting from a lattice.
In this study, we have made use the configurations of Li -ammonia system [26].
The predictor-corrector algorithm used in this step required the knowledge of
positions, velocities and forces of two successive time steps.

The force F;(j) on an atom i caused by other particles j can be calculated

from the change in energy between its current position and its positions in a small
distance away according to Newton's equation of motion. For an isolated system
composed of N particles, the translational motions are given by

 NB = Fi(rl,rz.....rN)
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where
E = —VVi(rl.rz,.‘.rN) ............. (3.5),

V i1s potential at the instant time t, assuming, for simplicity, a pairwise additive
potential, and the absence of external forces, then

V( o0y 5045 Iy )y = Z vij (rij) 3 rij = I'i-l'j ............. (36)
ij

The force acting on particle 1 is given by

where

3.2 The predictor-corrector algorithm

There are finite difference methods for solution of ordinary differential
equation such as the equation of motions. One of the principle finite difference
methods namely the predictor-corrector routine will be selected. The general idea
is as follows. Given the molecular positions, velocities, and other dynamic
information at time t, we attempt to obtain the positions, velocities etc. at a later
time t+6t. The equations are solved on a step-by-step basis, which &t will be
significantly smaller than the typical time taken for a molecule to travel its own
length. If the classical trajectory is continuous, then an estimate of the positions,

velocities etc. at time t+3t may be obtained by Taylor expansion about time t,
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P (t+8t) = r(t) + Stv(t) + 1/28t2a(t) + 1/65t3b(t) + ...

VP (t+8t) = v(t) + Sta(t) + 1/28t2b(t) + ...

apP (t+8t) =  a(t) + 8tb(t) + ...

BP+st) = bO+.. (3.9).

The superscript marks these as 'predicted' values, just as r and v stand for
the complete set of positions and velocities, so a is short for all the accelerations,
and b denotes all the third time derivatives of r. If we truncate the expansion,
remaining just the terms given explicitly, then we seem to have achieved our aim
of (approximately) advancing the values of the stored coordinates and derivatives
from one time step to the next. However, an equation above will not generate
correct trajectories as time advances, because we have not introduced the equation
of motion. We shall be 'correcting' them by calculating the correct accelerations a¢

(t+8t) from the new positions P, the forces at time t+8t. The size of the error in the
prediction step can be estimated;

Aa(t+dt) = aq(t+dt) -aP(t+ét) 00 ... (3.10).

Then, this error, and the results of the predictor step, are fed into the
corrector step, which read typically,

re(t+8t) = rP(t+5t) + cpAa(t+dt)
Ve(t+dt) = vP(t+0t) + ¢, Aa(t+dt)
a’(t+8t) = aP(t+dt) + c,Aa(t+ot)
be(t+8t) =  bP(t+8t) + c;Aa(t+dt) (3.11).

The idea is that r°(t+5t) etc. are now better approximations to the true
positions, velocities etc. Gear [44-45] has discussed the 'best' choice for the
coefficients ¢gp,cy;¢9,c3;..(1:€. the choice leading to optimum stability and accuracy
of the trajectory. The general scheme of a stepwise Molecular Dynamics

simulation, based on a predictor-corrector algorithm, may be summarized as
follows,
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a) predict the positions, velocities, accelerations etc. at a time t+3
t, using the current values of these quantities;

b) evaluate the forces, and hence accelerations a; = f;/m;, from the
new positions;

c) correct the predicted positions, velocities, accelerations etc.,
using the new accelerations;

d) calculate any variables of interest, such as the energy, virial,
order parameters, ready for the accumulation of time averages, before returning to
a) for the next step.

3.3 Periodic boundary conditions

The problem of surface effects can be overcome by implementing periodic
boundary conditions [46]. The cubic box is replicated throughout space to form an
infinite lattice. There are no walls at the central box, and thus no surface particles.
The walls of the cubic box are transparent and particles can move freely between
the cubic box and its periodic replica. As a replica particle moves into the cubic
box whenever a particle moves from the cubic box into a replica cubic box (and
thus become a replica particle). Particles in the replica cubic box are often also
called 'mirror particles'. A two dimensional version of such a periodic system is
shown in Fig. 3.2. The duplicate boxes are labelled A, B, C, etc, in an arbitrary
fashion. As particle 1 moves through a boundary, its images, 1A, 1B, etc. (where
the subscript specified in which box the image lies) move across their
corresponding boundaries.
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Figure 3.2 The periodic boundary condition.

The use of periodic boundary conditions inhibits the occurence of long-
wavelength fluctuations. For a cube of side L, the periodicity will suppress any
density waves with a wavelength greater than L. Thus, it would not be possible to
simulate a liquid close to the gas liquid critical point, where the range of critical
fluctuations is macroscopic. Furthermore, transitions which are known to be first
order often exhibit the characteristics of higher order transitions when model in a
small box because of the suppression of fluctuations.

3.4 Cut-off limit

To calculate properties of “systems subject to periodic boundary
conditions, in the case of Molecular Dynamics, the forces acting on all molecules.
Consider how we would calculate the force on molecule 1, or those contributions
to the potential energy involving molecule 1, assuming pairwise additivity. We
have to include interactions between molecule 1 and every other molecule i,
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therefore, there are N-1 terms in this sum and of course is impossible to calculate
in practice. For a short-range potential energy function, we normally a cut-off
distance of less than at half of the box length, called cut-off limit. The cut-off
distance must be no greater than a half for consistency with the minimum image
convention as shown in Fig. 3.3. However, this approximate breaks down for a
very long-range Coulombic interaction. This forces are a serious problem for the
computer simulator, since their range is greater than half the box length. The
results caused by a given ion in which could be charged, since the number of
cations and anions need not balance at any instant. There are two methods which
can be used to tackle the problem of long-range forces. The lattice mathods, such
as the Ewald sum, include the interaction of an ion or molecule with all its
periodic images. The another method called the reaction field methods, assume
that the interaction from molecules beyond a cut-off distance can be handled in an
average way, using macroscopic electrostatics. Both methods use well-known idea
from the theory of electrostatics. In particular, a charge distribution within a
spherical cavity polarizes the surrounding medium. This polarization, which
depends upon the relative permitivity of the medium, has an effect on the charge
distribution in the cavity.

[ O

=

o

Figure 3.3 The minimum image convention in a two-dimensional system
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3.5 Long-range interaction

A long-range interaction is often defined as one in which the spatial
interaction falls off no faster than rd where d is the dimensionality of the system.
The charge-charge, charge-dipole, dipole-dipole and charge-quadrupole
interactions are the examples of such interaction. The two methods to handle long-
range interaction will be shown as following,

3.5.1 The Ewald sum

This procedure is a technique for efficiently summing the interaction
between an ion and all its periodic images [47]. In Fig. 3.2, ion 1 interacts with ion
2, 2A, 2B, and all the other images of 2. The potential energy can be written as

where Z;, Z; are the charges. The sum over n is the sum over all simple cubic
lattice points. The prime indicates that we omit i = j for n = 0. For long-range
potentials, this sum is conditionally convergent, i.e. the result depends on the order
in which we add up the terms. As we add further terms to the sum, we are building
up our infinite system in roughly spherical layer. When we adopt this approach,
we must specify the nature of the medium surrounding the sphere, in particular its
relative permitivity (dielectric constant).

