การเพิ่มปริมาณการผลิตไฮโดรคาร์บอนจากแหล่งกักเก็บที่มีทั้งก๊าซธรรมชาติ และก๊าซธรรมชาติเหลวโดยใช้การอัดคาร์บอนไดออกไซด์

นาย ภาคภูมิ ตั้งคะประเสริฐ

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมปีโตรเลียม ภาควิชาวิศวกรรมเหมืองแร่และปีโตรเลียม คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2551 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

ENHANCING HYDROCARBON RECOVERY FROM GAS CONDENSATE RESERVOIR VIA CARBON DIOXIDE INJECTION

Mr. Phakphum Tangkaprasert

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Petroleum Engineering Department of Mining and Petroleum Engineering

> Faculty of Engineering Chulalongkorn University Academic Year 2008 Copyright of Chulalongkorn University

Thesis Title	ENHANCING HYDROCARBON RECOVERY
	FROM GAS CONDENSATE RESERVOIR VIA
	CARBON DIOXIDE INJECTION
Ву	Mr. Phakphum Tangkaprasert
Field of Study	Petroleum Engineering
Thesis Advisor	Assistant Professor Suwat Athichanagorn, Ph.D.
By Field of Study Thesis Advisor	CARBON DIOXIDE INJECTION Mr. Phakphum Tangkaprasert Petroleum Engineering Assistant Professor Suwat Athichanagorn, Ph.D

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

t Ande . Dean of the Faculty of Engineering

(Associate Professor Boonsom Lerdhirunwong, Dr.Ing.)

THESIS COMMITTEE

herry)... Chairman

(Jirawat Chewaroungroaj, Ph.D.)

Sunvat Atluichangon Advisor

(Assistant Professor Suwat Athichanagorn, Ph.D.)

Airee Nasakul Examiner

(Siree Nasakul, Ph.D.)

Examiner

(Thitisak, Boonpramote, Ph.D.)

ภาคภูมิ ดังคะประเสริฐ : การเพิ่มปริมาณการผลิตไฮโดรคาร์บอนจากแหล่งกักเก็บที่มีทั้ง ก๊าซธรรมชาติและก๊าซธรรมชาติเหลวโดยใช้การอัดการ์บอนไดออกไซด์ (ENHANCING HYDROCARBON RECOVERY FROM GAS CONDENSATE RESERVOIR VIA CARBON DIOXIDE INJECTION) อ. ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ.ดร. สุวัฒน์ อธิชนากร , 104 หน้า.

การเพิ่มการผลิดก๊าซธรรมชาติเหลวเป็นงานที่ท้าทาย เมื่อความคันภายในแหล่งกักเก็บ ลดลงต่ำกว่าความคันกลั่นตัว ก๊าซธรรมชาติเหลวจะสะสมภายในแหล่งกักเก็บนำไปสู่ปัญหาการก็ค ขวางโดยก๊าซธรรมชาติเหลวขึ้น นอกจากนั้นก๊าซธรรมชาติเหลวบางส่วนยังถูกทิ้งไว้ในแหล่งกัก เก็บ วิธีหนึ่งที่มีประสิทธิภาพในการแก้ปัญหานี้ก็คือการอัคก๊าซลงไปในแหล่งกักเก็บ การอัคก๊าซ สามารถเพิ่มผลผลิตก๊าซธรรมชาติเหลวได้โดยการทำให้ก๊าซธรรมชาติเหลวระเหยและการเพิ่ม ความคันแหล่งกักเก็บ ก๊าซที่ใช้ในการอัคสามารถเป็นก๊าซธรรมชาติหรือก๊าซเลื่อยขึ้นอยู่กับว่าก๊าซ ใหนพอจะหาได้ การใช้ก๊าซการ์บอนไดออกไซค์เป็นก๊าซในการอัคลึดยังสามารถบรรลุจุดประสงค์

ในงานศึกษานี้เราได้ใช้การจำลองชนิดพิจารณาองก์ประกอบเพื่อจำลองการอัดก็าซ การ์บอนไดออกไซด์ในแหล่งกักเก็บสมมุติของก๊าซธรรมชาติและก๊าซธรรมชาติเหลว จากผลการ จำลองพบว่าการอัดก๊าซการ์บอนไดออกไซด์สามารถรักษากวามดันให้อยู่สูงกว่ากวามดันกลั่นตัวได้ อย่างมีประสิทธิภาพ จึงป้องการกลั่นตัวของก๊าซธรรมชาติเหลวในแหล่งกักเก็บ เมื่อการอัดก๊าซ การ์บอนไดออกไซด์เริ่มขึ้นหลังจากก๊าซธรรมชาติเหลวกลั่นตัว ก๊าซการ์บอนไดออกไซด์ สามารถทำให้ก๊าซธรรมชาติเหลวที่กลั่นตัวอยู่รอบๆหลุมผลิตระเหยได้ ผลการจำลองยังแสดงให้ เห็นว่าอัตราการผลิตก๊าซและอัตราการอัดก๊าซการ์บอนไดออกไซด์ไม่มีผลอย่างเด่นชัดต่อผลผลิต ก๊าซธรรมชาติและก๊าซธรรมชาติเหลว อย่างไรก็ตามเวลาที่เริ่มอัดก๊าซการ์บอนไดออกไซด์มีผล อย่างชัดเจนต่อการผลิตก๊าซธรรมชาติและก๊าซธรรมชาติเหลว เพื่อให้ได้ผลผลิตก๊าซธรรมชาติเหลว สูงสุดการอัดก๊าซการ์บอนไดออกไซด์กวรจะเริ่มในช่วงเวลาสั้นๆหลังจากกวามดันก้นลดลงต่ำกว่า กวามดันกลั่นตัว

ภาควิชาวิศวกรรมเหมืองแร่และปีโตรเลียม	. ลายมือชื่อนิ	เสิด	dy.		
สาขาวิชาวิศวกรรมปีโตรเลียม	ลายมือชื่ออ	.ที่ปรึกษ	าวิทยานิพน	เธ์หลัก 🕬	01~~
ปีการศึกษา 2551					

4971617921: MAJOR PETROLEUM ENGINEERING KEYWORDS: /INJECTION/CO2/OPTIMIZATION/GAS CONDENSATE

PHAKPHUM TANGKAPRASERT. ENHANCING HYDROCARBON RECOVERY FROM GAS CONDENSATE RESERVOIR VIA CARBON DIOXIDE INJECTION. THESIS ADVISOR: ASST. PROF. SUWAT ATHICHANAGORN, Ph.D., 104 pp.

Increasing condensate recovery in a gas condensate reservoir is a challenging task. When the reservoir pressure falls below the dew point, retrograde condensate condenses and accumulates in the pore system, causing a blockage problem. Furthermore, some of the valuable condensate will be left in the reservoir as residual oil. One of the most effective methods of solving this problem is to injecting gas into the formation. Gas injection allows enhanced condensate recovery by reservoir repressurization and liquid re-vaporization. The injected gas can be natural gas or other inert gases, depending on availability. The use of CO_2 as injected gas also achieves the purpose of CO_2 sequestration into geological storage.

In this study, a compositional simulator was used to simulate CO_2 injection in a hypothetical gas condensate reservoir. The simulation results show that CO_2 injection does effectively maintain reservoir pressure above the dew point pressure, preventing condensate dropout within the reservoir. When injecting CO_2 after condensate accumulates, CO_2 can still re-vaporize liquid drop-out around the wellbore. The simulation results also demonstrate that gas production and CO_2 injection rate do not have significant effect on oil and gas recovery. However, the starting time for CO_2 injection has important effects on hydrocarbon recovery. To obtain the maximum oil recovery, the injection should start shortly after the bottomhole pressure drops below the dew point pressure.

Department: Mining and Petroleum Engineering.....Student's signature: Prok prom Field of study: Petroleum Engineering......Advisor's signature: Sund Attichargon Academic Year: 2008.....

Acknowledgements

Many persons have contributed either directly or indirectly to my thesis; I wish to express my thanks to them sincerely.

Firstly and foremost, I would like to thank Asst. Prof. Suwat Athichanagorn, my thesis advisor, for giving knowledge of petroleum engineering and invaluable guidance during this study. I also would like to express my sincere gratitude for his patience and encouragement throughout this work.

Secondly, I would like to thank all faculty members in the Department of Mining and Petroleum Engineering who have offered petroleum knowledge, technical advice, and invaluable consultation. I wish to thank the thesis committee members for their comments and recommendations that make this thesis formally complete.

I would like to thank Schlumberger Overseas S.A. for providing the reservoir simulator software used in this study. I am indebted to Mr. Suphanai Jamsutee for providing some important data used in this work.

Finally, I would like to express my deeply gratitude and thank to my parents who have always been my inspiration, hope, and faith.

Contents

Page

Abstract (in Thai)	iv
Abstract (in English)	v
Acknowledgement	vi
Contents	vii
List of Tables	x
List of Figures	xii
List of Abbreviations	xvi
Nomenclature	xviii

CHAPTER

I. INTRODUCTION	1
1.1 Outline of Methodology	2
1.2 Thesis Outline	3

II. LITERATUF	RE REVIEW	4
2.1 Previus	Works	5

III. THEORY AND CONCEPT	7
3.1 Review of Gas-Condensate Reservoir	7
3.1.1 Gas Condensate Phase Behavior	7
3.1.2 Regions around gas condensate wellbores	
3.1.3 Non-Darcy Flow and Positive Coupling	10
3.2 CO ₂ Injection in Gas-Condensate Reservoir	12
3.2.1 Flooding Patterns and Sweep Efficiency	13
3.2.2 Miscible Fluid Displacement	15
3.2.3 CO ₂ Solubility in water	16
3.3 CO ₂ Sequestration	17
3.3.1 Sequestration Mechanism	
3.3.1.1 Seal Trapping	

		Page
	3.3.1.2 Solubility Trapping	19
	3.3.1.3 Mineralization Trapping	19
	3.3.1.4 Phase Trapping	20
3.3.2	Safety and Risk Management	21
3.3.3	Verification of CO ₂ Storage	22

4.1 Grid Section	
4.1.1 Local Grid Refinement	
4.2 Fluid Section	
4.2.1 CO ₂ Solubility in water	
4.2.2 Positive coupling	
4.3 SCAL (Special Core Analysis) Section	
4.2 Wellbore Section	

V. SIMULATION RESULT AND ANALYSIS	36
5.1 Production with Natural Depletion	37
5.2 Production with CO ₂ Injection at the Beginning	43
5.3 Natural Depletion and Production with CO ₂ Injection	49
5.3.1 Gas Production Rate (GPR)	49
5.3.2 Oil Production Rate (OPR)	49
5.3.3 Bottom hole pressure (BHP)	49
5.3.4 Gas production total	50
5.3.5 Oil production total	50
5.4 Production with CO ₂ Injection at Different Starting Time	52
5.5 Stopping Injection before CO2 Concentration in Produced Gas Rea	ches
Limit	66
5.6 Production with Gas-Recycling	76
5.6 Economic Analysis	81
VI. CONCLUSIONS AND RECOMMENDATIONS	8 4
6.1 Conclusions	84

	Page
6.1.1 Mechanism of CO ₂ Injection	84
6.1.2 Hydrocarbon Recovery Enhancement by CO ₂ Injection	85
6.1.3 Economic Analysis of CO ₂ Injection	85
6.2 Recommendations	
References	
Appendices	
Vitae	104

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

List of Tables

Page
Table 3.1: Areal sweep efficiency for various flooding patterns. 14
Table 3.2: Values of Coefficient in CO2 Solubility Correlation. 17
Table 4.1: Local Grid Refinement used in this study. 25
Table 4.2: The initial composition of the reservoir fluid 26
Table 4.3: Physical properties of each component
Table 4.4: Binary interaction coefficient between components 27
Table 4.5: Oil saturation and oil relative permeability 31
Table 4.6: Water saturation and water relative permeability 32
Table 4.7: Gas saturation and gas relative permeability
Table 4.8: Water saturation and capillary pressure 34
Table 5.1: Economic limit for oil production rate
Table 5.2: Oil and gas total production and production life for natural depletion40
Table 5.3: Production time before the BHP reaches the dew point pressure and the
bottomhole limit for natural depletion
Table 5.4: Total oil and gas production with CO ₂ injection at the beginning
Table 5.5: Production life for production with CO2 injection at the beginning
Table 5.6: Percentage of gas recovery enhancement by producing gas-condensate
reservoir with CO ₂ injection
Table 5.7: Percentage of oil recovery enhancement by producing gas-condensate
reservoir with CO ₂ injection
Table 5.8: Total oil and gas production with maximum gas production rate of 2,000
MSCF/D and vary times prior to injection between $1 - 9$ yrs
Table 5.9: Production life for production with maximum gas production rate of 2,000
MSCF/D and vary times prior to injection between $1 - 9$ yrs
Table 5.10: Total oil and gas production with maximum gas production rate of 4,000
MSCF/D and vary times prior to injection between 1 – 6 yrs64
Table 5.11: Production life for production with maximum gas production rate of
4,000 MSCF/D and vary times prior to injection between $1 - 6$ yrs

Table 5.12: Total oil and gas production and production life for starting CO ₂ injectio
at the beginning and stopping the injection when the produced gas has CO
concentration of 5% - 35%
Table 5.13: Total oil and gas production and production life for starting CO2 injectio
2 years afterward and stopping the injection when the produced gas ha
CO2 concentration of 5% - 35%
Table 5.14: Injected gas composition used in gas recycling scenario

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Page

List of Figures

Pa	age
Figure 3.1: Pressure-Temperature diagram of gas condensate.	8
Figure 3.2: Regions around gas condensate wellbores	9
Figure 3.3: Flooding pattern (Five-Spot; Inverted five-spot)	14
Figure 3.4: CO ₂ geological sequestration options	18
Figure 4.1: Top view of the reservoir model	24
Figure 4.2: Side view of the reservoir model	24
Figure 4.3: 3D view of the reservoir model	25
Figure 4.4: Phase behavior of the reservoir fluid system	28
Figure 4.5: Carbon Dioxide Solubility in water	29
Figure 4.6: Formation volume factor of CO ₂ -saturated water	29
Figure 4.7: Oil relative permeability function	341
Figure 4.8: Water relative permeability as a function of water saturation	\$42
Figure 4.9: Gas relative permeability as a function of gas saturation	343
Figure 4.10: Capillary pressure as a function of water saturation	344
Figure 4.11: Casing and tubing flow model used in this study	345
Figure 5.1: Gas production rates for natural depletion	37
Figure 5.2: Oil production rate for natural depletion	38
Figure 5.3: Bottomhole pressure for natural depletion	38
Figure 5.4: Oil saturation at Grid (4, 4, 2) in LGR grid representing the producer the	for
natural depletion	38
Figure 5.5: Total gas production for natural depletion	41
Figure 5.6: Total oil production for natural depletion	41
Figure 5.7: Production life for natural depletion	42
Figure 5.8: Gas production rates for production with CO ₂ injection at the beginni	ing 43
Figure 5.9: Oil production rates for production with CO ₂ injection at the beginning	ing 44
Figure 5.10: Bottomhole Pressure for production with CO ₂ injection at the beginni	ing 44

Figure 5.11: CO_2 mole fraction in the produced gas for production with CO_2 injection
at the beginning
Figure 5.12: Total gas production for production with by CO_2 injection at the
beginning47
Figure 5.13: Total oil production for production with by CO_2 injection at the
beginning
Figure 5.14: Production life for production with by CO ₂ injection at the beginning48
Figure 5.15: Gas production rates for maximum gas production rate of 2,000 MSCF/D
with different times prior to injection
Figure 5.16: Gas production rates for maximum gas production rate of 4,000 MSCF/D
with different times prior to injection
Figure 5.17: Oil production rate for maximum gas production rate of 2,000 MSCF/D
with different times prior to injection
Figure 5.18: Oil production rate for maximum gas production rate of 4,000 MSCF/D
with different times prior to injection
Figure 5.19: Bottomhole pressure for maximum gas production rate of 2,000 MSCF/D
with different times prior to injection
Figure 5.20: Bottomhole pressure for maximum gas production rate of 4,000 MSCF/D
with different times prior to injection
Figure 5.21: CO ₂ mole fraction for maximum gas production rate of 2,000 MSCF/D
with different times prior to injection
Figure 5.22: CO_2 mole fraction for maximum gas production rate of 4,000 MSCF/D
with different times prior to injection
Figure 5.23: Oil Saturation at Grid (4, 4, 2) in the LGR for maximum gas production
rate of 2,000 MSCF/D with different times prior to injection
Figure 5.24: Oil Saturation at Grid (4, 4, 2) in the LGR for maximum gas production
rate of 2,000 MSCF/D with different times prior to injection
Figure 5.25: Total gas production with maximum gas production rate of 2,000
MSCF/D and vary times prior to injection between $1-9$ yrs
Figure 5.26: Total gas production with maximum gas production rate of 4,000
MSCF/D and vary times prior to injection between $1 - 6$ yrs

Page

Figure 5.33: Oil production rates for starting CO₂ injection at the beginning and stopping injection when the produced gas has CO₂ concentration of 5% - 35%67 Figure 5.34: Oil production rates for starting CO_2 injection after 2 years of production and stopping injection when the produced gas has CO₂ concentration of 5% - 35%. . 68 Figure 5.35: The bottomhole pressure for starting CO₂ injection at the beginning and Figure 5.36: The bottomhole pressure for starting CO₂ injection after 2 years of production and stopping injection when the produced gas has CO₂ concentration of Figure 5.37: CO₂ mole fraction for starting CO₂ injection at the beginning and stopping injection when the produced gas has CO₂ concentration of 5% - 35%69 Figure 5.38: CO₂ mole fraction for starting CO₂ injection after 2 years of production and stopping injection when the produced gas has CO₂ concentration of 5% - 35% ...70 Figure 5.39: Total gas production for starting CO₂ injection at the beginning and stopping the injection when the produced gas has CO₂ concentration of 5% - 35% ...71 Figure 5.40: Total oil production for starting CO_2 injection at the beginning and stopping the injection when the produced gas has CO₂ concentration of 5% - 35% ...71 Figure 5.41: Production life for starting CO₂ injection at the beginning and stopping

