อนุกรมวิธานของเชื้อสายพันธุ์ไมโครโมโนสปอราจากดินป่าพรุของประเทศไทย และสารทุติยภูมิของเชื้อไอโซเลตที่คัดเลือก

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาเภสัชเคมีและผลิตภัณฑ์ธรรมชาติ คณะเภสัชศาสตร์ จุพาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2547
ISBN 974-17-6077-9
ลิขสิทธิ์ของจุพาลงกรณ์มหาวิทยาลัย

TAXONOMY OF MICROMONOSPORA STRAINS FROM THAI PEAT SWAMP FOREST SOILS AND SECONDARY METABOLITES OF A SELECTED ISOLATE

Thesis Title	Taxonomy of Micromonospora strains from Thai peat swamp forest soils and secondary metabolites of a selected isolate
By	Mr. Chitti Thawai
Field of study	Pharmaceutical Chemistry and Natural Products
Thesis Advisor	Associate Professor Somboon Tanasupawat, Ph.D.
Thesis Co-advisor	Khanit Suwanborirux, Ph.D.
Thesis Co-advisor	Takashi Itoh, Ph.D.

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctor's Degree.
.. Dean of the faculty of Pharmaceutical Sciences (Associate Professor Boonyong Tantisira, Ph.D.)

Thesis committee

(Associate Professor Somboon Tanasupawat, Ph.D.)

\qquad
(Associate Professor Pintip Pongpech, Ph.D.)

จิตติ ท่าไว : อนุกรมวิธานของเชื้อสายพันธุ์ไมโครโมโนสปอราจากดินป่าพรุของประเทศ ไทยและสารทุติยภูมิของเชื้อไอโซเลตที่คัดเลือก (Taxonomy of Micromonospora strains from Thai peat swamp forest soils and secondary metabolites of a selected isolate) อาจารย์ ที่ปรึกษา : รศ. ดร. สมบูรณ์ ธนาศุภวัฒน์ อาจารย์ที่ปรึกษาร่วม : ดร. คณิต สุวรรณบริรักษ์ และ Dr. Takashi Itoh; 210 หน้า. ISBN 974-17-6077-9

ในการศึกษาเพื่อหาสายพันธุ์แอคติโนมัยซีทส์จากดินป่าพรุจังหวัดตรัง พัทลุง ยะลา และ นราธิวาส พบว่าสามารถแยกเชื้อที่สร้างสปอร์เดี่ยวบนเส้นใยได้จำนวน 52 ไอโซเลต จากการศึกษา ลักษณะทางฟีโนไทป์ และทางอนุกรมวิธานเคมีรวมทั้งการวิเคราะห์ลำดับเบสในช่วง 16 SrDNA จึง สามารถพิสูจน์เอกลักษณ์ของเชื้อเหล่านี้ได้เป็นแบคทีเรียในสกุลไมโครโมโนสปอรา พบว่าเชื้อที่ แยกได้มีกรด meso-diaminopimelicในผนังเซลล์ มีน้ำตาล xylose และ arabinose และพบ phospholipid ชนิด phosphatidylethanolamineเป็นองค์ประกอบหลัก รวมทั้งมีกรดไขมันส่วนใหญ่ แบบ iso $-\mathrm{C}_{16: 0}$, iso $-\mathrm{C}_{15: 0}$, iso- $\mathrm{C}_{17: 0}$, anteiso- $\mathrm{C}_{16: 0}$, anteiso- $\mathrm{C}_{15 ; 0}$ และ anteiso $-\mathrm{C}_{17: 0}$ และมี menaquinones ชนิด $\mathrm{MK}-9\left(\mathrm{H}_{4}\right), \mathrm{MK}-9\left(\mathrm{H}_{6}\right)$ หรือ $\mathrm{MK}-10\left(\mathrm{H}_{4}\right)$ นอกจากนี้พบว่ามีปริมาณ $\mathrm{G}+\mathrm{C}$ ของสาย DNA อยู่ ในช่วง $71-73 \mathrm{~mol} \%$ จากผลของความคล้ายคลึงทาง DNA และลักษณะทางสรีรวิทยาและชีวเคมีบาง ประการสามารถแบ่งแยกเชื้อเหล่านี้ได้เป็น 11 กลุ่ม และสามารถพิสูจน์เอกลักษณ์เชื้อกลุ่มที่ 1 (8 สายพันธุ์) และ กลุ่มที่ 3 (7 สายพันธุ์) เป็น M. chalcea และ M. aurantiaca ตามลำดับ สำหรับเชื้อไม โครโมโนสปอรา 9 กลุ่มที่เหลือแสดงผลของความคล้ายคลึงทาง DNA (12.9-53.1 \%) และลำดับเบส ในช่วง 16 S rDNA ($97.5-99.2$ \%) ในระดับต่ำรวมทั้งมีลักษณะทางฟีโนไทป์แตกต่างไปจากเชื้อไม โครโมโนสปอราที่เคยมีรายงานไว้จึงสามารถจัดเป็นเชื้อชนิดใหม่ และได้เสนอชื่อสำหรับเชื้อกลุ่มที่ 7 (2 สายพันธุ์) และกลุ่มที่ 11 (1 สายพันธุ) เป็น Micromonospora eburnea และ Micromonospora aurantionigra ตามลำดับ

จากการศึกษาสารทุติยภูมิของเชื้อที่คัดเลือกสายพันธุ์ $T T 1-11$ ซึ่งแสดงฤทธิ์ต้านเชื้อจุลินทรีย์ ทดสอบ พบว่าสามารถแยกสิ่งสกัดด้วยเอธิลอะซิเตทจากน้ำหมักเชื้อให้บริสุทธิ์ด้วยวิธีการทาง โครมาโตกราฟีได้สารใหม่พวก polyene macrolide lactam 1 ชนิดคือ Micromonosporin A $(9,11,13-$ trihydroxy-14,19,24-trimethyl-1-azacyclotetracosa-3,5,7,15,17,19,21-heptaen-2-one) นอกจากนี้ได้ ทำการดัดแปลงโครงสร้างของสารใหม่นี้ด้วยปฏิกิริยาไฮโดรจีเนชั่นได้สารอนุพันธ์อีก 1 ชนิด คือ 9,11,13-trihydroxy-14,19,24-trimethyl-1-azacyclotetracosan-2-one กิรพิสูจน์โครงสร้างทางเคมี ของสารเหล่านี้ใช้วิธีการวิเคราะห์ข้อมูล UV, IR, MS และ NMR spectroscopy สาร Micromonosporin A นี้ไม่เสถียรและไม่แสดงฤทธิ์ต้านเชื้อจุลินทรีย์ทดสอบ อย่างไรก็ตามสาร อนุพันธ์ที่เตรียมได้แสดงฤทธิ์ตานเชื้อจุลินทรียีอย่างอ่อน ไจ และแสดงฤทธิ์ต้านเชื้อมาลาเรีย Plasmodium falciparum (K 1 , multidrug-resistant strain) ที่ระดับ $I C_{50}=3.1 \mu \mathrm{~g} / \mathrm{mL}$ และเชื้อวัณโรคที่ ระดับ MIC $=50 \mu \mathrm{~g} / \mathrm{mL}$

สาขาวิชา เภสัชเคมีและผลิตภัณฑ์ธรรมชาติ ปีการศึกษา 2547

สายมือชื่อนิสิดิ
ลายืือชื่ออาจาร์์ที่ทรี่กยา.

In the course of our investigation for actinomycetes strains, fifty-two isolates which produced single non-motile spores were isolated from peat swamp forest soils in Trang, Pattaloong, Yala, and Narathiwat provinces. On the basis of the phenotypic and chemotaxonomic characteristics including the phylogenetic analysis using 16 S rDNA sequences, they were identified as Micromonospora. The tested strains contained meso-diaminopimelic acid in cell wall (cell wall type II), xylose and arabinose as diagnostic whole-cell sugar pattern D, and phosphatidylethanolamine as characteristic phospholipid (type II). The major fatty acids of these strains were iso- $\mathrm{C}_{16: 0}$, iso- $\mathrm{C}_{15: 0}$, iso- $\mathrm{C}_{17: 0}$, anteiso- $\mathrm{C}_{16: 0}$, anteiso- $\mathrm{C}_{15: 0}$, and anteiso- $\mathrm{C}_{17: 0}$. Their major menaquinones were MK-9 $\left(\mathrm{H}_{4}\right)$, MK- $9\left(\mathrm{H}_{6}\right)$, or $\mathrm{MK}-10\left(\mathrm{H}_{4}\right)$. The range of $\mathrm{G}+\mathrm{C}$ content of the DNA was 71-73 mol\%. Based on the DNA-DNA similarity and some physiological and biochemical properties, all strains could be separated into eleven groups. The following two groups could be identified as M. chalcea (Group I, 8 strains) and M. aurantiaca (Group III, 7 strains). A low level of DNA-DNA similarity (12.9-53.1 \%) and 16 S rDNA similarity ($97.5-99.2 \%$) including the phenotypic characteristics of the remaining nine groups (Groups II, IV-XI, 37 strains) indicated that these groups readily distinguished from all of validly described Micromonospora species and should be recognized as the new species. In this study, the names Micromonospora eburnea sp. nov. and Micromonospora aurantionigra sp. nov. are proposed for Group VII (2 strains) and Group XI (1 strains), respectively.

Micromonospora sp. TT1-11 was selected for secondary metabolite production since its ethylacetate crude extract showed significant antimicrobial activity. The ethyl acetate extract yielded a new polyene macrolide lactam (Micromonosporin A; 9,11,13-trihydroxy-14,19,24-trimethyl-1-azacyclotetracosa-3,5,7,15,17,19,21-heptaen-2-one). The hydrogenation reaction of this compound was performed and yielded 9,11,13-trihydroxy-14,19,24-trimethyl-1-azacyclotetracosan-2-one. The chemical structures of both compounds were elucidated through extensive analyses of their UV, IR, MS, and NMR spectroscopic data. Micromonosporin A was very unstable and has no antimicrobial activity. However, the derivative compound displayed weak antibacterial activity and also exhibited antimalarial activity at $I C_{50}$ of $3.1 \mu \mathrm{~g} / \mathrm{mL}$ and antimycobacterial activity with the MIC of $50 \mu \mathrm{~g} / \mathrm{mL}$.

Field of study Pharmaceutical Chemistry and Natural Products

Academic year 2004 Student's signature
Advisor's signature

Co-advisor's signature.

ACKNOWLEDGMENTS

The success of this research would not be realized without the support and assistance of some persons and various institutions to whom I would like to express my sincere and profound gradtitude:

Associate Professor Dr. Somboon Tanasupawat, my thesis advisor, for his excellent advice, proper scientific guidance and supervision throughout research work.

Dr. Khanit Suwanborirux, my thesis co-advisor, for his excellent advice and kindness throughout the research study

Dr. Takuji Kudo, and Dr. Takashi Itoh, staffs of the Japan Collection of Microorganisms (JCM), RIKEN BioResource Center, Saitama, and Dr. Ken-Ichiro Suzuki, National Institute of Technolgy and Evaluation (NITE), Chiba for providing research opportunities and valuable sugesstions during my stay in Japan.

Dr. Prasat Kittakoop of the National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), for his excellent advice and kindness throughout the research study.

Associate Professor Dr. Pintip Pongpech and staffs of the Department of Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for their helpful suggestions, encouragement, and kindness throughout the research study.

The Royal Golden Jubilee Ph.D. program is gratefully acknowledged.
My friends at the Department of Microbiology and Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for their kindness and excellent working atmosphere.

Finally, I wish to express my infinite gratitude to my family for their love, encouragement and moral support.

CONTENTS

Page
ABSTRACT (Thai) iv
ABSTRACT (English) v
ACKNOWLEDGEMENTS vi
CONTENTS vii
LIST OF TABLES. xi
LIST OF FIGURES xiii
LIST OF SCHEMES xviii
LIST OF ABBREVIATIONS AND SYMBOLS xix
CHAPTER
I INTRODUCTION 1
II HISTORICAL

1. Characteristics of Actinomycetes 4
2. Taxonomy of Micromonospora 5
2.1 Characteristics of Micromonospora 8
2.1.1 Phenotypic characteristics of Micromonospora. 8
2.1.2 Chemotaxonomic characteristics of Micromonospora. 11
2.1.2.1 Isoprenoid quinone 14
2.1.2.2 DNA base composition 15
2.1.3 Genetic analysis of Micromonospora 16
2.1.3.1 16 S rDNA analysis 16
66 2.1.3.1.1 Amplification of 16 S rDNA template
by PCR... 17 จ9/9ค 2. 2.1.3.1.2 Direct sequencing of PCR amplified DNA 17
2.1.3.1.3 Analysis of nucleotide sequence and phylogenetic tree 21
2.1.3.1.3.1 Analysis of nucleotide sequence 21
2.1.3.2 DNA-DNA hybridization. 23
2.1.4 Distribution of Micromonospora 25
3. Antibiotics from Micromonospora 25

CONTENTS (continued)

Page
III EXPERIMENTAL

1. Sample collection and isolation of Micromonospora 37
2. Primary screening of isolates for antibiotic production. 37
2.1 Primary screening. 37
3. Identification methods 38
3.1 Morphological and cultural characteristics 38
3.2 Biochemical and Physiological characteristics 39
3.2.1 Carbon utilization. 39
3.2.2 Starch hydrolysis. 40
3.2.3 Gelatin liquefaction. 40
3.2.4 Nitrate reduction. 41
3.2.5 Milk coagulation and milk peptonization 41
3.2.6 NaCl tolerance 41
3.2.7 Temperature tolerance. 41
3.2.8 pH tolerance. 41
3.3 Chemotaxonomic studies. 41
3.3.1 Cell wall acyl type 41
3.3.2 Whole-cell sugar analysis 42
3.3.3 Diaminopimelic acid analysis 42
3.3.4 Amino acid composition of peptidoglycan 42
3.3.4.1 Purification of cell wall 42
3.3.4.2 Hydrolysis and analysis of cell wall 43
3.3.5 Cellular fatty acid analysis. 43
3.3.5.1 Preparation of FAME sample. 43
9 9/3.3.6 Polar lipid analysis 43
3.3.7 Mycolic acid analysis 44
3.3.8 Menaquinone analysis 45
3.3.9 Analysis of DNA base composition 45
3.4 DNA-DNA hybridization 46
3.4.1 DNA labeling probe with photobiotin. 46
3.4.2 Photobiotin labeling DNA-DNA hybridization 46

CONTENTS (continued)

Page
3.4.3 Detection of biotin-containing hybrids 47
3.5 16S rDNA analysis 47
3.5.1 16S rDNA amplification by PCR 47
3.5.2 16 S rDNA sequencing. 48
3.5.3 16S rDNA sequence analysis and phylogenetic tree construction 48
4. Fermentation of the selected strain for antibiotic production 48
4.1 Seed medium 48
4.2 Production medium 49
5. Chromatographic technique 49
5.1 Analytical thin-layer chromatography 49
5.2 Column chromatography 49
5.2.1 Flash column chromatography. 49
5.2.2 Gel filtration chromatography 50
6. Spectroscopy 50
6.1 Ultraviolet (UV) absorption spectroscopy. 50
6.2 Infraed (IR) absorption spectrscopy 50
6.3 Mass spectrometry 51
6.4 Proton and Carbon nuclear magnetic resonance (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) 51
6.5 Optical rotation 51
7. Solvent. 51
8. Biological activity. 51
8.1 Antimicrobial activity....... 51
8.2 Antimalarial activity 52
8.3 Cytotoxic activity 52
8.4 Antimycobacterial activity. 52
9. Extraction and isolation of compound TT1-A. 53
10. Pd / C hydrogenation 54
11. Physical and spectral data of isolated compounds. 56
IV RESULTS AND DISCUSSION

1. Bacterial strains and sources of isolation 57

CONTENTS (continued)

Page
2. Morphological and cultural characteristic of the isolates 57
3. Biochemical and physiological characteristics 57
4. Chemotaxonomic characteristics of Micromonospora strains. 97
5. Comparison of DNA-DNA hybridization of the representative strains and all of validly described Micromonospora species 105
6. 16 S rDNA amplification and nucleotide sequence analysis. 105
6.1 16S rDNA amplification by PCR. 105
6.216 S rDNA sequencing 105
6.3 16S rDNA sequence and phylogenetic tree analysis. 105
7. Characteristics of two known Micromonospora species and nine novel Micromonospora species. 140
7.1 Characteristics of Group I strains. 140
7.2 Characteristics of Group III strains. 140
7.3 Characteristics of Group II strains 141
7.4 Characteristics of Group IV 141
7.5 Characteristics of Group V 142
7.6 Characteristics of Group VI. 143
7.7 Characteristics of Group VII 143
7.8 Characteristics of Group VIII 144
7.9 Characteristics of Group IX. 144
7.10 Characteristics of Group X 145
7.9 Characteristics of Group XI. 146
8. Structure elucidation of compound TT1-A and compound 2. 146
8.1 Structure elucidation of compound TT1-A 147
8.2 Structure elucidation of compound 2 148
9. Biological activities. 151
V CONCLUSION 152
REFFERENCES 154
APPENDICES 166
VITA 210

LIST OF TABLES

Table Page

1. Differential characteristics of the genera belong to family
Micromonosporaceae 9
2. Cell wall chemotypes of the actinomycetes 12
3. Whole-organism sugar pattern of the actinomycetes containing diaminopimelic acid (chemotypes II-IV) 12
4. Phospholipid types in actinomycetes. 13
5. Phospholipid types in actinomycetes. 13
6. Lists of international primary sequence databases 22
7. Lists of sequence similarity search servers on the Internet 23
8. Sources of the validly described Micromonospora species 26
9. The lists of bioactive compound produced from Micromonospora 27
10. Sources, Locations, pH and isolates numbers of strains from peat swamp forest soils 58
11. Cultural characteristics of the isolates 59
12. The physiological and biochemical characteristics of the isolates 88
13. Carbon utilization of the isolates 91
14. DNA-DNA similarity among the isolates and the representative Micromonospora species in each groups 93
15. Diaminopimelic acid types of the representative Micromonospora strains 98
16. Polar lipid composition and glycolic analyses of the representative Micromonospora strains. 99
17. Menaquinone types of the representative Micromonospora strains. 100
18. Whole-cell sugar of the representative Micromonospora strains. 101
19. Fatty acid compositions of the representative Micromonospora strains. 102
20. DNA-DNA similarity among the representative Micromonospora strains 106
21. Differential characteristics among the representative strains and validly described Micromonospora species 138
22. Similarity percentage of the representative Micromonospora strains. 139

LIST OF TABLES (continued)

Table

Page
23. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ - and $100 \mathrm{MHz}{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectral data for
Micromonosporin A in DMSO- d_{6}.. 149

LIST OF FIGURES

Figure Page

1. Fragment of the primary structure of a typical peptidoglycan 14
2. Isoprenoid quinines found in most aerobic bacterial cells 14
3. Digestion by bacteriophage T7 gene 6 exonuclease 19
4. The structure of 2,3 -dideoxynucleotide- 5 -triphosphate (ddNTP). 20
5. The dideoxynucleotide method. 20
6. Automated DNA sequencer 21
7. The procedure of phylogenetic tree construction from nucleotide 24
8. The colonial appearance of Micromonospora sp. LK5-4 on YMA medium (21 days) 77
9. The colonial appearance and scaning electron micrograph of Micromonospora sp. KM4-29 on YMA medium (21 days). 77
10. The colonial appearance of Micromonospora sp. KM3-14 on YMA medium (21 days) 78
11. The colonial appearance and scaning electron micrograph of Micromonospora sp. BTG10-2 on YMA medium (21 days). 78
12. The colonial appearance and seaning electron micrograph of Micromonospora sp. TT2-4 on YMA medium (21 days). 79
13. The colonial appearance and scaning electron micrograph of Micromonospora $\overline{\mathrm{sp}}$. BTG4-1 on YMA medium (21 days). 80
14. The colonial appearance and scaning electron micrograph of Micromonospora sp. LK2-10 on YMA medium (21 days). 81
15. The colonial appearance and scaning electron micrograph of Micromonospora sp. LK6-12 on YMA medium (21 days) 82
16. The colonial appearance of Micromonospora sp. KM1-7 on YMA medium (21 days) 83
17. The colonial appearance and scaning electron micrograph of Micromonospora sp. BTG2-3 on YMA medium (21 days) 83
18. The colonial appearance and scaning electron micrograph of Micromonospora sp. TT1-11 on YMA medium (21 days) 84

LIST OF FIGURES (continued)

Figure Page
19. Unroot neighbor-joining tree base on nearly complete 16S rDNA sequences, showing the position of the representative Micromonospora strains in the Micromonospora tree 108
20. Comparison of 16 S rDNA nucleotide sequences between the representative Micromonospora strains and the validly described Micromonospora species 113
21. Hydrogenation of compound TT1-A to form compound 2 149
22. The PCR amplified 16S rDNA Nucleotide sequences of LK2-6 182
23. The PCR amplified 16S rDNA Nucleotide sequences of BTG2-3 182
24. The PCR amplified 16S rDNA Nucleotide sequences of BTG3-4 183
25. The PCR amplified 16 S rDNA Nucleotide sequences of BTG1-1 183
26. The PCR amplified 16 S rDNA Nucleotide sequences of KM1-6 184
27. The PCR amplified 16S rDNA Nucleotide sequences of BTG1-4 184
28. The PCR amplified 16S rDNA Nucleotide sequences of KM1-9. 185
29. The PCR amplified 16 SrDNA Nucleotide sequences of δ BTG4-1 185
30. The PCR amplified 16S rDNA Nucleotide sequences of LK2-12 186
31. The PCR amplified 16S rDNA Nucleotide sequences of LK2-10 186
32. The PCR amplified 16 S rDNA Nucleotide sequences of LK2-5 187
33. The PCR amplified 16S rDNA Nucleotide sequences of TT2-4 187

LIST OF FIGURES (continued)

Figure Page
34. The PCR amplified 16S rDNA Nucleotide sequences of KM4-24 188
35. The PCR amplified 16S rDNA Nucleotide sequences of KM4-29. 188
36. The PCR amplified 16S rDNA Nucleotide sequences of BTG10-2 189
37. The PCR amplified 16S rDNA Nucleotide sequences of BTG7-3 189
38. The PCR amplified 16S rDNA Nucleotide sequences of KM3-1 190
39. The PCR amplified 16 S rDNA Nucleotide sequences of LK5-4. 190
40. The PCR amplified 16 S rDNA Nucleotide sequences of TT1-11 191
41. The PCR amplified 16 S rDNA Nucleotide sequences of LK6-12 191
42. The PCR amplified 16S rDNA Nucleotide sequences of BTG3-2 192
43. The PCR amplified 16S rDNA Nucleotide sequences of KM3-14 192
44. The PCR amplified 16 S rDNA Nucleotide sequences of KM1-7 193
45. The UV spectrum of compound TT1-A 194
46. The IR spectrum of compound TT1-A. 194
47. The ESI-TOF mass spectrum of compound TT1-A 195
48. The $400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound TT1-A in DMSO- d_{6}. 195
49. The $400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound TT1-A in DMSO- d_{6} (expanded from $\delta_{\mathrm{H}} 0.9-2.7$) 196
50. The $400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound TT1-A in DMSO- d_{6} (expanded from $\delta_{\mathrm{H}} 5.4-7.8$) 196

LIST OF FIGURES (continued)

Figure Page
51. The $100 \mathrm{MHz}{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound TT1-A in DMSO- $d_{6} \ldots .$. 197
52. The $100 \mathrm{MHz}{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound TT1-A in DMSO- d_{6} (expand from $\delta_{\mathrm{C}} 120-144$) 197
53. The 100 MHz DEPT 135 spectrum of compound TT1-A in DMSO- $d_{6} \ldots$. 198
54. The 400 MHz HMQC spectrum of compound TT1-A in DMSO- d_{6} 198
55. The 400 MHz HMQC spectrum of compound TT1-A in DMSO- d_{6} (expanded from $\delta_{\mathrm{H}} 5.0-7.2$) 199
56. The 400 MHz HMBC spectrum (${ }^{\mathrm{n}} J_{\mathrm{HC}}=8 \mathrm{~Hz}$) of compound TT1-A in DMSO- d_{6} 199
57. The 400 MHz HMBC spectrum (${ }^{\mathrm{n}} J_{\mathrm{HC}}=8 \mathrm{~Hz}$) of compound TT1-A in DMSO- d_{6} (expanded from δ_{H} 4.4-6.6) 200
58. The 400 MHz HMBC spectrum (${ }^{\mathrm{n}} J_{\mathrm{HC}}=8 \mathrm{~Hz}$) of compound TT1-A in DMSO- d_{6} (expanded from $\delta_{H} 5.2-6.9$). 200
59. The $400 \mathrm{MHz}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrumof compound TT1-A in DMSO- d_{6}. 201
60. The $400 \mathrm{MHz}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrumof compound TT1-A in DMSO- d_{6} (expand from $\delta_{\mathrm{H}} 1.00-6.00$) 201
61. The $400 \mathrm{MHz}{ }^{1} \mathrm{H}_{-1}^{-1} \mathrm{H}$ COSY spectrumof compound TT1-A in DMSO- d_{6} (expand from $\delta_{\mathrm{H}} 4.00-8.00$) 202
62. The 400 MHz NOESY spectrumof compound TT1-A in DMSO- d_{6} 202
63. The 400 MHz TOCSY spectrumof compound TT1-A in DMSO- d_{6} 203
64. The 400 MHz TOCSY spectrumof compound TE1-A d in DMSO- d_{6} (expand from $\delta_{H} 3.3-7.8$) 203
65. The 400 MHz TOCSY spectrumof compound TT1-A in DMSO- d_{6} (expand from $\delta_{\mathrm{H}} 0.8-4.0$) 204
66. The 400 MHz TOCSY spectrumof compound TT1-A in DMSO- d_{6} (expand from $\delta_{\mathrm{H}} 5.2-7.8$) 204
67. The UV spectrum of compound 2 205
68. The IR spectrum of compound 2 205
69. The ESI-TOF mass spectrum of compound 2 206
70. The $400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 2 in CDCl_{3}. 206

LIST OF FIGURES (continued)

Figure Page
71. The $100 \mathrm{MHz}{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 2 in CDCl_{3} 207
72. The 100 MHz DEPT 135 spectrum of compound 2 in CDCl_{3} 207
73. The 400 MHz HMQC spectrum of compound 2 in CDCl_{3} 208
74. The 400 MHz HMBC spectrum of compound 2 in CDCl_{3} 208
75. The $400 \mathrm{MHz}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound 2 in CDCl_{3} 209
76. The 400 MHz NOESY spectrum of compound 2 in CDCl_{3} 209

LIST OF SCHEMES

Scheme Page

1. Propose hierarchic classification system of the class Actinomycetes 6
2. Extraction of YM fermentation broth of Micromonospora sp. TT1-11...... 54
3. Isolation of the ethylacetate extract of Micromonospora sp. TT1-11. 55

LIST OF ABBREVATIONS AND SYMBOLS

LIST OF ABBREVATIONS AND SYMBOLS (continued)

GC	$=$ Gas chromatography
GenBank	$=$ National Institute of Health genetic sequence database
Glu	$=$ Glutamic acid
GluNu	$=$ Phospholipids of unknown structure containing glucosamine
Gly	$=$ Glycerine
Gly.A.	$=$ Glycerol-asparagine agar
Glu.A.	Glucose-asparagine agar
h	Hour
HCl	Hydrochloric acid
HMBC	$={ }^{1} \mathrm{H}$-detected heteronuclear multiple bond correlation
HMQC	$={ }^{1} \mathrm{H}$-detected heteronuclear multiple quantum coherence
${ }^{1} \mathrm{H}-\mathrm{NMR}$	$=$ Proton nuclear magnetic resonance
HPLC	$=$ High performance liquid chromatography
HPTLC	High performance thin layer chromatograhphy
$\mathrm{H}_{2} \mathrm{O}$	$=$ Water
$\mathrm{H}_{2} \mathrm{SO}_{4}$	Sulfuric acid
Hz	Hertz
I	$=$ Interpeptide bridge
IC_{50}	$=$ Inhibition concentration
IR	$=$ Infrared
I.S.A	$=$ Inorganic salts-starch agar
ISP	International Streptomyces Project
$\begin{aligned} & J \\ & \text { JCM } \end{aligned}$	$\begin{aligned} & =\text { Coupling constant } \sigma \\ & =\text { Japan Collection of Microorganisms } \end{aligned}$
	$=$ A human epidermoid carcinoma cell line of the nasopharynx
KNO_{3}	$=$ Potassium nitrate
KOH	$=$ Potassium hydroxide
L	$=$ Liter
L-DA	$=$ L-diamino acid
lyso-PE	$=$ Lyso-phosphatidylethanolamine
m	$=$ Multiplet

LIST OF ABBREVATIONS AND SYMBOLS (continued)

LIST OF ABBREVATIONS AND SYMBOLS (continued)

LIST OF ABBREVATIONS AND SYMBOLS (continued)

YM	$=$ Yeast extract-malt extract
YMA	$=$ Yeast extract-malt extract agar

CHAPTER I

INTRODUCTION

Actinomycetes are well known as the antibiotic producers. Approximately 71.1% of them could produce the bioactive compounds except for a few of antibiotics that are produced by fungi (18.2%), e.g. penicillin and cephalosporin, and a few that are produced by bacteria (10.7%), e.g. bacitracin and polymyxin. All other antibiotics that are medically useful and have a wide application are synthesized by actinomycetes (Goodfellow, 1988). Actinomycetes have been described as the greatest source of antibiotics since Waksman introduced streptomycetes into his systematic screening program for new antibiotics in the early 1940s. They have provided about two-thirds (more than 4,000) of the naturally occurring antibiotics discovered, including many of those important in medicine, such as aminoglycosides, antracyclines, chloramphenicol, β-lactams, macrolides, and tetracyclines (Goodfellow, 1988).

Organisms belonging to the groups of common actinomycetes, Streptomyces, and rare actinomycetes, Micromonospora, Actinoplanes, Dactylosporangium, Nocardia, Actinomadura, Microbispora, Streptosporangium, Kibdelosporangium, and others, have been searched for antibiotic production. Among antibiotics produced from actinomycetes, Streptomyces strains could produce approximately 80.2% antibiotics, followed by Micromonospora strains, Nocardia strains, and the other genera that could produce about $6 \%, 3.7 \%$, and 10.1%, respectively (Oki, 1994). From the above data, the antibiotics produced from Micromonospora seem to be a dittle amount when compare with the antibiotics produced from Streptomyces, it may be that the study in this genus is still limited.

Micromonospora strains are potential actinomycetes that seemingly untimated capacity to produce secondary metabolites with diverse chemical structures, and biological activities, e.g. gentamicin, sagamicin, megalomicin, mycinamicin, halomicin, mutamicin, everninomicin, mycinamicin (Glasby, 1993). The actinomycete antibiotics are not restricted to antibacterial antibiotics but include
antifungal, anticancer, antiviral antibiotics, and also produce a number of biologically active substances such as enzyme inhibitors.

Micromonosporae are aerobic, gram-positive, mesophilic, non-motile actinomycete which produces single non-motile spore directly from substrate hyphae in generally indicated orange color. Cell wall contained glutamic acid, glycine, alanine, meso-diaminopimelic acid, and glycolylmuramic acid. The diagnostic wholecells were xylose and arabinose. The phospholipid patterns were diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositolmannosides, and phosphatidylethanolamine, but not phosphatidylcholine. Major cellular fatty acids were iso- $\mathrm{C}_{16: 0}$ and iso- $\mathrm{C}_{15: 0}$ and small amount of iso- $\mathrm{C}_{17: 0}$, anteiso- $\mathrm{C}_{17: 0}$, and anteiso$\mathrm{C}_{15: 0}$ were also present. Mycolic acids were absent. The predominant menaquinones were MK-9, MK-10, and MK-12. The range of G+C content of the DNA was 71-73 mol\%.

Members of the genus Micromonospora can be commonly isolated from neutral and alkaline soils. However, their predominant incidence seems to be in aquatic ecosystems, including both freshwater and marine habitats. Nowadays, Micromonospora isolated from tropical peat swamp forests are still limited. In Thailand, research on taxonomy and antibiotic production of Micromonospora so far received little attention. New species of Micromonospora are of great interest because they may be able to produce new antibiotics. Therefore, extensive screening and discovery of new species are important for medical and industrial applications. At present, the reports on new antibiotics from Micromonospora are limited. In this study, the attempt to sampling the soil samples in the unique sources is focused.

Peat swamp forest is a very special type of the evergreen forests that differs from other forests because it occurs in fresh-water marshy land. The soil that covered in this forest, is formed by a thick layer of peat, 0.5 to 5 meters deep or more with acidic condition in which the range of soil pH is from 4.5 to 6.0 . Peat swamp forest is an interested source for soil sampling because it is much different from the normal soil. Most of peat swamp forests in Thailand are located in the south and a few were found in the north and north-east. In this study, Micromonospora strains isolated from peat swamp forest in the southern areas of Thailand were characterized and identified by both classical and molecular techniques, and the investigation of a secondary metabolites is also performed.

The main objectives of this investigation are as follows:

1. To isolate and screen Micromonospora strains from soils of Thai peat swamp forest.
2. To identify and characterize Micromonospora strains.
3. To isolate secondary metabolites from the selected Micromonospora isolate.
4. To elucidate chemical structures of the isolated secondary metabolites.
5. To evaluate biological activities of the isolated secondary metabolites.

สถาบันวิทยบริการ

 จุฬาลงกรณ์มหาวิทยาลัย
CHAPTER II

HISTORICAL

There was a good description by Coyne (1999) on how the actinomycetes are close friends to human and they can influence our daily life style. "Take a handful of garden or field soil, hold it close to your nose, and breathe deeply. What do you smell? It's not obvious that you should smell anything based simply on the composition of soil, because most soils are primarily made up of inert materials such as sand, silt, and clay. But you probably do smell something: an earthy, musty, smell. Maybe it's a smell that brings back old memories of cutting grass in spring or burning leaves in fall. The smell is real even if the images it evokes are just memories. What your sense of smell detects are microbial products called geosmins (1,10-dimethyl-9decalols). Geosmins produce the smell of freshly plowed soils and musty cellars-the smells that remind city folk of country life. Geosmins are produced by the group of microorganisms---THE ACTINOMYCETES" (Coyne, 1999).

1. CHARACTERISTICS OF ACTINOMYCETES

Actinomycetes are prokaryotes that may look like fungi and were originally called ray fungi because they grow as filamentous mycelia and form spores. There are two important characteristics that distinguish actinomycetes from fungi: they are prokaryotic that have no cell nucleus and form hyphae that are from 0.5 to $1.0 \mu \mathrm{~m}$ in diameter, which are much smaller than fungal hyphae (which are 3 to $8 \mu \mathrm{~m}$ in diameter). Actinomycetes are not photosynthetic. Most actinomycetes are saprophytes, growing by decomposing organic matters. Some actinomycetes are human pathogens. Others actinomycetes are animal and plant pathogens. Like most other microorganisms, however, actinomycetes are usually harmless soil organisms. Some actinomycetes are particularly beneficial. Actinomycetes in the genus Frankia form associations with woody shrubs and trees and fix nitrogen. Actinomycetes compose 10% to 50% of the total microbial population in soil. They are found in soil (most commonly), composts, and sediment. These microorganisms, with some exception, are aerobic-requiring O_{2} for growth. As a result, they do not grow well in wet soils. Actinomycetes are not tolerant of desiccation, but the spores they produced
can tolerant desiccation. Furthermore, they are isolated more commonly from hotter soils than colder soils. In all likehoods, this is due to spore recovery, since hotter soils are drier soils. Actinomycetes are tolerant of alkaline conditions. In alkaline soils, 95% of the microbial isolates may be actinomycetes. On the other hand, actinomycetes are acid intolerant for the most part, although acid-intolerant species exist. At a pH of less than 5 , actinomycetes make up less than 1% of the microbial population (Coyne, 1999).

In 1997, Stackebrandt et al. proposed a new hierarchic classification structure for the taxa between the taxonomic levels of genus and class for the actinomycete line of descent as defined by analysis of small subunit (16S) rRNA and genes coding for this molecule (rDNA) (Scheme 1).

2. TAXONOMY OF MICROMONOSPORA

The genus Micromonospora belongs to the family Micromonosporaceae. The family Micromonosporaceae was first decribed by Krasil'nikov, in 1938. In 1997 Stackebrandt et al. described that this family contained seven genera, including Micromonospora, Actinoplanes, Dactylosporangium, Catellatospora, Catenuloplanes, Couchioplanes, and Pilimelia. Subsequently, the genera Spirilliplanes (Tamura et al., 1997) and Verrucosispora (Rheims et al., 1998) were found. Recently, microbiologists have described two new genera namely, Virgisporangium (Tamura et al., 2001) and Longispora (Matsumoto et al., 2003) and transfer Catellatospora ferruginea and Catellatospora ishikariense to Asanoa as Asanoa ferruginea and Asanoa ishikariense (Lee, Goodfellow, and Hah, 1999). These genera can be assigned to this family on the basis of their phylogenetic position. At present, the family Micromonosporaceae consists of twelve genera (Table 1).

The genus Micromonospora was first described by Ørskov (1923) for actinomycete strains producing spores singly borne on sporophores branched from substrate hyphae. In the Approved Lists of Bacterial Names (Skerman et al., 1980), twelve species and seven subspecies were cited as members of the genus Micromonospora, and Micromonospora olivasterospora (Kawamoto et al., 1983), M. rosaria (Horan \& Brodsky, 1986), and M. chersina (Tomita et al., 1992), were validly
Class Actinobacteria
Subclass Acidimicrobidae Order Acidimicrobiales Family Acidimicrobiaceae
Subcalss Rubrobacteridae Order Rubrobacterales Family Rubrobacteraceae
Subclass Coriobacteridae Order Coriobacteriales Family Coriobacteriaceae
Subclass Sphaerobacteridae Order Sphaerobacterales Family Sphaerobacteraceae
Subclass Actinobacteridae Order Bifidobacteriales

Scheme 1. Proposed hierarchic classification system of the class Actinobacteria.

Scheme 1 (continued)

proposed as new species. Lee et al. (1999) transferred Catellatospora matsumotoense to the genus Micromonospora as M. matsumotoense on the basis of 16 S rDNA analysis. In the meanwhile, this genus was well-defined from chemotaxonomic and phylogenetic points of view (Kroppenstedt, 1985; Kawamoto,

1989; Koch et al., 1996a, 1996b; Lee et al., 1999) as well as morphological aspects. Reclassification at the species level of the genus Micromonospora was carried out by Kasai, Tamura, and Harayama (2000) on the basis of gyrB sequence analyses and DNA-DNA hybridization experiments. They elevated M. echinospora subsp. pallida and M. halophytica subsp. nigra to M. pallida and M. nigra, respectively, and considered M. echinospora subsp. ferruginea, M. rhodorangea, and M. purpurea as junior subjective synonyms of M. echinospora. M. carbonacea subsp. carbonacea, and M. carbonacea subsp. aurantiaca, were combined at the subspecies level as M. carbonacea, and the unification of M. brunnea into M. purpureochromogenes proposed by Szabó \& Fernandez (1984) was supported. Consequently, the genus Micromonospora is considered to accommodate 15 species at present, i.e. M. aurantiaca, M. carbonacea, M. chalcea, M. chersina, M. coerulea, M. echinospora, M. gallica, M. halophytica, M. inositola, M. matsumotoense, M. nigra, M. olivasterospora, M. pallida, M. purpureochromogenes, and M. rosaria. According to Kawamoto (1989), the type strain (NTCT 4582^{T}) of M. gallica is not available any longer.

2.1 CHARACTERISTICS OF MICROMONOSPORA

Micromonospora is the large group of rare actinomycetes that can produce a large number of antibiotics. Approximately 6% of actinomycetes antibiotics came from Micromonospora. Although the actinomycetes posses cytologic and physiologic structures and filamentous properties which support a morphological basis for classification, colony characterization has been used extensively for describing Micromonospora species in terms of texture and color of mycelium and spores.

2.1.1 Phenotypic characteristics of Micromonospora

Micromonospora formed well-developed, branched, septate substrate mycelium and single conidia are produced. This microorganisms, normally lacking aerial mycelium, forming light yellow-orange to orange-red colonies (occasionally brown, maroon or blue-green) composed of tightly woven, fine hyphae (0.2-0.6 $\mu \mathrm{m}$ in diameter). The dark brown to black spores are formed within and at the surface of the colonies which darken as a result of sporulation and usually turn black and may become viscid or mucoid. The single spores are borne in dense clusters on repeatedly branched sporophores (cluster type) or are well dispersed throughout

Table 1. Differential characteristics of the genera belonged to family Micromonosporaceae.