In the Ewald method, each point charge is surrounded by a charge
distribution of equal magnitude and opposite sign, which spreads out radially from
the charge. The Fourier transforms of the cancelling distributions (one for each

original charge) are added, and the total transformed back into real space. This is
an important correction.
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3.5.2 The reaction field method

The reaction field method is a field on a dipole introduced without the
assumption of periodicity. The basic in the simulation consists of two parts; the
first 1s a short-range contribution from molecules situated within a cut-off sphere
or 'cavity' R, and the second arises from molecules outside R which are considered
to form a dielectric continuum (g) producing a reaction field within the cavity.
Whenever a molecule enters or leaves the cavity surrounding another, a
discontinuous jump occurs in the energy due to direct interactions within the
cavity and in the reaction field contribution. These change do not exactly cancel,
and the result is poor energy conservation. In addition, spurious features appear in
the radial distribution function at r = r.. These problems may be avoided by
tapering the interactions at the cavity surface.

3.6 Shifted and shifted-force potentials

In Molecular Dynamics simulation, the truncation of the intermolecular
potential at a cut-off introduced some difficulties in defining a consistent potential
and force. The function V(rj) use in a simulation contains a discontinuity at
rj; = I ; whenever a pair of molecules crosses this boundary, the total energy will
not be conserved. We can avoid this by shifting the potential function by an
amount V. = V(r.), 1.e. using instead the function,

where Vs(rij) and V. are shifted potential -and potential at cut-off limit,
respectively. However, its contribution to the total energy varies from time step to
time step, since the total number of pairs within cut-off range varies. The force
between a pair of molecules is still discontinuous at r;; = r.. Whereas the total



33

energy must be conserved, the shifted-force potential method is introduced : the
potentials have been changed to the form,

dV(l’ij) <
V() — V. —( ey (0] B 51
SF - 1 c L =T, i c ij c
V (rij) - drlj J
0 L > T,
........... (3.14),
dV(r::)

)

dl'u

potential, and its derivative is zero at the cut-off distance.

where V5F is shifted-force potential and

15 a small linear term added to the

3.7 Neighbouring algorithm

The potential and the force are set zero for distances longer than a
specified cut-off limit. In the inner loop of the programs, we consider a molecule i
and loop over all molecules j to calculate the minimum image separations. If
molecules are separated by distances greater than the potential cut-off, the program
skips to the end of the inner loop, avoiding expensive calculations, and considers
the next neighbour. In this method, the time to examine all pairseparations is
proportional to N2, Verlet [48-49] suggested a technique for improving the speed
of a program by maintaining a list of the neighbours of a particular molecule,
which 1s updated at intervals. Between updates of the neighbour list, the program
does not check through all the j molecules, but just those appearing on the list. The
number of pair separations explicitly considered is reduced and saved time in
looping through j.
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3.8 Calculation of macroscopic properties

3.8.1 Structural properties

The structural quantities is characterized by a set of distribution functions
for the atomic positions. One of the most simplest important of which is the pair
radial distribution function (RDF), or simply g,g(r). This function gives the
probability of finding particle B at the distance r away from particle a. The
function is usually normalized to 1 at large r and can be calculated from,

V' _N(An

(D) g™ =o€ RTINS 3.15),
w0 N 471':'201' (

where V, N represent the volume and the total number of the atoms. N(Ar) is the
number of pairs which are r| to ry+0r apart.

The another one quantity that usually displays relatively with the pair
radial distribution is the average coordination number, or simply n,g(r). The
results are shown the number of particle 3 distributed surrounding the particle a at
distance r. It is normally calculated from g,p(r) in the form,

Nup(r) = %_[gaB(r)4nr2dr ........... (3.16),

N . . o : .
where — is number density of the number of pairs in the simulation volume.
< [

3.8.2 Dynamical properties

The resulting quantity is a function of the time difference t: it is a 'time
correlation function'.. For ‘identical ‘phase ' functions, Cpa(t) is called an
autocorrelation function and its time integral (from t =0 'to't = <) is a correlation

time t,. This functions are of great interest in Molecular Dynamics simulation
because,
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a) they give a clear picture of the dynamics in a fluid;

b) their time integrals t, may often be related directly to
macroscopic transport coefficients;

c¢) their Fourier transforms Cp, (@) may often be related to
experimental spectra.

We use 1 to label successive steps, i.e. t = t8t. The definition of time-
average, in a discretized form, allows us to write the non-normalized
autocorrelation function of A(t) as,

Caar) = <A(z) A0) >

1 rmax
3 T TRROTONE TN ... (3.17),
Tmu T0=1

where A(t) and A(0) are dynamical variables of the system, such as position,
velocity, density etc. Here, we average over 1, time origins the product of A at
time 1,0t and at a time t&t later. The velocity autocorrelation function,

Cv(t) F @ >2ah % (3.18),

where Vi(t) is the center-of-mass velocity of a single molecule, is often of great
interest because its time integral relates to the self-diffusion coefficient, whereas
its temporal Fourier transform is a measure of the 'density of states'. The self-
diffusion coefficient, D obtained from the velocity autocorrelation function can be
written in the form,

1
Bl = :J- dove ¥1OJO W dll 1 0 .. (3:19);
2

The results of computer simulations must often be transformed between
time and frequency domains or between normal space and reciprocal space. To be

TlrI5& ARYX
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compared with experiment, a time correlation function C(t) is usually transformed

A
to produce a spectrum C(®),

" _ .
Cw = I diC(t)exp(—i@t) L. (3.20),

and the converse transform is

ct)y =J—cw -_p(wé

e

Claeos@t (.21).
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CHAPTER 4

RESULTS

Part A : Intermolecular potentials
4.1 Suitable basis sets for the atoms of the systems

Since the DZP (Double Zeta including Polarization function) have been
successfully used for developing of the potential functions for the study of liquid
ammonia [26], Li"-ammonia [26] and Na -ammonia [58] systems, it will be, again,
applied for the K -ammonia and the I"-ammonia systems without testing. For K*
and I', extended basis sets, taken from reference [40], have been examined. The
calculated stabilization energies with (AEggsg) and without BSSE (AEgcE) at the
correspondingly optimal distances, rggsg and rgcp, are summarized in Table 4.1 -
Table 4.3.
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Table 4.1 Testing of basis sets for the K*-ammonia. (Interaction energies and r in kcal/mol and A, respectively.)

Basis sets Basis functions AEgcr AEgssg  BSSE ISCF IBSSE Tshift CPU time (sec)
(AEpssE -AEgcr) (TBSSE -TSCF)
STO-3G 21/63 -4]1.48 -22.34 19.14 2.50 2.70 0.2 6
DZV 26/67 -40.25 -20.49 19.76 2.60 3.00 0.4 12
DZP * 60/121 -27.12 -18.51 8.61 2.60 2.90 0.3 190
14s/9p/5d * 96/116 -20.94 -19.26 1.68 2.80 2.90 0.1 380
Table 4.2 Testing of basis sets for the I'-ammonia. (detail see Table 4.1.)
Basis sets Basis functions AEgcp ALgssg BSSE ISCF I'BSSE Tohift CPU time (sec)
16s/12p/8d * 122/150 -4.69 -4.37 0.32 4.20 4.20 0.0 490
Table 4.3 Testing of basis sets for the K'-I” system. (detail see table 4.1.)
Basis sets Basis functions AEgcr AEgsse BSSE ISCF IBSSE Tshift CPU time (sec)
14s/9p/5d (K+) 158/166 -98.99 -97.21 1.78 3.20 3.20 0.0 1200

16s/12p/8d (I7)  122/150

* DZP basis sets for ammonia molecule taken from gaussian92 program
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4.2 Intermolecular pair potentials
4.2.1 K" -ammonia pair potential
The 673 SCF energies points for the K*-ammonia dimers, obtained from

the extended 14s/9p/5d basis sets for K™ and DZP basis set for ammonia molecule
(see Table 4.1 to Table 4.3) including BSSE, were fitted to the analytical form,

q.q
1 Ai 1 K+
AEFrr = g,'l rT%—E',iexp(-—Ciri)-i-332.15 S (4.1).

