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CHAPTER I

INTRODUCTION

The multiplicative structure of a ring is givelby definition a semigroup with zero.
However, ring theory is.a-classical subject-in-mathematics and had been widely
studied before semigroup theory was considered. Because the multiplicative struc-
ture of a ring is a semigroup with Zerg7 it is reasonable to ask which semigroups
joining zero are isomopphig to thé}_rvnuiﬁiolicative structure of some ring. If they
do, they are said to admit @ ring-':structzl:{ref; [n 1970, Peinado R.E. [10] gave a brief
survey of semigroups admitting r'i.'n;g Strﬁfé’flﬁ'e. Cha D.D. and Shyr H.I. [5] proved

A S dia
a nice result that the mulfiplicative sem_ig_qupp N of natural numbers admits a

ring structure. For various studies in thi_s?a;ﬁaL see [12] and [13].

On the other ha:hd the hyperstructure theory Wéas first known in 1934 by

-

Marty F. He gave the definition of a hypergroup as a generalization of a group.
Ten years after that, krasner hyperrings were introdaced as a nice generalization
of rings by Krasner' M. By the definition of Krasner hyperrings, their multiplica-
tive structures are also semigroups with zero...Semigroups admitting hyperring
structure have been defined in the same way. Besides that, semigroups admitting
other algebraic structures of a semigroup have been defined and studied. Many
researchers from many places have developed this area. The linear transforma-
tion semigroup is one type of semigroups that have been developed and studied
whether they admit some kinds of algebraic structures. We can see in [1], [2],

3], [4], [9], [11] and [14]. The work on linear transformation semigroups inspired

us to investigate some specific linear transformation semigroups. The semigroups



we considered are adopted from Kemprasit Y. and Chaopraknoi S. in [1], [2],
[3] and [4]. They studied linear transformation semigroups from a vector space
into itself. Here, we generalize to linear transformation semigroups from a vector
space into its subspace. We then seperate the generalized linear transformation

semigroups into two groups. The first group is linear transformation semigroups

containing a zero. We shall de or when they admit the structure of

a semihyperring with ze imear transformation semigroups

—

he structure of a semiring with zero. However,

er gr

without zero which al

they need not admi 0 ommutative(AC) semiring
with zero. Our pur i N\e\‘\~ D o characterize whether or
when they admit th mimutative semiring with zero.
The next chapter :“" iti0 \ ations and basic knowledges

which will be used throtg ey nd .‘.\\‘n' give short brief for Chapter I11

Y]

§
AUEINENTNYINS
AN TUNM NN Y



CHAPTER I1

PRELIMINARIES

2.1 Basic definitions an

For any set X, let -- 0

A hyperoperation o pping of H x H into P*(H).

\

noniempty set H and a hyper-

the notation |X| means e ¢

A hypergroupoid is a sy
operation o on H. Lei For nonempty subsets A and

B of H, let

Aox = Ao{z} ar n '———-————-——-—:N—---;fw TV :‘c all (H,o) a commutative

hypergroupoid if andEﬂy if Toy
called an identity of (H,epif v € (xoe)@(eox) for all z € H. An identity e of

(H,o) is cauﬂuﬁl ’Jdm &J mlje) ( ’) ﬂg for all z € H. Then
: hﬁﬁiﬁfﬂﬂi‘iﬁum VNUAY. ..o

for all z,y,z € H, that is,

i,% H. An element e of H is

U toz= U xot forall z,y,2€ H.

texoy teyoz
A hypergroup is a semihypergroup (H,o) such that Hoxz =z o H = H for all
x € H. For z,y in a hypergroup (H,o), z is called an inverse of y if there exists

an identity e of H such that e € (zoy) N (yox). A hypergroup (H,o) is called



reqular if every element of H has an inverse in H. A regular hypergroup (H, o)
is said to be reversible if for x,y,z € H,x € yo z implies z € uox and y € xov
for some inverse u of y and some inverse v of z.

A canonical hypergroup is a hypergroup (H,o) such that

i) (H,o) is commutative,

ii) (H,o) has the scalar identity,
N

(
(
(iii) every element of H
(

iv) (H,o) is rever&V b4

A triple (A, +,-) 1s

x+y=y+x forall x,y € A E?@i ase, we call (A, +,-) an AC semihyperring
et S

[AC semiring]. An-dlement 0 of a semihy rperring [se ' '1ng] (A, +,) is called a

0-x:0f0rallmEA.

A (Krasner) hyperrmgs a system (% ,+) where

M (4.9 1sﬂ%%l%p%%lpW‘§Wﬂ'1ﬂ‘ﬁ

A ) isa semlgroup with zera'0 where 0 js,the scalar identity of (A, +) and

t&&mﬁ bt v W et 61 £

We can see by the definitions that every ring is a hyperring and every hyperring

and every AC semiring with zero are AC semihyperrings with zero.

For a semigroup (5,-), the semigroup S° is defined to be S if S has a zero
and S contains more than one element, otherwise, let S° be the semigroup S
with a zero 0 adjoined, that is, S° = (S U {0},0) where 0 ¢ S,00z =200=0

for all x € SU{0} and x oy = x -y for all x,y € S. Note that if |S| = 1, then



SY is a semigroup of two elements and S° = (Z,, ). Also, if G is a group, then

G° = (G U {0}, 0) is defined as above.

Example 2.1.1. ([6] and [11]) Let G be a group. Define a hyperoperation + on

G° by
'// or all 7 € G°,
ac € d,
———
istinct x,y € G.
Then (G° on G°. Note that the zero
of the hyperring (GO, 4, - ind the inverselof @he G in (GO, +) is z itself.

Also, (G° +,+) is not

Example 2.1.2. ([6]) 2 such that 0 is an element of
A. Define a hyperoperation on - on A by
\ "
T+y="1 0 al%ﬁ,yeA\{O},
ﬂ —0‘4 forallxyeA
Then (4, +,-)%s an AC semlhyperrmg with zero 0 but it is nelther a hyperring

nor s “Wﬂ‘ﬂﬁﬂim URIANYAY

Front Example 2.1.1 and Example 2.1.2, we see that hyperrings generalize rings

and semihyperrings with zero generalize both semirings with zero and hyperrings.

A semigroup S is said to admit a ring [hyperring] structure if (S°, +,+) is aring
[hyperring] for some operation [hyperoperation] + on S° where - is the operation
on S°. Semigroups admitting the structure of an AC semihyperring [AC semiring]

with zero are defined analogously. Observe that if S is a trivial semigroup, then



SY = (Zsy,-) where - is the multiplication on Z,, so S admits a ring structure.
Also, every semigroup without zero admits the structure of a semiring with zero

as shown.

