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CHAPTER |

INTRODUCTION
1.1 General

In design practice, buckling is commonly known as one of dominant
modes of failure of structures consisting of slender, axially loaded members. Buckling is
particularly dangerous because it can '|lead .o catastrophic failure that generally
provides no warning. A value of load associated*with the buckling state is commonly
defined as the load at which the structuFé switches from an equilibrium configuration in
which all members remains straight tol other equilibrium configurations where either
certain or all members pessess non—straiéht or twist configurations. In general, the load
at buckling (as defined above) and the CjEF'.responding deformed configuration, known
as the buckling mode shape, of structure'i; containing perfectly straight, axially loaded
members always exists but is not _un:_ique aajd___id;_apends primarily on various factors such
as the geometry of the structure,,IOading-’:danems, pboundary conditions, behavior of
constituting materials, lateral cOhstfaints, etcTiJﬁe lowest value among these loads is
commonly termed the buckling foad-of the s:t?uﬁure. Knowledge of the buckling load is
not only useful in the desigﬂ—eeﬂsnideraﬂen-ef'axially leaded slender structures but also
essential in the anali/si's and design of structures subje’c?ed to combined axial and
bending loads. For inst%nce, in the recent design specifi;:ation for steel buildings (e.g.
ANSI/AISC 360-05), information of the elastic buckling load ‘must be supplied to the
design equations, in terms of the effective length factor, for both compression members
and members tin. flexurey ‘and. icompression: « Similarly, | @n <lntéraction equation
recommended by ACI 318-05 for designing long reinforced concrete columns under
combined compression and bending moment also necessitates the effective length
factor of those members. While the overall buckling behavior (e.g. the entire structure
loosing their stability) depends primarily on the symmetry of the cross section and can
be classified into several modes (e.g. ANSI/AISC 360-05; Salmon and Johnson, 1996;
McCormac, 1994), e.g. flexural buckling, torsional buckling, flexural-torsional buckling,

the flexural buckling has become one of the failure modes that is mostly encountered in



the design practice of compression members and beam-columns and is the main focus

of the current investigation.

A method used to calculate the buckling load must be properly selected
in order to provide reasonably accurate results with acceptable computational cost and
effort. In general, techniques used in the analysis for the buckling load can be classified
into three main categories, i.e. analytical techniques, semi-analytical technique, and
numerical techniques. Analytical technigues; imtroduced since the toddler age of this
area and continuously used.until now,j—lre based«primarily on solving the governing
differential equation along.withdeiermining a solutien of the exact eigenvalue problem.
Besides its positive feaiure to#yield exaoit value of the buckling load, the method itself
poses several drawbagks. Fer instance,lthf associated eigenvalue problem generally
yields nonlinear equatigns invelving funnkgtilons of a transcendental form and, more
importantly, it experiences mathefnaticall:‘{dffficulty when geometry of the structure,
member properties and boundary. condifi:bns: become increasingly complicated. In
particular, as the complexity ah‘d num:béf-‘gf Characteristic equations increase,

: Fer 7

determination of the minimum eigenvalue in an analytical fashion is impossible.

o el

To avgid_the direct_solving of governing “differential equations and

corresponding eigenvalue problems, an attractive alternative is to seek an explicit
expression to estimate the buckling load. The most recognized, ready-for-use,
analytical-basediexpressionis Eulersifarmula, ize.| Ry =n’EH(KL)> where E represents
Young’'s modulus, | is the area moment of inertia of the cross section, L denotes the
unsuppertedslength-of the-.member, and K.is. a<parameterreflecting the, end conditions
commonly termed the effectivelength factor (e.g. Timoshenko and"Gere; 1961). Besides
the popularity gaining from its simple form and the explicit indication of factors affecting
the buckling load, this formula still possesses a major drawback associated with the
difficulty to estimate the effective length factor K especially for columns in multi-story
frames. A rough approximation of the effective length factor for columns in both sway
and non-sway frames can be achieved by using alignment charts (e.g. Gaylord et al.,

1992; McCormac, 1994). It should be noted however that due to several simplified



assumptions employed in the construction of such charts, the estimated effective length
factor can be substantially deviated from the analytical solution. Work towards the
improvement of the estimation of the effective length factor has been carried out
continuously by various researchers who still fall in love with the beauty of Euler's
formula (e.g. Aristizabal-Ochoa, 1994a; Aristizabal-Ochoa, 1994b; Hellesland et al.,
1996a; Hellesland et al., 1996b; Gantes and Mageirou, 2005).

An improved version of' the .analytical technique, termed a semi-
analytical technique, is to employ Certaig numericalsprocedures to aid the massive and
complex computations asseeiated-with solving nonlinear equations while still maintain
the analytical nature of.the solttion: Theibuckling load ebtained from this technique is
basically of comparablequality 4o/ the exlac’t. solution. However, similar to the analytical
technique, its practical’ applications are still limited to structures of simple

configurations. ' J

Most powerful technidues app_licable to the buckling analysis of various
types of structures are based upén-approximation theories (e.g. Galerkin approximation,
Rayleigh-Ritz approximation, finite-element é}hprj}ximation, etc.) along with appropriate

numerical procedure%,_The formulation of the “boundary Value problem is normally

established in a form well-suited for the approximation to-be carried out in the general
setting (e.g. weak formulation by either the weight residual technique or the principle of
virtual work, variationalsfarmulation by the pringiplenof stationary total potential energy,
work and energy: conservation equation, etc.). While techniques in this category possess
less mathematical .complexity=in-comparison -with, thes analytical-and; semi-analytical
methods:and the rapid growth of" their-applications'has ‘been recognized nowadays, it
still requires consideration of various computational aspects such as the approximation
strategy, the solution method, and the implementation in terms of the computer software.
The quality of approximate solutions depends primarily on the strategy and level of
approximation and this requires special care to ensure the convergence and accuracy

of the computed buckling loads.



It has no strong evidence to solidly identify the best among the three
groups of techniques used for determining the buckling load of structures. It is generally
problem dependent and, sometimes, the matter of preference. The key motivation of this
proposed study is to seek a means to improve existing techniques for better estimation
of the buckling load of a broad class of columns and frames. In the following section,
results from extensive literature survey are presented in order to clearly define the

objective and the scope of this study.

1.2 Literature Review

-

In this seclionga brief overview of the background and existing work that
are relevant to the currentsstugy is provided. The key objective is to demonstrate the
sequence of historical deyelopment!in this specific area and also provide sufficient
evidence to identify availablefgap, of kntéwj_edge. Results from literature survey are
separated into three pasts regarding o thef;F_ main focus; the first part is associated with
studies of elastic and inelastic ﬂéeraI bu;:-igli;ig loads of structures, the second part

i

devoted to investigations of‘the/influence of shear deformation on the flexural buckling

behavior, and the last part summarizes wo_FIg_‘Qn_bucinng analysis of members with

restraints against the-lateral movement.
1.2.1 Elastic and inelastic flexural buckling analysis of structures

For several decades, mathematicians, researchers and engineers have
proposed various approaches "for "determining flexural "buckling load of column and
frame structures, In. 1744, Euler showed that there exists a critical load associated with
the state'where a perfectly straight, slender columm under-compression starts to admit
another deformed equilibrium configuration; this critical load is later known as the
buckling load. In his study, the column is only supported against the lateral movement at
both ends and is compressed within the elastic range of a constituting material. For any
value of axial load less than the buckling load, the column remains its straight and stable
equilibrium configuration while, for any value of axial load larger than the buckling load,

the straight equilibrium configuration becomes unstable and infinitesimally small



perturbation can push the column to a new stable equilibrium configuration. Since the
Euler’s era, the elastic buckling load (sometimes called the Euler’s load to honor his first
study in this area) of single columns with various end conditions and more complex

structures have been extensively investigated (see Timoshenko and Gere, 1961).

One important drawback of the Euler's formula is its limited practical
applications resulting from the linear: elasticity assumption. More precisely, the
constituting material is assumed to remain in a linear regime both prior to and at the
onset of buckling. Elastic buekling can gccur only.fer very slender columns while most
columns found in practices=buckie within an inelastic range. To enable the Euler's
formula to treat inelasticdotickling, the conpept of variable modulus of elasticity has been
introduced (e.g. Engesser, 1889; Engessle.r,r1891; Considére, 1891). In 1889, Engesser
proposed a well-knownatangent modulusliir.]eory. In his investigation, the column was
assumed to remain straight until tHe onséﬁ_ﬁ of buckling, and the tangent modulus was
assumed to be constant throughoeut the qu-s‘s*Section. Based on the tangent modulus
theory, the Euler's buckling formruIé' can 6ét"_mc_)dified by simply replacing the Young

oy

modulus by the tangent modulus—at a stress'_tlevel at the onset of buckling. Later,

o

Engesser (1995) pointed out t:h—éft—-his originaf‘ téﬁéént modulus theory is invalid, and he

then replaced it by fh_;eTeduced modulus or the double hi'gdulus theory. Based on the
latter theory, fibers on t;he convex side of a bent column}mdergo elastic unloading (or
strain reversal) while those .on the concave side experience inelastic loading. With this
new assumption,the.theory was anticipated to better predict the inelastic buckling load;
however, experimental evidences tended to flavor the tangent modulus theory while the
reduced modulus theory generally yields higher buckling leads than test results. Later,
in 1946, Shanley drew significant attention to the erroneous assumption of the reduced
modulus theory; i.e. a column is always assumed to remain perfectly straight up to the
reduced modulus load. To support his argument, Shanley proposed a model of two
columns connecting at its two rigid ends by a spring at the center. He pointed out that
an initially straight column will buckle at the tangent modulus load and will continue to

bend with increasing axial load. With the Shanley concept, the tangent modulus theory



provides a lower bound of the column strength, i.e. the load at which an initially straight
column will start to bend. On the contrary, the reduced modulus theory leads to the
upper bound of the buckling load since the reduced modulus load can be achieved only

when the column is temporarily supported until reaching that load.

To estimate the elastic and inelastic flexural buckling loads of both single
columns and frames, various technigues have been proposed since the first study by
Euler in 1744. A classical approach that has/begen utilized extensively and continuously
since its early age is based-upon an anjllytioal technique. The key step is to solve the
governing differential equatienfor.a correct function-iorm describing the buckling shape
and then employ the.poundary condiitions to form an eigenvalue problem. This
technique has proven_succegssiul for detler[pining the buckling load of single columns
with various end conditions and frames wifb lsimple configurations (e.g. Timoshenko and
Gere, 1961; Chajes, 1974; Chen and Lu‘ti 3;987). To treat more complex structures,
Mahfouz (1999) proposed a semi*—analyticé—i_-frechnique using stability functions of each
member to form a set of exact Crhafacteriéfté"_quuations of the entire structure and the

oy

minimum eigenvalue (elastic buckiing load) was searched by increasing an axial

te

loading parameter fream zero unt reachingj 't-ﬁé_‘point where the determinant of the

characteristic matrix _lcﬁnges sign. While Mahfouz's ab’pfoach can yield results of
comparable accuracy |to the exact solution, the computational cost related to

calculations of the matrix,determinant and a large number of iteration can be significant.