Genus	$\begin{aligned} & \text { G+C content of DNA } \\ & (\mathrm{mol} \%) \end{aligned}$	Motility of spores	Spore-chains	Fatty acid type ${ }^{\text {b }}$	Cell wall type ${ }^{c}$	Major menaquinone(s)	Phospholipid type ${ }^{d}$	Characteristic sugar(s) in whole cell	Diamino acid
Longispora	70	-	+	2 d		MK-10($\left.\mathrm{H}_{4}, \mathrm{H}_{6}\right)$	PII	Xyl, Ara, Gal	Meso-DAP
Virgosporangium	71	+	-	2d	II	MK-10($\mathrm{H}_{4}, \mathrm{H}_{6}$)	PII	Xyl, Ara, Gal	Meso-DAP
Asanoa	71-72	-	+			MK-10($\left.\mathrm{H}_{6}, \mathrm{H}_{8}\right)$	PII	Xyl, Ara, Gal	Meso-DAP
Actinoplanes	72-73	+	-		II	MK-9 (H_{4}), MK-10(H_{4})	PII	Ara, Xyl	Meso-DAP
Spirilliplanes	69	+	+		II	MK-10(H_{4})	PII	Xyl, Gal	Meso-DAP
Micromonospora	71-73	-				MK-10($\left.\mathrm{H}_{4}, \mathrm{H}_{6}\right), \mathrm{MK}-9\left(\mathrm{H}_{4}, \mathrm{H}_{6}\right)$	PII	Ara, Xyl	Meso-DAP
Dactylosporangium	72-73	+			II)	MK-9($\left.\mathrm{H}_{4}, \mathrm{H}_{6}, \mathrm{H}_{8}\right)$	PII	Ara, Xyl	Meso-DAP
Catellatospora	71-72	-	+	3	11	MK-10($\left.\mathrm{H}_{8}, \mathrm{H}_{6}\right), \mathrm{MK}-9\left(\mathrm{H}_{4}, \mathrm{H}_{6}\right)$	PII	Xyl, Ara, Gal/Xyl only	Meso-DAP
Catenuloplanes	71-73	+	+		VI	MK-9 (H_{8}), MK-10(H_{8})	PIII	Xyl	L-Lys
Couchioplanes	70-72	+	+		VI	MK-9(H_{4})	PII	Xyl, Ara, Gal	L-Lys
Pilimelia	ND	+	-	-	II	MK-9 ($\mathrm{H}_{2}, \mathrm{H}_{4}$)	PII	Ara, Xyl	Meso-DAP
Verrucosispora	70	-	-		II	MK-9(H_{4})	PII	Man, Xyl	Meso-DAP

${ }^{a}+$, present; -, absent; ND, not determined.
${ }^{b}$ According to the classification of Kroppenstedt (1985).
${ }^{c}$ According to the classification of Lechevalier and
Lechevalier (1977)
${ }^{d}$ According to the classification of Lechevalier et al., 1970.
Abbreviations : Xyl, xylose; Gal, galactose; Ara, 6) Tq
arabinose.

the mycelium. Sporophore branching may be monopodial or sympodial (or obscured in the dense grape-like cluster) (Sykes and Skinner, 1973)

Mycelial pigment and pigments that are produced in the substrate mycelium and diffuse out into the medium have been used as criteria for descriptions of Streptomycetes. Pigments produced by the Micromonospora are numerous and often unpredictable but, in spite of their shortcomings, are helpful when present as ancially recognition units. Pigments are biochemical products and often are associated with certain species groups. The problem is to differentiate between strain-specific pigments and group-shared pigments. We may divide these pigments into the readily diffusible pigments and mycelium bound pigments, however, mycelial bound pigments in order culture may diffuse, possibly due to mycelial autolysis. The yellow-orange and orange-red mycelial pigments appear to differ little diagnostic value in strain or species recognition. Maroon mycelial pigments are often recognition units for the Micromonospora echinospora and M. purprea species group. These pigments are soluble in water and acid alcohol and act as acid-base indicators, being red in the acid range and blue-green and precipitable in the basic range. The most Micromonospora strains are sensitive to pH below 6.0. Growth occurs normally between $20^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ but not above $50^{\circ} \mathrm{C}$ (Holt, 1989). This organism could grow in $1.5 \%-5 \% \mathrm{NaCl}$ concentration, normally could grow in $3 \% \mathrm{NaCl}$. The temperature range for growth is $15-45{ }^{\circ} \mathrm{C}$, and the optimal temperature is $25-30^{\circ} \mathrm{C}$. All strains of micromonospora showed positive results for gelatin liquefaction.

Sporulation appears almost as readily in submerged broth culture as on agar media. The formation of single spores on substrate mycelium is one of the welldefined criteria in the genus Micromonospora. Infrequently spores occur in longitudinal pairs and more infrequently as multiple longitudinal spores. Spore surface ornamentation of the strains and the species of Micromonospora have been characterized by terms "smooth", "rough", "warty" or "blunt spiny". Sporogenesis occurs in two stages: sporulation septum formation and spore maturation. The process is initiated by swelling of the apical end of a hypha before its delimitation by a sporulation septum. In spore maturation, material is laid down centripetally to form much-thickened wall layers. The much-thickened walls probably account for their rather high refractility and their relatively high resistance to physical and chemical treatments. Mature spores are unaffected by ultrasonication but mycelia are quickly
killed. Spore survival of most strains is $>50 \%$ after 20 min at $60{ }^{\circ} \mathrm{C}$ in phosphate buffer and $<0.5 \%$ after 20 min at $80^{\circ} \mathrm{C}$. Micromonospora spores are more resistant to ketones than to alcohols and dioxin. The spore viability does not change between pH 6.0 and 8.0 , but decreases outside this range, particularly at an acidic pH (Kawamoto, 1989).

2.1.2 Chemotaxonomic characteristics of Micromonospora

Chemotaxonomically, the genus Micromonospora is characterized by a cell wall type II (Lechevalier and Lechevalier, 1970) (Table 2), a whole cell sugar pattern D (Lechevalier and Lechevalier, 1970) (Table 3), and a phospholipids type II (Lechevalier, DeBievre, and Lechevalier, 1977) (Tables 4 and 5). The cell walls of Micromonospora have been found to contain glycine, glutamic acid, mesodiaminipimelic acid (meso-DAP) (including its 3-hydroxy derivative), and D-alanine in a molar ratio of 1:1:1:0.6-0.8. Based on this evidence, muramic acid does not occur as N -acetyl, but as the N -glycolyl derivative. The amino group in position 2 is not substituted by an acetyl group $\left(-\mathrm{COCH}_{3}\right)$ but by a glycolyl group $\left(-\mathrm{COCH}_{2} \mathrm{OH}\right)$ and the L-diamino acid is replace by meso-DAP (Figure 1). The pentoses, xylose, and arabinose are always constituents of the cell wall, although the amounts vary to some extents. Hexoses, glucose, and galactose are detected more frequently than mannose and rhamnose. The phospholipids contained in the cells are diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositolmannosides, and phosphatidylethanolamine, but phosphatidylcholine is not detected. This pattern corresponds to phospholipid type II as reported by Lechevalier et al. (1977). The predominant cellular fatty acids are iso- and anteiso-branched fatty acid. Unsaturated or 10-methyl fatty acids may be found in certain strain, that were iso- C_{15} :0, iso- $\mathrm{C}_{16: 0}$, iso- $\mathrm{C}_{17: 0}$, anteiso- $\mathrm{C}_{15: 0}, \mathrm{C}_{17: 0}$, and anteiso- $\mathrm{C}_{17: 0}$. This pattern corresponds to fatty acid type 3 b of Kroppenstedt (1985), but mycolic acid and cyclic fatty acids are not presented. The genus Micromonospora currently consists of 15 validly described species, and they (except for M. gallica) can be divided into three groups based on the predominant menaquinone components, i.e. MK-9, MK-10, and MK-12 groups. Species containing hydrogenated MK-9 as major menaquinones (MK-9 group) are M. carbonacea, M. halophytica, M. nigra, and M. chersina, while the MK-12 group is found in only one species, M. pallida. The species, M. chalcea, M. inositola, M. coerulea, M. purpureochromogenes, M. olivasterospora, M. echinospora, M. matsumotoense, M. rosaria, and M. aurantiaca
contained MK-10 as a major menaquinone. The major menaquinones were MK-9, MK-10, and MK-12. The range of G+C contents of the DNA was 71-73 mol\%.

Table 2. Cell wall chemotypes of the actinomycetes.

Major constituent	Chemotype							
	I	II	III	IV	V	VI	VII	VIII
L-Diaminopimelic acid meso-Diaminopimelic acid								
Diaminobutyric acid +								
Aspartic acid								
Glycine + + +								
Lysine								
Ornithine $\quad+\quad+$								
Arabinose								
Galactose								

\mathbf{v}, variable amounts.

Table 3. Whole-organism sugar patterns of the actinomycetes containing mesodiaminopimelic acid (chemotype II-IV).

*Madurose is 3-O-methyl-D-galactose.

Table 4. Phospholipid types in actinomycetes.

Phospholipid type	PIMs	PI	PC	PG	PE	PME	GluNU	APG	DPG
I	+	+	-	V	-	-	-	V	V
II	+	+	-	V	+	-	-	V	+
III	V	+	+	V	V	+	-	V	V
IV	ND	+	-	-	V	V	+	-	+
V	ND	+	-	+	V	-	+	V	+
V = Variable									
$+=$ Present									
- = Absent									

Table 5. Phospholipid types in actinomycetes.

Phospholipid type	Diagnostic phospholipids
I	No nitrogenous phospholipids
II	Phosphatidyl ethanolamine
III	Phosphatidyl choline
IV	GluNu (unknown glucosamine-containing phospholipid)
V	9

Figure 1. Fragment of the primary structure of a typical peptidoglycan.
Abbreviations: G, N-acetylglucosamine; M, N-acetyl(glycolyl)muramic acid; Ala, Alanine; Glu, Glutamic acid; Gly, glycerine; L-DA, L-diamino acid; I, interpeptide bridge.

2.1.2.1 Isoprenoid quinones

Isoprenoid quinones are important in the functioning of the electron transport system in respiration. Various kinds of quinones are found in bacterial cells (Figure 2), with most aerobic bacteria possessing isoprenoid menaquinone and/or isoprenoid ubiquinone (Komagata and Suzuki, 1987).

Menaquinone
Ubiquinones

Figure 2. Isoprenoid quinones found in most aerobic bacteria cells.

Identification of the genus Micromonospora by using menaquinone system is characterized by the presence of three major menaquinones (hydrogenated MK-9, MK-10, and MK-12). The most members of genus Micromonospora presented hydrogenated MK-10. The four species of genus Micromonospora are M. carbonacea, M. halophytica, M. nigra, and M. chersina, presented hydrogenated MK9 and the remaining one, M. pallida, presented hydrogenated MK-12.

2.1.2.2 DNA base composition

The determination of DNA base composition has become an important criterion in microbial taxonomy since Marmur and Doty (1962) reported a simplified method. Indeed, the guanine (G) plus cytosine (C) ratio of DNA is one of the few characters which can be used in the description of any cultivable microorganisms. DNA base composition has proved usedful for both classification and identification of prokaryotes. The base composition of bacterial chromosomal DNA ranges from 25% to $80 \% \mathrm{G}+\mathrm{C}$. In general, the DNA base composition of strains of a species shows a narrow range of about 1 to 3 mole $\% \mathrm{G}+\mathrm{C}$ (Mandel, 1966; Tamaoka, 1984). Once the DNA base ratio of a strain has been determined, the number of species to be compared for identification of that strain decreases as microorganisms with base composition differences will have different chromosomal DNA and hence belong to separate species. The DNA base ratios of almost all prokaryotic species are available in texts such as Bergey's Manual of Systematic Bacteriology.

The determination of mean DNA base composition was the first unique feature of DNA that was seen to have taxonomic importance. The DNA base composition of a strain is constant and given the application of the HPLC method is highly reproducible (standard deviation <0.5 mole $\% \mathrm{G}+\mathrm{C}$). Initially, DNA base composition studies provided an easy and useful way of distinguuishing between phonetically similar but genetically different strains (Colwell and Mandel, 1964; Silvestri and Hill, 1965). It is, however, self-evident given the extensive nature of prokaryotic diversity that the mole $\% \mathrm{G}+\mathrm{C}$ contents of archaea and bacteria are not the preserve of single species.

The importance of the mole $\% \mathrm{G}+\mathrm{C}$ content of DNA in the systematics of prokaryotes is that it can be weighted as an excluding characteristic. Thus, if two organisms have DNAs with markedly different base composition values they must
belong to different taxa. It is, however, important to realize that two organisms with similar base compositions are not necessarily closely related as mole\% G+C determinations do not make into account the linear arrangement of nucleotides in DNA.

DNA base composition studies are particularly important in highlighting taxa that are in need of taxonomic revision. This point is exemplified by the genus Bacillus, which currently encompasses organisms with DNA base compositions that range from 32 to 69 mole\% G+C (Slepecky and Hemphill, 1991). Indeed, despite its limitations as a taxonomic criterion, DNA base composition is correctly seen as one of the required characteristics for the minimum descriptions of genera and species (Lévy-frébault and Portales, 1992). In the case of Micromonospora species, the $\mathrm{G}+\mathrm{C}$ base composition of them ranges from 71 to 73 mol\%.

2.1.3 Genetic analysis of Micromonospora

2.1.3.1 16S rDNA analysis

Ribosomal RNA represents only a small part (about 0.3-0.4\%) of the genome and the citrons coding for it are highly conserved. They have evoled less rapidly than the rest of the chromosome. The three rRNAs in bacteria are classified by their sedimentation rates as $23 \mathrm{~S}, 16 \mathrm{~S}$, and 5 S , which have chain lengths of about 3,300, 1,600, and 120 nucleotides, respectively (Stent, 1981). Bacterial 16S rDNA sequences are attractive targets for developing identification methods because they represent conserved regions in all bacteria and species having 70% or greater DNA similarity usually have more than 97% sequence identity (Stackebrandt and Goebel, 1994, Stackebrandt et al., 2002). But this recommendation has been questioned (Fox, Wisotzkey, and Jurtshuk, 1992). Recently, it has been suggested that a difference rate of $>0.5 \%$ could be considered indicative of a new species within a known genus (Palys, Nakamura, and Cohan, 1997). In the present study, in the absence of an accepted cut-off value, which 99% similarity as a suitable cutoff for identification at the species level and 97% similarity as a suitable cutoff for identification at the genus level (Drancourt et al., 2000).

Bacterial identification based on \% similarity of 16 S rDNA has been using PCR technique, DNA sequencing, and similarity analysis of rRNA genes. 16S
rDNA was amplified and sequenced using oligonucleotide primers complementary to highly conserved regions of bacterial rRNA gene.

2.1.3.1.1 Amplification of rDNA template by PCR

The development of PCR for amplifying specific regions of DNA has allowed investigators to generate rRNA genes from the DNA of most organisms. The following protocol works well for many rRNA gene (Johnson, 1994).
a. Symmetrical amplification Symmetrical amplification, which occurs when there is a large excess of both amplification primers, is the most efficient type of amplification. It should be used for testing DNA templates and when large amounts of double-stranded DNA are wanted, as, for example, when doing direct double-stranded DNA sequencing, using a biotin-labeled primer, or planning to generate single-strained sequencing template by T 7 gene 6 exonuclease digestion.
b. Asymmetrical amplification The principle in asymmetrical amplification is that a lower concentration of one of the PCR primer results in less amplification of the corresponding DNA strand. The amount of single stranded DNA is not too as easy to evaluate the asymmetrical amplification, because the singlestranded DNA doses not stain as intensely with ethidium bromide. As a result, one just has to test the asymmetrical amplification product as a sequencing template.

An alternative approach is to do two-step amplification. First, a symmetrical amplification PCR is performed and then transfer part of that reaction mixture to a second PCR in which only one of the primers is included. The advantage of this is that the first amplification is improved and one can adjust the amount of material from the first PCR to add to the second PCR to get a consistent amount of single-strands DNA product.

จタ̛ 2.1.3.1.2 Direct sequencing of PCR amplified DNA
The amplification of target DNA by PCR followed by the direct sequencing of amplification DNA has emerged as a powerful strategy for rapid molecular genetic analysis. Direct sequencing of PCR products consists of usually two steps.
a. Purification of templates The PCR amplification should be purified from the oligonucleotide primers and unused dNTPs.
b. Direct sequencing of PCR product Template DNA for DNA sequencing can be prepared by several methods.

1) Double strand DNA sequencing This method is simple and rapid method of sequencing PCR product directly (Johnson, 1994) and is ideal for sequencing PCR products that are less than 2 kb in length. The double stranded template is denatured in the presence of sequencing primer by boiling and then snaps chilling in ice/water. This prevents reassociation of the template, favouring primertemplate annealing. And then proceed with the sequencing reaction.
2) Sequencing of asymmetrical PCR product The principle in asymmetrical amplification is that a lower concentration of one of the PCR primers results in less amplification of the corresponding DNA strand. The amount of single stranded DNA is difficult to estimate by standard ethidium bromide staining in agarose gels, because of a smaller amount of dye intercalation than with double stranded DNA. Consequently, one must assume that there will be sufficient template and must arbitrarily determine the volume of template needed (Johnson, 1994).
3) Digestion by bacteriophage exonuclease Bacteriophage T7 gene 6 exonuclease is specific for double stranded DNA. The enzyme degrades from 5 ' end, resulting in two half-length single strands, as illustrated in figure 3. The exonuclease is not a processive enzyme: it dissociates frequently from the substrate during the course of digestion and continued with the sequencing reaction. The disadvantages of the procedure are that one is limited to sequence the 5^{\prime} end of the 16 S rDNA with the forward sequencing primers and the 3^{\prime} end with reverse primers, whereas the middle of the DNA fragment can not be sequenced well with either forward or reverse primer. One can be used other methods for sequencing the middle region of the fragment (Johnson, 1994).

9 9/9) Magnetic beads for separating DNA strands A recent approach for separating the strands of PCR-generated DNA has been to attach biotin at the 5 ' end of one of the PCR primers and then react the PCR-generated DNA with magnetic beads containing covalently couple streptavidin. The biotin will bind irreversibly with the streptavidin on the beads, and the complementary strand is then

Figure 3. Digestion by bacteriophage T7 gene 6 exonuclease. This enzyme degrades from the 5^{\prime} end, resulting in two half-length single strands.
denatured with alkali and washed away from the beads. DNA sequencing can be done directly on the DNA that is bound to the beads. The complementary DNA strand, after being precipitated, can also be used as a sequencing template (Johnson, 1994). The dideoxynucleotide-chain-terminating DNA sequencing method of Sanger et al., and automated DNA sequencing introduced the era of rapid DNA sequencing.

Dideoxynucleotide Method: Sanger and colleagues developed the dideoxynucleotide method in 1977. This technique involves the synthesis of a DNA strand from a single stranded template by DNA polymerase and chain terminating property of dideoxynucleotide molecule. Dideoxynucleotides are base analogues of the deoxynucleotide molecules, whien lack 3'hydroxyl group (Figure 4). Normally, the chain elongation reaction in DNA synthesis requires DNA polymerase and four deoxyribonucleotide triphosphates (dATP, dCTP, dGTP, dTTP). DNA polymerase can incorporate dideoxynucleotides (ddNTPs) into the growing strand in the same way as the conventional deoxynucleotides. However, the absence of hydroxyl group prevents the formation of a phosphodiester bond with the succeeding deoxynucleotide when a ddNTP is incorporated into the new strand, therefore terminates chain elongation at that position.

* Position where the - OH of a dNTP is replaced by -H

Figure 4. The structure of $2^{\prime}, 3$ '-dideoxynucleotide-5'-triphosphate (ddNTP).

In a dideoxy sequencing experiment, four separate polymerization reactions are performed. Each of the four reaction mixtures contains a small amount of one of the dideoxynucleotide mixed with normal deoxynucleotides, target DNA, the primer, and DNA polymerase in an appropriate synthesis buffer. This generates different sized fragments, which vary at the 3 ' end according to the position at which a ddNTP is incorporated. The fragments are then electrophoretically size separated to generate a sequence ladder (Figure 5).

Figure 5. The dideoxynucleotide method.
Automated DNA Sequencing: one of the major advances in sequencing technology in recent years is the development of automated DNA sequencers. There are based on the chain termination method and use of fluorescent labels. The fluorescent dyes can be attached to the sequencing primer, to the dNTPs or the terminators and are incorporated into the DNA chain during strand synthesis
reaction mediated by DNA polymerase. During the electrophoresis of the newly generated DNA fragments on a polyacrylamide gel, a laser beam excites the fluorescent dyes. Detectors collect the emitted fluorescence and the information analyzed by the computer. The data are automatically converted to nucleotide sequence (Figure 6). Several automated DNA sequencers are now commercially available and are becoming increasingly popular.

Figure 6. Automated DNA sequencer. $\frac{615 \|}{6}$
2.1.3.1.3 Analysis of nucleotide sequence and phylogenetic tree

a. Homology Search: analysis of nucleotide sequence is the last and may be the most important step in nucleotide sequencing. The goal is to determine the function of an obtained sequence. The most frequent analysis of an unknown sequence is to perform homology search, which is a search for sequence similarity with known sequence in the database. There are three international DNA databases available that provide sequence information as no cost over the Internet
(Table 6). All databases exchange their data daily to update the sequence information.

Table 6. Lists of international primary sequence databases.

Database	Sponsor	Location (URL)
DNA Data Bank of Japan	National Institute of Genetics	$\underline{\text { http://www.ddbj.nig.ac.jp }}$
EMBL Data Library	European Molecular Biology	$\underline{\text { http://www.ebi.ac.uk/embl.html }}$
GenBank	Laboratory	
	National Center for Biotechnology	$\underline{\text { http://www.ncbi.nlm.nih.gov }}$

A homology search can be carried out either with nucleotide sequence or amino acid sequence. However, homology search with nucleotide sequence rarely gives valuable information (Brown, 1994). Since, the DNA sequence information is so simple, just four different bases (A, T, G, and C). As a result, unrelated sequence can have high degrees of similarity and the identification for biologically significant homologies is very difficult. On the contrary, amino acid sequence information is relatively complex (20 different amino acids) and amino acid sequence similarity between proteins often indicates a corresponding similarity in the structure and function. Thus the determination for the structure and function of unknown proteins is easily achieved by comparing amino acid sequence of an unknown protein with previously characterized proteins. Two amino acid sequences with more than 50% positional identity is likely to be biological related. There are several programs for homology searching available free of charge from molecular biology databases on the Internet. Some sequence similarity search servers are listd in Table 7.
b. Phylogenetic analysis: phylogenetic analysis is the technique of methodically demonstrating a family relationship between species.

Table 7. Lists of sequence similarity search server on the Internet.

Program	Location (URL)
BLAST	http://www.ncbi.nlm.nih.gov/BLAST
FASTA	http://www.ddbj.nig.ac.jp/E-mail/homology.html
BLITZ	$\underline{\text { http://www.ebi.ac.uk }}$
GenQuest	$\underline{\text { http://avolon.epm.ornl.gov/grail-bin/ }}$

This type of analysis is carried out on small section of aligned DNA taken from the same gene in the various species under consideration, rather than on protein sequences derived from them. DNA is used because the pattern of mutation, insertion, and deletion at the nucleotide level is definitive. Silent mutation, i.e. mutations at the DNA level that do not result in an amino acid substitution at the protein level are automatically incorporated into the analysis. Phylogenetic relationships are often represented graphically, either in the form of phylogenetic tree or dendrograms. The procedure of phylogenetic tree construction from nucleotide is shown in figure 7.

2.1.3.2 DNA-DNA hybridization

DNA hybridization is acknowledged as the superior method for the elucidation of relationships between closely related taxa, such as strains and species, in which a DNA homology value of about 70% plays a dominant role (Wayne et al., 1987). The methods usually used in this technique are either a free solution method in which SI nuclease (Crosa, Brenner, and Falkow, 1973), spectrophometry or a method in which single-stranded DNA is fixed on a solid support, such as nitrocellulose filters or nylon membranes. However, in the former time, to carry out most of these hybridization experiments, DNA must be labeled with radioactive.

Sequencing data

Align sequence

Choose between distance-based and character-based approach

Character

Choose the optimal criterion

Figure 7. The procedure of phylogenetic tree construction from nucleotide.

2.1.4 Distribution of Micromonospora

The habitat of Micromonospora is general in soil and aquatic system such as lake mud and river sediments. Their occurrence in soil was first reported by Jensen in 1932 for Australian soils and later by Kriss in 1939 for Russian soil. Early work on lakes in Wisconsin showed that Micromonospora comprised 10-50\% of the microbial population in the water mass, were the only actinomycetes in mud sample, but were rarely isolated from adjacent soils. Micromonospora have also been isolated from marine environments, such as beach sand, deep marine sediments, and sediment from White Sea and Black Sea. (Kawamoto, 1989). The distribution of the validly described Micromonospora species is shown in Table 8.

3. Antibiotics from Micromonospora

Alexander Fleming (1929) discovered that the fungus Penicillium notatum produced and excreted a compound which inhibited the growth of Staphylococcus species. Antibiotics is the word that used to describe a type of association in which one living creature was destroying another in order to sustain its own life. Waksman (1947) published the definition of the word "Antibiotic" that is a chemical substance, produced by microorganisms, which has the capacity to inhibit the growth and even to destroy bacteria and other microorganisms". Benedict and Langlyke modified this definition to comprise substances which act upon certain organisms at least in very dilute solutions. Abraham and Newton described the word "Antibiotics" as natural compounds derived from organisms which themselves or chemical modification are able, at low concentration, to inhibit or kill other microorganisms and abnormal cells in higher animals. -

In the case of genus Micromonospora strains, there are many strains that could produce interesting bioactive compounds. Bioactive compounds produced from Micromonospora strains are summarized in Table 9.

Table 8. Sources of the validly described Micromonospora species.

Strain	Source	Refference
M. chersina JCM 9459		

Table 9. Lists of bioactive compounds produced from Micromonospora.

Compounds	Strains	Activity	References
IB-96212 [1]	Micromonospora sp. L-25-ES25-008	Cytotoxic acitivity	Chimeno et al.,2000
SB-219383 [2]	Micromonospora sp. SB-219383	Tyrosyl t RNA synthetase inhibitor	Stefanska et al., 2000
Arisostatins A and B [3]	Micromonospora sp. TP-A0316	Antibacterial activity	Igarashi et al., 2000
4'- N-methyl-5'- hydroxystaurosporine, 5'- Hydroxystaurosporine [4]	Micromonospora sp. L-31-CLCO-002	Antitumor activities	$\begin{aligned} & \text { Hernandez et al., } \\ & 2000 \end{aligned}$
GTRI-02 [5]	Micromonospora sp. SA246	Lipid peroxidation inhibitor	Yeo et al.,1998
YM-47515 [6]	Micromonospora echinospora subsp echinospora	Antimicrobial activities	Sugawara et al., 1997
Thiocoraline [7]	Micromonospora sp. L-13-ACM2-092	Antimicrobial activities	Romero et al., 1997
[8]	Micromonospora sp. SA246	Antimicrobial activities	Yeo et al.,1998
Pyrrolosporin A [9]	Micromonospora sp. C39217-R109-7	Antimicrobial activities	Lam et al., 1996
Antascomicins A, B, C, D and E [10]	Micromonospora sp.	Antagonize the immunosuppressive activity	Fehr et al., 1996
Macquarimicins A [11], B [12], C [13] and Cochleamycin A[14]	Micromonospora chalcea	Antileukemia cell line P-388	$\begin{aligned} & \text { Hochlowski et al., } \\ & 1995 \end{aligned}$
Cororubicin [15]	Micromonospora sp. JY16	Cytotoxic acitivity	Ishigami, Hayakawa, and Seto, 1994
16-membered lactone compound and izenamicin B_{2} and B_{3} [16]	Micromonospora sp. YS-02930K	-	Yasumuro et al., 1994
Mycinamicins I and II [17]	Micromonospora griseorubida (FERM BP-705)	Antibacterial activity	Kinoshita et al., 1992
Sibanomicin [18]	Micromonospora sp. SF2364	Antitumor activities	Itoh et al., 1990
$\begin{aligned} & \text { Dynemicins O [19], P } \\ & \text { [20], Q[21] } \end{aligned}$	Micromonöspora chersina M956-1	Antibacterial activity, antitumor activity	Saitoh et al., 1991
Citreamicin [22]	Micromonospora citrea	Antibacterial activity	Carter et al., 1990
$\mathrm{K}-259-2[23]$	Micromonospora olivasterospora K259	Inhibitor of Ca^{2+} and calmodulindependent cyclic nucleotide phosphodiesterase	Matsuda. Asano, and Kawamoto, 1987
K-13 [24]	Micromonospora halophytica subsp. exilisia K-13	Enzyme inhibitor	Kase, Kaneko, and Yamada, 1987
Antromicin [25]	Micromonospora olivasterospora	Antibacterial activity	Odakura et al., 1984 Odakura, Kase, and
Sagamicin [26]	Micromonospora sagamiensis	Antibacterial activity	Nakayama, 1983
Echinosporamicin [27]	Micromonospora echinospora	Antibacterial activity	He et al., 2004

[1] Macrolide IB-96212

[2] SB-219383

Arisostatin A: $\mathrm{R}_{1}=\mathrm{NO}_{2}, \mathrm{R}_{2}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
$\mathrm{B}: \mathrm{R}_{1}=\mathrm{NH}_{2}, \mathrm{R}_{2}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
[3] Arisostatins A and B

[4] 4'-N-Methyl-5'-hydroxystaurosporine (compound 2) and 5'-
hydroxystaurosporine (compound 3)

[5] Compound GTRI-02

[6] Compound YM-47515

[7] Thiocoraline

[8] 1-Hydroxycrisamicin A

[9] Pyrrolosporin A

Antascomicin A $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{H} \quad \mathrm{n}=2$
Antascomicin B $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{H} \quad \mathrm{n}=2$
Antascomicin C $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{CH}_{3}, \mathrm{R}_{3}=\mathrm{H} \quad \mathrm{n}=2$
Antascomicin D $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{H} \quad \mathrm{n}=1$
Antascomicin E $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{OH} \quad \mathrm{n}=2$
[10] Antascomicins

[11] Macquarimicin $A \sim \sigma$ [12] Macquarimicin B

[13] Macquarimicin C
[14] Cochleamycin A

[15] Cororubicin

[16] 16-Membered lactone compounds and izenamicins $B_{2}(6)$ and $B_{3}(7)$

Mycinamicin I $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=$ Mycinose Mycinamicin II $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=$ Mycinose

[17] Mycinamicins I and II

[18] Sibanomicin

[19] Dynemicin O, $\mathbf{R}_{1}=\mathbf{O H}, \mathbf{R}_{2}=\mathbf{O C H}_{3}$
[21] Dynemicin Q(3)
[20] Dynemicin P, $\mathbf{R}_{1}=\mathbf{H}, \mathbf{R}_{2}=\mathbf{O H}$

[22] Citreamicin $\alpha(1), \beta(2), \gamma(3), \delta(4), \eta(5)$

[24] Compound K-13

Gentamicin $\mathrm{C}_{1 \mathrm{a}} \mathrm{R}=\mathrm{H}, \mathrm{R}_{1}=\mathrm{NH}_{2}$ Gentamicin $\mathrm{C}_{1 \mathrm{a}} \mathrm{R}=\mathrm{CH}_{3}, \mathrm{R}_{1}=\mathrm{NH}_{2}$ Gentamicin $\mathrm{C}_{1 \mathrm{a}} \mathrm{R}=\mathrm{CH}_{3}, \mathrm{R}_{1}=\mathrm{NHCH}_{3}$ Sagamicin $\quad \mathrm{R}=\mathrm{H}, \mathrm{R}_{1}=\mathrm{NHCH}_{3}$
[25] Astromicin
[26] Sagamicin and Gentamicins C

[27] Echinospramicin

CHAPTER III

EXPERIMENTAL

1. Sample collection and isolation of Micromonospora

Soil samples were collected from peat swamp forest in the southern areas of Thailand, Trang Province, Patthalong Province, Yala Province and Narathiwat Province (Table 10). The soil sample (0.5 g) was suspended in a tested tube with 4.5 mL sterile distilled water and was heated in a water bath at $70{ }^{\circ} \mathrm{C}$ for 15 min . Then 0.5 mL of this suspension was transferred into 4.5 mL of sterile distilled water which was diluted to a tenfolds dilution series. Of the final dilution step $\left(10^{-3}\right)$, aliquots of $100 \mu \mathrm{~L}$ were spread onto Starch-casein nitrate agar (SCA) plates (Appendix I) supplemented with antibiotics, nystatin, novobiocin, and tetracyclin (Brock et al., 1993), and the plates were incubated at $30^{\circ} \mathrm{C}$ for $7-21$ days. The moist, pale yellow, orange, red brown, brown, blue green, purple, and black colonies of Micromonospora species were picked up and streaked for purification on yeast extract-malt extract agar plates (YMA, ISP medium no. 2) (Appendix I) and were incubated at $30^{\circ} \mathrm{C}$ for $7-21$ days. A single colony was transferred into YMA slants and incubated at $30^{\circ} \mathrm{C}$ for 14 days. The stock cultures were kept in cold room at $4{ }^{\circ} \mathrm{C}$ at the Department of Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University.

The pH of soil was measured by the following method: the soil samples were dried under room temperature for 1 week. Dried soil (1 g) was put into a test tube which then 2.5 mD of distilled water was added into and shaken for 30 sec . The soil solution was left for 30 min . Finally, the soil solution was gently shaken for 2 to 3 sec and measured pH value by pH glass electrode recorder (put the pH glass electrode in test tube at the $2 / 3$ depth from the surface and hold it for more than 30 sec to stabilize electric potential).

2. Primary screening of isolates for antibiotic production

2.1 Primary screening

Micromonospora strains were streaked along the diameter of yeast extract-malt extract plate and grown for 14 day at $30{ }^{\circ} \mathrm{C}$. The tested microorganisms were then
streaked out perpendicular to Micromonospora strains, as close as about 3 mm apart. Further incubation was at $30{ }^{\circ} \mathrm{C}$ for 1 day (Rhiems et al., 1998). The tested microorganisms were Escherichia coli ATCC 25922, Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 25923, Micrococcus luteus ATCC 9341, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC 10231.

3. Identification methods

Morphological, cultural, physiological, and biochemical properties of microorganisms were determined by the method of Shirling and Gottlieb (1966) and Arai (1975) along with several supplementary tests.

3.1 Morphological and cultural characteristics

The characteristics of Micromonospora were determined by using simple inclined coverslip technique (Williams and Cross, 1971). The simple inclined coverslip technique was used to determine the number of spores at the end of mature hyphae, the form of the spore chain and spore bearing hyphae and other special morphological observations. For the scanning electron microscopic examination, the selected strains of Micromonospora were grown on YMA plate (ISP medium no. 2) by crosshatch streak method (Shirling and Gottlieb, 1966) and incubated at $30^{\circ} \mathrm{C}$ for $10-14$ days. The culture was cut to some small cups ($3-5 \mathrm{~mm}^{3}$) and then were primarily fixed in 4% solution of paraformaldehyde in 0.1 M phosphate buffer pH 7.2 at room temperature for 2 h . Subsequently, they were washed 3 times with buffer and were treated with secondary fixative, a 1% solution of osmium tetroxide in buffer, and washed in the same process before drying. The specimens were dehydrated through a gradient ethanol series $(35 \%, 70 \%, 95 \%$, and absolute ethanol). The specimens were fixed to a stub and coated with a thin film of gold by stutter coat. An electorn microscope was used to determine spore forming, spore surface, sporophore. The hyphae may be simple or complex, monopodial or sympodiab The microscopic structure of the substrate mycelium gives a clear picture of the morphology and reproductive structures of the organisms (Itoh et al., 1989).

Cultural characteristics were studied on the colors of mature substrate mycelium, spore, and diffusible pigment using crosshatch streak (Shirling and Gottlieb, 1966). The strains were cultivated on nine different agar media (Appendix I), yeast extractmalt extract agar (ISP medium no.2), Oatmeal agar (ISP medium no.3), Inorganic
salts-starch agar (ISP medium no.4), glycerol asparagine agar (ISPmedium no.5), peptone-yeast extract iron agar (ISPmedium no.6), tyrosine agar (ISP medium no.7), glucose asparagine agar, Czapek's sucrose agar, and nutrient agar and all were incubated at $30^{\circ} \mathrm{C}$ for $7-14$ days. The color of the reverse (under) side of the mass growth of substrate mycelium on nine media, the spore color, and the cultural characteristics were observed.

3.2 Biochemical and Physiological characteristics

3.2.1 Carbon utilization

Basal agar medium, ISP-9 (Shirling and Gottlieb, 1966) (Appendix I) supplement with 0.3 \% Casamino acid was prepared and a carbon source was added to give concentration of approximately 1%. After autoclave at $110^{\circ} \mathrm{C}$ for 10 min , the mixture was agitated, and 25 mL of this mixture was poured into 9 cm petridish.

Carbon source and controls required for the test was repeated below :

D-fructose 9 prepare the inoculum, cell culture was washed fromyeast extract-malt extract agar slant with 5 mL of sterile distilled water, and then transferred into a sterile test tube. The suspension was centrifuged at 5000 rpm for 15 min . The supernatant was decanted, and the sediment was resuspended in sterile distilled water. The supernatant was washed twice. Sterile distilled water was added to wash sediment to restore the original volume, and the inoculum was used for carbon utilization tests.

The uninoculated plates were dried by leaving them at room temperature. A loopful of washed culture was inoculated on the agar surface by streaking straight across the dish. Plates were inoculated in duplicate and incubated at $28-30^{\circ} \mathrm{C}$ for $10-$ 14 days. Examination by comparing growth or a given carbon source with two controls, growth on basal medium alone, and growth on basal medium plus glucose was performed.

Results were recorded as follow:

1. Strongly positive utilization $(++)$, when growth on tested carbon in basal medium is equal to or greater than growth on basal medium plus glucose.
2. Positive utilization $(+)$, when growth on tested carbon is significantly better than on the basal medium without carbon, but somewhere less than on the basal medium plus glucose.
3. Utilization doubtful $(+/-)$, when growth on tested carbon is only slightly better than on the basal medium without carbon and significantly less than on the basal medium plus glucose.
4. Utilization negative $(-)$, when growth is similar to or less than growth on basal medium without carbon (Utilization is always recorded as negative if growth is not better than no carbon control).

3.2.2 Starch hydrolysis

All Micromonospora strains were streaked on the surface of inorganic saltsstarch agar plate (ISP-4) (Shirling and Gottlieb, 1966, Appendix I) and incubated at $28-30{ }^{\circ} \mathrm{C}$ for 10 days. After inocubation was complete, Gram's iodine solution was poured on the surface of the agar plate. If starch hydrolysis was present, a dark blue color did not appear.

3.2.3 Gelatin liquefaction

All Micromonospora strains were inoculated into test tube of Bouillon gelatin broth (Arai, 1975, Appendix I) and incubated at $28-30{ }^{\circ} \mathrm{C}$ for 21 days. The inoculated tube was compared with uninoculate control when placed both tubes at 20 ${ }^{\circ} \mathrm{C}$ for 30 min . If the gelatin was hydrolyzed, it became liquid, not solidify.

3.2.4 Nitrate reduction

All Micromonospora strains were inoculated into Peptone KNO_{3} broth (Arai, 1975, Appendix I) and incubated at $28-30^{\circ} \mathrm{C}$ for $4-6$ days. On the forth day, 1 mL of the culture was transferred into a test tube and two drops of the sulfanilic acid reagent, and then by three drops of N, N-dimethyl-1-naphthylamine solution were added. If nitrites were present, the mixture would become pink to red.

3.2.5 Milk coagulation and milk peptonization

Micromonospora strains were inoculated in tube of sterile 10% skim milk (Appendix I) in distilled water and incubated at $28-30^{\circ} \mathrm{C}$ for $7-14$ days. If milk was peptonized, milk would be converted to clear solution. If milk was coagulated, milk would precipitate.

3.2.6 NaCl tolerance

All Micromonospora strains were streaked on YMA plates (ISP medium no. 2) to which NaCl was added to give concentrations of $0 \%, 1.5 \%, 3 \%, 4 \%, 5 \%, 6 \%$, and 7%. The plates were incubated at $28-30{ }^{\circ} \mathrm{C}$ for $7-14$ days. Observe maximum concentration for which the culture growth were recorded.

3.2.7 Temperature tolerance

All Micromonospora strains were streaked on YMA plates (ISP medium no. 2). The plates were incubated at 30,40 , and $45^{\circ} \mathrm{C}$, for $7-14$ days. Observed maximum temperature for which the culture growth were recorded.

3.2.8 $\mathbf{~ p H}$ tolerance

All Micromonospora strains were streaked on YMA plates (ISP medium no. 2) that separately adjust the pH at $4,4.5,5,6,7$, and 8 . The plates were incubated at $30^{\circ} \mathrm{C}$ for 7-14 days. Observed minimum pH for which the culture growth were recorded.

3.3 Chemotaxonomic studies

3.3.1 Cell wall acyl type

Dried cells (10 mg) were hydrolyzed with $100 \mu \mathrm{~L}$ of 6 N HCL at $100^{\circ} \mathrm{C}$ for 2 h. The hydrolyzed solution was then loaded into Dowex $\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right.$form) column (5 cm in height). The column was eluted with $400 \mu \mathrm{~L}$ distilled water and twice of 1 mL
distilled water and 0.5 N HCl . The final fraction was added with DON reagent (Appendix II) and $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ and measured O.D. at 530 nm . The sample that contained glycolylmuramic acid in the peptidoglycan, the value of O.D. 530 is higher than 10 nM .

3.3.2 Whole-cell sugar analysis

Dried cells (50 mg) were hydrolyzed with $1 \mathrm{~N}_{2} \mathrm{SO}_{4}$ at $100{ }^{\circ} \mathrm{C}$ for 2 h . The pH of hydrolyzed solution was adjusted with $\mathrm{Ba}(\mathrm{OH})_{2}$ into $\mathrm{pH} 5.2-5.5$. The solution was then centrifuged, and the supernatant was evaporated and added $400 \mu \mathrm{~L}$ of distilled water into the dried sample. The sample was deionized with Dowex $1\left(\mathrm{OH}^{-}\right.$ form) and Dowex 50 (H^{+}form) and filtered. Finally, the deionized sample was analized by HPLC.

3.3.3 Diaminopimelic acid analysis

Dried cells (10 mg) were hydrolyzed with 6 N HCl at $100{ }^{\circ} \mathrm{C}$ for 18 h . The hydrolyzed solution was filtered and evaporated. The $400 \mu \mathrm{~L}$ of distilled water was added into dried sample. The solution was loaded into cellulose HPTLC plate no. 5787 and developed with $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}: 6 \mathrm{~N} \mathrm{HCl}:$ Pyridine (80:26:4:10). Finally, the cellulose HPTLC plate was sprayed with 0.5% ninhydrin in n-butanol for detection.

3.3.4 Amino acid composition of peptidoglycan

3.3.4.1 Purification of cell walls

Wet cells (2 g) were suspended with phosphate buffer (pH 7.2) and sonicated for 45 min . The unbroken cells were removed by centrifugation at 4,000 rpm for 10 min . The broken cells were collected by centrifugation of the supernatant at $10,000 \mathrm{rpm}$ for 1 h and were treated with 25% SDS solution at $100{ }^{\circ} \mathrm{C}$ for 40 min . The cell wall samples were collected by centrifugation of the freated solution at $10,000 \mathrm{rpm}$ for 1 h and treated with Pronase E solution for 2 h at $37^{\circ} \mathrm{C}$. The samples were then washed with phosphate buffer $(\mathrm{pH} 7.6)$ twice and treated with 5% TCA solution at $100{ }^{\circ} \mathrm{C}$ for 20 min . Finally, the samples were collected and washed with distilled water for three times, with ethanol and diethyl ether, and dried in the vacuum tray.

3.3.4.2 Hydrolysis and analysis of cell wall

Cell walls (1 mg) were hydrolyzed with 6 N HCl at $100{ }^{\circ} \mathrm{C}$ for 18 h . The samples were filtered and dried by rotary evaporator. Finally, $100 \mu \mathrm{~L}$ of distilled water was added into the sample. For normal amino acid analysis: mix $10 \mu \mathrm{~L}$ of aqueous solution with $240 \mu \mathrm{~L}$ of 0.02 N HCL and detected with amino acid analyzer.