Figure 5.42: Total gas production for starting CO_2 injection 2 years afterward and
stopping the injection when the produced gas has CO_2 concentration of 5%- 35% $\dots 73$
Figure 5.43: Total oil production for starting CO_2 injection 2 years afterward and
stopping the injection when the produced gas has CO_2 concentration of 5%- 35% $\dots 74$
Figure 5.44: Production life for starting CO ₂ injection 2 years afterward and stopping
the injection when the produced gas has CO_2 concentration of 5% - 35%74
Figure 5.45: Gas production rate for producing with gas recycling in comparison to
production with CO ₂ injection
Figure 5.46: Oil production rate for producing with gas recycling in comparison to
production with CO ₂ injection77
Figure 5.47: Bottomhole pressure for producing with gas recycling in comparison to
production with CO ₂ injection
Figure 5.48: Total gas production for producing with gas recycling in comparison to
production with CO ₂ injection79
Figure 5.49: Total oil production for producing with gas recycling in comparison to
production with CO ₂ injection
Figure 5.50: Production life for producing with gas recycling in comparison to
production with CO ₂ injection
Figure 5.51: Cash flow for selected cases
Figure 5.52: Net present value (NPV) for selected cases

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย Page

List of Abbreviations

API	degree (American Petroleum Institute)				
bbl	barrel (bbl/d : barrel per day)				
BHP	bottom hole pressure				
BTU	British thermal unit				
C ₁	methane				
C ₂	ethane				
C ₃	propane				
i-C ₄ or I-C ₄	isobutane				
i-C ₅ or I-C ₅	isopentane				
n-C ₄ or N-C ₄	normal butane				
n-C ₅ or N-C ₅	normal pentane				
C ₆	hexane				
C ₇₊	alkane hydrocarbon account from heptanes forward				
CDM	clean development mechanism				
CDMEB	clean development mechanism executive board				
CER's	certified emissions reduction credits				
CO ₂	carbon dioxide				
D	darcy				
DNA	designated national authority				
EOR	enhance oil recovery				
GHG	green house gas				
GPT	gas production total				
GPR	gas production rate				
OPT	oil production total				
OPR	oil production rate				
IET	international emissions trading				
IRR	internal rate of return				
Л	joint implementation				
LGR	local grid refinement				
Μ	¹ thousand (1,000 of petroleum unit), ² million (dollar)				
MSCF/D	thousand standard cubic feet per day				

NEI	non-equilibrium initialisation
NPV	net present value
PDD	project design document
PVT	pressure-volume-temperature
PSIA or psia	pounds per square inch absolute
SCAL	special core analysis
SGAS	gas saturation
SGFN	gas saturation function
SOFN	oil saturation function
STB or stb	stock-tank barrel
STB/D	stock-tank barrels per day
SWAT	water saturation
SWFN	water saturation function
TVD	true vertical depth or total vertical depth
UNFCCC	United Nations Framework Convention on Climate
	Change

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Nomenclature

Α	cross-section	area

- *B* formation volume factor
- *b* repulsion parameter
- *C* salinity of brine in weight percent of solid
- c_g gas compressibility
- *E* sweep efficiency
- k permeability
- k_r relative permeability
- k_{ri} conventional relative permeability for capillary dominated
- k_{rM} relative permeability function in the limit of viscous dominated
- k_{rg} gas relative permeability
- k_{rgI} immiscible relative permeability
- k_{rgM} straight-line miscible relative permeability
- k_{rw} water relative permeability
- k_{rog} oil relative permeability for a system with oil, gas and connate water
- k_{row} oil relative permeability for a system with oil and water only
- k_{rowg} oil relative permeability for a system with oil and water at $S_g = 0$
- K equilibrium constant, diffusion coefficient between CO_2 and gas condensate fluid
- N_c capillary number
- *p* pressure
- p_c capillary pressure
- *q* volumetric flow rate
- R solubility of CO₂ in water
- S saturation
- S_r residual saturation
- T temperature
- t time period
- v velocity
- *x* distance

- $x_{0.1}$ locations at which the CO₂ concentration is 0.1
- $x_{0.9}$ locations at which the CO₂ concentration is 0.9
- *z* compressibility factor

GREEK LETTER

- β Forchheimer parameter
- ε Corey exponent
- ϕ porosity
- f capillary number dependent transition function
- ρ fluid density (mass/volume)
- μ fluid viscosity
- Δ difference operator
- ∇ 3 dimension difference operator
- α constant in capillary number dependent transition function
- σ interfacial tension

SUPERSCRIPTS

end-point indicator for relative permeability

SUBSCRIPTS

*

- A areal
- atm at standard pressure
- d displacement
- g gas
- *i* vertical
- *sb* brine
- *sc at* standard condition
- *sw* distilled water
- w water
- α phase indicator for relative permeability and saturation

CHAPTER I

INTRODUCTION

Increasing condensate recovery is a challenging task. When the pressure falls below the dew point, retrograde condensate accumulates in the pore system. This phenomenon will create a certain quantity of liquid in the reservoir leading to a condensate blockage problem. This condensate blockage will reduce the well productivity and deliverability. Furthermore, some of the valuable condensate will be left in the reservoir as residual oil.

The pressure declining below the dew point pressure and the reduction in well productivity by condensate bank is predominantly a challenge to be avoided. One of the most effective methods of solving this problem is gas injection. Gas injection allows enhanced condensate recovery by liquid re-vaporization and reservoir repressurization or pressure maintenance. The injected gas can be natural gas or other inert gases, depending on gas availability of each reservoir. CO_2 is of the one alternative for the injected gas.

 CO_2 is denser and more viscous than hydrocarbon lean gas and that CO_2 will generally be supercritical in deep depleted reservoirs. The large density of CO_2 relative to lean gas, predominantly CH_4 , means that CO_2 will tend to migrate downward. The larger viscosity of CO_2 ensures that displacement of lean gas by CO_2 will provide a favorable mobility ratio, with fewer tendencies for the gases to finger and intermix. Furthermore, pressure diffusivity is typically three-five orders of magnitude larger than molecular diffusivity, making re-pressurization occur much faster than mixing by molecular diffusion. In addition, the uses of CO_2 as injected gas also achieve the purpose of CO_2 sequestration in to the geological storage.

In the wake of the Kyoto protocol, CO_2 emission reduction to control the level of CO_2 in the atmosphere has become an important goal. One possible solution is to sequester CO_2 in subsurface formation. Gas condensate reservoirs are becoming important targets for CO_2 sequestration. Because they have held large quantities of natural gas over geologic time scales, depleted gas condensate reservoirs offer a proven integrity against gas escape and large available capacity for carbon sequestration.

 CO_2 injection in gas condensate reservoir is a new subject that has not been studied as extensively. The purpose of this thesis is to investigate the feasibility of CO_2 injection in gas condensate reservoirs. In addition, the optimal production and injection strategy will be carried out in order to maximize hydrocarbon recovery.

1.1 Outline of Methodology

This thesis is to study the behavior of CO_2 injection in gas condensate reservoir. The most appropriate production and injection profile which is injection timing and production and injection rates will be determined. The economics analysis will be used as criteria to determine the most appropriate production and injection profile. To determine the optimal injection timing, we have to separate the production and injection strategy into three scenarios which are

- (a) Produce hydrocarbon from the reservoir with natural depletion at various production rates from one production well until oil or gas production rate drops below the economic limit.
- (b) Start producing hydrocarbon from one well together with CO_2 injection from another well until oil or gas production rate drops below the economic limit or CO_2 concentration in produce gas reaches its concentration limit.
- (c) Produce hydrocarbon from one well and then selectively perform CO₂ injection with different starting times on the other well until oil or gas production rate drops below the economic limit or CO₂ concentration in produce gas reaches its concentration limit.

In the CO_2 injection scenarios, we also study effect of stopping the injection before CO_2 concentration reaches its limit. Gas recycling scenario is also simulated in order to compare hydrocarbon recovery. In this study, the economic limits are set by oil production rate, gas production rate and CO_2 concentration limit. The 23% and 40% concentration limit are selected. The 23% limit is the common CO_2 concentration limit in Gulf of Thailand and the 40% limit is the limit used when a CO_2 removal unit is installed. Then, the economic evaluations are performed in order to investigate the feasibility of CO_2 injection project. Economic evaluations are also used to evaluate the feasibility of CO_2 removal unit installation.

1.2 Thesis Outline

This thesis paper consists of six chapters.

Chapter II outlines a list of related works/studies on CO_2 injection into gas reservoir and gas condensate reservoir to enhance hydrocarbon recovery. And, some works on CO_2 sequestration into the geological storage are also outlined.

Chapter III describes the theory of gas-condensate reservoir, the mechanism of CO_2 injection, and CO_2 sequestration.

Chapter IV describes the simulation model used in this study.

Chapter V discusses the results of reservoir simulation obtained from different values of controlled variables which are production and injection rates and time to start the injection process.

Chapter VI provides conclusion and recommendation for further study.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER II

LITERATURE REVIEW

This chapter discusses some works related to CO_2 injection and the development of production of gas-condensate reservoir. Some works are significant for generating the most realistic simulation model which will be used to determine optimal production and injection strategy. Unfortunately, CO_2 injection to enhance condensate recovery has not been broadly investigated. Thus, most of the following literatures discuss related works in injecting CO_2 into gas reservoirs using a compositional reservoir simulator and lean gas injection to remove condensate bank. In addition, there are some literatures on CO_2 sequestration into geological storage.

2.1 Previous works

E. Shtepani (2006) [1] performed a special core flood test design to determine the microscale conformance of CO_2 displacement. The purpose of his study is to identify CO_2 breakthrough characteristics during liquid re-vaporization and repressurization process and to evaluate the recovery performance. He defined the width of dispersion zone as the distance between the locations at which CO_2 concentration is 0.1 and 0.9 mole fraction and concluded that the dispersion width is proportional to the square root of time.

He also investigated CO_2 and gas condensate phase behavior, a *P-x* experiment was performed on four different CO_2 and gas condensate mixtures with 20, 40, 60 and 80 mole % CO_2 additions. Each time a constant composition expansion experiment was performed, the saturation pressure and the liquid dropout was measured. He concluded that at 80 mole % CO_2 addition there was no retrograde liquid observed and the mixture was in single phase gas.

J.J. Chaback, and M.L Willium (1994) [2] investigated the phase behavior of a rich-gas-condensate reservoir fluid in admixture of CO₂. They found that admixture of CO₂ raises the mixture dewpoints instead of lowering them. Furthermore, if

retrograde liquid forms before gas injection begins, CO₂ is effective in re-vaporizing retrograde liquid.

A. Al-Hashami *et. al.* (2005) [3] investigated the process of injecting CO_2 into gas reservoirs using a compositional reservoir simulator. The effects of gas mixing, CO_2 diffusion and CO_2 solubility in formation water were investigated. CO_2 dispersion effect where the diffusion coefficient is high will cause an early CO_2 breakthrough. When the diffusion coefficient is smaller than 10^{-6} m²/sec, the effect of diffusion can be neglected. Thus, the mixing of CO_2 and methane is totally due to convective flow.

They also studied the effect of CO_2 solubility in formation water. When CO_2 solubility in formation water was taken into account, CO_2 breakthrough time was delayed. However, the same incremental gas recovery was achieved. Therefore, the solubility of CO_2 in formation water has some positive effect on CO_2 storage in the reservoir, which can delay CO_2 breakthrough and store more gas in the reservoir.

Yih-Bor Chang *et. al.* (1998) [4] presented correlations for computing the solubility of CO_2 in water and other properties of CO_2 saturated water. A new empirical correlation was presented for the solubility of CO_2 in formation water as a function of pressure and temperature. The calculated solubility in formation water can also be adjusted further for the effects of salinity to obtain the solubility of CO_2 in brine. Furthermore, correlations for computing the formation volume factor, compressibility, and viscosity of CO_2 saturated water were given in this study.

Sinisha A. Jikich *et. al.* (2003) [5] investigated the amount of carbon dioxide sequestered and the effect of carbon dioxide injection on gas recovery. Different injection strategies were used for a thin, shaly sandstone reservoir in Northern West Virginia. Two injection scenarios were studied: (1) simultaneous CO_2 injection and methane recovery from the beginning of the project, and (2) primary production of natural gas to the economic limit, followed by injection of carbon dioxide for secondary gas recovery.

The simulation results showed that the highest methane recovery was obtained when the reservoir was produced under primary recovery until the economic limit, followed by CO_2 injection. The maximum amount of incremental gas recovery was less than 10% of the original gas in place (OGIP). Lower recovery factors for methane were obtained in the case when CO_2 injection was injected early. However, the early CO_2 injection accelerated methane recovery and improved CO_2 retention in the reservoir.

Curtis M. Odenburg *et. al.* (2002) [6] applied simulations to the Rio Vista Gas Field in California. The purpose of their study was to investigate the mechanism of CO_2 injections into heterogeneous depleted gas reservoirs. The results showed that significant amounts of CO_2 can be injected to produce significant quantities of additional natural gas. Mixing in the gas reservoir is limited by the large density and viscosity of CO_2 relative to CH_4 . These physical property differences become larger at higher pressures.

Permeability heterogeneity accelerates breakthrough by the creation of fast flow paths. However, by injecting CO_2 at large distances from CH_4 production wells, one can take advantage of fast repressurization effects long before mass transfer allows CO_2 to contaminate produced gas even in a strongly heterogeneous system. Injecting CO_2 at relatively deeper levels in a reservoir while producing from higher levels will decrease CO_2 upconing and mixing. Mixing is inhibited by the strong density contrast that causes CO_2 to fill the reservoir from the bottom up, making an effective vertical and lateral sweep.

M. Sengul (2006) [7] illustrated framework of CO_2 sequestration and vital aspects such as site selection, reservoir characterization, modeling of storage and long term leakage monitoring techniques. He concluded that CO_2 capture and storage (CCS) offers possibilities for making further use of fossil fuels more compatible with climate change and mitigation policies. Technologies required for CO_2 capture and storage, monitoring, verification are widely available today.

He also concluded that the probability of CO_2 leakage in oil and gas reservoirs is very low. However, brine formations, which generally are not well characterized and do not have caprocks or seals will require significant effort to evaluate potential risks, and these risks must be taken seriously.

CHAPTER III

THEORY AND CONCEPT

This chapter discusses fundamental of gas condensate reservoir, its region around the wellbore, and related theories involved with the mechanism of CO_2 injection in a gas condensate reservoir. The important issues about CO_2 sequestration into geological storage are also discussed in this chapter.

3.1 Review of Gas-Condensate Reservoir

Gas-condensate reservoirs have been considered the most complex reservoir among other types of petroleum reservoirs. These reservoirs have unusual phase behaviors of reservoir fluids such as the condensing and vaporizing mechanism within the reservoirs. As the gas is produced, the reservoir pressure decreases. After it reaches the dew point pressure, it will exhibit the regions around the wellbore based on the liquid saturation and type of flow. One unique phenomenon in near wellbore region of gas condensate reservoir is positive coupling, which occurs when the flow velocity is high, and the interfacial tension between the flowing phases is low.

3.1.1 Gas Condensate Phase Behavior

The phase diagram of a gas condensate system is smaller than that of oil, and the critical point is further down the left side of the envelope. The phase diagram and pressure path of this type of reservoir is shown in Figure 3.1.

Figure 3.1: Pressure-Temperature diagram of gas condensate.

The reservoir initially contains single-phase gas (from point A to point B) where its pressure is above the dew point pressure. When the reservoir pressure declines on production phase until it reaches the dew point pressure (point B), liquid starts to drop out in the pore space. This phenomenon will leave a certain quantity of valuable liquid in the reservoir, and the liquid also causes problems such as condensate blocking. This phenomenon continues until the maximum liquid dropout pressure is reached (point C). After the pressure is lower than the maximum liquid dropout pressure (point D), liquid saturation will decrease due to the re-vaporization process, but this pressure is typically below the economic life of the field, and this re-vaporization process will not be reached.

3.1.2 Regions around Gas Condensate Wellbores

Based on the type of flow, the region around the wellbore in a gas condensate reservoir can be subdivided into three parts. For a given producing condition, one, two, or all three regions may exist. They are illustrated in Figure 3.2.

Figure 3.2: Regions around gas condensate wellbores

Region 1 is the region close to the wellbore with high condensate saturation where both gas and condensate are flowing simultaneously. Region 1 exists only when the bottomhole flowing pressure is less than the pressure at which condensate saturation is equal to the critical saturation. The condensate saturation in this region is high enough to allow the condensate movement.

The flowing composition within Region 1 is constant throughout. This means that the single-phase gas entering Region 1 has the same composition as the produced wellstream mixture. Conversely, if we know the producing wellstream, then we know the flowing composition within Region 1. Furthermore, the dew point of the producing wellstream mixture equals the reservoir pressure at the outer edge of Region 1.

Region 1 is the main source of deliverability loss in a gas-condensate well. Gas relative permeability is reduced owing to condensate buildup. The size of Region 1 increases with time. For steady-state conditions, the condensate saturation in Region 1 is determined (as a function of radius) specifically to ensure that all liquid that condenses from the single-phase gas entering Region 1 has sufficient mobility to flow through and out of Region 1 without any net accumulation. In region 2, condensate is dropping out. This region exists when the reservoir pressure declines below the dew point pressure. However, liquid is not mobile since the condensate saturation is less than the critical saturation. Therefore, in this region only gas phase is mobile whereas the condensate is immobile.