To enhance the capability of the analytical and semi-analytical
techniguesstostreat.a, broader.class of structures, various appreximatestechniques have
been proposed. Two of these“techniques include the use~of Rayleigh-Ritz strategy to
approximate the buckling shape in the conservation of work and energy equation (e.g.
Chajes, 1974) and in the principle of stationary total potential energy (e.g. Dawe, 1984;
Hughes, 1987). In such techniques, the buckling shape of the structure was assumed a
priori to establish a set of characteristic equations governing the approximate buckling
load. While they are of less mathematical complexity in comparison with the analytical

method, they generally yield the buckling load higher than the exact value. Another key



disadvantage of the Rayleigh-Ritz approximation is that there is no systematic means to
choose the space of trial functions to ensure the accuracy and convergence of the
approximate solution. Another powerful numerical procedure for buckling load analysis
is the finite element method (FEM) (e.g. Dawe, 1984; Yang, 1986; Hughes, 1987); this
particular technique can be viewed as the improved version of the Rayleigh-Ritz
approximation. A space of trial buckling shapes is systematically constructed based on
simple functions defined in an element-wise fashion. Nevertheless, convergence and
accuracy of the approximate buckling load..must still be confirmed by numerical
experiments on a series of«meshes. It isalso-impertant to emphasize that use of simple
functions to represent the buckiing shape can pose a potential drawback to this
technique; for instance, aglarge number of elements may be required to accurately
capture the complex buckling;shape!and this can result in a substantial computational
cost. Other numerical - @and approximate tecT::hr}Eques used to investigate flexural buckling

4
problems have also been adopted; seme ofthem are summarized below.

' £
Gantes and Mageirou (20'Of5)f-proposed a scheme to improve the
estimation of an effective length factor of columns in multi-story sway frames. In their

o

technique, a frame is modelec:i—é—s- an individ‘uélqc_élumn withr a rotational spring at both

ends. A slope—deﬂebf'loW method was utilized to derive_t’h;e expression of the spring
rotational stiffness for a‘“ possible boundary conditions atthe far end, with and without
the axial force. The simplified version of the derived rotational stiffness is also obtained
via the use of Taylor series expansion. In 2007, Girgin land Ozmen presented a
simplified procedure for determining,the buckling loads of three-dimensional frames. In
their wark, the principle of virtual work and Betli's reciprocal thedrem were employed

and it finally led to a single equation governing the buckling load:
W, =W, (1.1)

where W, is the virtual work of forces from a system | (under axial loading) due to the
displacement from a system Il (under lateral loading) and W, is the virtual work of

forces from the system Il due to the displacement from the system I. It is worth noting



that while the displacement from both systems were taken to be identical in such
calculations, the displacement from the system | represents the relative column
displacement whereas that from the system Il corresponds to the story displacement.
This proposed technique has been found applicable to both regular and irregular
structures; however, it still requires to compute the displacements of the system Il and
values of the approximate buckling load depends primarily on the choice of lateral loads

applied to that system.

Later, Yoo and. Choi (2%08) proposed a new method for analysis of
inelastic buckling of steel frames.. Their method utilized standard eigenvalue analysis
along with the tangent medulus theory anid a column strength curve. The first iteration of
this method requires performing.dinear stré.si analysis to determine the internal force and
bending moments of allumembers: The eiéelnvalue at the first step was set equal to the
eigenvalue obtained from elastic b:ucklingl;f aﬁalysis and the minimum eigenvalue was
then employed to obtain the flexural.and a*‘i_'c-tli resistances from a column strength curve.
Next, the tangent modulus of earch"'memb:'éf_::_Was obtained from the axial and flexural

oy

information and then used to construct the—stfffhess matrix for the next search of the

i

minimum eigenvaluex\When the convergence was achieved; the computed eigenvalue

was utilized to find the_;'c—ritical load of the steel frame. Note TQ- addition that the geometric
imperfection present in each member can be treated via the use of a column strength

curve.

Recently, Choi and Yoo (2009) developed a technique to improve the
accuraey ofsthes effectivedengthfactor for, multi-story, frames= The traditional iterative
buckling:approach” can’ predict reasonably ‘accurate”effective’ lehgth~factors only for
columns in the weakest story or the weakest member of the frame. The weakest story or
the weakest member was defined as a story or a member that is critical and controls the
overall buckling of the frame or, equivalently, a story or a member possessing the
maximum stiffness parameter, L\/ﬁ. To enhance performance of the traditional
approach, they introduced a fictitious axial force by considering both the most influential

member (with the maximum stiffness parameter) and the least influential member (with



the minimum stiffness parameter). A formula proposed for estimating such fictitious axial

force was given by

2
SP = Eily K_miLmi P —P, (1.2)
E_I KL,

mi " mi

The first step of this approach involves solving a conventional eigenvalue problem to
obtain an increment of the fictitious axial' farce by comparing the stiffness parameter
given by (1.2). Next, the axial force for all rnembers. is modified and the new geometric
stiffness matrix is recalculated for the next search of the minimum eigenvalue. Once the
new minimum eigenvalte is_oebtained, the effective length factor for all members is
computed following by their Convergencel check. For the next iteration, the increment of
the fictitious force is not reguired for.members whose effective length factor is already

converged. The process is i0 be co_‘ntinuedl' until the convergence of the effective length

. . 4
factor is achieved for all.members.

1.2.2 Buckling analysis of structures with c&rr%ideration of shear deformation

sty
el

Shear deformation hias been;q_@)n$iqered as one of important factors that

od el

play an important rolé«in the behavior of flexural bucklihg of columns and frames.

Engesser (1891) was'recognized the first who investigéted the influence of shear
deformation on the buekling load of a straight bar and suggested the modification to the
original Euler's_differential equation. that governs the buckling shape. All internal force
measures in Engesseris<approachwere based onithe undeformed state as shown in
Figure 1.1(a); more specifically, the “axial force N¢=acts in the direétion of the member
axis and| the sheanforce |Q, acts) i theltangentialidirection ofl thel cross section. The
other different and well-recognized model was proposed by Haringx in 1948. In
Haringx’s approach, all internal forces were measured based on the deformed state as
depicted in Figure 1.1(b). Unlike the former approach, the axial force N, was assumed
to be normal to the rotating cross section and the shear force Q, was assumed to be in

the tangential direction of the rotating cross section.
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(a) (b)

Figure 1.1 Two different measures for all internal forces within cross section: (a)

Engesser's approach and (p) Haringx’'s approach
-

These twe™"maodels: have been extensively employed by various
investigators to study the influence of shear deformation“on the buckling behavior (e.g.
Timoshenko and Gereg1961; Ziegler,, 198‘_2;’.,Djukic and Atanackovic, 1993; Wang et al.,
2002; Blaauwendraad, .2008). Timoshenkell—and Gere (1961) utilized both Engesser and
Haringx’s approaches infthe bucklrng angly;is of columns. They pointed out that the
Haringx’s approach can lead to more accurate results when the effect of shear

deformation is significantly. large (eg the buckllng of helical springs) while the

Engesser’'s approach vyields results on the safe side. Ziegler (1982) further examined

-

those two approaches by comparlng Wlth a more fundamental method based on

analytical mechanice.4He concluded in his study that,the Engesser's approach is
superior to the Haringx’s approach for analysis of buckling of bars. In particular, he also
explained why the Haringx's method predicts accurate results for the buckling of
springs. Later, Djukie and Atanackovic (1993) investigated the: buckling behavior of a
hinged-hinged column by taking shear deformationsinto account. In their approach, the
axial force was assumed to directialong the rod.axis (the same as ithe Engesser’s
approach) while the shear force assumed the direction normal to the deformed axis. It
was found from this study that results were in close agreement with those obtained from

the Engesser’s approach.

Wang et al. (2002) employed an analytical technique (i.e. solving the
differential equation for the buckling shape and exact eigenvalue problem for the

buckling load) to establish the exact stability criteria and obtain the buckling load of
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Timoshenko columns subjected to interior and end axial loads for various types of
boundary conditions. The influence of shear deformation, boundary conditions, and
magnitudes and positions of the interior load on values of the buckling load was fully
investigated. Results revealed that the effect of transverse shear deformation becomes
significant when a column is subjected to the interior load near its base. In this particular
situation, the column behaves in the same way as a stocky column. It was also found
that the effect of transverse shear deformation in lowering the buckling load is more
apparent for columns with greater restraints_at their ends. In 2008, Blaauwendraad
showed that the Haringx's-approach yields a-wrong-limit of the buckling load for very
weak-in-shear beam-columns«He" supported his argument by considering a simply-
supported Timoshenko beam-column with a semi-rigid eonnection and a spring support
at its mid-span. His resultsfindicated that the buckling load obtained from the
Engesser’'s and HaringX's approaches ar_é Q_pmparable in magnitude when the shear
rigidity of a column is large. However wh;n a Column has the weak shear rigidity, the

buckling load obtained fram the Harlngxs aJpproach significantly deviates from that for

the limiting case of a column withinfinitely large flexural rigidity and finite shear rigidity.

tif

1.2.3 Buckling analysis of members with resﬁiai-ﬁi:s: ‘against lateral movement

Beams _and columns supported laterally- along their length are very
common in structural ‘configuration, e.g. beams resting“on an elastic foundation and
columns bracedyagainst theslateralmovement.sA well-known mathematical model used
to describe an'elastic support is proposed by Winkler (1867) and later named to honor
him as Winkler foundation..In this model, the foundation acts as.if it.consists of an infinite
number 'of ‘closely*“spaced linear springs, "and lits~constitutive 'behavier is completely
characterized by a single parameter termed the foundation modulus k. To enhance the
Winkler model, some investigators included, in addition, the interactions between the
elastic spring and the foundation and this, therefore, leads to one additional parameter.
Several equivalent two-parameter elastic foundation models have been found in the
literature, e.g. Filonenko-Borodich foundation, Pasternak foundation, generalized

foundation and Vlasov foundation. The Filonenko-Borodich foundation was first
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proposed by Filonenko-Borodich (1940). In this model, the top end of springs is
attached to an elastic membrane that is pre-stretched by a constant tension T. The
Pasternak foundation, proposed by Pasternak (1954), takes the shear interactions
among the springs into account. Specifically, the top end of the springs is attached to
an incompressible layer that can resist only the transverse shear deformation. In 1964,
Kerr proposed the generalized foundation model by assuming that at each contact
point, there are both the pressure. and moment acting to the foundation. The Vlasov
foundation, developed by Viasor and Leontigv (1966), was mathematically complicated
for its original version. Assimpliied model was-laierintroduced and has been widely
used. For all two-parameter models described above, their behavior is governed by the

same equation as follows: \

.

d*w(x)

dx?

p(x) =k,w(x) -k, L 4 (1.3)

)
where P(X) denotes the redctionnormal to thé foundation, W(X) represents the lateral
' §
or transverse deflection, and K, and K, are model parameters. Note that for the Winkler

_ 221744
foundation, the parameter K, is taken to be zero.

On the-basis of extensive literaturestiveydabove models have been
used extensively in the-analysis of beams and columns resti'hg on the elastic foundation.
Zhaohua and Cook (1983) employed the finite element method to analyze beams on
both single-parameéter @ndrtwae:parameéter foundationss~Twoy types of elements, one is
based on the gexact displacement function and the other is based on a cubic
displacement/function, were develeped; in theirstudy.dt-wasifound-that use of elements
based on the"exact displacement function ‘in"the discretization yields exact solution for
all deformation and internal forces without mesh refinement but use of elements based
on the cubic displacement function gives only approximate solutions with their accuracy
depending upon the level of refinement. Later, Yankelevsky and Eisenberger (1986)
applied a direct analytical technique to derive an exact stiffness matrix for a beam-
column resting on an elastic Winkler foundation. Eisenberger et al. (1986) also derived

the elastic and geometric stiffness matrices for a beam-column resting on an elastic
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Winkler foundation. By using these matrices, they were able to determine the buckling
loads and the corresponding buckling mode shapes of a continuous column on an

elastic foundation.