3.3.5 Cellular fatty acid analysis

3.3.5.1 Preparation of FAME sample

a. Saponification

Dried cells (40 mg) were put into screw-cap tube and added with 1 mL of reagent 1 (Appendix II), and this suspension was shaken well. The suspension was then heated at $100^{\circ} \mathrm{C}$ for 30 min and cooled to room temperature in water.

b. Methylation

The reagent 2 (Appendix II) was added into the suspension and mixed for 5 to 10 sec with vortex mixer. The suspension was heated at $80^{\circ} \mathrm{C}$ for 10 min and cooled to room temperature in water.

c. Extraction

The suspension was added with reagent 3 (Appendix II) and mixed for 10 min and then transferred the upper layer to another tube.

d. Base wash

The reagent 4 (Appendix II) was added into the suspention and mixed for 5 min , if it became to emulsion form, added the reagent 5 (Appendix II) into the suspension. The upper layer was transferred to vial for GC.

a. Extraction

Dried cells (150-300 mg) were added with 3 mL of $\mathrm{MeOH}: 0.3 \% \mathrm{NaCl}$ aq. (100:10) and 3 mL of petroleum ether and mixed them for 15 min . The lower layer was added with 1 mL of petroleum ether and mixed them for 2-5 min. The lower layer was heated at $100{ }^{\circ} \mathrm{C}$ for 5 min and cooled immediately at $37{ }^{\circ} \mathrm{C}$ for 5 min . The suspension was added with Chloroform:MeOH:water (90:100:30) and mixed for 1 h . The upper layer was transferred into another tube. The lower layer was extracted
again with Chloroform:MeOH:water (50:100:40) and the supernatant was transferred to the upper layer tube. The upper layer tube was added with 1.3 mL of chloroform and water. The final lower layer was dried with N_{2} gas $\left(<37^{\circ} \mathrm{C}\right)$.

b. Analysis of polar lipid

The polar lipid fraction was dissolved with $60 \mu \mathrm{~L}$ of chloroform: MeOH (2:1) and applied to two-dimentional silica HPTLC no. 1.05633 developed with the follwing solvent systems.

The $1^{\text {st }}$ solvent system:Chloroform:MeOH:Water (65:25:4)
The $2^{\text {nd }}$ solvent system:Chloroform:Acetic acid:MeOH:Water (40:7.5:6:2)

c. Detection

1. Dittmer and Lester reagent (Appendix II). For all phospholipid (Blue spot)
2. Ninhydrin reagent (Appendix II). Heat at $110{ }^{\circ} \mathrm{C}$ for 10 min after spraying. For phosphatidylethanolamine (PE) and its derivatives (lyso-PE, OH-PE and methyl-PE)
3. Anisaldehyde reagent (Appendix II). Heat at $110{ }^{\circ} \mathrm{C}$ for 10 min after spraying. For glycolipids (green-yellow spot) and other lipid (blue spot)
4. Dragendroff's reagent (Appendix II). For choline-containing phospholipids (phosphatidyl choline)

3.3.7 Mycolic acid analysis

Dried cells ($50-200 \mathrm{mg}$) were hydrolyzed with $10 \% \mathrm{KOH}-\mathrm{MeOH}$ at $100{ }^{\circ} \mathrm{C}$ for 2 h . The hydrolyzed suspension was added with 6 N HCl and extracted with n hexane (or petroleum ether) twice. The upper layer was dried with N_{2} gas.The dried sample was then added with benzene:MeOH: $\mathrm{H}_{2} \mathrm{SO}_{4}$ (10:20:1) and heated at $100{ }^{\circ} \mathrm{C}$ for 2 h (methylation step). After cooling, the suspension was added with water and n hexane for the extraction. The upper layer was transferred to another tube and extracted again with n -hexane. The final upper layer was dried under N_{2} gas and dissolved with a small with n-hexane and the applied to Silica gel TLC. The TLC plate was developed by n-hexane:diethylether (4:1) and detected the spot with I_{2} vapor or $\mathrm{H}_{2} \mathrm{SO}_{4}$ reagen (heat at $110^{\circ} \mathrm{C}$ for 10 min after spraying)

3.3.8 Menaquinone analysis

Dried cells (100-500 mg) were extracted with chloroform:MeOH (2:1) overnight. The suspension was then filtered and dried under rotary evaporator. The dried sample was dissolved with a small amount of acetone and applied onto a silica gel TLC (Merck no.1.05744). The applied TLC was then developed by 100% benzene and the band of menaquinone was detected by using a UV lamp (254 nm). The menaquinone band was scraped and dissolved with HPLC acetone. The suspension was filtered and dried it up with N_{2} gas. The menaquinone sample was analyzed by HPLC.

3.3.9 Analysis of DNA base composition

a. Chromosomal DNA isolation and purification

Chromosomal DNA was isolated from cells grown in yeast extract-malt extract broth for 4-5 days according to the method of Tamaoka (1994) with minor modification. Cells were harvested and suspended in 10 mL of saline-EDTA buffer pH 8.0 (Appendix III). The cell suspension was inoculated with 20 mg of lysozyme at $37{ }^{\circ} \mathrm{C}$ for 30 min followed by the incubation period of 10 min at $50^{\circ} \mathrm{C}$ with 1.0 mL of 10% SDS. The phenol extraction was then carried out by adding an equal volume of phenol:chloroform (1:1) (Appendix IV) to the sample for removal of protein and other debris. The upper layer of the mixture was collected after centrifugation at $10,000 \mathrm{rpm}$ for 20 min . Chromosomal DNA was precipitated with two volumes of ice cold absolute ethanol. DNA was dissolved with 0.1x SSC (Appendix III) and treated with RNase A, RNase T_{1} and proteinase K solution at $37{ }^{\circ} \mathrm{C}$ for 1 h for removal of RNA and protein, respectively. Chromosomal DNA was stored in $0.1 \times$ SSC at $4^{\circ} \mathrm{C}$.

b. DNA base composition analysis

(The $10 \mu \mathrm{~L}$ of heated DNA ($1 \mathrm{mg} / \mathrm{mL}$) was hydrolyzed with $10 \mu \mathrm{~L}$ nuclease P_{1} at $50{ }^{\circ} \mathrm{C}$ for 1 h and followed by the incubation period of 1 h at $37^{\circ} \mathrm{C}$ with $10 \mu \mathrm{~L}$ of alkaline phosphatase. The hydrolyzed DNA was determined using the HPLC method of Tamaoka \& Komagata (1984). An equimolar mixture of nucleotides (Yamasa Shoyu, Choshi, Japan) was used as the quantitative standard for analysis of DNA base composition.

3.4 DNA-DNA hybridization

Chromosomal DNA for DNA-DNA hybridization was purified by repeated phenol extraction to remove RNA and others. DNA was precipitated and dissolved in $0.1 x S S C$. Crude DNA was treated again with RNase A to crush completely RNA, and phenol:chloroform extraction was repeated twice. Then the DNA was precipitated by adding 2 volumes of cold absolute ethanol. The DNA was carefully washed with 70% and 95% ethanol, respectively and dried. DNA was dissolved with 0.1 xSSC and stored at $4{ }^{\circ} \mathrm{C}$.

The spectrophotometric method of DNA quantitative was used to determine both the concentration and relative purify of DNA in a solution. Two absorption spectra (A_{260} and A_{280}) were observed. The DNA was suitable for DNA-DNA hybridization if the ratio of $\mathrm{A}_{260} / \mathrm{A}_{280}$ is 0.56-0.59.

3.4.1 DNA labeling probe with photobiotin

A $10 \mu \mathrm{~L}$ of DNA solution ($1 \mathrm{mg} / \mathrm{mL}$) and $15 \mu \mathrm{~L}$ of photobiotin solution (1 $\mathrm{mg} / \mathrm{mL}$) were mixed in an Eppendorf tube and then irradiated with sunlamp for 30 min on ice. After irradiation, free photobiotin was removed by $100 \mu \mathrm{~L}$ of 0.1 M TrisHCl buffer pH 9.0 , and $100 \mu \mathrm{~L}$ of n -butanol was added into biotinylated DNA solution. The solution was mixed and centrifuged at $12,000 \mathrm{rpm}$ for 20 sec . The upper layer was removed. A $100 \mu \mathrm{~L}$ of n -butanol was added and mixed well. After centrifugation at $12,000 \mathrm{rpm}$ for 20 sec , the upper layer was removed. The biotinylated DNA solution was boiled for 15 min and immediately cooled in ice. The solution was sonicated for 3 min and dissolved with 10 mL of hybridization solution (Appendix IV).
3.4.2 Photobiotin labeling DNA-DNA hybridization

9 The procedure of photobiotin labeling DNA-DNA hybridization was performed by the method described by Ezaki, Hashimoto, and Yabuuchi (1989). DNA $(10 \mu \mathrm{~g})$ of an unknown strain, type strain and reference DNA (calf thymus) were boiled for 10 min and immediately cooled in ice. Then, $500 \mu \mathrm{~L}$ of 2 xPBS (Appendix III), $100 \mu \mathrm{~L}$ of $0.1 \mathrm{MgCl}_{2}$, and sterile distilled water were added to a total volume of 1 mL and mixed well. $100 \mu \mathrm{~L}$ of a heat denatured DNA solution was added to microdilution wells (Nunc-Immuno ${ }^{\mathrm{TM}}$ Plate: MaxiSorp ${ }^{\mathrm{TM}}$ surface) and fixed by incubation at $37^{\circ} \mathrm{C}$ for 2 h . After incubation, the DNA solution was removed. 200
$\mu \mathrm{L}$ of a prehybridization solution (Appendix IV) was added to microdilution wells. The microdilution plate was incubated at $53-55{ }^{\circ} \mathrm{C}$ (hybridization temperature; Appendix V) for 1-2 h. The prehybridization solution was removed from the wells and replaced with $100 \mu \mathrm{~L}$ of a hybridization mixture containing biotinylated DNA. The microdilution plate was incubated at $53-55^{\circ} \mathrm{C}$ (hybridization temperature) for $15-$ 18 h . (For the fluorometric method: prehybridization solution $(200 \mu \mathrm{~L})$ was added to microdilution wells and incubated at $30{ }^{\circ} \mathrm{C}$ for $12-16 \mathrm{~h}$. The prehybridization solution was removed from the wells and replaced with $100 \mu \mathrm{~L}$ of a hybridization mixture containing biotinylated DNA. The microdilution plate was incubated at $55^{\circ} \mathrm{C}$ for 2 h).

3.4.3 Detection of biotin-containing hybrids

After hybridization, the microdilution wells were washed three times with $200 \mu \mathrm{~L}$ of 0.2 xSSC buffer. Then $200 \mu \mathrm{~L}$ of solution I (Appendix IV) was added to microdilution wells and incubated at $30^{\circ} \mathrm{C}$ for 10 min . Solution I was removed from the wells and replaced with $100 \mu \mathrm{~L}$ of solution II (Appendix IV). The microdilution plate was incubated at $37^{\circ} \mathrm{C}$ for 30 min . After incubation, the microdilution plate was washed three times with $200 \mu \mathrm{~L}$ of PBS. $100 \mu \mathrm{~L}$ of solution III (Appendix IV) was added, and the plate was incubated at $37^{\circ} \mathrm{C}$ for 10 min . The enzyme reaction was stopped with $100 \mu \mathrm{~L}$ of $2 \mathrm{M}_{2} \mathrm{SO}_{4}$ (Appendix IV) (Verlander, 1992). The absorbance was measured at 450 nm with Microplate Reader (Microplate Manager ${ }^{\mathrm{R}}$ 4.0 Bio-Rad Laboratories, Inc) and calculated for the value of percentage DNA homology (Appendix V).

3.5 16S rDNA analysis

3.5.1 16S rDNA amplification by PCR

The PCR was performed in a total volume of $50 \mu \mathrm{~L}$ containing $1 \mu \mathrm{~L}$ of DNA sample, $0.25 \mu \mathrm{~L}$ of Taq DNA polymerase, $5 \mu \mathrm{~L}$ of 10xpolymerase buffer, $4 \mu \mathrm{~L}$ of dNTP mixture, $2.5 \mu \mathrm{~L}$ of $10 \mu \mathrm{M}$ forward and reverse primers (Appendix V) and 34.75 $\mu \mathrm{L}$ of Milliq water. A DNA Thermal Cycler (Gene Amp ${ }^{\circledR}$ PCR System 2400; Perkin Elmer) was used with a temperature profile of 3 min at $95^{\circ} \mathrm{C}$ followed by 30 cycles of 30 sec at $95{ }^{\circ} \mathrm{C}$ (denaturing of DNA), 15 sec at $55^{\circ} \mathrm{C}$ (primer annealimg), and 1 min at $72{ }^{\circ} \mathrm{C}$ (polymerization) and a final extension for 5 min at $72{ }^{\circ} \mathrm{C}$. The PCR amplified products were analyzed by running $5 \mu \mathrm{~L}$ of the reaction mixture on a 1% agarose gel in Tris-acetate EDTA buffer (Appendix IV). Agarose gel was stained in
an ethidium bromide solution $(0.5 \mathrm{mg} / \mathrm{mL})$ and examined under UV-transilluminator (UVP Inc.) to visualize the amplified 16 S rDNA band.

3.5.2 16S r DNA sequencing

The amplified 16 S rDNA was used as templates for sequencing with big dye terminator sequencing Kit (Perkin Elmer) and analyzed by the ABI377 automated DNA sequencer (Perkin Elmer). The sequencing reaction for each sample was performed in a DNA Thermal Cycler (Gene Amp ${ }^{\circledR}$ PCR System 2400; Perkin Elmer) with a temperature profile of 30 sec at $96^{\circ} \mathrm{C}$ followed by 25 cycles of 10 sec at $96^{\circ} \mathrm{C}$ (denaturing of DNA), 5 sec at $50{ }^{\circ} \mathrm{C}$ (primer annealimg), and 4 min at $60{ }^{\circ} \mathrm{C}$ (polymerization). Sequencing for each sample is carried out in both forward and reverse directions (Appendix V)

3.5.3 16S rDNA sequence analysis and phylogenetic tree construction

Homology search was performed using the standard BLAST sequence similarity searching program version 2.2.1 from the web server http://www.ncbi.nlm.nih.gov/BLAST/ against previously reported sequences at the GenBank/EMBL/DDBJ databases. The sequence was multiply aligned with selected sequences obtained from the three main databases by using the CLUSTAL W version 1.81. The alignment was manually verified and adjusted prior to the construction of a phylogenetic tree. The phylogenetic tree was constructed by using the neighborjoining (Saitou and Nei, 1987) and maximum parsimony methods (Kluge and Farris, 1969) in the MEGA program version 2.1 (Kumar et al.; 2001). The confidence values of branches of the phylogenetic tree were determined using the bootstrap analyses (Felsenstein, 1985) based on 1000 resamplings. The values for sequence similarity among the closest strains were calculated manually after pairwise alignments obtained using the CLUSTAL X program (Thompson et al., 1997). Gaps and ambiguous nucleotides were eliminated from the calculations. © C 6 C

4. Fermentation of the selected strain for antibiotic production

4.1 Seed medium

A loopful of Micromonospora sp . TT1-11 was inoculated into 50 mL of seed medium consisting of glucose (0.4%), yeast extract (0.4%), malt extract (1.0%), pH 7.3 (in a 250 mL Erlenmeyer flask). The flask was incubated on a rotary shaker at 200 rpm at room temperature for 4 days.

4.2 Production medium

The vegetative seed (2 mL) from the Section 4.1 was transferred into a 500 mL of Erlenmeyer flask containing 200 mL of production medium which comprised glucose (0.4%), yeast extract (0.4%), malt extract (1.0%), and $\mathrm{CaCO}_{3}(0.1 \%)$, pH 7.3. The flask was incubated on a rotary shaker at 200 rpm at room temperature for 10 days.

5. Chromatographic techniques

5.1 Analytical thin-layer chromatography

Technique
Absorbent
(E. Merck)

Layer thickness
Distance
Temperature : Laboratory temperature $\left(30-35^{\circ} \mathrm{C}\right)$
Detection : 1. Visual detection under daylight
2. Visual detection under ultraviolet light at wavelengths of 254 and 365 nm .
3. Spraying with anisaldehyde reagent and heated until colors developed.

66)91944. Visual detection in an iodine vapor

5.2 Column chromatography σ

5.2.1 Flash column chromatography

ค9クセคล้
Adsorbent : Silica gel 60 (No. 7734), particle size 0.063-0.200 nm (70-230 mesh ASTM) (E. Merck)
Packing method : The adsorbent was suspended in an eluant. The
adsorbent slurry was poured into a column and
allowed to settle overnight.

6. Spectroscopy

6.1 Ultraviolet (UV) absorption spectroscopy

UV spectra (in MeOH) were obtained on a Milton Roy Spectronic 3000 Array spectrophotometer (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

6.2 Infrared (IR) absorption spectroscopy

IR spectra (KBr disc and film) were recorded on a Perkin Elmer FT-IR 1760X spectrometer (Scientific and Technological Research Equipment Center, Chulalongkorn University).

6.3 Mass spectrometry

Electrospray ionization-time of flight mass spectra (ESI-TOF MS) were recorded on a Micromass LCT mass spectrometer (The National Center for Genetic Engineering and Biotechnology (BIOTEC)). The mixture of $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}$ (50:50) containing 0.02% of formic acid was used as a solvent.

6.4 Proton and carbon nuclear magnetic resonance (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) spectroscopy

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DEPT 90 and 135, HMQC, HMBC,NOESY, TOCSY, and ${ }^{1} \mathrm{H}-$ ${ }^{1} \mathrm{H}$ COSY spectra were obtained from a Bruker AVANCE DPX-300 FT-NMR spectrometer, operated at 400 MHz for protons and 100 MHz for carbons. The chemical shifts (ppm) of the residual undeuterated solvents $\left(\mathrm{CDCl}_{3}\right.$ or DMSO- d_{6}) were used as reference. Proton detected heteronuclear correlations were measured using HMQC (optimized for ${ }^{1} J_{\mathrm{HC}}=145 \mathrm{~Hz}$) and HMBC (optimized for ${ }^{\mathrm{n}} J_{\mathrm{HC}}=3,4$ and 8 Hz) pulse sequences.

6.5 Optical Rotations

Optical Rotations were measured on a Perkin Elmer Polarimeter 341 (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

7. Solvents

Throughout this work, all organic solvents were of commercial grade and were redistilled prior to use.

8. Biological activity $9 \| 9$?

8.1 Antimicrobial activity

The antimicrobial activity of the isolated fractions and pure compounds was examined by the agar disc diffusion method (Lorian, 1980) against Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, Escherichia coli ATCC 25922, Micrococcus luteus ATCC 9341, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC 10231. All tested microorganisms were cultivated on Mueller-Hinton agar (MHA, Difco ${ }^{\circledR}$) slant at $37{ }^{\circ} \mathrm{C}$ for 24 h , but the yeast strain was cultivated on Sabouraud's dextrose agar (SDA, Difco®) slant at $30^{\circ} \mathrm{C}$ for 24 h . The cell cultures were washed from an agar surface and suspended with sterile normal
saline solution (NSS), and standardized to match a 0.5 turbidity standard of MacFarland No.1, providing approximately 1×10^{8} CFU. Each of molten (25 mL) MHA and SDA was separated and poured into 9 cm diameter petri dish and allowed to solidify to form base layer. A loopful of each tested microorganisms was swabbed on the surface of MHA and SDA plates. All tested samples ($1 \mathrm{mg} / \mathrm{disc}$) were dissolved in the suitable solvent and then applied on a sterile paper dish for disc diffusion assay. These paper discs were left in a sterile petri dish until the solvent was completely dried. The dried paper discs were placed on the surface of the swabbed plates and incubated at $37^{\circ} \mathrm{C}$ and $30{ }^{\circ} \mathrm{C}$ for bacterial strains and yeast strains, respectively, for 24 h . The diameters of inhibition zones were subsequently measured.

8.2 Antimalarial activity

Plasmodium falciparum (K1, multidrug resistant strain) was cultured according to the method of Trager and Jensen (1976) using continuous cultures (in vitro) of asexual erythrocytic stages. Quantitative assessment of antimalarial activity (in vitro) was determined by mean of the microculture radioisotope technique based upon the method described by Desjardins et al. (1979). Inhibition concentration (IC_{50}) represents the concentration which causes 50% reduction in parasite growth as indicated by the in vitro uptake of $[3]\left[\right.$-hypoxanthine by P. falciparum. An IC_{50} value of $1-3 \mathrm{ng} / \mathrm{mL}$ was observed for the standard sample, dihydroartemisinin, in the same test system.

8.3 Cytotoxic activity

Cytotoxic activity against a breast cancer cell line (BC), a human epidermoid carcinoma cell line of the nasopharynx (KB), and a Vero cell line (African monkey kidney cell line) was performed by the colorimetric method (Skehan et al., 1990).

8.4 Antimycobacterial activity

The antimycobacterial activity was assessed against Mycobacterium tuberculosis H37Ra with the Microplate Alamar Blue Assay (MABA) (Collins and Franzblau, 1997). The standard drugs, isoniazid, and kanamycin sulfate, used as reference compounds for the antimycobacterial assay, showed MIC values of 0.04-0.09 and 2.0$5.0 \mu \mathrm{~g} / \mathrm{mL}$, respectively in the test system.

9. Extraction and isolation of micromonosporin A from Micromonospora sp.

TT1-11

The YM fermentation broth (20 L) of Micromonospora sp. TT1-11 was filtered through a Buchner funnel packed with Kieselguhr (diatomaceous earth or diatomite or bacillarieae earth). The filtrate was partitioned with ethyl acetate ($30 \mathrm{~L} \times 3$). The ethyl acetate layer was collected and concentrated under reduced pressure at $45^{\circ} \mathrm{C}$ to yield 3.9 g of the ethyl acetate extract (dark brown oily liquid) as shown in Scheme 2.

The ethyl acetate extract of Micromonospora sp. TT1-11 was examined for antimicrobial activity using the method described in the Section 8.1. The crude ethyl acetate extract of Micromonospora sp. TT1-11 showed antibacterial activity against S. aureus, and B. subtilis with the inhibition zones of 17 and $19 \mathrm{~mm}(1 \mathrm{mg} / 6 \mathrm{~mm}$ diameter paper disc), respectively.

The crude ethyl acetate extract (3.9 g) of Micromonospora sp. TT1-11 was fractionated by quick column chromatography using silica gel as an adsorbent as shown in Scheme 3. The gradient of MeOH in CHCl_{3} was used as a mobile phase to give five fractions (TT01-TT05) after combination of fractions which showed similar thin-layer chromatographic patterns. $\left(\mathrm{Si} \mathrm{Gel} \mathrm{GF} 10 \%\right.$,MeOH in CHCl_{3}). Fractions $(20 \mathrm{~mL})$ were collected. Directed by bioassay using antimicrobial activity against S. aureus and B. subtilis, the fraction TT04 (1.5 g) was further purified by a silica gel flash column (3 cm inner diameter and 16 cm long), using an isocratic elution of $\mathrm{CHCl}_{3}: \mathrm{MeOH}(9: 1)$ to yield six fractions (TT041-TT046).

The TT043 fraction (328.4 mg) showed an antimicrobial activity and several black spots under UV light (254 nm), as well as small orange spots on the TLC (Si $\mathrm{Gel}, 10 \% \mathrm{MeOH}$ in CHCl_{3}). The spot at $\mathrm{R}_{f}=0.27$ was the major product, and the fraction containing this compound was purified by a silica gel flash column $(3 \mathrm{~cm}$ inner diameter and 16 cm long), using an isocratic elution of $\mathrm{CHCl}_{3}: \mathrm{MeOH}(9: 1)$ to yield micromonosporin A and fraction TT0431.

Micromonosporin A (259.0 mg) was obtained as an off-white powder. The compound showed $\mathrm{R}_{f}=0.27$ ($\mathrm{Si} \mathrm{Gel} \mathrm{GF}, \mathrm{CHCl}_{3}: \mathrm{MeOH}=9: 1$) under UV light (254 nm) detection. Micromonosporin A was a major product in fermentation broth. Unfortunately, micromonosporin A was very unstable and spontaneously degraded into many unidentified products.

10. Pd/C Hydrogenation of micromonosporin A

Micromonosporin A (20 mg) was put into a $5-\mathrm{mL}$ round bottom flask with a magnetic bar inside. Dimethyl formamide (DMF) (2 mL) and $10 \% \mathrm{Pd} / \mathrm{C}(1 \mathrm{mg})$ were added. The flask was sealed with a rubber septum and the air inside was replaced by hydrogen gas using a balloon. The mixture was stirred at room temperature for 2 h . The mixture was extracted with ethyl acetate and then purified by Sephadex LH-20 column chromatograhphy (eluted with MeOH) to yield 12 mg of compound 2 (9,11,13-trihydroxy-14,19,24-trimethyl-1-azacyclotetracosan-2-one).

Scheme 2. Extraction of the YM fermentation broth of Micromonospora sp.TT1-11.

Scheme 3. Isolation of the ethyl acetate extract of Micromonospora sp.TT1-11.

11. Physical and spectral data of isolated compounds

11.1 Micromonosporin A

Micromonosporin A was obtained as an off-white powder from ethyl acetate, soluble in dimethylsulphoxide ($259 \mathrm{mg}, 6.71 \%$ based on the ethyl acetate extract).

Melting point $: 146{ }^{\circ} \mathrm{C}$
$[\alpha]^{25}{ }_{\mathrm{D}} \quad:-248.4(c=1.0, \mathrm{MeOH})$
ESI-TOFMS $:[\mathrm{M}+\mathrm{Na}]^{+} m / z$ (positive ion mode); Figure 47
UV $\quad: \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon)$, in MeOH ; Figure 45
291 (4.77)
IR $: v_{\max } \mathrm{cm}^{-1}, \mathrm{HBr}$ disc; Figure 46
3430, 2930, 1631, 1555, 1436, 1391, 1002
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 48-50, Table 23
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100 \mathrm{MHz}$, in DMSO- d_{6}; Figure 51-52, Table 23

11.2 Compound 2

Compound 2 was obtained as colorless viscous liquid, soluble in chloroform.
$[\alpha]^{25}{ }_{\mathrm{D}}$: $-7.73(c=0.1, \mathrm{MeOH})$

ESI-TOFMS $:[\mathrm{M}+\mathrm{Na}]^{+} m / z$ (positive ion mode); Figure 69
UV $\quad \lambda_{\max } \mathrm{nm}(\log \varepsilon)$, in MeOH ; Figure 67
$\begin{array}{ll}13 \\ { }^{1} \mathrm{HNMR} & : \delta \mathrm{ppm}, 400 \mathrm{MHz}, \text { in } \mathrm{CDCl}_{3} ; \text { Figure } 70 \\ { }^{13} \mathrm{CNMR} & : \delta \mathrm{ppm}, 100 \mathrm{MHz}, \text { in } \mathrm{CDCl}_{3} \text {; Figure } 71\end{array}$

CHAPTER IV

RESULTS AND DISCUSSION

1. Bacterial strains and sources of isolation

A total of 52 actinomycete strains, which produced single non-motile spores were isolated from 17 samples of peat swamp forest soils in Trang, Pattaloong, Yala, and Narathiwat provinces, Thailand (Table 10). The pH of the soil samples ranges from 3.26-6.37. The isolates were cultivated on YMA for working and stock culture. The type strains of all validly described species of Micromonospora except for M. gallica were obtained from the Japan Collection of Microorganisms (JCM) as shown in Table 8.

2. Morphological and cultural characteristics of the isolates

The morphological characteristics (colonial appearance and scanning electron microscope pictures) of representative strains are shown in Figures 8-18. They produced well-developed and branched substrate hyphae on yeast extract-malt extract medium, but no aerial hyphae. Spores of them were borne singly on the substrate hyphae having approximately diameter of $0.5-0.6 \mu \mathrm{~m}$. The spores were rough, nodular, and smooth on the surface and non-motile. The colors of the substrate mycelium were yellowish white to vivid orange and turned to brownish black to black after sporulation. The morphological characteristics of these isolates were consistent with their classification in the genus Micromonospora (Kawamoto, 1989). The cultural characteristics of all strains are summarized in Table 11.

3. Biochemical and Physiological Characteristics $9 / \& \cap Q \&$

On the basis of phenotypic characteristics (Table 12 and 13) including the results of intra-grouping by DNA-DNA hybridization experiment (Tables 14), fifty-two Micromonospora isolates could be classified into 11 groups. The members in each group showed the high values of DNA similarity ($>70 \%$) and shared many phenotypic properties. All isolates liquefied gelatin. They grew in $2-6 \% \mathrm{NaCl}$ but almost strains could grow at $4-5 \% \mathrm{NaCl}$. Fifty isolates could hydrolyze skim milk and

Table 10. Sources, Locations, pH , and isolate numbers of strains from peat swamp forest soils.

Table 11. Cultural characteristics of the isolates.

Isolate no.	Media	Growth	Color of upper surface	Color of reverse surface	Soluble pigment
LK3-1	Y.M.	abundant	black	deep orange	-
	O.M.	abundant	dark brown	deep orange	-
	I.S.	abundant	brownish black	deep orange	-
	T.A.	poor	dark yellowish brown	brownish gold	-
	Gly.A.	poor	brownish gold	brownish gold	-
	Glu.A.	moderate	brownish black	light yellowish brown	-
	Cz.sucrose	abundant	dark brown dark grayish brown to	deep orange	-
	N.A.	abundant		light yellowish brown	-
	P.I.A.	abundant	brownish black	brownish gold	-
LK5-4	Y.M.	abundant	black	deep orange	-
	O.M.	abundant	dark grayish brown	deep orange	-
	I.S.	abundant	brownish black	deep orange	-
	T.A.	poor	brownish gold	brownish gold	-
	Gly.A.		$4 \leq$ brownish gold	light yellowish brown	-
	Glu.A.	good	dark grayish brown dark yellowish brown to	light yellowish brown	-
	Cz.sucrose	abundant	black dark yellowish brown to	deep orange	-
	N.A.		black	light yellowish brown	-
	P.I.A.	abundant	brownish black	deep orange	-
KM1-3	Y.M.	abundant abundant abundant	brownish black dark brown to dark grayish brown black \qquad dark yellowish brown to	deep orange deep orange deep orange	-
	O.M. I.S.				-
	T.A. Gly.A. Glu.A.	moderate moderate	black dark yellowish brown to black dark yellowish brown to black	yellowish brown vivid orange reddish brown	- - -
	Cz.sucrose	abundant	brownish black	vivid orange	-
	N.A.	good	reddish brown	reddish brown	-
		abundant	brownish black	deep orange	-

Table 11 (continued)

Table 11 (continued)

Table 11 (continued)

Isolate no.	Media	Growth	Color of upper surface	Color of reverse surface	Soluble pigment
KM4-29	Y.M.	abundant	vivid orange	vivid orange	pale yellow
	O.M.	moderate	vivid orange	vivid orange	-
	I.S.	moderate	vivid orange	vivid orange	-
	T.A.	moderate	dull orange	dull orange	-
	Gly.A.	poor	pale yellow pink	pale yellow pink	-
	Glu.A.	moderate	vivid orange	vivid orange	-
	Cz.sucrose	moderate	vivid orange	vivid orange	-
	N.A.	moderate	vivid orange	vivid orange	-
	P.I.A.	ood	7) vivid orange	vivid orange	-
KM4-24	Y.M.	abundant	deep orange	deep orange	pale yellow
	O.M.	good	- vivid orange	vivid orange	-
	I.S.	moderate	vivid orange	vivid orange	-
	T.A.	poor	vivid orange	vivid orange	-
	Gly.A.	poor	vivid orange strong reddish	vivid orange	-
	Glu.A.	moderate	orange	strong reddish orange	-
	Cz.sucrose	moderate	vivid orange	vivid orange	-
	N.A.	moderate	vivid orange	vivid orange	-
	P.I.A.	abundant	vivid orange	vivid orange	-
KM4-25	$\begin{aligned} & \text { Y.M. } \\ & 6.6 \\ & \text { O.M. } \end{aligned}$	abundant good	deep orange vivid orange	deep orange vivid orange	pale yellow
	I.S. T.A.	moderate poor	vivid orange vivid orange	vivid orange vivid orange	-
	Gly.A.	poor	vivid orange strong reddish	vivid orange	-
	Glu.A.	moderate	orange	strong reddish orange	-
	Cz.sucrose	moderate	vivid orange	vivid orange	-
	N.A.	moderate	vivid orange	vivid orange	-
	P.I.A.	abundant	vivid orange	vivid orange	-

Table 11 (continued)

Table 11 (continued)

Table 11 (continued)

Table 11 (continued)

Table 11 (continued)

Isolate no.	Media	Growth	Color of upper surface	Color of reverse surface	Soluble pigment
KM4-4	$\begin{aligned} & \text { Y.M. } \\ & \text { O.M. } \end{aligned}$	abundant good	yellowish brown to dark brown yellowish brown to dark brown	vivid orange vivid orange	yellow
	I.S.	good	dark brown	vivid orange	-
	T.A.	moderate	brown	dark brown	-
	Gly.A.	poor	light yellowish brown	light yellowish brown	-
	Glu.A.	moderate	light yellowish brown	light yellowish brown	-
	Cz.sucrose	abundant	vivid orange	vivid orange	-
	N.A.	good	vivid orange	vivid orange	-
	P.I.A.	abundant	7 deep orange	deep orange	-
KM4-11	Y.M.	abundant	yellowish brown to dark brown	vivid orange	yellow
	O.M.	abundant	vivid orange	vivid orange	-
	I.S.	abundant	dark brown yellowish brown to dark	vivid orange yellowish brown to	-
	T.A.	moderate	S-Cis brown	dark brown	-
	Gly.A.	poor	light yellowish brown	light yellowish brown	-
	Glu.A.	moderate	light yellowish brown	light yellowish brown	-
	Cz.sucrose	abundant	vivid orange	vivid orange	-
	N.A.	good	yellowish brown to da brown	vivid orange	-
	P.I.A.	abundant	deep orange	deep orange	-
BTG1-4	Y.M.	abundant		grayish yellow	pale yellow
	O.M.	abundant	σ gold \curvearrowleft	gold	-
	I.S. T.A.	poor poor	yellowish white yellowish white	yellowish white yellowish white	-
	Gly.A.	poor	yellowish white	yellowish white	-
	Glu.A.	poor	yellowish white	yellowish white	-
	Cz.sucrose	poor	yellowish white	yellowish white	
	N.A.	good	dark yellowish brown	gold	yellow
	P.I.A.	abundant	light yellowish brown	pale yellowish orange	-

Table 11 (continued)

Table 11 (continued)

Table 11 (continued)

Table 11 (continued)

Table 11 (continued)

Isolate no.	Media	Growth	Color of upper surface	Color of reverse surface	Soluble pigment
LK6-12	Y.M.	good	dark grayish brown	deep orange	pale yellow
	O.M.	good	vivid orange	vivid orange	-
	I.S.	poor	pale orange	pale orange	-
	T.A.	moderate	light yellowish brown	brown	-
	Gly.A.	poor	yellowish white	yellowish white	-
	Glu.A.	poor	pale orange	pale orange	-
	Cz.sucrose	poor	pale orange	pale orange	-
	N.A.	moderate	brownish black	deep reddish orange	-
	P.I.A.	good	vivid orange	vivid orange	-
TK2-2		ood	vivid orange	vivid orange	yellowish orange
	O.M.	good	13. vivid orange	vivid orange	-
	I.S.	poor	2) pale orange	pale orange	-
	T.A.	poor	25ivid orange	vivid orange	-
	Gly.A.	poor	pale orange	pale orange strong yellowish	-
	Glu.A.	poor	orange	orange	-
	Cz.sucrose	poor	pale orange	pale orange	-
	N.A.	moderate	strong reddish orange	orange	-
	P.I.A.	good	vivid orange	vivid orange	-
KM1-7	$\begin{aligned} & \text { Y.M. } \\ & \text { O.M. } \\ & \text { O.M. } \end{aligned}$	moderate moderate	strong reddish orange vivid orange	strong reddish orange vivid orange	yellowish orange
	I.S. T.A.	poor poor	pale orange vivid orange	pale orange vivid orange	-
	Gly.A. Glu.A.	poor moderate	pale orange strong yellowish orange	pale orange strong yellowish orange	-
	Cz.sucrose N.A.	poor good	pale orange strong reddish orange	pale orange strong reddish orange	-
	P.I.A.	good	vivid orange	vivid orange	-

Table 11 (continued)

Table 11 (continued)

Table 11 (continued)

Table 11 (continued)

Isolate no.	Media	Growth	Color of upper surface	Color of reverse surface	Soluble pigment
TT1-11	Y.M.	abundant	brownish black to black	vivid orange	brown
	O.M.	abundant	brownish black brownish black to	deep orange	-
	I.S.	good	black	vivid orange	-
	T.A.	moderate	black	grayish white	brown
	Gly.A.	moderate	blac	grayish white	-
	Glu.A.	moderate	pale orange brownish black to	pale orange	-
	Cz.sucrose	abundant	black	vivid orange	-
	N.A.	moderate	black	vivid orange	-
	P.I.A.	good	black	dark yellowish brown	-

Figure 8. The colonial appearance of Micromonospora sp. LK5-4 on YMA medium (21 days).

Figure 9. The colonial appearance and scaning electron micrograph of Micromonospora sp. KM4-29 on YMA medium (21 days).

Figure 10. The colonial appearance of Micromonospora sp. KM3-14 on YMA medium (21 days).

Figure 11. The colonial appearance and scaning electron micrograph of Micromonospora sp. BTG10-2 on YMA medium (21 days).

Figure 12. The colonial appearance and scaning electron micrograph of Micromonospora sp . TT2-4 on YMA medium (21 days).

Figure 13. The colonial appearance and scaning electron micrograph of Micromonospora sp. BTG4-1 on YMA medium (21 days).

Figure 14. The colonial appearance and scaning electron micrograph of Micromonospora sp. LK2-10 on YMA medium (21 days).

Figure 15. The colonial appearance and scaning electron micrograph of Micromonospora sp. LK6-12 on YMA medium (21 days).

Figure 16. The colonial appearance of Micromonospora sp. KM1-7 on YMA medium (21 days)

Figure 17. The colonial appearance and scaning electron micrograph of Micromonospora sp. BTG2-3 on YMA medium (21 days).

Figure 18. The colonial appearance and scaning electron micrograph of Micromonospora sp. TT1-11 on YMA medium (21 days).
starch and could grow at $40{ }^{\circ} \mathrm{C}$, whereas the remaining (2 isolates) could grow at 45 ${ }^{\circ} \mathrm{C}$. The minimum pH for growth of all isolates was 5 . Among fifty-two isolates, seven isolates could inhibit growth of B. subtilis, S. aureus, and M. luteus. Variable characteristics and utilization of carbon sources are shown in Tables 12 and 13.

Micromonospora group I contained eight isolates, including LK3-1, LK5-4, KM1-3, LK5-9, LK5-7, KM3-1, KM3-2, KM3-3. They were positive for hydrolysis of starch, peptonization and coagulation of milk, and nitrate reduction. Well growth was observed between $25-30{ }^{\circ} \mathrm{C}$. No growth was observed above $40{ }^{\circ} \mathrm{C}$. The minimum pH for growth was 5 and they grew on $5-6 \% \mathrm{NaCl}$.

Micromonospora group II comprised of four isolates, including KM4-33, KM429, KM4-24, and KM4-25. They were positive for hydrolysis of starch and peptonization and coagulation of milk, and negative for reduction of nitrate. Well growth was observed between $25-30{ }^{\circ} \mathrm{C}$. The maximum temperature for growth was $40^{\circ} \mathrm{C}$. The minimum pH for growth was 5 . The range of NaCl concentration for growth was 5-6\%.

Micromonospora group III consisted seven isolates. They were BTG3-2, BTG72, KM3-4, KM3-14, KM3-10, KM3-37, and KM3-7. They showed positive results of starch hydrolysis, peptonization and coagulation of milk, reduction of nitrate. Well growth was observed between $25-30{ }^{\circ} \mathrm{C}$. The maximum temperature for growth of these strains were at $40^{\circ} \mathrm{C}$. The minimum pH for growth was 5 . The range of NaCl concentration for growth was 4-5\%.

Micromonospora group IV contained four isolates, including BTG10-2, BTG1014, BTG7-3, and LK2-4. They were positive for hydrolysis of starch, peptonization and coagulation of milk, but negative for reduction of nitrate. Well growth was observed between $25-30{ }^{\circ} \mathrm{C}$. The maximum temperature for growth of strains BTG10-2 and BTG10-14 were at $40^{\circ} \mathrm{C}$ whereas strains BTG7-3 and LK2-4 were at $37{ }^{\circ} \mathrm{C}$. The minimum pH for growth was 5 . They grew on $4-5 \% \mathrm{NaCl}$. Their secondary metabolites inhibited growth of Bacillus subtilis ATCC 6633 and Micrococcus luteus ATCC 9341.

Micromonospora group V contained three isolates. They were TT2-4, KM4-11, and KM4-4. They showed positive results for hydrolysis of starch, peptonization and coagulation of milk, but negative for reduction of nitrate. Well growth was observed
between $25-30{ }^{\circ} \mathrm{C}$. No growth was observed above $40^{\circ} \mathrm{C}$. The minimum pH for growth was 5 . The maximum NaCl concentration for growth was 5%.

Micromonospora group VI comprised ten isolates, including BTG1-4, BTG4-1, LK2-12, KM1-6, KM1-9, KM1-2, KM1-5, BTG1-1, KM4-7, and LK2-3. They were positive for hydrolysis of starch, peptonization of milk, and reduction of nitrate. Well growth was observed between $25-30{ }^{\circ} \mathrm{C}$. No growth was observed above $40^{\circ} \mathrm{C}$. The minimum pH for growth was 5 . They grew on $0-4 \% \mathrm{NaCl}$.

Micromonospora group VII consisted of two isolates, including LK2-10 and LK2-5. They were positive for hydrolysis of starch, peptonization and coagulation of milk, and reduction of nitrate. Well growth was observed between $25-30{ }^{\circ} \mathrm{C}$. No growth was observed above $45^{\circ} \mathrm{C}$. The minimum pH for growth was 5 . The range of NaCl concentration for growth was $0-4 \%$. They produced secondary metabolites that could inhibit growth of Bacillus subtilis ATCC 6633 and Micrococcus luteus ATCC 9341.

Micromonospora group VIII contained two isolates, including LK6-1 and LK612. They were positive for hydrolysis of starch and peptonization of milk, but negative for reduction of nitrate. Well growth was observed between $25-30^{\circ} \mathrm{C}$. No growth was observed above $40^{\circ} \mathrm{C}$. The minimum pH for growth was 5 . The maximum NaCl concentration for growth was 4%.

Micromonospora group IX comprised of two isolates. They were strains KM1-7 and TK2-2. They showed negative results for hydrolysis of starch, reduction of nitrate, but weakly positive for peptonization of milk and gelatin liquefaction. Well growth was observed between $25-30^{\circ} \mathrm{C}$. No growth was observed above $40^{\circ} \mathrm{C}$. The minimum pH for growth was 5. The range of NaCl concentration for growth was 0 4%.