Example 2.1.3. Let S be a semigroup without zero. Define an operation + on

SO by

Then (S, +) is obvio aving 0 as its identity. Since xy # 0
for all x,y € S, we
operation +. Hence

commutative if |S| >

2.2 Basic proposi

For a vector space-

rﬁsformation} ,
—1{&6 Lg(V) | « ig an isomorphism}.

fug) 13 (ERAT-IR1 1 M—

Then Lg(V') i§ja semigroup un composmlon 0

G AR ey Wi 15 o

under the usual addition of linear transformation. The image of v under a €

Lg(V) is written by va. For a € Lg(V), let Ker o, Dom « and Im « denote the

kernel, the domain and the image of «, respectively. If « is a function or linear

transformation, the notation —a denotes the inverse under the usual addition and
! denotes the inverse under a composition if they exist. For A C V', let (A)

stand for the subspace of V' spanned by A. The following three propositions are



simple facts of vector spaces and linear transformations which will be used. The

proofs are routine and elementary and they will be omitted.

Proposition 2.2.1. Let B be a basis of V. If u and w are distinct elements of

B, then {u+w} U (B~ {w}) is also a basis of V.

'/ﬂ/

basis of

Proposition 2.2.2. Le and ¢:B~A—V aone-to-

one map such that ( it subset of V. If o € Lg(V')

is defined by

(1) {v+(A4) |v v———————ﬁﬁ-l V/(A) and

sa

(ii) dimg(V/(A)) EB N AI

wonf] U me 1 —
R LN LR AL )

W. We can see that Lg(V,W) C Lg(V). Moreover, Lr(V,W) admits
a ring structure under the usual addition of linear transformations. For o €
Lr(V,W), the notation «y, is a linear transformation in Lz(W) such that for

every w € W, oy, maps w into wa. Moreover, we have

Proposition 2.2.4. If o, f € Lg(V,W), then «ay, B, = (af)),,



Since our works relate to cardinal numbers, some facts and notations about
cardinal numbers will be used. Let k& be a cardinal number. We denote &’ be the

successor of k. If k is a finite cardinal number, then &' = k + 1. For a set X, if

T C X, we then have | X| = |T|+ | X \T].

Proposition 2.2.5. ([7] page 1 cardinal numbers k and X\ such that

at least one of them is an i r, K+ A = max{k,\}.

Proposition 2.2.6. ‘ RV “imfinite and dimg V' > dimg W.

Then dimg(V/W) =

Proof. Let B be a>b ' _x.\ extended from B. By

Proposition 2.2.3,
limg(V/W).

Since dimp V' is infinite and d = |B| + |B’ \ B|, at least one of

et e

e cardinal nurBem W Phoposition 2.2.5, dimp V =
7
e dimp(V/W) = dimg V.

U

|B| and |B’ \ B| ig-an infinit

v,
max{|B|,|B' ~ B} Sinece

J
s B U NN TWEAR T, vt
MY LR ot ) b)Y

o =

0 w u v
vEB~(B1U{u,w})

means that « is a linear transformation on a vector space V' having B as a basis,



By C B, u and w are distinct elements of B ~. B; and

;

0 if’UEBl,

w if v =u,

if By =@, then

For any cardinal

KR((V7W)’]€) = =i _
CIR(V.W).k) = {a ¢ iV /T o) > kY,

Ir(V, W), k) Im o < k} where k < dimg W.

Then the zero mapon V' or we ma v write Vg belongs to all of the above three

subsets of Lg(V, W) =5ine af D Ker o and Im a8 C

Im £, we conclude thaJ; all of Kr((V, W&k),CIR((V, W), k) and Ix((V,W),k)

are subsemigﬂpuﬁ@w & Mbeoger} i 269 $icment is the zero map,

IfvV=w, theﬂ we denote Kp((V, W),k CIAVW ) and Jr((V, W), k) by

) P T Bl B e B 5 e

then for a e Lr(V),
dimg Ker o« = dimg(V/Im o) = dimg V' — dimg Im «.

Since Lg(V,W) C Lgr(V), we have

Proposition 2.2.7. If dimgV is finite and k is a cardinal number such that

kE < dimg V', then the following statements hold.
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(1) Kr((V,W), k) = CIa((V,W), k).

(i) Kr((V,W), k) = CIg((V,W), k) = Ip((V,W),dimg V — k) if dimgp V —k <
dlmRW

However, these are not generally true if dimg W is infinite. The following

proposition also shows that th. s Kg( ), CIr((V,W), k) and

Ir((V,W), k) should be c 1f dlmR W is infinite.

Proposition 2.2.8. a cardmal number with k <

dimg V', then the follo

(i) CIgr((V,W),1) number | with dimg(V/W)

<! <dimpV.

K |), 1) # CIg((V,W), k) for every

Proof. Let B be a V s of Woand O 4 bas \‘ tended from B. Since
dimg W is infinite, ﬂe ca - 133@1‘5 subsets of B such that

|B1| = |By| = |B| and d3U By = B. Then there exists a bijection ¢ : By — B.

o e S ANV INE NI
q vgweqm AN NENaY

vl
veEB] veB

Then by Proposition 2.2.2, Ker a = (B’ \ B;) D (Bs). First, we will show that
|B'\ By| =dimg V.
Case 1: dimgV = dimgW. Then dimgW = |By| < |B' \ By| < dimgpV =

dimR w.
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Case 2: dimg V' > dimg W. Since |B’| = |B’ \ Bi| + |B1| and |B| is infinite, by
Proposition 2.2.5, |B’'| = max{|B’'\ By|,|B1|}. By assumption, |B;| = dimp W <
dimpr V' = |B’'|, this implies that |B’ \ B;| = |B'| = dimp V.

Since dimgKer a = |B' \ B| = dimg V', a € Kr((V,W), k). We also have

dimg(V/Im «) = dimg(V/W). This means o ¢ CIg((V,W),1) for every cardinal

‘W 50 (i) is proved.
i /Zédmff(mm 8) = |B'~ By =

definitions that dimpg Im o

number [ with dimg(V/W)

By Proposition 2.2.2 »

dimR V, SO ﬂ € CIR((
= dimp W = dimpgI (V,W), k)~ Ir((V,W),1)
and g € CIg((V,W inal number | < dimp W .

Hence (ii) is proved. O

For a cardinal numb “ditmy Vi we'c (VW) k), CIL(V.W), k)

CI((V, W), k) = Ev € Li( )a k},

" VW?T‘!JB*?‘VTEVJVTTWE]“T?’I‘?“MW

It is easy to prove that they are réspectively subsemigroups ofi K((V, W), k),
ClIg( ﬂwﬁﬂ a }a f‘] ﬁ m 11] mﬂn’a m EJh’]Za} ﬂp which is the
Z€ero element. Observe that if £ < dimg V', then KL(V,W), k) = Kg((V,W), k)
and CIL((V,W),k) = CIgr((V,W), k") where k' is the successor of k. Also, if
0 < k < dimgW, k is a finite cardinal number and k is the predecessor of
k, then I((V,W),k) = Ig((V,W), k). Similar to the previous semigroups, we
let K(V,k),CIL(V, k) and IL(V,k) denote Ki((V,W),k), CI5((V,W),k) and
IL,(V,W), k) when V =W.
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For a € Lg(V), let F(a) ={v € V | va = v}. It is easy to see that F(«) is
a subspace of V. If a € Lr(V, W), then F(a) C W and F(«) is also a subspace

of W. Define

AMp(V,W) ={a € Lg(V,W) | dimg Ker «,, < o0},

AER(V, W) = {«a € | dimp(W/(Im oy, )) < 00},

ALp(V,W) = W/F(a)) < co).