In 1988, Cheng and Pantelides presented the buckling load and
buckling mode shape of a simple Timoshenko beam-columns supported laterally by an
elastic foundation. In their study, two. approaches were employed to derive the
governing differential equations, stiffness (Coeificients, and fixed-end forces. The first
approach was based upon.the Harin%x’s model-with the shear component being
calculated from the total.slepe, while the second. approach was based upon the
Engesser's model withethe shear component being computed differently from the
bending slope. They oabserved: from thils, §tudy that values of the buckling load for
columns with relatively smallslenderness .iaiio are significantly reduced when the shear
deformation is included, and the first apprc}_ecaﬁ always yields the buckling load less than
the second approach. In particular, when tﬁ:é—isrenderness ratio is reduced, the buckling

' <4
load predicted by the Haringx’s and Engess‘éﬁf’__s-models exhibits significant discrepancy.

#eid Jd
el

In 1995, Naidu-and Rao used the. finite element method to study the

stability behavior ofrp('ris_matic columns resting on_a two-parameter elastic foundation.

The constant of a shearing layer for the two halves of a column was taken to have
different values and various boundary conditions Were considered. In 2000,
Seemapholkul developed artechnique based-onjtheifinite element method to determine
the buckling load;of a Timoshenko beam-column resting on a two-parameter Filonenko-
Borodich feundationswith censideration;of shear, deformatiaon via the Engesser’'s model.
In the finite element approximation, the' exact 'element shape functions obtained by
solving a Timoshenko beam analytically (in the absence of an axial load) were utilized.
Their technique was found promising and yielded accurate results upon proper mesh
refinement. Recently, Xia and Zhang (2009) derived a governing differential equation for
a simply-supported beam-column resting on the Winkler foundation. By directly solving

the differential equation and the corresponding eigenvalue problem, they could obtain
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the buckling load of such beam-column and then confirmed their results with those by a

reliable finite element program.

Based on extensive review of relevant work in this area and the great
contribution of knowledge to practical applications, it has no doubt that the development
of accurate and powerful numerical techniques to compute the buckling load of both
columns and frames by taking various factors such as the inelastic effect, shear
deformation, and restraints against the lateral movement into account is essential and
still requires further investigations. One eotentia! improvement to existing methods, and
is the main focus of this studysis to-supply the automatic adaptivity of the approximation

that allows the exact bueklingoad be achieved withoutany mesh refinement.
!

1.3 Research Objective 48

_—

The key aobjegtive of .this "i'n\;éstigation is to develop an efficient and

accurate numerical technigue to estimate the buckling load of two-dimensional skeleton

vl ok

structures.

1.4 Scope of Research

| el

The b{ééent research has been carried oUtr\’/rvithin following context and
assumptions: ; 7

1) Structures are two-dimensional and ,consist of straight and prismatic one-
dimensional members.

2) Initial imperfections such as .nitial crookedness, eccentric_loads, and residual
stress are not included.

3) Only flexural buckling is considered.

4) The constituting material can be either linear elastic or inelastic. For elastic
materials, the Young’s modulus is prescribed and for inelastic materials, the
tangent modulus is known.

5) Effect of shear deformation is included by using Engesser’ model.

6) Influence of point restraints against the lateral movement and rotation is

considered using translational and rotational spring models.



7)

8)
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Influence of uniformly distributed lateral restraints is considered using a two-
parameter foundation model.

Influence of axial deformation is neglected.

1.5 Research Methodology

The key task of this research is associated with the development of a

numerical procedure to have capabilities for analysis of the buckling load of structures.

Methodology employed to accomplish suchtask€anbe described as follows:

1)

-
The principle of statienary-total potential energy is employed to establish the

variational formulation.governing tlhe buckling preblem,

The Rayleigh-Ritz approxirrtatiolr} ris adopted to derive the approximate
characteristic equations for au:indii/JuuaI element,

Space of trial fup€tions ueed in t:heJ;approximation of the buckling shape is
based on adaptive basis tunctiorté'd'erived from the exact solution of the

ordinary differential equann ‘govermrﬁgthe buckling shape,

Standard assembly procedure IS emptoyed to form an approximate eigenvalue

i

problem for the entire structure

A power method supplemented by Rayleigh quot|ent is utilized to calculate the
minimum e|genva|ue and
A selected iterative procedure is employed, along with adaptive buckling shape,

to achigve the accurate bucklingload.

1.6 Research.Significance

An important output gained from this study is an accurate and efficient

numerical procedure capable of determining the flexural buckling loads and other

relevant buckling information such as the effective length factor of various structures

typically encountered in practices, e.g. multi-story non-sway and sway frames, columns

resting on elastic foundations, buckling of piles, etc. The most attractive feature of the

proposed technique is the use of a special space of trial functions that allows the

automatic adaptivity to enhance the accuracy of approximate solutions. Results
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obtained from this technique are of high quality and, generally, comparable to the
analytical solutions. As a consequence, results generated from the current technique
can be used as benchmark solutions for verification and comparison purposes. Another
direct application is to employ this technique to enhance the estimation of the effective
length factor, instead of using an old-style approach via the alignment charts, in the

design of compression members and members in combined flexure and compression.

AULINENINYINS
ARIANTAUNNIING 1A Y



CHAPTER I

THEORETICAL CONSIDERATIONS

In this chapter, several theoretical aspects relevant to the present study
including the problem statement, the variational formulation for a buckling problem by
the principle of stationary total potential energy, construction of an approximate
characteristic equation by a Rayleigh-Ritz approximation scheme, a direct assembly
procedure to form a discretized eigenvalue preblem for the entire structure, and the
construction of adaptive _shape functions used in the approximation of the buckling
shape, are summarized.

2.1 Problem statement

Consider a t\/vo-dimensior_]‘él,d_axially loaded, initial-imperfection free,
skeleton structure as shown schematicall;?l__iﬁ Figure 2.1. The structure can consist of
either a single prismatic member or multi-_b:l;é ;'-prismatic members with different cross
sectional properties. In addition, flci)'r eacﬁijjdr;(ﬁ;j;yidual member, restraints against the
lateral movement or rotation, modeled eith_e?iby_g concentrated elastic spring or the
uniformly distributed elastic spr-ihg, may berp-resent. All. members are assumed to be
made of homogeneétjs and isotropic materials. The roverall structure is properly
constrained to prevent all possible in-plane rigid body motions whereas it is fully

constrained against the out‘of-plane displacement.

Figure 2.1 Two dimensional axially loaded structures focused in the current investigation
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The problem statement, for this particular study, is to determine the
flexural buckling load of structures described above by including the influence of the
lateral restraint, shear deformation and nonlinear behavior of constituting materials in the
mathematical model. The influence of axial deformation is assumed to be relatively small

and is therefore discarded in the current investigation.

2.2 Variational formulation ’,
A varat@ % the flexural buckling load of a
structure defined in th staﬂme Ilshed using the principle of

stationary total poten‘ual ene

nctional associated with the

axial load in the me ing. i ing resulting only from the

Y2

m 19 (dv aTERl |/ -
wW=-S=Z|p|l= AR (2.1)
e
where V =V(X) is tkﬁtransverse displace eflection) of a member, m is the
number of axially load rsin _i/and Pj are the length and

en@y functional of the structure,

denoted by U, due to hegjing deformatiq} shear deformation and deformation of

oo e A EEH g%‘@%ﬂ@ﬂ okl 2000
° %anﬂﬂ‘im UAANYIRY e

where

E.l.k2dx (2.3a)

C
o
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M=
N |~
[y T—

I
iy

x G,A ydx (2.3b)

I
iy

C
w
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M=
N| -
ot—,
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m 1 m1 o (dvY
UI :Zajkll\IZdX-i-ZEJ.kZ' (&j dx (23C)
0 0

where Uy is the strain energy due to bending deformation, «;j is the curvature, and El,
is the flexural rigidity of the cross section at the onset of buckling; Us is the strain energy
due to shear deformation, i is the shear angle of the cross section, and ki and GjA; are
the shear correction factor and the shear rigidity of the cross section; and U, is the strain
energy due to deformation of elastic lateralirestraints and Ky and Ky are constants
associated with the two-parameter foundation®model (1.3). From kinematics, the
curvature and shear angle at-any cro;s section_can be related to the transverse

displacement v and the rotationsof.the cross sectional B by

dv
V=g P 4 (2.4)

_dp
K, = x (2.5)

where dv/dX represents the slope ofithe member axis. The total potential energy of the

structure at the onset of the buckling; denoted;b-i&;"H, IS given by

M=U+W 7 (2.6)

From the princCiple of stationary total potential energy, the deformed state
is an equilibrium state .if and only if the total potential energy is stationary or,

equivalently, thefirst variation of IT mustidentically vanish, i.e.
OIT=38U+3W =0 (2.7)

where 0 denotes the first variation of a functional. It is worth noting that equation (2.7) is
in fact the static equilibrium equation of the structure formulating based on the deformed

configuration. By inserting equations (2.1) and (2.2) into equation (2.7), it leads to

Li m Li m Li m Li m L
_[EiIiKi&cidx+ZjkiGiAiyiSyidx+Zj kliv8vdx+ij2iv’8v’dx :Zj PV/dvidx
) _ _ :

i=1l o i=1l o i=1l o i=1 o

m
i=1

(2.8)
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The weak-form equation (2.8) forms a basis for the development of an approximate

characteristic equation to estimate the flexural buckling load.

2.3 Characteristic equation for single element

Wl Ei b, GInAY

333533 ki kai

K ALTTIS ){/f)

.

Figure 2.2 Undeformed and deforméd: corﬁigurations of generic i element of length L,

axial load Pj, and properties {E;, I, K. Gi; A. Jl;<1i, Koi}

Consider the gef;(?_rj-inc %, éﬂlé[‘n—ent of length L;, axial load Pj, and
properties {Ej, li, Ai, Gi, Ai, ki kit ltsirédeformed configuration and deformed
configuration at the Qnset of -buekling are iLi’—;Jétfated in Figure 2.2. The total potential
energy of this generic’jﬁﬂmbeLdue_m_alLeftecls_allb&buckiling state is given by

L L - L; & L
I1, = 1{'[ E,lxcZdx + I'KiGiAiyfdx + j k,;VidX + '[ Ky V'2dX — I Piv’zdx}
2 0 0 0 0 0
=ViiVy; = Mg = Vo Vo =My (2.9)

where {V1i, M1y Vi, Mai}.denote.the shear forces-and bending moments at both ends
of the member induced in'the deformed state'and {va;, B, vai, B,}'denote the transverse
displacements and cross sectional rotations at both ends of the member. Note that the
last four terms on the right hand side of (2.9) are associated with the load potential
produced by {Vij, Mij, Vai, Mai}. For the deformed state v = v(x) and B = B(X) to be an

equilibrium state, the total potential energy I1j must be stationary, i.e.