Micromonospora group X contained nine isolates, including LK6-9, BTG3-4,

 BTG1-2, BTG2-3, BTG6-2, BTG4-2, BTG3-6, LK2-6, and LK2-15. They were positive for hydrolysis of starch, peptonization and coagulation of milk, but negative for reduction of nitrate. Well growth was observed between $25-30{ }^{\circ} \mathrm{C}$. No growth was observed above $40^{\circ} \mathrm{C}$. The minimum pH for growth was 5 . The range of NaCl concentration for growth was $3-4 \%$.Micromonospora group XI comprised of one isolate, strain TT1-11 which was positive for hydrolysis of starch, peptonization and coagulation of milk, but negative for reduction of nitrate. Well growth was observed between $25-30{ }^{\circ} \mathrm{C}$. No growth was observed above $40^{\circ} \mathrm{C}$. The minimum pH for growth was 5 . The maximum NaCl concentration for growth was 2%. This strain produced secondary metabolites that could inhibit growth of Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 25923.

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Table 12. The physiological and biochemical characteristics of the isolates.

Group	Isolate no.	NaCl tolerance							pH tolerance					Growth at (${ }^{\circ} \mathrm{C}$):					Skim milk					Antimicrobial activities
		1.5	2	3	4	5	6	7	4	4.5	5	6	8	20	37	40	45	50						
I	LK3-1	+++	+++	+++	++	+	+	-	-		+		+	++	+++	+	-	-	+	++	+	+	+	-
	LK5-4	+++	+++	+++	++	+	+					++	++	++	+++	+	-	-	++	++	+	+	$+$	-
	KM1-3	+++	+++	++	+	+	+	-	-			++	++		+++		-	-	+	++	+	$+$	$+$	-
	LK5-9	+++	+++	++	++	+	+		-			$++$	++	+	+++	+	-	-	+	++	+	$+$	$+$	-
	LK5-7	+++	+++	++	++	+	-		-		+	+	++	+	++	+	-	-	+	++	+	w	$+$	-
	KM3-1	++	+++	++	+	+	-	-	-		$+$	++	++	++	+++	+	-	-	+	++	+	w	$+$	-
	KM3-2	++	+++	++	+	+	-		-		$+$	$+$	$++$	+	+++	+	-	-	++	+	+	w	$+$	-
	KM3-3	++	+++	++	+	+	-	-	-		4	++	++	++	+++	+	-	-	+	++	$+$	w	$+$	-
II	KM4-33	+++	+++	+++	++	+	w	-	-		+	++	+	+	++	+	-	-	+	++	w	-	+	-
	KM4-29	+++	+++	+++	+++	++	${ }^{+}$	-	-	-	+	++	+	+	++			-	+	++	w	-	$+$	-
	KM4-24	++	+++	++	++	++			-			++	+	++	++			-	++	++	$+$	-	$+$	-
	KM4-25	++	+++	++	++	++	-	-	-	-	+	++	+	++	++	+	-	-	++	++	+	-	$+$	-
III	KM3-4	++	++	++	+	+	-	-	-	-	+	+++	+	+	+++	+	-	-	+	++	+	+	w	-
	KM3-7	++	++	++	+	+	-	-		-		++	++	+	$+$	+	-	-	+	++	+	$+$	$+$	-
	KM3-10	++	++	++	+			-		-9		$f+$	P+					F	+	++	+	+	+	-
	KM3-14	++	++	++	+	+	O	-	-				++	+	$+++$	$+$	-	-		++	$+$	$+$	w	-
	KM3-37	++	++					-	5				$1++$	$0+$			\bigcirc	-		0^{++}	$+$	$+$	w	-
	BTG7-2	++	++			-	0		-		4		++	+	++ +	+		-		$++$	+	+	+	-
	BTG3-2	++	++	+	${ }_{+}^{+}$	-	-	-		-	+	++	++	$+$	++	+	-	-	+	++	+	+	w	-

Table 12 (continued)

Group	Isolation No.	NaCl tolerance							pH tolerance						Growth at (${ }^{\text {C }}$) :				Skim milk					Antimicrobial activities
		1.5	2	3	4	5	6	7	4	4.5	5	6	8	20	37	40	45	50	$\begin{aligned} & \text {.0 } \\ & \text { N } \\ & \text { N } \\ & \text { 를 } \\ & \text { 20 } \end{aligned}$	E 気 0 0 0 0				
IV	BTG10-2	++	++	+	+	w	-	-	-			++	+	++	+++	+	-	-	+	++	+	-	+	B. subtilis, M. luteus
	BTG10-14	++	++	+	+	w	-	-						++	+++	+		-	+	++	+	-	+	B. subtilis, M. luteus
	BTG7-3	++	++	+	+	-	-	-					+	++	+++		-	-	++	$+$	w	-	+	M. luteus, B. subtilis
	LK2-4	++	++	+	+	-	-						+	++	+++	-	-	-	+	++	$+$	-	+	M. luteus, B. subtilis
V	TT2-4	++	++	+	+	+	-	-	-					+	++		-	-	+	++	+	-	+	-
	KM4-4	+++	+++	++	+	+	-	-	-		+	++	+ +		++	+	-	-	+	++	+	-	+	-
	KM4-11	+++	+++	++	+	w	-	-	-	-	+	+4	+	+	++	$+$	-	-	+	++	w	-	+	-
VI	BTG1-4	+++	+++	++	+	-	-	-	-	-		+1+	+	$+$	+++	+	-	-	++	w	+	w	+	-
	BTG4-1	+++	+++	+	+	-	-	-	-	-	+	44t	$+$	+	+++	+	-	-	+	++	$+$	w	+	-
	LK2-12	++	++	+	+	-	-	-	-	-	+	++	+	+	+++	+		-	++	+	$+$	w	$+$	-
	KM1-6	+++	++	+	+	-	-		-	-	+	+++	++	+	+++	+		-	++	+	$+$	w	$+$	-
	KM1-5	++	++	++	+	-	-		-	-	+	+++	+	+	+++	+	-	-	w	-	$+$	w	+	-
	KM1-2	+++	++	+	+	-	-	-	-	-	+	++	+	+	+++	+	-	-	w	-	+	w	+	-
	KM1-9	++	++	++	+	-	-	-	-									-	w	-	+	w	+	-
	BTG1-1	+++	+++	++	w	-		-	-	-	+	+++			+++	+	-	O	w	++	$+$	w	+	-
	LK2-3	+++	++	++	+	-	-	-	-	-				+			-	-			$+$	w	+	-
	KM4-7	++	++	+													-			+	w	w	+	-

Table 12 (continued)

Group	IsolationNo.	NaCl tolerance							pH tolerance						Growth at (${ }^{\circ} \mathrm{C}$):				Skim milk					Antimicrobial activities
		1.5	2	3	4	5	6	7	4	4.5	5	6	8	20	37	40	45	50						
VII	LK2-5 LK2-10	$++$ ++	++ $++$	$+$ $+$	+ +	-	- -	-			+	++	+ ++	++ ++	+++ +++	+ +			$+$ $+$	$++$ ++	$+$ $+$	$+$ $+$	+ +	M. luteus, B. subtilis M. luteus, B. subtilis
VIII	$\begin{gathered} \text { LK6-1 } \\ \text { LK6-12 } \\ \hline \end{gathered}$	$\begin{aligned} & +++ \\ & +++ \end{aligned}$	$\begin{aligned} & ++ \\ & ++ \end{aligned}$	$\begin{aligned} & + \\ & + \\ & \hline \end{aligned}$	$+$ $+$	-	- -	-			$+$	+++ +++	++	++	+++ +++	+ + +	-	-	w w	-	w w	-	$\begin{aligned} & + \\ & + \\ & \hline \end{aligned}$	-
IX	TK2-2 KM1-7	+ +	$+$	w w	w w	-	- -	-	-		+ + +	$\underset{++}{++i}$	${ }_{4}^{++}$	+ +	++ ++	+ +		-	w w	-	w w	-	-	-
X	BTG3-4	+++	+++	+	+	-	-	-	-		$+$	+++	++	++	++	+	-	-	+	++	+	-	+	-
	LK6-9	+++	++	++	$+$	-	-	-	-		$+$	+ +	++	+	+++	+	-	-	++	+	+	-	+	-
	BTG6-2	+++	++	++	-	-	-	-	-		+	44	++		++	+	-	-	w	++	+	-	+	-
	BTG1-2	++	++	$+$	-	-	-	-	-	-	+	+++	++	++	++	+		-	++	+	+	-	+	-
	BTG2-3	++	++	+	-	-	-		-	-	+	++	++	++	++	+	-	-	w	++	+	-	+	-
	BTG4-2	++	++	$+$	-	-	-		-	-	$+$	+++	+++	++	+++	+	-	-	++	+	+	-	+	-
	BTG3-6	++	++	++	-	-	-	-	-	-	+	+++	++	++	+++	+	-	-	w	++	+	-	$+$	-
	LK2-6	++	++	+	+	-	-	-	-	10^{-}	+	+++	$++$	+	$++$	$+$	-	$\stackrel{-}{-}$	+	++	w	-	+	-
	LK2-15	++	++	+	$+$	-													+	++	w	-	+	-
XI	TT1-11	++	+	-	-	-	-	-	-	-	+	++ +	++	++	++	+	-	-		++	+	-	+	B. subtilis, S. aureus

$+++=$ abundant,$++=$ good,$+=$ fair, $\mathrm{w}=$ weak

Table 13. Carbon utilization of the isolates.

Table 13 (continued)

Utilization of :

D-Mannitol $+\quad+\quad \mathrm{w}$ w $\mathrm{w}+\mathrm{w}$

L-Rhamnose
D-Melibiose
D-Raffinose

Glycerol	w	+	+	w	w	w
Salicin	+	+	+	+	+	+

Lactose
D-Galactose
L-Arabinose
Cellobiose
D-Fructose
D-Xylose

Table 14. DNA-DNA similarity among the isolates and the representative Micromonospora species in each groups.

Isolates no.	Percentage DNA similarity with labeled DNA from:										
	LK2-10	LK5-4	KM4-29	KM3-14	BTG10-2	TT2-4	BTG4-1	LK6-12	KM1-7	BTG2-3	TT1-11
LK2-10	100										
LK2-5	89										
LK5-4		100									
LK3-1		93									
KM1-3		86									
LK5-9		89									
LK5-7		92			a						
KM3-1		80									
KM3-2		101									
KM3-3		99			刮)						
KM4-29			100								
KM4-33			87								
KM4-24			95								
KM4-25			98		-						

Table 14 (continued)

Isolate no.	Percentage DNA similarity with labeled DNA from:									
	LK2-10	LK5-4	KM4-29	KM3-14	BTG10-2	TT2-4 BTG4-1	LK6-12	KM1-7	BTG2-3	TT1-11
KM3-14				100						
KM3-4				88	7	\cdots				
KM3-10				83	1					
KM3-37				89						
KM3-7										
BTG3-2				82						
BTG7-2				90						
BTG10-2					100					
BTG10-14					102					
BTG7-3					98					
LK2-4					86					
TT2-4						100				
KM4-11						84				
KM4-4						79				
				\cdots		*				

สถาบันวิทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย

Table 14 (continued)

Isoolate	Percentage DNA similarity with labeled DNA from:										
no.	LK2-10	LK5-4	KM4-29	KM3-14	BTG10-2	TT2-4	BTG4-1	LK6-12	KM1-7	BTG2-3	TT1-11
BTG4-1							100				
BTG1-4				-	\%	\cdots	103				
LK2-12							91				
KM1-6							87				
KM1-9							82				
KM1-2							89				
KM1-5							79				
BTG1-1							88				
KM4-7					N		79				
LK2-3					haske		94				
LK6-12					量新			100			
LK6-1				1				85			
KM1-7							J		100		
TK2-2				\#			-		96		

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Table 14 (continued)

4. Chemotaxonomic characteristics of Micromonospora strains

The representative strains in each group (nineteen isolates from the total of fiftytwo isolates) were selected for chemotaxonomic characterization. They showed the same pattern of chemotaxonomic characteristics which were similar to those of members of the genus Micromonospora (Tables 15 to 19). Cell wall hydrolysates of them contained glutamic acid, glycine, alanine, and diaminopimelic acid in a molar ratio of 1.0:0.9:0.4:1.1 (calculated by defining the amount of glutamic acid as 1.0), and the isomer of diaminopimelic acid was meso, indicating that these strains have wall chemotype II as described by Lechevalier \& Lechevalier (1970) and peptidoglycan type Al γ^{\prime} as described by Schleifer \& Kandler (1972). The acyl type of cell wall muramic acid was glycolyl type. The strains contained glucose, xylose, arabinose, galactose, mannose, and ribose as whole-cell sugars, but rhamnose was not detected (whole-cell sugar pattern D as described by Lechevalier \& Lechevalier, 1970). Characteristic phospholipids were diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositolmannosides, and phosphatidylethanolamine, but not phosphatidylcholine. This pattern corresponds to phospholipid type II as described by Lechevalier et al. (1977). The cellular fatty acid compositions are shown in Table 19. Their major fatty acids were iso- $\mathrm{C}_{15: 0}$, iso- $\mathrm{C}_{16: 0}$, iso- $\mathrm{C}_{17: 0}$, anteiso$\mathrm{C}_{15: 0}, \mathrm{C}_{17: 0}$, and anteiso- $\mathrm{C}_{17: 0}$. This pattern corresponds to fatty acid type 3 b of Kroppenstedt (1985). Mycolic acids were absent. The predominant menaquinones were MK-9(H_{4}), MK-10 $\left(\mathrm{H}_{4}\right)$, MK-9 $\left(\mathrm{H}_{6}\right)$, MK-10 $\left(\mathrm{H}_{6}\right)$, MK-10 $\left(\mathrm{H}_{8}\right)$, and small amounts of MK-9 $\left(\mathrm{H}_{8}\right)$, MK-10 $\left(\mathrm{H}_{0}\right)$, MK-10 $\left(\mathrm{H}_{2}\right)$, MK-9 $\left(\mathrm{H}_{2}\right)$, and MK-11 $\left(\mathrm{H}_{4}\right)$ were also present. Their G+C contents of the DNA were 71.4 and $73.0 \mathrm{~mol} \%$, respectively.

สถาบนวทยบรการ
จุฬาลงกรณ์มหาวิทยาลัย

Table 15. Diaminopimelic acid types of the representative Micromonospora strains.

Table 16. Polar lipid composition and glycolic analyses of the representative
Micromonospora strains.

Isolate no.	Polar lipid type						Glycolic acid(nM)
	DPG	PIMs	PI	PE	Methyl-PE	OH-PE	
LK5-4	+	+	+	+	-	-	63.5
KM3-1	+	+	+	+	-	-	33.2
KM4-29	+	+	+	+		-	24.7
KM4-24	+	+	+	+		-	29.6
KM3-14	+	$+$	+	+			227.4
BTG3-2	+	+	-		-	-	98.0
BTG10-2	+						65.9
BTG7-3	+						83.9
TT2-4	+						26.5
BTG4-1	+						77.9
KM1-9	+						47.9
BTG1-1	+						59.5
LK2-10	+						78.9
LK6-12	+	+				-	54.0
KM1-7	+				π		31.4
BTG3-4		+	+	+			77.5
BTG2-3		+	+	+	-		31.4
LK2-6		$+$	+	+	-		64.4
TT1-11	+	$+$	+	$+$	-	-	45.6

Abbreviations:

DPG; Diphosphatidylglycerold 6 PIMs; Phosphatidylinositolmannosides
PI; Phosphatidylinositol
PE; Phosphatidylethanolamine
Methyl-PE; Methylphosphatidylethanolamine
OH-PE; Hydroxyphosphatidylethanolamine

Table 17. Menaquinone types of the representative Micromonospora strains.

Isolate no.	\% of Menaquinone Type									
	MK-9(H_{2})	MK-9(H_{4})	MK-9(H_{6})	MK-9(H_{8})	MK-10(H_{0})	MK-10(H_{2})	MK-10(H_{4})	MK-10(H_{6})	MK-10(H_{8})	MK-11(H_{4})
LK5-4	Trace	23.2	6.7	1.3	Trace	-	28.1	14.4	4.3	-
KM3-1	Trace	22.1	6.8		Trace		29	12	6.8	-
KM4-29	1.3	8	4.9		Trace	1.2	35.2	23.5	7.2	Trace
KM4-24	1.2	5.7	3.6		Trace	2.3	41.5	25.7	9.3	-
KM3-14	4.3	14.9	1.5		Trace	6.4	49.9	7.7	Trace	-
BTG3-2	1.4	16	7.3	3.8	Trace	2	34.05	14	8	-
BTG10-2	Trace	6.6	2.6	Trace	Trace	1.5	52.9	26.9	5.3	Trace
BTG7-3	1.1	1.3	1.9		Trace	1.3	27.6	33.4	23.8	-
TT2-4	1.1	7.2	Trace		Trace	2.9	63.9	8.7	1	-
BTG4-1	1.2	3.8	8.8	13.1	-		10.9	19.5	34.6	-
KM1-9	-	10.4	12.5	6.2	Trace		24.3	28.4	17.6	-
BTG1-1	-	11.8	3.5			1.3	51.2	20.3	3.1	-
LK2-10	Trace	19.3	17.4	11.1	Trace		-13.5	13.8	10.2	-
LK6-12	1.1	6.6	-	-	Trace	4.5	66	5.4	-	1.2
KM1-7	Trace	1.3	41.7	9.4	-		Trace	15.9	5.4	-
BTG3-4	-	5.3	10.8	10.5	-	-	12.5	24.7	30.6	-
BTG2-3	-	11.1	9.7	30	二	-	29.1	31.7	13	-
LK2-6	Trace	12.6	4.4				45.5	20.6	3.4	-
TT1-11	1.9	15.5	3.5	Trace	Trace	3.9	54.8	10.8	1.1	Trace

Table 18. Whole-cell sugar of the representative Micromonospora strains.

Isolate no.	Whole cell sugar type							
	Rhamnose	Ribose	Mannose	Arabinose	Galactose	Xylose	Glucose	
LK5-4	+	+		$+$	$+$	$+$	+	
KM3-1	Trace amount	$+$			$+$	$+$	$+$	
KM4-29	-	+			$+$	$+$	$+$	
KM4-24	-				$+$	$+$	+	
KM3-14	Trace amount				+	$+$	$+$	
BTG3-2	-				$+$	$+$	$+$	
BTG10-2	-		+	+	+	$+$	+	
BTG7-3	-	+			$+$	+	$+$	
TT2-4	-	+	+		+	$+$	$+$	
BTG4-1	Trace amount	$+$	165		+	$+$	$+$	
KM1-9	Trace amount	$+$	+	+	$+$	$+$	$+$	
BTG1-1	-		+	+	+	$+$	$+$	
LK2-10	-		+	+	+	$+$	+	
LK6-12	-		+	+	$+$	$+$	$+$	
KM1-7	-	-	$+$	-	$+$	$+$	+	
BTG3-4	-		$0{ }^{+}$	$+$	$+$	$+$	+	
BTG2-3	Trace amount			$e \\| q$	$\stackrel{5}{+}^{+}$	$+$	$+$	
LK2-6	-		$1+0$	$=1+d$	$1{ }^{+}$	+	$+$	
TT1-11	-	+	+	+	$+0$	+	+	

Table 19．Fatty acid compositions of the representative Micromonospora strains．

Fatty acid	\％fatty acid of representative strains																		
	$\begin{aligned} & \text { 岗 } \\ & \underset{y}{u} \end{aligned}$	$\sum_{\substack{1}}^{n}$	$\stackrel{\underset{N}{+}}{\sum_{k}^{1}}$	$\stackrel{\underset{N}{ \pm}}{\underset{N}{ \pm}}$	$\frac{ \pm}{\sum_{i}^{n}}$	$\begin{aligned} & \text { N} \\ & \text { N̈ } \\ & \text { Non } \end{aligned}$	$$	$\begin{aligned} & \text { N} \\ & \stackrel{1}{6} \\ & \end{aligned}$		F	\sum_{i}^{i}	$\begin{aligned} & \underset{\sim}{I} \\ & \stackrel{y}{0} \end{aligned}$	－	$\begin{aligned} & \text { 굴 } \\ & \text { bu } \end{aligned}$	\sum_{i}^{i}		べ	¢	
Saturated fatty acid																			
C9：0	－	－	－	－	0.2		0.1		－	－	－	－	－	－	－	－	－	－	0.1
C10：0	－	－	0.2	0.1	0.1		0.1	0.2	－			－	－	－	－	－	－	－	0.1
C11：0	－	－	0.1	0.1	－		0.1	0.1	－		0.1	－	－	－	－	－	－	－	－
C12：0	－	－	0.4	0.1	0.3		0.3	0.6			0.1	－	－	－	－	0.1	0.1		0.3
C13：0	－	－	0.3	0.4			0.3	0.4	0.1	0.1	0.3	0.2	0.1	－	－	0.1	0.1	0.1	0.1
C14：0	0.1	0.1	0.7	0.5		0.	0.2	0.6	0.1	0.1	0.3	0.2	0.2	0.3	0.1	0.2	0.2	0.2	0.2
C15：0	0.1	0.3	4	9.7	0.2	0.	3.3	5.1	1	2	7.9	3.5	1.6	1.9	0.7	6.2	7.3	2.8	0.5
C16：0	0.4	0.9	2	1.9	0.5	0.7	1.4	1.1	0.9	1.4	2.4	1.5	1.1	2.4	0.4	2.2	1.9	1.7	0.7
3OH－C16：0	0.2	0.2	－	－							－	－	－	－	－	－	－	－	－
C17：0	0.8	1.7	9.6	9.8	1	2.8	9.2	10.2	5.2	8.3	20.4	9.5	7.9	4	4	16.4	16.3	7.7	1.4
3OH－C17：0	－	－	－	－	－		－	－		－	－	－	－	0.2	－	－	－	－	－
C18：0	1.6	1.6	1.3	0.5	1.1	1.2	0.7	0.4	1.6	1.7	1.4	1.1	2.5	1.8	1.5	1.4	1.2	1	1.5
C19：0	0.2	0.2	0.2	0.1		0.3	0.2	0.1	1.1	0.5	0.4	0.3	1.4	0.4	1	0.4	0.4	0.3	－
C20：0	0.2	－	－	－	－		－	d／			，	－	－	－	－	－	－	－	－
Unsaturated fatty acid																			
C15：1（ $\omega 6 \mathrm{c}$ ）	－	0.1	0.3	1.3	0.1	0.2	0.6	0.3	0.2		0.4	0.1	0.1	0.1	0.3	0.3	0.6	0.3	0.1
C15：1（ $\omega 8 \mathrm{c}$ ）	－	0.1	0.1	0.1		0.2	0.1	0.1	－	－	0.2	0.1	－	0.1	－	－	－	－	－
2OH－C16：1	－	－	－	－			－	－	－			－	－	－	－	0.5	－	－	0.6
C17：1（ $\omega 5 \mathrm{c}$ ）	－	－	0.1	0.1		－	0.1	0.2	0.2	－		－	－	－	0.2		－	－	－
C17：1（ $\omega 8 \mathrm{c}$ ）	2.7	6.4	12.7	14	2.9	8.7	11.4	13.3	6.2	3.3	8.5	4.2	5.2	9.5	2.6	11.3	11.7	6.9	1.5
C18：1（ 05 c ）	－	0.1	－	－	－		－	－	－	－	－	－	－	－	－	－	－	－	－
C18：1（ $\omega 7 \mathrm{c}$ ）	0.1	0.1		0.1				0.1	0.2		0.1	0.1	0.1	0.7		0.1	0.1	0.1	0.1
C18：1（ $\omega 9 \mathrm{c}$ ）	4.5	4.9	0.8	0.7	3.6		0.7	0.5	2.3	0.6	0.9	C0．6	1.9	4.3	0.7	0.9	0.8	0.7	1.1
$\mathrm{C} 20: 1(\omega 9 \mathrm{c})$	－	－	－	－	－	－	－	－	0.1	－	－	－	O－1	－	－	－	－	－	－

Table 19 (continued)

Fatty acid	\% fatty acid of representative strains																		
	$\begin{aligned} & \text { t } \\ & \underset{\sim}{2} \\ & \end{aligned}$	$\sum_{i}^{\dot{m}}$	$\sum_{i}^{\grave{L}}$	$\sum_{i}^{\underset{i}{+}}$	$\begin{aligned} & \pm \\ & \sum_{i}^{m} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \tilde{O} \\ & \text { O} \\ & \vdots \\ & \end{aligned}$	$\begin{aligned} & \text { M } \\ & \text { O } \\ & \text { O } \end{aligned}$		J I On	\sum_{i}^{i}	$\begin{aligned} & \underset{\sim}{\prime} \\ & \vdots \\ & \stackrel{y}{0} \end{aligned}$	\circ $\underset{y}{1}$ $\underset{y}{4}$	$\begin{aligned} & \text { 그́ } \\ & \text { Bu } \end{aligned}$	\sum_{i}^{i}	$\begin{aligned} & \text { H } \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{gathered} \text { y } \\ \underset{y}{u} \end{gathered}$	
Branched fatty acids																			
i-C10:0	-	-	-	-					-	-	-	-	-	-	-	-	-	-	0.3
i-C11:0	-	-	-	-			0.1	0.1	-		-	-	-	-	-	-	-	-	0.1
a-C11:0	-	-	-	-			-	-			-	-	-	-	-	-	-	-	0.6
3OH-i-C11:0	-	-	-	-							-	-	-	-	-	-	-	-	-
i-C12:0	0.1		0.1	0.1	0.2		0.1	0.2			-	-	-	-	-	-	-	-	0.8
i-C13:0	0.1	0.2	0.1	0.1	0.2	0.3	0.3	0.5	0.1	0.1	0.2	0.1	-	-	0.1	0.1	0.1	0.1	0.3
a-C13:0	0.1	0.1	0.1	0.1	0.1	0.3	0.3	0.8	0.1		0.1	0.1	-	-	-	-	-	-	0.2
i-C14:0	1.6	0.5	5.2	7.7		0.5	2.5	1.7	0.8	0.4	1.3	0.7	0.8	0.9	2.2	1.2	1.1	1	3.5
$3 \mathrm{OH}-\mathrm{i}-\mathrm{C} 14: 0$	-	0.1	-	-						0.1	-	-	-	-	-	-	-	-	0.1
i-C15:0	5.6	25.4	10.5	11.6	10.4	18.8	20.4	22.6	17.6	39.6	-	37.7	24.1	18.6	22.4	-	-	42.4	11.5
a-C15:0	4.3	6.4	8.7	9.3	5.1	10.3	16.1	14.4	4.2	6.4	14.9	10.3	8.5	6	11.7	13.8	14.6	7.5	4.6
i-C15:1	-	0.1	-	0.1	0.1	0.2		-	0.1		0.4	0.2	0.1	-	0.1	0.2	0.1	0.1	1
2OH-C16:1	0.2	-	-	-	0.3	-	-			0.9	-	-	-	-	0.9	-	-	-	-
i-C16:0	45.4	14.7	33	23.1	37.2	13.3	17.9	16.3	23.8	9.6	12	8.4	17.9	18.2	17.9	17.2	12.6	11.5	39.1
3OH-i-C16:0	0.2	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	0.2
i-C16:1	1.5	0.4	1.3	1.3	1.6	0.7	0.5	0.2	0.9	0.2	0.5	0.3	0.3	0.9	0.9	0.6	0.8	0.5	9.5
i-C17:0	2.5	10.4	1.2	0.6		8	2.3	1.6	7.7	10.8	9.6	7.8	7.7	5.2	9.3	8.2	9.2	5.3	4.7
a-C17:0	9.6	10.8	4	1.7	8.9	14.2	6	4.4	10.4	7.2	10.6	8.2	10.1	7.7	14.3	9.3	10.1	4.6	5.8
a-C17:1	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	1.4
i-C17:1 $\omega 9 \mathrm{c}$	3.8	8.9	0.6		5.5		1.2	1.7	7.9	2.5	3.4	2.6	1.6	11.1	2.9	3.7	4.2	2.7	2.7
$\mathrm{a}-\mathrm{C} 17: 1 \omega^{\text {c }}$	1.3	0.9	0.4	0.2	1.1	1.8	0.3	0.2	1.2	0.4	0.7	0.5	0.3	1.6	0.3	0.8	1.1	0.4	
i-C18:1	0.2	-	0.1										-	0.1	-	-	-	-	0.1
i-C18:0	2.9	0.5	0.8	0.2	1.5	0.3	0.2	0.2	0.5	0.2	0.1	0.1	0.7	0.2	0.9	0.2	0.2	0.1	1.9
i-C19:0	-	-	-	-	0.1	-	-	-	0.1	0.1	-	-	$0-$	-	0.2	-	-	-	0.1
i-C19:1	-		0	-	0.1	0.1	\square	10	- 0.1	\bigcirc	0	\square	-	-	-	-	-	-	-

Table 19 (continued)

Fatty acid	\% fatty acid of representative strains																		
	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{y}{3} \end{aligned}$	$\sum_{i=1}^{m}$	$\sum_{i}^{\stackrel{N}{j}}$	$\underset{N}{\underset{N}{N}}$	$\begin{aligned} & \pm \\ & \sum_{i}^{m} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N̈ } \\ & \text { On } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { Ś } \\ & \vdots \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { M } \\ & \stackrel{1}{0} \\ & \stackrel{y}{n} \end{aligned}$		$\begin{aligned} & \overrightarrow{V_{n}} \\ & \stackrel{y}{0} \end{aligned}$	\sum_{i}^{i}	$\begin{aligned} & I \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	$$		\sum_{i}^{i}	$\begin{aligned} & \text { H} \\ & \text { 第 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { NOn } \\ & \hline \end{aligned}$	$\begin{gathered} \underset{\sim}{2} \\ \underset{y}{4} \end{gathered}$	$\stackrel{\exists}{\ddagger}$
10-Methyl fatty acids																			
C16:0	-	-	-	0.7					-	-	-	-	-	-	-	-	-	-	-
C17:0	7.4	1.4	0.7	2.8	8.1			2.3	3.1	2.9	2.1	1.1	4.2	1.4	3.5	3.1	3.6	1.3	2.4
C18:0 TBSA	1.5	0.5		0.1	1.3		0.1	0.1	0.8	0.5	0.2	0.2	0.9	0.2	0.3	0.3	0.3	0.1	0.9
Summed feature 3	0.5	1.2	0.7	0.7	0.4	0.9	0.8	0.6	0.4	0.1	0.5	0.4	0.3	1.6	0.2	0.8	0.7	0.9	0.3
Summed feature 6	0.3	0.4	0.1	0.1	0.2	0.5	0.1	0.1	1.1	0.2	0.2	0.12	0.5	0.4	-	0.3	0.2	0.1	0.1

a Values are percentages of total cellular fatty acids
b Summed features represent groups of one or two fatty acids which could not be separated by GLC with the MIDI system. Summed feature 3 contained one or more of the following fatty acids: $2-\mathrm{OH}-\mathrm{i}-\mathrm{C} 15: 0 \mathrm{and} /$ or $\mathrm{C} 16: 1(\omega 7 \mathrm{c})$. Summed feature 6 contained one or more of the following fatty acids :

5. Comparison of DNA-DNA hybridization of the representative strains and all of validly described Micromonospora species

The representative strains of Micromonospora group I and group III showed DNA-DNA similarity values of 91.0% and 79.2% similar to those of M. chalcea JCM 3031^{T} and M. aurantiaca JCM 10878^{T}, respectively. The value are well higher than the 70% cut-off point recommended by Wayne et al. (1987) for the delineation of genomic species. These results indicated that they should be identified as M. chalcea and M. aurantiaca, respectively, whereas Micromonospora groups II, IV, V, VI, VII, VIII, IX, X, and XI, have DNA-DNA similarity value ($<53.1 \%$) that less than the 70% cut-off point. So, they could not be classified as any known species of the genus Micromonospora (Table 20).

6. 16S rDNA Amplification and Nucleotide Sequence Analysis

6.1 16S rDNA amplification by PCR

The chromosomal DNAs of the representative strains were used as the DNA templates for 16 S rDNA amplification by PCR with forward and reverse primer (20F: 5'-AGTTTGATCCTGGCTC-3' and 1541R: 5'-AAGGAGGTGATCCAGCC-3'). The PCR products of each representative strains were analyzed by 0.8% agarose gel electrophoresis. All of them showed clearly yield $\sim 1.5 \mathrm{~kb}$ PCR product which their sizes corresponded well with the size of 16 S rDNA.

6.2 16S rDNA sequencing

The PCR products of all of the representative strains were determined for their 16 S rDNA nucleotide sequences. Their nucleotide sequences were illustrated in Appendix VI. The 16S rDNA sequence alignment results between the representative strains and those of all of validly described Micromonospora species are shown in Figure 20.

6.3 16S rDNA sequence and phylogenetic tree analysis

The almost complete 16S rDNA sequences consisting of 1,440-1,510 nucleotides were determined for all of representative strains; a 1,368 nt fragment was used for phylogenetic analysis, similarity percentage calculation, and compared with 16 S rDNA database sequences of members of the family Micromonosporaceae. The

Table 20. DNA-DNA similarity among the representative Micromonospora strains.

Species and Strain no.	$\begin{aligned} & \mathrm{G}+\mathrm{C} \text { content } \\ & (\mathrm{mol} \%) \end{aligned}$	Percentage DNA similarity with labeled DNA from:										
		LK2-10	LK5-4	KM4-29	KM3-14	BTG10-2	TT2-4	BTG4-1	LK6-12	KM1-7	BTG2-3	TT1-11
LK2-10	71.5	100.0										
LK5-4	72.3	23.6	100.0									
KM4-29	72.4	19.5	31.2	100.0								
KM3-14	72.4	20.9	12.1	38.2	100.0							
BTG10-2	72.5	26.6	35.4	49.8	33.1	100.0						
TT2-4	73	21.6	27.7	23.6	35.7	23.0	100.0					
BTG4-1	71.6	41.1	48.5	35.9	31.0	39.8	33.0	100.0				
LK6-12	72.6	20.2	21.2	22.2	18.6	23.8	35.4	35.9	100.0			
KM1-7	72.6	19.7	19.6	24.1	23.4	19.4	21.7	20.2	19.7	100.0		
BTG2-3	71.6	21.9	41.8	36.9	40.7	31.5	37.6	39.8	33.4	16.7	100.0	
TT1-11	72.8	25.3	36.1	26.8	38.8	28.4	25.9	44.3	29.1	21.1	38.4	100.0
M. chersina JCM 9459 ${ }^{\text {T }}$	72.9	36.4	42.0	50.6	38.9	48.4	50.0	38.7	42.8	22.5	52.4	48.1
M. coerulea JCM $3175{ }^{\text {T }}$	71.7	26.4	28.4	34.7	25.0	34.6	37.6	32.7	33.5	16.9	48.2	37.2
M. purpureochromogenes JCM $3156{ }^{\text {T }}$	73.0	28.0	23.1	22.9	± 18.9	24.6	36.6	28.2	30.4	16.1	38.4	43.2
M. echinospora JCM $3073{ }^{\text {T }}$	71.7	21.0	29.5	29.8	- 31.4	26.9	33.1	24.9	27.3	16.9	32.7	33.1
M. carbonacea JCM $3139^{\text {T }}$	73.3	27.2	24.7	27.7	$\square 19.1$	18.4	30.3	27.3	21.1	16.9	26.6	32.8
M. chalcea JCM $3031{ }^{\text {T }}$	71.9	27.0	91.0	49.7	- 52.9	45.3	43.3	33.4	28.6	23.3	43.3	41.5
M. inositola JCM $6239^{\text {T }}$	71.4	29.0	26.7	22.2	27.2	24.6	34.4	34.0	26.1	12.9	36.3	38.0
M. olivasterospora JCM $7348^{\text {T }}$	71.9	24.0	23.8	13.8	23.2	22.3	30.6	28.2	26.0	19.3	32.1	35.6
M. nigra JCM $8973{ }^{\text {T }}$	71.7	26.0	28.9	38.8	23.7	26.9	41.1	26.0	29.8	12.9	34.9	37.3
M. halophytica JCM $3125^{\text {T }}$	72.5	36.0	41.4	36.1	27.2	30.7	47.1	45.2	39.1	20.9	40.1	53.1
M. aurantiaca JCM 10878^{T}	71.6	28.0	46.7	41.9	79.2	47.6	39.5	32.7	34.7	20.1	44.0	40.7
M. rosaria JCM $3159^{\text {T }}$	72.9	24.0	25.9	22.2	27.0	23.8	34.4	28.0	24.8	14.5	31.7	34.9
M. matsumotoense JCM 9104^{T}	71.0	26.0	29.1	20.1	14.2	22.3	25.5	23.2	17.4	14.5	25.8	32.1
M. pallida JCM $3133^{\text {T }}$	71.1	28.0	24.0	20.1	23.2	16.1	31.2	27.8	20.5	21.7	28.4	35.3

phylogenetic tree was constructed from evolutionary distances by using neighborjoining method in the MEGA software program version 2.1.

Phylogenetic analysis of the almost complete 16 S rDNA sequences of the tested organisms with the corresponding sequences of all of the type strains of validly described Micromonospora species, selected sequences of Actinoplanes species, and the 16 S rDNA sequence of Streptomyces ambofaciens (as an outgroup) showed that the representatives of Micromonospora groups I, II, III, IV, V, VI, VII, VIII, IX, X, and XI could be distinguished both for one another (Figure 19; Table 20 and 22). It is evident from figure 19 that the groups II, IV, VI, VII, VIII, IX, and X strains form distinct phyletic lines in the 16 S Micromonospora rDNA tree, and the groups I, III, V, and XI strains form subclade with M. chalcea DSM 43026^{T}, M. aurantiaca DSM 43813^{T}, M. matsumotoense IMSNU 22003^{T}, and M. coerulea DSM 43143^{T}, respectively.

The two strains of Micromonospora group I (LK5-4 amd KM3-1) shared 16S rDNA nucleotide similarities within the range 99.9%, values which correspond to 2 nucleotide differences. These organisms were most closely associated with M. chalcea DSM 43026^{T} in the neighbor-joining analysis by a moderately high bootstrap value and shared the highest similarity percentage of 99.7 and 99.6 with M. chalcea DSM $43026^{\text {T }}$, respectively. Strain LK $5-4{ }^{\text {T }}$ showed almost identical physiological and biochemical properties to M. chatcea DSM $43026^{T}\left(=J C M 3031{ }^{T}\right)$. In addition, the level of DNA-DNA similarity between strains LK5-4 ${ }^{\text {T }}$ and M. chalcea DSM $43026^{\text {T }}$ ($=\mathrm{JCM} 3031^{\mathrm{T}}$) was 91.0%. Hence, this strain should be identified as M. chalcea.

The two strains of Micromonospora group HI (KM4-29 and KM4-24) showed identical 16 S rDNA nucleotide sequences and were most closely associated with identical 16 S rDNA nucleotide sequences of Micromonospora group IV (BTG10-2 and BTG7-3), and was supported by a high bootstrap value of 93%. These two groups shared a 16 S rDNA similarity of 99.8%. In contrast, a low level of DNA homology was found between Micromonospora group II and group IV. The 16S rDNA similarities between the group II strains and all of validly described Micromonospora were within the range 97.7% (M. olivasterospora) to 99.0% (M. chalcea), which corresponds to the range 34 to 17 nucleotide differences, respectively, whereas the 16 S rDNA similarities between the group IV strains and all of validly described Micromonospora ranged from 97.7\% (M. olivasterospora) to

Figure 19. Unroot neighbor-joining tree base on nearly complete 16 S rDNA sequences, showing the position of the representative Micromonospora strains in the Micromonospora tree.
99.2% (M. chalcea), which corresponds to the range 36 to 13 nucleotide differences, respectively. Strain KM4- 29^{T} showed a different physiological and biochemical pattern compared to the phylogenetically closest species, Micromonospora group IV strain (BTG10-2 ${ }^{\mathrm{T}}$). In particular, the maximum NaCl concentration for growth and utilization of D-mannitol, salicin and D-galactose effectively discriminates strain KM4-29 ${ }^{\mathrm{T}}$ from strain BTG10-2 ${ }^{\mathrm{T}}$. The level of DNA-DNA similarity between strains KM4-29 ${ }^{\text {T }}$, BTG10-2 $^{\text {T }}$ and the other Micromonospora groups as well as all of type strains of validly described Micromonospora species, except M. gallica, ranged from 13.8-50.6\%. These representative strains were left unidentified.

The representative strains of Micromonospora group III (BTG3-2 and KM3-14 ${ }^{\mathrm{T}}$) had identical 16 S rDNA nucleotide sequences. These organisms were most closely associated with M. aurantiaca DSM 43813^{T} and which supported by a bootstrap value of 85% in the neighbor-joining run. The 16 S rDNA similarities between the group II strains and all of validly described Micromonospora are within the range 97.7\% (M. olivasterospora DSM 43868^{T}) to 99.7% (M. aurantiaca), which corresponds to the range 35 to 4 nucleotide differences, respectively. Strain KM3-14 ${ }^{\mathrm{T}}$ had almost identical physiological and biochemical properties which were distinguished in the hydrolysis of starch and the maximum NaCl concentration for growth from M. aurantiaca DSM $43813^{\mathrm{T}}\left(=\mathrm{JCM} 10878^{\mathrm{T}}\right)$. However, the level of DNA-DNA similarity between strains KM3-14 ${ }^{\mathrm{T}}$ and M. aurantiaca DSM 43813^{T} (=JCM 10878 ${ }^{\mathrm{T}}$) was 79.2%. Hence, this strain should be identified as M. aurantiaca.

The representative strain of Micromonospora group V (TT2-4 ${ }^{\mathrm{T}}$) showed the most closely associated with M. matsumotoense IMSNU 22003^{T} in the neighbor-joining analysis but this relationship was not supported by a high bootstrap value in the neighbor-joining run. The 16S rDNA similarities between strain $\mathrm{TT} 2-4^{\mathrm{T}}$ and all of validly described Micromonospora ranged from 97.7\% (M.olivasterospora) to 98.9% (M. purpureochromogenes), which corresponds to the range 36 to 18 nucleotide differences, respectively. Strain TT2-4 ${ }^{\mathrm{T}}$ showed difference in physiological and biochemical properties from those of the phylogenetically closest species, M. matsumotoense IMSNU $22003^{\text {T }}$. In particular, the result of nitrate reduction, the maximum NaCl concentration for growth and utilization of L-rhamnose, D-melibiose, salicin and D-ribose effectively discriminates strain TT2-4 ${ }^{\mathrm{T}}$ from M. matsumotoense IMSNU $22003^{\text {T }}$. In addition, DNA similarity values between strain TT2-4 ${ }^{\mathrm{T}}$ and the

14 type strains of the other validly described species, together with the other Micromonospora groups were only 50.0% or less. These representative strain were left unidentified.