IfV =W, welet AMK (W), AL (VY= AER(V, W) and AlR(V) =
AlIR(V,W).
To show that AMp ) fo " A ubsemigroups of Lg(V, W),

the following facts givens

dimp Ker S,

)< A (W o) + dimg(W/Im §).
_,.f‘-_';.ff_.-"f-’{f..“i“’ , ) 7
By Proposition 2.2, £ O € Lp(V. W) apBd = (f),, and ayy, G, €

X

iy

dimp Ker ( < dimg Ker'a,, + dimpg Ker §,,,,

di W lw ﬂm;ﬂ ﬂﬂ :]nljw/lm Biw)-
Hence%WA’rMﬂ‘ém MR IREIG Bom

Next we will show that Alg(V, W) is also a subsemigroup of Lz(V,W). Let

Lr(W), so we obt '

a,f € Alg(V,W). Then dimg(W/F(a)) and dimg(W/F(3)) are finite. Since
F(a)NF(B) C F(ap), it suffices to show that dimgz(W/(F(a) N F(B))) is finite.
Let By be a basis of F(a)N F(B) and let By C F(a) ~ By and Bs C F((3) \ By
be such that By U By and By U Bs are bases of F/(«) and F(3), respectively. To

show that ByUByU B3 is linearly independent over R, let uy,usg,...,ur € BiUDB,
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and vy, vs,...,v; € B3 be distinct such that
k 1
Zaiui —+ Zb{l)z =0
i=1 i=1

k !
for some ay,as,...,ar, b1,be,...,bp € R. Then Zaiui = —Zbﬂi € Fla)n
i=1 i=1

F(8) = (By). Since By UBs is li independent b; = 0 for all i = 1,2,...,1,

k
Z a;u; = 0. This implies t

iis: 1lineaurly independent. ¢ . : ‘ @Bl U By U B3) be such that
B, UBy,UBsU By is ab to see that { v+ F(a) | v €
B3 U By } and { v + B(P) Ju€i3; Ui ases.of W/F(a) and W/F(B),
respectively. Since dinug( 114 W d)f and ) are finite, so do | B3 U By|
and |By U By|. 2. | Also, we can show that
{0+ (F(@) N F(3) 9B By (F(a) N F(9)) which
implies that dimg(W/(F ( . ¥

Note that, if dimp IV is f_iyr AMRQATV) = ABR(V, V) = AIn(V, W) =

¢

and Alg(V,W) ada 7 1s finite.

Propositionﬁﬂ ﬁ\/@wa MW ET%($W) have no zero ele-

ment if and only of dimp W is infinite.

o) BADIA T UIAD I e i

AMp(V, W), AER(V,W) and AlIg(V,W). Assume that dimpg W is infinite, B is
a basis of W and B’ is a basis of V' extended from B. For each u € B, we define

€ Lp(V,W) by

o (B~ B)U{u} wv

0 v
vEB~{u}
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Then a, € S(V,W) for every u € B. If v € Lr(V,W) is such that fy = v for
every € S(V,W), then for every u € B, uy = u(ayy) =0, so v, = 0. Thus
v ¢ S(V,W). This implies that S(V,W) has no zero if and only if dimg W is

infinite. O

Moreover, when dimg W is i ﬁ e have that AMgr(V, W), AER(V,W)

and Alg(V,W) are distinct

Proposition 2.2.10. If.di , infinite, themn MR(V, W) # AER(V,W),
AMR(V,W) # AlRg(

veB

By Proposition 2.2.2 an‘dgroposwlon 2. 2&’dlmR W/Im o, ) = dimp(W/ (B)) =

0.0 e AR BRAHFWEART 5. e <

AER(V,W) N AMg(V,W). Then'we will show, that o ¢ Alg(V,W). For each
v E Bq w_‘q aﬂlﬁlﬁ m Mm r]:}'m |EJ€,L§§EIJ//F . Since
By is hnearly independent, so does {v+ F(a) | v € By} and we also have |By| =
H{v+ F(a) | v € Bo}| < dimg(W/F(«)). Thus a« € AER(V, W) L Alg(V,W).

Next, we can see that Ker 3, = {0}, so § € AMgr(V,W). By Proposition
2.2.2, Im f,, = (B1). We can conclude that for each v € By, v ¢ F(3). By the
previous proof, we can show that 5 ¢ Alg(V,W). Therefore g € AMg(V,W) \
AlIR(V,W).
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Then the proof is complete. O

By a partial linear transformation of V' into W, we mean a linear transfor-

mation from a subspace of V' into W. Let PLgr(V,W) be the set of all partial

# subspace of V' and

r transformatmn }.

transformations of V' into W, that is

PLR(V7 W) =

Then PLp(V, W) is a semigrox ¢r the compos t1on of linear transformations,

since for a, 3 € PLg(

pendent vectors. ;.__n ' peident vectors vy, va, ..., U,

in V and vectors .V 0w A ‘

ﬂumaﬁ@u"ﬁw&%ﬁ

QR4 a@(ﬂ]‘ﬁ@ﬂd SR ) B o

v = wz for all i € {1,2,...,n}. If U is a subspace of V', let 1y and U, denote
the identity map on U and the zero map which its domain is U, respectively.

Observe that
{0} = {0} and Voo =V} for all « € PLg(V, W).

It follows that if dimp V' > 0, then PLg(V, W) does not have a zero.
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We obviously see that if V.= W, Lgr(V,W) = Lr(V) or we can say that
Lr(V,W) is defined from Lg(V) in order to generalize Lg(V). Similarly, all
the semigroups that we have previously mentioned are defined from semigroups
studied in [4], [1], [3] and [2]. Moreover, we can generalize their results.

In Chapter III, we deal with linear transformtion semigroups with zero. The

purpose is to characterize when the DS Kr(V, W), CIgr(V,W) and
Ir(V,W) admit the stru : i gavith zero. Moreover, the semi-
groups K(V, W), CI ' ) studied in the same matter.

In Chapter IV, we Qs u ~ .;‘ ups without zero. We provide the
sufficient and necessiry ¢onditi ‘.._._ - Vo 1 _ / r(V,W) and Alg(V,W)
to admit the structure offa ‘ ."In addition, necessary con-
ditions for PLg(V, Wi tofadmit s ': re provided.

We can also see fro - that main results shown by

Kemprasit Y. and Chaoprék {4}, [11.7[3] and [2] become our corollaries.