L L L L L
BIT, = [ E;liididx+ [ 2,6, Ay, 8y,dx+ [ kyvovdx + [ k,v'av'dx — [ Rv'av'dx
0 0 0 0 0
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=V4i0Vy; — M08y — V5,0V, — M,88, =0 (2.10)

By following Rayleigh-Ritz approximation, the buckling shape of the member is

approximated by

V(X) = w1 (X)Vy; + W, (X)By + W3 (X)Vai + W, (X)By; (2.11)

BO) = w1 (X)Vy; + v, (X)Byi + W5 (X)Vy + (2.12)

where y;(x) and wy;(X) an ‘ ctions. By substituting (2.11) and
(2.12) into (2.10) and the amitrariness-of{dv1;, 3B, dvai, df,}, it leads to a

set of characteristic equatio

where u = {va;, B,, odal degrees of freedom of the

member, = {V1i, My, nd forces, Kyi, Ksi, Kii, Kiai,

and Kg;i are element stiff s defined by

[Ky] = j E, 1§/, ¢, dx _ (2.14)
0 ‘ s \

(Kl = [MGA, (w— 3 g (2.15)
o y

wLlgugingnineans e
RN IUAMIINGINY =7
[Kg] = 1 Py’ yhdx (2.18)

where [A]m denotes an entry located at the m" row and the n" column of a matrix A.
By introducing a relation P; = aijPo where Py is a reference axial load and a.; is a load

scaling factor for the i" member, the characteristic equations (2.13) now become
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(Kbi K+ Ky Ky _Pngi)U:f (2.19)

where kgi is defined by
~ Li
[Kgi]mn = .!ai\pm\yndx (2.20)

2.4 Discretized eigenvalue problem for entire structure

By employing equilibrium and.coatinuity at all nodes of the structure, the
characteristic equations (2.19) for all i/members can be assembled into a set of
characteristic equations for the.entire structure using the same procedure as that for the
direct stiffness method (e.@. Gallaghen et al.; 2000; Kassimali, 2005). The global

characteristic equation"Cangoe gxpressedina matrix form by

(%, + 5+ 34, + e, - PoH YO F L0 L 8 (2.21)

-

where Hp, Ks, K,,, K, and .7£g'arje unco,hétréined stiffness matrices of the structure
bd v ol

resulting from the direct assemt}_ly of Ko, - K, :jﬁ;.m, K»i, and K respectively, U is a

gi’

vector of nodal degrees of freedom of the quf_ie_gpp_nding unconstrained structure, and F

is a vector of nodal f_dr;ces. It is worth noting that for buokli[{g_ problems, all entries of the

vector F vanishes ex¢ept those associated with the constrained degrees of freedom
where non-zero reactions induced during buckling may*exist. By further enforcing the
essential boundary.conditions at all.supperts.via proper.temaoval.of rows and columns of
K, K, K, K, and K, it'leads'to a discretized-eigenvalue“problem governing the

approximate reference buckling load’ of the structufe Po:
(‘720"'*72%'*'*72]1'*"72}2"30*7%)0:0 (2.22)

where IIACD 1725 fql, fqz, ff{g and U are reduced stiffness matrices and a vector of free

degrees of freedom after the treatment of essential boundary conditions.

2.5 Construction of special basis functions
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Another crucial component of the present study is a set of adaptive
shape functions used in the Rayleigh-Ritz approximation (2.11)-(2.12). These shape
functions can be constructed directly from an exact solution of the ordinary differential

equations governing the buckling shape of each member as described below.

First, the differential equations governing the buckling shape v = Vv(X)

?py be obtained by applying the stationary

//2 and the arbitrariness of dv(X) and

OB(X) (see details of deri 0). This finally leads to a pair of
| — ! : | ——
fully coupled differential & i

and B = B(X) of the i" member can:

principle (2.10) along with th

d?v
(P —kai =AiGiA) —— + (2.23)
dx
d%p dv 5 (7 AN
EIL-P i aGA | Y- - 2.24
lldxz i~ l(dx B L ( )
By taking derivative of (2. : ect X olving for d*/ dx?, it yields
ap 1-nP + 7k 2.25
ﬁ_( —NiF + MKy (2.25)

r"“ﬂ |

k, =k,L!/E,l, and

where X=x/L, 'W—

k, =k,L2/E,l,. By i@erting (2. , we therﬂ;btain the explicit expression

for the rotation P in terms‘ofithe displacement.V as

AU INENINEINT

B=m (1—ﬁi5+#it2i)d__3+ —niEu )%; o 'Y, (2.26)
b

AN RINEAE

(1
or]2§%), it leads to a governing differential equation for the
displacement V:

d'v . _dv
ﬁ+2md?+ﬁv=0 (227)

where
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F= _‘_Rzi_ﬁ‘@‘) (2.28)
2(1_ﬁ| |+ﬁ|k2|)
. &
_ Ky (2.29)
: (1—ﬁipi +T—1ik2i)

V(X)=Ce™ +C,e”* +Cie™ +C,e"™ W (2.30)
where Cq, C,, Cz and C4 & Iy, I3 and Iy are distinct roots of

| —
the following characteristi , H
r* +2ar° + & =0 \ (2.31)
By substituting (2.30) i
B(X) = C.e™ + C.e"”* + \ (2.32)
where '
Co ={M(1-7P +7, (2.33)

_ Y |

By enforcing following‘es e both ends of a member
Y(0)=v,, /L ' (2.34a)

bl ﬂ‘UEl’J‘VIEWlﬁW g1N3 2
- ﬁﬁm AINTUUMINYINY =

B(1)=py /L (2.34d)

along with using the relation (2.34), it yields a system of linear algebraic equations for
C,. Once C, are solved and C, are determined from (2.33), they are inserted into
(2.30) and (2.32) to obtain the buckling shape in terms of the nodal degrees of freedom

{V1i, B, Vai, Pail:
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V(X) =y, (X)Vy; +w, (X)By + W (X)Vy +y, (X)By; (2.35)
B(X) =y (X)Vy; + W, (X)By; + w3 (X)Vy + 1y (X)By; (2.36)

where y;(X) and y;(X) are given by

4
v (X)=> T, e™ (2.37)
=1
4 —
(X)) =Y a,Ie™ (2.38)
m=1

-
in which the constants a,, and L are given explicitly in Appendix A. It should be noted
that the shape functions (2.:37) and(2.38) are applicable for the case thatry, I, r3and Iy
are all distinct. The shapgfungtions q/i(X)l and , (x) for some special cases that (2.31)

admits repeated roots aresshowniin Apperrd|x B and Appendix C.

i 4
\ &

It is apparentithat the shap')!e functions obtained above can be used to

generate a trial function that aséhrrﬁes thei%aﬁwe function form as the exact buckling
ald v ol —
shape of the structure. The only difference is--j[_hé}-‘the axial load parameter P, appearing

in such shape functions takes a_rbitrary va@' and is generally not the same as the

4 -

buckling load which is_ unknown a priori. This special triall function, when incorporated

with a selected iterativ; procedure to improve the axial Ioa_&*barameter, can converge to
the exact buckling shape. Once the ftrial function converges to the exact buckling
shape, the approximate buekling load estimated by the principle of stationary total

potential energy alseiconverges to the exactibuckling.load.
2.6 Inelastic'materialymodel

To model the inelastic flexural buckling, the tangent modulus theory
proposed by Engesser (1889) is employed. A model for the stress-strain relationship
selected for the present investigation consists of both linear and inelastic regimes

described by

olo, ; olo, <1
. (2.39)

B+(1-B)(o/s,)" ; olo,>1
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where 6, and g, are reference stress and strain and B and n are material constants. It
is evident that this constitutive model includes following special cases: (i) a linear stress-
strain relation if choosing B = 0 and n =1, (i) a bilinear stress-strain relation if choosing
for B < 0 and n = 1, and a nonlinear stress-strain relation with a continuous tangent
modulus at o/, =1 if choosing B =1 — 1/n and n > 1. Plots of the stress-strain relation

(2.39) for various exponent n are shown in Figure 2.3(a) for the general case and in

Figure 2.3(b) for the case that the tangent maodulus is entirely continuous (i.e. B =1 —

1/n). It is evident that the extent of mae

more specifically, a materiakexhibits higher n@d%or larger n.

Z

n=1
L n=2
z.: a
c n=5
o n=10
Oy
n=20

8/80

i . (b)
Figure 2.3 Stress-straifi‘relation governed by (2.39): (a) ;gneral case with B = -0.5 and

"SRG NN TN

o,le, ; olo, <1
E;= o,le,
n(l-B)(olc, )™

(2.39)

; olo, >1

Plots of the tangent modulus versus the stress level (6/c,) are shown in Figure 2.4 for

both the general case and the case that B =1 — 1/n. Itis clear that in general, the model
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(2.39) yields a finite jump of the tangent modulus at o/, =1 except for the case that B

is chosen equal to 1 — 1/n.

n=1

n=1

n=2

n=20 n=10 n=5

o/c,
(b)

(2 general case with B =-0.5

Figure 2.4 Tangent
and (b) B=1-1/n

AULINENINYINS
AR TN TN



CHAPTER IlI

SOLUTION METHOD

In this chapter, we briefly summarize numerical procedures employed to
approximate the flexural buckling load of structures. Two key steps involved in the
implementation are associated with the calculation of the minimum eigenvalue of the
eigenvalue problem (2.22) and the iterative algorithm to achieve the converged (exact)
buckling shape and buckling load. Before wesaddress those two steps, an explicit

expression for all involved elements stiffness matrices is given.

3.1 Element stiffness matrices

Since ‘the shapé functionsw; (X). and W;(x) are given in terms of
exponential functions, all elements stiffness matrices Koiy Ksi, Kigi, Kii, and Kgi can
readily be obtained in anfexplicit form via tkie direct integration. Entries of these matrices

are given by ‘,

:E,I,Z‘hi'lajakrjrk ( i )/(_Jrrk) (3.1)

=1 k=1

[Kq] =%GiA, ZZ(r =1 [ (PRy) s om (e('f”k)L-l)/(rj+rk) ' (3.2)
j=1 k=1
4 4 ’ ’
[Klli]mn = klizzrjmrkn (e(rj+rk)L '1)/(rj+rk) (3.3)
Ky ] kzliirjrk ( el ”k)L-1) /(rj+rk) (3.4)

=1 k=1

B ]zz T (e ) b 55

k=1

—
1l
[y

It is worth noting that while roots of the characteristic equation (i.e. 1, I, I3 and I4) can
be complex numbers, it can readily be verified that all entries of the matrices Ky, Ksg;,
Kizi, Kizi, and Kgi shown above are real numbers. The arithmetic involving complex
numbers can readily be treated using any standard computer languages. Explicit results

for other special cases are shown in Appendix B and Appendix C.
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3.2 Determination of minimum eigenvalue and corresponding eigenvector

In this investigation, a numerical technique based on a power method
supplemented by the Rayleigh quotient scheme (e.g. Hamming, 1987; Chapra and
Canale, 1990; and Notay, 2001) is adopted to estimate the minimum eigenvalue of the

eigenvalue problem (2.22). Key steps for this iterative technique can be summarized as

follows:
(i) Start the iterati ial guess vector v,
(i) Construct -veotor multiplication
b =% (3.6)
(iii)  Obtain : -I‘ Vi, 110y SOV ystem of linear equations
(%, + 3L 1) \ 7

using LU

(iv) Estimate the P, by forming the Rayleigh quotient

POk 7. I—'_ﬁ—r’ 7 (3.8)

D

(v) Check Corlivergence of the esailr’nated eigenvalue from following criteria

ﬂ?ﬂﬂﬂﬁﬂﬂ?ﬂi

(3.9
Ok 1

AR mum NN ADL oo

above criterion is satisfied, the iterative is terminated and the minimum

eigenvalue is obtained; otherwise, return to step (I1).