Region 3 contains only the original reservoir gas. This is the farthest region in the reservoir where the reservoir pressure is greater than the dew point pressure. Gas velocity in this region is generally low due to the large cross sectional area available to flow.

There may also exist a region 4 near the wellbore where low interfacial tension at high gas velocity leads to decreased condensate saturation and increased gas mobility. This phenomenon was referred to as 'positive coupling'.

3.1.3 Non-Darcy Flow and Positive Coupling

In near wellbore region of gas condensate reservoirs, there are two phenomenons that affect the well productivity and cannot be expressed by Darcy equation which are non-Darcy flow and positive coupling.

Non-Darcy flow is typically observed in high-rate gas wells when the flow converging to the wellbore reaches flow velocities exceeding the Reynolds number for laminar or Darcy flow, and results in turbulent flow. The effect of non-Darcy flow can be treated using the Forchheimer equation with an empirical correlation. Forchheimer [8] proposed the following quadratic equation to express the relationship between pressure drop and velocity in a porous medium:

$$\frac{dp}{dx} = \left(\frac{\mu}{kk_r A}\right)q + \beta\rho\left(\frac{q}{A}\right)^2$$
(3.1)

where:

- q is the volumetric flow rate
- *k* is the rock permeability
- k_r is the relative permeability
- *A* is the area through which flow occurs
- μ is the fluid viscosity

 $\rho \qquad \text{is the fluid density} \\ \beta \qquad \text{is the Forchheimer parameter} \\ \frac{dp}{dx} \qquad \text{is the pressure gradient normal to the area} \end{cases}$

Another phenomenon, which is known as positive coupling, occurs when the flow velocity is high and the interfacial tension between the flowing phases is low. Then, capillary forces may no longer dominate the distribution of the phases on a pore scale. As a consequence, macroscopic flow properties become dependent on the ratio of viscous to capillary forces on a pore scale, denoted by the capillary number N_c .

$$N_c = \frac{k |\nabla P|}{\phi \sigma} \tag{3.2}$$

where:

 $\sigma \qquad \text{is interfacial tension} \\ \phi \qquad \text{is porosity}$

Relative permeability to both phases is enhanced by large viscous forces, and the curves tend to straighten. Two causes for this enhancement are a decrease in tortuosity of the flow paths and a reduction of non-conductive saturation. The tortuosity will decrease because viscous forces may allow a short-cut at particular spots where, under capillary dominated flow conditions, one of the phases is blocking a shorter way for the other phase. At the same time, high viscous forces will reduce the non-conductive part of the fluid saturation by mobilizing the residual oil.

We can include effect of positive coupling to relative permeability by making it depend on capillary number. The correlations can be divided into two classes which are:

a) Corey relative permeability functions. A way to include the capillary number that uses part of the general knowledge on relative permeability, is to represent the relative permeability functions by a Corey function, whose coefficients depend on the capillary number:

12

$$k_{r\alpha}(S_{\alpha}, N_{C}) = k_{r\alpha}^{*}(N_{C}) \left(\frac{S_{\alpha} - S_{r\alpha}(N_{C})}{1 - S_{r\alpha}(N_{C})}\right)^{\varepsilon_{\alpha}(N_{C})}$$
(3.3)

where k_r^* is the end-point relative permeability, S_r is the residual saturation, and ε is the Corey exponent that fixes the curvature of the relative permeability function.

b) Interpolate between immiscible (low capillary number) and miscible (high capillary number) relative permeability functions. Relative permeability curves at near-critical conditions have often been represented by a weighted linear function of immiscible and miscible relative permeability curves, where the weighting factor is a function of the capillary number:

$$k_{r\alpha}(S_{\alpha}, N_C) = f_{\alpha}(N_C)k_{r\alpha i}(S_{\alpha}) + \left\{1 - f_{\alpha}(N_C)\right\}k_{r\alpha M}(S_{\alpha})$$
(3.4)

Here α is a phase indicator (condensate, gas), k_{ri} is the conventional relative permeability for capillary dominated (immiscible) flow, and k_{rM} is the relative permeability function in the limit of viscous dominated (miscible) flow. This approach is particularly suitable for fitting large sets of measured data on relative permeability at varying capillary numbers. The N_c -dependence is more explicit than in the case of interpolating Corey coefficients, so that convergence causes fewer problems.

3.2 CO₂ Injection in Gas-Condensate Reservoir

Re-pressurization or pressure maintenance is one of the most common methods to enhance gas and condensate recovery. By pressurizing the reservoir so that the reservoir pressure is above the dew point pressure, condensate blockage can be prevented.

For CO_2 injection into gas condensate fields, high viscosity of CO_2 provides a favorable mobility ratio for the displacement of methane, leading to fewer tendencies

of the gases to finger and intermix. Furthermore, pressure diffusivity is typically 3 to 5 orders of magnitude larger than molecular diffusivity, making re-pressurization occur much faster than mixing by molecular diffusion.

Re-vaporization will remove the condensate blockage by changing the phase behavior of the reservoir fluid. The admixture of CO_2 to gas condensate fluid will reduce the percent liquid and improve productivity and condensate recovery.

3.2.1 Flooding Patterns and Sweep Efficiency

Production wells and injection wells are typically arranged in a certain pattern for an EOR project. The most common patterns are,

- (a) Two-spot
- (b) Three-spot
- (c) Regular four-spot and skewed four-spot
- (d) Normal five-spot and inverted five-spot
- (e) Normal seven-spot and inverted seven-spot
- (f) Normal nine-spot and inverted nine-spot
- (g) Direct line drive
- (h) Staggered line drive

Different areal sweep efficiencies at breakthrough have been reported for a variety of flooding patterns. The most popular pattern for studying is the five-spot pattern. There is satisfactory agreement among most investigators that the five-spot flooding pattern gives the highest sweep efficiency. The areal sweep efficiency at breakthrough was determined by various experimental techniques. The percentage of such areal sweep efficiency performance was calculated for a mobility ratio of unity. Table 3.1 presents the percentage of areal sweep efficiency at breakthrough calculated at unity mobility ratio for different flooding patterns.

Flooding Pattern	Mobility Ratio	Areal sweep efficiency at breakthrough (%)
Isolated two-spot	1.0	52.5 - 53.8
Isolated three-spot	1.0	78.5
Skewed four-spot	1.0	55.0
Normal five-spot	1.0	105.0
Inverted five-spot	1.0	80.0
Normal seven-spot	1.0	74.0-82.0
Inverted seven-spot	1.0	82.2

Table 3.1: Areal sweep efficiency for various flooding patterns [9].

The overall efficiency at breakthrough is defined as

$$E = E_A \times E_i \times E_d \tag{3.5}$$

where E_A is areal sweep efficiency, E_i is invasion or vertical sweep efficiency, and E_d is displacement efficiency.

In this study, injection-production well arrangement is selected by considering the highest areal sweep efficiency. Normal and inverted five-spot flooding patterns have been studied and reported to have the highest sweep efficiency at breakthrough. Figure 3.3 shows the schematic of five-spot flooding pattern. In five-spot flooding pattern, the injection well is located at the center of a square defined by four production wells.

Figure 3.3: Flooding pattern (Five-Spot; Inverted five-spot)

3.2.2 Miscible Fluid Displacement

A miscibility fluid displacement would be defined as a displacement process where no phase boundary or interface exists between the displaced and displacing fluids. In this process, the displacing fluid is miscible, or will mix in all proportions with the displaced fluid. According to the definition described above, the main miscible fluid displacement processes are as follows:

- (1) High pressure dry gas miscible displacement.
- (2) Enriched gas miscible displacement.

(3) Miscible slug flooding, where the leading edge of the slug is miscible with the displaced fluid.

- (4) Aqueous and oleic miscible slug flooding (such as several of the alcohols).
- (5) Carbon dioxide, flue or inert gas displacements.

For CO₂ injection into gas condensate fields, the important issues involve the effect of miscible mixing of the gases by dispersion, as a contribution of convection and molecular diffusion. We can define the width of dispersion zone as the distance between the locations at which the CO₂ concentration is 0.1 and 0.9 mole fraction. The width of dispersion zone as defined above can be calculated from Equation 3.9. This equation was obtained from lab experiment by E. Shtepani. From the equation, we can see that the dispersion width is proportional to \sqrt{t} .

$$x_{0.1} - x_{0.9} = 3.625\sqrt{Kt} \tag{3.9}$$

where

<i>x</i> _{0.1}	is the	locations	at	which	the	$\rm CO_2$	concentration	is	0.1	

 $x_{0.9}$ is the locations at which the CO₂ concentration is 0.9

K is the diffusion coefficient between CO_2 and gas condensate fluid

t is time after CO_2 injection begin

3.2.3 CO₂ Solubility in water

In most of the published models, all hydrocarbon components exist in the oil and gas phases but are not allowed to dissolve in the aqueous phase. Usually, this assumption is adequate because the hydrocarbon solubility in water is low over the range of temperature and pressure for gas injection. But, the solubility of CO_2 in water is much higher than that of hydrocarbon components and is a factor that cannot be neglected in the simulation process. When CO_2 dissolution was taken into account, CO_2 breakthrough time was delayed comparing with the case without considering CO_2 solubility in water. This increases the benefit of process since CO_2 can be storage in the connate water.

The solubility of CO_2 in water can be calculated using a correlation developed by Chang *et al*⁵. The correlations are given below

$$R_{sw} = a \cdot p \cdot \left[1 - b \cdot \sin\left(\frac{\pi}{2} \cdot \frac{c \cdot p}{c \cdot p + 1}\right) \right] \qquad \text{if } p < p^o \qquad (3.7)$$

$$R_{sw} = R_{sw}^{0} + m \cdot \left(p - p^{0}\right) \qquad \text{if } p \ge p^{o} \qquad (3.8)$$

where *a*, *b*, *c*, *m*, R_{sw}^0 , and p^o are given below:

$$a = \sum_{i=0}^{4} a_i \cdot 10^{-3i} \cdot T^i, \qquad (3.9)$$

$$b = \sum_{i=0}^{4} b_i \cdot 10^{-3i} \cdot T^i , \qquad (3.10)$$

$$c = \sum_{i=0}^{4} c_i \cdot 10^{-3i} \cdot T^i$$
(3.11)

$$R_{sw}^{0} = a \cdot p^{0} \cdot (1 - b^{3}), \qquad (3.12)$$

$$p^{0} = \frac{2}{\pi} \frac{\sin^{-1}(b^{2})}{c \cdot \left[1 - 2/\pi \sin^{-1}(b^{2})\right]},$$
(3.13)

$$m = a \left\{ 1 - b \left[\sin\left(\frac{\pi}{2} \cdot \frac{c \cdot p^0}{c \cdot p^0 + 1}\right) + \frac{\pi}{2} \cdot \frac{c \cdot p^0}{\left(c \cdot p^0 + 1\right)^2} \cos\left(\frac{\pi}{2} \cdot \frac{c \cdot p^0}{c \cdot p^0 + 1}\right) \right] \right\}$$
(3.14)

 R_{sw} is CO₂ solubility in scf of CO₂ per STB of water, T is temperature (°F), p is pressure (psia), and the coefficients are shown in Table 3.2.

	<i>i</i> = 0	<i>i</i> = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 4
a _i	1.163	-16.630	111.073	-376.859	524.889
$\mathbf{b}_{\mathbf{i}}$	0.965	-0.272	00.0923	-0.1008	0.0998
ci	1.280	-10.757	53.696	-222.395	462.672

Table 3.2: Values of Coefficient in Eqs 3.8 to 3.10

The calculated solubility in distilled water can be adjusted further for the effects of salinity to obtain the solubility of CO_2 in brine:

$$\log\left(\frac{R_{sb}}{R_{sw}}\right) = -0.028 \cdot C \cdot T^{-0.12} \tag{3.14}$$

where R_{sb} is CO₂ solubility in scf of CO₂ per STB of brine, *C* is the salinity of brine in weight percent of solid, and *T* is temperature (°F).

The formation volume factor of CO_2 -saturated water (or brine) is calculated with

$$B_{w} = \frac{\rho_{w,sc} + 0.02066 \cdot R_{sb}}{\rho_{w,atm} + 0.0058 \cdot R_{sb}}$$
(3.15)

where B_w is water formation volume factor in reservoir barrel per STB of water (rb/STB), $\rho_{w,sc}$ is water density at standard temperature and pressure in lb/ft³, and $\rho_{w,atm}$ is water density at reservoir temperature and 14.7 psia in lb/ft³.

3.3 CO₂ Sequestration

Because the injected CO_2 is stored inside the reservoir, the fundamental of CO_2 sequestration is discussed in this section. The options of CO_2 sequestration into the geological storage are illustrated in Figure 3.5.

Figure 3.4: CO₂ geological sequestration options.

3.3.1 Sequestration Mechanism

As the concept of geologic sequestration developed, it was recognized that CO_2 can be sequestered in geologic formations by four principal mechanisms:

3.3.1.1 Seal Trapping

 CO_2 can be trapped as a gas or supercritical fluid under a low-permeability caprock, similar to the way that natural gas is trapped in gas reservoirs or that gas is stored in aquifer gas storage. This process is commonly referred to as hydrodynamic trapping. In the short term, this process is likely to be the most important mechanism for sequestration. It is rapid and the biggest contributor to storage process. However, mobility of CO_2 requires monitoring and verification.

To make a full use of storage capacity, CO_2 should be stored in its dense or supercritical phase, above the critical pressure of 1,071 psia and critical temperature of 88 °F. Since CO_2 under these pressure and temperature conditions will still be less dense than formation water, it will naturally rise to the top of the reservoir, and a trap is needed to ensure that it does not reach the surface. In oil and gas reservoirs and aquifers which are analogous to hydrocarbon fields, CO₂ is immobilized by geologic traps.

3.3.1.2 Solubility Trapping

Solubility trapping involves the dissolution of CO_2 into the reservoir fluids; CO_2 can dissolve into the fluid phase (water and oil). In oil reservoirs, this lowers the viscosity and swells the oil, which provides the basis for one of the more common enhanced oil recovery (EOR) techniques. The relative importance of solubility trapping depends on a large number of factors, such as the sweep efficiency of CO_2 injection, and the effects of formation heterogeneity. It offers rapid process but limited volume. Mobility is less but still may require monitoring and verification.

3.3.1.3 Mineralization Trapping

Mineral trapping involves the reaction of CO_2 with minerals present in the host formation to form stable, solid compounds, e.g. carbonates. CO_2 can react, either directly or indirectly, with the minerals and organic matter in the geologic formations to become part of the solid mineral matrix. Formation of carbonate minerals such as calcite or siderite and adsorption onto coal are examples of mineral trapping. In this very slow process, sequestered CO_2 become immobile.

Aquifers associated with igneous rocks such as basalt are good candidates for sequestering CO_2 , presumed that the geological and hydrogeological conditions are suitable for high pressure CO_2 injections. When high pressure CO_2 is injected into deep aquifers, it will acidify the groundwater. This acid may be neutralized by reactions with the surrounding igneous rocks.

$$Mg_2SiO_4 + 2CO_2 \rightarrow 2MgCO_3 + SiO_2$$
(3.16)

$$CaAl_2Si_2O_8 + CO_2 + H_2O + SiO_2 \rightarrow CaCO_3 + Al_2Si_4O_{10}(OH)_2$$

$$(3.17)$$

Under high CO_2 pressure, these reactions may be driven to the right to form carbonates. Solubility and mineral trapping mechanisms are particularly important in the case of an aquifer with no lateral seals. As the CO_2 moves through the reservoir along the flow path, it comes into contact with uncarbonated formation water and reactive minerals. A proportion of the CO_2 dissolves in the formation water and some of this dissolved CO_2 becomes permanently fixed by reactions with minerals in the host rock. If the flow path is long enough, the CO_2 might all dissolve or become fixed by mineral reactions before it reaches the basin margin, essentially becoming permanently trapped in the reservoir.

3.3.1.4 Phase Trapping

This process occurs when relative permeability to CO_2 is zero. It is a rapid process, but requires more reservoirs. Abandoned, un-economic coal seams are another potential storage site. CO_2 diffuses through the pore structure of coal and is physically adsorbed to it. This process is similar to the way in which activated carbon removes impurities from air or water. CO_2 can also be used to enhance the recovery of coal bed methane. In some cases, this can be very cost-effective or even cost-free, as the additional methane removal can offset the cost of the CO_2 storage operations.

The relative important of these mechanisms depends on the type of formation used for sequestration. For example, in brine formations, solubility trapping is most important, at least in the short term. By comparison, in coal formations, much of the CO_2 adsorbs to the solid phase.

The basic principle associated with all in situ methods of storing CO_2 is that it is stored in a geological structure which contains it and prevents short-term or medium term release to the atmosphere. The structure must consist of a permeable layer, to allow ingress of CO_2 and an impermeable or low permeable layer to prevent escape of CO_2 to the atmosphere. In this study, the seal trapping is considered as the main mechanism for gas condensate reservoir.

3.3.2 Safety and Risk Management

Safe and secure storage of CO_2 is a key requirement of this technology. The petroleum industry has injected millions of tones of CO_2 into oil reservoirs and aquifers over the past few decades in the successful operation of EOR, CO_2 storage, and acid gas disposal projects. For such operations, safety has been achieved by risk management systems that make use of information from site characterization, operational monitoring, scientific understanding, and engineering experience. Full consideration of the risks of geological storage is required to form the basis for engineering, management, and regulatory systems to achieve acceptable and safe operation. Elements of the risk management are:

Risk Assessment

- Safety assessment methodology
- Risk assessment framework: features, events, processes
- Public perception involvement

Monitoring

- Influence of injection on properties of reservoir & cap rocks
- Geophysical techniques for monitoring CO₂ movement
- Long term sealing integrity of wells
- Integrated simulation

Long Term Monitoring

- Natural CO₂ analogs
- Fracture mechanics approach to seal evaluation
- Time lapsed seismic and electromagnetic surveys
- Integrated surface and subsurface sensors
- Mechanical integrity assessment

3.3.3 Verification of CO₂ Storage

If CO_2 storage were to be used as a basis for emissions trading or to meet national commitments on emissions reduction, it would be necessary to verify the quantities of CO_2 stored. Verification is also a significant challenge for other carbon storage options, such as forestry and enhanced storage in soils.