]

X
ﬂ‘UEHﬂEJ'VIiWEI"]ﬂ‘E
’QW'WéNﬂ‘iflJ UAIINYAY



CHAPTER I11

SEMIGROUPS ADMITTING THE STRUCTURE OF A

SEMIHYPERRING WITH ZERO

i,

space @on ring R, W is a subspace

First, we recall that ‘Wx

of V., Lr(V,W) is t

NN

under a composition that £ < dimg V. In this

chapter, we deal wit igroups given in Chapter II

as follow:
Kr((V,W), k)
Kp((V,W), k) = ’ ‘7 dim Rer o > k} where k < dimg V,
CIr((V. W), k)= k},

CIR((V,W), k) k} where k < dimg V,

IR(V,W), k) =4 rlm o < ﬁ where &k < dimp W,

SN <

These sem@oups contain the Zero map. Moreover the zero map is also the

o RRTHRFFEU UANINYA Y

3.1 The semigroups Kr((V,W),k) and K,((V,W),k)

We shall provide some necessary conditions for Kr((V, W), k) to admit the struc-
ture of a semihyperring with zero. Since Kr((V,W), k') = KL((V,W), k) if k' is
the successor of k, we also obtain some necessary conditions for K5((V, W), k) to

admit such a structure.
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Theorem 3.1.1. Let k be a cardinal number with k < dimg V. If Kr((V,W), k)
admits the structure of a semihyperring with zero, then one of the following state-

ments holds.

(i) dimgrV =k and dimgV is finite.

), D, -/Aﬁ_ihyperring with zero. We will

(i) dimg(V/W) > k.

Proof. Assume that (K
prove by contradicti
(dimg V' > k or dimpg

(dimg V' > k and dimp (¥ *)or AN nite and dimg(V/W) < k).

Then either (dimpg( dinh is finite) or (dimgz(V/W) <
k where dimp V is i Y P .,

Case 1 : dimg(V/W) < d impV is finite. Since dimgV is
finite, 0 < dimp V — dimp _ k which implies that dimz W >
dimgpV — k > 0. 'f bl we _can_conch dimp W > 0. Let B be
a basis of W and VB i ince dimg V' is finite and
BCH,

A NN ARG
AN TR

elements wy, wy, ..., w, from B such that B ~ {w,ws,...,w,} # @. Let By =

(B'\ B)U{w;,ws,...,w,}. Then
|B1| = |B/\B|+|{w1)w27"'7wn}| :k_n+n:k,

since dimp V' is finite and (B’ \ B) N {wy,wy, ..., w,} = &. Define
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By v wy B~ A{w:}
o= and f =

0 w w1 0
vEB/'\B1

We can see that dimg Ker v = dimg(B;) =k and Im o = (B'\B;) C (B) =W,

so a € Kr((V,W), k). Since dimg Ker § = dimg(B’ \ {w1}) = dimgV —1 >k

| W . By definitions of o and S,

3}. Next, let y€ea® [ C

and Im = (w;) €W, we ha

which imply that «

Kr((V,W), k). Then us that

By C Im 7.

Consequently, B’ \ 1} CImaUIm g C Im y.

Thus dimgIm v > |B' \ By~ {wi}| = dimg V — (k —1).

Since dimp V' is finite, din dimpgIm v < k — 1. Therefore

) ¢ Kl(V,W), k) contradiction e

Case 2 : dimpg( V/IE < k where dimgV is 1nﬁm We clearly have 0 <
dimgp(V/W) W then by Proposition
2.2.6, dimp ﬂm iﬁm Ejnj:ﬂ n Hence dimp W =
AN I I N TR =
dimg W4 is infinite, we can let B; and B be disjoint subsets of B such that

’B1| = |Bg| = ‘B| and 31UB2 = B. Note that B2 g B/\Bl and Bl g BI\BQ.

Define

B/\Bl v (Y B/\BQ
o= and (=

vEB] vE By
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Then Ker av = (B'\By) D (By) and Im o = (By) € W, imply that dimp Ker o =
|B" . By| > |Bs| = dimgW = dimgV > k. Hence a € Kg((V,W), k). Sim-
ilarly, we have (B;) C (B’ ~\ By) = Ker § and Im § = (By) C W. It fol-
lows that dimgKer § = |B' \ Bs| > |By| = dimgW = dimgV > k. Hence

B e Kr((V,W), k). Tt is easy to see that

vy = ' \ \ every v € Bs.

SolIm v =W and v, : = B’ B}. Claim that Ker ~
C (T). Let y € Ker . Then :':.,.._ 985 + . . .+ WS+ b1ty +boto+. . .+ buty

for some aq,ao, .. 5, € B and t,ts,...,t, €

B’ B. Thus

0=yy ¢

AUUINBNINYIDT s
IRl ey

181 + asSe + ... + Ay Sm = —(bltl + b2t2 + ..+ bntn)'y

S

Consequently,

Yy = —(bltl + bgtz + ...+ bntn)’}/ + bltl + b2t2 + ...+ bntn

== bl(tl — tl")/) + bg(tz — tg")/) + ...+ bn(tn — tn’)/),
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this implies that y € (T'). To show that 7' is linearly independent. Let ay, as, ..., a,

€ R and x1,2o,...,x, be all distinct elements in B’ ~\. B such that

CL1(331 —x17y) + a2($2 — oY)+ . A an(Tn — xn')/) =0.

Then ayz1+aszo+. . .+a,z, = ar(x17y)+as(z2y)+. . . Aa,(x,y) € (B’ BYN(B) =

{0}, hence a1z1+asxs+...+a refore have a; = as = ... = a, = 0.

This shows that T is line 7é y—1yy for distinct elements
z,y € B'\\B. Since = |B'\ B| = dimg(V/W) <

k. This yields a con

Therefore the proof i

The following corol onditions for K%((V, W), k)

to admit the structure ero are obtained directly from

the previous theorem.

Corollary 3.1.2. Let k dimp V. If KR(V,W), k)

admits the structure o one of the following state-

ments holds.

2 dlmRVﬂlﬂkﬁ YN
v W”‘f ﬁ@ﬁ“ﬁﬁiﬁmﬁﬁ s

Proof. Assume that KiL((V,W), k) admits the structure of a semihyperring with
zero. Since k < dimg V', k¥ < dimgV and KL(V.W),k) = Kr((V,W), k).
We have by Theorem 3.1.1 that either dimgr V' is finite and dimgpV — 1 =k or

dimg(V/W) > k' hold. O

Moreover, the necessary conditions of some results mentioned in [4] become

our special cases as follow.



22

Corollary 3.1.3. ([4]) Let k be a cardinal number with k < dimg V. Then

Kr(V, k) admits the structure of a semihyperring with zero if and only if either
(i) dimgV =k and dimg V' s finite or

(i) k=0.