A flowchart demonstrating the iterative procedure for the power method and the

Rayleigh quotient is shown in Figure 3.1.
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It is apparent from section 2.5 that special basis functions utilized in the
approximation allow automatic adaptivity in the sense that the involved axial load
parameter 5, can be varied in an arbitrary manner. In addition, based on a means that
these functions were derived, they can form a space of trial functions that contain the
exact buckling shape if the axial load P, is chosen to be identical to the buckling load of

the member. By using these two positive features, proper iterative schemes can be
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developed to improve the approximate buckling shape and, at the same time, enhance
the accuracy of the buckling load estimation. In this study, we propose an iterative
procedure based on a following conjecture: shape functions based on the axial load
parameter 5, computed from the previous estimated buckling load provides a better
approximation of the buckling shape. While the validity of this conjecture has not been
confirmed mathematically, the iterative procedure implemented in this study by following

this idea has been found compromising and robust (see results and discussion in

Chapter 4).

-
The iterativesprocedure begins first with guessing the buckling load of all

members and using thisfinformaiion to compute the axial load parameter ﬁ for each
]

member. The shape functions Pased on this set of axial load parameters (i.e. those

given by equations (2.34) and (2.38)) are:then used in the Rayleigh-Ritz approximation

for the first estimation of the bucklihg Ioac;f. Efased on above conjecture, the estimated

buckling load can now bejused ‘to :update'-'-the:axial load parameter for each member

' g
and the shape functions based on“this ne‘vﬁ‘”axi_al load parameter should improve the
estimation of the buckling load in-the-next iteration. Due to the anticipated improvement

o

of the buckling load and buckzli—ri’g- shape esﬁ:rﬁ.é»fig)‘n in-any iteration, the scheme should

eventually yield a cohf/'er—ged result comparable to the exaic’t:s-olution.

To update of the axial parameter P, =P /E,l , it is also required to
replace the medulus| E;| by, theytangent moduluspE i+ Toyestimate the new tangent
modulus for thejnext iteration, we assume that the effective length factor of each
member,issidenticakto that.forthe, currentsiteration,andsthe ; B4, ean be obtained from
(2.39) by setting'E; = E,, and’ o'=n’E; L,/(K,L,)*A," where A, s the cross-sectional

area of the i" member and K, is the effective length factor of the i"” member obtained in

the current iteration. The explicit expression for E; is given by

o,/€, ; olo, <1

£ - I c,/e,

i ) 7'[2|i n-1
\/ n(l-B)[GoAi (KL, )2 j

; oloy>1 (3.10)
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Two different iterative procedures to obtain the converged buckling load are proposed

in the current study as indicated in Figure 3.2 and Figure 3.3. The detailed descriptions

for each procedure are given below.

First iterative procedure:

(i)

(ii)

(iii)

(iv)

(vi)

(vii)

VII

Input essential data, e.g. structure geometry, member and material

properties, axial load f , etc.
Setj=1andN \Q& I/ﬂ)are the iteration number for updating
the tangen& fadaptive steps, and then guess

—

the axia

Ky, Ky, Ky, and Rgi for

si ?

Comp

all me

-=‘ .-\"r‘.p"'!"l- "! e -

Solvglthe eigenvalue problem (2.

Figure 3.1
ling ﬁad for each member from

p(l) =q

*‘HKEJ o %&ﬂew i ki toa sig the cror
N

present stud e Convergenoe is not ac |eved, then update the

axial load parameter Pﬁ,')ﬂL2 / EL.1. and return to step (ii); otherwise, go
to step (ix)

Obtain the converged buckling load for each member PSH and use
P& to calculate the tangent modulus for the next iteration EX' from

equation (3.10)
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Check convergence of the tangent modulus using the criteria
E%—'E-jlj—l

Ei < ¢ where ¢ is specified tolerance (use 10° in the present
e

study). If the convergence is achieved, obtain the final approximate
buckling load for each member and terminate the procedure;
otherwise, update the new axial load parameter for all members using

the new tangent modulus ebtained from step (ix) and return to step (iii).

Second iterative procedure:

(viii)

Input essential_data, e'.Jg. structure geometry, member and material
propertiegg@Xiaifload, factor, etc.

Set N =_dgwhere/N'is theinumber of adaptive steps, and then guess the
axial load parameter‘ffor e{iﬁwembers

Compute element ‘stiffnes% matrices K., K, K, K, and kgi for

o

all members o Ak &

Assemblée element, _s_tiffnesé-rfh@!trices to obtain the unconstrained global
stiffness matricé;é ﬂb J, JMQ and .7£g

Remove rowsand- éolumns-:é;%i"ﬁég,‘ﬂis, K, K,and K, associated with
degré%s—e#ﬁreedem—where—the—essemélfboundary conditions are
pres-c‘;ibed to obtain ‘720 f{s .72’,1, 172',2 ang_ﬁg

Solve txh:e eigenvalue problem (2.22) to b’Btain the minimum eigenvalue
PoN Ry using the iterative procedure shownrin Figure 3.1

Determine the approximate buckling load for each member from
P{o=onPMand use |P{ tofcaleulatelthetangent:madidlus for the next

iteration E};** from equation (3.10)

Check convergence of the approximate buckling load using the criteria

PN _ PN—l
OP—NO < ¢ and convergence of the tangent modulus using the
0
N _pNd .
criteria ———T' < ¢ where ¢ is a specified tolerance (use 10" in the

N
Ti

present study). If the convergence is not achieved, then update the
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axial load parameter P L?/EX"1. and return to step (iii); otherwise,

go to step (ix)
)

+

(ix) Obtain the converged buckling load for each member P{  and show

results

It should be noted that the key difference between the two iterative

procedures is associated with the upd t? f the tangent modulus for each member. For

mber (EL.) is estimated before enter
fuﬂéﬂg the information of the previous

|d constant for all iterations in

the first scheme, the tangent v

the loop for updating the a
converged buckling loa
the inside loop. For the. lus and the adaptive shape
functions are updated or iterations. From extensive

numerical experiments converged results but the

nvergence rate of the minimum
‘eigenvector in the N adaptive step is

chosen from the converged .dge;ﬂ;f,ﬁctf?ﬂ‘, d in the (N—1)th adaptive step. The

number of adaptive:s =.,=‘....=A=....,...=A=A:::==:,=::=.::;::;::.::;::::;a;,iI erged buckling load for a

d in the computation of the

- ]

minimum eigenvalue in"each adaptive step are thoroughly investigated to demonstrate

oo NN
RIAINTUNNIINYIAL



In put structure geometry and properties
and axial load factor (Oti) of each member
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v
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Figure 3.2 Flowchart demonstrating iterative procedure to obtain converged buckling

load of first numerical scheme
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Figure 3.3 Flowchart demonstrating iterative procedure to obtain converged buckling

load of second numerical scheme



CHAPTER IV

NUMERICAL RESULTS

In this chapter, we demonstrate the accuracy and convergence behavior
of approximate solutions and computational efficiency of the proposed numerical
procedure in the flexural buckling analysis of various structures, and a set of selected
results is reported and discussed. Ta 'verify both the formulation and numerical
implementation of the current technigue, several examples whose analytical solution
exists are first considered in_numerical_experiments. Once the method is tested, it is
then applied to analyze "more.eomplex structures to demonstrate their capability. The
number of adaptive steps (N) andithe number of iterations required in the computation
of the minimum eigenvaluedin gach iteratiye; step () are also reported to indicate the

_—

computational cost. .
4.1 Single column with Varigus nd conditions 4
£

dia
Consider a perfectly straightj_—dglﬂumn of length L, Young modulus E,

moment of inertia |, and subjected to axial IQgT_d__, P.and various end conditions as shown

el

in Figure 4.1. In the analysis, only one member is employed.in the discretization and we

choose the reference -;tress o, = 35143581 kg/m’, the refe%ence strain g, = 0.00172405,
| = 0.00013333 m4, A=0.04m and L =1m.The percent error of the approximation
(1P

Pocd/ Posc100), the*number of adaptive, steps. (N) and iterations required for

current exact

eigen computation (1 ).are feported.inTable 4.1-Table 4.6. Ndte that the exact elastic

and inelastic buckling loads (P, 9 are given dy m'El / (KL)Yand mE.l / (KLY,
respectively, whereithe'effective lengthifactor (K) far eachiend condition can be readily
found (e.g. Timoshenko and Gere, 1961; Chajes, 1974) and the exact tangent modulus
can be computed from equation (3.10). It is evident that the numerical solutions are in
excellent agreement with the analytical solutions. Only few adaptive steps are required
to achieve the converged buckling load. In addition, by using the converged
eigenvector from the previous adaptive step as an initial guess in the current step,

computation of the minimum eigenvalue also requires only a few iterations.
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Figure 4.1 Schematic of simgle«column subjected to (a) pined-pined conditions, (b)

fixed-fixed conditions, (c).fixed*pinned Cdnditions, (d) fixed-free conditions, (e) guided-

fixed conditions, and (f) quided-pinned-conditions

Table 4.1 Percent error of the approx1mat|o‘n P

— =

\
Y

." ]

o

exact|/ P

current exact

*100) and number of

adaptive steps and required |teratlons for mlnlm,um eigenvalue calculations for column

with pinned-pinned condition

Elastic buckﬁiﬁ.g

Inelastic Buckling

=2, Bl n=5B-08 n=10,B=0.9
N Error (%), (n) Error (%), (i) Error (%), (1) Error (%), (1)
1 17.694560, (7) 414339097, (8) 1146.255513, (8) 1572.327132, (9)
2 0.802960, (2) 7.098078, (2) 11.515300, (2) 12.945235, (2)
3 0.001614:(2) 01399663, (2) 01636157, (2) 0.715591, (2)
4 0.000000, (2) 0.000816, (2) 0.001291, (2) 0.001452, (2)
5 0.000000, (2) 0.000000, (2) 0.000000, (2) 0.000000, (2)
6 - 0.000000, (2) 0.000000, (2) 0.000000, (2)




Table 4.2 Percent error of the approximation (|P

Pexact|/ P

current exact
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*100) and number of

adaptive steps and required iterations for minimum eigenvalue calculations for column

with fixed-fixed condition

Elastic buckling

Inelastic Buckling

n=2,B=05

n=5B=0.8

n=10,B=0.9

Error (%), (1)

Error (%) (1)

Error (%), (f)

Error (%), (1)

1.088759, (6)

784.683240, (9)

3147.835950, (9)

4910.289796, (9)

0.000194, (2)

0:624544,4(2)

0.997551, (2)

1.121576, (2)

0.000000, (2)

0:000730,/(2)

0.000208, (2)

0.000234, (2)

M| W

0.000000, (2)

04000000, &2)

0.000000, (2)

0.000000, (2)

0f000000, (2)

0.000000, (2)

0.000000, (2)

Table 4.3 Percent error of the appr_oxima'tfgpﬂ (P

— =
i

g

ol

o

AR Ad g
o

PexactV P

current exact

*100) and number of

adaptive steps and required ite‘rétions for rh'rhir‘-_ﬂhm eigenvalue calculations for column

with fixed-pinned condition

Elastic buckling

Inelastic Buckling

n=2,B=05

n=5B=0.8

n=10,B=0.9

Error (%), (1)