The six representative Micromonospora group VI strains, BTG1-1, KM1-6, BTG1-4, KM1-9, BTG4-1, and LK2-12, had identical 16S rDNA nucleotide sequences. These organisms were most closely associated with the Micromonospora group X that contained three identical 16S rDNA nucleotide sequence strains, BTG23, BTG3-4, and LK2-6, which was suporrted by a high bootstrap value of 99%. These two groups shared a high 16 S rDNA similarity of 99.9% which corresponds to 1 nucleotide differences but showed a low level of DNA homology. The 16 S rDNA similarities between Micromonospora group VI and all of validly described Micromonospora species ranged from 97.9\% (M. carbonacea) to 99.0\% (M. chersina), which corresponds to the range 32 to 14 nucleotide differences, respectively, whereas the 16 S rDNA similarities between Micromonospora group X and all of validly described Micromonospora species ranged from 97.8\% (M. aurantiaca) to 98.8% (M. rosaria), which corresponds to the range 30 to 15 nucleotide differences, respectively. Members of Micromonospora group VI strain BTG4-1 ${ }^{\text {T }}$ showed physiological and biochemical properties which were distinguished in the maximum NaCl concentration for growth (4% for BTG4-1 ${ }^{\mathrm{T}}$ and 3% for BTG2$3^{\mathrm{T}}$) and utilization of D-mannitol, D-ribose, L-rhamnose, glycerol, lactose, Dgalactose, L-arabinose, and cellobiose from the phylogenetically clostest Micromonospora group X strains (BTG2-3 ${ }^{\mathrm{T}}$). The levels of DNA-DNA similarity between strains BTG4-1 ${ }^{\mathrm{T}}$, BTG2-3 ${ }^{\mathrm{T}}$, and the other Micromonospora groups as well as all of type strains of validly deseribed Micromonospora species, except M. gallica, ranged from 20.2-48.5\%. These representative strains were left unidentified.

The representatives of Micromonospora group VII, strains LK2-10 and LK2-5, shared high 16 S rDNA similarity of 99.9% which corresponds to 1 nucleotide differences; this value was almost exclusively in the conserved region of the molecule. These organisms were most closely associated with Micromonospora group VI which was supported by a moderately bootstrap value in the neighborjoining analysis, and were shared a 16 S rDNA similarity within the range of 99.4% to 99.5%, respectively. The 16Sr DNA similarities between strain LK2-10 and all of validly type strains of genus Micromonospora are within the range 98.1% (M.
aurantiaca) to 99.0% (M. nigra), respectively, which correspond to the range 27 to 14 nucleotide differences, respectively, where as the 16 Sr DNA similarities between strain LK2-5 and all of validly described Micromonospora species are within the range 98.0% (M. aurantiaca) to 99.0% (M. nigra), respectively, which correspond to the range 28 to 16 nucleotide differences, respectively. Micromonospora group VII, strains LK2-10 ${ }^{\text {T }}$ and LK2-5, showed almost identical physiological and biochemical properties which were distinguished in growth at $45^{\circ} \mathrm{C}$ and utilization of D-ribose, Lrhamnose, and L-arabinose from Micromonospora group VI, strain BTG4-1 ${ }^{\text {T }}$. Colour of substrate mycelium of strain LK2-10 ${ }^{\mathrm{T}}$ was yellowish white, which is distinguishable from the color of all of the type strains of Micromonospora that generally indicate orange colour. The levels of DNA-DNA similarity between strains LK2-10 ${ }^{\text {T }}$ and LK 2-5 ranged from 89-92\%, while the levels of DNA-DNA similarity of them and all of type strains of validly described Micromonospora species, except M. gallica, together with the other Micromonospora groups, ranged from 19.5-41.1\%. The representative strains in these group were unidentified.

These three subclades (groups VI, VII, and X) formed a distinct phyletic line with M. nigra, but this relationship was not supported by a high bootstrap value in the neighbor-joining run. The Micromonospora groups VI, VII, and X could be distinguished both for one another by using the evidences of DNA-DNA hybridization experiment that demonstrated a low level of DNA homology.

The Micromonospora group VIII, strain LK6-12, formed a distinct phyletic line with the type strains of genus Micromonospora. However, the position of strain LK612 in the Micromonospora tree varies depending on the treeing algorithm because this strain showed a low bootstrap value in neighbor-joining tree. Strain LK6-12 was most closely related to the type strain of M. aurantiaca, and shared a 16 S rDNA nucleotide similarity value of 99.1%, which corresponds to 19 nucleotide differences. Micromonospora group VIII, strain LK6-12 ${ }^{\text {T }}$, showed the physiological and biochemical properties which were distinguished in hydrolysis of starch, tyrosine decomposition, nitrate reduction, and utilization of D-mannitol, L-rhamnose, Dmelibiose, glycerol, salicin, lactose, D-galactose, D-fructose, and L-arabinose from Micromonospora aurantiaca JCM 10878 ${ }^{\mathrm{T}}$. The level of DNA-DNA similarity between strains LK6-12 ${ }^{\mathrm{T}}$ and all of type strains of validly described Micromonospora
species, except M. gallica, together with the other Micromonospora groups, ranged from 17.4-42.8\%. The strain inthis group was unidentified.

Micromonospora group IX, strain KM1-7, formed a distinct phyletic line towards the base of the evolutionary branch that encompasses the type strains of Micromonospora species. Strain KM1-7 was most closely related to the type strain of M. olivasterospora, and which was supported by a moderately high bootstrap value of 76%; the two organisms shared a 16 S rDNA nucleotide similarity value of 97.5%, which corresponds to 38 nucleotide differences. This strain showed the properties on starch hydrolysis, nitrate reduction, growth at $45^{\circ} \mathrm{C}$, the maximum NaCl tolerant for growth, and utilization of L-arabinose that were distinguished from Micromonospora olivasterospora JCM $7348^{\text {T }}$. The levels of DNA-DNA similarity between strains KM1-7 ${ }^{\mathrm{T}}$ and all of type strains of validly described Micromonospora species, except M. gallica, together with the other Micromonospora groups, ranged from 12.9-24.1\%. This representative strain was left unidentified.

From Figure 19, it is appearant that the Micromonospora group XI, strain TT111, was most closely related to M. coerulea, an association that is supported by a moderately high bootstrap value of 50% in the neighbor-joining analysis. The type strains of M. coerulea and strain TT1-11 shared a 16 S rDNA sequence similarity of 98.8%, which corresponds to 23 nucleotide differences. Strain TT1-11 ${ }^{\mathrm{T}}$ showed a different physiological and biochemical patterns as compared to the phylogenetically closest species, M. coerulea. In particular, the utilization of L-arabinose and D-ribose effectively discriminates strain TT1-11 ${ }^{\mathrm{T}}$ from M. coerulea. In addition, DNA similarity values between strain TT1-11 ${ }^{\mathrm{T}}$ and the 14 type strains of the other validly described species, together with the other Micromonospora groups, were only 53.1\% or less. The strain in this group was unidentified.

Based on the phenotypic and genotypic characteristics, the Micromonospora groups 9 I and III strains should be identified as M. chalcea and M. aurantiaca, respectively. The other nine groups, should be classified as a new species of the genus Micromonospora. The differential characteristics and the summary of the percentage of 16 S rDNA sequence similarity between the representative strains and the validly type strains of Micromonospora are shown in Tables 21 and 22, respectively.

CLUSTAL X (1.83) multiple sequence alignment.

BTG2-3 --------------------AGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
BTG3-4 ---------------------AGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA LK2-6 ------------------TCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA BTG1-4 ------------------TCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA KM1-9 -CTAGTTTGATCC-TGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA LK2-12 --TAGTTTGATCC-TGGNTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
KM1-6 --TAGTTTGATCC-TGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
BTG4-1 --TAGTTTGATCC-TGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
BTG1-1 --TAGTTTGATCC-TGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
BTG3-2 -TAGTTGATCCCT-TGGNTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
X92604 -----TGATCC---TGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
KM3-14 -----------TCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
KM3-1 TAGTTTGATCCC--TTGGCCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
X92594 ----TGATCC---IGGCTCAGGCCGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
X92601 -----TGATCC---TGGCTCAGGCCGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
X92611 -----TGATCC---TGGCGCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
KM4-29 --TAGTTTGATCC-TGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
KM4-24 --TAGTTTGATCC-TGGNTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
LK6-12 ---TAGTTGATCC-CTGGCTAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
LK5-4
TT2-4
BTG10-2
BTG7-3
AF152109

-TAGTTTGATCCN-TGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA

X92599
X92613
-AGAGT

- -_-_-_-_TGATCC-TGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA

TT1-11 -AGAGTTTGATCA-TGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
X92598 -------TGATCC-TGGCTCAGGCCGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
X92608 ------TGATCC-TGGCGCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
X92607 -----TGATCC-TGGCGCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
X92610 ----TGATCC-TGGCGCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
X92609 ----TGATCC-TGGCGCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
X92631 ------TGATCC-TGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
X92628 ----TGATCC-TGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
LK2-10 ---------------------CAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
LK2-5 ------------------TCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
KM1-7 --TAGTTTGATCCTTGGNTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGA
สถาบนวทยบรการ
Figure 20. Comparison of 16 S rDNA nucleotide sequences between the representative Micromonospora strains and the validly described Micromonospora species.

BTG2-3 GCGGAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGAGTCACGTGAGCACC BTG3-4 GCGGAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGAGTCACGTGAGCACC

LK2-6
BTG1-4
KM1-9
LK2-12
KM1-6
BTG4-1
BTG1-1
BTG3-2
X92604
KM3-14
KM3-1
X92594
X92601
X92611
KM4-29
KM4-24
LK6-12
LK5-4
TT2-4
BTG10-2
BTG7-3
AF152109
X92599
X92613
TT1-11
X92598
X92608
X92607
X92610
X92609
X92631
X92628
LK2-10
LK2-5
KM1-7 GCGGAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGAGTCACGTGAGCACC GCGGAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGATACACGTGAGCACC ACGGAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGATACACGTGAGCACC ACGGAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGATACACGTGAGCACC GCGGAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGATACACGTGAGCACC GCGGAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGATACACGTGAGCACC GCGGAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGATACACGTGAGCACC GCGGAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGATACACGTGAGCACC GCGGAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGATACACGTGAGCACC GCGGAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGATACACGTGAGCACC GCGGAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGATACACGTGAGCACC GCGGAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGATACACGTGAGCACC GCGGAAGGCCCITCGGGGTACTCGAGCGGCGAACGGGTGATACACGTGAGCACC GCGGAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGATACACGTGAGCACC GCGGAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGATACACGTGAGCACC GCGGAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGATACACGTGAGCACC GCGGAAGGCCCTTCGGGGIACTCGAGCGGCGAACGGGTGATACACGTGAGCACC GCGGAAGGCCCITCGGGGTACTCGAGCGGCGAACGGGTGATACACGTGAGCACC GCGGAAGGCCCTTCGGGGIACTCGAGCGGCGAACGGGTGATACACGTGAGCACC GCGGAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGATACACGTGAGCACC GCGGAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGATACACGTGAGCACC GCGGAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGATACACGTGAGCACC GCGGAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGATACACGTGAGCACC GCGGAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGATACACGTGAGCACC GCGGAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGATACACGTGAGCACC

สถาบนวิทยบริการ

เมmaฆ\% (conamex รณ์มหาวิทยาลัย

BTG2-3 TGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATAGGACCTGGC
BTG3-4 TGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATAGGACCTGGC

LK2-6
BTG1-4
KM1-9
LK2-12
KM1-6
BTG4-1
BTG1-1
BTG3-2
X92604
KM3-14
KM3-1
X92594
X92601
X92611
KM4-29
KM4-24
LK6-12
LK5-4
TT2-4
BTG10-2
BTG7-3
AF152109
X92599
X92613
TT1-11
X92598
X92608
X92607
X92610
X92609
X92631
X92628
LK2-10
LK2-5
KM1-7 TGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATAGGACCTGGC TGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATAGGACCTGGC TGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATAGGACCTGGC TGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATAGGACCTGGC TGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATAGGACCTGGC TGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATAGGACCTGGC TGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATAGGACCTGGC TGCCCCAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATATGACCTCTG TCCCCCAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATATGACCTCTG TGCCCCAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATATGACCTCTG TGCCCCAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATATGACCTCCG TGCCCCAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATATGACCTTGC TCCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATATGACCTCCG TCCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATATGACTTCTG TGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATATGACCACAT TGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATATGACCACAT TGCCCCAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATATGACCTTGC TGCCCCAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATATGACCTTGC TGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATATGACCTTTC TGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATATGACCTCGC TGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATATGACCTCGC TGCCCTAGGCTTTGGGATAACCCTCGGAAACGGGGGCTAATACCGAATATTACTTGAC TCCCCTAGGCTTTGGGATAACCCTCGGAAACGGGGGCTAATACCGGATACAACCTTTG TCCCCTAGGCTTTGGGATAACCCTCGGAAACGGGGGCTAATACCGAATATTACTGCTG TGCCCTAGGCTTTGGGATAACCCTCGGAAACGGGGGCTAATACCGAATATGACTACTG TCCCCTAGCCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATAGGACTGCTG TCCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATATGACCTGCG TGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGCCTAATACCGAATAGGACCTTCG TCCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATAGAACCTGGC TCCCCCAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATATGACCTTCG TCCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATAGGACCTGAC TCCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATAGGACCTGGC TGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATAGGACCTCCT TGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATAGGACCTCCT

สถาบนวิทยบริการ

BTG2-3 ACCGCATGGTGTTGGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCT
BTG3-4 ACCGCATGGTGTTGGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCT
LK2-6
BTG1-4
KM1-9
LK2-12
KM1-6
BTG4-1
BTG1-1
BTG3-2
X92604
KM3-14
км3-1
X92594
X92601
x92611
KM4-29
KM4-24
LK6-12
LK5-4
TT2-4
BTG10-2
BTG7-3
AF152109
X92599
X92613
TT1-11
X92598
X92608
X92607
X92610
X92609
X92631
X92628
LK2-10
LK2-5
KM1-7 ACCGCATGGTGTTGGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCT ACCGCATGGTGTTGGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCT ACCGCATGGTGTTGGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCT ACCGCATGGTGTTGGGTGGAAAGTITTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCT ACCGCATGGTGTTGGGTGGAAAGTITTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCT ACCGCATGGTGTTGGGTGGAAAGTITTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCT ACCGCATGGTTGGTGGTGGAAAGITITTCGGCTTGGGATGGGCTCGCGGCCTATCAGCT ACCGCATGGTTGGTGGTGGAAAGTITTTCGGCTTGGGATGGGCTCGCGGCCTATCAGCT ACCGCATGGTTGGTGGTGGAAAGTTTTTCGGCTTGGGATGGGCTCGCGGCCTATCAGCT ATCGCATGGTCGGTGGTGGAAAGTTITTCGGCTTGGGATGGGCTCGCGGCCTATCAGCT ACCGCATGGTGTTTGGTGGAAAGTTTTTCGGCTTGGGATGGGCTCGCGCCCTATCAGCT ATCGCATGGTTGGTGGTGGAAAGTITTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCT CCCGCATGGGTGGTGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCT GTCGCATGGTGTGTGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCT GTCGCATGGTGTGTGGTGGAAAGTITITCGGCCTGGGATGGGCTCGCGGCCTATCAGCT ATCGCATGATGTCTGGTGGAAAGTTTTTCGGCTTGGGATGGGCTCGCGGCCTATCAGCT ACCGCATGGTGTGTGGTGGAAAGITTTTCGGCTTGGGATGGGCTCGCGGCCTATCAGCT CTCGCATGAGGTTTGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCT ATCGCATGGTGTGTGGTGGAAAGTITTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCT ATCGCATGGTGTGTGGIGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCT CTCGCATGGGGITGGGIGGAAAGTITTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCT GTCGCATGACTGGGGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCT GCCGCATGGCTGGTGGTGGAAAGTITTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCT ATCGCATGGTTGGTGGTGGAAAGTITTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCT GTCGCATGGCTGGTGGTGGAAAGITITTCGGCCTGGGATGGGCTCGCGCCCTATCAGCT GTCGCATGACTGTIGGTGGAAAGITITTCGGCTTGGGATGGGCTCGCGGCCTATCAGCT GTCGCATGACTGITGGIGGAAAGITITTCGGCCTGGGATGGGCTCGCGGCCTATCAGCT CTCGCATGAGTCTGGGTGGAAAAGTITTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCT GCCGCATGGTGGAGGGTGGAAAGTTCTTCGGCTTGGGATGGGCTCGCGGCCTATCAGCT TCCGCATGGGGTTGGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCT CTCGCATGAGGTTGGGTGGAAAGTTITTCGGCCTGGGATGGGCTCGCGGCCTATCAGCT GTCGCATGGTGGGGGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCT GICGCATGGTGGGGGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCT GCCGCATGGTGGGGGGTGGAAAGTTTTTCGGCGTGGGATGGGCTCGCGGCCTATCAGCT
$\star \star \star \star \star \star \quad \star \star \star *$ สถาบนวิทยบริการ

BTG2-3 TGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCG
BTG3-4 TGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCG
LK2-6
BTG1-4
KM1-9
LK2-12
KM1-6
BTG4-1
BTG1-1
BTG3-2
X92604
KM3-14
Kм3-1
X92594
X92601
X92611
KM4-29
KM4-24
LK6-12
LK5-4
TT2-4
BTG10-2
BTG7-3
AF152109
X92599
X92613
TT1-11
X92598
X92608 TGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCG TGTTGGTGGGGIGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCG TGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCG TGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCG TGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCG TGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCG

X92607
X 92610
X 92610
X92609
X92631
X92628
LK2-10
LK2-5
KM1-7 TGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCG TGTTGGTGGGGTGATGGCCTACCAAGCCGACGACGGGTAGCCGGCCTGAGAGGGCGACCG TGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCG TGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCG TGTTGGTGGGGTGATGGCCTACCAAGCCGACGACGGGTAGCCGGCCTGAGAGGGCGACCG TGITGGTGGGGTGATGGCCTACCAAGCCGACGACGGGTAGCCGGCCTGAGAGGGCGACCG TGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCG TGITGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCG TGTTGGTGGGGTGATGGCCTACCAAGGCGGTGACGGGTAGCCGGCCTGAGAGGGCGACCG

BTG2-3 GCCACACTGGGACTGAGAACGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTG BTG3-4 GCCACACTGGGACTGAGAACGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTG

LK2-6
BTG1-4
KM1-9
LK2-12
KM1-6
BTG4-1
BTG1-1
BTG3-2
X92604
KM3-14
KM3-1
X92594
X92601
X92611
KM4-29
KM4-24
LK6-12
LK5-4
TT2-4
BTG10-2
BTG7-3
AF152109
X92599
X92613
TT1-11
X92598
X92608
X92607
X92610
X92609
X92631
X92628
LK2-10
LK2-5
KM1-7 GCCACACTGGGACTGAGAACGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTG GCCACACTGGGACTGAGAACGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAAATATTG GCCACACTGGGACTGAGAACGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTG GCCACACTGGGACTGAGAACGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTG GCCACACTGGGACTGAGAACGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTG GCCACACTGGGACTGAGAACGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTG GCCACACTGGGACTGAGAACGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTG

สถาบนวิทยบริการ

น mamew (conamon รณ์มหาวิทยาลัย

BTG2-3 CACAATGGGCGGAAGCCTGATGCACGACCCGCGTGAGGGATGACGGCCTTCGGGTTG
BTG3-4 CACAATGGGCGGAAGCCTGATGCACGACCCGCGTGAGGGATGACGGCCTTCGGGTTG

LK2-6
BTG1-4
KM1-9
LK2-12
KM1-6
BTG4-1
BTG1-1
BTG3-2
X92604
KM3-14
KM3-1
X92594
X92601
X92611
KM4-29
KM4-24
LK6-12
LK5-4
TT2-4
BTG10-2
BTG7-3
AF152109
X92599
X92613
TT1-11
X92598
X92608
X92607
X92610
X92609
X92631
X92628
LK2-10
LK2-5
KM1-7 CACAATGGGCGGAAGCCTGATGCACGACCCGCGTGAGGGATGACGGCCTTCGGGTTG CACAATGGGCGGAAGCCIGATGCACGACCCGCGTGAGGGATGACGGCCTTCGGGTTG CACAATGGGCGGAAGCCTGATGCACGACCCGCGTGAGGGATGACGGCCTTCGGGTTG CACAATGGGCGGAAGCCTGATGCACGACCCGCGTGAGGGATGACGGCCTTCGGGTTG CACAATGGGCGGAAGCCIGATGCACGACCCGCGTGAGGGATGACGGCCTTCGGGTTG CACAATGGGCGGAAGCCTGATGCACGACCCGCGTGAGGGATGACGGCCTTCGGGTTG CACAATGGGCGGAAGCCTGATGCACGACCCGCGTGAGGGATGACGGCCTTCGGGTTG CACAATGGGCGGAAGCCTGATGCACGACCCGCGTGAGGGATGACGGCCTTCGGGTTG CACAATGGGCGGAAGCCTGATTCACGACCCGCGTGAGGGATGACGGCCTTCGGGTTG CACAATGGGCGGAAGCCTGATGCACGACCCGCGTGAGGGATGACGGCCTTCGGGTTG CACAATGGGCGGAAGCCTGATGCACGACCCGCGTGAGGGATGACGGCCTTCGGGTTG CACAATGGGCGGAAGCCTGATGCACGACCCGCGTGAGGGATGACGGCCTTCGGGTTG CACAATGGGCGGAAGCCTGATGCACGACCCGCGIGAGGGATGACGGCCTTCGGGTTG CACAATGGGCGGAAGCCTGATGCACGACCCGCGTGAGGGATGACGGCCTTCGGGTTG ********************* ***) สถาบนวิทยบริการ
น mamer (conamon รณ์มหาวิทยาลัย

BTG2-3 CAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGG
BTG3-4 CAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGG

LK2-6
BTG1-4
KM1-9
LK2-12
KM1-6
BTG4-1
BTG1-1
BTG3-2
X92604
KM3-14
KM3-1
X92594
X92601
X92611
KM4-29
KM4-24
LK6-12
LK5-4
TT2-4
BTG10-2
BTG7-3
AF152109
X92599
X92613
TT1-11
X92598
X92608
X92607
X92610
X92609
X92631
X92628
LK2-10
LK2-5
KM1-7 CAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGG CAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGTGCGAGCGTTGTCCGGATTTATTGG CAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGG CAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGTGCGAGCGTTGTCCGGATTTATTGG CAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGG CAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGG CAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGTGCGAGCGTTGTCCGGATTTATTGG CAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGG CAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGG CAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGG CAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGTGCGAGCGTTGTCCGGAATTATTGG CAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGG CAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGG CAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGG CAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGG CAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGG CAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGG CAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGG CAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGG CAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGG *********************************** **************** ******* สถาบนวิทยบริการ
เมmaฆะ(canamon รณ์มหาวิทยาลัย

BTG2-3 GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCACGGCTCAACCGTG
BTG3-4 GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCACGGCTCAACCGTG

LK2-6
BTG1-4
KM1-9
LK2-12
KM1-6
BTG4-1
BTG1-1
BTG3-2
X92604
KM3-14
KM3-1
X92594
X92601
X92611
KM4-29
KM4-24
LK6-12
LK5-4
TT2-4
BTG10-2
BTG7-3
AF152109
X92599
X92613
TT1-11
X92598
X92608
X92607
X92610
X92609
X92631
X92628
LK2-10
LK2-5
KM1-7 GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCACGGCTCAACCGTG GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCACGGCTCAACCGTG GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCACGGCTCAACCGTG GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCACGGCTCAACCGTG GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCACGGCTCAACCGTG GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCACGGCTCAACCGTG GCGTAAAGAGCTCGTAGGCGGCTIGTCGCGTCGACTGTGAAAACCCACGGCTCAACCGTG GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACCGTGAAAACTTGGGGCTCAACCCCA GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACCGTGAAAACTTGGGGCTCAACCCCA GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACCGTGAAAACTTGGGGCTCAACCCCA GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACCGTGAAAACCTGGGGCTCAACCCCA GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACCGTGAAAACCTGGGGCTCAACCCCA GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACCGTGAAAACTTGGGGCTCAACCCCA GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACCGTGAAAACTTGGGGCTCAACCCCA GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACCGTGAAAACCTGGGGCTCAACCCCA GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACCGTGAAAACCTGGGGCTCAACCCCA GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACCGTGAAAACTTGGGGCTCAACTCCA GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACCGTGAAAACCTGGGGCTCAACCCCA GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACCGTGAAAACTTGGGGCTCAACTCCA GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACCGTGAAAACCTGGGGCTCAACCCCA GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACCGTGAAAACCTGGGGCTCAACCCCA GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACCGTGAAAACTTGGGGCTCAACCCCA GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACCGTGAAAACTTGGGGCTCAACCCCA GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCGCGGCTCAACTGCG GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCGCAGCTCAACTGCG GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCGCAGCTCAACTGCG GCGTAAAGAGCTCGTAGGCGGCTIGTCGCGTCGACTGTGAAAACCCGCGGCTCAACTGCG GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCGCAGCTCAACTGCG GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCGCAGCTCAACTGCG GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCGCAGCTCAACTGCG GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCGCGGCTCAACTGCG GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCGCAGCTCAACTGCG GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCGCGGCTCAACCGCG GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCGCGGCTCAACCGCG GCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCGCGGCTCAACTGCG

สถาบนวิทยบริการ

BTG2-3 GGCCTGCAGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA BTG3-4 GGCCTGCAGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA

LK2-6
BTG1-4
KM1-9
LK2-12
KM1-6
BTG4-1
BTG1-1
BTG3-2
X92604
KM3-14
KM3-1
X92594
X92601
X92611
KM4-29
KM4-24
LK6-12
LK5-4
TT2-4
BTG10-2
BTG7-3
AF152109
X92599
X92613
TT1-11
X92598
X92608
X92607
X92610
X92609
X92631
X92628
LK2-10
LK2-5
KM1-7 GGCCTGCAGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA GGCCTGCAGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA GGCCTGCAGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA GGCCTGCAGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA GGCCTGCAGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA GGCCTGCAGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA GGCCTGCAGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA AGCCTGCGGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA AGCCTGCGGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA AGCCTGCGGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA GGCCTGCGGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA GGCCTGCGGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA AGCCTGCGGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA AGCCTGCGGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA GGCCTGCGGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA GGCCTGCGGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA AGCCTGCGGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA GGCCTGCGGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA AGCCTGCGGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA GGCCTGCGGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA GGCCTGCGGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA AGCCTGCGGTCATACGGGCAGGCTAGAGTTCAGTAGGGGAGACTGAATTCCTGGTGTA AGCCTGCGGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA GGCCTGCAGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA GGCTTGCAGTCATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTA
** *** สถาบนวิทยบริการ

BTG2-3 GCGGTGAAATGCGCAGATATAGGAGGAACACCGGTGGCGAAGCGGGTCTTGGGCCGA BTG3-4 GCGGTGAAATGCGCAGATATAGGAGGAACACCGGTGGCGAAGCGGGTCTTGGGCCGA

LK2-6
BTG1-4
KM1-9
LK2-12
KM1-6
BTG4-1
BTG1-1
BTG3-2
X92604
KM3-14
KM3-1
X92594
X92601
X92611
KM4-29
KM4-24
LK6-12
LK5-4
TT2-4
BTG10-2
BTG7-3
AF152109
X92599
X92613
TT1-11
X92598
X92608
X92607
X92610
X92609
X92631
X92628
LK2-10
LK2-5
KM1-7 GCGGTGAAATGCGCAGATATAGGAGGAACACCGGTGGCGAAGCGGGTCTTGGGCCGA GCGGTGAAATGCGCAGATATANGAGGAACACCGGTGGCGAAGCGGGTCTTGGGCCGA GCGGTGAAATGCGCAGATATAGGAGGAACACCGGTGGCGAAGCGGGTCTTGGGCCGA GCGGTGAAATGCGCAGATATAGGAGGAACACCGGTGGCGAAGCGGGTCTTGGGCCGA GCGGTGAAATGCGCAGATATAGGAGGAACACCGGTGGCGAAGCGGGTCTTGGGCCGA GCGGTGAAATGCGCAGATATAGGAGGAACACCGGTGGCGAAGCGGGTCTTGGGCCGA GCGGTGAAATGCGCAGATATAGGAGGAACACCGGTGGCGAAGCGGGTCTTGGGCCGA GCGGTGAAATGCGCAGATATAGGAGGAACACCGGTGGCGAAGCGGGTCTTGGGCCGA GCGGTGAAATGCGCAGATATAGGAGGAACACCGGTGGCGAAGCGGGTCTTGGGCCGA GCGGTGAAATGCGCAGATATAGGAGGAACACCGGTGGCGAAGCGGGTCTTGGGCCGA GCGGTGAAATGCGCAGATATAGGAGGAACACCGATGGCGAAGCAGGTCTTGGGCCGA GCGGTGAAATGCGCAGATATAGGAGGAACACCGGTGGCGAAGCGGGTCTTGGGCCGA GCGGTGAAATGCGCAGATATAGGAGGAACACCGGTGGCGAAGCGGGTCTTGGGCCGA GCGGTGAAATGCGCAGATATAGGAGGAACAACGGTGGCGAAGCGGGTCTTGGGCCGA GCGGTGAAATGCGCAGATATAGGAGGAACACCGGTGGCGAAGCGGGTCTTGGGCCGA GCGGTGAAATGCGCAGATATAGGAGGAACACCGGTGGCGAAGCGGGTCTTGGGCCGA GCGGTGAAATGCGCAGATATAGGAGGAACACCGGIGGCGAAGCGGGTCTTGGGCCGA GCGGTGAAATGCGCAGATATAGGAGGAACACCGGTGGCGAAGCGGGTCTTGGGCCGA GCGGTGAAATGCGCAGATATAGGAGGAACACCGGTGGCGAAGCGGGTCTTGGGCCGA GCGGTGAAATGCGCAGATATAGGAGGAACACCGGTGGCGAAGCGGGTCTTGGGCCGA
$\star \star *$ สถาบนวิทยบริการ
เ.ma\% (canamon รณโมหาวิทยาลัย

BTG2-3
BTG3-4
LK2-6
BTG1-4
KM1-9
LK2-12
KM1-6
BTG4-1
BTG1-1
BTG3-2
X92604
KM3-14
KM3-1
X92594
X92601
X92611
KM4-29
KM4-24
LK6-12
LK5-4
TT2-4
BTG10-2
BTG7-3
AF152109
X92599
X92613
TT1-11
X92598
X92608
X92607
X92610
X92609
X92631
X92628
LK2-10
LK2-5
KM1-7

TACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCC TACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCC
 สถาบนวิทยบริการ
ตmaxa\% (canamo กรณ์มหาวิทยาลัย

BTG2-3	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
BTG3-4	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
LK2-6	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
BTG1-4	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
KM1-9	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
LK2-12	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
KM1-6	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
BTG4-1	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
BTG1-1	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
BTG3-2	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
X92604	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
KM3-14	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
KM3-1	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
X92594	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
X92601	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCTTGTGCCGCACT
X92611	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
KM4-29	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
KM4-24	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
LK6-12	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
LK5-4	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
TT2-4	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
BTG10-2	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
BTG7-3	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
AF152109	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTTCTGTGCCGCACT
X92599	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCTTGTGCCGCACT
X92613	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
TT1-11	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
X92598	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGACCTCTCCGGTTCCTGTGCCGCACT
X92608	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCTTGTGCCGCACT
X92607	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCTTGTGCCGCACT
X92610	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
X92609	ACGCTGTAACGTTGCGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
X92631	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCTTGTGCCGCACT
X92628	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
LK2-10	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
LK2-5	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACT
KM1-7	ACGCTGTAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCTTGTGCCGCACT
	$* ~$

BTG2-3	ACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
BTG3-4	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
LK2-6	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
BTG1-4	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
KM1-9	AACGCATTAGCGCCCCGCCTGGGGAgTACGGCCGCAGGCTAAACTCAAAGGAATTG
LK2-12	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
KM1-6	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
BTG4-1	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
BTG	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
BTG3-2	AACGCATTAGCGCCCCGCCTGGGGAgTACGGCCGCAGGCTAAACTCAAAGGAATTG
X92604	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
KM3-14	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
KM3-1	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
X92594	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
X92601	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
X92611	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
KM4-29	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
KM4-24	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
LK6-12	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
LK5-	AACGCATTAGCGCCCCGCCTGGGGAgTACGGCCGCAGGCTAAACTCAAAGGAATTG
TT2-4	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
BTG10-2	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
BTG7-3	AACGCATTAGCGCCCCGCCTGGGGAgTACGGCCGCAGGCTAAACTCAAAGGAATTG
AF152109	AACGCATTAGCGCCCCGCCTGGGGAgTACGGCCGCAGGCTAAACTCAAAGGAATTG
X92599	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
X92613	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
TT1-11	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
X92598	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
X92608	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
X92607	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
X92610	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
X92609	AACGCATTAGCGCCCCGCCTGGGGAgTACGGCCGCAGGCTAAACTCAAAGGAATTG
X92631	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
X92628	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
LK2-10	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
LK2-5	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
KM1-7	AACGCATTAGCGCCCCGCCTGGGGAGTACGGCCGCAGGCTAAACTCAAAGGAATTG
	-
Figure 20. (Continued)	

BTG2-3 ACGGGGGCCCGCACAAGCGGCGGAGCATGCGGATTAATTCGATGCAACGCGAAGAACCTT
BTG3-4 ACGGGGGCCCGCACAAGCGGCGGAGCATGCGGATTAATTCGATGCAACGCGAAGAACCTT

LK2-6
BTG1-4
KM1-9
LK2-12
KM1-6
BTG4-1
BTG1-1
BTG3-2
X92604
KM3-14
KM3-1
X92594
X92601
X92611
KM4-29
KM4-24
LK6-12
LK5-4
TT2-4
BTG10-2
BTG7-3
AF152109
X92599
X92613
TT1-11
X92598
X92608
X92607
X92610
X92609
X92631
X92628
LK2-10
LK2-5
KM1-7 ACGGGGGCCCGCACAAGCGGCGGAGCATGCGGATTAATTCGATGCAACGCGAAGAACCTT ACGGGGGCCCGCACAAGCGGCGGAGCATGCGGATTAATTCGATGCAACGCGAAGACCCTT

ACGGGGGCCCGCACAAGCGGCGGAGCAIGCGGAIIAATTCGATGCAACGCGAAGAACCTT
 สถาบนวิทยบริการ

BTG2-3 ACCTGGGTTTGACATGGCCGCAAAACCTGCAGAGATGTGGGGTCCTTCGGGGGCGGTCAC BTG3-4 ACCTGGGTTTGACATGGCCGCAAAACCTGCAGAGATGTGGGGTCCTTCGGGGGCGGTCAC

LK2-6
BTG1-4
KM1-9
LK2-12
KM1-6
BTG4-1
BTG1-1
BTG3-2
X92604
KM3-14
KM3-1
X92594
X92601
X92611
KM4-29
KM4-24
LK6-12
LK5-4
TT2-4
BTG10-2
BTG7-3
AF152109
X92599
X92613
TT1-11
X92598
X92608
X92607
X92610
X92609
X92631
X92628
LK2-10
LK2-5
KM1-7 ACCTGGGTTTGACATGGCCGCAAAACCTGCAGAGATGTGGGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACCTGCAGAGATGTGGGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACCTGCAGAGATGTGGGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACCTGCAGAGATGTGGGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACCTGCAGAGATGTGGGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACCTGCAGAGATGTGGGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACCTGCAGAGATGTGGGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACTGTCAGAGATGGCAGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACTGTCAGAGATGGCAGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACTGTCAGAGATGGCAGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACTGTCAGAGATGGCAGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACTGTCAGAGATGGCAGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACCGGCAGAGATGTCGGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACTCACAGAGATGTGAGGTCCTTCGGGGGCGGTCAC ACCTGGGTITGACATGGCCGCAAAACTTGCAGAGATGTAAGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACTTGCAGAGATGTAAGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACTGTCAGAGATGGCAGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACTGTCAGAGATGGCAGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACCTCCAGAGATGGGGGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACTTGCAGAGATGTAAGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACTTGCAGAGATGTAAGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACTTGCAGAGATGTAAGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACCTCCAGAGATGGGGGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATCGCCGGAAATCCTCCAGAGATGGGGGGTCCTTCGGGGCCGGTGAC ACCTGGGTTTGACATGGCCGCAAAACTCGCAGAGATGTGAGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACTCACAGAGATGTGAGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACCTGCAGAGATGTAGGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACCGGCAGAGATGTCGGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACCGGCAGAGATGTCGGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACCTGCAGAGATGTGGGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACTGTCAGAGATGGCAGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACTCGCAGAGATGTGAGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACCTGCAGAGATGTGGGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACCTGCAGAGATGTGGGGTCCTTCGGGGGCGGTCAC ACCTGGGTTTGACATGGCCGCAAAACCTCCAGAGATGGGGGGTCCTTCGGGGGCGGTCAC
$\star \star * * * * * * * * \quad \star \star \star \star * * * *$
สถาบนวิทยบริการ
เ.ma\% (conamo กรณ์มหาวิทยาลัย

BTG2-3 AGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGA
BTG3-4 AGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGA
LK2-6
BTG1-4
KM1-9
LK2-12
KM1-6
BTG4-1
BTG1-1
BTG3-2
X92604
KM3-14
Kм3-1
X92594
X92601
X92611
KM4-29
KM4-24
LK6-12
LK5-4
TT2-4
BTG10-2
BTG7-3
AF152109
X92599
X92613
TT1-11
X92598
X92608
X92607 AGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGA AGGTGGTGCATGGCTGTCGICAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGA AGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGA AGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGA AGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGA X92610 AGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGA AGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGA AGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGA LK2-10 AGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGA
LK2-5 AGGIGGTGCAIGGCIGICGICAGCTCGIGICGIGAGAIGIIGGGIIAAGICCCGCAACGA

สถาบนวิทยบริการ

ตมmaฆ\% (canamon รณ์มหาวิทยาลัย

BTG2-3 GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG BTG3-4 GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG

LK2-6
BTG1-4
KM1-9
LK2-12
KM1-6
BTG4-1
BTG1-1
BTG3-2
X92604
KM3-14
Kм3-1
X92594
X92601
X92611
KM4-29
KM4-24
LK6-12
LK5-4
TT2-4
BTG10-2
BTG7-3
AF152109
X92599
X92613
TT1-11
X92598
X92608
X92607
X92610
X92609
X92631
X92628
LK2-10
LK2-5
KM1-7 GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGGGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTICGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGITATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGITATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGITCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGITCGATGITGCCAGCGCGITATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGITCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGITCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG GCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGG

สถาบนวิทยบริการ

ตมmaฆ\% (canamon รณ์มหาวิทยาลัย

BTG2-3 GGTCAACTCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCT
BTG3-4 GGTCAACTCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCT

LK2-6
BTG1-4
KM1-9
LK2-12
KM1-6
BTG4-1
BTG1-1
BTG3-2
X92604
KM3-14
KM3-1
X92594
X92601
X92611
KM4-29
KM4-24
LK6-12
LK5-4
TT2-4
BTG10-2
BTG7-3
AF152109
X92599
X92613
TT1-11
X92598
X92608
X92607
X92610
X92609
X92631
X92628
LK2-10
LK2-5
KM1-7 GGTCAACTCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCT GGTCAACTCGGAGGAAGGIGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCT GGTCAACTCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCT GGTCAACTCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCT GGTCAACTCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCT GGTCAACTCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCT GGTCAACTCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCT GGTCAACTCGGAGGAAGGIGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCT GGTCAACTCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCT GGTCAACTCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCT GGTCAACTCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCT GGICAACTCGGAGGAAGGTGGGGATGAGGTCAAGICATCATGCCCCTTATGTCCAGGGCT GGTCAACTCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCT GGTCAACTCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCT GGTCAACTCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCT
 สถาบนวิทยบริการ
เ.ma\% (conamo กรณ์มหาวิทยาลัย

BTG2-3 TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC
BTG3-4 TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC

LK2-6
BTG1-4
KM1-9
LK2-12
KM1-6
BTG4-1
BTG1-1
BTG3-2
X92604
KM3-14
KM3-1
X92594
X92601
X92611
KM4-29
KM4-24
LK6-12
LK5-4
TT2-4
BTG10-2
BTG7-3
AF152109
X92599
X92613
TT1-11
X92598
X92608
X92607
X92610
X92609
X92631
X92628
LK2-10
LK2-5
KM1-7 TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGTCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGTCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGTTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTAAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC TCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCC
****************** ************ *********** **************** สถาบนวิทยบริการ
เ.ma\% (conamo กรณ์มหาวิทยาลัย

BTG2-3 AAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGC
BTG3-4 AAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGC

LK2-6
BTG1-4
KM1-9
LK2-12
KM1-6
BTG4-1
BTG1-1
BTG3-2
X92604
KM3-14
км3-1
X92594
X92601
X92611
KM4-29
KM4-24
LK6-12
LK5-4
TT2-4
BTG10-2
BTG7-3
AF152109
X92599
X92613
TT1-11
X92598
X92608
X92607
X92610
X92609
X92631
X92628
LK2-10
LK2-5
KM1-7 AAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGC AAAAAGCCGGTCTCAGTICGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGC AAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGC AAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGC AAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGC AAAAAGCCGGTCTCAGITCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGC AAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGC AAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGC AAAAAGCCGGTCTCAGTICGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGC AAAAAGCCGGTCTCAGTICGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGC AAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGC AAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGC AAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGC AAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGC AAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGC AAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGC AAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGC AAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGC AAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGC AAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGC

AAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGC $\star \star \star \star \star \star \star \star \star \star *$

 สถาบนวิทยบริการเ.max (conamo กรณ์มหาวิทยาลัย

BTG2-3 TAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCC
BTG3-4 TAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCC

LK2-6
BTG1-4
KM1-9
LK2-12
KM1-6
BTG4-1
BTG1-1
BTG3-2
X92604
KM3-14
KM3-1
X92594
X92601
X92611
KM4-29
KM4-24
LK6-12
LK5-4
TT2-4
BTG10-2
BTG7-3
AF152109
X92599
X92613
TT1-11
X92598
X92608
X92607
X92610
X92609
X92631
X92628
LK2-10
LK2-5
KM1-7 TAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCC TAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTICCCGGGCCTTGTACACACCGCC TAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCC TAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCC TAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCC TAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCC TAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCC $\star \star \star \star \star * * \star \star \star *$ สถาบนวิทยบริการ
ตมmaฆ\% (canamon รณ์มหาวิทยาลัย

BTG2-3	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
BTG3-4	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
LK2-6	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
BTG1-4	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
KM1-9	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
LK2-12	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
KM1-6	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
BTG4-1	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
BTG1-1	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
BTG3-2	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
X92604	CGTCAGGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
KM3-14	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
KM3-1	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
X92594	CGTCAGGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
X92601	CGTCAGGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
X92611	CGTCAGGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
KM4-29	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
KM4-24	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
LK6-12	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
LK5-4	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
TT2-4	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
BTG10-2	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
BTG7-3	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
AF152109	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
X92599	CGTCAGGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
X92613	CGTCAGGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCGTAAGGAGGG
TT1-11	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
X92598	CGTCAGGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
X92608	CGTCAGGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
X92607	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
X92610	CGTCAGGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
X92609	CGTCAGGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
X92631	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
X92628	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
LK2-10	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
LK2-5	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGG
KM1-7	CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCCATGGCCTAACCTTTTCCGGGGG
Figure 20. (Continued)	

BTG2-3	AgCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
BTG3-4	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
LK2-6	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
BTG1-4	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
KM1-9	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
LK2-12	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
KM1-6	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
BTG4-1	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
BTG1-1	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
BTG3-2	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
X92604	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
KM3-14	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
KM3-1	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
X92594	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
X92601	AGCCGTCAAGGTGGGGCTGGCGATTGGAACGAATCTAACAAGG
X92611	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
KM4-29	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
KM4-24	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
LK6-12	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
LK5-4	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
TT2-4	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
BTG10-2	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
BTG7-3	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
AF152109	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
X92599	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
X92613	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
TT1-11	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
X92598	AGCCGTCAAGGTGGGGCTGGCGATTGGNACGAATCTAACAAGG
X92608	AGCCGTCAAGGTGGGGCIGGCGATTGGGACGAATCTAACAAGG
X92607	AGCCGTCAAGGTGGTGCTGGCGATTGGGACGAATCTAACAAGG
X92610	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
X92609	AGCTGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
X92631	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
X92628	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
LK2-10	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
LK2-5	AGCCGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
KM1-7	AGTGGTCAAGGTGGGGCTGGCGATTGGGACGAATCTAACAAGG
	** ********** ************ ***************

X92604 $=$ M. aurantiaca DSM 43813 ${ }^{\mathrm{T}} \quad \sigma \quad$ X92608 $=$ M. pallida DSM 43817^{T}
X92594 = M. chalcea DSM $43026^{\mathrm{T}} 6$. $692607=$ M. echinospora $\operatorname{DSM} 43816^{\mathrm{T}}$
X92601 $=$ M. halophytica DSM 43171 ${ }^{\mathrm{T}} \quad$ X92610 $=$ M. inositola DSM 43819 ${ }^{\mathrm{T}}$
X92611 $=$ M. purpureochromogenes DSM 43821^{T} X $92609=$ M. nigra DSM 43818^{T}
AF152109 $=$ M. matsumotoense IMSNU 22003 ${ }^{T} \quad$ X92631 $=$ M. rosaria $\operatorname{DSM} 803^{\mathrm{T}}$
X92599 $=$ M. carbonacea DSM $43168^{T} \quad$ X92628 $=$ M. chersina DSM 44151 ${ }^{T}$
X92613 $=$ M. olivasterospora DSM $43868^{T} \quad$ X92598 $=$ M. coerulea DSM 43143^{T}

Table 21. Differential characteristics among the representative strains and validly described Micromonospora species.