Corollary 3.1.4. ) Let k. mal number with k < dimgpV'. Then
K,L(V. k) admits the str semi ith zero if and only if k+1 =

dimz V' and dlmRVV r
Remark 3.1.5 i

\ f k£ is a cardinal number

\\

cardinal number such t /Y dim R . Since dimpg V is finite,

such that &k < dimg(V . Next, let k1 be a

we have dimg V' — Ky e a basis of W, B’ a basis of V

extended from B and - dimp V — k1. Define

so dimg Ker o« = |Bm B —m = k;. If ks is a cardinal

number such that dimg(V/W) < ki < kp £ dimg V', then o € Kp((V, W), k1) \

v ) S b R 1% BT e

For each cardlnal number [, k stich that k& <gdimg(V/W) andd < dimg(V/W),

Wecarﬂi&l'lﬁﬁﬂim HR1INEIA

LR(V7 W) = KR((Vv W)’ k) = Kﬁ%((‘/a W)? l)
D Kep((V,W),dimg(V/W) + 1) = Kp((V,W),dimg(V/W))

D Ker((V,W),dimg(V/W) +2) = Kp((V,W),dimg(V/W) + 1)

S Kr((V, W), dimgp(V)).
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(ii) Assume that dimg V' is infinite and dimgV > dimg W. Then we have
Kr(V,W), k) = Lg(V,W) = KL((V,W),l) for all cardinal numbers k,! such

that £ < dimpV and | < dimgp V.

(iii) Assume that dimg V' = dimg W is infinite and kq, ko are cardinal numbers

such that ky < ky < dimg V. We will s

w that KR((V, W), ]{31) > KR((‘/, W), kg) .
IB#// extended from B. Since k; <
‘ ﬁt | B1| = k1 and by assumption,

= |B’|. Let ¢ be a bijection

Let B be a basis of W a

dimp V = |B'| = |B|, th

b
so dimp Ker o = | By| 'Fh{;;‘n' k1) N Kr((V,W), ky). This
Ji.r"‘a g ¥/
implies that Kr((V, W), (VW en we can conclude that

A k) WW‘WS‘”Pﬂ‘i
R QLI 99 R 1

By Propos1t10n 2.2.7, Kr((V,W), k) = CIg((V,W), k) for every cardinal number
k with £ < dimgV if V is a finite dimensional vector space. However, it is
also shown in Proposition 2.2.8 that if dimg V' is infinite, then Kg((V,W),k) #
CIr((V,W),l) where k,l are cardinal numbers such that dimg(V/W) < [ <
dimg V' and k < dimg V. Then necessary conditions for CIg((V, W), k) to admit

the structure of a symihyperring with zero can not be obtained from Theorem
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3.1.1, so we also characterize when CIg((V,W), k) admits the structure of a

semihyperring with zero.

Theorem 3.2.1. Let k be a cardinal number with k < dimp V. Then
CIr((V,W), k) admits the structure of a semihyperring with zero if and only if

one of the following statements hol

T ——
(it) dimp(V/W) 27
Proof. To prove su cie

nite. Let a € CIxr((V,W)

dimp(V/W) > k. We shall skt (V1) = CIR((V.W),k). Let a €

ring with zero . SuppOse that (i) and (i ) are false. Then we have 2 cases which

e e SR NBITN 11T

Case 1 : d1m}{V/W < k < dimgV where.dimpV is finite: Then we have

s W L BTN Bldsadiet 1Y B Do e

ture of a semihyperring with zero, a contradiction.

Case 2 : dimg(V/W) < k where dimgV is infinite. We can see form case
2 in the proof of Theorem 3.1.1 that dimzpV = dimg W and there exist sets
By,By C B C B’ CV such that |By| = |Bs| = |B|, B is a basis of W and B’
is a basis of V. Moreover, the following linear transformations from V to W are

recalled,



25

BI\Bl v v BI\B2
o= and (=

0 v v 0

veB) vE B2
Since o € Lg(V,W) and dimg(V/Im ) = dimg(V/(By)) > dimg(V/(B' ~
By)) = |B' (B’ \ By)| = |Bs|] > k. Hence a € CIgx((V,W),k). Similarly,

dimg(V/Im B) = dimg(V/(By)) > dimg(V/(B' \ By)) = |B' ~ (B'\ By)| =

|Bi| > k and Im 8 C W. Henq ((V, W), k). By the same case of the

proof of Theorem 3.1.1, v&;y ‘ . k) such that Im v =W . Then
i i ,‘ oot to v € CIz((V,W), k).

The following cor i v' 2.1.

Corollary 3.2.2. Le _ ﬂ ? < dimgr V. Then

ring with zero if and only if

(i) dimp(V/W) =

Proof. Note that if dimg J4 is finite, thengk! = k+1. Assume that CIL((V, W), k)

i the s SAHAIHEN T2 00> 0
ilﬁmﬂfﬁﬁ‘ ﬁhﬁm;}ﬁ; bﬁtﬁegjs, 2.1liat cither dimp V

Conversely, assume that dimpV — 1 = k and dimg V' is finite. Then k&' =
dimg V', and thus by Theorem 3.2.1, CIxz((V,W), k') admits the structure of a
semihyperring with zero. Since CIL((V,W), k) = CIg((V,W),k’), we have that
CIL((V,W), k) admits the structure of a semihyperring with zero. Next, assume
that dimg(V/W) > k’. Then by Theorem 3.2.1, CIx((V,W), k') admits the

structure of a semihyperring with zero, so does CIL((V.W), k). O
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From the proof of Theorem 3.2.1 and Corollary 3.2.2, we can conclude that nec-
essary conditions of those theorems are CIgx((V,W),k) = Lg(V,W) or {0} and
CIL((V,W),k) = Lr(V,W) or {0}, respectively. Hence the following corollaries

are obtained directly.

Corollary 3.2.3. Let k be er with with k < dimgp V. Then

CIr((V,W), k) admits e if and only if one of the fol-
o —

Corollary 3.2.4. Let ber with with k < dimgpV'. Then

CIL((V,W), k) admits a hype i

-
—
=

tructure if and only if one of the fol-

lowing statements fiold.

ae

(i) dimgV —1 = ﬂm :

Y]

y
(ii) dimRWﬁﬁ Eﬁﬁﬁ lﬁ %lﬁiﬁﬂ p]

In additionﬂf weset V=W ig Theorem 3|I.=2.II 1 and Corolla&f' 3.2.2, then some

s QRIS VB4 6

Corollary 3.2.5. ([4]) Let k be a cardinal number with k < dimg V. Then

CIr(V, k) admits the structure of a semihyperring with zero if and only if either
(i) dimgrV =k and dimg V' is finite or

(i) k=0.
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Corollary 3.2.6. ([4]) Let k be a cardinal number with k < dimg V. Then
CIL(V k) admits the structure of a semihyperring with zero if and only if k+1 =

dimg V' and dimg V' is finite.

Remark 3.2.7. (i) Assume that dimg V is finite. By Proposition 2.2.7, if k is

a cardinal number such that £ < then CIgr((V,W), k) = Kr((V,W), k).