Ercor (%), (1)

Error(%).. (1)

Error (%), ()

44.735537,1(2)

804.616214,(2)

2644.932711,12)

3816.580498, (2)

18.421494, (2)

1.546228, (2)

11.901119, (2)

15.098986, (2)

20776489, (2)

6.569987,4(2)

10.226254, (2)

11.731389, (2)

0.058582, (2)

1.308366, (2)

2.109775, (2)

2.377495, (2)

0.000026, (2)

0.029551, (2)

0.046815, (2)

0.052669, (2)

| o~ WD

0.000000, (2)

0.000013, (2)

0.000021, (2)

0.000023, (2)

0.000000, (2)

0.000000, (2)

0.000000, (2)




Table 4.4 Percent error of the approximation (|P

Pexact|/ P

current exact
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*100) and number of

adaptive steps and required iterations for minimum eigenvalue calculations for column

with fixed-free condition

Elastic buckling

Inelastic Buckling

n=2,B=05 n=5B=0.8 n=10,B=0.9
N Error (%), (1) Error (%) (1) Error (%), (f) Error (%), (1)
1 0.277732, (5) 119.032773, (6) 249.992397, (6) 309.180919, (6)
2 0.0000086, (2) 0:140960,43) 0.221625, (3) 0.249295, (3)
3 0.000000, (2) 0:000003,/(2) 0.000005, (2) 0.0000086, (2)
4 - 0.000000, (2) 0.000000, (2)

04000000, 'EZ)

Table 4.5 Percent error of the apprOxima’ETon (IP

4 |

\
Y

o

|/ P

current’ exact exact

*100) and number of

adaptive steps and required iterations for mplmum eigenvalue calculations for column

with guided-fixed condition

Inelastic I:?;u_g:kling

Elastic buckliﬁg

n=2B=05 n=58<08 n=10,B=0.9
N Error (%), (A)~ Error (%), (N) Error (%), (R) Error (%), (1)
1 1.0887564, (2) 341.587385;, (2) 969,559490, (2) 1336.374571, (2)
2 0.000194; (2) 0.539779, (2) 0862363, (2) 0.969658, (2)
3 0.000000,.(2) 0.000097, (2) 0:000155, (2) 0.000174, (2)
4 0.000000; (2) 0.000000,%2) 0.000000, (2) 0.000000, (2)
5 - - 0.000000, (2) 0.000000, (2)
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Table 4.6 Percent error of the approximation (|P Powct/ Poxaer 100) and number of

current exact

adaptive steps and required iterations for minimum eigenvalue calculations for column

with guided-pinned condition

Inelastic Buckling

Elastic buckling

n=2,B=05

n=5B=0.8

n=10,B=0.9

Error (%), (1)

Error (%) (1)

Error (%), (f)

Error (%), (1)

0.277732, (5)

1491032713/ (o)

249.992397, (6)

309.180919, (6)

0.000006, (2)

0:140960,43)

0.221625, (3)

0.249295, (3)

0.000000, (2)

0:000003,1(2)

0.000005, (2)

0.000006, (2)

04000000, &2)

0.000000, (2)

0.000000, (2)

4.2 Rigid frame and equivalent model with"jofational spring

o

Next, consider a rlgld framé;?(;ﬁsisting of a column and two beams as

ald v ol
shown schematically in Figure 4'2( ) Length Qf the column, the left beam and the right
beam are given by L, pL and. kL respectl.v,ely where p and A are length ratios; the

flexural rigidity of the column the left beam and the right btaam are given by El, yEI and

UEI, respectively, Where Y and p are constants indicating* the flexural rigidity ratio; and
the vertical load P is applied to the top of column. To demonstrate the capability of the
current technique to treat a-concentrated rotational_spring, .we_also consider two other
equivalent models in‘the‘analysis! for-the buckling load of the column: one obtained by
replacing the right beam by an elastic rotational spring with stiffneSs/3uEI/AL at the top
of the Column as 'shown|in Figure«4.2(b) and the other obtained Ky replacing both
beams by an elastic rotational spring with stiffness 3uEI/AL + 3yEl/pL at the top of the
column as shown in Figure 4.2(c). In the analysis, the three structural models are
discretized using only 3, 2 and 1 elements, respectively. Computed elastic buckling

loads, normalized such that P /(m*El/L?), are reported in Table 4.7 along

current current

with the normalized exact solution P /(m*El/L?) obtained from directly solving

exact exact

the differential equation and exact eigenvalue problem for several values of {y, p, W, A}.
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In the inelastic buckling analysis, ¢, = 24607437 kg/m2, g, = 0.00346535, | =
0.00636173 m’, A = 0.28274 m> and L = 1 m are chosen. The normalized inelastic
buckling loads are reported in Table 4.8 and Table 4.9 compared with the normalized
exact solution forn = 4, B = 0.75 and n = 8, B = 0.875, respectively. The number of
adaptive steps and the total number of iterations in the eigenvalue computation are also
reported. As is clearly indicated for both elastic buckling and inelastic buckling,
approximate solutions are comparable to the exact solution for all three models. In
addition, the number of adaptive steps required‘to.achieve the converged solutions for
both elastic and inelastic-cases-is relatively few;-in=particular, the number of adaptive
steps for the inelastic case isdarger than that for the elastic case.

-
3

7% el ol A LEL AL 7%}

{EI L
244
725
7 (a)
P P
3% I
VEIpL & ke,l ke,z
o'
EIf L EIl L
T, 77

(b) (c)
Figure 4.2 (a) Schematic of rigid frame subjected to vertical load P at top of column, (b)
equivalent model obtained by replacing right beam by elastic rotational spring at top of
column, and (c) equivalent model obtained by replacing left and right beams by elastic

rotational spring at top of column



Table 4.7 Normalized computed elastic buckling loads of rigid frame using three

different models compared with normalized exact solution

Model (a) Model (b) Model (c)
viplula| P Porents Ny 1) | Prens (N, D) | Prens (N, D 10)
1 111 0.747665 0.747665 (3,12) 0.747665 (3,12) 0.747665 (3,12)
3111111 0.854549 0.854549 (3,12) 0.854549 (3,10) 0.854549 (3,10)
1131111 0.669441 0.669441 (3,12) 0.669441 (3,13) 0.669441 (3,12)
111311 0.854549 0.854549 (3,12) 0.854549 (3,10) 0.854549 (3,10)
1111113 0.669441 0.669441 (3,12) 0.669441 (3,13) 0.669441 (3,12)
111111041 0.942198 0.942198‘(4,12) 0.942198 (4,12) 0.942198 (4,12)
110.1] 1 10.1] 0.967510 01967510 (4511) 0.967510 (4,11) 0.967510 (4,11)

Table 4.8 Normalized gomputed ineiastizg buckling loads of rigid frame using three

different models compared with nof;nalizec}{

:

. a8

-

4
g

e>J<'-act solution forn=4and B =0.75

Modlél (a) -':.:':-; Model (b) Model (c)
viplpla P, Pt N D) L B (N, D7) | Py (N, YR
1111 |1| 0043088 | 0.043988(7 21) | 0043988 (7,21) | 0.043988 (7, 21)
3| 1]1]1] oosdopoc| oo044070(6119) | 0.044070,6f79) | 0044070 (6,19)
113 |1|1| 0048996 | 0.043906(7,21) | 0.043906(7 21) | 0.043906 (7,21)
101]3|1| 0044070 | 0044070(6,19) | 0044070(6,19) | 0.044070 (6,19)
101 1]3] 0043906 | 0.043906 (7,21) | 0.043906 (7,21) | 0.043906 (7,21)
1111 |01] ~0.084122 | 150040122 () |  01084122\(5)esf  0.044122 (5,14)
1001] 1 |o1|" 00k1de’ | Co0audes (514) €| T0l0ka136(514) € 0.044136 (5,14)

4.3 Simply-support column braced by translational spring at its mid-span

Next, consider a simply-supported column of length 2L and flexural rigidity El
and being braced against the lateral movement at its mid-span by an elastic
translational spring stiffness k as shown in Figure 4.3(a). This problem was solved
analytically and reported by Timoshenko and Gere (1961). It was demonstrated that the

buckling switches from a single curvature mode to a double curvature mode (similar to



Table 4.9 Normalized computed inelastic buckling loads of rigid frame using

different models compared with normalized exact solution forn = 8 and B = 0.875
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three

Model (a)

Model (b)

Model (c)

~

Praencs (N, )

Porens (N, D)

Pramencs (N, D 1)

0.026220 (6, 20)

0.026220 (6, 20)

0.026220 (6, 20)

0.026234 (6,18

0.026234 (6,18

0.026234 (6,18

0.026205 (7, 21

0.026205 (7, 21

(
0.026205 (7, 21
0.026234 (6,13

0:026234 (6,18

0.026234 (6,18

0:026205 (7,~;1

0:026205 (7, 21

0.026205 (7, 21

07026243 (5/14

0.026243 (5,14

0.026243 (5,14

YIp|K|A Peact

17111111 0.026220
311111 0.026234
1131111 0.026205
17111311 0.026234
17111113 0.026205
171111101 0.026243
110.11 1 |01 0.026246

)
)
)
)
)
)

)
)
)
)
)
)

0.026246 (5,14

)
)
)
)
)
)

0.026246 (5,14

5
040262486 (5114

" |

i

A EMAILL B el AL ,/é};; P
(a)# 4
e P
o ELAL 'W%Z%T’T’El,A,L .

Figure 4.3 (a) Simply‘—supported column braced against: lateral movement at its mid-

span by translational sp’r-ing and (b) two-span column with’ equal length

the buckling méde of a column shown in Figure 4.3(b)) when the spring stiffness k

reaches“thevalue 167I2EI/(2L)3. Imstheranalysis;ythe, columnjis digeretized into 2 equal

elementszand numerical results are shown in Table 4.10 for various values of normalized

spring stiffness k = k / (x®El/(2L)°) and in Figure 4.4 for the entire range of K. As

anticipated, converged buckling loads obtained from the current technique for various

values of k are identical to the exact solution and the number of adaptive steps required

is relatively low. In addition, the technique requires no additional treatment in order to

accurately capture the mode switching. It should be pointed out, however, that when the
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spring stiffness k close to the critical value (i.e. 167t2EI/(2L)3), it is required the larger

number of the iterations to compute the minimum eigenvalue.