For CO_2 capture, the flows of gas would be measured as a normal part of the chemical engineering of the process; technology already exists to do this and additional costs would be small. Capture of flue gases can be measured with great accuracy and at low cost.

Also, with transport of CO_2 , pipelines already carry CO_2 on a commercial scale, with large quantities of CO_2 monitored accurately in real time using equipment that is available now at low cost. Similar measurements would be used to monitor CO_2 injected into geological reservoirs.

Major oil and gas companies and their contractors have the technology to track gas flows in underground reservoirs using seismic, well logging, and reservoir simulation tools. These technologies are being successfully applied in EOR projects.

Logging technology would be most easily applied in reservoirs where there are also production wells (e.g. oil production). The application to seismic technology for tracking stored CO_2 in underground reservoirs is showing promise, but further development of the technique is required. Tracking will need to be accurate over much longer periods of time for CO_2 storage compared to EOR, where slow leakage is not a major concern.

ทลงกรณ์มหาวิทยาลัย

CHAPTER IV

SIMULATION RESERVOIR MODEL

In order to determine optimal production and injection strategy of CO_2 injection to enhance gas and condensate recovery, reservoir simulator is used as a tool to predict gas and condensate production under different strategies. As a result, the best strategy can be obtained.

We used composition simulator (ECLIPSE: E300) to simulate CO_2 injection in gas condensate reservoir. The compositional simulation provides more accurate calculation of liquid dropout in the porous media by using flash calculation. We can categorize the reservoir simulation model in to 4 main sections which are

- **1. Grid section.** In this section the geometry of the reservoir and its permeability and porosity are specified.
- 2. Fluid section. The reservoir and injected fluid composition are specified in this section. The physical properties of each component and the EOS used in flash calculation are also specified. Initial reservoir condition is also included in this section.
- **3.** SCAL section. In special core analysis or SCAL section, the 3-phase relative permeabilities are specified.
- **4. Wellbore section.** The wellbore model is constructed and will be used to calculate the vertical performance.

This chapter describes each section in details and how properties in each section were gathered. The detail of the simulation input is shown in Appendix A

4.1 Grid Section

The reservoir model is constructed by amount of established volume elements namely 'grid blocks' that represent the geological reservoir construction. Cartesian grid model, which is commonly used to simulate the full field simulation model, will be used. The reservoir model is assumed to be homogenous. The top of reservoir is located at a depth of 8,000 ft, with dimensions of 2,250 ft x 2,250 ft and a thickness of 120 ft. The number of block is $15 \times 15 \times 3$. The porosity of the reservoir is assumed as 16.5%, the horizontal permeability is 10.85 mD, and vertical permeability is 1.27 mD. Figures 4.1, 4.2, and 4.3 illustrate the model used in this study in the top view, side view and 3D view, respectively.

Figure 4.2: Side view of the reservoir model

Figure 4.3: 3D view of the reservoir model

4.1.1 Local Grid Refinement

Local Grid Refinement (LGR) provides additional grids in selected grids. This is required for accurate calculation of liquid dropout around the wellbore. In Eclipse, we need to specify LGR name, coordinate, and the number of refined cells. The detail of LGR used in this study are shown in Table 4.1.

	LG	R Coordin	nate	Number of refined cells		
LGR Name	Ι	J	K	X	Y	Z
Producer	1	1	1-3	5	5	3
Injector	15	15	1-3	5	5	3

Table 4.1: Local Grid Refinement used in this study

4.2 Fluid Section

The initial fluid composition was specified in Non-Equilibrium Initialization (NEI) section. The NEI is used to generate consistent oil and gas compositions for each cell. The initial composition of the reservoir fluid for the study is specified and tabulated in Table 4.2, and the injected fluid is assumed to be pure CO_2 .

Component	Mole Fraction
Methane	0.59991
Ethane	0.084326
Propane	0.063988
Isobutane	0.034127
Normal butane	0.038989
Isopentane	0.014286
Normal pentane	0.013988
Hexane	0.072718
Hepthane plus	0.065366
Carbon dioxide	0.012302

Table 4.2: The initial composition of the reservoir fluid

The initial composition of the reservoir fluid is obtained from one sample in the Gulf of Thailand. The initial water saturation is 0.11 and the initial gas saturation is 0.89. The initial water/gas saturation used in this study is an average value from one gas field. In this model, the gas in place is equal to 90,124,961 RCF, which can be separated to be 14,882 MMSCF of gas and 1,851 MSTB of oil at surface.

To calculate the reservoir fluid properties at different reservoir pressures, the Peng Robinson Equation of State will be used. The physical properties of each component were acquired from Engineering Data Book, GPSA1987, as shown in Table 3.2.

Component	Boiling Points (°R)	Critical Pressure (psia)	Critical Temp. (°R)	Critical Volume (ft ³ /lb-mole)	Molecular Weights	Acentric Factor
C ₁	200.94	666.4	343	0.0988	16.043	0.0104
C_2	332.18	706.5	549.59	0.0783	30.07	0.0979
C ₃	415.92	616	665.73	0.0727	44.097	0.1522
i-C4	470.45	527.9	734.13	0.0714	58.123	0.1852
n-C ₄	490.75	550.6	765.29	0.0703	58.123	0.1995
i-C5	521.79	490.4	828.77	0.0679	72.15	0.228
n-C ₅	556.59	488.6	845.47	0.0675	72.15	0.2514
C ₆	615.39	436.9	913.27	0.0688	86.177	0.2994
C ₇₊	734.08	403.29	1061.29	7.509	115	0.38056
CO ₂	350.413	1071	547.58	0.0344	44.01	0.2667

Table 4.3: Physical properties of each component

The binary interaction coefficients of this system were calculated by PVTi program (ECLIPSE 300 adds on) as shown in Table 4.4.

Table 4.4: Binary interaction coefficient between components

	C ₁	C ₂	C ₃	i-C4	n-C ₄	i-C ₅	n-C ₅	C ₆	C ₇₊	CO ₂
C ₁	0.0000	0.0000	0.0000	0.0196	0.0196	0.0238	0.0238	0.0288	0.0378	0.0153
C ₂	0.0000	0.0000	0.0000	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100
C ₃	0.0000	0.0000	0.0000	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100
i-C ₄	0.0196	0.0100	0.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
n-C ₄	0.0196	0.0100	0.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
i-C ₅	0.0238	0.0100	0.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
n-C ₅	0.0238	0.0100	0.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₆	0.0288	0.0100	0.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₇₊	0.0378	0.0100	0.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO ₂	0.0153	0.0100	0.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

In this study, the reservoir temperature is assumed to be constant at 293 °F and the initial reservoir pressure is 3,000 psi. With this reservoir pressure, temperature and fluid composition, the phase behavior of this reservoir fluid system is predicted as illustrated in Figure 4.4.

Figure 4.4: Phase behavior of the reservoir fluid system

This phase behavior was calculated by PVTi program. The dew pont pressure is 2,200 psi and the maximum liquid dropout of 12% will occur when the reservoir pressure drops to 1,650 psi.

4.2.1 CO₂ Solubility in Water

To simulate CO_2 injection in a gas condensate reservoir, CO_2 solubility in water is one of the importance that cannot be ignored. The solubility of CO_2 in water can be calculated using a correlation developed by Chang *et al.* [5] The formation volume factor of CO_2 -saturated water (or brine) is also calculated and used in the model. Three percent by weight of NaCl was used in the correlation. This value of

salinity is commonly seen in the Gulf of Thailand. The solubility of CO_2 in water and the formation volume factor of CO_2 -saturated water is shown in Figures 4.6 and 4.7, repectively.

Figure 4.5: Carbon Dioxide solubility in water

Figure 4.6: Formation volume factor of CO₂-saturated water

4.2.2 Positive coupling

In this study, the interpolation between immiscible and miscible relative permeability functions is used to capture the positive coupling phenomenon. A capillary number modified gas relative permeability is given by

$$k_{rg} = f_I k_{rgI} + (1 - f_I) k_{rgM}$$
(4.1)

where k_{rg} is the capillary number modified gas relative permeability,

 k_{rgM} is the straight-line miscible relative permeability,

 k_{rgI} is the immiscible relative permeability, and

 f_I is the capillary number dependent transition function,

The capillary number dependent transition function depends on the gas capillary number, N_{cg} , and is given by:

$$f_I = \frac{1}{\left(\alpha \cdot N_{cg}\right)^n + 1} \tag{4.2}$$

where $\alpha = \alpha^0 / \overline{k_{rg}}$, with $\overline{k_{rg}} = \frac{k_{rgM} + k_{rgI}}{2}$, and α^0 is a constant depending only on

rock properties and is obtained from Equation 4.3.

$$\alpha^{0} = \frac{\alpha_{c}^{0}}{\sqrt{K \cdot \phi}} \tag{4.3}$$

where K is the rock permeability, and

 ϕ is the porosity

And, the capillary number is given by

$$N_{cg} = \frac{\nu_g \mu_g}{\sigma} \tag{4.4}$$

where v_g

is gas velocity,

 μ_g is gas viscosity, and

 σ is an interfacial tension,

This model depends on two parameters: the exponent *n* in equation 4.2 and the α_c^0 coefficient in Equation 4.3. These parameters are typically defaulted to 0.65 and 10^4 , respectively. These default values are used in this study.

4.3 SCAL (Special Core Analysis) Section

The oil saturation and oil relative permeabilities are tabulated in Table 4.5 and shown in Figure 4.7. Two types of relative permeability, K_{row} and K_{rowg} , are used. K_{row} is the oil relative permeability for a system with oil and water only, and K_{rowg} is the oil relative permeability for a system with oil, water, and gas.

So	K _{row}	K _{rowg}
0	0	0
0.2	0	0
0.32	0.00463	0.015625
0.44	0.037037	0.125
0.56	0.125	0.421875
0.68	0.296296	1
0.95	1	1

Table 4.5: Oil saturation and oil relative permeabilities

Figure 4.7: Oil relative permeability function.

The water saturation and water relative permeability are tabulated in Table 4.6 and shown in Figure 4.8.

Sw	Krw		
0.11	0		
0.157	0		
0.216	0		
0.313	0.02		
0.44	0.06		
0.56	0.10		
0.68	0.15		
0.80	0.30		
0.90	0.65		

Table 4.6: Water saturation and water relative permeability

Figure 4.8: Water relative permeability as a function of water saturation.

The gas saturation and gas relative permeability are tabulated in Table 4.7 and shown in Figure 4.9.

Sg	Krg
0	0
0.1	0
0.2	0
0.3	0.2
0.4	0.4
0.6	0.85
0.7	0.90
0.8	0.92
0.9	0.95
0.95	0.95

Table 4.7: Gas saturation and relative gas permeability

Figure 4.9: Gas relative permeability as a function of gas saturation.

The water saturation and capillary pressure is tabulated in Table 4.8, and their relation curve is shown in Figure 4.10.

Sw	Pc (psia)
0.11	250
0.157	53
0.216	13
0.313	1
0.44	0
0.56	0
0.68	0
0.80	0
0.90	0

Table 4.8: Water saturation and capillary pressure

Figure 4.10: Capillary pressure as a function of water saturation.

Gas-condensate reservoir properties in this compositional simulation were obtained from average values of special core analysis data of samples collected from one of the gas fields in the Gulf of Thailand.

4.4 Wellbore Section

The production and injection wells in this study have the same wellbore diameter of 3-1/2 inches with an inside diameter of 2.992 inches. The perforation interval is from the top to the bottom of the reservoir. The schematic of wellbore configuration is shown in Figure 4.11.

Figure 4.11: Casing and tubing flow model used in this study.

CHAPTER V

SIMULATION RESULT AND ANALYSIS

In this chapter, productions of gas-condensate reservoir simulated under different production and injection scenarios are reported. The results are discussed in term of CO_2 injection mechanism and the effect of different production and injection scenarios. Three main scenarios which are natural depletion, CO_2 injection at the beginning and timely CO_2 injection were simulated. In the CO_2 injection, we also studied the effect of stop ping the injection before CO_2 concentration reaches the limit. Gas recycling scenario was also simulated in order to compare its mechanism and hydrocarbon recovery with CO_2 injection scenario. Then, the economic evaluations were performed in order to investigate the feasibility of CO_2 injection project. Economic evaluations were also used to evaluate the feasibility of CO_2 removal unit installation.

The bottomhole pressure target of 1,800 psia was used for production well. The economic limits were defined at minimum gas rate of 100 MSCF/D and minimum oil production rate was varied. The economic limit for minimum oil production rate is 3 STB/D for production by natural depletion, and varies with gas production rates for CO_2 injection scenario. The economic limits for oil production rate are shown in Table 5.1.

Gas production rate (MSCF/D)	Minimum oil rate (STB/D)
1,000	4.03
2,000	5.06
3,000	6.1
4,000	7.13
5,000	8.16
6,000	9.19
7,000	10.22
8,000	11.25
9,000	12.29
10,000	13.32

Table 5.1: Economic limit for oil production rate

5.1 **Production with Natural Depletion**

In this scenario, we simulated the production of gas-condensate reservoir by natural depletion method. The maximum gas production rate was used as the control variable. The maximum gas production rate was varied in the range of 1,000 MSCF/D to 10,000 MSCF/D in a step of 1,000 MSCF/D increment, in order to observe effect of production rate limit to depletion mechanism, production life and cumulative production of oil and gas.

For each varied rate, the gas production rate is kept constant as long as the reservoir pressure can sustain such rate with a bottomhole pressure limit of 1,800 psia. After the bottomhole pressure reaches the limit, it is kept constant. Then, the gas production rate starts to decline. Simulation will stop when the gas or oil production rate reach economic limit. Gas production rate (GPR) and oil production rate (OPR) are shown in Figures 5.1 and 5.2, respectively.

Figure 5.1: Gas production rates for natural depletion.

Figure 5.2: Oil production rate for natural depletion.

The bottomhole pressure of the production well and oil saturation at the producer are shown in Figures 5.3 and 5.4, respectively.

Figure 5.3: Bottomhole pressure for natural depletion.

Figure 5.4: Oil saturation at Grid (4, 4, 2) in LGR grid representing the producer for natural depletion.

From Figures 5.1 to 5.4, mechanism of producing gas-condensate reservoir with natural depletion can be summarized as follows:

a) At early times, gas and oil production rates are constant while the bottomhole pressure declines. After the bottomhole pressure drops below the dew point pressure, the oil production rate declines and liquid starts to condense in the pore space. The oil saturation around the wellbore increases as oil accumulates around the wellbore. Then, the saturation drops and becomes constant at the critical oil saturation. The value of the highest oil saturation depends on the maximum gas production rate. The higher the gas flowrate, the higher the oil saturation. Since a higher rate incurs a lower wellbore pressure, more liquid condense out of the gas phase. Then, the gas production rate drops, and the bottomhole pressure becomes constant at the limit of 1,800 psia. Finally, the simulation stops because the gas production rate drops below 100 MSCF/D.

Table 5.2 illustrates the cumulative production of gas and oil and the production life. Table 5.3 illustrates the production time before the BHP drops to the dew point pressure and limit of 1,800 psia.

Production Rate	Production Life (Years)	Gas Recovery (MSCF)	Oil Recovery (STB)
1000 MSCF/D	16.34	5,493,985	615,480
2000 MSCF/D	9.33	5,494,779	611,625
3000 MSCF/D	7.17	5,496,940	608,481
4000 MSCF/D	6.16	5,498,391	605,683
5000 MSCF/D	5.58	5,498,980	603,180
6000 MSCF/D	5.25	5,499,947	601,128
7000 MSCF/D	5.00	5,499,933	599,454
8000 MSCF/D	4.84	5,500,374	598,254
9000 MSCF/D	4.75	5,501,873	597,716
10000 MSCF/D	4.67	5,502,221	597,536

Table 5.2: Oil and gas total production and production life for natural depletion.

 Table 5.3: Production time before the BHP reaches the dew point pressure and the bottomhole limit for natural depletion.

Production Rate	Producing time before reaching the dew point (Years)	Producing time before reaching BHP limit (Years)
1000 MSCF/D	8.59	14.29
2000 MSCF/D	4.08	6.74
3000 MSCF/D	2.58	4.22
4000 MSCF/D	1.84	2.96
5000 MSCF/D	1.38	2.20
6000 MSCF/D	1.09	1.71
7000 MSCF/D	0.88	1.35
8000 MSCF/D	0.72	1.10
9000 MSCF/D	0.60	0.91
10000 MSCF/D	0.50	0.76

The total oil and gas production and the production life as a function of maximum gas production rate are shown in Figures 5.5, 5.6 and 5.7 respectively.

Figure 5.5: Total gas production for natural depletion.

Figure 5.6: Total oil production for natural depletion.

Figure 5.7: Production life for natural depletion.

From Figures 5.5 to 5.7, performance of producing gas-condensate reservoir with natural depletion can be summarized as follows:

- a) The maximum gas production rate does not have a significant effect on gas and oil recovery. There is only 0.14% difference in the gas recovery and 2.96% difference in condensate recovery between the highest and the lowest rates. By increasing the maximum gas rate, higher amount of gas can be recovered but lower condensate recovery. The total production volume of oil and gas fall in a narrow range of 597,536 615,480 STB and 5,494 5,502 MMSCF, as tabulated in Table 5.2.
- b) Increasing the maximum gas production rate accelerates production and also shortens the production life.