Characteristic	茪	$\stackrel{\underset{N}{N}}{\sum_{i}^{\prime}}$	$\begin{aligned} & \pm \\ & \sum_{i}^{m} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { Ó } \\ & \text { S } \\ & \text { N } \end{aligned}$	$\stackrel{\text { H }}{\underset{H}{y}}$		$$	$\begin{aligned} & \text { v} \\ & \text { bu } \end{aligned}$	\sum_{i}^{T}	$\begin{aligned} & \text { N} \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$					n	\checkmark	n	\bigcirc	\checkmark	∞	a	\bigcirc	=	\sim	\cdots	\pm
Nitrate reduction	+	-	+	-	-	w	+	-	-	-	-		-		-	-	+	-	+	-	+	+	+	+	+	+
Peptonization of milk	$+$	+	+	+	+	+	+	w	w	w	w	w		+	-	w	+	$+$	$+$	$+$	+	$+$	w	$+$	$+$	+
Starch hydrolysis	$+$	+	w	+	+	+							+		w	-	+	$+$	$+$	$+$	-	$+$	+	$+$	$+$	$+$
Gelatin liquefaction	+	w	+	+	+	+				+			+		+	+	+	+	$+$	$+$	+	$+$	$+$	$+$	$+$	+
Decomposition of: Tyrosine	-	-	+	-	-											-	-	-	-	-	+	-	-	-	-	-
Growth at :																										
$40{ }^{\circ} \mathrm{C}$	+	+	+	+	+	+								+		+	+	+	+	+	+	+	+	$+$	+	+
$45^{\circ} \mathrm{C}$	-	-	-	-	-	-			-						-	-	+	-	-	-	-	-	-	$+$	-	-
Max. NaCl tolerance(\%)	6	6	5	5	5	4		4	4	3	2	2	1.5	5	1.5	1.5	3	3	3	2	4	4	4	4	3	3
Utilization of :										K		12														
D-Mannitol	w	-	-	+	-	+	w	+	-	-					-	-	-	-	-	+	-	-	-	-	-	-
D-Ribose	-	-	-	-	-	+	-								-	-	-	w	w	w	-	-	-	-	-	+
L-Rhamnose	w	+	-	+	w	-	+	w	W	+					-	-	+	-	-	+	-	-	-	-	-	+
D-Melibiose	+	$+$	+	+	+	+	+	-		w					+	+	w	-	-	+	+	$+$	$+$	+	+	-
D-Raffinose	+	$+$	w	+	+	+	+			+					w	w	-	-	+	-	w	+	+	-	$+$	-
Glycerol	w	$+$	-	+	-		$+$	+	-	-		-	-	-	-		-	-	-	-	-	-	w	-	+	-
Salicin	-	$+$	-	-	+	V	+	+	-	w		+	W		-		-	-	-	-	-	$+$	-	-	$+$	-
Lactose	+	+	-	+	+			w	+	-		+	+	+	+	w	w	-	+	+	-	$+$	+	w	$+$	-
D-Galactose	+	-	+	+	+	+	w	-	+	-		+	+		+	+	+	-	$+$	+	+	+	$+$	+	+	+
L-Arabinose	-	-	w	-	+	w	-	-	-	-		+	-	w	-		+	$+$	$+$	w	w	w	+	-	-	+
Cellobiose	+	+	+	w	+	+	+	w	+			+	+			+	+	+	+	+	+	+	-	+	$+$	$+$
D-Fructose	w	-	$+$	-								+	$+$,	$+$	$+$	-	+	-	+	w	+	w	+	+

1, M. coerulea JCM $3175^{\mathrm{T}} ; 2$, M. chalcea JCM $3031^{\mathrm{T}} ; 3$, M. inositola JCM $6239^{\mathrm{T}} ; 4$, M. purpureochromogenes JCM $3156^{\mathrm{T}} ; 5$, M. olivasterospora JCM $7348^{\mathrm{T}} ; 6$, M. echinospora $\mathrm{JCM}^{\mathrm{T}} 3073^{\mathrm{T}}$; 7 , M. matsumotoense $\mathrm{JCM} 9401^{\mathrm{T}} ; 8$, M. rosaria JCM $3159^{\mathrm{T}} ; 9$, M. aurantiaca $\mathrm{JCM} 10878^{\mathrm{T}} ; 10$. M. nigra $\mathrm{JCM} 8973^{\mathrm{T}}$; 11. M. halophytica JCM 3125^{T}; 12. M. chersina $\mathrm{JCM} 9459^{\mathrm{T}}$; 13. M. carbonacea JCM
3139^{T}; 14. M. pallida $\mathrm{JCM} 3133^{\mathrm{T}}$

+ , positive; -, negative, w, weakly negative.

Table 22. Similarity percentage of the representative Micromonospora strains.

7. Characteristics of two known Micromonospora species and nine novel Micromonospora species (Tables 11-21)

7.1 Characteristics of Micromonospora Group I strains

Aerobic, Gram-positive, mesophilic, non-motile actinomycete that forms welldeveloped and branched substrate hyphae. Colonies are deep orange in ISP medium no. 2, turning to black after sporulation. Single spores are formed on the substrate hyphae. Aerial mycelium is absent. Utilizes D-glucose, D-melibiose, D-mannitol, Draffinose, L-rhamnose, glycerol, lactose, D-galactose, cellobiose, D-fructose, and Dxylose, but not salicin, L-arabinose, and D-ribose. Hydrolysis of starch, gelatin liquefaction, milk peptonization and nitrate reduction are positive. Well growth is observed between 25 and $30^{\circ} \mathrm{C}$. No growth occurs above $40^{\circ} \mathrm{C}$. The range of NaCl concentration for growth is $5-6 \%$. Cell wall contains glutamic acid, glycine, alanine, meso-diaminopimelic acid. The acyl type of the cell wall is glycolyl. The characteristic whole-cell sugars are xylose and arabinose. The phospholipid profile contains diphosphatidylglycerol, phosphatidylinositolmannosides, phosphatidylinositol and phosphatidylethanolamine, but not phosphatidylcholine. The major cellular fatty acids are iso- $\mathrm{C}_{16: 0}$, anteiso- $\mathrm{C}_{17: 0}$, and iso- $\mathrm{C}_{15: 0}$, and a small amount of iso- $\mathrm{C}_{17: 0}$, and anteiso-C $\mathrm{C}_{15: 0}$ are also present. Mycolic acids are absent. The predominant menaquinones are MK-10(H_{4}), and MK-10 $\left(\mathrm{H}_{6}\right)$. The G+C content of the

7.2 Characteristics of Micromonospora Group III strains

Aerobic, Gram-positive, mesophilic, non-motile actinomycete that forms welldeveloped and branched substrate hyphae. Colonies are light yellowish brown in ISP medium no. 2, turning to dark yellowish brown after sporulation. Single spores are formed on the substrate hyphae. Aerial mycelium is absent. Utilizes D-glucose, Dmelibiose, D-raffinose, D-galactose, cellobiose, D-fructose, and D-xylose, but not Dmannitol, L-rhamnose, glycerol, lactose, salicin, L-arabinose, and D-ribose. Hydrolysis of starch, gelatin liquefaction, milk peptonization and nitrate reduction are positive. Well growth is observed between 25 and $30^{\circ} \mathrm{C}$. No growth occurs above $40^{\circ} \mathrm{C}$. The range of NaCl concentration for growth is $4-5 \%$. Cell wall contains glutamic acid, glycine, alanine, meso-diaminopimelic acid. The acyl type of the cell wall is glycolyl. The characteristic whole-cell sugars are xylose and arabinose. The
phospholipid profile contains diphosphatidylglycerol, phosphatidylinositolmannosides, phosphatidylinositol and phosphatidylethanolamine, but not phosphatidylcholine. The major cellular fatty acids are iso- $\mathrm{C}_{16: 0}$, anteiso- $\mathrm{C}_{17: 0}$, and iso- $\mathrm{C}_{15: 0}$, and a small amount of iso- $\mathrm{C}_{17: 0}$, and anteiso- $\mathrm{C}_{15: 0}$ are also present. Mycolic acids are absent. The predominant menaquinones are MK-10(H_{4}), and MK$9\left(\mathrm{H}_{4}\right)$. The $\mathrm{G}+\mathrm{C}$ content of the DNA is $72.4 \mathrm{~mol} \%$. Habitat is soil.

7.3 Characteristics of Micromonospora Group II strains

Aerobic, Gram-positive, mesophilic, non-motile actinomycete that forms welldeveloped and branched substrate hyphae. Colonies are vivid orange in ISP medium no. 2. Single spores are formed on the substrate hyphae. Aerial mycelium is absent. The spores are non-motile and their surface appears smooth. Pale yellow soluble pigment is produced in ISP medium no. 2. Utilizes D-glucose, D-melibiose, Draffinose, salicin, lactose, glycerol, L-rhamnose, cellobiose, and D-xylose but not Dgalactose, D-mannitol, D-ribose, L-arabinose, D-fructose. Hydrolysis of starch, milk peptonization and gelatin liquefaction are positive. Nitrate reduction is negative. Well growth is observed between 25 and $30^{\circ} \mathrm{C}$. No growth occurs above $40^{\circ} \mathrm{C}$. The range of NaCl concentration for growth is $5-6 \%$. Cell wall contains glutamic acid, glycine, alanine and meso-diaminopimelic acid. The acyl type of the cell wall is glycolyl. The characteristic whole-cell sugars are xylose and arabinose. The phospholipid profile contains Ω diphosphatidylglycerol, phosphatidylinositolmannosides, phosphatidylinositol and phosphatidylethanolamine, but not phosphatidylcholine. The major cellular fatty acids are iso- $\mathrm{C}_{16: 0}, \mathrm{C}_{17 \% 1}(\omega 8 c)$, iso- $\mathrm{C}_{15: 0}, \mathrm{C}_{17: 0}$ and a small amount of iso- $\mathrm{C}_{17: 0}$, anteiso- $\mathrm{C}_{17: 0}$ and anteiso- $\mathrm{C}_{15: 0}$ are also $?$ present. Mycolic acids are absent. The predominant menaquinones are MK-10(H_{4}) and MK-10(H_{6}). The G+C content of the DNA is $72.4 \mathrm{~mol} \%$. Habitat is soil.

7.4 Characteristics of Micromonospora Group IV strains

Aerobic, Gram-positive, mesophilic, non-motile actinomycete that forms welldeveloped and branched substrate hyphae. Colonies are vivid orange in ISP medium no. 2. Single spores are formed on the substrate hyphae. Aerial mycelium is absent. The spores are non-motile and their surface appears smooth. Pale yellow soluble pigment is produced in ISP medium no. 2 and nutrient agar. Utilizes D-glucose, Dmelibiose, D-raffinose, lactose, glycerol, L-rhamnose, cellobiose, D-galactose, D-
mannitol and D-xylose but not salicin, D-ribose, L-arabinose, D-fructose. Hydrolysis of starch, milk peptonization and gelatin liquefaction are positive. Nitrate reduction is negative. Well growth is observed between 25 and $30^{\circ} \mathrm{C}$. No growth occurs above $40-45^{\circ} \mathrm{C}$. The range of NaCl concentration for growth is $4-5 \%$. Cell wall contains glutamic acid, glycine, alanine and meso-diaminopimelic acid. The acyl type of the cell wall is glycolyl. The characteristic whole-cell sugars are xylose and arabinose. The phospholipid profile contains diphosphatidylglycerol, phosphatidylinositolmannosides, phosphatidylinositol and phosphatidylethanolamine, but not phosphatidylcholine. The major cellular fatty acids are iso- $\mathrm{C}_{15: 0}$, iso- $\mathrm{C}_{16: 0}$, anteiso- $\mathrm{C}_{15: 0}$, and a small amount of iso- $\mathrm{C}_{17: 0}$, anteiso- $\mathrm{C}_{17: 0}, \mathrm{C}_{17: 1}(\omega 8 c), \mathrm{C}_{17: 0}$, and anteiso- $\mathrm{C}_{15: 0}$ are also present. Mycolic acids are absent. The predominant menaquinones are MK-10(H_{4}) and MK- $10\left(\mathrm{H}_{6}\right)$. The $\mathrm{G}+\mathrm{C}$ content of the DNA is 72.3 $\mathrm{mol} \%$. Habitat is soil.

7.5 Characteristics of Micromonospora Group V strains

Aerobic, Gram-positive, mesophilic, non-motile actinomycete that forms welldeveloped and branched substrate hyphae. Colonies are vivid orange in ISP medium no. 2. Single spores are formed on the substrate hyphae. Aerial mycelium is absent. The spores are non-motile and their surface appears smooth. Yellow soluble pigment is produced in ISP medium no. 2. Utilizes D -glucose, D-melibiose, D-raffinose, salicin, lactose, L-rhamnose, L-arabinose, D-galactose, D-fructose, cellobiose and Dxylose but not D-mannitol, D-ribose and glycerol. Hydrolysis of starch, milk peptonization and gelatin liquefaction are positive. Nitrate reduction is negative. Well growth is observed between 25 and $30^{\circ} \mathrm{C}$. No growth occurs above $40^{\circ} \mathrm{C}$. The maximum NaCl concentration for growth is 5%. Cell wall contains glutamic acid, glycine, alanine and meso-diaminopimelic acid. The acyl type of the cell wall is glycolyl. The characteristic whole-cell sugars are xylose and arabinose. The phospholipid profile contains diphosphatidylglycerol, phosphatidylinositolmannosides, phosphatidylinositol and phosphatidylethanolamine, but not phosphatidylcholine. The major cellular fatty acids are iso- $\mathrm{C}_{16: 0}$, iso- $\mathrm{C}_{15: 0}$, anteiso- $\mathrm{C}_{17: 0}, \mathrm{C}_{17: 0}$, and a small amount of iso- $\mathrm{C}_{17: 0}$ and anteiso- $\mathrm{C}_{15: 0}$ are also present. Mycolic acids are absent. The predominant menaquinones are MK-10(H_{4}). The G+C content of the DNA is $72.9 \mathrm{~mol} \%$. Habitat is soil.

7.6 Characteristics of Group VI strains

Aerobic, Gram-positive, mesophilic, non-motile actinomycete that forms welldeveloped and branched substrate hyphae. Colonies are grayish yellow in ISP medium no. 2 , turning to black after sporulation. Single spores are formed on the substrate hyphae. Aerial mycelium is absent. The spores are non-motile and their surface appears rough and nodular. Pale yellow soluble pigment is produced in ISP medium no. 2 and nutrient agar. Utilizes D-glucose, D-melibiose, D-raffinose, salicin, lactose, glycerol, D-galactose, D-mannitol, D-ribose, L-arabinose, cellobiose and Dxylose but not L-rhamnose and D-fructose. Hydrolysis of starch, milk peptonization, nitrate reduction and gelatin liquefaction are positive. Well growth is observed between 25 and $30^{\circ} \mathrm{C}$. No growth occurs above $40^{\circ} \mathrm{C}$. The maximum NaCl concentration for growth is 4%. Cell wall contains glutamic acid, glycine, alanine, and meso-diaminopimlic acid. The acyl type of the cell wall is glycolyl. The characteristic whole-cell sugars are xylose and arabinose. The phospholipid profile contains diphosphatidylglycerol, phosphatidylinositolmannosides, phosphatidylinositol and phosphatidylethanolamine, but not phosphatidylcholine. The major cellular fatty acids are iso- $\mathrm{C}_{15: 0}$, iso- $\mathrm{C}_{17: 0}$ iso- $\mathrm{C}_{16: 0}, \mathrm{C}_{17: 0}$ and a small amount of anteiso- $\mathrm{C}_{17: 0}$, and anteiso- $\mathrm{C}_{15: 0}$ are also present. Mycolic acids are absent. The predominant menaquinones are MK-10(H_{8}), MK-10 $\left(\mathrm{H}_{6}\right)$, MK-10(H_{4}) and MK$9\left(\mathrm{H}_{8}\right)$. The G+C content of the DNA is $74.5 \mathrm{~mol} \%$. Habitat is soit.

7.7 Characteristics of Group VII strains

Aerobic, Gram-positive, mesophilic, non-motile actinomycete that forms welldeveloped and branched substrate hyphae. Colonies are yellowish white and turn to greyish black after sporulation in ISP medium no. 2. Single spores are formed on substrate hyphae. Aerial mycelium is absent. The spore surface appears rough and nodular. Spores are non-motile. Pale yellow soluble pigment is produced in ISP medium no. 2, no. 3 and nutrient agar. Nitrate is reduced to nitrite. Utilizes Dglucose, L-rhamnose, D-melibiose, D-raffinose, glycerol, salicin, lactose, cellobiose and D-xylose; weakly utilizes D-mannitol, D-galactose but not L-arabinose, Dfructose and D-ribose. Peptonization of milk, hydrolysis of starch and gelatin liquefaction are positive. Optimal temperature for growth is between $25-30^{\circ} \mathrm{C}$. No growth occurs above $45^{\circ} \mathrm{C}$. The maximum NaCl concentration for growth is 4%. Cell wall contains glutamic acid, glycine, alanine and meso-diaminopimelic acid in
the molar ratio of 1:0.9:0.5:1.1. The acyl type of the cell wall is the glycolyl type. Mycolic acids are absent. The predominant menaquinone is MK-9(H_{4}). The characteristic whole-cell sugars are xylose and arabinose. The phospholipids profile contains diphosphatidylglycerol, phosphatidylinositolmannosides, phosphatidylinositol and phosphatidylethanolamine, but not phosphatidylcholine. The major fatty acid pattern of the type strain consists of iso- $\mathrm{C}_{15: 0}$, iso- $\mathrm{C}_{16: 0}$, iso- $\mathrm{C}_{17: 0}$, anteiso- $\mathrm{C}_{15: 0}, \mathrm{C}_{17: 0}$, anteiso- $\mathrm{C}_{17: 0}$. The $\mathrm{G}+\mathrm{C}$ content of the DNA is $71.5 \mathrm{~mol} \%$. Habitat is soil.

7.8 Characteristics of Group VIII strains

Aerobic, Gram-positive, mesophilic, non-motile actinomycete that forms welldeveloped and branched substrate hyphae. Colonies are deep orange in ISP medium no. 2, turning to dark grayish brown after sporulation. Single spores are formed on the substrate hyphae. Aerial mycelium is absent. The spores are non-motile and their surface appears rough. Pale yellow soluble pigment is produced in ISP medium no. 2. Utilizes D-glucose, D-raffinose, salicin, lactose, glycerol, D-mannitol, L-rhamnose, cellobiose and D-xylose but not D-melibiose, D-galactose, L-arabinose, D-ribose and Dfructose. Hydrolysis of starch, milk peptonization, and gelatin liquefaction are positive. Nitrate reduction is negative. Well growth is observed between 25 and $30^{\circ} \mathrm{C}$. No growth occurs above $40^{\circ} \mathrm{C}$. The maximum NaCl concentration for growth is 4%. Cell wall contains glutamic acid, glycine, alanine and meso-diaminopimelic acid. The acyl type of the cell wall is glycolyl. The characteristic whole-cell sugars are xylose and arabinose. The phospholipid profile contains diphosphatidylglycerol, phosphatidylinositolmannosides, phosphatidylinositol and phosphatidylethanolamine, but not phosphatidylcholine. The major cellular fatty acids are iso- C_{1500}, iso- $\mathrm{C}_{16: 0}$, iso$\mathrm{C}_{17: 1}(\omega 9 c), \mathrm{C}_{17: 1}(\omega 8 c)$, anteiso- $\mathrm{C}_{17: 0}$, and a small amount of iso- $\mathrm{C}_{17: 0}, \mathrm{C}_{17: 0}$ and anteiso- $\mathrm{C}_{15: 0}$ are also present. Mycolic acids are absent. The predominant menaquinones are MK-10(H_{4}), MK-10(H_{6}) and MK-9 $\left(\mathrm{H}_{4}\right)$. The $\mathrm{G}+\mathrm{C}$ content of the DNA is $72.5 \mathrm{~mol} \%$. Habitat is soil.

7.9 Characteristics of Group IX strains

Aerobic, Gram-positive, mesophilic, non-motile actinomycete that forms welldeveloped and branched substrate hyphae. Colonies are strong reddish orange in ISP medium no. 2. Single spores are formed on the substrate hyphae. Aerial mycelium is
absent. Yellowish orange soluble pigment is produced in ISP medium no. 2. Utilizes D-glucose, lactose, L-rhamnose, D-melibiose, D-galactose, D-fructose, cellobiose and Dxylose but not D-mannitol, D-raffinose, glycerol, salicin, L-arabinose and D-ribose. Milk peptonization, and gelatin liquefaction are weakly positive. Hydrolysis of starch, nitrate reduction are negative. Well growth is observed between 25 and $30^{\circ} \mathrm{C}$. No growth occurs above $40^{\circ} \mathrm{C}$. The maximum NaCl concentration for growth is 4%. Cell wall contains glutamic acid, glycine, alanine, and meso-diaminopimelic acid. The acyl type of the cell wall is glycolyl. The characteristic whole-cell sugars are xylose and galactose. The phospholipid profile contains diphosphatidylglycerol, phosphatidylinositolmannosides, phosphatidylinositol and phosphatidylethanolamine, but not phosphatidylcholine. The major cellular fatty acids are iso- $\mathrm{C}_{15: 0}$, iso- $\mathrm{C}_{16: 0}$, anteiso- $\mathrm{C}_{17: 0}$, anteiso- $\mathrm{C}_{15: 0}$, and a small amount of iso- $\mathrm{C}_{17: 0}$ and $\mathrm{C}_{17: 0}$ are also present. Mycolic acids are absent. The predominant menaquinones are MK-9 $\left(\mathrm{H}_{6}\right)$ and MK$9\left(\mathrm{H}_{8}\right)$. The G+C content of the DNA is $72.5 \mathrm{~mol} \%$. Habitat is soil.

7.10 Characteristics of Group X strains

Aerobic, Gram-positive, mesophilic, non-motile actinomycete that forms welldeveloped and branched substrate hyphae. Colonies are grayish yellow in ISP medium no. 2, turning to black after sporulation. Single spores are formed on the substrate hyphae. Aerial mycelium is absent. The spores are non-motile and their surface appears rough and nodular. Pale yellow soluble pigment is produced in ISP medium no. 2. Utilizes D-glucose, D-melibiose, D-raffinose, salicin, L-rhamnose, and D-xylose but not lactose, glycerol, D-galactose, D-mannitol, D-ribose, L-arabinose, cellobiose and D-fructose. Hydrolysis of starch, milk peptonization and gelatin liquefaction are positive. Nitrate reduction is negative. Well growth is observed between 25 and $30^{\circ} \mathrm{C}$. No growth occurs above $40^{\circ} \mathrm{C}$. The range of NaCl concentration for growth is $3-4 \%$. Cell wall contains glutamic acid, glycine, alanine and meso-diaminopimelic acid. The acyl type of the cell wall is glycolyl. The characteristic whole-cell sugars are xylose and arabinose. The phospholipid profile contains diphosphatidylglycerol, phosphatidylinositolmannosides, phosphatidylinositol and phosphatidylethanolamine, but not phosphatidylcholine. The major cellular fatty acids are $\mathrm{C}_{17: 0}$, anteiso- $\mathrm{C}_{15: 0}$, iso- $\mathrm{C}_{16: 0}$, anteiso- $\mathrm{C}_{17: 0}$, and a small amount of iso- $\mathrm{C}_{15: 0}$, iso- $\mathrm{C}_{17: 0}$ and anteiso- $\mathrm{C}_{15: 0}$ are also present. Mycolic acids
are absent. The predominant menaquinones are MK-10(H_{6}) and MK-10(H_{4}). The $\mathrm{G}+\mathrm{C}$ content of the DNA is $71.5 \mathrm{~mol} \%$. Habitat is soil.

7.11 Characteristics of Group XI strains

Aerobic, Gram-positive, mesophilic, non-motile actinomycete that forms welldeveloped and branched substrate hyphae. Colonies are vivid orange in ISP medium no. 2, turning to brownish black or black after sporulation. Single spores are formed on the substrate hyphae. Aerial mycelium is absent. The spores are non-motile and their surface appears rough. Brown soluble pigment is produced in ISP medium no. 2. Utilizes D-glucose, D-melibiose, D-raffinose, salicin, lactose, D-galactose, cellobiose, D-ribose, L-arabinose, D-fructose, and D-xylose, but not L-rhamnose, glycerol, and D-mannitol. Hydrolysis of starch and gelatin liquefaction are positive, milk peptonization is weakly positive, and nitrate reduction is negative. Well growth is observed between 25 and $30^{\circ} \mathrm{C}$. No growth occurs above $40^{\circ} \mathrm{C}$. The maximum NaCl concentration for growth is 2%. Cell wall contains glutamic acid, glycine, alanine, meso- and 3-OH-diaminopimelic acid. The acyl type of the cell wall is glycolyl. The characteristic whole-cell sugars are xylose and arabinose. The phospholipid profile contains diphosphatidylglycerol, phosphatidylinositolmannosides, phosphatidylinositol and phosphatidylethanolamine, but not phosphatidylcholine. The major cellular fatty acids are iso- $\mathrm{C}_{16: 0}$ and iso- $\mathrm{C}_{15: 0}$, and a small amount of iso- $\mathrm{C}_{17: 0}$, anteiso- $\mathrm{C}_{17: 0}$ and anteiso- $\mathrm{C}_{15: 0}$ are also present. Mycolic acids are absent. The predominant menaquinones are MK-10($\left.\mathrm{H}_{4}\right)$, MK$9\left(\mathrm{H}_{4}\right)$, and MK-10($\left.\mathrm{H}_{6}\right)$. The $\mathrm{G}+\mathrm{C}$ content of the DNA is $72.8 \mathrm{~mol} \%$. Habitat is soil.

8. Structure elucidation of micromonosporin A and compound 2

Micromonosporin A was isolated from the ethyl acetate extract of YM fermentation broth of Micromonospora sp. TT1-11 after several chromatographic techniques. The ethyl acetate extract of the strain TT1-11 gave the major compound, Micromonosporin A (9,11,13-trihydroxy-14,19,24-trimethyl-1-azacyclotetracosa-$3,5,7,15,17,19,21$-heptaen-2-one, $259 \mathrm{mg}, 6.71 \%$ (w/w) of the ethyl acetate extract or $0.43 \%(\mathrm{w} / \mathrm{v})$ of the YM fermentation broth (20L)). The chemical structures of this isolated compound were elucidated by analyses of their spectroscopic data including UV, IR, MS, and NMR spectral data.

8.1 Structure elucidation of micromonosporin A

Micromonosporin A (Figure 21) was obtained as an off-white powder showing an optical rotation $[\alpha]_{\mathrm{D}}^{25}-248.4$ (c, $0.1, \mathrm{MeOH}$). The IR absorption spectrum displayed characteristic bands at $3,430 \mathrm{~cm}^{-1}$ ($\mathrm{O}-\mathrm{H}$ stretching) and $1,631 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}$ stretching, amide band) (Figure 46). The UV spectrum in MeOH of micromonosporin A exhibited $\lambda_{\max }(\varepsilon)$ at $281(4.70)$, 291(4.77), 306(4.51), and 322(4.33) nm (Figure 45). The ESI-TOF-MS of this compound exhibited the pseudomolecular ion peak $[\mathrm{M}+\mathrm{Na}]^{+}$at $m / z 450.2611$ (calculated for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{~N}+\mathrm{Na}$ at 450.2620) (Figure 47).

The $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of micromonosporin A (Table 23) in DMSO- d_{6} (Figure 48) displayed characteristic signals for $\mathrm{N}-\mathrm{H}$ of an amide at $\delta_{\mathrm{H}} 7.57(1 \mathrm{H}, \mathrm{d}, J=$ 8.6), three oxygenated methine protons at $\delta_{\mathrm{H}} 4.73(1 \mathrm{H}, \mathrm{d}, J=4.5), 4.80(1 \mathrm{H}, \mathrm{d}, J=$ $2.7)$ and $5.08(1 \mathrm{H}, \mathrm{d}, J=3.2)$, two methyl doublets at $\delta_{\mathrm{H}} 1.03(3 \mathrm{H}, \mathrm{d}, J=6.7)$ and 1.14 $(3 \mathrm{H}, \mathrm{d}, J=6.6)$, one methyl singlet at $\delta_{\mathrm{H}} 1.74$, three nonequivalent methylenes at δ_{H} $1.09(\mathrm{~m})$ and $1.61(\mathrm{~m}), \delta_{\mathrm{H}} 2.21(\mathrm{~m})$ and $2.32(\mathrm{~m})$ and $\delta_{\mathrm{H}} 1.27(\mathrm{~m})$ and $1.66(\mathrm{~m})$, two methines at $\delta_{\mathrm{H}} 2.18(\mathrm{~m})$ and $3.72(\mathrm{~m})$, and thirteen olefinic protons at $\delta_{\mathrm{H}} 5.37(1 \mathrm{H}, \mathrm{t}, J$ $=9.8), \delta_{\mathrm{H}} 5.59(1 \mathrm{H}, \mathrm{ddd}, J=15.0,9.5,5.7), \delta_{\mathrm{H}} 5.80(1 \mathrm{H}, \mathrm{d}, J=15.4), \delta_{\mathrm{H}} 5.84(1 \mathrm{H}, \mathrm{dd}$, $J=15.2,7.9), \delta_{\mathrm{H}} 5.94(1 \mathrm{H}, \mathrm{t}, J=10.9), \delta_{\mathrm{H}} 5.99(1 \mathrm{H}, \mathrm{d}, J=11.2), \delta_{\mathrm{H}} 5.62(1 \mathrm{H}, \mathrm{d}, J=$ $15.3), \delta_{\mathrm{H}} 6.14(1 \mathrm{H}, \mathrm{dd}, J=15.2,10.6), \delta_{\mathrm{H}} 6.21(1 \mathrm{H}, \mathrm{dd}, J=15.1,10.9), \delta_{\mathrm{H}} 6.34(\mathrm{~m})$, $\delta_{\mathrm{H}} 6.35(\mathrm{~m}), \delta_{\mathrm{H}} 6.39(\mathrm{~m})$ and $\delta_{\mathrm{H}} 6.83(1 \mathrm{H}, \mathrm{dd}, J=15.4,10.9)$. The ${ }^{13} \mathrm{C}$ and DEPT NMR spectral data (Figures 51 and 53) indicated that micromonosporin A contains twenty-six carbons, including an amide carbonyl at $\delta_{H} 165.6$ (s), thirteen olifenic methine carbons at $\delta_{\mathrm{H}} 122.7$ (d), $\delta_{\mathrm{H}} 125.9$ (d), $\delta_{\mathrm{H}} 127.3$ (d), $\delta_{\mathrm{H}} 129.1$ (d), $\delta_{\mathrm{H}} 129.5$ (d), $\delta_{\mathrm{H}} 130.6(\mathrm{~d}), \delta_{\mathrm{H}} 131.1(\mathrm{~d}), \delta_{\mathrm{H}} 131.2(\mathrm{~d}), \delta_{\mathrm{H}} 135.3$ (d), $\delta_{\mathrm{H}} 137.3$ (d), $\delta_{\mathrm{H}} 137.6$ (d), $\delta_{\mathrm{H}}{ }^{\mathrm{C}}$ $137.6(\mathrm{~d})$ and $\delta_{\mathrm{H}} 139.9(\mathrm{~d})$ and one $s p^{2}$ quaternary carbon at $\delta_{\mathrm{H}} 133.1$ (s) assignable to seven double bonds, two methine carbons at $\delta_{\mathrm{H}} 44.5(\mathrm{t})$ and $\delta_{\mathrm{H}} 44.9$ (d), three methyl carbons at $\delta_{\mathrm{H}} 12.4(\mathrm{q}), \delta_{\mathrm{H}} 16.8(\mathrm{q})$ and $\delta_{\mathrm{H}} 21.0(\mathrm{q})$, three methylenes at $\delta_{\mathrm{H}} 39.3(\mathrm{t}), \delta_{\mathrm{H}}$ $40.1(\mathrm{t})$ and $\delta_{\mathrm{H}} 46.3(\mathrm{t})$, three oxygenated methines at $\delta_{\mathrm{H}} 63.6(\mathrm{~d}), \delta_{\mathrm{H}} 68.6(\mathrm{~d})$ and δ_{H} 75.0 (d). These accounted for eight of the nine degrees of unsaturation required by the molecular formular, therefore establishing micromonosporin A to be a monocyclic skeleton. The ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-COSY spectrum of micromonosporin A (Figure 59) revealed partial structures from $\mathrm{H}-\mathrm{C}(3)$ to $\mathrm{H}-\mathrm{C}(18)$ (including $14-\mathrm{CH}_{3}$), and from $\mathrm{H}-\mathrm{C}(20)$ to $\mathrm{H}-\mathrm{C}(24)$ (including $24-\mathrm{CH}_{3}$), and also showed the correlation between NH (at δ_{H}
7.57) (d, $J=8.6$) and H-C(24), readily placing an amide bond next to $\mathrm{H}-\mathrm{C}(24)$. The HMBC spectrum of micromonosporin A (Figure 56) allowed the assignment of 19CH_{3}, demonstrating correlations from $19-\mathrm{CH}_{3}$ to C -atoms $\mathrm{C}(18), \mathrm{C}(19)$ and $\mathrm{C}(20)$. Allylic couping from $19-\mathrm{CH}_{3}$ to $\mathrm{H}-\mathrm{C}(20)$ was also observed from the ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{COSY}$ spectrum of micromonosporin A. The HMBC spectrum well assembled a cyclic lactam structure of micromonosporin A, displaying the correlations from both NH proton and $\mathrm{H}-\mathrm{C}(3)$ to $\mathrm{C}(2)$. The IR spectrum of the compound showed an absorption peak at $1631 \mathrm{~cm}^{-1}$, confirming the presence of a conjugated amide $\mathrm{C}=\mathrm{O}$ group. Based on these spectral data, the structure of micromonosporin A was established as 9,11,13-trihydroxy-14,19,24-trimethyl-1-azacyclotetracosa-3,5,7,15,17,19,21-heptaen-2-one. Complete assignments of H - and C -atom of micromonosporin A were achieved by analyses of ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-COSY, HMQC and HMBC spectra (Figures 59, 54 and 56).

The geometries of double bonds at $\mathrm{C}-3=\mathrm{C}-4, \mathrm{C}-5=\mathrm{C}-6$, and $\mathrm{C}-7=\mathrm{C}-8$ were determined by analyses of coupling constant values. The values of $J(3,4), J(5,6)$ and $J(7,8)$ were $15.4,15.1$, and 10.9 Hz , respectively, indicating $(E)-$, $(E)-$, and (Z)configurations of these double bonds. Furthermore, the values of $J(15,16), J(17,18)$ and $J(21,22)$ were ca. 15 Hz , suggesting (E)-configuration of the corresponding $\mathrm{C}=\mathrm{C}$ bonds. The NOESY spectral data (Figure 62) of micromonosporin A revealed the proximity of $19-\mathrm{CH}_{3}$ and $\mathrm{H}-\mathrm{C}(21)$, implying that a $\mathrm{C}-19=\mathrm{C}-20$ bond was also $(E)-$ configured. Unfortunately, the configurations at stereogenic C -atoms in micromonosporin A, i.e., C-9, C-11, C-13, C-14 and C-24 could not be established by analyses of coupling constants and NOESY-spectral data.

In an attempt to derivatize micromonosporin A , the more stable form was succeeded by the transformation of micromonosporin A to compound $\mathbf{2}$ using Pd / C hydrogenation.

The hydrogenated product 2 (9,11,13-trihydroxy-14,19,24-trimethyl-1-azacyclotetracosan-2-one, Figure 21) was obtained as colorless viscous liquid, showing optical rotation $[\alpha]^{25}{ }_{\mathrm{D}}-7.73$ (c, $0.1, \mathrm{MeOH}$). The IR absorption spectrum (Figure 68) displayed characteristic bands at $3,298 \mathrm{~cm}^{-1}$ ($\mathrm{O}-\mathrm{H}$ stretching) and 1,642 cm^{-1} ($\mathrm{C}=\mathrm{O}$ stretching, an amide band). The UV spectrum in MeOH of compound $\mathbf{2}$
(Figure 67) exhibited $\lambda_{\max }(\varepsilon)$ at 203 (3.73) nm. The ESI-TOF-MS of this compound (Figure 69) exhibited the pseudomolecular ion peak $[\mathrm{M}+\mathrm{Na}]^{+}$at $m / z 464.3712$ (calculated for $\mathrm{C}_{26} \mathrm{H}_{51} \mathrm{O}_{4} \mathrm{~N}+\mathrm{Na}$ at 464.3716).

The molecular formula of compound 2 was deduced from the ESITOF mass spectrum as $\mathrm{C}_{26} \mathrm{H}_{51} \mathrm{O}_{4} \mathrm{~N}$, showing an accurate mass at $m / z 464.3712(\mathrm{M}+\mathrm{Na})^{+}$. The ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 70) of compound $\mathbf{2}$ in CDCl_{3} displayed characteristic signals for an amide proton at $\delta_{\mathrm{H}} 5.37(1 \mathrm{H}, \mathrm{d}, J=8.4)$, three oxygenated methine protons at $\delta_{\mathrm{H}} 3.69(1 \mathrm{H}, \mathrm{m}), 3.88(1 \mathrm{H}, \mathrm{m}), 4.08(1 \mathrm{H}, \mathrm{m})$, several methylene protons between δ_{H} 1.14 and $\delta_{\mathrm{H}} 1.71(35 \mathrm{H}, \mathrm{m})$, three methyl doublets at $\delta_{\mathrm{H}} 0.84(3 \mathrm{H}, \mathrm{d}, J=6.5), 0.92$ $(3 \mathrm{H}, \mathrm{d}, J=6.7)$ and $1.12(3 \mathrm{H}, \mathrm{d}, J=6.5)$, non-equivalent methylene protons at δ_{H} $2.10(1 \mathrm{H}, \mathrm{m})$ and $\delta_{\mathrm{H}} 2.20(1 \mathrm{H}, \mathrm{m})$, and a methine proton at $\delta_{\mathrm{H}} 3.99(1 \mathrm{H}, \mathrm{m})$.

Compound 2 (viscous oil) was esterified with 3,5-dinitrobenzoyl chloride to give the corresponding ester derivative (solid). Unfortunately, this attempt failed to crystallize the 3,5-dinitrobenzoyl derivative of compound 2 for use in the X-Ray analysis; this might be because the sample was not homogeneous and probably a mixture of two diastereoisomeric products having (R) - and (S)-configurations at the newly created stereogenic center C-19 after hydrogenation of micromonosporin A.

Figure 21. Hydrogenation of micromonosporin A to form compound 2.

Table 23. $400 \mathrm{MHz}{ }^{1} \mathrm{H}-$ and $100 \mathrm{MHz}{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectral data for micromonosporin A in DMSO- d_{6}.

[^0]
9. Biological activities

The crude ethyl acetate extract of the YM fermentation broth of Micromonospora sp. TT1-11 showed antimicrobial activity against Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 25923 with inhibition zones of 12.5 and 14.7 mm at the concentration of $1 \mathrm{mg} / \mathrm{disc}$, respectively. The subsequent isolation for the bioactive compounds produced by this strain was performed. The new compound, micromonosporin A, was isolated from the YM fermentation broth as a major product.

As mention earlier, micromonosporin A (9,11,13-trihydroxy-14,19,24-trimethyl-1-azacyclotetracosa-3,5,7,15,17,19,21-heptaen-2-one) was very unstable and spontaneously degraded into many unidentified products, and therefore, its biological activities could not be evaluated. However, the derivative 2 (9,11,13-trihydroxy-14,19,24-trimethyl-1-azacyclotetracosan-2-one) displayed weak antimicrobial activity and also exhibited antimalarial activity at IC_{50} of $3.1 \mu \mathrm{~g} / \mathrm{mL}$ and antimycobacterial activity with the MIC value of $50 \mu \mathrm{~g} / \mathrm{mL}$.