Table 4.10 Normalized elastic buckling load of simply-supported column braced at its
mid-span by translational spring with stiffness k. The number of adaptive steps (N) and

the total number of iterations for eigenvalue computation (z f ) are also reported

_ Prent P, et
K N m°El/ (2L)? m°El/ (2L)?2
0 1.000000 1.000000
4 ' %, | 798972 1.798972
8 :‘5.‘570652 2.570652
12 ‘“\ 7505 3.307505
16 4.000000
20 4.000000
40 4.000000
100 4.000000 4.000000
o0 5 4.000000 4.000000

ﬂUEJ,“ﬂEJ wmm

Exact (n=2,B=0.5)
currenl a ——Exact(n=5,B= 08

QTR NN ZRER A}

L) Proposed (n =5, B =0.8)

o 3 (1] 15 Ili(l 23 an as A0
n°El/ (2L)°

Figure 4.4 Normalized buckling load for simply-supported column braced at its mid-

span by translational spring versus the normalized spring stiffness
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Next, the inelastic buckling of the same structure is investigated. In the analysis,
the reference stress O, = 2812278.5 kg/m®, the reference strain €, =0.00110938, | =
0.00013333 m', A=0.04 m°and L = 1 m are employed. Numerical and exact solutions
are presented in Table 4.11 for various values of k and in Figure 4.4 for the entire range
of k. In addition, the buckling shapes of the column for both elastic and inelastic cases
are also reported in Figure 4.5 for certain values of E, n and B. It is evident that for a
small value of k (buckling in a single cunvature mode), the buckling shapes for elastic
and inelastic cases exhibit slight difference’in_tne_middle region of the column whereas,
for a large value of k (bueklingin'a double curvature'mode), the buckling shapes for all

cases are identical.

\
Table 4.11 Normalizedsinelastic buok__ling ]o:’a.d of simply-supported column braced at its

i
1 -

mid-span by translational spring with stiffness k. The number of adaptive steps (N) and

the total number of iterations for eig'envalue‘fcdmputation (Zﬁ ) are also reported

AR A
o

n=28 =05 M2 Al n=58=08
E P 2 PExact -:;‘ :-'j ."J ~ Pcurrent PExact
"N
Zn n’El/(2L)* | =°El/(2L)°

N =~ current
2. El/ (L) | Bl (L) |
0 | 4 | 14| 067266 | 0367266 | 4 |5, ) 0201358 | 0.201358

1 12 | 40 0.480689 0.480689 26 ,‘;-'0.261131 0.261131

1.5 | 14 | 47 0.544713 0.544713 9 | 1138} 0.265694 0.265694

2 15 | 54 0.611269 0.611299 7 | 89 0.265694 0.265694

25| 16 | 62 €.678074 0.678074 T 67 0.265694 0.265694

3 16 | 72 0.734532 0.734532 7| 61 0.265694 0.265694

5 7 |85 0.784532 04134632 7 ¢ 88 0.265694 0.265694

10 | 6 57 0.734532 0.734532 6 | 55 0.265694 0.265694

oo | 6 | 20 0.734532 0.734532 6 | 26 0.265694 0.265694

4.4 Column resting on elastic foundation

Consider, next, the flexural buckling of a single column resting on an

elastic two-parameter foundation as shown in Figure 4.6. This fourth example is chosen
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to further verify the developed technique for the case that both the shear deformation
and an elastic foundation are included in the mathematical model. For this particular
problem, the exact buckling load is available for a column with the pinned-pinned end
condition whereas the benchmark numerical solutions were presented by Seemapholkul

(2000) for a column with both pinned-fixed and fixed-fixed end conditions.

0.5

04 =

Elastic
— — — lInelastic (n=2, B=0.5)

Inelastic (n=5, B=0.8)

04 F

03 |

Elastic
— — — lInelastic (n=2, B=0.5)

Inelastic (n=5, B=0.8)

02 :

- —

NP TRE BUI UTE ST W AT ST L & bpob N
0 02 04 06 08 1 B 18 s "I's 3 :! v L] 0.5 1 LS 2
X o X

e
'
(a) £y (b)
akd vl ok

Figure 4.5 Buckling shape of;_jsirnply—suppbft-f_;;@i column braced at its mid-span by

translational spring versus the normalized spgih.gﬁtiffness: (a) k=1 and (b) k=20

_ 4 ; : 4
2 B

R
§1

(c)

Figure 4.6 Schematic of column resting on an elastic two-parameter foundation with (a)
pinned-pinned end condition, (b) pinned-fixed end condition, and (c) fixed-fixed end

condition
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In the modeling, only one element is used in the discretization for the
pinned-pinned and fixed-pinned columns whereas 2 elements are utilized for the fixed-
fixed column. In numerical experiments, essential parameters are chosen to be identical
to those used by Seemapholkul (2000), for instance, E = 29,000 ksi, L/R = 100 in, | =
719 in4, A=2329in"and G = 11,600 ksi. Numerical results for the buckling load
obtained for the three end conditions are reported in Table 4.12. It is evident that the
converged buckling load for the: pinned-pinned column predicted by the current
technique is identical to the exact solution whereas those for the fixed-pinned and fixed-
fixed columns show very=good-agreement with-the-benchmark numerical solutions.
Again, only few adaptive steps are reguired to obtain such highly accurate numerical

solutions. \

4 |

Table 4.12 Computedbuckling load of column resting on elastic foundation with three
: )

exact
4

end conditions compared with exactéolut'rb‘n (P_..) and benchmark numerical solution

(P.;) presented by Seemapholkul 7(2(500). Thje‘r,f_number of adaptive steps is also indicated

in the parenthesis et il
K, K, Pinrfed—pinned column Fixed-pinned Colurffm_;- Fixed-fixed column
}\l (k8|) (k|pS) Pcurr-er;tl.(kS')’ (N) Pexact (kS|) P(:urrent (kSI)’ (N) Pref (ks-il) Pcurrem (kS|) ! (N) Pref (kSI)
0 0 0 94166 (4) 941.66 1,926 (5) o 3,767 (4) -

0 3 1000 16,856(6) 16,856 175797 (5) 17,800 20,443 (5) 20,448

2/3 0 938.191(4) 938.19 1,911(4) - 3,712 (5) -

2/3 0 20,504 (6) 20,504 20,801 (6) - 22,810 (6) -

2/3| 3 1000 16,8883 (5) 16,583 17,432 (5) 17,359 19,7451(5) 19,710

231 5 100 20,604 (6) 20,604 20,901 (6) - 22,910 (6) -

4.5 One story portal frame

Consider next a one-story portal frame with geometry, cross-sectional
properties, loading conditions shown in Figure 4.7. The Young modulus and shear

modulus of both beams and frames are given by E and G with Poisson ratio = 0.25. The
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key objective here is to investigate the influence of the length ratio vy, the axial load ratio
p, the moment of inertia ratios B and a, and the shear deformation of the column on
values of the elastic buckling load. In the analysis, the reference stress ¢, = 35143581
kg/m’, the reference strain g, = 0.00172405, | = 0.00013333 m", A = 0.8331, A = 0.04 m’
and L = 1 m are selected and the frame is discretized into three elements (one for beam
and one for each column). A set of results for certain values of parameters {a, B, p, v, 1}
are reported in Table 4.10 for elastic buckling and in Table 4.11 and 4.12 for inelastic
buckling and the corresponding buckling shapes for certain cases are also reported in
Figure 4.8. To demonstraie-the-accuracy of the-propesed technique, numerical results
are compared with exact buekling loads (obtained by solving the differential equation
and the corresponding .exaet eigenV‘_alue problem) for columns without shear
deformation and solutions ebtained/from a reliable FEM package for columns with shear
deformation. As evident fram gomputed ré?su,l}s, the approximate buckling loads are in
excellent agreement with the'exact and befﬁ_chmark seolutions. In addition, the number of
adaptive steps required io achié:v!(_aithe c‘c;iy‘e‘)-rged solutions for the elastic case are

relatively few and much lower than that requi'r'_e_d__j:@r the inelastic case.

El G,I,L,A E' G) aIlLl “A

7777 oy

Figure 4.7 Schematic of axially-loaded, portal rigid frame

4.6 Multi-storey frame with side-sway restraint

As a final example, we consider a more complex problem associated
with a multi-story rigid frame subjected to axial loads and braced against the lateral

movement by elastic translational springs of stiffness k as depicted in Figure 4.9. The



Table 4.13 Normalized elastic buckling load (P

Figure 4.4. Results are compared with exact solutions (P

(Pegy) from FEM

current)

50

of one-story portal frame shown in

exact)

and benchmark solution

Table 4.14 Normalized melastlc buckhng load (P

Figure 4.4. Results are compared thh exactéeiutlons (P

o

JJ

current)

No shear deformation With column shear deformation

* B P y u fcu"em 2! (N) 2Pexam 2 fcu”em 2! (N) ZPFEM 2
nEl/L nEl/L nEl/L nEl/L

111 1 1 11| 0.747665(3) 04747665 0.696285 (4) 0.696506
51 1 11| 1.434923 (4) 1484973 1.229010 (5) 1.229351
115 1 111 | 0.986730(4) 0.936730 0.857457 (3) 0.858177
111 5 | 1|1 ] _0247925(4) 0.247925 0.229675 (4) 0.229879
111 1 5|1 | 0PA3284'(3) || 0:443284 0.424703 (4) 0.424821
111 1 1| 5 | @F47665/(3) Tl 0.747665 0.716359 (3) 0.716851
511101111 s 26553626 (4) | 220653626 2.115826 (6) 2.116454
1111701115 ";‘1 .348748 (4y jT.3{18748 1.283583 (4) 1.284468

of one-story portal frame shown in

exact)

“/No shear deformation

alBl o |y 5, n=3,8=2/3 P:'_'J‘" n=4,B=%
P P - P

Jeeye WO | Ree ™| wEie
1 1 1 111 1]¢0437838 (7) 0437838 0.108516 (7) 0.108516
301 | 1l 1| 1 10.169497(9) 1| | 0:169497- | 01127253 (9) | 0.127253
113 1 111 0.139310 (6) 0.139310 0.109194 (6) 0.109194
1 1 3 1.1 0.073092.(18). |, 0.073092" |. 0,051308 (27) 0.051308
1 1 1 390 1% 0.133370 (10) 4 0:13337Q: | 0.106430 (10) 0.106430
1 1 1 113| 0.137838 (7) 0.137838 0.108516 (7) 0.108516
311103|1|1]0219724(19) | 0.219724 | 0.154005 (23) | 0.154033
1111]103]1]3]0219412(16) | 0.219412 | 0.153920 (22) | 0.153948
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Table 4.14 (Cond.) Normalized inelastic buckling load (P of one-story portal frame

current)

shown in Figure 4.4. Results are compared with exact solutions (P

exaot)

No shear deformation

o B o S n=5B=4/5

f — 2! (N) ZI:)exaCt 2

| 7’El/L m°El/ L

10 1] 1 ~ 911 (7) | 0.093911
3 1N ( ) | 0.106851
113 1 14 0. ) | 0.094315
1 10 0.041415
1 o 0.092661
1| 141 _Jo. 0.093911
3 4140 4 124294
1 121 124261

Elastic (no sh
————— Elastic (with ¢
deformation)

Elastic (no shear deformation)
- - — - Elastic (with column shear
deformation)
e Inelastic (n = 3, B = 2/3)
Sl g - Inelastic (n = 4, B = 3/4)
e Inels [ - «=:= Inelastic (n = 5, B = 4/5)

theframeisdiﬁfﬁﬁﬁwﬂﬂ{“ﬂ"]ﬂ‘j
RIAYNIUNRINGY

Figure 4.8 Buckling shapes of one story portal frame: (a) {a, B, p, v, w} = {1, 1, 1, 1, 1}
and (b) {a, B, p, v, W} = {1, 1, 5, 1, 1} for elastic buckling and {a, B, p, v, i} = {1, 1, 3, 1,

1} for inelastic buckling

span length of each bay and the height of each levels are given by {2L, L, 2L} and {L, L,