1 i

where t; is the distance between the i-th atom of ammonia and K*, q; and qg+ are
the net charges of the i-th atom of ammonia and of K, respectively. The final
optimized parameters, A;, B; and C; are given in Table 4.4. The AEgggg and the
AEgT are compared in Fig. 4.1 and Fig. 4.2.

Table 4.4 Final optimized parameters for the interaction of N and H atoms
of ammonia with K*. (interaction energies and r in kcal/mol and A, respectively).

Atom q A B C
N -0.8022  -1.83758E+03 3.55782E+04 2.72920E+00
H 0.2674 1.41815E+02  -1.45075E+01 0.64894E+00

Characteristics of the fit :

Minimum energy-included in the fit =+19.26 kcal/mol
Weighting level = -20.00 kcal/mol
Maximum energy included in the fit = 30.00 kcal/mol
Standard deviation +#10:72

% error =371
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Figure 4.1 Comparison of the stabilization energies obtained from the SCF

calculations with BSSE, AEggsg and from the potential function, AEg;T using the
final values of the fitting parameters as given in Table 4.4 (see Fig. 2.1 for 6 and

9).
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Figure 4.2 Comparison of the AEgggg and AEg.
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4.2.2 I -ammonia pair potential

The same procedure, as for the K -ammonia system, is applied to develop
the I"-ammonia pair potential. The analytical function of the form,

4 A. q.q-
iy _1 ‘ - -~ 11]
AE . = 2 fis +Biekp(-Cir) +352157 0 e 4.2),

is considered as the best one to represent the 601 points of I -ammonia interaction
energies. The parameters are defined as equation (4.1). The final optimized
parameters and characteristics of the fit are given in Table 4.5. The AEgggg versus
the AEg;t are plotted in Fig. 4.3 and Fig. 4 4.

Table 4.5 Final optimized parameters for the interaction of N and H atoms
of ammonia with I, (interaction energies and r in kcal/mol and A, respectively).

Atom q A B C
N -0.8022 -1.50393E+04  5.40927E+04 2.28178E+00
H 0.2674 6.03316E+02  7.62496E+01 0.85205E+00

Characteristics of the fit :

Minimum energy included in the fit = -4.51 kcal/mol
Weighting level =-5.00 kcal/mol
Maximum energy included in the fit =30.00 kcal/mol
Standard deviation =0.83

% error = 18.30
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Figure 4.3 Comparison of the stabilization energies obtained from the SCF
calculations with BSSE, AEgcgr and from the potential function, AEgr using the
final values of the fitting parameters as given in Table 4.54 (see Fig. 2.1 for 6 and

9).
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4.2.3 K*-I" pair potential

The optimal form of the function for the 54 points of K'-I” interaction
energies are

A B Ay +9;-
AE;, = g+ +Cexp(-Dn)+32215— — .. (4.3).

The final fitted parameters are given in Table 4.6. The plots are shown in Fig. 4.5
and Fig. 4.6.

Table 4.6 Final optimized parameters for the interaction of I” with K.
(interaction energies and r in kcal/mol and A, respectively).

Atom q A B C D

[' -1.00 -1.50098E+03 3.30362E+03 4.41245E+04 2.44564E+00

Characteristics of the fit :

Minimum energy included in the fit =-97.36 kcal/mol
Weighting level =-100.00 kcal/mol
Maximum energy included in the fit = 20.00 kcal/mol
Standard deviation = 0.10

% error = 0.11
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Figure 4.5 Comparison of the stabilization energies obtained from the SCF
calculations with BSSE, AEggsg and from the potential function, AEg T using the
final values of the fitting parameters as given in Table 4.54 (see Fig. 2.1 for 6 and
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Figure 4.6 Comparison of the AEgggg and AEg.
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4.3 SCF calculations on the non-additivity

The AEaVl’ AEZFCN! %El, %Ez and AE
equation (2.37), are summarized in Table 4.7.

rpl> @S defined in equation (2.33) to

Table 4.7 The K*-ammonia interactions complexes, as defined in equation
(2.33) - (2.37),and optimized nitrogen distances (ry,.y) for the different K*-(NH;),
(interaction energies and r in kcal/mol and A, respectively).

n TM-N AE,y %E| AEyreN %E, AE
1 2.85 -19.31 0 -19.31 0 0.0

2 2.89 -18.44 5 -19.22 4 0.91

3 2.90 -18.17 6 -19.32 6 3.69

4 2.92 -17.57 10 -19.27 9 9.35

6 2.94 -16.80 15 -19.31 13 23.81

8 2.98 -15.20 27 -19.09 20 76.25
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Part B : Molecular Dynamics simulation
4.4 Structural properties
4.4.1 K" -ammonia system

With the time step of 1.25x10716 s, the K -ammonia system reaches
equilibrium after 200,000 moved (250 ps). The atom-atom RDFs and the running
integration numbers, as defined in equation (3.15) and equation (3.16),
respectively, have been calculated from 60,000 configurations of the system after
equilibration and plotted in Fig. 4.7 and Fig. 4.8. Their characteristics are
summarized in Table 4.8.

Table 4.8 Characteristic values of the radial distribution functions, g(r)
for the K*-ammonia solution ; ryy,, fngp and 1., are the distance in A, where 8ap(r)
has first and second maximum and first minimum, respectively. nyg (rp;) is
running integration numbers, integrated up to r,;.

af M1 gap(tm1) Tmi 8up(Tm1)  Nap(Tmi) M2
N-N 3.41 2.01 5.01 0.77 12.2 6.46
N-H 3.74 1.34 523 0.84 40.4 6.58
H-H 3.85 1.26 541 0.93 453 6.44
K'-N 2388 8.22 4.04 0.0 8.7 5.85
K-H 3.38 3.31 4.35 0.46 27.5 5.86
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Figure 4.7 Atom-atom radial distribution functions and running integration
numbers from the Molecular Dynamics simulation of one K" in liquid ammonia at
240K, (a) KN (b) K'-H.
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Figure 4.8 Atom-atom radial distribution functions and running integration
numbers from the Molecular Dynamics simulation of one K in liquid ammonia at
240K. (a) N-N; (b)N-H; (c) H-H
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4.4.2 I -ammonia system

Characteristics of the RDFs for the I -ammonia system, investigated from
60,000 configurations after equilibration, are collected in Table 4.9. The plots are
shown in Fig. 4.9 and Fig. 4.10.