CHAPTER V

CONCLUSION

Peat swamp forest soils in the southern area of Thailand are the interested source for screening of antibiotic-producing bacteria. They are acid-sulfate soils which occur in fresh-water marshy land with the pH ranging from 3.3 to 6.4 . As part of the research on screening of actinomycetes strains from soils (17 samples) in peat swamp forests collected in Trang, Pattaloong, Yala, and Narathiwat provinces, fifty-two isolates of Micromonospora were isolated. On the basis of morphological, cultural, physiological, and biochemical characteristics including chemotaxonomic properties, the isolates were identified as Micromonospora. They produced well-developed and branched substrate hyphae but no aerial hyphae. Spores were borne singly on the substrate hyphae. Their spores were smooth, rough and nodular on the surface and non-motile. The colours of the substrate mycelium were yellowish white to strong reddish orange. All strains showed the same pattern of chemotaxonomic characteristics which were similar to those of members of the genus Micromonospora. In general, the cell walls of Micromonospora are peptidoglycan type Al γ^{\prime}. The acyl type of cell wall muramic acid was glycolyl. Cell wall hydrolysates contained glutamic acid, glycine, alanine, and diaminopimelic acid, and the isomer of diaminopimelic acid was meso, indicating that these strains have wall chemotype II. They contained glucose, xylose, arabinose, galactose, mannose, and ribose as wholecell sugars (pattern D) but rhamnose was absent. Characteristic phospholipids were diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositolmannosides, and phosphatidylethanolamine, but not phosphatidylcholine. This pattern corresponds to phospholipid type II. Their major cellular fatty acids were iso- $\mathrm{C}_{15: 0}$, iso- $\mathrm{C}_{16: 0}$, iso$\mathrm{C}_{17: 0}$, anteiso- $\mathrm{C}_{15: 0}, \mathrm{C}_{17: 0}$, and anteiso- $\mathrm{C}_{17: 0}$ (type 3b). Mycolic acids were absent. The predominant menaquinones were MK-9(H_{4}), MK-10(H_{4}), or MK- $9\left(\mathrm{H}_{6}\right)$. The range of $\mathrm{G}+\mathrm{C}$ content of the DNA was 71.0 to $73.0 \mathrm{~mol} \%$. Phylogenetic analysis of the almost complete 16 S rDNA sequences revealed that the strains were placed within the clade of the genus Micromonospora. Based on the DNA-DNA similarity, 16S rDNA and some physiological and biochemical properties, all strains could be separated into
eleven groups. Group I strains were identified as M. chalcea while Group III strains were M. aurantiaca. The remaining nine groups (Groups II, IV, V, VI, VII, VIII, IX, X, and XI) were recognized as new species of Micromonospora. In this study, the names Micromonospora eburnea sp. nov., and Micromonospora aurantionigra sp. nov. are proposed for Group VII (2 strains) and Group XI (1 strain), respectively.
M. chalcea strains in Group I, M. aurantiaca strains in Group III, strains in Group IV, and Group VI were distributed in the soils collected from Yala, Pattaloong and Narathiwat provinces whereas the Micromonospora strains in Groups II, V, and XI were distributed in the soils collected from Pattaloong province. The Micromonospora groups VII and VIII were found in Yala. Furthermore, the strains in Group IX were distributed in the soils collected from Pattaloong and Trang and the strains in Group X were isolated from the soils collected in Narathiwat and Yala.

The primary screening revealed that seven strains in Groups VI, VII, and XI showed antimicrobial activity against S. aureus ATCC 25923, B. subtilis ATCC 6633, and M. luteus ATCC 9341. TT1-11 strain (Group XI) was selected for secondary metabolite production due to its ethylacetate crude extract exhibited significant antimicrobial activity. The ethyl acetate extract yielded a new polyene macrolide lactam (Micromonosporin A; 9,11,13-trihydroxy-14,19,24-trimethyl-1-azacyclotetracosa-3,5,7,15,17,19,21-heptaen-2-one) as a major compound. Unfortunately, Micromonosporin A was very unstable and has no antimicrobial activity. However, the hydrogenation product of Micromonosporin A (9,11,13-trihydroxy-14,19,24-trimethyl-1-azacyclotetracosan-2-one)\| displayed \int weak antibacterial activity and also exhibited antimalarial activity at $I C_{50}$ of $3.1 \mu \mathrm{~g} / \mathrm{mL}$ and antimycobacterial activity with the $M I C$ of $50 \mu \mathrm{~g} / \mathrm{mL}$. 9.90 .

In this study, two known and nine novel species of Micromonospora strains were isolated from Thai peat swamp forest soils whereas fourteen validly described species were found in soils collected in India, Japan, USA, and the Union of Soviet Socialist Republics (USSR) (Sveshnikova et al., 1969). Micromonospora strains generally produced lactone macrolides, anthraquinones, and alkaloids, etc., while our selected strain produced a new polyene macrolide lactam. This evidence showed that the new soil sources are useful for the investigation of new microorganisms and their secondary metabolites.

Refferences

Arai, T. 1975. Culture Media for Actinomycetes. Tokyo: The Society for Actinomycetes.

Asano, K., and Kawamoto, I. 1986. Catellatospora, a new genus of the Actinomycetales. Int. J. Syst. Bacteriol. 36: 512-517.

Asano, K., Masunaga, I., and Kawamoto, I. 1989. Catellatospora matsumotoense sp. nov. and C. tsunoense sp. nov., actinomycetes found in woodland soils. Int. J. Syst. Bacteriol. 39: 309-313.

Brock, T. D., Madigan, M. T., Martinko, J. M., and Parker, J. 1993. Biology of $\underline{\text { microorganisms. } 7^{\text {th }} \text { ed. New Jersy: Prentice Hall. }}$

Brown, T. A. 1994. DNA Sequencing. Oxford: Oxford University Press.
Carter, G. T., Nietsche, J. A., Williams, D. R., and Borders, D. B. 1990. Citreamicins, novel antibiotics from Micromonospora citrea: isolation, characterization, and structure determination. J. Antibiotics 43: 504-512.

Chantratitra, W., and Lulitanond. 2001. Bioinformatics National Science and Technology Development Agency, Bangkok.

Chimeno, R. I., Cańedo, L., Espliego, F., Gravalos, D., Calle, F., Puentes, J. L., and Romero, F. 2000. IB-96212, a novel eytotoxic macrolide produced by a marine Micromonospora. J. Antibiotics 53: 474-478. \ऽ

Collins, L. A., and Franzblau, S. G. 1997. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob. Agents Chemother. 41: 1004-1009.

Collins, M. D., Pirouz, T., Goodfellow, M., and Minnikin, D. E. 1977. Distribution of menaquinones in actinomycetes and corynebacteria. J. Gen. Microbiol. 100: 221-230.

Colwell, R. R., and Mandel, M. 1964. Adansonian analysis and deoxyribonucleic acid base composition of some Gram-negative bacteria. J. Bacteriol. 87: 1412-1422.

Couch, J. N. 1950. Actinoplanes, a new genus of the Actinomycetales. J. Elisha. Maitchell. Sci. Soc. 66: 87-92.

Coyne, M. S. 1999. Soil microbiology: An Exploratory Approach Delmar: An International Thomson.

Crosa, J. H., Brenner, D. J., and Falkow, S. 1973. Use of a single-strand specific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homoand heteroduplexes. J. Bacteriol. 115: 904-911.

Desjardins, R. E., Canfield, C. J., Haynes, J. D., and Chulay, J. D. 1979. Quantitative assessment of antimararial activity in vitro by a semiautomated microdilution technique. Antimicrob. Agents Chemother. 16: 710-718.

Drancourt, M., Bollet, C., Carlioz, A., Martelin, R., Gayral, J. P., and Raoult, D. 2000. 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. American Soc. Microbiol. 38: 3623-3630.

Ezaki, T., Hashimoto, Y., and Yabuuchi, E. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39: 224-229.

Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.

Ferh, T., Sanglier, J. J., Schuler, W., Gschwind, L., Ponelle, M., Schilling, W., and Wioland, C. 1996. Novel FKBP12 binding compounds from a Micromonospora strain. J. Antibiotics 49: 230-234.

Fox, G. E., Wisotzkey, J. D., and Jurtshuk, P. 1992. How close in close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42: 166-170.

Frydrych, C. H., Readshaw, S. A., and Bell, D. J. 2000. SB-219383, a novel tyrosyl tRNA synthetase inhibitor from a Micromonospora sp. J. Antibiotics 53: 351356.

Glasby, J. S. 1993. Encyclopedia of Antibiotics $3^{\text {rd }}$ ed. (n.p.): John Willy and Sons.

Goodfellow, M. 1988. Actinomycetes in Biotechnology San Diego: Academic Press Inc., pp. 1-30.

Goodfellow, M., Stanton, L. J., Simpson, K. E., and Minnikin, D. E. 1990. Numerical and chemical classification of Actinoplanes and some related actinomycetes. J. Gen. Microbiol. 136: 19-36.

Gordon, R. E., Barnett, D. A., Handerhan, J. E., and Pang, C. H. N. 1974. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int. J. Syst. Bacteriol. 24: 54-63.

He, H., Yang, H. Y., Luckman, S. W., Beman, V. S., Tsai, G., Roll, D. M., and Carter, G. T. 2004. Echinosporamicin, a new antibiotic produced by Micromonospora echinospora Ssp. echinospora, LL-P175. Helvetica Chimica Acta 87: 1385-1391.

Hernández, L. M. C., Blanco, J. A. F., Baz, J. P., Puentes, F., Millán, F. R., Vázquez, E., and Chimeno, R. I. F. 2000. 4'- N-methyl-5'-hydroxystaurosporine and 5'hydroxystaurosporine, new indolocarbazole alkaloids from a marine Micromonospora sp. strain. J. Antibiotics 53: 895-902.

Hochlowski, J. E., Mullally, M. M., Henry, R., Whittern, D. M., and McALPINE, J. 1995. Macquarimicins, Microbial metabolites from Micromonospora sp. J. Antibiotics 48: 467-470.

Holt, J. G. 1989. Filamentous Actinomycetes and/Related Bacteria. In S. T. Williams, M. E. Sharpe, and J. G. Holt (eds.), Bergey's Manual of Systematic Bacteriology, vol. 4, pp. 2333-2450. Baltimore: Williams \& Wilkins.
Horan, A. C., and Brodsky, B. C. 1986. Micromonospora rosaria sp. nov., nom. rev., the rosaramicin producer. Int. J. Syst. Bacteriol. 36: 478-480.

Igarashi, Y., Takagi, K., Kan, Y., Fujii, K., Harada, K. I., Furumai, T., and Oki, T. 2000. Arisostatins A and B, new members of tetrocarcin class of antibiotics from Micromonospora sp. TP-A0316. J. Antibiotics 53: 233-240.

Ishigami, K., Hayakawa, Y., and Seto, H. 1994. Cororubicin, a new anthracycline antibiotic generating active oxygen in tumor cell. J. Antibiotics 47: 12191225.

Itoh, J., Watabe, H. O., Ishii, S., Gomi, S., Nagasawa., Yamamoto, H., Shomura, T., Sezaki, M., and Kondo, S. 1990. Sibanomicin, a new pyrrolo[1,4]benzodiazepinen antitumor antibiotic produced by a Micromonospora sp. $\underline{\mathrm{J}}$. Antibiotics 41: 1281-1284.

Itoh, T., Kudo, T., Parenti, F., and Seino, A. 1989. Amended description of the genus Kineosporia, based on chemotaxonomic and morphological studies. Int. J. Syst. Bacteriol. 39: 168-173.

Johnson, J. L. 1994. Similarity Analysis of rRNAs. In O, Gerhardt., R. G. E. Murray., W. A. Wood, and N. R. Krieg (eds.), Methods for General and Molecular Bacteriology, pp. 638-700. American Society for Microbiology, Washington D. C.

Kämpfer, P., and Kroppenstedt, R. M. 1996, Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can. J. Microbiol. 42: 9891005.

Kane, W. D. 1966. A new genus of Actinoplanaceae, Pilimelia, with a description of two species, Pilimelia terevasa and Pilimelia anulata. J. Elisha. Maitchell. Sci. Soc. 82: 220-230.

Kasai, H., Tamura, T., and Harayama, S. 2000. Intrageneric relationships among Micromonospora species deduced from gyrb-based phylogeny and DNA relatedness. Int. J. Syst. Evol. Microbiol. 50: 127-134.

Kase, H., Kaneko, M., and Yamada, K. 1987. K-13, a novel inhibitor of angiotensin I converting enzyme produced by Micromonospora halophytica subsp.

Kawamoto, I. 1989. Genus Micromonospora. In S. T. Williams, M. E. Sharpe, and J. G. Holt (eds.), Bergey's Manual of Systematic Bacteriology, vol. 4, pp. 2442-2450. Baltimore: Williams \& Wilkins.

Kawamoto, I., Oka, T., and Nara, T. 1981. Cell wall composition of Micromonospora olivoasterospora, Micromonospora sagamiensis, and related organisms. J. Bacteriol. 146: 527-534.

Kawamoto, I., Okachi, R., Kato, H., Yamamoto, S., Takahashi, I., Takasawa, S., and Nara, T. 1974. The antibiotic XK-41 complex. I. Production, isolation and characterization. J. Antibiotics 27: 493-501.

Kawamoto, I., Yamamoto, M., and Nara, T. 1983. Micromonospora olivasterospora sp. nov. Int. J. Syst. Bacteriol. 33: 107-112.

Kinoshita, K., Takenaka., Suzuki, H., Morohoshi, T., and Hayashi, M. 1992. Mycinamicins, new macdrolide antibiotics XIII. Isolation and structures of novel fermentation products from Micromonospora griseorubida (FERM BP705). J. Antibiotics 45: 1-9.

Kluge, A. G., and Farris, F. S. 1969. Quantitative phyletics and the evolution of anurans. Syst. Zool. 18: 1-32.

Koch, C., Kroppenstedt, R. M., and Stackebrandt, E. 1996a. Intrageneric relationships of the actinomycete genus Micromonospora. Int. J. Syst. Bacteriol. 46: 383-387.

Koch, C., Kroppenstedt, R. M., Rainey, F. A., and Stackebrandt, E. 1996b. 16S ribosomal DNA analysis of the genera Micromonospora, Actinoplanes, Catellatospora, Catenuloplanes, Couchioplanes, Dactylosporangium, and Pilimelia and emendation of the family Micromonosporaceae. Int. J. Syst. Bacteriol. 46: 765-768.
Komagata, K., and Suzuki, K, 1987 Lipid and cell-wall analysis in bacterial systematics. Methods In Microbiology 19: 161-207.

Krasil'nikov, N. A. 1938. Ray Fungi and Related Organisms Actinomycetales.
Moscow: Akademii Nauk.
Kroppenstedt, R. M. 1985. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In M. Goodfellow, and D. E. Minnikin (eds.), Chemical Methods in Bacterial Systematics, pp. 173-199. London: Academic Press.

Kudo, T., Nakajima, Y., and Suzuki, K. 1999. Catenuloplanes crispus (Petrolini et al. 1993) comb. nov.: incorporation of the genus Planopolyspora Petrolini 1993 into the genus Catenuloplanes Yokota et al. 1993 with an amended
description of the genus Catenuloplanes. Int. J. Syst. Bacteriol. 49: 18531860.

Kumar, S., Tamura, K., Jakobsen, I. B., and Nei, M. 2001. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17: 1244-1245.

Lam, K. S., Hesler, G. A., Gustavson, D. R., Berry, R. L., Tomita, K., MacBeth, J. L., Ross, J., Miller, D., and Forenza, S. 1996. Pyrrolosporin A, a new antitumor antibiotic from Micromonospora sp. C39217-R109-7. J. Antibiotics 49: 866872.

Lechevalier, M. P., DeBievre, C, and Lechevalier, H. A. 1977. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem. Syst. Ecol. 5: 249-260.

Lechevalier, M. P., and Lechevalier, H. A. 1970. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int. J. Syst. Bacteriol. 20: 435-443.

Lee, S. D., Goodfellow, M., and Hah, Y. C. 1999. A phylogenetic analysis of the genus Catellatospora based on 16 S ribosomal DNA sequence, including transfer of Catellatospora matsumotoense to the genus Micromonospora as Micromonospora matsumotoense comb. nov. FEMS Microbiol. Lett. 178: 349-354.
Lee, S. D., and Hah, Y. C. 2002. Proposal to transfer Catellatospora ferruginea and 'Catellatospora ishikariense' to Asanoa gen. nov. as Asanoa ferruginea comb. nov and Asanoa ishikariensis sp. nov., with emended description of the genus Catellatospora. Int. J. Syst. Evol. Microbiol. 52: 967-972.

Lee, S. D., Kang, S. O., and Hah, Y. C. 2000. Catellatospora koreensis sp. nov., a novel actinomycete isolated from a gold-mine cave. Int. J. Syst. Evol. Microbiol. 50: 1103-1111.

Lévy-Frébault, V. V., and Portaels, F. 1992. Proposals for recommended minimal standards for the genus Mycobacterium and for newly described slowly growing Mycobacterium species. Int. J. Syst. Bacteriol. 42: 315-323.

Lorain, V. 1980. Antibiotics in laboratory medicine. Baltimore: The Williams \& Wilkins Co.

Luedemann, G. M. 1971a. Designation of neotype strains for Micromonospora coerulea Jensen 1932 and Micromonospora chalcea (Foulerton 1905) Ørskov 1923. Int. J. Syst. Bacteriol. 21: 248-253.

Luedemann, G. M. 1971b. Micromonospora purpureochromogenes (Waksman and Curtis 1916) comb. nov. (subjective synonym: Micromonospora fusca Jencen 1932). Int. J. Syst. Bacteriol. 21: 240-247.

Luedemann, G. M. and Brodsky, B. C. 1964. Taxonomy of gentamicin-producing Micromonospora. Antimicrob. Agents Chemother. 1963: 116-124.

Luedemann, G. M. and Brodsky, B. C. 1965. Micromonospora carbonacea sp. n., an everninomicin-producing organism. Antimicrob. Agents Chemother. 1964: 47-65.

Mandel, M. 1966. Deoxyribonucleic acid base composition in the genus Psuedomonas. J. Gen. Microbiol. 43: 273-292.

Marmur, J., and Doty, P. 1962. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5: 109-118.

Matsuda, Y., Asano, K., and Kawamoto, I. 1987. K-259-2, A a new inhibitor of Ca^{2+} and calmodulin-dependent cyclic nucleotide phosphodiesterase from Micromonospora olivasterospora. J. Antibiotics 40: 1092-1100.

Matsumoto, A., Takahashi, Y., Shinose, A., Seino, hashi, Y., Shinose, A., Seino, Y. I., and Omura, S. 2003. Longispora albida gen. nov., sp. nov., a novel genus of the family Micromonosporaceae. Int. J.Syst. Evol. Microbiol. 53:15531559.

Mikami, H., and Ishida, Y. 1983. Post-column fluorometric detection of reducing sugar in high-performance liquid chromatography using arginine. Bunseki. Kagaku. 32: E207-E210.

Minnikin, D. E., O’Donnell, A. G., Goodfellow, M., Alderson, G., Athalye, M.,Schaal, A., and Parlett, J. H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods. 2: 233-241.

Nakajima, Y., Kitpreechavanich, V., Suzuki, K., and Kudo, T. 1999. Microbispora corallina sp. nov., a new species of the genus Microbispora isolated from Thai soil. Int. J. Syst. Bacteriol. 49: 1761-1767.

Odakura, Y., Kase, H., Itoh, S., Satoh, S., Takasawa, S., Takahashi, K., Shirahata, K., and Nakayama, K. 1984. Biosynthesis of astromicin and related antibiotics. J. Antibiotics 37: 1670-1680.

Odakara, Y., Kase, H., and Nakayama, K. 1983. Sagamicin and the related aminoglycosides: fermentation and biosynthesis. J. Antibiotics 36: 125-130.

Oki, T. 1994. Recent progress of antibiotics research, S4-8. In K. Komagata et al. (eds.), Application Control of Microorganisms in Asia, pp. 258-294. Science and Technology Agency, The Institute of Physical and Chemical Research, Japan International Science and Technology Exchange Center.

Ørskov, J. 1923. Investigations into the morphology of the ray fungi. Copenhagen: Levin and Munksgaard.

Palys, T., Nakamura, L. K., and Cohan, F. M. 1997. Discovery and classification of ecological diversity in the bacterial world: the role of DNA sequence data. Biosci. Biotechnol. Biochem. 47: 1145-1156.

Rheims, H., Schumann, P., Rohde, M., and Stackebrandt, E. 1998. Verrucosispora gifhornensis gen. nov., sp. nov., a new member of the actinobacterial family Micromonosporaceae. Int. J. Syst. Bacteriol. 48: 1119-1127.
Romero, F., Espliego, F., Baz, J. P., Quesada, T. G., Gravalos, D., Calle, F. C., and Puentes, J. L. F. 1997. Thiocoraline, a new depsipeptide with antitumor activity produced by a marine Micromonospora. J. Antibiotics 50: 734-737.

Saitoh, M. M., Morisaki, N., Tokiwa, Y., and Iwasaki, S. 1991. Dynemicins O, P, and Q : novel antibiotics related to dynemicin A , isolation, characterization and biological activity. J. Antibiotics 44: 1037-1044.

Saitou, N., and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.

Sasser, M. 1990. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids (MIDI Technical Note 101). Newark, DE: MIDI.

Schleifer, K. H., and Kandler, O. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407-477.

Shirling, E. B., and Gottlieb, D. 1966. Methods for Characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16: 313-340.

Silvestri, L., and Hill, L. R. 1965. Agreement between deoxyribonucleic acid base composition and taxonomic classification of Gram-positive cocci. J. Bacteriol. 90: 136-140.

Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., and Boyde, M. R. 1990. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82: 1107-1112.

Skerman, V. B. D., McGowan, V., and Sneath, P. H. A. 1980. Approved lists of bacterial names. Int. J. Syst. Bacteriol. 30: 225-420.

Slepecky, R. A., and Hemphill, H. E. 1991. The genus Bacillus-nonmedical. In A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer (eds.), The Prokaryotes, pp. 1663-1696. Stuttgart: Springer Verlag.

Stackebrandt, E., Frederiksen, W., Garrity, G. M., Grimont, P. A. D., Kämpfer, P., Maiden, M. C. J., Nesme, X., Mora, R. R., Swings, J., Trüper, H. G., Vauterin, L., Ward, A. C., and Whitman, W. B. 2002. Report of the Ad Hoc Committee for the Re-Evaluation of the Species Definition in Bacteriology. Int. J. Syst. Evol. Microbiol. 52: 1043-1047.

Stackebrandt, E., and Goebel, B. M. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16 S rDNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849.

Stackbrandt, E., and Kroppenstedt, R. M. 1987. Union of the genera Actinoplanes Couch, Ampullariella Couch, and Amorphosporangium Couch in a redefined genus Actinoplanes. Syst. Appl. Microbiol. 9: 110-114.

Stackbrandt, E., Rainey, F. A., and Ward-Rainey, N. L. 1997. Proposal for a new hierarchic classification system, Actinobacteria classis. nov. Int. J. Syst. Bacteriol. 47: 479-491.

Staneck, J. L., and Roberts, G. D. 1974. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl. Microbiol. 28: 266-231.

Stefansky, A. L., Coates, N. J., Mensah, L. M., Pope, J., Ready, S. J., and Warr, S. R. 2000. SB-219383, a novel tyrosyl tRNA synthetase inhibitor from a Micromonospora sp. J. Antibiotics 53: 345-350.

Stent, G. S. 1981. Genotypic character. In N. A. Logan (ed.), Bacterial systematics, pp. 35-46. Blackwell Scientific Press.

Sugawara, T., Tanaka, A., Imai, H., Nagai, K., and Suzuki, K. 1997. YM-47515, a novel isonitrile antibiotic from Micromonospora echinospora subsp. echinospora. J. Antibiotics 50: 944-948.

Sveshnikova, M. A., Maksimova, T. S., and Kudrina, E. S. 1969. The species of the Micromonospora Ørskov, 1923, and their taxonomy. Mikrobiologiya 38: 883-893.

Sykes, G., and Skinner, F. A. 1973. Family Micromonosporaceae. In G. Sykes, and F. A. Skinner (eds.), Actinomycetales: Characteristics and Practical Importance, pp. 30-38. London: Academic press.

Szabó, Z., and Fernandez, C. 1984. Micromonospora brunnea Sveshnikova, Maksimova, and Kudrina 1969 is a junior subjective synonym of Micromonospora purpureochromogenes (Waksman and Curtis 1916) Luedemann 1971. Int. J. Syst. Bacteriol. $34: 463-464$. $\frac{\sigma}{6}$
Tamaoka, J. 1994. Determination of DNA Base Composition. In M. Goodfellow, and A. G. O'Donnell (eds.), Chemical Methods in Prokaryotic Systematics, pp. 463-470. Chichester: John Wiley and Sons.

Tamaoka, J., and Komagata, K. 1984. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25: 25-128.

Tamura, T., Hayakawa, M., and Hatano, K. 1997. A New Genus of the Order Actinomycetales, Spirilliplanes gen. nov., with Description of Spirilliplanes yamanashiensis sp. nov. Int. J. Syst. Bacteriol. 47: 97-102.

Tamura, T., Hayakawa, M., and Hatano, K. 2001. A New Genus of the Order Actinomycetales, Virgosporangium gen. nov., with Descriptions of Virgosporangium ochraceum sp. nov., and Virgosporangium aurantiacum sp. nov. Int. J. Syst. Evol. Microbiol. 51: 1809-1816.

Tamura, T., Nakagaito, Y., Nishii, T., Hasegawa, T., Stackebrandt, E., and Yokota, A. 1994. New genus of the order Actinomycetales, Couchiplanes gen. nov., with descriptions of Couchioplanes caeruleus (Horan and Brodsky 1986) comb. nov., and Couchioplanes caeruleus subsp. azureus subsp. nov. Int. J. Syst. Bacteriol. 44: 193-203.

Thiemann, J. E., Pagani, H., and Beretta, G. 1967. A new genus of the Actinoplanaceae: Dactylosporangium, gen. nov. Arch. Mikrobiol. 58: 42-52.

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25 : 4876-4882.

Tomita, K., Hoshino, Y., Ohkusa, N., Tsuno, T., and Miyaki, T. 1992. Micromonospora chersina sp. nov. Actinomycetologica 6: 21-28.

Trager, W., and Jensen, J. B. 1976. Human malarial parasites in continuous culture. Science 193(4254): 673-674.

Uchida, K., and Aida, K. 1984. An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J. Gen. Appl. Microbiol. 30: 131-134.

Vobis, G. 1989. Actinoplanetes. In S. T. Williams, M. E. Sharpe, and J. G. Holt (eds.), Bergey's Manual of Systematic Bacteriology, vol. 4, pp. 2418-2450. Baltimore: Williams and Wilkins.

Verlander, C. P. 1992. Detection of horseradish peroxidase by colorimetry. In L. J. Hricka (ed.), Nonisotopic DNA Probe Technique, pp.185-201. New York: Academic Press.

Wagman, G. H., Waitz, J. A., Marquez, J., Murawki, A., Oden, E. M., Testa, R. T., and Weinstein, M. J. 1972. A new Micromonospora-produced macrolide antibiotic, rosamicin. J. Antibiotics 25: 641-646.

Walker, M. R., and Rapley, R. 1997. Route Maps in Gene Technology. Blackwell Science Ltd., Cambridge.

Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, A. D., Kandler, O., Hrichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E., Stackebrandt, E., Starr, M. P., and Truper, H. G. 1987. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37: 463-464.

Weinstein, M. J., Luedemann, G. M., Oden, E. M., and Wagman, G. H. 1968.
Halomicin, a new Micromonospora-produced antibiotic. Antimicrob. Agents Chemother. 1967: 435-441

Williams, S. T., and Cross, T. 1971. Actinomycetes. In C. Booth (ed.), Methods in Microbiology, vol. 4., pp. 295-334. London: Academic Press.

Yasumuro, K., Shibazaki, M., Sasaki., Imai, H., Yamaguchi, H., Suzuki, K., and Morioka, M. 1994. 16-membered lactone compounds from izenamicinsproducing Micromonospora sp. J. Antibiotics 47: 250-252.

Yeo, W. H., Lee, O. K., Yun, B. S., Woo, J. S., Kim, Y. K., Park, E. K., Kim, S. S., Kim, S. K., Kim, Y. H., Yoo, I. D., Whang, K. S., and Yu, S. H. 1998. 1Hydroxycrisamicin A, new Isochromanquinone antibacterial antibiotic, produced by Micromonospora sp. SA246. J. Antibiotics 51: 82-84.

Yeo, W. H., Yun, B. S., Kim, S. S., Park, E. K., Kim, Y. H., Yoo, I. D., and Yu, S. H. 1998. GTRI-02, a new lipid peroxidation inhibitor from Micromonospora sp . SA246. J. Antibiotics 51: 952-953.

Yokota, A., Tamura, T., Hasegawa, T., and Huang, L. H. 1993. Catenuloplanes japonicus gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int. J. Syst. Bacteriol. 43: 805-812.

APPENDIX I

Culture media

All media were dispensed and sterilized in autoclave for 15 min at 15 pounds pressure $\left(121^{\circ} \mathrm{C}\right)$ for media except carbon utilization test which was sterilized at 110 pounds for $110{ }^{\circ} \mathrm{C}$ for 10 min . All media were prepared in 100 mL of distilled water.

1. Sodium-caseinate agar (SCN)

2. Yeast extract-malt extract agar (YMA), ISP medium no.

3. Oatmeal agar, ISP medium no. 3

Oatmeal
20.0 g

Agar
18.0 g

Cook or steam 20 g of oatmeal in $1,000 \mathrm{~mL}$ distilled water for 20 minutes.
Filter through cheese cloth and add distilled water to restore volume of filtrate to
$1,000 \mathrm{~mL}$. Add 1 mL of trace salts solution (A) and adjust to pH 7.2 with NaOH and finally, add 18 g of agar; liquefy by steaming at $100^{\circ} \mathrm{C}$ for $15-20$ minutes.
4. Inorganic salts-starch agar, ISP medium no. 4

5. Glycerol-asparagine agar, ISP medium no.5

Glycerol

6. Tyrosine agar, ISP medium no. 7

Glycerol
1.5 g

L-Tyrosine (Difco)
0.05 g

L-Asparagine (Difco)
0.1 g
$\mathrm{K}_{2} \mathrm{HPO}_{4}$
0.05 g

$\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$	0.05 g
NaCl	0.05 g
$\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$	0.01 g
Trace salts solution (A)	0.1 mL
Agar	2.0 g

pH 7.2-7.4
Trace salt solution (A)
FeSO $4.7 \mathrm{H}_{2} \mathrm{O}$
0.1 g
$\mathrm{MnCl}_{2} .4 \mathrm{H}_{2} \mathrm{O}$
0.1 g
$\mathrm{ZnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$
0.1 g

Distilled water
100 mL

7. Peptone KNO_{3} broth

Peptone

pH 7.0

8. Carbon utilization medium, ISP medium no. 9

Carbohydrate
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
0.264 g
$\mathrm{K}_{2} \mathrm{HPO}_{4} .3 \mathrm{H}_{2} \mathrm{O}$
0.565 g
$\mathrm{KH}_{2} \mathrm{PO}_{4}$ anhydrous
0.238 g
$\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$
0.1 g

Pridham and Gottlieb trace salts (B) 0.1 mL
Agar
1.5 g
pH 6.8-7.0

Trace salts solution (B)

$\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$	0.64 g
$\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$	0.11 g
$\mathrm{MnCl}_{2} .4 \mathrm{H}_{2} \mathrm{O}$	0.79 g
$\mathrm{ZnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$	0.15 g
Boullion gelatin broth	
Peptone	1.0 g
Meat extract	0.5 g
NaCl	0.5 g
Gelatin	15.0 g
pH 7.0-7.2	

10. Peptonization and Coagulation test medium

Skim milk (Difco)
10.0 g
11. Mueller-Hinton agar (Difco)

บันวิทยบริการ

Beef infusionfrom
Casamino acid, Technical
Starch
Agar
$\quad 0.15 \mathrm{~g}$
$\quad \mathrm{pH} 7.3$
12. Sabouraud's dextrose agar (Difco)

Neopeptone
1.0 g

Dextrose	
Agar	4.0 g
$\quad \mathrm{pH} 5.6-5.8$	1.5 g

13. Seed medium

Yeast extract	
Glucose	0.4 g
Malt extract	0.4 g
1.0	g

14. Production medium

15. Peptone-yeast extract iron agar

Bacto-Yeast Extract (Difco)
0.1 g
pH 7.0-7.2
16. Glucose asparagines agar

Glucose
1 g
Asparagine $\quad 0.05 \mathrm{~g}$
$\mathrm{K}_{2} \mathrm{HPO}_{4}$
0.05 g

17. Nutrient agar

Meat extract
Peptone
NaCl

Agar
1.5 g
18. Czapek's sucrose agar

สถหาบันวิทยบริการ

Appendix II

Reagents and Buffers

1. DON Reagent

2,7-Dihydroxynapthalene
Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
10 mg
50 mL
Add conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 2,7-dihydroxynapthalene (DON) wait util the yellow solution become colorless $(24 \mathrm{~h})$. Keep this solution in refrigerator.

2. 6 NHCl

Conc. HC
Distiller water

Add conc. HCl into the distilled water

3. $\underline{2 ~ N ~ H}_{2} \underline{S O}_{4}$

Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Distilled water
Add conc. HCl into the distilled water.

$$
\begin{aligned}
& \text { สถาขัไ1ิทยบริกก } \frac{34}{}{ }^{\text {mL }} \\
& \text { จฬาลงกรณ์มหาวิทยาลัย }
\end{aligned}
$$

4. Ninhydrin solution

Ninhydrin	0.3 g
1-Butanol	100 mL
Glacial acetic acid	3 mL

5. 5% trichloro-acetic acid

Trichloro acetic acid
Distilled water

5 g
100 mL

Add conc. HCl into the distilled water.
6. Reagent 1 for fatty acid analysis (Saponification reagent)

Sodium hydroxide
MeOH (HPLC grade)
50 mL
Mili-Q water
50 mL
Dissolve NaOH pellets in Mili-Q water and add MeOH .
7. Reagent $\mathbf{2}$ for fatty acid analysis (Methylation reagent)

8. Reagent 3 for fatty acid analysis (Extraction solvent)

9. Reagent 4 for fatty acid analysis (base wash reagent)

Sodium hydroxide $\quad 1.2 \mathrm{~g}$
Mili-Q water 100 mL
10. Reagent 5 for fatty acid analysis (Saturated sodium chloride)

11. Dittmer\&Lester reagent

Solution A

MoO_{3}	4.011 g
$25 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$	100 mL

Dissolve 4.011 g of MoO_{3} in 100 mL of $25 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ by heating.

Solution B

Molybdenum powder
0.178 g

Solution A
Add 0.178 g of molybdenum powder to 50 mL of solution A , and boil it for 15 minutes. After cooling, remove the precipitate by decantation. Before spraying, mix solution $\mathrm{A}(50 \mathrm{~mL})$ plus solution $\mathrm{B}(50 \mathrm{~mL})$ plus water $(100 \mathrm{~mL})$.
12. Anisaldehyde reagent

Ethanol
$\mathrm{H}_{2} \mathrm{SO}_{4}$
p-Anisaldehyde

Acetic acid
13. Dragendorff's reagent

Acetic acid
20 mL
Distilled water
80 mL

Solution B

KI
Distilled water

100 mL
Before spraying, mix solution A (10 mL) plus solution B (10 mL) plus acetic acid (10 mL).

14. Nitrate reduction test reagent

Sulphanilic acid solution

Sulphanilic acid	0.8 g
5 N Acetic acid	100 mL
Dissolve by gentle heating in a fume hood.	
N,N-dimethyl-1-naphthylamine solution	0.5 g
N,N-dimethyl-1-naphthylamine	100 mL
5 N Acetic acid	

Dissolve by gentle heating in a fume hood.
Two drops of sulphanilic acid solution and three drops of $N, N-$ dimethyl-1-naphthylamine into peptone nitrate broth inoculing with the test microorganisms.

15. Phenol:Chloroform ($1: 1 \mathrm{v} / \mathrm{v}$)

Crystalline phenol was liquidified in water bath at $65^{\circ} \mathrm{C}$ and mixed with chloroform in the ratio of $1: 1(\mathrm{v} / \mathrm{v})$. The solution was stored in a light tight bottle.

16. 100xDenhardt solution

17. 0.5M EDTA (pH 8.0)

800 mL of distilled water, 186.1 g of disodium ethylenediaminetetraacetate $.2 \mathrm{H}_{2} \mathrm{O}$ was added and stirred vigorously on a magnetic stirrer. The pH was adjusted to 8.0 with NaOH (20 g of NaOH pellets). The volume was adjusted to 1 litre. The solution was dispensed into aliquots and sterilized by autoclaving for 15 minutes at $15 \mathrm{lb} / \mathrm{in}^{2}$.

18. 5 M NaCl

To 800 mL of Distilled water, 292.2 g of sodium chloride was added and adjusted the volume to 1 litre with distilled water. The solution was sterilized by autoclaving for 15 minutes at $15 \mathrm{lb} / \mathrm{in}^{2}$.
19. $2 \times \mathrm{PBS}$
$8 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}$
$1.5 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}$
137 mM NaCl
2.7 mM KCl

The $2 \times \mathrm{xPBS}$ was adjusted the pH to 7.0 with 1 N NaOH or 1 N HCL. The solution was sterilized by autoclaving for 15 minutes at $15 \mathrm{lb} / \mathrm{in}^{2}$.

20. $10 \mathrm{mg} / \mathrm{mL}$ Salmon sperm DNA

A 10 mg of Salmon sperm DNA was dissolved in 1 mL of 10 mM TE buffer pH 7.6. Boiling for 10 minutes, immediately cooling in ice and sonication for 3 minutes.
21. $\mathbf{3}$ M Sodium acetate $\mathbf{p H} 5.2$

To 800 mL of distilled water, 408.1 g of sodium acetate was added and adjusted the pH to 5.2 with glacial acetic acid. The volume was adjusted to 4 litre The solution was sterilized by autoclaving for 15 minutes at $15 \mathrm{lb} / \mathrm{in}^{2}$.

The stock solution of 10% SDS was prepared by dissolved 10 g of sodium dodecyl sulphate in 100 mL sterilized distilled water. Streilization is not required for the preparation of this stock solution.

23. 20xSSC

3 M NaCl

0.1 M Tri-sodiumcitrate

The 20 xSSC was adjusted the pH to 7.0 with 1 N NaOH . The solution was sterilized by autoclaving for 15 minutes at $15 \mathrm{lb} / \mathrm{in}^{2}$.

24. 1 M Tris-HCl pH 8.0

The 1 M Tris was prepared by dissolving 121.1 g of Tris base in 800 mL of distilled water. The pH was adjusted to the desired value by adding conc. HCL (pH $8.0,42 \mathrm{~mL}$ of HCl$)$. The solution was cooled to room temperature before making final adjustment to the desired pH . The volume of the solution was adjusted to 1 litter with with distilled water and sterilized by autoclaving.

25. RNase A solution

RNase A
20 mg
0.15 M NaCl

10 mL
Dissolve 20 mg of RNase A in 10 mL 0.15 M NaCl and heat at $95^{\circ} \mathrm{C}$ for 5-10 minutes. Keep RNase A solution in $-20^{\circ} \mathrm{C}$.

26. RNase T_{1} solution

RNase T_{1}

0.1 M Tris- $\mathrm{HCl}(\mathrm{pH} 7.5)$ | $80 \mu \mathrm{~L}$ |
| :---: |
| 10 mL |

Mix $80 \mu \mathrm{l}$ of RNase T_{1} in 10 mL of 0.1 M Tris- $\mathrm{HCl}(\mathrm{pH} 7.5)$ and heat at $95^{\circ} \mathrm{C}$ for 5 minutes. Keep RNase T_{1} solution in $-20^{\circ} \mathrm{C}$.
27. Proteinase K
$\operatorname{Proteinase} \mathrm{K}($ Sigma $)$
50 mM Tris- $\mathrm{HCl}(\mathrm{pH} 7.5)$

28. Nuclease P_{1} solution

Nuclease P1
0.1 mg
$40 \mathrm{mM} \mathrm{CH}_{3} \mathrm{COONa}^{2} 12 \mathrm{mM} \mathrm{ZnSO}_{4}(\mathrm{pH} 5.3)$
Store at $4{ }^{\circ} \mathrm{C}$.
29. Alkaline phosphatase solution

Alkaline phosphatase
0.1 M Tris-HCl (pH 8.1)
2.4 units

1 mL

30. 0.1 M Tris-HCl buffer, pH 9

Tris	1.21 mg
Distilled water	100 mL

Adjust the pH to 9 with HCl .
31. TE buffer

10 mM Tris $\mathrm{HCl}(\mathrm{pH} 8.0)$
$1 \mathrm{~m} \mathrm{M} \mathrm{Na}_{2}$-EDTA (pH 8.0)
32. TE buffer + RNase A

TE buffer

RNase A ($2 \mathrm{mg} / \mathrm{mL}$)
960 mL
$100 \mu \mathrm{~L}$
33. Saline-Na 2_{2} EDTA
0.1 M NaCl

50 mM EDTA. 2 Na (pH 8.0)
34. Reagent and buffer for DNA-DNA hybridization

34.1 Prehybridization solution

$10 \mathrm{mg} / \mathrm{ml}$ Salmon sperm DNA $\quad \sigma \quad 1 \mathrm{~mL}$
20xSSC จฬาลงกรณมมหาว

Formamide
50 mL

Distilled water
34 mL

34.2 Hybridization solution

Prehybridization solution
Dextran sulfate

34.3 Solution I

Bovine serum albumin (Fraction V)
0.25 g

Titron X-100
$50 \mu \mathrm{~L}$

PBS

34.4 Solution II

Streptavidin-POD
Solution I
34.5 Solution III

3,3',5,5'-Tetramethylbenzidine (TMB)
$(10 \mathrm{mg} / \mathrm{mL}$ in DMFO)
$0.3 \% \mathrm{H}_{2} \mathrm{O}_{2}$
0.4 M Citric acid + o. $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer
pH 6.2 in 10% DMFO

$34.6 \underline{\mathrm{M} \mathrm{H}}_{2} \underline{\mathrm{SO}_{4}}$

$\mathrm{H}_{2} \mathrm{SO}_{4}$
Distilled water

$1 \mu \mathrm{~L}$
4 mL $100 \mu \mathrm{~L}$ $100 \mu \mathrm{~L}$ $100 \mu \mathrm{~L}$

The solution was sterilized by autoclaving.