L, L, L}, respectively. The moment of inertia and the cross-sectional area of columns in
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the first to fifth levels are given by {3I, 21, 21, |, I} and {3A, 2A, 2A, A, A}, respectively,
whereas the moment of inertia and the cross-sectional area of all beams are given by |
and A, respectively. The Young modulus and shear modulus of both beams and
columns are given by E and G and the Poisson ratio is taken to be 0.25. In the analysis,
the frame is discretized in to 35 members (20 elements for columns and 15 elements for
beams) and | = 0.000675 m*, L = 0.8331, A = 0.09 m” and L = 1 m are employed. The
[(PEN/L?), with

A

normalized elastic buckling load of.the frame, denoted by P, ... =P ent

and without shear deformation for various values of normalized spring stiffness, denoted
by k = k/ (mEl/(2L)°%) , are-reporied and comparedswith benchmark solutions obtained
from a reliable FEM package.in Eigure 4.10. The buckling shapes of this frame are also
reported in Figure 4.11 fopfCestain values of K. Itis apparent that when the spring
stiffness k reaches a certain finite/valde, the'buckling load is identical to that of the same

frame being fully fixed"againstithe s_ide-sw_'éy,_(i.e. k = ©0)."Again, the switch of buckling

/
modes can be accurately captured by the ‘current technigue. Note in addition that the

shear deformation significantly lowers. the f!jéxural pbuckling load of this particular frame

but insignificantly influences'the/buckling shaip’ei.:}

-

P TP P P
1 17 Ly o,
- k a
. - L
p — lzp izp p
- ﬁL
k
P 2P 2p P
ﬁL
k i
P 2P 2P P -
] 1~ 1 S/
k i
L=
P 2P 2P P
] 4 s
k
L
s, rrr A 77 —
L 2L L L L 2L L
1 1 1 K

Figure 4.9 Schematic of axially-loaded, multi-story frame with side-sway restraints
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P

current

No shear deformation)

Figure 4.10 Normali

side-sway restraints v

..i
[

AULINENINYINS
PRIMATUUMINYAE

Figure 4.11 The buckling shapes of multi-storey frame with side-sway restraint: (a)

without shear deformation and (b) with shear deformation
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CHAPTER V

CONCLUSIONS AND REMARKS

An efficient and accurate numerical technique has been developed for
estimating the flexural buckling load of two-dimensional, axially-loaded, skeleton
structures with consideration of shear deformation, elastic lateral restraints and inelastic
material behavior. The well-known principle of stationary total potential energy has been
utilized to derive the variational formulation’ and the standard Rayleigh-Ritz
approximation scheme has been adopted t0 construct a discretized eigenvalue
problem. The capability"of thesproposed technigue has been enhanced by supplying
the automatic adaptivity te" the finite | element approximation via the successive
improvement of the assumed bugkling shfape. The shape functions, used to form the
trial functions for each«€lement; have been derived from:an exact function form of the
buckling shape obtained‘directly by solviné__tk;e differential equations. With such special
development, the final shape funétiéns pos,sgss two attractive features: (i) they contain
an adaptive parameter invelving the axial‘lj‘;i_;);aJi;l of each element and (ii) they can

represent an exact buckling s}hape_of each: é_l_gm_e_nt if the axial load is identical to the

exact buckling load, Alproper iterative procedure has been implemented along with the

use of such special features of the shape functions to successively improve the buckling
load estimation. The power method and the Rayleigh guotient technique have been

used to determine the minimum eigenvalue and. the corresponding eigenvector.

From extensive numerical experiments on various structures, it has been
found ‘that' only a'iew “adaptive’ steps to'update the assumed uckling shapes are
required®to achieve the converged buckling load for a sufficiently small, specified
tolerance. As compared with reliable benchmark solutions, the proposed technique has
proven to yield highly accurate results comparable to exact solutions without any mesh
refinement. In addition, by using the converged eigenvector obtained from the eigen-
hunt in the previous step as an initial guess vector in the power method and Rayleigh
quotient routine for computing the minimum eigenvalue, less number of iterations is

required in the subsequent adaptive steps. In addition, the proposed technique can also
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accurately predict the buckling load of structures that are braced against the lateral

movement and may experience switch of the buckling modes.

A proposed computational procedure provides an attractive alternative
to other available methods (e.g. analytical techniques, standard finite element method,
etc.) for flexural buckling analysis of structures. Since it yields highly accurate numerical
solutions comparable to the analytical solution for a broad class of structures, one direct
application is to use this technique either sto. generate benchmark solutions for
comparison purposes or as..a Compu_t’ational toel-for performing some parametric
studies. Due to the automaiie adaptivityﬁ embedded.and no mesh refinement needed,
meshing effort required.ior a large scale §tructure can be significantly reduced. Another
application is to use this technique t_o cérrﬂectly estimate the effective length factor of
columns in both sway and non—sway multi;s.tory frames. It has been found very often in
various practical situations that aligr'r'iment (I;‘jhe;i-’ts predict very inaccurate effective length

factor. The accurate estimated -effective _'I-éngth factor is essential in the design of

" )
members in compression and members in combined flexure and compression.
# i -'1_.1:-'

As a final remark; ‘the pré'p-o’s_éd technique still possesses certain

limitations and require’_’s'_, further investigations. For instance;jt.is not directly applicable to

structures with members  of varying cross sections, structures subjected to the
distributed axial load, and structures with significant influence of the axial deformation.
Also, structures=tansistingsof members jwith-singlyssymmetriczor non-symmetric cross

section in whichgthe flexural-torsional buckling is dominated cannot be treated.
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Constants a,, and I, appearing in equations (2.37) and (2.38) are

given explicitly by
] 1 T]]P]+nJ Zj)r +<1 n; k ) }

1= [(asa4 - aza4)e(r2+r3) +(a,85 - asa4)e(r2+r4) -d,a3 +a,3, ]/Q

(a2, -252,)e™"™ + (a2, - ,

a=|
[(a a,-a,3,) +(aa, -
a=|

(2,83 -2,33) + (2,85

II
—
~~
G
9:
v
(D/'\
S

+

&
+

—
)

(a5-2,)e™ +

(a,-a,)+(a, -
=|(a,-a;) +(a - a3)e(1

=|(a,a,-2a a3)er2 +(a,a;-a 132, )8%

(8,2, -a,a,)e" +ma2-a a,)e” +(a,a, -a,a,)e" /Qm

[
2 =[(@-
o=
[(alas a,a,)e" - %E,\
»=[
o=[

‘alaZ'aFT“‘H‘EI’Q WERINYIINT

[(as a4)e2 (a,-a,)e" +(a, - a‘)eu /

:ammmmy/mwma

(a,-a,)e" +(a,-a,)e? +(a, - az)er“]/Q

=
[( -3,)e" +(a;-a5)e" +(a, - al)ers]/Q
(

Q=2(aa, —a3, —a,a; +a,3a, ) +(—a,a, +a,3, +a,a5 — a3a4)[e“1”3) + e““’“]

+(a,a, —a,3, —a,a, +a5a, )[e(’i”") + e(’2”3)]

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

(A11)

(A.12)

(A.13)

(A.14)

—

A.15)

(A.16)

(A7)

(A.18)
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APPENDIX B

The shape functions y;(X) and w;(X) for a special case without the
elastic lateral restraint (i.e. k,=0 and k,=0). The governing differential equation (2.27)

simply reduces to

r*+2mr* =0 (B.1)

where

P

= — (B.2)
2(1-7;P)

The general solution the form

V(X)=C,e™ +C,e?* + (B.3)

B(X) = C,e™ +C,e” +C, (B.4)

where Cq, Cy, C3 and C4 1 and Iy are distinct roots of the

characteristic equation (B.

Cp = My (1-7P) 12 ey 3 (B.5)

0

By enforcing essential bqundary conditions b34 along with using the relation (B.5), it

leads to the saﬂs W {}%&] ﬁ% w ﬂq ﬂa@non (2.35) - (2.36) but

the shape functiohs y;(X) and w; (x)‘are given dlfferently by

v SR BT T UANINYIQY o

\Ill (X) Zam m| i +F3i (B7)
where constants a,, and I,; are given explicitly by
i = {75 (1P, ) 5+ | (B.8)

r, =[a,a-e%)]/0 (B.9)
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T =[46" -1 ]/0 (B.10)
Ty =[ 84, (e" —eﬁ)]/g (B.11)
Ty =[ (@3, -8,)e" + (3 -a,3,)e" +3, -4, | /0 (B.12)
Iy, =[1-a,)e" -1]/0 (B.13)
Ty =[1+ (8 -1)e" | /0 (B.14)
Ty =[de" —a,e" +3, -4, | /0 (B.15)
T, = [(1 a,)e" +(a, - 1)e" (B.16)
I =[4,(e" -D]/Q (B.17)
Ty =[&@-e") ]/ (B.18)
Ta =[ &, (e" —e?)] (B.19)
T =[(e" ~1)+8,(1- (B.20)
Ty =[1+4,-e" | /0 (B.21)
Ty =| e -3, -1]/0 (B.22)
Ty =[8,(1-¢")+5, yT " (B.23)
r44=[5 —3,—e" +et ﬂz (B.24)

DRUBIRERINGINT oo
i; v b 1ATE (5 jahif gl )

explicit form via the direct integration. Entries of these matrices are given by

[Ki] = Ei

|iii§j§krjrkrjmrkn (e(rj+rk)L_1)/(rj+rk) (B.26)

=1 k=1

K] =16, A,ZZ( 3,)( AT (e“i*’k)L-l) /(rj+rk) (B.27)
j=1 k=1
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[ i] _PZerF T, ( 1)/(rj+rk)+gl“,-ml“3n(e’iL_l)
+Zr‘k o (€% L)+, T,

(B.28)

ﬂUEJ’JVIHVITW BN
Qﬁﬁﬁﬂﬂ‘imﬂﬂﬂﬂmﬁﬂ



64

APPENDIX C

The shape functions y;(X) and w;(X) for a special case without the
elastic lateral restraint (i.e. k,=0 and k,=0) and shear deformation. The governing

differential equation (2.27) simply reduces to

4 2
d—\:+ k? d_\2/
dx dx

-0 (C.1)

(T, 4T, T, X+, COS(1R)+T
_ 1
v, (XFW{FE‘F

worm L AU AANENT
ATARMDIRUIBAINGIAY e

wherel', =cosy—1, I', =ysiny, I';=siny, I',=siny—ycosy and I';=y-siny.

X)=
v, (X) T,+2T,

1YX-

Note that the buckling shape B(X) can be obtained by taking derivative of (2.35) with
respect to X. Since the shape function ;(X) are given in terms of trigonometric and
linear functions, all elements stiffness matrices Kpi and Kgi can readily be obtained in

an explicit form via the direct integration. Entries of these matrices are given by



[Kb]n =

[Kb]12 =

[Kb]13 -

[Kb]14 =
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[Kb]24 =

+y[COSysiny(r 24T Z@ief A,
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[ ].=
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(C.9)

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)

(CA7)

(C.18)

(C.19)
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[Kg ]13 - _[Kg ]11 (C.20)
[K ] _ -y[(1+coszy)l“12 +(coszy-1)1“31“5] -v* ([T, +T,[,)-2T, (T +yT,)
914 + 2
2y([,+2I) (C.21)
, Yeosysiny(I', s~ ) +2cosy(I, U+, * )+ 20 siny (I, +9T)
2y(T,+2T,)?
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2y(I', +2T1)2

[K9]22 =

(C.22)
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[Kq Ly =[] (C.23)
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