Table 4.9 Characteristic values of the radial distribution functions, gp(r)
for the I"-ammonia solution ; ryy, Ty and 1y, are the distance in A, where gq4(r)
has first and second maximum and first minimum, respectively. ngg (rpyp) is
running integration numbers, integrated up to ry;.

af ™M1 BopltMm1) Tml 8up(Tm1)  Nop(Tm1) ™2
N-N 3.34 2.11 4.95 0.76 11.9 6.49
N-H 3.69 1.27 5.15 0.86 39.5 6.62
H-H 3.76 1.15 5.19 0.94 42.1 6.71
I'-N 4.14 2.82 5.45 0.55 15.9 7.06
I-H 3.94 1.41 5.34 0.84 46.0 7.01
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Figure 4.9 Atom-atom radial distribution functions and running integration
numbers from the Molecular Dynamics simulation of one I in liquid ammonia at
240K. (a)I'-N; (b)I'-H
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Figure 4.10 Atom-atom radial distribution functions and running
integration numbers from the Molecular Dynamics simulation of one I” in liquid
ammonia at 240 K. (a) N-N; (b) N-H ; (¢) H-H
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4.4.3 K" -I' -ammonia system

As for the cases of the K™-ammonia and I™-ammonia simulations, the
atom-atom RDFs and the corresponding coordination numbers for the K'-I
solution are plotted in Fig. 4.11 to Fig. 4.13 and summarized in Table 4.10.

Table 4.10 Characteristic values of the radial distribution functions, g,(r)
for the K*-I"-ammonia solution. ry, 1y and r,, are the distance in A, where 8up
(r) has first and second maximum and first minimum, respectively. n,g (ry1) 18
running integration numbers, integrated up to ry;.

af M] gap(tn1) Tml 8op(tm1)  Nep(tm1) 59703
N-N 323 2.08 4.86 0.87 11.5 6.14
N-H  3.67 1.27 4.97 0.93 37.4 6.42
H-H 3.6l 1.16 5.19 0.98 41.9 6.64
K'-N 269 13.4 3.97 0.0 8.9 5.78
K'-H 335 3.28 431 0.42 2738 5.83
I"-N 4.07 2.73 5.52 0.56 15.1 7.04
I-H 4.02 1.37 5.43 0.72 445 7.13
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Figure - 4.11 Atom-atom radial distribution functions and running

integration numbers from the Molecular Dynamics simulation of one K™ and one I
in liquid ammonia at 240 K. (a) K'-N ; (b) K"-H
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integration numbers from the Molecular Dynamics simulation of one K™ and one I”
in liquid ammonia at 240 K. (a)I'-N ; (b)I-H



55

6.00 T 60.00

] (a) 1
] N—N ]
4,00 4 40.00
q(r) : ] n(r)
2.00 g 4 20.00
0-00 . LERBLEN 70 0 I A A ) I Tl I‘I’: Ty l rTrrrrrrTTy ‘l rTrryraTrrrryprrry LELELEL S 'I TIrrr 0-00
- lj J
] ! (b) 1
2-: ]‘; ;;:
] ! N-H ]
4.00 7 / 4 40.00
] 3 ]
- " e
2.00 1 20.00
] ]

0-00 Il!lllrrl"';_l'!llldi|ilIIliI'II"llTli’Tllllllllllllell'll'l 0-00
A [}
- 1
] i (e)
- i
/ ’
// ': -
!
i H—H
/

4.00 40.00

2.00 20.00

..u/,....l.........l....\

O U TR AN T W N 0 NN NN WY NG RN NN T N T W ) O

0.00 Illllll’iI|I‘[I(lllll|!llllllll|lllll!llI]Illllll!l|lll_l' 0.00

0 2 4 6 8 10

Distance (A)

Figure 4.13 Atom-atom radial distribution functions and running
integration numbers from the Molecular Dynamics simulation of one K* and one I’
in liquid ammonia at 240 K. (a) N-N; (b) N-H ; (c¢) H-H



56

4.5 Dynamical properties
4.5.1 K" -ammonia system

The normalized velocity autocorrelation functions (ACFs or Cv(t), see
equation (3.18)) and their Fourier transform (C(w), see equation (3.20)), have been
calculated separately for bulk ammonia and ammonia molecules in the first
solvation shell of K, and plotted in Fig. 4.14 to Fig. 4.17. Fluctuation of the
temperature of each particle and of the system have been also examined and drawn
in Fig. 4.18.
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Figure 4.14 Normalized velocity autocorrelation function functions of (a)
K" : (b) N atom and (c¢) H atom, obtained from the Molecular Dynamics
simulation of one K™ in liquid ammonia at 240 K.
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Figure 4.17 Fourier transforms of the hydrogen velocity autocorrelation
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from the Molecular Dynamics simulation of one K" in liquid ammonia at 240 K.
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Figure 4.18 Temperature changes of the Molecular Dynamics simulation of
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4.5.2 I -ammonia system

The same as the K'-ammonia system, the normalized velocity
autocorrelation functions, their Fourier transforms and the temperature changes
have been plotted in Fig. 4.19 to Fig. 4.23.
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Figure 4.19 Normalized velocity autocorrelation function functions of
(a) I' ; (b) N atom and (¢) H atom, obtained from the Molecular Dynamics
simulation of one I” in liquid ammonia at 240 K.
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from the Molecular Dynamics simulation of one I in liquid ammonia at 240 K.
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4.5.3 K" -I -ammonia system

Their normalized velocity autocorrelation functions, Fourier transforms
and temperature changes have been depicted in Fig. 4.24 to Fig. 4.28.
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Figure 4.26 (a) Normalized center-of-mass velocity autocorrelation
functions of ammonia molecules ; (b) their Fourier transforms, calculated from the
Molecular Dynamics simulation of one K™ and one I in liquid ammonia at 240 K.
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CHAPTER 3

DISCUSSION

Part A : Intermolecular potential

The structural and dynamical properties of potassium iodide in liquid
ammonia have been studied by Molecular Dynamics simulation, using the fitted
functions obtained from SCF calculations to compute forces. The trust and the
accuracy of the simulation results depend mainly on the quality of the basis sets
and the fitted functions used. The best fitted functions should be good for
representing both attractive and repulsive interaction energies.

5.1 Suitable basis sets for the atoms of the systems

Because the basis set superposition error (BSSE) is one of the major
factors limiting the accuracy of ab initio calculation [50]. The results taken from
SCF calculations, in which the basis set superposition error was corrected by
applying the counterpoise method, AEggsg, and from the SCF calculations, without
correction have been compared. In Table 4.1, the small basis sets, such as STO-3G
or DZV, give a large basis set superposition error and large distance shift. There
are two reasons that may be discussed. First, if BSSE 1s suspected, the correction
must be performed in order to avoid a false result. The BSSE causes
overestimation of the attraction contribution to the interaction energy and provides
illegitimate increase of binding energy. It also influences the result of molecular
geometry optimization and molecular charge distribution.  Secondly, taking into
account by applying the counterpoise method in the molecular calculations by
using medium-and small basis sets could give the values of interaction energy
which are just close to those obtained by using more expensive and larger basis
sets. However, for very poor atomic basis sets, by means of size and quality, it will
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not provide effective improvement of the results even applying the counterpoise
method.

In the part few years, the DZP basis set would have been the best choice
for this purpose. According to the calculated results shown in Table 2.1, the DZP
basis set causes the shift of the optimal K'-ammonia distance by 0.3 A. In
addition, because of the available of the high performance computers,
computational time is no more tha main problem. Therefore, we design to used
the large 14s/9p/5d and 16s/12p/8d basis sets for K and I” (Table 4.1 to Table
4.3), respectively.

5.2 Intermolecular pair potential

For the K'-ammonia intermolecular pair potential, the AEgggg and the A
Eprp, for various orientations shown in Fig. 4.1 and Fig. 4.2, are in good
agreement. The function can represent very well, both for the attractive interaction
region near the minimum and the repulsive interaction up to 30 kcal/mol.