, W), dimp(V/W))

W), dimp(V/W) + 1)

i imp V. Then dimp(V/Im «)
> dimp(V/W) = distly ' Ciwplics that CTa((V, V), k)
=Lr(V,W) = CI%(, W), 1) for all cardinal numbém k,l such that k < dimg V'

< do g T AN YN TNEIN

(ili) Assume that dimp V' = dimp W is mﬁmte If dimg(V W) > k, then
e QIR IR HAFDREINR B ot
<k < almR V. Let B be a basis of W and B’ a basis of V' extended from B.
Since dimr W = dimg V' is infinite and dimg(V/W) < kq, there exists B; C B

such that |B' ~ (B \ By)| =k and |B \ By| = |B|. Define a € Lg(V, W) by

B' N (B\By) v

0 )

veEB~B1



28

so dimg(V/Im o) = |B' (B \ B;)| = k1. Hence if ky is a cardinal number
such that k; < ky < dimg V', then a € CIgr((V,W), k1) ~ CIr((V,W), k) and
CIr((V,W), k1) D CIr((V,W), ky), respectively. Therefore for cardinal numbers

k,l such that dimg(V/W) > k and dimg(V/W) > 1,

Lr(V,W) = CIr((V,W), k) =

> Clal(V. Wyt DIV, W), dime(V/W))

for any cardinal y{“

< dimg V. Contrasting

N
Cﬂ

between this section nd prev10us sectlons in this pter will assure that what

we have menﬂrﬂ ﬂPq %ﬂ W ? Wﬂ{]\ﬂﬁll characterize when

Ir((V, k) dnd Ih( agmlt the structure of a semlhyperrmg with zero.

Theom&:ﬂ A ﬁmmmnmnm 4B B

Ir((V, W), k) admits the structure of a semihyperring with zero if and only if one

of the following statements holds.
(i) k=0.
(i) k =dimgp W.

(111) k is infinite.
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Proof. To prove sufficiency, assume (i), (ii) or (iii) holds. Since Ig((V,W),0) =
{a € Lg(V,W)|dimgIm a < 0} = {0} and Ir((V,W),dimg W) = {a € Lr(V,W)
|dimpIm o < dimgp W} = Lgr(V,W). Therefore if we have (i) or (ii), then
Ir((V,W), k) admits a ring structure. Next, we will show that if £ is an infinite

cardinal number, then (Ig((V,W), k), +,0) is also a ring where + is the usual ad-

osition. Let a, 8 € Ix((V,W), k).

dition of linear transformatio

We know that Im (o + . Thus

Hence Ix((V,W), k).

Conversely, assu 7 'mihyperring with zero. To
show that one of (i), . e contrary that all of them
are false. Then 0 < k i l_ v ;;-‘ I1". e. Let B be a basis of W, B a
basis of V' extended fro Qe hat |By| = k. Note that B is

not empty. Since k < dimg - “thicre exists clement_u € B\ B;. Define

N

o= .
ll u 0
vEB1
e W%VWW ‘ﬁ‘fﬁ Py ocmens
Similarly, Im @ = and dimgIm g = k, smce k > 0. Hence

W‘ﬂ”‘iﬂ”‘rﬂ\?ﬁﬁﬂ UANAINYAY

o =a,3*=p,a8=0and fa=0.

Thus a(a® () = {a} and f(a® () = {5}. Next, let v € a® [ C Ir(V,W), k).

Then ay = a and (v = . Consequently, for every v € By,

vy = (va)y = v(ay) = va = v, and

= (uf)y = u(B7) = uf = u.
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Therefore Im v D (B; U {u}) which implies that dimgIm v > |ByU{u}| =k+1
> k, since k is finite. This contradicts the fact that v € a® 5 C Ig((V,W), k).

Hence the theorem is proved. O

Corollary 3.3.2. Let k be a cardinal number with 0 < k < dimgpW . Then

IL(V,W), k) admits the structur

V mahyperring with zero if and only if one

of the following statements

Therefore the sufﬁ(n y is proved.

o Wﬂﬁﬁﬂﬂ?} S m“;’; R
g w**ra QT AT A e

structure of a semihyperring with zero.

The following corollaries are direct consequences of Theorem 3.3.1 and Corol-

lary 3.3.2.

Corollary 3.3.3. Let k be a cardinal number with k < dimr W . Then
Ir((V,W), k) admit a hyperring [ring] structure if and only if one of the following

statements holds.
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(i) k=0.
(ii) k = dimp W .
(i11) k is infinite.

Corollary 3.3.4. Let k be a cardinal number with 0 < k < dimgpW . Then

(i) k=1.

Apart from two corolfari V. e also obta ) some results mentioned in [4]
n

— =
Ir(V k) admits the_strue Et ng.with _zero if and only if one of

Corollary 3.3.5. ([4]) Let ’:E.’f...:: ber with k < dimg V. Then

the following state = ,E’ ‘

] L

(i) k=0.

i) b = dmmvual'mﬂmwmﬂ‘:
" QW”Tﬂﬂ\ﬂ‘iﬂJ UNIINYAY

Corollary 3.3.6. ([4]) Let k be a cardinal number with 0 < k < dimg V. Then

IL(V k) admits the structure of a semihyperring with zero if and only if either
(i) k=1 or

(i1) k is infinite.
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Remark 3.3.7. Assume that ki, ko are cardinal numbers such that ky < ki <
dimg W. Claim that Ix((V,W), k1) D Ig((V,W),ky). Let B be a basis of W
and B’ a basis of V' extended of B. Since 0 < ky < dimpg W, there exists B; C B

such that |By| = k;. Define a € Li(V,W) by

o & Ip((V.

TR((V, W), ky). If dimp W

is infinite, then

IR((Vv W), ,]‘f"'_ 1 (V. 1 \ = I;%((V7 W)’ 2)

AULINENINYINT
ARIAATAUNNIING A Y



CHAPTER IV

SEMIGROUPS ADMITTING THE STRUCTURE OF

AN AC SEMIFﬁNG WITH ZERO
A

2

—

S o ect%wer a division ring R, W is a

ot of all linear transformations « : V. — W

o

inear transformation semigroups

In this chapter, we reca
subspace of V', Lg(V.
and F(a) ={veV

are considered.

\ |y < OO}7
(W /(Im a|W)) < OO},

ALn(V.W) = (0. Ln{04 17 itag 1/ F(a) < o0}

ae

E  aisa nea@ransformation 1.
For the first z?f ﬁcﬁi %%Sﬂ’ﬂ%’ w ﬂ‘a&fﬂ ﬁ and B’ a basis of V

containing B. “The following notations will be used and fixed.
| ¢ o o/
Nl b e b 1 8 £

where Gr(W) is the set of all isomorphisms on W,

_ v B'\B
1y = .
v 0
v€EB
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If u,w € B are distinct, we define

v w v B'~\B
(u,w)g = and
w ou v 0
v € Bx{u,w}
v v BB
(u — w)B =

v € BN{u}

e AMp(V,W) N AER(V,W) N

@W)MER(V, WYNALR(V, W),

We note here that 1y |,
AIR(V,W) and 1y, (u,

For the proof of main t

are useful.

4.1 The semigr i) and AER(V, W)

We have shown in Propositio _ 7270 osition 2.2.10 that AMg(V, W) and

AER(V,W) are nct semigrou s without zero i is infinite. Otherwise,

i
Y]
C

i
they admit a ring P‘-—l i acterize when AMpg(V, W)

and AER(V,W) admlt the structure of an AC semiring with zero, the following

lemmas are Iﬁu!ﬁjmtwﬁtm we%l ’}ﬂ% is the set of all

isomorphisms V, Lr(V) be ‘she semlgrou&of all linear transformations on

v ) PRI TNV Y ., o s

ac € LR(V) by
v(aa) = a(va)
forall v e V.
Lemma 4.1.1. ([8]) Let a € Lg(V) and assume that that af = fa for all

B € Gr(V). Then there exists a € C(R) such that o = aly where C(R) is the

center of R.
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Lemma 4.1.2. Let o € Lg(V,W) and assume that a8 = [a for all § €

Gr(V,W). Then there exists a € C(R) such that o = aly .