In this scenario, we can see that producion with natural depletion does not effectively recover oil and gas from the reservoir. At early times, the bottomhole pressure declines very quickly until reaches the BHP limit. Then, gas production rate declines until reaches the economic limit. As a result, only 37% of gas and 32.5% of condensate can be recovered.

5.2 Production with CO₂ Injection at the Beginning

In this scenario, the gas-condensate reservoir is produced together with CO_2 injection at the beginning in order to maintain the reservoir pressure above the dew point pressure. The injection rate is set to be equal to the production rate in each production profile. Different cases with the values varying from 1,000 MSCF/D to 10,000 MSCF/D in a step of 1,000 MSCF/D increment. In this simulation model, the production well is placed at coordinate (1, 1) in LGR grid representing the producer (located at coordinate (1, 1) in the global grid), and injection well is placed at coordinate (5, 5) in LGR grid representing the injector (located at coordinate (15, 15) in the global grid) in order to simulate a quarter five-spot pattern. The simulation stops if the gas or oil production rate drops below the economic limit. In this scenario, the economic limits were set by oil production rate, gas production rate and CO_2 concentration limit. The 23% and 40% concentration limits were used. The 23% limit is commonly used in the Gulf of Thailand, and the 40% limit is used when a CO_2 removal unit is installed. The gas production rate and oil production rate are shown in Figures 5.8 and 5.9, respectively.

Figure 5.8: Gas production rates for production with CO₂ injection at the beginning.

The bottomhole pressure of the production well and CO_2 mole fraction in produced gas are shown in Figures 5.10 and 5.11, respectively.

Figure 5.10: Bottomhole Pressure for production with CO₂ injection at the beginning.

Figure 5.11: CO₂ mole fraction in the produced gas for production with CO₂ injection at the beginning.

From Figures 5.10 to 5.11, mechanism of producing gas-condensate reservoir with CO_2 injection at the beginning can be summarized as follows:

- a) At early times, the gas production rate is constant and the bottomhole pressure declines. After CO_2 breakthrough, the oil and gas production rate declines. CO_2 concentration in the produced gas increase very quickly especially in the case of high gas rate. The simulation stops when the oil production rate is lower than the economic limit.
- b) By increasing the maximum gas production rate, the gas production is accelerated. The mechanism of hydrocarbon recovery is not affected by changing the rate. In Figure 5.10, the bottomhole pressure of the producer is lower when the maximum gas production rate is higher. Since, higher rate requires higher drawdown pressure. And, CO_2 concentration increases faster when the maximum gas production rate is higher as shown in Figure 5.11 because CO_2 flow fasters.

Table 5.4 illustrates the gas and oil recovery, and Table 5.5 illustrates production life.

Case	Gas R	ecovery (MN	MSCF)	Oil Recovery (MSTB)		
	No Limit	23% CO ₂ limit	40% CO ₂ limit	No Limit	23% CO ₂ limit	40% CO ₂ limit
1000 MSCF/D	14,447	10,999	12,183	1,620	1,346	1,466
2000 MSCF/D	14, <mark>528</mark>	11,053	12,209	1,624	1,353	1,470
3000 MSCF/D	14,555	11,065	12,215	1,624	1,354	1,471
4000 MSCF/D	1 <mark>4,5</mark> 70	11,070	12,216	1,625	1,355	1,471
5000 MSCF/D	14, <mark>57</mark> 9	11,074	12,217	1,625	1,356	1,471
6000 MSCF/D	1 4 ,584	11,074	12,222	1,625	1,356	1,472
7000 MSCF/D	14, <mark>5</mark> 91	11,077	12,221	1,625	1,356	1,472
8000 MSCF/D	14,59 <mark>2</mark>	11,078	12,224	1,625	1,356	1,472
9000 MSCF/D	14,595	11,080	12,224	1,625	1,356	1,472
10000 MSCF/D	14,596	11,083	12,224	1,625	1,357	1,472

Table 5.4: Total oil and gas production with CO₂ injection at the beginning.

Table 5.5: Production life for production with CO_2 injection at the beginning.

	Case	Production Life (Years)			
		NoLimit	23% CO ₂ limit	40% CO ₂ limit	
	1000 MSCF/D	53.70	31.06	35.71	
376	2000 MSCF/D	27.52	15.60	17.87	
	3000 MSCF/D	18.51	10.41	11.91	
	4000 MSCF/D	14.01	7.81	8.93	
	5000 MSCF/D	11.26	6.25	7.15	
	6000 MSCF/D	9.42	5.21	5.96	
	7000 MSCF/D	8.09	4.47	5.11	
	8000 MSCF/D	7.09	3.91	4.47	
	9000 MSCF/D	6.33	3.47	3.97	
	10000 MSCF/D	5.67	3.13	3.57	

The total oil and gas production and production life as a function of maximum gas production rate are shown in Figures 5.12, 5.13 and 5.14 respectively.

Figure 5.12: Total gas production for production with by CO₂ injection at the beginning.

Figure 5.13: Total oil production for production with by CO₂ injection at the beginning.

Figure 5.14: Production life for production with by CO₂ injection at the beginning.

From Figures 5.12 to 5.14, performance of producing gas-condensate reservoir with CO_2 injection at the beginning can be summarized as follows:

- a) In the case of no CO_2 concentration limit, increasing the maximum gas rate increases gas and oil total production. And, in the case of 23% and 40% CO_2 concentration limit, the maximum gas rate does not have significant effect on gas and condensate recovery.
- b) Compared between with and without CO₂ concentration limit, gas and oil total production for 23% limit case are around 24.4% and 16.6% less than those for no CO₂ limit case, respectively. For 40% limit case, the gas and oil total production are around 16.2% and 9.45% less than those for no CO₂ limit case, respectively. By installing a CO₂ removal unit, 9.4% more gas and 7.9% more oil are recovered.

In this scenario, we can see that CO_2 injection does effectively maintain the reservoir pressure above the dew point pressure, preventing condensate dropout in the reservoir. The simulation results also demonstrate that gas production and CO_2 injection rate do not have significant effect on oil and gas recovery. And installing a CO_2 removal unit does significantly increase oil and gas recovery.

5.3 Natural Depletion and Production with CO₂ Injection

In this section, comparisons between the simulation results between natural depletion case and production with CO_2 injection at the beginning case are reported. The oil and gas production rates, bottomhole pressure, oil and gas total productions and production life are discussed.

5.3.1 Gas Production Rate

As shown in Figures 5.1 and 5.8, the gas production rate in natural depletion case drops when the bottomhole pressure reaches the limit of 1,800 psia. In the case of CO_2 injection, the hydrocarbon gas production rate drops because of the increase in CO_2 concentration in the produced gas. Between natural depletion and CO_2 injection cases, the times before the gas production rate starts to decline in CO_2 injection are generally more than two times longer than those for natural depletion cases.

5.3.2 Oil Production Rate

In natural depletion cases, the oil production rate declines when the bottomhole pressure drops below the dew point pressure. Then, oil production rate drops again when bottomhole pressure reaches the limit of 1,800 psia. In the case of CO_2 injection, the oil production rate remains constant and declines when CO_2 breaks through at the producer. The oil production rates of both cases are shown in Figures 5.2 and 5.9.

5.3.3 Bottom Hole Pressure

As mentioned earlier, the main objective of CO_2 injection is to maintain the reservoir pressure above the dew point pressure. But, the bottomhole pressure of the CO_2 injection case declines, as shown in Figure 5.10 as a result of reservoir injection and production rate difference. However, CO_2 injection does effectively maintain the reservoir pressure and the simulation always stops before the reservoir pressure drops below the dew point pressure.

5.3.4 Total Gas Production

The increase in gas recovery when producing gas-condensate reservoir with CO_2 injection is shown in Table 5.6. From the table, the variation of gas rate does not have much effect on increase in gas recovery. There are around 101.4% improving in gas recovery and 122.2% improving in oil recovery.

Gun	Percentage of Gas Recovery Enhancement (%)			
Case	No Limit	23% CO ₂ limit	40% CO ₂ limit	
1000 MSCF/D	163.00%	100.20%	121.70%	
2000 MSCF/D	164.40%	101.20%	122.20%	
3000 MSCF/D	164.80%	101.30%	122.20%	
4000 MSCF/D	165.00%	101.30%	122.20%	
5000 MSCF/D	165.10%	101.40%	122.20%	
6000 MSCF/D	165.20%	101.30%	122.20%	
7000 MSCF/D	165.30%	101.40%	122.20%	
8000 MSCF/D	165.30%	101.40%	122.20%	
9000 MSCF/D	165.30%	101.40%	122.20%	
10000 MSCF/D	165.30%	101.40%	122.20%	

Table 5.6: Percentage of gas recovery enhancement by producing gas-condensate reservoir with CO₂ injection.

5.3.5 Total oil production

The increase in oil recovery when producing gas-condensate reservoir with CO_2 injection is shown in Table 5.7. From the table, the oil recovery for each CO_2 concentration limit increases when the maximum production rate increases. There are around 125% improving in gas recovery and 144% improving in oil recovery.

Table 5.7: Percentage of oil recovery enhancement by producing gas-condensate
reservoir with CO ₂ injection

Case	Percentage of Condensate Recovery Enhancement (%)			
Chije	No Limit	23% CO ₂ limit	40% CO ₂ limit	
1000 MSCF/D	163.20%	118.70%	138.10%	
2000 MSCF/D	165.40%	121.20%	140.30%	
3000 MSCF/D	166.90%	122.60%	141.70%	
4000 MSCF/D	168.20%	123.70%	142.90%	
5000 MSCF/D	169.40%	124.70%	143.90%	
6000 MSCF/D	170.30%	125.50%	144.80%	
7000 MSCF/D	171.10%	126.20%	145.50%	
8000 MSCF/D	171.70%	126.70%	146.10%	
9000 MSCF/D	171.90%	126.90%	146.30%	
10000 MSCF/D	172.00%	127.10%	146.40%	

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

5.4 Production with CO₂ Injection at Different Starting Time

In this scenario, CO_2 injection begins at different starting times in order to study the effect of the delay in injection. Injection rate is set to be equal to the production rate for each profile. In this simulation model, the production well is placed at coordinate (1, 1) in LGR grid representing the producer (located at coordinate (1, 1) in the global grid), and injection well is placed at coordinate (5, 5) in LGR grid representing the injector (located at coordinate (15, 15) in the global grid) in order to simulate a quarter five-spot pattern. Time prior to injection was varied from 1 to 10 years in a step of 1 year increment. The simulation will stop if gas or oil production rate drops below the economic limit.

In this scenario, the economic limits were set by oil production rate as shown in Table 5.1, gas production rate of 100 MSCF/D and CO₂ concentration limit. The 23% and 40% concentration limit were selected. The 23% limit is commonly used in Gulf of Thailand and the 40% limit is used when a CO₂ removal unit is installed. Results of the cases which the maximum production rate equal to 2,000 and 4,000 MSCF/D are shown in this chapter.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Gas Production Rate

Gas production rates for maximum gas production rate of 2,000 and 4,000, MSCF/D are shown in Figures 5.15 and 5.16, respectively.

Figure 5.15: Gas production rates for maximum gas production rate of 2,000 MSCF/D with different times prior to injection.

Figure 5.16: Gas production rates for maximum gas production rate of 4,000 MSCF/D with different times prior to injection.
Oil Production Rate

Oil production rates for maximum gas production rate of 2,000 and 4,000 MSCF/D are shown in Figures 5.17 and 5.18, respectively.

Figure 5.17: Oil production rate for maximum gas production rate of 2,000 MSCF/D with different times prior to injection.

Figure 5.18: Oil production rates for maximum gas production rate of 4,000 MSCF/D with different times prior to injection.

Bottomhole Pressure

The bottomhole pressures of the production well for maximum gas production rate of 2,000 and 4,000 MSCF/D are shown in Figures 5.19 and 5.20, respectively.

Figure 5.19: Bottomhole pressure for maximum gas production rate of 2,000 MSCF/D with different times prior to injection.

Figure 5.20: Bottomhole pressure for maximum gas production rate of 4,000 MSCF/D with different times prior to injection.

Mole Fraction of CO₂

 CO_2 mole fraction in the produced gas for maximum gas production rate of 2,000 and 4,000 MSCF/D are shown in Figures 5.21 and 5.22, respectively.

Figure 5.21: CO₂ mole fraction for maximum gas production rate of 2,000 MSCF/D with different times prior to injection.

Figure 5.22: CO₂ mole fraction for maximum gas production rate of 4,000 MSCF/D with different times prior to injection.

Oil Saturation around the wellbore

The oil saturation at Grid (4, 4, 2) in the LGR grid which in the producer for maximum gas production rate of 2,000 and 4,000 MSCF/D are shown in Figures 5.23 and 5.24, respectively.

Figure 5.24: Oil Saturation at Grid (4, 4, 2) in the LGR for maximum gas production rate of 4,000 MSCF/D with different times prior to injection.

From the Figures 5.17 to 5.24, we can categorize the time prior to injection to 3 periods which are (1) before the bottomhole pressure of the producer drop below the dew point pressure, (2) after the bottomhole pressure of the producer drops below the dew point pressure but before reaching the BHP limit of 1,800 psia, (3) after the bottomhole pressure of the producer reaches the BHP limit of 1,800 psia. The effect of changing timing to injection to mechanism of CO_2 injection can be summarized as follows:

(1) Injection Starts before the Bottomhole Pressure Drops below the Dew point Pressure

- a) Starting CO_2 injection before the bottomhole pressure drops the below dew point pressure has a similar behavior compared to starting the injection at the beginning. Gas and oil production rates remain constant and start to decline after CO_2 breakthrough. Then, the simulation stops because the oil production rate reaches the oil economic limit.
- b) The bottomhole pressure drops and remains nearly constant after the injection starts. The earlier the injection, the higher the bottomhole pressure is. Thus, early injection will keep the reservoir pressure to be high as well.
- c) CO₂ breakthrough time is slightly delayed when the time prior to injection delays. There is only 0.28 year difference in breakthrough time between starting injection at 1 and 2 years for the production rate limit of 2,000 MSCF/D.

(2) Injection Starts after the Bottomhole Pressure Drops below the Dew point Pressure but Before Reaching the BHP Limit of 1,800 psia

a) At early times, the oil production rate is constant, then declines after the bottomhole pressure drops below the dew point pressure. When the injection starts, the oil production rate increases. After CO₂ breakthrough,

the hydrocarbon gas production rate decreases due to the increase in CO_2 concentration but the oil production rate increases because the liquid drop out around the wellbore is revaporized by CO_2 . These gases will condense as oil at surface conditions. After the liquid dropout around the well bore is completely recovered, the oil production rate starts to decline again. The simulation stops because the oil production rate reaches the economic limit.

b) CO_2 breakthrough time is slightly delayed when the start of injection delays, similar to the case of injection before the bottomhole pressure drops below the dew point pressure.

(3) Injection Starts After the Bottomhole Pressure Reaches the BHP Limit of 1,800 psia

- a) In this case, the oil and gas production rates decline before the injection starts. After the injection starts, the oil and gas production rates increase. After CO₂ breakthrough, the gas production rate decreases due to the increase in CO₂ concentration but the oil production rate increases because the liquid drop out around the wellbore is revaporized by CO₂. After the liquid drop out around the well bore is completely recovered, the oil production rate starts to decline again. The simulation stops because the oil production rate reaches the economic limit.
- b) Delaying the injection time will delay CO₂ breakthrough time. The times delayed are almost equal for all the cases. In example, there is nearly 1 year delay in breakthrough time between CO₂ injection starts at 7, 8 and 9 years for the production rate limit of 2,000 MSCF/D.

Total Gas Production

The total gas production for maximum gas production rate of 2,000 and 4,000 MSCF/D are shown in Figures 5.25 and 5.26, respectively.

Figure 5.25: Total gas production with maximum gas production rate of 2,000 MSCF/D and varying times prior to injection between 1 - 9 yrs.

Figure 5.26: Total gas production with maximum gas production rate of 4,000 MSCF/D and varying times prior to injection between 1 - 6 yrs.

Total Oil Production

1,100

1,000

1 yr

2 yrs

3 yrs

4 yrs

The total oil production for maximum gas production rate of 2,000 and 4,000 MSCF/D are shown in Figures 5.27 and 5.28, respectively.

5 yrs

Timing to Injection

6 yrs

7 yrs

8 yrs

9 yrs

Figure 5.28: Total oil production with maximum gas production rate of 4,000 MSCF/D and varying times prior to injection between 1 - 6 yrs.

Production Life

The production life as a for maximum gas production rate of 2,000 and 4,000 MSCF/D are shown in Figures 5.29 and 5.30, respectively.

Figure 5.29: Production life with maximum gas production rate of 2,000 MSCF/D and varying times prior to injection between 1 - 9 yrs.

Figure 5.30: Production life with maximum gas production rate of 4,000 MSCF/D and varying times prior to injection between 1 - 6 yrs.

Table 5.8 illustrates the gas and oil recovery, and Table 5.9 illustrates production life with maximum gas production rate of 2,000 MSCF/D and varying times prior to injection between 1 - 9 yrs.

	Gas Recovery (MMSCF)			Oil Recovery (MSTB)		
Case	No Limit	23% CO ₂ limit	40% CO ₂ limit	No Limit	23% CO ₂ limit	40% CO ₂ limit
1 yr	14,546	11,243	12,345	1,635	1,378	1,489
2 yrs	14,563	11,434	12,479	1,646	1,402	1,508
3 yrs	14,580	11,622	12,612	1,657	1,427	1,527
4 yrs	14,598	11,812	12,747	1,669	1,451	1,546
5 yrs	14,710	12,022	12,926	1,664	1,381	1,523
6 yrs	14,933	12,160	13,060	1,638	1,247	1,381
7 yrs	15,0 <mark>3</mark> 5	12,245	13,104	1,625	1,199	1,319
8 yrs	15,042	12,250	13,108	1,624	1,198	1,317
9 yrs	15,046	12,255	13,112	1,625	1,197	1,317

Table 5.8: Total oil and gas production with maximum gas production rate of 2,000MSCF/D and varying times prior to injection between 1 - 9 yrs.