The I'-ammonia pair potential, (Fig. 4.3 and Fig. 4.4) does not represent
well the AEgggE, especially in the small repulsive region. The weak I"-ammonia
interaction (minimum interaction energy about -5 kcal/mol) make the function
sensitive for the repulsive interaction, especially, for the repulsive regions up to 30
kcal/mol. Therefore, include of a high of a large repulsion would increase the
standard deviation and, consequencely, the percentual error in energy (18.3%,
Table 4.5).

The orientation independent K'-I" interactions in Fig. 4.5 and Fig. 4.6

show a high accuracy of the fit in all regions, both in terms of interaction energies
and distance to the minimum.

5.3 SCF calculations on the non-additivity

As expected, increase of the cluster size causes the increase of the ion-
nitrogen distances and the decrease of the stabilization energy per ammonia
molecule, AE,,, (Table 4.7). In comparison with other ions in the most interesting
case of octahedral complexes with water and ammonia molecules, their
characteristics are summarized in Table 5.1.



74

Table 5.1 Characteristics of the non-additivity (see Table 4.7) for the
ML, complexes, where M is metal ion, L is either water or ammonia molecule,
and n=6 (energies are in Kcal.mol-!, rg,q, from n=1 to n=6, are in A.)

system Tohift %E, %E, AEq ref.
Na*-water 0.22 >40 8 5 [51]
Mg**-water 0.16 >40 15 . [51]
APP*-water 0.13 >40 21 . [51]
Zn**-ammonia 033 28 18 65.0 [52]
K*-ammonia 0.09 15 13 23.8 this work

The increase of K™-nitrogen distance by 0.09 A from n=1 to 6 is not too
large, as compared with the corresponding values for Na'-water, Mg** -water,
APP*-water and Zn®>*-ammonia by 0.22, 0.16, 0.13 and 0.33 A, respectively. The
accompanying drop in the interaction energy per solvent molecule, %E, is 15% for
K*-ammonia, compared to 28% of Zn**-ammonia and over 40% for all ion-water
clusters. The assumption of pairwise additivity, %E, leads to an error of 13%,
while the corresponding deviation for Na', Mg2+, A" in water and Zn®" in
ammonia are amount to 8%,,15%,21% and 18%, respectively. The ligand-ligand
repulsion energy per pair of interaction (total number of pair = n(n-1)/2) of about
1-1.5 kcal/mol does not change much with the size of the cluster when compared
with amount of 4-4.5 kcal/mol for Zn**-ammonia complexes. Thus, the K*-(NH3),
complexes are less stable than the Zr12+-(NH3)n complexes, the many-body effect
is of less strength. Therefore, we may expect that neglect of many-body
corrections in the Molecular Dynamics simulation will not give the large error for
the structural properties, such as radial distribution functions, coordination number
and the dynamical properties.
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Part B : Molecular Dynamics simulation
5.4 Structural properties
a) Solvent structure

The N-N radial distribution function for liquid ammonia from X-ray
measurement [39] at 277 K exhibits a maximum at 3.37 A and minimum at 5.3 A,
leading to the coordination number of 12. Since there is only one ion per 215
ammonia molecules or 2 ions in 214 ammonia molecules, the observed solvent
properties are assumed to identical with those of pure liquid ammonia. The MD
results for the three systems, K" -ammonia, I-ammonia and K'-I"-ammonia,
agreed well with the X-ray data, especially for the coordination number and the
height of the first peak of the radial distribution function. The characteristics of the
N-N, N-H and H-H radial distribution functions, as depicted in Table 4.8 to Table
4.10 and Table 5.2, show only small deviation from a uniform distribution and
they are not much different for the three systems. The relatively low contribution
of hydrogen bonding to the structure of liquid ammonia is indicated by the
disappearing of the shoulder at about 2.5 A of the N-H RDFs for the three systems,
in comparison with those of pure liquid [39]. This is in agreement with the value
of 12 for the coordination number which also favours the picture of a close-packed
structure rather than a hydrogen bond network.

b) Solvation shell structure

The K*-N RDF for both K*-ammonia and K*-I"-ammonia systems, show a
well pronounced first peak at 2.88 A and 2.69 A (Fig. 4.7 and Fig. 4.11) with the
corresponding integration numbers of 8.7 and, 8.9 (Table 4.8 and Table 4.10),
respectively. The obtained coordination numbers are resonable agreement with
those observed for dilute solution of one K™ and one KCl in water by mean of MC,
MD and X-ray methods (Table 5.2). Shift of the first maximum of the K*-N RDFs
by ~ 0.2 A to shorter distance in changing from the K'-ammonia to ‘the K*-I™-
ammonia systems and the split of the second peak, centered at 5.85 A into 2 peaks
at 4.70 A and 5.78 A can be described by the two-dimensional dipole orientation
given in Fig. 5.1.
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1Y) A (B)

Figure 5.1 Two-dimensional dipole orientation of ammonia molecules. (a)
The ammonia molecule in the first solvation shell of K in the system consisting of
one K in ammonia ; (b) The dipole orientaion of ammonia molecules in the
system consisting of one K and one I” in ammonia ; (c) The orientation change of
ammonia molecules in the solvation shell of K™ in the K*-I"-ammonia systems.
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In the system consisting of one K*, the second shell molecules, are weakly
induced by the K* (the K-ammonia interaction in the configuration where 6 = ¢ =
0, Fig. 2.2, at 6 A is about -5 kcal/mol, Fig. 4.1) and by the molecules in its first
solvation shell. This causes the appear of second peak of the K'-N RDFs at 5.85
A. The Kf-N distances for the first shell moleculed are interpreted, according to
the first peak of the K'-N RDFs, as 2.88 A and assumed to be identical for all
ammonias, a, to a, in Fig. 5.1a. The present of counter ion, the orientations of the
solvent molecules is proposed as in Fig. 5.1b. Ammonia molecules in region B are
induced, directly, by both ions, as well as their first shell molecules, therefore,
parallel dipole orientations are promoted strongly by both ions. For the molecules
in region C, both C, and C,, the induction, due to bothe ions and their first shell
molecules, are partially out-of-phase, while those in region D orient themselves
according, only, to each ion.

The above assumptions would lead to the following arrangements in the
K*-I"-ammonia system:

1) Molecules a, to a; (Just some examples) 1s induced by the
dipole oriented molecules in zone B and C. They are expected to bind tightly and
closely to the K*. This may lead to the shift of the first solvation position by 0.2
A (Fig. 4.7a and Fig. 4.11a) to shorter distance in changing from the K*-ammonia
to the K*-I"-ammonia systems, as well as the increase of the height of the K*-N
first peak. These effects have been significantly observed only for the K™ but not
for I due to the stronger K -ammonia than the I -ammonia interactions by a factor
of 4. In addition, shift of the K'-N distance of 0.2 A causes the increase of its
interaction energy of only 0.69 kcal/mol (Fig. 4.1). This value is very close to the
fluctuation due to the temperature effect.