Proof. First we will show that {f,, | 8 € Gr(V,W)} = Gr(W). Obviously,

{Bw | B€ Gr(V,W)} C Gr(W). Let v € Gr(W). Define 7 € Lr(V,W) by

Since {8, | B € G G W) e, B —gal,, for all 3 € GR(W). By

B'\B and g € Gg(V,W).

admits the structure ﬂ a md only if dimg W is finite.

Proof. As was mention(ﬁ( dimg W is finite, then S ﬁﬂi = Lr(V,W) admits
e th t

fqu WL A&V AINEL
R R

on the contrary that dimg W is infinite. Since 0 ¢ S(V,W), so for a,f €

e of an AC semiring

SOV, W),af = 0 implies a = 0 or 3 = 0. Let u,w be distinct elements of B.

Define a € Lg(V, W) by

veB~{u,w}
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Then dimg Ker o, = dimg(u,w) = 2 and dimz(W/Im o, ) = dimp(W/(B ~
{u,w})) = [{u,w}]| = 2. We deduce that o € S(V, W). Tt is clear that (u, w)zo =
a = a(u,w) . Since B(Tw ®Tw) = & B = (Tw @ 1w)B for every 3 € Gr(V,W),
we have by Lemma 4.1.2 that 1y @ 1y = aly for some a € C(R). If a = 0, then

1w @ 1w is the zero map which

tain in S(V,W). Then 1y & 1y =0

.

—

0= (1W @ 1y o= G@F O‘(TW ® (u7 w)B)

and

a contradiction. Then ¢

(TW s> (U:
) iZan
We have by (1) and (2) tha:,; ?

Sl @ (u.w)pla = ul S8 0,

« ARIAINTUNNINYIAY

)p) = u(u, w)B(TW © (u,w)p) = w(ly @ (u, w)p).

e
)
=
S
=
g

By (3), it is obtained that
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Next, we define v € Lg(V, W) by

u,w} v B'\B
[ | 5

u+w v 0
veB~{u,w}

Then Ker v, C (u,w) = Ker o}, and Im o, = (B \ {u,w}) C Im ~,, so

v € S(V,W). Since uy(u,w (u+ w)(u,w)z = v+ w, then

y(u,w)z =7, and hence

v(Iw W)Y = ay (6)
Therefore
2bu + 2cw from (4)
from (5)
from (6)
from (5)

4 V'I
uJ
Since v and w are hnea.;ly independent, 2b = 2c¢ = a # 0. Consequently, char R #

o e L) FHATA G BV — v s

for all § € GRH W), by Lemma 4.1.2, 1W@§61W) =adlwy f&szome a € C(R).

e BB TRHAVIIE IR 10 orin

that S(V W) does not contain the zero map. Then 1y & (—1y) = 0 and so
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Hence —1y = —(u, w), which is a contradiction. This shows that a’ # 0. But

CL’TW = 1W D (—1w)

Corollary 4.1.4. L

admits a ring structu

Moreover, the res an i ~become our special cases as follow.

7
Corollary 4.1.5. ([1]) Le S{Fzpbe Al ) or AER(V). Then S(V) admits
the structure of an AC semz’_’} ) ;&' “and only if dimg V' is finite.

Corollary bhi';-r"——'——“——:—‘—'“:*m 7:@ ). Then S(V) admits a

y
o mBUEINANTNGIN
o R U B AR AN 8 B s

when dﬁnRW is infinite. Moreover, by Proposition 2.2.9, AIx(V, W) does not

sa

ring structure if andﬂtly of dimpV

contain the zero. We shall show that AIr(V,W) admits the structure of an AC
semiring with zero if and only if dimgr W is finite, the following lemma will be

used.

Lemma 4.2.1. Let (AIY(V,W),®,-) be an AC semiring with zero. If dimg W

is infinite, then 1y @ 1y = L.
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Proof. Assume that (AI3(V,W),®,-) is an AC semiring with zero and dimgp W
is infinite. Recall that 1y € AIR(V,W). We then have 1y & 1y € AIS(V,W).
Since B(Iw @ Tw) = (Tw ® Tw)B3 for all B € Ggr(V,W), by Lemma 4.1.2,
there exists a € R such that 1y @ 1y = aly. Suppose on the contrary that

a # 1. It is obtained that F(lW ® ly) = F(alw) = {0}. Hence we have

dimg(W/F (1w @ 1)) = din 1mRW Since dimp W is infinite,

TW @TW ¢ AIR(‘/,W) = 0. Let u,w € W be dis-

Theorem 4.1.3 and we can

tinct elements. Ne

i . Xw
see that dimg(W/F |

Alg(V,W). Note that

a contradiction.

|
Theorem 4.2.2. A)D (V W) admits the structure of an AC semiring with zero if

“”“”l“fdﬁ**ﬁmﬁ‘ifﬂﬂﬂ'wmqﬂ'ﬁ

Proof. If dim is finite, then CAI V 14 (V,W) which admits a ring
Struct%wwgeﬁ ﬂim ’ll/;; g]nEJ ’1@ lﬂure of an AC
semiring with zero. Then there is an operation & on AI%(V,W) such that
(AIY(V,W),&,-) is an AC semiring with zero 0 where - is the operation on
AI%(V,W). To show dimg W is finite, suppose on the contrary that dimp W
is infinite. By Lemma 4.2.1 , Ty & 1y = 1y. For every a € AIY(V, W), if

|, 5 =0, we get

ad®a=ly®ly)a=1lya=a. (1)
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Recall the fact that (u,w)g, (u — w)z € AlR(V,W) for all distinct u,w € B.

Next, let v and w be fixed distinct elements of B. We have

We therefore have fro at (1 S L — )gl = (w — u) B (u — w)g

and (u — w) z[Twd(w — # ' \ w =) 5. Since @ is commutative,

@ (w — u)pl, (3)

b (u — w)pg]  from (2)

vi Xt .‘:" from (1).

T
Let u[ly @ (u—>w)§= au + bw + c;v; for so e a,b,ci,co,...,c, € R and

distinct vy, vﬂ wé@r ﬁwﬂlﬂﬂ i

AR NN S

= u[ly ® (u — w)z](w — u)y from (2)

= (au+bw+ Zcivi)(w —u)p

i=1

= au+ bu + chi
i=1

= (a+bu-+ chi

=1
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which implies that a +b =1 and ¢; =0 for all : =1,2,... n. Consequently,

vy @ (u— w)gl =v if ve B~ {u},
(4)
ully @ (u — w)g] = au+bw where a+0b=1.
By interchanging between u and w, from (4), there are o', € R such that
v[lw & (w — ‘ if ve B~ A{w},
| S (5)
wlly @© :&1 and o' +0 = 1.
[w — ¢
Case1: a#0. Let vl, 9 B ct and let dy, dy,...,d, € R
be such that (dyu + hen from (4),
so dpa = 0. Since a # avic ' ) ic implies that d; = 0 for all
i€{1,2,...,m}, hence K {0}. This shows that
1W & ﬁ?{?ﬂ ne-to-one map. (6)

Since 7 E"

[TweaBP WuewBeaﬂmBea(ww)Z
ﬂuEI’JT]EWﬁWEF‘”Tﬂ

by Proposmon 2.4,

Ul B hT, IHA AN,

( 1W D (u - w)B)|W'

It follows from (6) that (1w @® (u — w)p)|, = lw and for every x € B’ \ B,

2w @ (u = w)p) = (v, w) p(u, w) g © (v, w) y(u = w)p) from (2)

= z(u,w) g (v, w) 5 ® (u — w)p)

=0((w,w)z ® (u— w)g) =0.
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Consequently,

Replace (7) and 1y - Bl u ve get (v — w)p = (w — u)g,

.5'

a contradiction. ;

Case 2 : 0 # 0. Fr J and ging between u and w, we obtain as

case 1 that H‘%ﬂ ;?; y] El VLW Ejﬁqﬂ %s implies by (3) that
CaseQWFNﬂ‘iﬂJ UNIINYIAY

From (4) and (5), we have respectively that

Iw®u—wy=(u—w)yand Iy & (w — u)y = (w— u)g. (8)
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Hence

MB = (w—u)glu—w)y from (2)
= (w—u)y[lw @ (u—w)y from (8)

= MB[TW @ (w— u)g] from (3)

from (8)

from (2)

which is a contradiction. =

Therefore the theore O

Corollary 4.2.3. i if and only if dimg W is

finite.

Moreover, the results pecial cases as follow.

\
Corollary 4.2.4. ([3]) Alr(Vi) admil ructure of an AC semiring with zero

if and only iof dimg V' is

Corollary 4.2.5. !r‘ ‘z'f and only if dimg V' is

fnite. Iﬂ 2

13 The%JJgEJ‘)’wéka gIn7
e ARARNA T UBITIAR B

ture of an AC semiring with zero and the following lemmas will be used.

Lemma 4.3.1. If dimg W > 0 and (PL%(V,W),®,-) is an AC semiring with

zero, then the following statements are satisfied.
(i) There exists a € C(R) ~ {0} such that 1y & (—1w) = alw.

(11) If U is a subspace of W, then Uy @ Uy = U.
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Proof. (i) Since dimg W > 0, so is dimg V. It follows from Chapter II that
PLgr(V,W) is a semigroup without zero. Thus Wy # 0 and a8 = 0 implies o = 0
or 3=0 for all a,3 € PLY(V,W). By assumption, 1y & (—1yw) € PLY(V,W).
Claim that 1y @ (—1w) # 0. Suppose on the contrary that ly & (—1w) = 0.

Consequently,

Wo=Wo®0=W,

© {0}0 = 0@ {0} = {0}0,

which contradicts to hat 1y & (—1w) € PLe(V,W).

Since W()(Wo D {0}0) ave DOIH(IW @ (—1w))=W It
is obtained that a(lw = (lw & (1))« for all a €

Gr(W). By Lemma 4. or some a € C(R). If a = 0,

then Ly & (—1lw) =My and =]

Iﬂ[0}0 {0}oWo = {0}0(1W@(mlw))

ﬂUH?ﬂBWWﬂ‘Wﬁ

= WO{O} Wo,

acomaimmmm URNINYIA Y

(i) Let U be a subspace of W. By (i),
U() ©® Uo Uo(lw S¥ ( )) Uo(alw) U

Therefore the proof is complete. O

Lemma 4.3.2. If dimg W > 0 and (PL%Y(V,W),®,-) is an AC semiring with

zero, then charR = 2.
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Proof. By Lemma 4.3.1, 1y & (—1w) = alw for some a € C(R) \ {0}. Then

0,21W = (alw)(alw)
= (alw)(lw & (—1w))

= (—alw)((—1w) ® 1w)

= . since @ is commutative

so 2a*(ly) = Wy. ,.2a*> = 0. This implies that

charR = 2. 0O
Now, the proof of i 25 aze complete. The following theorem is our

main result

Theorem 4.3.3. If ¢ admits the structure of an AC

(i) dimpW =0 , y . [
V.

ae

(i) dimp W =1 a@ charR=2-" -m

Proof Assurﬂ ﬂ mvwﬁﬂﬁtwﬂﬂﬁ?n AC semiring with

zero. Then thée is an operation ga on PLY V W) such that (PLY(V,W), &, ")
- ARHRATIG AANG VBV B > o
dlmRVﬂ > 0 and charR # 2). By Lemma 4.3.2, dimgW > 0 and charR = 2
are impossible. Therefore dimg W > 1. It is obtained that PLgr(V, W) does not
have a zero and we have linearly independent elements u,w € W. It is clear that
u

u
® € PLY%(V,W). Now, we consider 3 cases as follow.
u w
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Case 1: (u) ® (u) = 0. By Lemma 4.3.1 (ii),
0= ! & ! Wy = ! & ! = ! € PLr(V,W),

u

Since

(030 = 01 o=
a contradiction. » . =¥\ \ A
N, \
e y wi
Case 3: ® @ f _so%e @b \\ ith Dom o # {0 }.

‘#‘-
‘:gg )
7{-‘

N —
AT — ;
R R
thus dim g Dom . < dir — £ {0}, so.Dom a = (u). Also,
T AW hy
¢ o o
o
) /u) ) (u\
\w/  \v)
— (U) ® (U\ since @ is commutative
o) \e)

:a’

]

S
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we have Im o C (u,w). Then there are a,b € R such that ua = au + bw. This

u
implies that a = . Therefore

au + bw

a(u+ w)
we have
(1)
Consequently,
u u w
U+ w o ¥ utw u+tw
w
: from (1)
W u + w

alu
.

AugIngfi§iging
ARIANITURIINYINY

= by Lemma 4.3.2. (2)
0

U
Since u and w are linearly independent, u+w # 0, and so Ker ={0}.
U+ w
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Hence

ooy = | Jowe| © |0

Corollary 4.3.4. If P Vit ing structure, then dimgp W = 0.

Proof. Assume that (PLY :é,‘:]": _ja‘ - g. Suppose on the contrary that

dimg W > 0. By Bleorem 4.3.3, dime W — 1 and 6liar/R — 2. By Lemma 4.3.1

W @W Wo.

Since (PL ﬂ%ﬂﬁl %LEJWIQ%NDEJZ] F19. o contradiction.

G A R R

corollary is obtained directly from Theorem 4.3.3.

Corollary 4.3.5. ([2]) If PLgr(V) admits the structure of an AC semiring with

zero, then either
(i) dimrV =0 or

(1)) dimgV =1 and charR = 2.
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