35. Ethidium bromide solution ($10 \mathrm{mg} / \mathrm{mL}$)

The ethidium bromide solution was prepared by dissolving 1 g of ethidium bromide in 100 mL of distilled water. The solution was stored in light-tight container

36. Gel loading buffer

0.025 g of bromophenol blue was dissolved in 20 mL of 15% glycerol.

37. Tris-acetate EDTA (TAE) buffer

1xTBE buffer was used as an electrophoresis buffer throughout the study. The working solution of 1 xTBE buffer was prepared from stock solution of 5 xTAE buffer, as followed.

Tris-base	5.4 g
Boric acid	2.75 g
Na_{2}-EDTA	0.47 g

Distilled water 100 mL
38. Agarose gel

Agarose
1xTBE buffer

200 mL

$$
\begin{gathered}
\text { สถาบันวิทยบริการ } \\
\text { จุฬาลงกรณ์มหาวิทยาล่ย }
\end{gathered}
$$

Appendix III

Primers and Nucleotide sequences of the PCR amplified 16S rDNA

1. List of primers for 16 S rDNA PCR amplification and Sequencing

20F

5'-AGTTTGATCCTGGCTC-3'
5'-AAGGAGGTGATCCAGCC-3'
27F 5'-GTTTGATCCTGGCTCAG-3'

350F

5'-TACGGGAGGCAGCAG-3'
350R 5'-CTGCTGCCTCCCGTAG-3'

780F 5'-GATTAGATACCCTGGTAG-3'
780R
1100F
1100R
1492R
 จุฬาลงกรณ์มหาวิทยาลัย

2. Nucleotide sequences of the PCR amplified 16S rDNA

Abstract

TCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAGCGGAAAGGCCCTTCGGGGTACTCGAGCGGCGAA CGGGTGAGTACACGTGAGCACCTGCCCTAGGCTTTGGGATAACCCCGGGAAAACCGGGGCTAATACCGAATAGGAC CTGGCACCGCATGGTGTTGGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCTTGTTGGTGGGGT GATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGACTGAGACACGGCCCAG ACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGGAAGCCTGATGCAGCGACGCCGCGTGAGGGATG ACGGCCTTCGGGTTGTAACCTCTTTCAGCAGGGACGAAGCGTAAGTGACGGTACCTGCAGAAGAAGCGCCGGCCAA CTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGGGCGTAAAGAGCTCGTAGGC GGCTTGTCGCGTCGACTGTGAAAACCCACGGCTCAACCGTGGGCCTGCAGTCGATACGGGCAGGCTAGAGTTCGGT AGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGGTCT CTGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCTGTA AACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCCTGTGCCGCAGCTAACGCATTAAGCGCCCCGCCTGGGG AGTACGGCCGCAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGAGCATGCGGATTAATTCGAT GCAACGCGAAGAACCTTACCTGGGTTTGACATGGCCGCAAAACCTGCAGAGATGTGGGGTCCTTCGGGGGCGGTCA CAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTC GATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGGGGTCAACTCGGAGGAAGGTGGGGATGACGTC AAGTCATCATGCCCCTTATGTCCAGGGCTTCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGG TGGAGCGAATCCCAAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGCTAG TAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACGTCACGAAAGTCG GCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGGAGCCGTCGAAGGTGGGGCTGGCGATTGGGACGAAGTCG TAACAAGGTAGCCGTACCGGAAGGTGCGGTGGGA

Figure 22. The PCR amplified 16S rDNA nucleotide sequences of LK2-6

AGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAGCGGAAAGGCCCTTCGGGGTACTCGAGCGGCGAACG GGTGAGTACACGTGAGCACCTGCCCTAGGCTTTGGGATAACCCCGGGAAAACCGGGGCTAATACCGAATAGGACCT GGCACCGCATGGTGTTGGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCTTGTTGGTGGGGTGA TGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGACTGAGACACGGCCCAGAC TCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGGAAGCCTGATGCAGCGACGCCGCGTGAGGGATGAC GGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAAGCGTAAGTGACGGTACCTGCAGAAGAAGCGCCGGCCAAC TACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGGGCGTAAAGAGCTCGTAGGCG GCTTGTCGCGTCGACTGTGAAAACCCACGGCTCAACCGTGGGCCTGCAGTCGATACGGGCAGGCTAGAGTTCGGTA GGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAANGCGGGTCTC TGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCTGTAA CGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCAGCTAACGCATTAAGCGCCCCGCCTGGGGAGT ACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGAGCATGCGGATTAATTCGATGC AACGCGAAGAACCTTACCTGGGTTTGACATGGCCGCAAAACCTGCAGAGATGTGGGGTCCTTCGGGGGCGGTCACA GGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTCGA TGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGGGGTCAACTCGGAGGAAGGTGGGGATGACGTCAA GTCATCATGCCCCTTATGTCCAGGGCTTCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTG GAGCGAATCCCAAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGCTAGTA ATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACGTCACGAAAGTCGGC AACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGGAGCCGTCGAAGGTGGGGCTGGCGATTGGGACGAAGTCGTA ACAAGGTAGCCGTACCGGAAGGTGCGGTGGATT

Figure 23. The PCR amplified 16S rDNA nucleotide sequences of BTG2-3

AGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAGCGGAAAGGCCCTTCGGGGTACTCGAGCGGCGAACG GGTGAAGTACACGTGAGCACCTGCCCTAGGCTTTGGGATAACCCCGGGAAAACCGGGGCTAATACCGAATAGGACC TGGCACCGCATGGTGTTGGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCTTGTTGGTGGGGTG ATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGACTGAGACACGGCCCAGA CTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGGAAGCCTGATGCAGCGACGCCGCGTGAGGGATGA CGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAAGCGTAAGTGACGGTACCTGCAGAAGAAGCGCCGGCCAA CTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGGGCGTAAAGAGCTCGTAGGC GGCTTGTCGCGTCGACTGTGAAAACCCACGGCTCAACCGTGGGCCTGCAGTCGATACGGGCAGGCTAGAGTTCGGT AGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGGTCT CTGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCTGTA AACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCCTGTGCCGCAGCTAACGCATTAAAGCGCCCCGCCTGGG GAGTACGGCCGCAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGAGCATGCGGATTAATTCGA TGCAACGCGAAGAACCTTACCTGGGTTTGACATGGCCGCAAAACCTGCAGAGATGTGGGGTCCTTCGGGGGCGGTC ACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTT CGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGGGGTCAACTCGGAGGAAGGTGGGGATGACGT CAAGTCATCATGCCCCTTATGTCCAGGGCTTCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAG GTGGAGCGAATCCCAAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGCTA GTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACGTCACGAAAGTC GGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGGAGCCGTCGAAGGTGGGGCTGGCGATTGGGACGAAGTC GTAACAAGGTAGCCGTACCGGAAGGTGCGGTGGAATTNNCCCTCCTA

Figure 24. The PCR amplified 16S rDNA nucleotide sequences of BTG3-4

0
-
TAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAGCGGAAAGGCCCTTCGGGG TACTCGAGCGGCGAACGGGTGAGTAACACGTGAGCAACCTGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGC TAATACCGAATAGGACCTGGCACCGCATGGTGTTGGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATC AGCTTGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGGAAGCCTGATGCAGCGA CGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAAGCGTAAGTGACGGTACCTGCA GAAGAAGCGCCGGCCAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGGGC GTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCACGGCTCAACCGTGGGCCTGCAGTCGATACGG GCAGGCTAGAGTTCGGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCG GTGGCGAAGGCGGGTCTCTGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCC TGGTAGTCCACGCTGTAAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCCTGTGCCGCAGCTAACGCATT AAGCGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGAG CATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCTGGGTTTGACATGGCCGCAAAACCTGCAGAGATGTGGG GTCCTTCGGGGGCGGTCACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAA CGAGCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGGGGTCAACTCGGAG GAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCACGCATGCTACAATGGCCGGTACAATG GGCTGCGATACCGTGAGGTGGAGCGAATCCCAAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCG TGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCC GTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGGAGCCGTCGAAGGTGGGGCTG GCGATTGGGACGAAGTCGTAACAAGGTAGCCGTACCGGAAGGTGCGGTGGAATCACCTCC

Figure 25. The PCR amplified 16S rDNA nucleotide sequences of BTG1-1

TAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAGCGGAAAGGCCCTTCGGGG TACTCGAGCGGCGAACGGGTGAGTAACACGTGAGCAACCTGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGC TAATACCGAATAGGACCTGGCACCGCATGGTGTTGGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATC AGCTTGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGGAAGCCTGATGCAGCGA CGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAAGCGTAAGTGACGGTACCTGCA GAAGAAGCGCCGGCCAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGGGC GTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCACGGCTCAACCGTGGGCCTGCAGTCGATACGG GCAGGCTAGAGTTCGGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCG GTGGCGAAGGCGGGTCTCTGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCC TGGTAGTCCACGCTGTAAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCCTGTGCCGCAGCTAACGCATT AAGCGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGAG CATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCTGGGTTTGACATGGCCGCAAAACCTGCAGAGATGTGGG GTCCTTCGGGGGCGGTCACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAA CGAGCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGGGGTCAACTCGGAG GAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCACGCATGCTACAATGGCCGGTACAATG GGCTGCGATACCGTGAGGTGGAGCGAATCCCAAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCG TGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCC GTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGGAGCCGTCGAAGGTGGGGCTG GCGATTGGGACGAAGTCGTAACAAGGTAGCCGTACCGGAAGGTGCGGCTGGAATCACCTCCTTA

Figure 26. The PCR amplified 16 S rDNA nucleotide sequences of KM1-6
 TAATACCGAATAGGACCTGGCACCGCATGGTGTTGGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATC AGCTTGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGGAAGCCTGATGCAGCGA CGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAAGCGTAAGTGACGGTACCTGCA
GAAGAAGCGCCGGCCAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGGGC GTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCACGGCTCAACCGTGGGCCTGCAGTCGATACGG GCAGGCTAGAGTTCGGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCG GTGGCGAAGGCGGGTCTCTGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCC TGGTAGTCCACGCTGTAAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCCTGTGCCGCAGCTAACGCATT AAGCGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGAG CATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCTGGGTTTGACATGGCCGCAAAACCTGCAGAGATGTGGG GTCCTTCGGGGGCGGTCACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAA CGAGCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGGGGTCAACTCGGAG GAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCACGCATGCTACAATGGCCGGTACAATG GGCTGCGATACCGTGAGGTGGAGCGAATCCCAAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCG TGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCC GTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGGAGCCGTCGAAGGTGGGGCTG GCGATTGGGACGAAGTCGTAACAAGGTAGCCGTACCGGAAGGTGCGGCTGGGATTCACCTCCTTAA

Figure 27. The PCR amplified 16 S rDNA nucleotide sequences of BTG1-4

CTAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAGCGGAAGGCCCTTCGGGG TACTCGAGCGGCGAACGGGTGAGTAACACGTGAGCAACCTGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGC TAATACCGAATAGGACCTGGCACCGCATGGTGTTGGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATC AGCTTGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGGAAGCCTGATGCAGCGA CGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAAGCGTAAGTGACGGTACCTGCA GAAGAAGCGCCGGCCAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGGGC GTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCACGGCTCAACCGTGGGCCTGCAGTCGATACGG GCAGGCTAGAGTTCGGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCG GTGGCGAAGGCGGGTCTCTGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCC TGGTAGTCCACGCTGTAAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCCTGTGCCGCAGCTAACGCATT AAGCGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGAG CATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCTGGGTTTGACATGGCCGCAAAACCTGCAGAGATGTGGG GTCCTTCGGGGGCGGTCACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAA CGAGCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGGGGTCAACTCGGAG GAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCACGCATGCTACAATGGCCGGTACAATG GGCTGCGATACCGTGAGGTGGAGCGAATCCCAAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCG TGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCC GTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGGAGCCGTCGAAGGTGGGGCTG GCGATTGGGACGAAGTCGTAACAAGGTAGCCGTACCGGAAGGTGCGGCTGGGATCACCTCCTTAA

Figure 28. The PCR amplified 16 S rDNA nucleotide sequences of KM1-9

TAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAGCGGAAAGGCCCTTCGGGG TACTCGAGCGGCGAACGGGTGAGTAACACGTGAGCAACCTGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGC TAATACCGAATAGGACCTGGCACCGCATGGTGTTGGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATC AGCTTGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGGAAGCCTGATGCAGCGA CGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAAGCGTAAGTGACGGTACCTGCA GAAGAAGCGCCGGCCAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGGGC
 GCAGGCTAGAGTTCGGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCG GTGGCGAAGGCGGGTCTCTGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCC TGGTAGTCCACGCTGTAAACGTTGGGCGCTAGGTGTGGGGGGGCCTCTCCGGTTCCCTGTGCCGCAGCTAACGCAT TAAGCGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGA GCATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCTGGGTTTGACATGGCCGCAAAACCTGCAGAGATGTGG GGTCCTTCGGGGGCGGTCACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCA ACGAGCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGGGGTCAACTCGGA GGAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCACGCATGCTACAATGGCCGGTACAAT GGGCTGCGATACCGTGAGGTGGAGCGAATCCCAAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCC GTGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCC CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGGAGCCGTCGAAGGTGGGGCT GGCGATTGGGACGAAGTCGTAACAAGGTAGCCGTACCGGAAGGTGCGGCTGGAATCACCTCCTTAA

Figure 29. The PCR amplified 16S rDNA nucleotide sequences of BTG4-1

TAGTTTGATCCTGGNTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAGCGGAAAGGCCCTTCGGGG TACTCGAGCGGCGAACGGGTGAGTAACACGTGAGCAACCTGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGC TAATACCGAATAGGACCTGGCACCGCATGGTGTTGGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATC AGCTTGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGGAAGCCTGATGCAGCGA CGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAAGCGTAAGTGACGGTACCTGCA GAAGAAGCGCCGGCCAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGGGC GTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCACGGCTCAACCGTGGGCCTGCAGTCGATACGG GCAGGCTAGAGTTCGGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCG GTGGCGAAGGCGGGTCTCTGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCC TGGTAGTCCACGCTGTAAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCCTGTGCCGCAGCTAACGCATT AAGCGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGAG CATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCTGGGTTTGACATGGCCGCAAAACCTGCAGAGATGTGGG GTCCTTCGGGGGCGGTCACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAA CGAGCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGGGGTCAACTCGGAG GAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCACGCATGCTACAATGGCCGGTACAATG GGCTGCGATACCGTGAGGTGGAGCGAATCCCAAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCG TGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCC GTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGGAGCCGTCGAAGGTGGGGCTG GCGATTGGGACGAAGTCGTAACAAGGTAGCCGTACCGGAAGGTGCGGCTGGAATCACCTCCTTAA

Figure 30. The PCR amplified 16S rDNA nucleotide sequences of LK2-12

TAGTTTGATCCCTGGGCCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAGCGGAAAGGCCCTTCGGG GTACTCGAGCGGCGAACGGGTGAGTACACGTGAGCACCTGCCCTAGGCTTTGGGATAACCCCGGGAAAACCGGGGC TAATACCGAATAGGACCTCCTGTCGCATGGTGGGGGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATC AGCTTGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGGAAGCCTGATGCAGCGA CGCCGCGTGAGGGATGAACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAAGCGTAAGTGACGGTACCTGC AGAAGAAGCGCCGGCCAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGGG CGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCGCGGCTCAACCGCGGGCCTGCAGTCGATACG GGCAGGCTAGAGTTCGGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACC GGTGGCGAAGGCGGGTCTCTGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACC CTGGTAGTCCACGCTGTAAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCTGTGCCGCACTAACGCATTA GCGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGAGCA TGCGGATTAATTCGATGCAACGCGAAGAACCTTACCTGGGTTTGACATGGCCGCAAAACCTGCAGAGATGTGGGGT CCTTCGGGGGCGGTCACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACG AGCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGGGGTCAACTCGGAGGA AGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCACGCATGCTACAATGGCCGGTACAATGGG CTGCGATACCGTGAGGTGGAGCGAATCCCAAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTG AAGTCGGAGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGT CACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGGAGCCGTCGAAGGTGGGGCTGGC GATTGGGACGAAGTCGTAACAAGGTAGCCGTACCGGAAGGTGCGGTGGATT

Figure 31. The PCR amplified 16S rDNA nucleotide sequences of LK2-10

TCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAGCGGAAAGGCCCTTCGGGGTACTCGAGCGGCGAA CGGGTGAGTAACACGTGAGCAACCTGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATAGGA CCTCCTGTCGCATGGTGGGGGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATCAGCTTGTTGGTGGGG TGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGACTGAGACACGGCCCA GACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGGAAGCCTGATGCAGCGACGCCGCGTGAGGGAT GACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAAGCGTAAGTGACGGTACCTGCAGAAGAAGCGCCGGCC AACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGGGCGTAAAGAGCTCGTAG GCGGCTTGTCGCGTCGACTGTGAAAACCCGCGGCTCAACCGCGGGCCTGCAGTCGATACGGGCAGGCTAGAGTTCG GTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGGT CTCTGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCTG TAAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCCTGTGCCGCAGCTAACGCATTAAGCGCCCCGCCTGG GGAGTACGGCCGCAAGGCTAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGAGCATGCGGATTAATTCG ATGCAACGCGAAGACCCTTACCTGGGTTTGACATGGCCGCAAAACCTGCAGAGATGTGGGGTCCTTCGGGGGCGGT CACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGT TCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGGGGTCAACTCGGAGGAAGGTGGGGATGACG TCAAGTCATCATGCCCCTTATGTCCAGGGCTTCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGA GGTGGAGCGAATCCCAAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGCT AGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACGTCACGAAAGT CGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGGAGCCGTCGAAGGTGGGGCTGGCGATTGGGACGAAGT CGTAACAAGGTAGCCGTACCGGAAGGTGCGGTGGATCCACCTCCCTTA

Figure 32. The PCR amplified 16S rDNA nucleotide sequences of LK2-5

TCGAGCGGAAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGAGTACACGTGAGCACCTGCCCTAGGCTTTGGG ATAACCCCGGGAAACCGGGGCTAATACCGAATATGACCTTICCTCGCATGAGGTTTGGTGGAAAGTITTTCGGCCT GGGATGGGCTCGCGGCCTATCAGCTTGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGA GGGCGACCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATG GGCGGAAGCCTGATGCAGCGACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAA GCGTAAGTGACGGTACCTGCAGAAGAAGCACCGGCCAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGTGCGAG CGTTGTCCGGATTTATTGGGCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACCGTGAAAACTTGGGGCTCAACT CCAAGCCTGCGGTCGATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCG CAGATATCAGGAGGAACACCGGTGGCGAAGGCGGGTCTCTGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGG AGCGAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCC CTGTGCCGCAGCTAACGCATTAAGCGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGG GGGCCCGCACAAGCGGCGGAGCATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCTGGGTTTGACATGGCCG CAAAACCTCCAGAGATGGGGGGTCCTTCGGGGGCGGTCACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAG ATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAG ACTGCCGGGGTCAACTCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCACGCAT GCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCCAAAAAGCCGGTCTCAGTTCGGATC GGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCC CGGGCCTTGTACACACCGCCCGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGG GAGCCGTCGAAGGTGGGGCTGGCGATTGGGACGAAGTCGTAACAAGGTAGCCGTACCGGAAGGTGCGTGGAATTCC

Figure 33. The PCR amplified 16 S rDNA nucleotide sequences of TT2-4

TAGTTTGATCCTGGNTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAGCGGAAAGGCCCTTCGGGG TACTCGAGCGGCGAAACGGGTGAGTAACACGTGAGCAACCTGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGG CTAATACCGAATATGACCACATGTCGCATGGTGTGTGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTAT CAGCTTGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGG ACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGGAAGCCTGATGCAGCG ACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAAGCGTAAGTGACGGTACCTGC AGAAGAAGCGCCGGCCAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGGG CGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACCGTGAAAACCTGGGGCTCAACCCCAGGCCTGCGGTCGATACG GGCAGGCTAGAGTTCGGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACC GGTGGCGAAGGCGGGTCTCTGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACC CTGGTAGTCCACGCTGTAAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCCTGTGCCGCAGCTAACGCAT TAAGCGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGA GCATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCTGGGTTTGACATGGCCGCAAAACTTGCAGAGATGTAA GGTCCTTCGGGGGCGGTCACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCA ACGAGCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGGGGTCAACTCGGA GGAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCACGCATGCTACAATGGCCGGTACAAT GGGCTGCGATACCGTGAGGTGGAGCGAATCCCAAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCC GTGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCC CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGGAGCCGTCNAAGGTGGGGCT GGCGATTGGGACGAAGTCGTAACAAGGTAGCCGTACCGGAAGGTGCGGCTGGAATCACCTCCTTA

Figure 34. The PCR amplified 16S rDNA nucleotide sequences of KM4-24

TAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAGCGGAAAGGCCCTTCGGGG TACTCGAGCGGCGAACGGGTGAGTAACACGTGAGCAACCTGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGC TAATACCGAATATGACCACATGTCGCATGGTGTGTGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATC AGCTTGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGGAAGCCTGATGCAGCGA CGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAAGCGTAAGTGACGGTACCTGCA GAAGAAGCGCCGGCCAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGGGC gTAAAGAGCTCGIAGGCGGCTIGICGCGICGACCGTGAAAACCTGGGGCICAACCCCAGGCCTGCGGICGAIACGG GCAGGCTAGAGTTCGGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCG GTGGCGAAGGCGGGTCTCTGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCC TGGTAGTCCACGCTGTAAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCCTGTGCCGCAGCTAACGCATT AAGCGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGAG CATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCTGGGTTTGACATGGCCGCAAAACTTGCAGAGATGTAAG GTCCTTCGGGGGCGGTCACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAA CGAGCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGGGGTCAACTCGGAG GAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCACGCATGCTACAATGGCCGGTACAATG GGCTGCGATACCGTGAGGTGGAGCGAATCCCAAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCG TGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCC GTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGGAGCCGTCGAAGGTGGGGCTG GCGATTGGGACGAAGTCGTAACAAGGTAGCCGTACCGGAAGGTGCGGTGGATTCACCTCCTTAAA

Figure 35. The PCR amplified 16 S rDNA nucleotide sequences of KM4-29

TAGTTTGATCCNTGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAGCGGAAAGGCCCTTCGGG GTACTCGAGCGGCGAACGGGTGAGTAACACGTGAGCAACCTGCCCTAGGCTTTGGGATAACCCCGGGAAAACCGGG GCTAATACCGAATATGACCTCGCATCGCATGGTGTGTGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTA TCAGCTTGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGG GACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGGAAGCCTGATGCAGC GACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAAAGCGTAAGTGACGGTACCT GCAGAAGAAGCGCCGGCCAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTG GGCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACCGTGAAAACCTGGGGCTCAACCCCAGGCCTGCGGTCGATA CGGGCAGGCTAGAGTTCGGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACA CCGGTGGCGAAGGCGGGTCTCTGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATA CCCTGGTAGTCCACGCTGTAAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCCTGTGCCGCAGCTAACGC ATTAAGCGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCG GAGCATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCTGGGTTTGACATGGCCGCAAAACTTGCAGAGATGT AAGGTCCTTCGGGGGCGGTCACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCG CAACGAGCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGGGGTCAACTCG GAGGAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCACGCATGCTACAATGGCCGGTACA ATGGGCTGCGATACCGTGAGGTGGAGCGAATCCCAAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACC CCGTGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCG CCCGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGGAGCCGTCGAAGGTGGGG CTGGCGATTGGGACGAAGTCGTAACAAGGTAGCCGTACCGGAAGGTGCGGTGGATTTCCNCTTCCTTA

Figure 36. The PCR amplified 16S rDNA nucleotide sequences of BTG10-2

TAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAGCGGAAAGGCCCTTCGGGG TACTCGAGCGGCGAACGGGTGAGTAACACGTGAGCAACCTGCCCTAGGCTTTGGGATAACCCCGGGAAACCGGGGC TAATACCGAATATGACCTCGCATCGCATGGTGTGTGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTATC AGCTTGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGGAAGCCTGATGCAGCGA CGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAAGCGTAAGTGACGGTACCTGCA GAAGAAGCGCCGGCCAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGGGC gIAAAGAGCICGIAGGCGGCTIGICGCGICGACCGIGAAAACCIGGGGCICAACCCCAGGCCTGCGGTCGATACGG GCAGGCTAGAGTTCGGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCG GTGGCGAAGGCGGGTCTCTGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCC TGGTAGTCCACGCTGTAAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCCTGTGCCGCAGCTAACGCATT AAGCGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGAG CATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCTGGGTTTGACATGGCCGCAAAACTTGCAGAGATGTAAG GTCCTTCGGGGGCGGTCACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAA CGAGCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGGGGTCAACTCGGAG GAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCACGCATGCTACAATGGCCGGTACAATG GGCTGCGATACCGTGAGGTGGAGCGAATCCCAAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCG TGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCC GTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGGAGCCGTCGAAGGTGGGGCTG GCGATTGGGACGAAGTCGTAACAAGGTAGCCGTACCGGAAGGTGCGGTGGANTCACCTCCTT

Figure 37. The PCR amplified 16 S rDNA nucleotide sequences of BTG7-3

TAGTTTGATCCCTTGGCCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAGCGGAAAGGCCCTTCGGG GTACTCGAGCGGCGAACGGGTGAGTAACACGTGAGCAACCTGCCCCAGGCTTTGGGATAACCCCGGGAAACCGGGG CTAATACCGAATATGACCTCCGATCGCATGGTCGGTGGTGGAAAGTTTTTCGGCTTGGGATGGGCTCGCGGCCTAT CAGCTTGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGG ACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGGAAGCCTGATGCAGCG ACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAAGCGTAAGTGACGGTACCTGC AGAAGAAGCGCCGGCCAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGGG CGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACCGTGAAAACCTGGGGCTCAACCCCAGGCCTGCGGTCGATACG GGCAGGCTAGAGTTCGGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACC GGTGGCGAAGGCGGGTCTCTGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACC CTGGTAGTCCACGCTGTAAACGTTGGGCGCTAGGTGTGGGGGGGCCTCTCCGGTTCCCTGTGCCGCAGCTAACGCA TTAAGCGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGG AGCATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCTGGGTTTGACATGGCCGCAAAACTGTCAGAGATGGC AGGTCCTTCGGGGGCGGTCACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGC AACGAGCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGGGGTCAACTCGG AGGAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCACGCATGCTACAATGGCCGGTACAA TGGGCTGCGATACCGTGAGGTGGAGCGAATCCCAAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCC CGTGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGC CCGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGGAGCCGTCGAAGGTGGGGC TGGCGATTGGGACGAAGTCGTAACAAGGTAGCCGTACCGGAAGGTGCGNGGAATNCCCCCTCCTAAA

Figure 38. The PCR amplified 16 S rDNA nucleotide sequences of KM3-1

CGAGCGGAAAGGCCCTTCGGGGTACTCGAGCGGCGAACGGGTGAGTAACACGTGAGCAACCTGCCCCAGGCTTTGG GATAACCCCGGGAAACCGGGGCTAATACCGAATATGACCTIGCACCGCATGGTGTGTGGTGGAAAGTTTTTCGGCT TGGGATGGGCTCGCGGCCTATCAGCTTGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAG AGGGCGACCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAAT GGGCGGAAGCCTGATGCAGCGACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGA AGCGTAAGTGACGGTACCTGCAGAAGAAGCGCCGGCCAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGA GCGTTGTCCGGATTTATTGGGCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACCGTGAAAACCTGGGGCTCAAC CCCAGGCCTGCGGTCGATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGC GCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGGTCTCTGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGG GAGCGAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTC CCTGTGCCGCAGCTAACGCATTAAGCGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACG GGGGCCCGCACAAGCGGCGGAGCATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCTGGGTTTGACATGGCC GCAAAACTGTCAGAGATGGCAGGTCCTTCGGGGGCGGTCACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGA GATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAA GACTGCCGGGGTCAACTCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCACGCA TGCTACAATGGCCGGTACAATGGGCTGCGATACCGTGAGGTGGAGCGAATCCCAAAAAGCCGGTCTCAGTTCGGAT CGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTC CCGGGCCTTGTACACACCGCCCGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAG GGAGCCGTCGAAGGTGGGGCTGGCGATTGGGACGAAGTCGTAACAAGGTAGCCGTACCGGAAGGTGCGGCTGGATT

Figure 39. The PCR amplified 16S rDNA nucleotide sequences of LK5-4

AGAGTTTGATCATGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAGCGGAAAGGCCCTTCGGG GTACTCGAGCGGCGAACGGGTGAGTAACACGTGAGCAACCTGCCCTAGGCTTTGGGATAACCCTCGGAAACGGGGG CTAATACCGAATATGACTACTGATCGCATGGTTGGTGGTGGAAAGTTTTTCGGCCTGGGATGGGCTCGCGGCCTAT CAGCTTGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGG ACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGGAAGCCTGATGCAGCG ACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAAGCGAAAGTGACGGTACCTGC AGAAGAAGCGCCGGCCAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGGG CGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCGCAGCTCAACTGCGGGCCTGCAGTCGATACG GGCAGGCTAGAGTTCGGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATNAGGAGGAACACC GGTGGCGAAGGCGGGTCTCTGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACC CTGGTAGTCCACGCTGTAAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCCTGTGCCGCAGCTAACGCAT TAAGCGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGA GCATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCTGGGTTTGACATGGCCGCAAAACTCGCAGAGATGTGA GGTCCTTCGGGGGCGGTCACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCA ACGAGCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGGGGTCAACTCGGA GGAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCACGCATGCTACAATGGCCGGTACAAT GGGCTGCGATACCGTGAGGTGGAGCGAATCCCAAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCC GTGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCC CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGGAGCCGTCGAAGGTGGGGCT GGCGATTGGGACGAAGTCGTAACAAGGTAGCCGTAAAT

Figure 40. The PCR amplified 16 S rDNA nucleotide sequences of TT1-11

TAGTTGATCCCTGGCTAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAGCGGAAAGGCCCTTCGGGGT ACTCGAGCGGCGAACGGGTGAGTAACACGTGAGCAACCTGCCCCAGGCTITGGGATAACCCCGGGAAAACCGGGGC TAATACCGAATATGACCTTGCATCGCATGATGICITGGTGGAAAGTTITTCGGCTTGGGATGGGCTCGCGGCCTAT CAGCTTGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGG ACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGGAAGCCTGATGCAGCG ACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAAGCGCAAGTGACGGTACCTGC AGAAGAAGCACCGGCCAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGTGCGAGCGTTGTCCGGATTTATTGGG CGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACCGTGAAAACTTGGGGCTCAACTCCAAGCCTGCGGTCGATACG GGCAGGCTAGAGTTCGGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCANGAGGAACACC GGTGGCGAAGGCGGGTCTCTGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACC CTGGTAGTCCACGCTGTAAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCCTGTGCCGCAGCTAACGCAT TAAGCGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGA GCATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCTGGGTTTGACATGGCCGCAAAACTGTCAGAGATGGCA GGTCCTTCGGGGGCGGTCACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCA ACGAGCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGGGGTCAACTCGGA GGAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCACGCATGCTACAATGGTCGGTACAAT GGGCTGCGATACCGTGAGGTGGAGCGAATCCCAAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCC GTGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCC CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGGAGCCGTCGAAGGTGGGGCT GGCGATTGGGACGAAGTCGTAACAAGGTAGCCGTACCGGAAGGTGCGGTGGATTCNNCCTCCTAAA

Figure 41. The PCR amplified 16 S rDNA nucleotide sequences of LK6-12

TAGTTGATCCCTTGGNTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAGCGGAAAGGCCCTTCGGG GTACTCGAGCGGCGAACGGGTGAGTACACGTGAGCACCTGCCCCAGGCTTTGGGATAACCCCGGGAAACCGGGGCT AATACCGAATATGACCTCTGACCGCATGGTTGGTGGTGGAAAGTTTTTCGGCTTGGGATGGGCTCGCGGCCTATCA GCTTGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGAC TGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGGAAGCCTGATGCANCGAC NCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAAGCGTAAGTGACGGTACCTGCAG AAGAAGCGCCGGCCAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGGGCG TAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACCGTGAAAACTTGGGGCTCAACCCCAAGCCTGCGGTCGATACGGG CAGGCTAGAGTTCGGTAGGGGAGACTGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGT GGCGAAGGCGGGTCTNTGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTG GTAGTCCACGCTGTAAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCCTGTGCCGCAGCTAACGCATTAA GCGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGAGCA TGCGGATTAATTCGATGCAACGCGAAGAACCTTACCTGGGTTTGACATGGCCGCAAAACTGTCAGAGATGGCAGGT CCTTCGGGGGCGGTCACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACG AGCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGGGGTCAACTCGGAGGA AGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCACGCATGCTACAATGGCCGGTACAATGGG CTGCGATACCGTGAGGTGGAGCGAATCCCAAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTG AAGTCGGAGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTICCCGGGCCTTGTACACACCGCCCGT CACGTCACGAAAGTCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGGAGCCGTCNAAGGTGGGGCTGGC GATTGGGACGAAGTCGTAACAAGGTAGCCGTACCGGAAGGTGCGGCTGGATTCNCCTCCTNAAA

Figure 42. The PCR amplified 16S rDNA nucleotide sequences of BTG3-2

TCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAGCGGAAAGGCCCTTCGGGGTACTCGAGCGGCGAA CGGGTGAGTAACACGTGAGCAACCTGCCCCAGGCTTTGGGATAACCCCGGGAAACCGGGGCTAATACCGAATATGA CCTCTGACCGCATGGTTGGTGGTGGAAAGTTTTTCGGCTTGGGATGGGCTCGCGGCCTATCAGCTTGTTGGTGGGG TGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGACTGAGACACGGCCCA GACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGGAAGCCTGATGCAGCGACGCCGCGTGAGGGAT GACGGCCTTCGGGTTGTAAACCTCTITCAGCAGGGACGAAGCGTAAGTGACGGTACCTGCAGAAGAAGCGCCGGCC AACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGGGCGTAAAGAGCTCGTAG GCGGCTTGTCGCGTCGACCGTGAAAACTTGGGGCTCAACCCCAAGCCTGCGGTCGATACGGGCAGGCTAGAGTTCG GTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGGT CTCTGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCTG TAANCGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCCCTGTGCCGCAGCTAACGCATTAAGCGCCCCGCCTGG GGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGAGCATGCGGATTAATTC GATGCAACGCGAAGAACCTTACCTGGGTTTGACATGGCCGCAAAACTGTCAGAGATGGCAGGTCCTTCGGGGGCGG TCACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCG TTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGGGGTCAACTCGGAGGAAGGTGGGGATGAC GTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCACGCATGCTACAATGGCCGGTACAATGGGCTGCGATACCGTG AGGTGGAGCGAATCCCAAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGC TAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACGTCACGAAAG TCGGCAACACCCGAAGCCGGTGGCCCAACCCTTGTGGAGGGAGCCGTCGAAGGTGGGGCTGGCGATTGGGACGAAG TCGTAACAAGGTAGCCGTACCGGAAGGTGCGGCTGGGATCACCTCCTTAA

Figure 43. The PCR amplified 16 S rDNA nucleotide sequences of KM3-14

TAGTTTGATCCTTGGNTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAGCGGAAAGGCCCTTCGGG GTACTCGAGCGGCGAACGGGTGAGTAACACGTGAGTAACCTGCCCTGCGCTTTGGGATAACCCTCGGAAACGGGGG CTAATACCGGATATGATCTCCTGCCGCATGGTGGGGGGTGGAAAGTTTTTCGGCGTGGGATGGGCTCGCGGCCTAT CAGCTTGTTGGTGGGGTGATGGCCTACCAAGGCGGTGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGG ACTGAGACACGNCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGGAAGCCTGATGCAGCG ACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGTAGGGACGAAGCGGAAGTGACGGTACCTAC AGAAGAAGCGCCGGCCAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCGGATTTATTGGG CGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCGCGGCTCAACTGCGGGCTTGCAGTCNATACG GGCAGGCTAGAGTTCGGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACC GGTGGCGAAGGCGGGTCTCTGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACC CTGGTAGTCCACGCTGTAAACGTTGGGCGCTAGGTGTGGGGGGCCTCTCCGGTTCTCTGTGCCGCAGCTAACGCAT TAAGCGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGA GCATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCTGGGTTTGACATGGCCGCAAAACCTCCAGAGATGGGG GGTCCTTCGGGGGCGGTCACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCA ACGAGCGCAACCCTCGTTCGATGTTGCCAGCGCGTTATGGCGGGGACTCATCGAAGACTGCCGGGGTCAACTCGGA GGAAGGTGGGGATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCACGCATGCTACAATGGCCGGTACAAT GGGCTGCGATACCGTGAGGTGGAGCGAATCCCAAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCC GTGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCC CGTCACGTCACGAAAGTCGGCAACACCCGAAGCCCATGGCCTAACCGGTTTTCCGGGGGGAGTGGTCGAAGGTGGG GCTGGCGATTGGGACGAANTCNTAACAAGGTAGCCGTACCGGAAGGTGCGGCTGGANTTCNCCTACTTAA

Figure 44. The PCR amplified 16S rDNA nucleotide sequences of KM1-7

Figure 45. The UV spectrum of micromonosporin A. 9 Q

Figure 46. The IR spectrum of micromonosporin A.

Figure 47. The ESI-TOF mass spectrum of micromonosporin A.

Figure 48. The $400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of micromonosporin A in DMSO- d_{6}.

Figure 49. The $400 \mathrm{MHz}{ }^{1} \mathrm{H}$-NMR spectrum of micromonosporin A in DMSO- d_{6}. (expanded from δ_{H} 0.9-2.7)
ttla in dmso-d6

Figure 50. The $400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of micromonosporin A in DMSO- d_{6}. (expanded from δ_{H} 5.4-7.8)

Figure 51. The $100 \mathrm{MHz}{ }^{13} \mathrm{C}$-NMR spectrum of micromonosporin A in DMSO- d_{6}

1	144	142	140	138	136	134	132	130	128	126	124
122	122	ppr									

Figure 52. The $100 \mathrm{MHz}{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of micromonosporin A in DMSO- d_{6}. (expand from $\delta_{\mathrm{C}} 120-144$)

$\begin{array}{llllllllllllllllll}200 & 190 & 180 & 170 & 180 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 \\ \text { Figure 53. The } & 100 \mathrm{MHz} \text { DEPT } & 135 & \text { spectrum of micromonosporin } \mathrm{A} \text { in DMSO- } d_{6} \text {. }\end{array}$

Figure 54. The 400 MHz HMQC spectrum of micromonosporin A in $\mathrm{DMSO}-d_{6}$.

Figure 55. The 400 MHz HMQC spectrum of micromonosporin A in DMSO- d_{6}. (expanded from δ_{H}

Figure 56. The 400 MHz HMBC spectrum $\left({ }^{\mathrm{n}} J_{\mathrm{HC}}=8 \mathrm{~Hz}\right)$ of micromonosporin A in DMSO- d_{6}.

Figure 57. The 400 MHz HMBC spectrum (${ }^{\mathrm{n}} J_{\mathrm{HC}}=8 \mathrm{~Hz}$) of micromonosporin A in DMSO- d_{6}.

Figure 58. The 400 MHz HMBC spectrum (${ }^{\mathrm{n}} J_{\mathrm{HC}}=8 \mathrm{~Hz}$) of micromonosporin A in DMSO- d_{6}. (expanded from $\delta_{H} 5.2-6.9$)

Figure 60. The $400 \mathrm{MHz}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of micromonosporin A in DMSO- d_{6}. (expand from $\delta_{\text {H }} 1.00-6.00$)

Figure 61. The $400 \mathrm{MHz}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of micromonosporin A in DMSO- d_{6}. (expand from

Figure 62. The 400 MHz NOESY spectrum of micromonosporin A in DMSO- d_{6}.

Figure 63. The 400 MHz TOCSY spectrum of micromonosporin A in DMSO- d_{6}.

Figure 64. The 400 MHz TOCSY spectrum of micromonosporin A in DMSO- d_{6}. (expand from δ_{H} 3.3-7.8)

Figure 65. The 400 MHz TOCSY spectrum of micromonōsporin A in DMSO- d_{6}. (expand from δ_{H}

Figure 66. The 400 MHz TOCSY spectrum of micromonosporin A in DMSO- d_{6}. (expand from δ_{H} 5.2-7.8)

Figure 67. The UV spectrum of compound 2.

Figure 68. The IR spectrum of compound 2.

Figure 69. The ESI-TOF mass spectrum of compound 2.

ttihydro2 in cdel3

 $-\mathrm{CH}_{3}$

Figure 70. The $400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 2 in CDCl_{3}.

Figure 71. The $100 \mathrm{MHz}{ }^{13} \mathrm{C}$-NMR spectrum of compound 2 in CDCl_{3}.

[^1]Figure 72. The 100 MHz DEPT 135 spectrum of compound 2 in CDCl_{3}.

Figure 74. The 400 MHz HMBC spectrum of compound 2 in CDCl_{3}.

Figure 75. The $400 \mathrm{MHz}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound 2 in CDCl_{3}.

Figure 76. The 400 MHz NOESY spectrum of compound 2 in CDCl_{3}.

VITA

Mr. Chitti Thawai was born on December 6, 1977 in Ratchaburi, Thailand. He received his Bachelor's degree of Science in Biotechnology (second class honors) in 1999 from the Faculty of Science, King Mongkut's Institute of Technology Ladkrabang. He received the scholarship from the Royal Golden Jubilee Ph. D. Program.

Publications

1. Thawai, C., Kittakoop, P., Tanasupawat, S., Suwanborirux, K., Sriklung, K., Thebtaranonth. 2004. Micromonosporin A, a novel 24 -membered polyene lactam macrolide from Micromonospora sp. isolated from peat swamp forest. Chemistry and Biodiversity $1,640-645$.
2. Thawai, C., Tanasupawat, S., Itoh, T., Suwanborirux, K., and Kudo, T. 2004. Micromonospora aurantionigra sp. nov., isolated from a peat swamp forest in Thailand. Actinomycetologica 18, 8-14.
3. Thawai, C., Tanasupawat, S., Itoh, T., Suwanborirux, K., Suzuki, K., and Kudo, T. 2004. Micromonospora eburnea sp. nov., isolated from Thai peat swamp forest. Int. J. Syst. Evol. Microbiol. (In press).
จุฬาลงกรณโมหาวิทยาลัย

[^0]: ${ }^{\text {a }}$) Multiplicity was determined by analyses of DEPT spectrum; J in Hz

[^1]: $\begin{array}{llllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 \\ 10 & \mathrm{pem}\end{array}$