Table 5.9: Production life for production with maximum gas production rate of 2,000MSCF/D and varying times prior to injection between 1 - 9 yrs.

	Production Life (Years)			
Case	No Limit	23% CO ₂ limit	40% CO2 limit	
1 yr	27.18	15.84	18.00	
2 yrs	26.85	16.08	18.13	
3 yrs	26.51	16.32	18.26	
4 yrs	26.10	16.56	18.39	
5 yrs	26.26	16.83	18.60	
6 yrs	27.43	17.00	18.76	
7 yrs	28.69	17.71	19.43	
8 yrs	29.77	18.72	20.44	
9 yrs	30.77	19.72	21.44	

Table 5.10 illustrates the gas and oil recovery, and Table 5.11 illustrates production life with maximum gas production rate of 4,000 MSCF/D and varying times prior to injection between 1 - 6 yrs.

Table 5.10: Total oil and gas production with maximum gas production rate of 4,000MSCF/D and varying times prior to injection between 1 - 6 yrs.

	Gas Recovery (MMSCF)			Oil Recovery (MSTB)		
Case	No Limit	23% CO ₂ limit	40% CO ₂ limit	No Limit	23% CO ₂ limit	40% CO ₂ limit
1 yr	14,602	11,441	12,483	1,647	1,403	1,509
2 yrs	1 <mark>4,634</mark>	11,815	12,751	1,669	1,452	1,546
3 yrs	14,901	12,116	13,028	1,642	1,248	1,397
4 yrs	14,925	12,125	13,034	1,639	1,235	1,384
5 yrs	14,93 <mark>5</mark>	12,133	13,039	1,638	1,232	1,381
6 yrs	14,9 <mark>4</mark> 0	12,137	13,042	1,638	1,232	1,380

Table 5.11: Production life for production with maximum gas production rate of 4,000 MSCF/D and varying times prior to injection between 1 - 6 yrs.

[Production Life (Years)			
	Case	No Limit	23% CO2 limit	40% CO ₂ limit	
W	1 yr	13.59	8.04	9.07	
	2 yrs	13.26	8.28	9.20	
	3 yrs	14.09	8.75	9.71	
	4 yrs	15.17	9.76	10.71	
	5 yrs	16.17	10.76	11.71	
	6 yrs	17.17	11.76	12.71	

From Figures 5.25 to 5.30, the effect of changing the starting time of injection on the performance of CO_2 injection can be summarized as follow:

- a) By starting injection before the bottomhole pressure drops below the dew point pressure, delaying the injection starting time increases gas recovery for the cases with 23% and 40% CO₂ limit but has no effect to gas recovery for the cases with no CO₂ limit as shown in Figures 5.25 and 5.26. From Figures 5.27 and 5.28, delaying the injection time increases the oil recovery in all CO₂ limit cases.
- b) By starting injection before the bottomhole pressure reaches the BHP limit of 1,800 psia, delaying the injection time increases gas recovery but decreases oil recovery for all different CO₂ limit cases. In this case, the production life is longer when the injection starting time is delayed. When compared to starting injection before the bottomhole pressure drops below the dew point pressure, the gas recovery is higher but the oil recovery is lower. In a case of production rate limit of 4,000 MSCF /D with the time prior to injection of 2 years which is shortly after the bottomhole pressure drops below the dew point pressure, the behavior of this case is similar to the case which the injection starts before the bottomhole pressure drops below the dew point pressure and is the case that provides the maximum oil recovery.
- c) By starting injection after the bottomhole pressure reaches the BHP limit of 1,800 psia, delaying the injection starting time has effect on gas and oil recoveries. And, the production life is longer when the injection starting time is delayed.

In this scenario, we can see that when injecting CO_2 after condensate accumulates, CO_2 can re-vaporize liquid drop-out around the wellbore. The starting time for CO_2 injection has important effects on hydrocarbon recovery. To obtain the maximum oil recovery, the injection should start shortly after the bottomhole pressure drops below the dew point pressure. And, starting injection after the bottomhole pressure reaches the BHP limit can provide the maximum gas recovery.

5.5 Stopping Injection before CO₂ Concentration in Produced Gas Reaches Limit

In this scenario, CO_2 injection is selectively stopped before CO_2 concentration in produced gas reaches the 40% limit. The stopping time are varied from 5% to 35% CO_2 concentration in the produced gas in step of 5% increment. Two scenarios are selected which are the cases with starting CO_2 injection at the beginning and starting CO_2 injection after 2 years of production. In both cases, the maximum production rate is 4,000 MSCF/D. The simulation will stop when the oil or gas production rate reaches the economic limit or CO_2 concentration in the produced gas reaches 40 %.

Gas Production Rate

Gas production rate for starting CO_2 injection at the beginning and after 2 years of production are shown in Figures 5.31 and 5.32, respectively.

Figure 5.31: Gas production rates for starting CO_2 injection at the beginning and stopping injection when the produced gas has CO_2 concentration of 5%-35%.

Figure 5.32: Gas production rates for starting CO₂ injection after 2 years of production and stopping injection when the produced gas has CO₂ concentration of 5%- 35%.

Oil Production Rate

Oil production rate for starting CO_2 injection at the beginning and after 2 years of production are shown in Figures 5.33 and 5.34, respectively.

Figure 5.33: Oil production rates for starting CO_2 injection at the beginning and stopping injection when the produced gas has CO_2 concentration of 5%-35%.

Figure 5.34: Oil production rates for starting CO₂ injection after 2 years of production and stopping injection when the produced gas has CO₂ concentration of 5% - 35%.

Bottomhole Pressure

The bottomhole pressures for starting CO_2 injection at the beginning and after 2 years of production are shown in Figures 5.35 and 5.36, respectively.

Figure 5.35: The bottomhole pressure for starting CO_2 injection at the beginning and stopping injection when the produced gas has CO_2 concentration of 5%-35%.

Figure 5.36: The bottomhole pressure for starting CO₂ injection after 2 years of production and stopping injection when the produced gas has CO₂ concentration of 5% - 35%.

CO₂ Mole Fraction in Produced Gas

 CO_2 mole fractions in the produced gas for starting CO_2 injection at the beginning and after 2 years of production are shown in Figures 5.37 and 5.38, respectively.

Figure 5.37: CO_2 mole fraction for starting CO_2 injection at the beginning and stopping injection when the produced gas has CO_2 concentration of 5%-35%.

Figure 5.38: CO₂ mole fraction for starting CO₂ injection after 2 years of production and stopping injection when the produced gas has CO₂ concentration of 5%- 35%.

From Figures 5.31 to 5.38, the effect of stopping the injection when the produced gas has a certain CO_2 concentration can be summarized as follows:

- a) The gas and oil production rates are constant at the beginning and start to decline after CO_2 breakthrough. When the injection stops, CO_2 concentration does not stop increasing immediately. First, the bottomhole pressure drops very quickly after the injection stops until it reaches the BHP limit of 1,800 psia. After that, the gas and oil production rate start to decline and CO_2 concentration stops increasing. The simulation stops because the oil production rate drops below the economic limit.
- b) When compared between starting injection at the beginning and after 2 years, CO₂ concentration of immediate injection stops increasing at higher CO₂ concentration than that of the delayed injection.
- c) In the case of starting CO_2 injection after 2 years and stopping at 5% CO_2 concentration, the liquid saturation around the wellbore increases after injection stops because CO_2 concentration around the wellbore is not high enough to prevent liquid drop out in the reservoir.

Starting CO₂ Injection at the Beginning

The total gas and oil production and production life for starting CO_2 injection at the beginning are shown in Figures 5.39, 5.40 and 5.41, respectively.

Figure 5.39: Total gas production for starting CO_2 injection at the beginning and stopping the injection when the produced gas has CO_2 concentration of 5%- 35%.

Figure 5.40: Total oil production for starting CO_2 injection at the beginning and stopping the injection when the produced gas has CO_2 concentration of 5%-35%.

Tables 5.12 illustrates gas and oil recovery and production life for starting CO_2 injection at the beginning .

Table 5.12: Total oil and gas production and production life for starting CO_2 injection at the beginning and stopping the injection when the produced gas has CO_2 concentration of 5% - 35%.

Case	Gas Recovery (MMSCF)	Oil Recovery (MSTB)	Production Life (Years)
5%	12,500	1,501	9.31
10%	12,371	1,487	9.08
15%	12,302	1,480	9.02
20%	12,262	1,476	8.98
25%	12,237	1,473	8.96
30%	12,225	1,472	8.94
35%	12,217	1,471	8.93
No Shut in	12,216	1,471	8.93

From Figures 5.39 to 5.41, the effect of stopping the injection when the produced gas has a certain CO_2 concentration can be summarized as follows:

- a) As CO₂ concentration in the produced gas at the stopping time increases from 5% to 35%, the total gas production decreases from 12,500 MMSCF to 12,217 MMSCF, and the total oil production decreases from 1,501 MSTB to 1,471 MSTB in the case of immediate injection as shown in Table 5.13. This means that if we stop the injection early, we will recover more gas and oil. For the production life, increase CO₂ concentration in the produced gas at the stopping time shortens the production life.
- b) When compared to CO₂ injection without stooping the injection, stopping injection before CO₂ concentration in the produced gas reaches the limit has more oil and gas recovery for all CO₂ concentration in the produced gas at the stopping time.

Start CO₂ Injection after 2 years

The total gas and oil production and production life for starting CO_2 injection at the beginning and 2 years afterward are shown in Figures 5.42, 5.43, and 5.44, respectively.

Figure 5.42: Total gas production for starting CO_2 injection 2 years afterward and stopping the injection when the produced gas has CO_2 concentration of 5%- 35%.

Figure 5.43: Total oil production for starting CO_2 injection 2 years afterward and stopping the injection when the produced gas has CO_2 concentration of 5%- 35%.

Tables 5.13 illustrate gas and oil recovery and production life for starting CO_2 injection at the beginning.

Case	Gas Recovery (MMSCF)	Oil Recovery (MSTB)	Production Life (Years)
5%	12,039	1,461	11.26
10%	12,648	1,535	11.76
15%	12,828	1,554	9.91
20%	12,792	1,550	9.33
25 <mark>%</mark>	12,772	1,548	9.22
30%	12,760	1,547	9.21
35%	12,751	1,546	9.20
No Shut in	12,751	1,546	9.20

 CO_2 concentration of 5% - 35%.

From Figures 5.42 to 5.44, the effect of stopping the injection when the produced gas has a certain CO_2 concentration can be summarized as follows:

a) As CO_2 concentration in the produced gas at the stopping time increases from 5% to 15%, the hydrocarbon gas production increases from 12,365 to 12,828 MMSCF, and the total oil production increases from 1,461 to 1,554 MSTB. But when CO_2 concentration at the stopping time increases from 15% to 35%, the hydrocarbon gas production decreases from 12,828 to 12,751 MMSCF, and the total oil production decreases from 1,554 to 1,546 MSTB. The opposite trend is observed because in the case of CO_2 concentration at the stopping time at 5% and 10%, the CO_2 concentration in the produced gas stops increasing before reaching the economic limit.

In this scenario, we can see that stopping injection before CO_2 concentration in the produce gas reaches the limit can improve oil and gas recovery and stopping injection earlier provides more gas and oil recovery in the case of CO_2 injection starting at the beginning. But when the injection starting time is delayed, stopping injection earlier may have lower oil and gas recovery if the oil and gas production rate reach the economic limit before CO_2 concentration reaches the limit.

5.6 Production with Gas-Recycling

In this scenario, the gas obtained from the separator is injected back into the reservoir. The gas injection starts at the same time as the production. Composition of the injected gas is shown in Table 5.14:

Component	Mole fraction
C ₁	0.67018
C_2	0.09385
C ₃	0.07031
i-C ₄	0.03648
n-C ₄	0.04082
i-C ₅	0.01354
n-C ₅	0.01256
C ₆	0.04387
C ₇₊	0.00469
CO ₂	0.0137

Table 5.14: Injected gas composition used in gas recycling scenario.

In this simulation model, the production well is placed at coordinate (1,1) in LGR grid representing the producer (located at coordinate (1,1) in the global grid), and injection well is placed at coordinate (5,5) in LGR grid representing the injector (located at coordinate (15,15) in the global grid) in order to simulate a quarter fivespot pattern. At the production well, the gas production is controlled at 4,000 MSCF/D. At early times, the separator gas is injected back into the reservoir. When the oil production via gas recycling reaches the economic limit, gas injection well is switched to production until abandonment. In this scenario, we also compare between producing with gas recycling, producing with CO₂ injection at the beginning, producing with CO₂ injection at 2 years afterward, and producing with natural depletion. We use the 23% CO₂ limit as the economic limit for the CO₂ injection scenario. The gas and oil production rates for different production strategies are shown in Figures 5.45 and 5.46, respectively.

Figure 5.45: Gas production rate for producing with gas recycling in comparison to production with CO₂ injection.

Figure 5.46: Oil production rate for producing with gas recycling in comparison to production with CO₂ injection.

The bottomhole pressure of the production well for different production strategies is shown in Figure 5.47.

Figure 5.47: Bottomhole pressure for producing with gas recycling in comparison to production with CO₂ injection.

From Figures 5.45 to 5.47, comparison between gas recycling, CO_2 injection at the beginning, CO_2 injection after 2 years, and natural depletion can be summarized as follows:

- a) In gas recycling, all the gas production for the first 24 years is injected back into the reservoir. After switching injector to producer, the gas production rate increases to a constant value of 8,000 MSCF/D for 3 years before declining and reaching abandonment.
- b) The oil production rate remains constant at 498 STB/D for the first 6 years before starting to decline. The oil production rate of gas recycling case and CO_2 injection at the beginning drops at the same time because the injected gas breakthrough times are the same. The oil production rate in CO_2 injection case drops faster than that in the gas recycling case for immediate and delayed CO_2 injection.
- c) The bottomhole pressure in gas recycling case remains nearly constant until the injection stops.

The total oil and gas production and production life for different production strategies are shown in Figures 5.48, 5.49, and 5.50, respectively.

Figure 5.48: Total gas production for producing with gas recycling in comparison to production with CO₂ injection.

Figure 5.49: Total oil production for producing with gas recycling in comparison to production with CO₂ injection.

Figure 5.50: Production life for producing with gas recycling in comparison to production with CO₂ injection.

From Figures 5.48 to 5.50, comparison between gas recycling, CO_2 injection at the beginning, CO_2 injection after 2 years, and natural depletion can be summarized as follows:

- a) Gas recycling has around 200 MSTB more oil recovery than CO₂ injection. This is because gas recycling has no limitation of injected gas breakthrough. Gas recycling does enhance oil recovery when compare to natural depletion.
- b) Production life of gas recycling is around 14 years more than CO₂ injection case. Because gas recycling has no limitation of injected gas breakthrough, gas can be reinjected until all condensate is recovered.

When compared between CO_2 injection and gas recycling scenario, we can see that gas recycling is better in maintaining the reservoir pressure and has benefit on no injected gas breakthrough issue. However, the disadvantage of gas recycling is that it cannot sell any gas at the beginning and we can see that the gas recovery of the gas recycling scenario is much lower than that of the CO_2 injection scenario.

5.7 Economic Analysis

The financial aspect of selected production profile of condensate reservoir is evaluated using net present value (NPV). The capital cost is invested since starting the project. The assumptions for this economic evaluation are:

- a) Oil price equal to 62.5 US\$/bbl
- b) Gas price equal to 3.5 US\$/MMBTU
- c) Constant discount rate at 10 %
- d) Total fixed cost/investment cost of production well and injection well equal to 1,800,000 US\$.
- e) Total cost of compressor is 2,725,000 US\$. (The calculation detail n is shown in Appendix B-1)
- f) Total cost of CO₂ removal unit is 2,000,000 US\$ (Cost of CO₂ removal unit is the partial cost of full field CO₂ removal unit).
- g) Apply linear depreciation for salvage cost of compressor, and compressor life time is defined at 5 years.
- h) Operating cost varies only on electricity consumption. (The calculation detail n is shown in Appendix B-2)
- i) The gas processing cost is not accounted in the economic evaluation.
- j) The composition of injection gas is constant throughout the entire production period.

We select the maximum oil recovery case, which is the case with the maximum production rate of 4,000 MSCF/D and CO_2 injection start at 2 years, to perform economic evaluations. Economics analysis will be used to compare among the cases of 23% CO_2 limit, 40% CO_2 limit, producing with natural depletion and producing with gas recycling. NPV and annual cash flow of these selected cases are illustrated in Figure 5.50 and 5.51, respectively. The cash flow table of each case is shown in Appendix C.

Figure 5.51: Cash flow for selected cases.

Figure 5.52: Net present value (NPV) for selected cases.

From the economic analysis, the results can be summarized as follows:

- a) From Figure 5.51, we can see that the case with 40% CO_2 concentration limit has the highest investment cost and the natural depletion scenario has the lowest investment cost in year 0. From year 1 to 3, the natural depletion scenario has the highest income because of the lowest operating cost and the gas recycling scenario has the lowest income because this scenario cannot sell any gas at early times. Then from year 4 to 6, the income of the natural depletion case is lowest due to the gas and oil production rate decline at this point.
- b) The income of the case with 23% and 40% CO₂ limit are equal until year
 9. At this year, the simulation of the case with 23% CO₂ limit is stop. By installing CO₂ removal unit, we can gain 296,852 US\$ in year 9 and 3,972,476 US\$ in year 10.
- c) All the cases simulated give positive net present values. CO_2 injection cases have higher NPV than the natural depletion case. NPV are 49.4% and 46.5% higher than natural depletion case for 23% and 40% CO_2 concentration limit, respectively. When compared to gas recycling scenario, CO_2 injection have higher NPV. NPV are 33.5% and 30.9% higher than gas recycling case for 23% and 40% CO_2 concentration limit, respectively.
- d) Installing CO_2 removal unit does not significantly increase the NPV as we can see in Figure 5.52 because the operating cost and the investment cost of CO_2 removal unit is high and the gains in year 9 and 10 are low.