1)) The high ordered solvent in zone B and C cause also the
disappear of the second peak of the N-N RDF for the K*-I"-ammonia system (Fig.
4.13a)

iii) Among the ammonia molecules in the first shell of the K™, the
K'-N distance of the ammonia a, is expected to-be the shortest one, since it is
induced by the most highly ordered molecules in zone B. The KN distance for
a, 1s nearly not disturbed by the I, therefore, it should not be changed by the
present of counter ion.

iv) Dipole vector of the molecules a, and a, in the first shell of K™
can not point toward the K™ because of the induction of the ammonia molecules in
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zone B. This finding is supported by the difference between the first peak position
of the K*-N and K*-H RDFs, 0.5 A for the K'-ammonia system (the difference
between 1y, of K'-N, 2.88 A, and of K'-H, 3.38 A, Table 4.8) and 0.66 A for the
K*- I"-ammonia system (Table 4.10). The corresponding vectors for the ammonia
molecules pointing thier dipole vectors toward the K is 0.38 A.

v) The patial rotation of the molecules a, and a, as described in
(iv) may also cause the moves of second shell molecules, located in zone C, to
longer distances, while the molecule a,, which points its dipole tightly toward the
KT may cause the shortening of its K*-N distance, as well as those of the
molecules in zone B. This changes have been observed in terms of the split of the
K*-N second peak for the K'-I"-ammonia system (Fig. 4.11a), as well as the
increase of its height. In addition, sum of the integration numbers located under
the first and the second splitted peaks of the K*-N RDF for K'-I"-ammonia system
(for 18 and 31, respectively) are identical to those of 31 under the single-second
peak for the K™-ammonia system (Fig. 4.7a).

For the solvation shell of I, no significant difference on the characteristics
of the I'-N or I"-H RDFs for the two systems, I"-ammonia and K'-I"-ammonia,
have been found. The first shell coordination number between 15 to 16 (Table 4.9
and Table 4.10) is rather resonable in comparison to those of between 6-8 for CI°
(Table 5.2) (atomic radii of Cl” and I" are 2.20 A and 1.81 A, respectively).
Slightly shift of the first maximum of the I'-N RDFs by 0.07 A to shorter distance,
from 4.14 A to 4.07 A and of the in changing from the I-ammonia to the K'-I"-
ammonia system could be understood by the same reason as for K.
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Table 5.2 Characteristics of the first solvation shell of the solvation
contained one ion or one molecule of salt in water and ammonia solvents. (a3,
and n,g are pair of species, distance to the first maximum (in A) and first shell

coordination number, respectively.)

system af3 M1 nyg method ref.
KCl-water K*-0 2.80 7.8 MD [53]
2.71 6.3 MC [54]
2.76 7.5 MD [55]
2.86 7.6 MD [56]
2.80 8.1 X-ray [57]
CI’-0 3.16 7.6 MD [53]
3.25 8.4 MC [54]
3.29 7.2 MD [55]
3.23 5.9 MD [56]
3.14 6.0 X-ray  [57]
K" -ammonia K*-N 2.88 8.7 MD  this work
N-N 3.41 12.2 MD this work
I"-ammonia I-N 4.14 15.9 MD  this work
N-N 3.34 11.9 MD this work
K'-I"-ammonia K '-N 2.69 8.9 MD this work
I"-N 4.07 15.1 MD  this work
N-N 3.23 11.5 MD this work
Li"-ammonia Li'-N 2.29 6.0 MD [26]
Na'-ammonia Na'-N 2.49 7.0 MD [58]
Mg? -ammonia Mg?*-N, . 2.25 8.0 MC [59]
Zn**-ammonia  Zn**N  2.10 6.0 MC [52]
2.23 6.0 MD [52]
pure ammonia N-N 907 12.0 X-ray = [39]
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5.5 Dynamical properties

A first overview over the particle motions can easily be gained by
computing the velocity autocorrelation functions of the various particles in the
system as obtained for K*, I', N atom, H atom and ammonia molecule. In the
ammonia spectrum, the peak at the lowest frequencies should be associated with
the hindered translations and vibrations of the molecule, while the intermediate
peak reflects the bending vibration and the peak at the highest frequencies shows
the stretching vibrations. The general shape of this spectrum is quite similar to the
one obtained from a scan over the same frequency range in the infrared region. It
must be stressed that the Fourier transforms of autocorrelation functions as
reported here are not exactly equivalent to intensity functions in infrared or Raman
spectroscopy, however, that there is some proportionality between the spectra
reported here and the experimental results. We shall thus not base any conclusion
here on intensity comparison between experimental and computed spectra and
restrict our attention to the discussion of the positions of the peak maxima, at least
as far as the comparison between experiments and simulations is concerned.

a) Hindered translational motions

The normalized center-of-mass velocity autocorrelation functions of the
ammonia molecules are presented separately for the bulk phase and for the
solvation shell of the ions. The difference one more visible in liquid ammonia
than in the case of aqueous electrolyte solution [60]. No significant differences
have been found for the Cy(t) of bulk ammonia of the three systems, K'-ammonia
(Fig. 4.16a), I"-ammonia (Fig. 4.21a) and K*-I"-ammonia (Fig. 4.26a), expect the
faster decay of the first two systems, approached zero at a time range of about 0.5
ps, than the last one. - The Cy(t) of ammonia molecules in the first shell of K"
approaches zero faster than those in the first shell of I” for both systems with and
without counter ion (salt-ammonia and ion-ammonia, respectively). These results
relate) to ‘the ‘strong interaction of 'K -ammonia than  I"-ammonia. complexes.
However, the Cy(t) of each ion in the two systems shows only small difference,
the more fluctuation of the C(t) for the system containing the counter ion than the
other one (Fig. 4.16a, Fig. 4.21a and Fig. 4.26a). These behaviour for the bulk
indicates a relatively free translational motion, and is in agreement with the
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conclusion drawn above that hydrogen bonding effects are not very important for
the structure of the ammonia solution. The strong binding of the ammonia
molecules to the solvation shell of ions leads to a more pronounced oscillation in
their velocity autocorrelation functions than those of bulk ammonia.

The spectral densities of the velocity autocorrelation functions of the
center-of-mass motion of the ammonia molecules reflect the hindered translation
of these particles in the liquid. For bulk ammonia, Fig. 4.16b, Fig. 4.21b and Fig.
4.26b, the maximum at zero frequency are expected, for all simulations, due to the
weak interaction between ammonia molecules. In the solvation shell of K, a
maximum of the spectral density occur at about 150 cm™ for K*-ammonia system
and about 110 cm™ for the K*-I"-ammonia system. These values lie within the
range of the broad band found for similar systems, water in the hydration shell of
Li" (about 50 to 250 em™) [60] and ammonia in the solvation shell of Li* (about
140 cm'l) [26]. In the solvation shell of I', a maximum at zero frequency were
found in both I"-ammonia and K*-I"-ammonia systems. The reason is related to the
weak I"-ammonia interactions (Fig. 4.3).

The self-diffusion coefficients, calculated from the center-of-mass Cy(t)
(see equation 3.19) for all simulations are summarized in Table 5.3. They are
evaluated separately for ammonia molecules in the bulk and in the first shell of
ions. Experimental value was also given [61] for comparison.

Table 5.3 Calculated self-diffusion coefficient for ammonia molecules in
the bulk and in the solvation shell of 1ons, obtained from the simulations at 240 K
and from experimental result [61] at 240 K.

system bulk (cmzfs) solvation shell of | solvation shell of
K" (cm%/s) I” (cm?/s)
K*-ammonia 13x107 6.1x10™ -
I"-ammonia 1.0x10™ = 7.4x10”
K*-I"-ammionia 1.1x10™ 5.7x107 7.8x10”
ex.lig. ammonia 5.3x107 - -
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The less value of the self-diffusion coefficients of ammonia in the
solvation shell of ions than bulk ammonia indicates, as expected, the binding of
the molecules to the ions. The large discrepancy between the bulk phase values
and the experimental one taken from literature for pure liquid ammonia is at
present not fully understood. One reason might be that the ammonia-ammonia
potential employed in this simulation is not sufficiently negative. However, it is a
complicated problem to develop the ammonia-ammonia potential to represent all
of its structural and dynamics properties. The high D value relates to the weak N-
H interactions, and consequencely, the disappear of the peak at ~ 2.5 A of the N-H
RDFs (Fig. 4.8b, Fig. 4.10b and Fig. 4.13b). In contrast, the molecular dynamics
values of Saparik et al. [62] and Klein et al. [63] are lower than the experimental
ones, due to the strong N-H interactions (exhibited by the pronounce shoulder of
the N-H RDFs at ~2.5 A,

b) Librational motions

The spectral densities of librational motions can be calculated from the
Fourier transformation of one of the three components of the normalized velocity
autocorrelation function of the hydrogen atoms [64-65]. Two of the C(t)s and the
corresponding spectral densities of the librational motions of ammonia in the bulk
and in the solvation shell of the ions, about x and the z axis, are presented in Fig.
4.15, Fig. 4.20 and Fig. 4.25 for the K" -ammonia, I™-ammonia and K*-I"-ammonia
systems, respectively. The rotation about the x axis shows a strong cation effect,
i.e. the frequency increases from about 170 ¢cm™ in the bulk to about 340 cm’! in
the solvation shell of the K" for the K -ammonia system and from 150 cm™ to 330
em™! for the K*-I-ammonia system. The rotation about the dipole axis (z-axis)
shows a rather free rotationa as its maximum appears at zero frequency. The
differences in the rotational motions of the bulk and solvated ammonia can be
easily described-on-the basis of the structure of the solution. Strong solvation
forces keep the N-K " vector parallel to the dipole vector of the solvated ammonia.
Thus, the K -ammonia interactions hinder the motion around the x- or y-axis, but
do not influence the rotation around the dipole axis:

Similar for those of K, the frequency about the x-axis increases from
about 180 cm™! for the molecules in the bulk to about 210 cm™" (Fig. 4.20Db) for the
molecules in the first solvation shell of I for the ["-ammonia system. The stronger
K*-ammonia interactions than the I"-ammonia one causes the higher frequency of
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motion about x-axis of the molecules in the first shell of K'than those I” (Fig. 4.26
b and Fig. 4.26¢).

c¢) Vibrational motion

The spectral densities were calculated from the hydrogen atom
autocorrelation functions of ammonia molecules in the bulk and in the solvation
shell of the ions. From a symmetry coordinate analysis, which is similar to that
developed by Bopp [64-65] for water, the symmetric and the asymmetric bending
and stretching modes can be unambiguously identified (Fig. 4.17, Fig 4.22 and
Fig. 4.27). The calculated results, as well as the experimental ones [66], are
summarized in Table 5.4.

The effect of one or two ions on the intramolecular vibration of molecules
in its solvation shell can not be measured experimentally, its investigation is one of
the advantage of the Molecular Dynamics simulations. In the solvation shell of
both K and I for all systems, K -ammonia, I"-ammonia and K'-I"-ammonia, the
symmetric bending and the asymmetric stretching modes show a blueshift, while
the two modes of vibrations, the asymmetric bending and the symmetric stretching,
are redshift (Table 5.4). These shifts are consistent with those reported for Li" in
liquid ammonia [26]. Since the statistical uncertainties in the calculated
frequencies are estimated to be about 20 em™. Within this error margin, the
following statements can be made: in both simulations and experiment. All
symmetric modes, obtained from the simulations and experiment, are found at
lower frequencies than the corresponding asymmetric ones, as depicted. From the
qualitative agreement between simulated and measured frequencies it can be
expected that the potential employed in the simulation leads to a qualitatively
correct description of the effect of ions on the intramolecular properties of the
ammonia molecules in the first solvation shell.
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Table 5.4 Comparison of various vibrational frequencies taken from the simulations, calculated separately for bulk
ammonia and ammonia in the solvation shell of 1ons, and from the experimental results.

system
mode MD (K" -ammonia) MD (I -ammonia) MD (K -I"-ammonia) experimental
lig. ammonia
solvation bulk solvation bulk solvation | solvation bulk [66]
shell of K* shell of I” shell of K | shell of I”
sym.bend 1195 1138 1143 1135 1198 1142 1132 1066
asym.bend 1561 1595 1585 1593 1559 1587 1591 1638
sym.stretch 3321 3374 3363 3370 3317 3364 3376 3240
asym.stretch 3493 3476 3539 3472 3490 3538 3477 3379
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Appendix 1

Exponents and Coefficients for STO-3G basis set

atom shell exponent coefficient
N S 31.00 [.9910616896D+02 |.1543289673D+00
.1805231239D+02 | .5353281423D+00
4885660238D+01 | .4446345422D+00
SP 3 1.00 | .3780455879D+01 | -.9996722919D-01 | .1559162750D+00
.8784966449D+00 | .3995128261D+00 | .6076837186D+00
.2857143744D+00 | .7001154689D+00 | .3919573931D+00
H | S 31.00|.3425250914D+01 | .1543289673D+00
.6239137298D+00 | .5353281423D+00
.1688554040D+00 | .4446345422D+00
gt |'S 31.00 |.7715103681D+03 |.1543289673D+00
.1405315766D+03 | .5353281423D+00
.3803332899D+02 | .4446345422D+00
SP 3 1.00 | .5240203979D+02 | -.9996722919D-01 | .1559162750D+00
A217710710D+02 | .3995128261D+00 | .6076837186D+00
.3960373165D+01 | .7001154689D+00 | .3919573931D+00
SP 3 1.00 | .3651583985D+01 | -.219620369D+00 | .1058760429D-01
.1018782663D+01 | .2255954336D+00 | .5951670053D+00
.3987446295D+00 | .9003984260D+00 | .4620010120D+00
SP 3.1.00 | .5039822505D+00 | -.308844121D+00 |-.121546860D+00
.1860011465D+00 | .1960641166D-01 |.5715227604D+00
.8214006743D-01 ' |.1131034442D+01 | .5498949471D+00




Exponents and coefficients for DZV basis set

atom shell exponent coefficient
N S 71.00 .5909000000D+04 .1190000000D-02
.8875000000D+03 .9099000000D-02
.2047000000D+03 .4414500000D-01
.5984000000D+02 .1504640000D+00
.2000000000D+02 .3567410000D+00
.7193000000D+01 .4465330000D+00
.2686000000D+01 .1456030000D+00
S 210@ .7193000000D+01 -.160405000D+00
.7000000000D+00 .1058215000D+01
S 11.00 .2133000000D+00 .1000000000D+01
P 41.00 .2679000000D+02 .1825400000D-01
.5956000000D+01 .1164610000D+00
.1707000000D+01 .3901780000D+00
.5314000000D+00 .6371020000D+00
P 11.00 .1654000000D+00 .1000000000D+01
H S 31.00 .1924060000D+02 .3282800000D-01
.2899200000D+01 .2312080000D+00
.6534000000D+00 .8172380000D+00
S 11.00 :1776000000D+00 .1000000000D+01
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Exponents and coefficients for DZP basis set

atom shell exponent coefficient

N S 61.00 .5909440000D+04 .2004000000D-02
.8874510000D+03 .1531000000D-01

.2047900000D+03 .7429300000D-01

.5983760000D+02 .2533640000D+00

.1999810000D+02 .6005760000D+00

.2686000000D+01 .2451110000D+00

S 11.00 .7192700000D+01 .1000000000D+01

S 1100 .7000000000D+00 .1000000000D+01

S 11.00 .2133000000D+00 .1000000000D+01

P 4 1.00 .2678600000D+02 .1825700000D-01
.5956400000D+01 .1164070000D+00

.1707400000D+01 .3901110000D+00

.5314000000D+00 .6372210000D+00

P 11.00 .1654000000D+00 .1000000000D+01

H S 31.00 .1924060000D+02 .3282800000D-01
.2899200000D+01 .2312080000D+00

.6534000000D+00 .8172380000D+00

S 11.00 .1776000000D+00 .1000000000D+01
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Exponents and coefficients for extended basis set

ion shell exponent coefficient
k* S 11.00 0.19027034D+06 .1000000000D+01
S 11.00 0.28613941D+05 .1000000000D+01
S 11.00 0.65763284D+04 .1000000000D+01
S 11.00 0.18822392D+04 .1000000000D+01
S 11.00 0.61879246D+03 .1000000000D+01
S 11.00 0.22519307D+03 .1000000000D+01
S 11.00 0.88633194D+02 .1000000000D+01
S 11.00 0.36582578D+02 .1000000000D+01
S 11.00 0.11055775D+02 .1000000000D+01
S 1100 0.45094418D+01 .1000000000D+01
S 11.00 0.11401467D+01 .1000000000D+01
S 1100 0.46956978D+00 .1000000000D+01
S 11.00 0.76838944D-01 .1000000000D+01
S 11.00 0.30578949D-01 .1000000000D+01
P 11.00 0.11215660D+04 .1000000000D+01
P 11.00 0.26708172D+03 .1000000000D+01
P 11.00 0.86610217D+02 .1000000000D+01
P 11.00 0.32629225D+02 .1000000000D+01
P 11.00 0.13226649D+02 .1000000000D+01
P 11.00 0.55847004D+01 .1000000000D+01
P 11.00 0.21895464D+01 .1000000000D+01
P 11.00 0.89115916D+00 .1000000000D+01
P 11.00 0.33677344D+00 .1000000000D+01
D 11.00 0.22380294D+02 .1000000000D+01
D 11.00 0.60329914D+01 .1000000000D+01
D 11.00 0.19713966D+01 .1000000000D+01
D 11.00 0.65363725D+00 .1000000000D+01
D 11.00 0.19125306D+00 .1000000000D+01
I S 3.1.00 1.0249248D+06 2.2309664D-02
1.5484313D+05 1.7069281D-1
3.5646336D+04 8.6809665D-1
S 11.00 1.0272630D+04 .1000000000D+01
S 11.00 3.4344769D+03 .1000000000D+01
S 11.00 1.2844313D+03 .1000000000D+01
S 11.00 5.2564189D+02 .1000000000D+01
S 11.00 2.3074127D+02 .1000000000D+01
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Trhnunnnhrnnnnnn

11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
3 1.00

11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00

8.7255217D+01
3.9494464D+01
0.14254520D+02
0.76466089D+01
0.30500598D+01
0.17326181D+01
0.87682364D+00
0.63499302D+00
0.25649761D+00
0.10611694D+00
7.2990410D+03
1.7678671D+03
5.9009433D+02
2.3149387D+02
1.0173176D+02
4.7569119D+01
2.2275404D+01
1.0840897D+01
5.2379498D+00
2.5466334D+00
0.12106848D+01
0.57440921D+00
0.24653310D+00
0.91353229D-01
0.37037639D+03
0.10971047D+03
0.41199216D+02
0.17284607D+02
0.78154415D+01
0.37428153D+01
0.16595878D+01
0.65265908D+00

.1000000000D+01
.1000000000D+01
.1000000000D+01
.1000000000D+01
.1000000000D+01
.1000000000D+01
.1000000000D+01
.1000000000D+01
.1000000000D+01
.1000000000D+01

2.3438952D-02
1.8469444D-1
8.5540750D-1

.1000000000D+01
.1000000000D+01
.1000000000D+01
.1000000000D+01
.1000000000D+01
.1000000000D+01
.1000000000D+01
.1000000000D+01
.1000000000D+01
.1000000000D+01
.1000000000D+01
.1000000000D+01
.1000000000D+01
.1000000000D+01
.1000000000D+01
.1000000000D+01
.1000000000D+01
.1000000000D+01
.1000000000D+01
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Appendix 2

Gaussian 92 input file

$RunGauss
#HF Gen Geom=Coord Gfinput

Potassium(1+) in Ammonia

11
N 0.00000 0.00000 0.00000
H 0.93776 0.00000 -0.38147
H -0.46888 -0.81212 -0.38147
H -0.46888 0.81212 -0.38147
K 3.75000 6.49519 -12.99038

10
S 61.00
.5909440000D+04
.8874510000D+03
.2047900000D+03
.5983760000D+02
.1999810000D+02
.2686000000D+01
S 11.00
.7192700000D+01
S 11.00
.7000000000D+00
S 11.00
.2133000000D+00
P 41.00
.2678600000D+02
.3956400000D+01
.1707400000D+01
.5314000000D+00
P 11.00
.1654000000D+00
D 11.00
.8000000000D+00
*Rkk
20
S 31.00
.1924060000D+02
.2899200000D+01
.6534000000D+00
S 11.00
.1776000000D+00
P 11.00
.1000000000D+01

*kx%

.2004000000D-02
.1531000000D-01
.7429300000D-01
.2533640000D+00
.6005760000D-+00
.2451110000D+00

.1000000000D+01
.1000000000D+01
.1000000000D+01
.1825700000D-01

.1164070000D+00
.3901110000D+00
.6372210000D+00
.1000000000D+01

.1000000000D+01

.3282800000D-01

.2312080000D+00
.8172380000D+00
.1000000000D+01

.1000000000D+01



30

S 31.00
.1924060000D+02
.2899200000D+01
.6534000000D+00
S 11.00
.1776000000D+00
P 1100
.1000000000D+01

kR
40

S 31.00
.1924060000D+02
.2899200000D+01
.6534000000D+00
S 1100
.1776000000D+00
P 11.00
.1000000000D+01

*kkk

.3282800000D-01

.2312080000D+00
.8172380000D+00
.1000000000D+01

.1000000000D+01

.3282800000D-01

.2312080000D+00
.8172380000D+00
.1000000000D+01

.1000000000D+01

50
S11.0
0.19027034E+06
S11.0
0.28613941E+05
S11.0
0.65763284E+04
S11.0
0.18822392E+04
S11.0
0.61879246E+03
S11.0
0.22519307E+03
S11.0
0.88633194E+02
S11.0
0.36582578E+02
S11.0
0.11055775E+02
S11.0
0.45094418E+01
S11.0
0.11401467E+01
S11.0
0.46956978E+00
S11.0
0.76838944E-01
S11.0
0.30578949E-01
P11.0
0.11215660E+04
P110
0.26708172E+03
P110
0.86610217E+02
P110
0.32629225E+02
P110

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0
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0.13226649E+02 1.0
P11.0
0.55847004E+01 1.0
P110
0.21895464E+01 1.0
P110
0.89115916E+00 1.0
P110
0.33677344E+00
D110
0.22380294E+02
D110
0.60329914E+01
D110
0.19713966E+01
D110
0.65363725E+00
D110
0.19125306E+00

*kEE
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