จุฬาลงกรณมหาวทยาลย

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

In this chapter, the conclusions of CO_2 injection into gas condensate reservoir are illustrated in term of the injection mechanism, hydrocarbon recovery enhancements, and economic analysis. In this study, a simple reservoir model and a quarter 5-spot flooding pattern was used. The case with maximum oil recovery was selected to perform economic analysis to compare between producing by natural depletion, producing with CO_2 injection, and gas recycling. The economic analysis is also used to study the feasibility of installing CO_2 removal unit.

6.1 Conclusions

Based on a specific set of input data, simulation results obtained from ECLIPSE 300 simulator, and economic analysis, injection mechanism, hydrocarbon recovery enhancements, and economic analysis of CO_2 injection can be concluded as follows:

6.1.1 Mechanism of CO₂ Injection

- a) In the case of starting CO₂ injection at the beginning and before the bottomhole pressure of the producer drop below the dew point pressure, CO₂ injection does effectively maintain the reservoir pressure above the dew point pressure, preventing condensate dropout in the reservoir.
- b) By starting injection before the bottomhole pressure of the producer reaches the BHP limit, the reservoir pressure and the oil production rate are maintained. The oil production rate is increased when CO₂ reaches the producer because the liquid drop out around the wellbore is effectively recovered by CO₂. The results show that oil saturation around the wellbore can be completely revaporized.

- c) By starting injection after the bottomhole pressure of the producer reaches the BHP limit, the oil and gas production rates decline before the injection starts. After the injection starts, the oil and gas production rates increase. After CO₂ breakthrough, the gas production rate decreases due to the increase in CO₂ concentration but the oil production rate increases because the liquid drop out around the wellbore is revaporized by CO₂. In this case, the results also show that oil round the wellbore can be completely revaporized.
- d) By stopping injection before CO₂ concentration in the produced gas reaches the limit, CO₂ concentration does not stop increasing immediately. First, the bottomhole pressure drops very quickly after the injection stops until it reaches the BHP limit. After that, gas and oil production rates start to decline and CO₂ concentration stops increasing.

6.1.2 Hydrocarbon Recovery Enhancement by CO₂ Injection

- a) Changing the production rate limit has no significant effect on the gas and oil recovery.
- b) By varying times prior to injection, the effects on hydrocarbon recovery depend on the bottomhole pressure when the injection starts. Starting injection shortly after the bottomhole pressure drops below the dew point pressure is the case that provides the maximum oil recovery. When starting injection after the bottomhole pressure reaches the BHP limit, delaying the injection time increases gas recovery but decreases oil recovery. And starting injection after the bottomhole pressure reaches the BHP limit, changing time prior to injection has no effect on oil and gas recovery.
- c) By stopping injection before CO_2 concentration in the produced gas reaches the limit, oil and gas recoveries are increased. If we stop the injection earlier, we will recover more gas and oil. The opposite trend is observed, if the CO_2 concentration in the produced gas stops increasing before reacheing the economic limit.

 d) Gas recycling has more oil recovery but less gas recovery compared to CO₂ injection.

6.1.3 Economic analysis of CO₂ Injection

- a) All the cases simulated give positive net present values, and the CO₂ injection scenario has the highest NPV when compared to the natural depletion and gas recycling scenario.
- b) Installing CO_2 removal unit does not significantly increase the NPV. Because the operating cost and the investment cost of CO_2 removal unit is high, and the gains are low.

6.2 **Recommendations**

In this study, we studied the mechanism and performance of CO_2 injection with different production and injection scenarios. The effects of production and injection rate, time prior to injection and stopping injection before CO_2 concentration in produced gas reaches limit were studied. We also compared the mechanism and performance of CO_2 injection with production with gas recycling.

However, the conclusions are made from simulation results which come from a hypothetical model which has one specific reservoir composition, homogeneous reservoir properties, no dip angle, and immobile reservoir water. The field results may be different due to the effect of the parameters mentioned above. Future works should study the influence of these parameters for more understanding on mechanism and performance of CO_2 injection into a gas condensate reservoir.

References

- E. Shtepani. CO₂ Sequestration in Depleted Gas/Condensate Reservoirs. <u>Paper</u> <u>SPE 102284 presented at the 2006 SPE Annual Technical Conference and</u> <u>Exhibition held in San Antonio</u>, Texas, U.S.A. September 2006.
- [2] J.J. Chaback and M.L Willium. p-x behavior of a rich-gas-condensate reservoir fluid in admixture of CO₂ and (N₂ + CO₂). <u>Paper SPE 24132 Presented at the 1992 SPE/DOE Symposium on Enhanced Oil Recovery held Tulsa</u> April 1992.
- [3] A. Al-Hashami, S.R. Ren, and B. Tohidi. CO₂ Injection for Enhanced Gas Recovery and Geo-Storage Reservoir Simulation and Economics. presentation at the SPE Europec/EAGE Annual Conference held in <u>Madrid, Spain</u> June 2005.
- [4] Chang, Yih-Bor, Coats, B.K. and Nolen, J.S. A Compositional Model for CO₂ Floods Including CO₂ Solubility in Water. <u>SPE Reservoir Evaluation &</u> <u>Engineering</u>, 155-160. April 1998.
- [5] Sinisha A. Jikich, H. Smith, W. Neal Sams, S. Bromhal. Enhanced Gas Recovery (EGR) with Carbon Dioxide Sequestration, A Simulation Study of Effects of Injection Strategy and Operational Parameters. <u>Paper SPE 84813</u> <u>presented at the SPE Eastern Regional/AAPG Eastern Section Joint</u> <u>Meeting held in Pittsburgh, Pennsylvania, U.S.A</u> 6-10 September 2003.
- [6] Curtis M. Oldenburg and Sally M. Benson. CO₂ Injection for Enhanced Gas Production and Carbon Sequestration. <u>Paper SPE 74367 presented at the</u> <u>SPE International Petroleum Conference and Exhibition in Mexico held in</u> <u>Villahermosa, Mexico</u> February 2002.

- [7] M. Sengul. CO₂ Sequestration—A Safe Transition Technology. <u>Paper SPE 98617</u> presented at the SPE International Conference on Health, Safety, and <u>Environment in Oil and Gas Exploration and Production held in Abu</u> <u>Dhabi, U.A.E.</u> April 2006.
- [8] Schlumberger Informatin Solutions. <u>ECLIPSE Reference Manual 2006.1 and</u> <u>ECLIPSE Technical Description 2006.1</u>. 2004.
- [9] Forrest F. Craig, JR. <u>The Reservoir Engineering Aspects of Waterflooding</u>. Monograph Volume 3 of the Henry L. Doherty series. New York, U.S.A : Millet the printer, 1980.

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย APPENDICES

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย
APPENDIX A

A-1) Reservoir model

The reservoir model is generated by input the required data in Eclipse simulator. The geological model composes of number of cells or blocks in X, Y and Z directions and in this study, the number of block is $15 \times 15 \times 3$.

A-1) Case Definition

Simulator:	Compositional	
Model Dimensions:	Number of cells in the x direction	15
	Number of cells in the y direction	15
	Number of cells in the z direction	3
Grid type:	Cartesian	
Geometry type:	Block Centered	
Oil-Gas-Water Options:	Water, Gas Condensate (ISGAS)	
Number of Components:	10	
Pressure Saturation Optio	ns (Solution Type): AIM	

A-2)	Reservoir p	roperties				
	<u>Grid</u>					
	Properties:	Active grid blocks	X (15)	=	1	
			Y (15)	=	1	
			Z (8)]=S	1	
		Porosity		=	0.165	
		Permeability	k-x	Y	10.85	mD
			k-y	=	10.85	mD
			k-z	=	1.27	mD
		X Grid block sizes		=	150 ft	
		Y Grid block sizes		=	150 ft	
		Z Grid block sizes		=	40 ft	
	Depth of Top	o face (Top layer)		=	8,000	ft

Cartesian Local Grid Refinement

	LGR Coordinate			Numbe	er of refin	ed cells
LGR Name	Ι	J	K	X	Y	Z
Producer	1	1	1-3	5	5	3
Injector	15	15	1-3	5	5	3

PVT Table

Fluid Densities at Surface	Oil density	49.99914	Lb/ft ³
Conditions	Water density	62.42797	Lb/ft ³
	Gas density	0.04947417	Lb/ft ³
Rock Properties	Reference Pressure	3000	Psia
	Rock Compressibility	2.403571E-6	/psi

A-3) Miscellaneous

Specify	properties	of water-	CO2 system	*(SOLUBILL	I)
- F J	r · r · · · · ·			V	/

Press (psia)	VisCmp (Scf/stb)	FVF (rb /stb)	Viscos (cp)	Cmprss (/psi)
14.7	0.2069819	1.085391	0.187655	4.1271E-06
200	3.2210995	1.086144	0.187661	4.11422E-06
400	6.4743294	1.086956	0.187681	4.10031E-06
600	9.7275593	1.087767	0.187714	4.08641E-06
800	12.980789	1.088577	0.187761	4.0725E-06
1000	16.234019	1.089387	0.187821	4.05859E-06
1200	19.487249	1.090197	0.187894	4.04469E-06
1400	22.740479	1.091006	0.18798	4.03078E-06
1600	25.993709	1.091815	0.18808	4.01688E-06
1800	29.246939	1.092623	0.188193	4.00297E-06
2000	32.500169	1.09343	0.188319	3.98906E-06
2200	35.753399	1.094237	0.188459	3.97516E-06
2400	39.006629	1.095043	0.188612	3.96125E-06
2600	42.259859	1.095849	0.188778	3.94734E-06
2800	45.513089	1.096654	0.188957	3.93344E-06
3000	48.766319	1.097459	0.18915	3.91953E-06
3200	52.019549	1.098264	0.189356	3.90563E-06
3400	55.272779	1.099067	0.189575	3.89172E-06
3600	58.526009	1.099871	0.189808	3.87781E-06
3800	61.779238	1.100673	0.190054	3.86391E-06

Number of Component	Number of Component	10	
Standard Condition	Standard Temperature	60	F
	Standard Pressure	14.7	Psia
Component Names	Component 1	C ₁	
	Component 2	C ₂	
	Component 3	C ₃	
	Component 4	i-C ₄	
	Component 5	n-C ₄	
	Component 6	i-C ₅	
	Component 7	n-C ₅	
	Component 8	C ₆	
	Component 9	C ₇₊	
	Component 10	CO ₂	
PROPS Reporting	Oil PVT Tables	No output	
Options	Gas PVT Tables	No output	
	Water PVT Tables	No output	

EoS Res Tables

Pure Component Boiling	Component C ₁	200.94	R
Points (Reservoir EoS)	Component C ₂	332.18	R
	Component C ₃	415.92	R
	Component IC ₄	470.45	R
	Component NC ₄	490.75	R
	Component IC ₅	521.79	R
	Component NC ₅	556.59	R
	Component C ₆	615.39	R
	Component C ₇₊	734.08	R
	Component CO ₂	350.413	R
Critical Temperature	Component C ₁	343	R
(Reservoir EoS)	Component C ₂	549.59	R
	Component C ₃	665.73	R
	Component IC ₄	734.13	R
	Component NC ₄	765.29	R
	Component IC ₅	828.77	R
	Component NC ₅	845.47	R
ิลอาย	Component C ₆	913.27	R
	Component C ₇₊	1061.29	R
	Component CO ₂	547.58	R
Constant Reservoir	Initial Reservoir	293	F
Temperature	Temperature		
Critical Volume	Component C ₁	0.0988	ft ³ /lb-mole
(Reservoir EoS)	Component C ₂	0.0783	ft ³ /lb-mole
	Component C ₃	0.0727	ft ³ /lb-mole
	Component IC ₄	0.0714	ft ³ /lb-mole
	Component NC ₄	0.0703	ft ³ /lb-mole
	Component IC ₅	0.0679	ft ³ /lb-mole
	Component NC ₅	0.0675	ft ³ /lb-mole
	Component C ₆	0.0688	ft ³ /lb-mole
	Component C ₇₊	7.509	ft ³ /lb-mole
	Component CO ₂	0.0344	ft ³ /lb-mole

Overall Composition	Component C ₁	59.991	%
-	Component C ₂	8.4326	%
	Component C ₃	6.3988	%
	Component IC ₄	3.4127	%
	Component NC ₄	3.8989	%
	Component IC ₅	1.4286	%
	Component NC ₅	1.3988	%
	Component C ₆	7.2718	%
	Component C ₇₊	6.5366	%
	Component CO ₂	1.2302	%
Critical Pressure	Component C ₁	666.4	Psia
(Reservoir EoS)	Component C ₂	706.5	Psia
	Component C ₃	616	Psia
	Component IC ₄	527.9	Psia
	Component NC ₄	550.6	Psia
	Component IC ₅	490.4	Psia
	Component NC ₅	488.6	Psia
	Component C ₆	436.9	Psia
	Component C ₇₊	403.29	Psia
	Component CO ₂	1071	Psia
Equation of State (Reservoir FoS)	Equation of State	PR (Peng-Robinso	n)
		16.042	1
Molecular Weights	Component C ₁	16.043	
Molecular Weights (Reservoir EoS)	Component C ₁ Component C ₂	16.043 30.07	
Molecular Weights (Reservoir EoS)	Component C ₁ Component C ₂ Component C ₃	16.043 30.07 44.097	
Molecular Weights (Reservoir EoS)	Component C_1 Component C_2 Component C_3 Component IC_4	16.043 30.07 44.097 58.123	
Molecular Weights (Reservoir EoS)	$\begin{array}{c} Component C_1 \\ \hline Component C_2 \\ \hline Component C_3 \\ \hline Component IC_4 \\ \hline Component NC_4 \end{array}$	16.043 30.07 44.097 58.123 58.123	
Molecular Weights (Reservoir EoS)	Component C_1 Component C_2 Component C_3 Component IC_4 Component NC_4 Component IC_5	16.043 30.07 44.097 58.123 58.123 72.15	
Molecular Weights (Reservoir EoS)	Component C_1 Component C_2 Component C_3 Component IC_4Component NC_4Component IC_5Component NC_5	16.043 30.07 44.097 58.123 58.123 72.15 72.15	
Molecular Weights (Reservoir EoS)	Component C_1 Component C_2 Component C_3 Component IC_4 Component NC_4 Component IC_5 Component NC_5 Component C_6	16.043 30.07 44.097 58.123 58.123 72.15 72.15 86.177	
Molecular Weights (Reservoir EoS)	Component C_1 Component C_2 Component C_3 Component IC_4Component NC_4Component IC_5Component NC_5Component C_6Component C_{7+}	16.043 30.07 44.097 58.123 58.123 72.15 72.15 86.177 115	
Molecular Weights (Reservoir EoS)	Component C_1 Component C_2 Component C_3 Component IC_4Component NC_4Component IC_5Component NC_5Component C_6Component C_{7+} Component CO2	16.043 30.07 44.097 58.123 58.123 72.15 72.15 86.177 115 44.01	
Molecular Weights (Reservoir EoS)	Component C_1 Component C_2 Component C_3 Component IC_4Component NC_4Component IC_5Component NC_5Component C_6Component C_7_+Component C_2Component C_1	16.043 30.07 44.097 58.123 58.123 72.15 72.15 86.177 115 44.01 0.0104	
Molecular Weights (Reservoir EoS) Acentric Factor (Reservoir EoS)	Component C_1 Component C_2 Component C_3 Component IC_4Component NC_4Component NC_5Component NC_5Component C_6Component C_7+Component CO2Component C_1Component C_2	16.043 30.07 44.097 58.123 58.123 72.15 72.15 86.177 115 44.01 0.0104 0.0979	
Molecular Weights (Reservoir EoS) Acentric Factor (Reservoir EoS)	Component C_1 Component C_2 Component C_3 Component IC_4Component NC_4Component IC_5Component NC_5Component C_6Component C_7+Component CO2Component C_1Component C_2Component C_3	16.043 30.07 44.097 58.123 58.123 72.15 72.15 86.177 115 44.01 0.0104 0.0979 0.1522	
Molecular Weights (Reservoir EoS) Acentric Factor (Reservoir EoS)	Component C_1 Component C_2 Component C_3 Component IC_4Component NC_4Component NC_5Component NC_5Component C_6Component C_7+Component C_2Component C_1Component C_3Component IC_4	16.043 30.07 44.097 58.123 58.123 72.15 72.15 86.177 115 44.01 0.0104 0.0979 0.1522 0.1852	
Molecular Weights (Reservoir EoS)	Component C_1 Component C_2 Component C_3 Component IC_4Component NC_4Component NC_5Component NC_5Component C_6Component C_7+Component CO_2Component C_1Component C_2Component C_3Component IC_4Component NC_4	16.043 30.07 44.097 58.123 58.123 72.15 72.15 86.177 115 44.01 0.0104 0.0979 0.1522 0.1852 0.1995	
Molecular Weights (Reservoir EoS)	Component C_1 Component C_2 Component C_3 Component IC_4Component NC_4Component NC_5Component NC_5Component C_6Component C_7+Component CO2Component C_1Component C_2Component C_3Component IC_4Component NC_4Component IC_5	16.043 30.07 44.097 58.123 58.123 72.15 72.15 86.177 115 44.01 0.0104 0.0979 0.1522 0.1852 0.1995 0.228	
Molecular Weights (Reservoir EoS) Acentric Factor (Reservoir EoS)	Component C_1 Component C_2 Component C_3 Component IC_4Component NC_4Component NC_5Component NC_5Component C_6Component C_7+Component C_2Component C_2Component C_3Component IC_4Component IC_5	16.043 30.07 44.097 58.123 58.123 72.15 72.15 72.15 86.177 115 44.01 0.0104 0.0979 0.1522 0.1852 0.1995 0.228 0.2514	
Molecular Weights (Reservoir EoS) Acentric Factor (Reservoir EoS)	Component C_1 Component C_2 Component C_3 Component IC_4Component NC_4Component NC_5Component NC_5Component C_6Component C_7+Component C_2Component C_2Component C_3Component IC_4Component NC_4Component NC_5Component C_6	16.043 30.07 44.097 58.123 58.123 72.15 72.15 86.177 115 44.01 0.0104 0.0979 0.1522 0.1852 0.1995 0.228 0.2514 0.2994	
Molecular Weights (Reservoir EoS) Acentric Factor (Reservoir EoS)	Component C_1 Component C_2 Component C_3 Component IC_4Component NC_4Component NC_5Component NC_5Component C_6Component C_7+Component C_2Component C_2Component C_3Component IC_4Component IC_5Component IC_5Component NC_5Component NC_5Component NC_5Component C_6Component C_7+	16.043 30.07 44.097 58.123 58.123 72.15 72.15 86.177 115 44.01 0.0104 0.0979 0.1522 0.1852 0.1995 0.228 0.2514 0.38056	

A-4) SCAL Saturation Function

Oil Saturation Functions	Row	So	Krow	Krowg
	1	0	0	0
	2	0.2	0	0
	3	0.32	0.00463	0.015625
	4	0.44	0.037037	0.125
	5	0.56	0.125	0.421875
	6	0.68	0.296296	1
	7	0.95	1	1
Water Saturation Function	Row	Sw	Krw	Pc (psia)
	1	0.11	0	250
	2	0.157	0	53
	3	0.216	0	13
	4	0.313	0.02	1
	5	0.44	0.06	0
	6	0.56	0.10	0
	7	0.68	0.15	0
	8	0.80	0.30	0
	9	0.90	0.65	0
Gas Saturation Function	Row	Sg	Krg	Pc (psia)
	1	0	0	
	2	0.1	0	
	3	0.2	0	
	4	0.3	0.2	
	5	0.4	0.4	
	6	0.6	0.85	
	7	0.7	0.90	
	8	0.8	0.92	
	9	0.9	0.95	
	10	0.95	0.95	

A-5) Initialization Equilibration

Equilibration Region	Keywords	NEI (Non-Equilibrium Initialisation)		
EquilReg 1	Non-Equilibrium	Row	Fractions	
	Initialisation	1	0.59991	
0		2	0.084326	
สกาย	91797619	3	0.063988	
616110	1 D N 6 M C L	4	0.034127	
	<u></u>	5	0.038989	
200220	50101000	6	0.014286	
		7	0.013988	
9		8	0.072718	
		9	0.065366	
		10	0.012302	

Region/Array

Initial Water Saturation (SWAT)	:	0.11	
Initial Gas Saturation (SGAS)	:	0.89	
Initial Pressure	:	3000	psia
Dew Point Pressure	:	2250	psia

A-6) Region N/A

A-7) Schedule

Production

LGR Well Specification (Prod1) [WELSPECL]

Well	Prod1
Group	1
LGR	Producer
I Location	1
J Location	1
Datum depth	8,000 ft
Preferred Phase	Gas
Inflow Equation	STD
Automatic Shut-In instruction	Shut
Cross Flow	Yes
Density calculation	SEG
Type of Well Model	STD

Amalgamated LGR Well Comp Data (Prod1) [COMPDATL]

Well	Prod1
LGR	Producer
K Upper	1
K Lower	3
Open/Shut Flag	Open
Well bore ID	0.448 ft.
Direction	Z

Production Well Control (Prod1) [WCONPROD]

Well	Prod1
Open/Shut Flag	Open
Control	GRAT
Gas rate	1000 MSCF/D
THP target	500 psia 🔍

Economic Limit Data On Component Mole Fraction (WECONCMF)

Well	Prod1
Component Index	10
Maximum Mole Fration	0.25
Workover procedure	Well
End run	YES

Production Well Economics Limit [WECON]

Well	Prod1	
Minimum oil rate	5	STB/D
Minimum gas rate	100	MSCF/D
Workover procedure	None	
End run	YES	

Injection

Well Specification (Inj1) [WELSPECS]

Well	Inj1
Group	-
LGR	Injector
I Location	5
J Location	5
Preferred Phase	Gas
Inflow Equation	STD
Automatic Shut-In instruction	Shut
Cross Flow	Yes
Density calculation	SEG
Type of Well Model	STD

Well Connection Data (Inj1) [COMPDAT]

Well	Inj1
K Upper	1
K Lower	3
Open/Shut Flag	Open
Well bore ID	0.625 ft
Direction	Z

Injection Well Control (Inj1) [WCONINJE]

Well	Inj1
Injector type	Gas
Open/Shut Flag	Open
Control Mode	Rate
Gas Surface Rate	1000 MSCF/D

Nature of Injection Gas (Inj1) [WINJGAS]

Well	Inj1
Injection fluid	Gas
Well stream	1

Injection Gas Composition [WELLSTRE]

Well Stream	1
Comp10	1

APPENDIX B

B-1) Compressor specification and Cost

Compressor Spec		
Make	:	
Туре	:	Reciprocating
Design capacity	:	14.0 MMSCFD
Operating capacity	:	12.5 MMSCFD
Operating suction pressure	:	275 psig
Operating discharge pressure	:	1,350 psig ($\Delta p = 1,075$ psig)
Operating temperature	:	50 C
Estimated required power	:	1,400 HP
Driver	://	

Table B-1 Cost estimation of compressor

Items	Size and	Cost ¹
	3.446(2)/124.68	(1000 US\$)
PDS 1	ariff	
-	Detailed design	25.0
-	Construction	30.0
-	Project management	25.0
Mater	ials	1,760
-	Compressor package	
-	Compressor frame and cylinders	
-	F&G lube system	
-	Pulsation dampener and separator	
-	Air cooler	
-	Gas engine driver	
-	Skid	
-	Water cooling system	
-	PLC control unit	
-	Drawings	
- Trans	sportation and insurance for major equipment	137.5
- Foun	dation and grouting work	100.0
- Mech	nanical modification	50.0
- Instru	imentation (replace the aging facility)	25.0
- Elect	rical modification (hook-up to power supply	112.5
from	the existing facility) ²	
-	Soft starter panel, 110 kW, IP55 for fan motor	
-	Cables	
-	RCU	
-	Small distribution board	
-	Lightings	
-	Splice box	
-	Accessories	

- Modification of fire and gas detection system	30.0
- New sensor units (5 sets)	
- Modification of existing fire and gas alarm panel	
- Software	
- Commissioning spare parts ³	0.0
- Other bulks	25.0
Construction and Commissioning Cost	
- Civil work	20.0
- Mechanical work	37.5
- Electrical work4	20.0
- Instrument work	5.0
- Third party inspection of K-3850 at the factory	15.0
- Installation, commissioning, and training (vendor)	60.0
- Contingency (10%)	247.75
Total	2,725.25

The above costs form part of BI 5DXX

Notes: Cost for electrical facility has been based on the estimated electrical consumption

(by the air cooler fan) of 90-110 kW.

B-2) Electrical/Power consumption calculation

Pumping power is defined as the time-rate of pumping work. It is related to pumping rate and pressure by

$$power = \frac{work}{time} = q\Delta p$$

The customary unit of power for combustion engines is horsepower (HP) and for electrical motors is the kilowatt (kw). The power units are related by

1 HP = 0.746 kw.

The approximate compressor power

$$P = 0.23q_g \left[\left(\frac{p_2}{p_1} \right)^{0.2} - 1 \right]$$

where

- q_g is gas compression rate, mscf/D
- p₁ is compressor suction pressure, psia
- p₂ is compressor discharge pressure, psia
- P is compression power, HP

Injection Rate ; q	Power	Power	Consumption
(Mscf/D)	(HP)	(kw)	Total Power Cost(USD/Year)
			EGAT Power
1000	83.58	59.84	23,538.66
2000	167.16	119.68	47,077.32
3000	250.73	179.53	70,619.91
4000	334.31	239.37	94,158.97
5000	417.89	299.21	117,697.23
6000	501.47	359.05	141,235.89
7000	585.05	418.89	164,774.55
8000	668.62	478.73	188,313.21
9000	752.20	538.58	211,855.80
10000	835.78	598.42	235,394.46

B-3) Calculation of Btu for produced gas

Component	Mole Fraction	Gross Heating value, (Btu/scf)	yj*L _{cj}	Compressibility Factor at Standard Conditions			
	Уj	\mathbf{L}_{cj}		Zj	$y_j(1-zj)^{0.5}$		
C1	0.67018	1010.0	676.8818	0.9980	0.0299714		
C2	0.09385	1769.6	166.077	0.9919	0.0084465		
C3	0.07031	2516.1	176.907	0.9825	0.0093011		
i-C4	0.03648	3251.9	118.6293	0.9711	0.0062016		
n-C4	0.04082	3262.3	133.1671	0.9667	0.007449		
i-C5	0.01354	4000.9	54.17219	0.9480	0.0030876		
n-C5	0.01256	4008.9	50.35178	0.9420	0.0030248		
C6	0.04387	4755.9	208.6413	0.9100	0.013161		
C7+	0.00469	5502.5	25.80673	0.8520	0.0018043		
CO2	0.0137	0.0	0	0.9943	0.0010343		
	1.0000		1610.634	4	0.0834816		
$Z = 1 - (\sum y_j (1-z_j)^{0.5})^2$ $Z = 1 - (0.0834816)^2$ $= 0.993031$ $L_c = L_c \text{ ideal } / z$ $L_c = (1610.634 \text{ Btu/scf}) / 0.993031$ $Btu / scf = 1621 938$							
	Dtu / Sti	- 1021.7	50				

99

Appendix C

C-1) Cash flow of CO₂ injection scenario with 23% CO₂ limit

	Gross Revenue (US\$)	enue (US\$)	5%	Power	G		T		Present
Year	Gas	Oil	Royalties (US\$)	Consum. (US\$)	Capex (US\$)	(US\$)	Taxes (US\$)	(US\$)	Value (US\$)
0	-	-	-	-	6,325,250	-	-	- 6,325,250	-6,325,250
1	8,288,067	8,513,882	425,694	70,620	Out A	1,265,050	7,520,293	8,785,343	7,986,675
2	8,287,975	8,513,796	425,690	70,620	23214	1,265,050	7,520,205	8,785,255	7,260,542
3	8,287,825	8,345,913	417,296	70,620	a contraction of the	1,265,050	7,440,386	8,705,436	6,540,523
4	8,291,213	7,746,523	387,326	70,620	N NUMBER	1,265,050	7,157,370	8,422,420	5,752,626
5	8,287,965	7,822,614	391,131	70,620		1,265,050	7,191,889	8,456,939	5,251,094
6	8,270,226	7,822,089	391,104	70,620		- m-	7,815,296	7,815,296	4,411,531
7	8,082,908	7,879,805	393,990	70,620		-	7,749,051	7,749,051	3,976,489
8	7,412,267	7,902,573	395,129	70,620	9/16191	ริการ	7,424,545	7,424,545	3,463,605
9	1,864,071	7,902,635	395,132	70,621			4,650,477	4,650,477	1,972,256

จุฬาลงกรณมหาวทยาลย

Year	Gross Revenue (US\$)		5%	Power	Remove	Capex	apex Depletiation	Taxes	Net Income	Present
	Gas	Oil	(US\$)	(US\$)	(US\$)	(US\$)	(US\$)	(US\$)	(US\$)	(US\$)
0	-	-	-	-	-	8,325,250	-	-	- 8,325,250	-8,325,250
1	8,288,067	8,513,882	425,694	70,620	16-2	-	1,665,050	7,320,293	8,985,343	8,168,493
2	8,287,975	8,513,796	425,690	70,620		-	1,665,050	7,320,205	8,985,255	7,425,831
3	8,287,825	8,345,913	417,296	70,620	12000	 - 	1,665,050	7,240,386	8,905,436	6,690,786
4	8,291,213	7,746,523	387,326	70,620	144-070	9.A -	1,665,050	6,957,370	8,622,420	5,889,229
5	8,287,965	7,822,614	391,131	70 <mark>,62</mark> 0	<u> </u>	4 -	1,665,050	6,991,889	8,656,939	5,375,278
6	8,270,226	7,822,089	391,104	70,620			-	7,815,296	7,815,296	4,411,531
7	8,082,908	7,879,805	393,990	70,620		1439-		7,749,051	7,749,051	3,976,489
8	7,412,267	7,902,573	395,129	70,620	-	-	-	7,424,545	7,424,545	3,463,605
9	6,150,861	7,989,619	399,481	70,620	3,775,721	-	-	4,947,329	4,947,329	2,098,150
10	1,024,695	8,308,850	415,443	70,620	902,531	-	<u> </u>	3,972,476	3,972,476	1,531,561

C-2) Cash flow of CO₂ injection scenario with 40% CO₂ limit

สถาบนวทยบรการ จุฬาลงกรณ์มหาวิทยาลัย

37	Gross Revenue (US\$)		5%	Power	Capex	Depletiation	Taxes	Net Income	Present
Year	Gas	Oil	(US\$)	(US\$)	(US\$)	(US\$)	(US\$)	(US\$)	(US\$)
0	-	-	-	-	6,325,250	-	-	- 6,325,250	-6,325,250
1	-	11,351,898	567,595	70,620	-	1,265,050	4,724,316	5,989,366	5,444,879
2	-	11,351,901	567,595	70,620	1	1,265,050	4,724,318	5,989,368	4,949,891
3	-	11,351,889	567,59 <mark>4</mark>	70,620	-	1,265,050	4,724,312	5,989,362	4,499,896
4	-	11,381,352	569,068	70,620		1,265,050	4,738,307	6,003,357	4,100,374
5	-	11,312,301	565,615	70,620	TOT-MAN	1,265,050	4,705,508	5,970,558	3,707,247
6	-	11,037,910	551,896	70,620	alain-in	-	5,207,697	5,207,697	2,939,609
7	-	10,163,413	508,171	70,620	alana_la	-	4,792,311	4,792,311	2,459,213
8	-	8,618,487	430,924	70,620		-	4,058,472	4,058,472	1,893,307
9	-	6,810,906	340,545	70,620	1.21.5-1.5.5	-	3,199,871	3,199,871	1,357,057
10	-	5,152,381	257,619	70,620	-	-	2,412,071	2,412,071	929,958
11	-	3,843,550	192,178	70,620	-		1,790,376	1,790,376	627,516
12	-	2,884,756	144,238	70,620	-	E	1,334,949	1,334,949	425,356
13	-	2,202,263	110,113	70,620	-	<u> </u>	1,010,765	1,010,765	292,783
14	-	1,702,888	85,144	70,620	-	-	773,562	773,562	203,703
15	-	1,334,350	66,717	70,620			598,506	598,506	143,278
16	-	1,052,500	52,625	70,620	171213	בו -וזב	464,628	464,628	101,116
17	-	836,400	41,820	70,620			361,980	361,980	71,616
18	-	665,375	33,269	70,620	i a rapo	Search	280,743	280,743	50,494
19	-	531,438	26,572	70,620	24-11	1110	217,123	217,123	35,501

C-3) Cash flow of production with gas recycling

Year	Gross Rev Gas	enue (US\$) Oil	5% Royalties (US\$)	Power Consum. (US\$)	Capex (US\$)	Depletiation (US\$)	Taxes (US\$)	Net Income (US\$)	Present Value (US\$)
20		424,281	21,214	70,620	-	-	166,224	166,224	24,708
21	-1	339,769	16,988	70,620		-	126,080	126,080	17,037
22	->	272,469	13,623	70,620	6.6-	-	94,113	94,113	11,561
23	- 8	218,569	10,928	70,620	-	-	68,510	68,510	7,651
24	3,970,932	175,288	8,764	70,620	6	-	2,033,418	2,033,418	206,444
25	16,529,362	141,706	7,085	70,620	828/ = 1	-	8,296,681	8,296,681	765,750
26	10,998,903	83,525	4,176	70,620		-	5,503,816	5,503,816	461,800
27	921,138	6,750	338	70,620	1212-	-	428,465	428,465	32,682

C-3) Cash flow of production with gas recycling (con't)

C-4) Cash flow of production with natural depletion

Year	Gross Revenue (US\$)		5%	Power	Capey	Depletiation	Toyoc	Net Income	Present
	Gas	Oil	Royalties (US\$)	Consum. (US\$)	(US\$)	(USS)	(US\$)	(US\$)	Value (US\$)
0	-	-	- 1	.=	1,800,000	-	-	- 1,800,000	-1,800,000
1	8,288,103	11,351,821	567,591	70,620	-	360,000	9,320,856	9,680,856	8,800,779
2	8,288,103	11,318,478	565,924	70,620	-	360,000	9,305,019	9,665,019	7,987,619
3	8,276,792	9,344,859	467,243	70,620	In ptg 14	360,000	8,361,894	8,721,894	6,552,888
4	4,538,015	4,242,959	212,148	70,620		360,000	4,069,103	4,429,103	3,025,137
5	1,362,448	1,199,391	59,970	70,620		360,000	1,035,624	1,395,624	866,573
6	459,709	397,648	19,882	70,620	919-87	291-612	383,427	383,427	216,435

Vitae

Phakphum Tangkaprasert was born on November 3rd, 1982 in Sukhothai, Thailand. He received his Bachelor of Engineering in Chemical Engineering from the Faculty of Engineering, Kasetsart University in 2004. He has been a graduate student in the Master's Degree Program in Petroleum Engineering of the Department of Mining and Petroleum Engineering, Chulalongkorn University since 2006.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย