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CHAPTER I

INTRODUCTION

The multiplicative structure of a ring is given by definition a semigroup with zero.

However, ring theory is a classical subject in mathematics and had been widely

studied before semigroup theory was considered. Because the multiplicative struc-

ture of a ring is a semigroup with zero, it is reasonable to ask which semigroups

joining zero are isomorphic to the multiplicative structure of some ring. If they

do, they are said to admit a ring structure. In 1970, Peinado R.E. [10] gave a brief

survey of semigroups admitting ring structure. Chu D.D. and Shyr H.I. [5] proved

a nice result that the multiplicative semigroup N of natural numbers admits a

ring structure. For various studies in this area, see [12] and [13].

On the other hand, the hyperstructure theory was first known in 1934 by

Marty F. He gave the definition of a hypergroup as a generalization of a group.

Ten years after that, Krasner hyperrings were introduced as a nice generalization

of rings by Krasner M. By the definition of Krasner hyperrings, their multiplica-

tive structures are also semigroups with zero. Semigroups admitting hyperring

structure have been defined in the same way. Besides that, semigroups admitting

other algebraic structures of a semigroup have been defined and studied. Many

researchers from many places have developed this area. The linear transforma-

tion semigroup is one type of semigroups that have been developed and studied

whether they admit some kinds of algebraic structures. We can see in [1], [2],

[3], [4], [9], [11] and [14]. The work on linear transformation semigroups inspired

us to investigate some specific linear transformation semigroups. The semigroups
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we considered are adopted from Kemprasit Y. and Chaopraknoi S. in [1], [2],

[3] and [4]. They studied linear transformation semigroups from a vector space

into itself. Here, we generalize to linear transformation semigroups from a vector

space into its subspace. We then seperate the generalized linear transformation

semigroups into two groups. The first group is linear transformation semigroups

containing a zero. We shall detemine whether or when they admit the structure of

a semihyperring with zero. The other group is linear transformation semigroups

without zero which always admit the structure of a semiring with zero. However,

they need not admit the structure of an additively commutative(AC) semiring

with zero. Our purpose for semigroups in this group is to characterize whether or

when they admit the structure of an additively commutative semiring with zero.

The next chapter will give precise definitions, notations and basic knowledges

which will be used throughout this thesis and also give short brief for Chapter III

and Chapter IV.



CHAPTER II

PRELIMINARIES

2.1 Basic definitions and examples

For any set X , let P (X) denote the power set of X , P ∗(X) = P (X) r {∅} and

the notation |X| means the cardinality of X .

A hyperoperation on a nonempty set H is a mapping of H × H into P ∗(H).

A hypergroupoid is a system (H, ◦) consisting of a nonempty set H and a hyper-

operation ◦ on H . Let (H, ◦) be a hypergroupoid. For nonempty subsets A and

B of H , let

A ◦ B =
⋃

a ∈ A
b ∈ B

(a ◦ b),

A ◦x = A ◦ {x} and x ◦A = {x} ◦A for all x ∈ H. We call (H, ◦) a commutative

hypergroupoid if and only if x ◦ y = y ◦ x for all x, y ∈ H. An element e of H is

called an identity of (H, ◦) if x ∈ (x ◦ e) ∩ (e ◦ x) for all x ∈ H. An identity e of

(H, ◦) is called the scalar identity if (x ◦ e) ∩ (e ◦ x) = {x} for all x ∈ H. Then

H has at most one scalar identity.

A semihypergroup is a hypergroupoid (H, ◦) such that (x ◦ y) ◦ z = x ◦ (y ◦ z)

for all x, y, z ∈ H, that is,

⋃

t ∈x ◦ y

t ◦ z =
⋃

t ∈y ◦ z

x ◦ t for all x, y, z ∈ H.

A hypergroup is a semihypergroup (H, ◦) such that H ◦ x = x ◦ H = H for all

x ∈ H. For x, y in a hypergroup (H, ◦), x is called an inverse of y if there exists

an identity e of H such that e ∈ (x ◦ y) ∩ (y ◦ x). A hypergroup (H, ◦) is called
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regular if every element of H has an inverse in H . A regular hypergroup (H, ◦)

is said to be reversible if for x, y, z ∈ H, x ∈ y ◦ z implies z ∈ u ◦ x and y ∈ x ◦ v

for some inverse u of y and some inverse v of z .

A canonical hypergroup is a hypergroup (H, ◦) such that

(i) (H, ◦) is commutative,

(ii) (H, ◦) has the scalar identity,

(iii) every element of H has a unique inverse in H and

(iv) (H, ◦) is reversible.

A triple (A, +, ·) is called a semihyperring [semiring ] if

(i) (A, +) is a semihypergroup [semigroup],

(ii) (A, ·) is a semigroup and

(iii) the operation · is distributive over the hyperoperation [operation] +.

A semihyperring [semiring] (A, +, ·) is said to be additively commutative if

x+y = y+x for all x, y ∈ A. For this case, we call (A, +, ·) an AC semihyperring

[AC semiring ]. An element 0 of a semihyperring [semiring] (A, +, ·) is called a

zero of (A, +, ·) if x + 0 = 0 + x = {x} [x ] and x · 0 = 0 · x = 0 for all x ∈ A.

A (Krasner) hyperring is a system (A, +, ·) where

(i) (A, +) is a canonical hypergroup,

(ii) (A, ·) is a semigroup with zero 0 where 0 is the scalar identity of (A, +) and

(iii) the operation · is distributive over the hyperoperation +.

We can see by the definitions that every ring is a hyperring and every hyperring

and every AC semiring with zero are AC semihyperrings with zero.

For a semigroup (S, ·), the semigroup S0 is defined to be S if S has a zero

and S contains more than one element, otherwise, let S0 be the semigroup S

with a zero 0 adjoined, that is, S0 = (S ∪ {0}, ◦) where 0 /∈ S, 0 ◦ x = x ◦ 0 = 0

for all x ∈ S ∪ {0} and x ◦ y = x · y for all x, y ∈ S. Note that if |S| = 1, then
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S0 is a semigroup of two elements and S0 ∼= (Z2, ·). Also, if G is a group, then

G0 = (G ∪ {0}, ◦) is defined as above.

Example 2.1.1. ([6] and [11]) Let G be a group. Define a hyperoperation + on

G0 by

x + 0 = 0 + x = {x} for all x ∈ G0,

x + x = G0
r {x} for all x ∈ G,

x + y = {x, y} for all distinct x, y ∈ G.

Then (G0, +, ·) is a hyperring where · is the operation on G0. Note that the zero

of the hyperring (G0, +, ·) is 0 and the inverse of x ∈ G in (G0, +) is x itself.

Also, (G0, +, ·) is not a ring if |G| > 1.

Example 2.1.2. ([6]) Let A be a set with |A| > 2 such that 0 is an element of

A . Define a hyperoperation + and an operation · on A by

x + 0 = 0 + x = {x} for all x ∈ A,

x + y = A for all x, y ∈ A r {0},

x · y = 0 for all x, y ∈ A.

Then (A, +, ·) is an AC semihyperring with zero 0 but it is neither a hyperring

nor semiring with zero.

From Example 2.1.1 and Example 2.1.2, we see that hyperrings generalize rings

and semihyperrings with zero generalize both semirings with zero and hyperrings.

A semigroup S is said to admit a ring [hyperring ] structure if (S0, +, ·) is a ring

[hyperring] for some operation [hyperoperation] + on S0 where · is the operation

on S0. Semigroups admitting the structure of an AC semihyperring [AC semiring ]

with zero are defined analogously. Observe that if S is a trivial semigroup, then
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S0 ∼= (Z2, ·) where · is the multiplication on Z2 , so S admits a ring structure.

Also, every semigroup without zero admits the structure of a semiring with zero

as shown.

Example 2.1.3. Let S be a semigroup without zero. Define an operation + on

S0 by

x + 0 = 0 + x = x if x ∈ S0,

x + y = x if x, y ∈ S.

Then (S0, +) is obviously a semigroup having 0 as its identity. Since xy 6= 0

for all x, y ∈ S , we deduce that the multiplication · of S0 distributes over the

operation +. Hence (S0, +, ·) is a semiring with zero, but it is not additively

commutative if |S| > 1.

2.2 Basic propositions and notations

For a vector space V over a division ring R , let

LR(V ) = {α : V → V | α is a linear transformation},

GR(V ) = {α ∈ LR(V ) | α is an isomorphism}.

Then LR(V ) is a semigroup under the composition of all linear transformations

and GR(V ) is the unit group of LR(V ). Moreover, LR(V ) admits a ring structure

under the usual addition of linear transformation. The image of v under α ∈

LR(V ) is written by vα. For α ∈ LR(V ), let Ker α , Dom α and Im α denote the

kernel, the domain and the image of α , respectively. If α is a function or linear

transformation, the notation −α denotes the inverse under the usual addition and

α−1 denotes the inverse under a composition if they exist. For A ⊆ V , let 〈A〉

stand for the subspace of V spanned by A . The following three propositions are
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simple facts of vector spaces and linear transformations which will be used. The

proofs are routine and elementary and they will be omitted.

Proposition 2.2.1. Let B be a basis of V . If u and w are distinct elements of

B , then {u + w} ∪ (B r {w}) is also a basis of V .

Proposition 2.2.2. Let B be a basis of V,A ⊆ B and ϕ : B r A → V a one-to-

one map such that (B rA)ϕ is a linearly independent subset of V . If α ∈ LR(V )

is defined by

vα =











0 if v ∈ A,

vϕ if v ∈ B r A,

then Ker α = 〈A〉 and Im α = 〈B r A〉ϕ.

Proposition 2.2.3. Let B be a basis of V and A ⊆ B. Then

(i) {v + 〈A〉 | v ∈ B r A} is a basis of the quotient space V/〈A〉 and

(ii) dimR(V/〈A〉) = |B r A|.

In this thesis, let V be a vector space over a division ring R , W a subspace of V

and LR(V,W ) the semigroup under the composition of all linear transformations

α : V → W. We can see that LR(V,W ) ⊆ LR(V ). Moreover, LR(V,W ) admits

a ring structure under the usual addition of linear transformations. For α ∈

LR(V,W ), the notation α|W is a linear transformation in LR(W ) such that for

every w ∈ W , α|W maps w into wα . Moreover, we have

Proposition 2.2.4. If α, β ∈ LR(V,W ), then α|W β|W = (αβ)|W
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Since our works relate to cardinal numbers, some facts and notations about

cardinal numbers will be used. Let k be a cardinal number. We denote k′ be the

successor of k . If k is a finite cardinal number, then k′ = k + 1. For a set X , if

T ⊆ X , we then have |X| = |T | + |X r T | .

Proposition 2.2.5. ([7] page 145) For any cardinal numbers κ and λ such that

at least one of them is an infinite cardinal number, κ + λ = max{κ, λ}.

Proposition 2.2.6. Assume that dimR V is infinite and dimR V > dimR W .

Then dimR(V/W ) = dimR V .

Proof. Let B be a basis of W and B′ a basis of V extended from B . By

Proposition 2.2.3,

|B′
r B| = dimR(〈B′〉 / 〈B〉) = dimR(V/W ).

Since dimR V is infinite and dimR V = |B′| = |B| + |B′
r B| , at least one of

|B| and |B′
r B| is an infinite cardinal number. By Proposition 2.2.5, dimR V =

max{|B|, |B′
r B|} . Since dimR V > dimR W , we have dimR(V/W ) = dimR V .

Since every linear transformation can be defined on its basis, for convenience,

we may write α ∈ LR(V ) by using a blanket notation as follows,

α =







B1 u w v

0 w u v







v∈Br(B1∪{u,w})

means that α is a linear transformation on a vector space V having B as a basis,
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B1 ⊆ B , u and w are distinct elements of B r B1 and

vα =











































0 if v ∈ B1,

w if v = u,

u if v = w,

v if v ∈ B r (B1 ∪ {u,w}),

if B1 = ∅ , then

vα =



























w if v = u,

u if v = w,

v if v ∈ B r {u,w}.

For any cardinal number k with k ≤ dimR V, let

KR((V,W ), k) = {α ∈ LR(V,W ) | dimR Ker α ≥ k},

CIR((V,W ), k) = {α ∈ LR(V,W ) | dimR(V/Im α) ≥ k},

IR((V,W ), k) = {α ∈ LR(V,W ) | dimR Im α ≤ k} where k ≤ dimR W.

Then the zero map on V or we may write V0 belongs to all of the above three

subsets of LR(V,W ). Since for α, β ∈ LR(V,W ), Ker αβ ⊇ Ker α and Im αβ ⊆

Im β, we conclude that all of KR((V,W ), k), CIR((V,W ), k) and IR((V,W ), k)

are subsemigroups of LR(V,W ). Moreover, their zero element is the zero map.

If V = W , then we denote KR((V,W ), k), CIR((V,W ), k) and IR((V,W ), k) by

KR(V, k), CIR(V, k) and IR(V, k), respectively. We know that if dimR V is finite,

then for α ∈ LR(V ),

dimR Ker α = dimR(V/Im α) = dimR V − dimR Im α.

Since LR(V,W ) ⊆ LR(V ), we have

Proposition 2.2.7. If dimR V is finite and k is a cardinal number such that

k ≤ dimR V , then the following statements hold.
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(i) KR((V,W ), k) = CIR((V,W ), k).

(ii) KR((V,W ), k) = CIR((V,W ), k) = IR((V,W ), dimR V −k) if dimR V −k ≤

dimR W .

However, these are not generally true if dimR W is infinite. The following

proposition also shows that the semigroups KR((V,W ), k), CIR((V,W ), k) and

IR((V,W ), k) should be considered independently if dimR W is infinite.

Proposition 2.2.8. If dimR W is infinite and k is a cardinal number with k ≤

dimR V , then the following statements hold.

(i) CIR((V,W ), l) 6= KR((V,W ), k) for every cardinal number l with dimR(V/W )

< l ≤ dimR V.

(ii) IR((V,W ), l) 6= KR((V,W ), k) and IR((V,W ), l) 6= CIR((V,W ), k) for every

cardinal number l with l < dimR W.

Proof. Let B be a basis of W and B′ a basis of V extended from B . Since

dimR W is infinite, we can let B1 and B2 be disjoint subsets of B such that

|B1| = |B2| = |B| and B1 ∪ B2 = B . Then there exists a bijection ϕ : B1 → B .

Define α, β ∈ LR(V,W ) by

α =







B′
r B1 v

0 vϕ







v∈B1

and β =







B′
r B v

0 vϕ−1







v∈B

.

Then by Proposition 2.2.2, Ker α = 〈B′
r B1〉 ⊇ 〈B2〉 . First, we will show that

|B′
r B1| = dimR V .

Case 1: dimR V = dimR W . Then dimR W = |B2| ≤ |B′
r B1| ≤ dimR V =

dimR W .
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Case 2: dimR V > dimR W . Since |B′| = |B′
r B1|+ |B1| and |B1| is infinite, by

Proposition 2.2.5, |B′| = max{|B′
rB1|, |B1|} . By assumption, |B1| = dimR W <

dimR V = |B′| , this implies that |B′
r B1| = |B′| = dimR V .

Since dimRKer α = |B′
r B1| = dimR V , α ∈ KR((V,W ), k). We also have

dimR(V/Im α) = dimR(V/W ). This means α /∈ CIR((V,W ), l) for every cardinal

number l with dimR(V/W ) < l ≤ dimR V, so (i) is proved.

By Proposition 2.2.2 and Proposition 2.2.3, dimR(V/Im β) = |B′
r B1| =

dimR V , so β ∈ CIR((V,W ), k). It is obvious from the definitions that dimR Im α

= dimR W = dimR Im β . We therefore have α ∈ KR((V,W ), k) r IR((V,W ), l)

and β ∈ CIR((V,W ), k) r IR((V,W ), l) for every cardinal number l < dimR W .

Hence (ii) is proved.

For a cardinal number k < dimR V , we define K ′
R((V,W ), k), CI ′

R((V,W ), k)

and I ′
R((V,W ), k) which are subsets of KR((V,W ), k), CIR((V,W ), k) and

IR((V,W ), k) respectively, as follow :

K ′
R((V,W ), k) = {α ∈ LR(V,W ) | dimR Ker α > k},

CI ′
R((V,W ), k) = {α ∈ LR(V,W ) | dimR(V/Im α) > k},

I ′
R((V,W ), k) = {α ∈ LR(V,W ) | dimR Im α < k} where 0 < k ≤ dimR W.

It is easy to prove that they are respectively subsemigroups of KR((V,W ), k),

CIR((V,W ), k) and IR((V,W ), k). All of them contain the zero map which is the

zero element. Observe that if k < dimR V , then K ′
R((V,W ), k) = KR((V,W ), k′)

and CI ′
R((V,W ), k) = CIR((V,W ), k′) where k′ is the successor of k . Also, if

0 < k ≤ dimR W, k is a finite cardinal number and k̃ is the predecessor of

k , then I ′
R((V,W ), k) = IR((V,W ), k̃). Similar to the previous semigroups, we

let K ′
R(V, k), CI ′

R(V, k) and I ′
R(V, k) denote K ′

R((V,W ), k), CI ′
R((V,W ), k) and

I ′
R((V,W ), k) when V = W .
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For α ∈ LR(V ), let F (α) = {v ∈ V | vα = v} . It is easy to see that F (α) is

a subspace of V . If α ∈ LR(V,W ), then F (α) ⊆ W and F (α) is also a subspace

of W . Define

AMR(V,W ) = {α ∈ LR(V,W ) | dimR Ker α|W < ∞},

AER(V,W ) = {α ∈ LR(V,W ) | dimR(W/(Im α|W )) < ∞},

AIR(V,W ) = {α ∈ LR(V,W ) | dimR(W/F (α)) < ∞}.

If V = W , we let AMR(V ) = AMR(V,W ), AER(V ) = AER(V,W ) and AIR(V ) =

AIR(V,W ).

To show that AMR(V,W ) and AER(V,W ) are subsemigroups of LR(V,W ),

the following facts given in [14] will be used. For all α, β ∈ LR(W ),

dimR Ker αβ ≤ dimR Ker α + dimR Ker β,

dimR(W/Im αβ) ≤ dimR(W/Im α) + dimR(W/Im β).

By Proposition 2.2.4, for all α, β ∈ LR(V,W ), α|W β|W = (αβ)|W and α|W , β|W ∈

LR(W ), so we obtain that

dimR Ker (αβ)|W ≤ dimR Ker α|W + dimR Ker β|W ,

dimR(W/Im (αβ)|W ) ≤ dimR(W/Im α|W ) + dimR(W/Im β|W ).

Hence both AMR(V,W ) and AER(V,W ) are subsemigroups of LR(V,W ).

Next, we will show that AIR(V,W ) is also a subsemigroup of LR(V,W ). Let

α, β ∈ AIR(V,W ). Then dimR(W/F (α)) and dimR(W/F (β)) are finite. Since

F (α) ∩ F (β) ⊆ F (αβ), it suffices to show that dimR(W/(F (α) ∩ F (β))) is finite.

Let B1 be a basis of F (α) ∩ F (β) and let B2 ⊆ F (α) r B1 and B3 ⊆ F (β) r B1

be such that B1 ∪B2 and B1 ∪B3 are bases of F (α) and F (β), respectively. To

show that B1∪B2∪B3 is linearly independent over R , let u1, u2, . . . , uk ∈ B1∪B2
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and v1, v2, . . . , vl ∈ B3 be distinct such that

k
∑

i=1

aiui +
l

∑

i=1

bivi = 0

for some a1, a2, . . . , ak, b1, b2, . . . , bl ∈ R. Then
k

∑

i=1

aiui = −

l
∑

i=1

bivi ∈ F (α) ∩

F (β) = 〈B1〉. Since B1 ∪ B3 is linearly independent bi = 0 for all i = 1, 2, . . . , l ,
k

∑

i=1

aiui = 0. This implies that ai = 0 for all i = 1, 2, . . . , k . Hence B1 ∪ B2 ∪ B3

is linearly independent over R . Let B4 ⊆ W r (B1 ∪ B2 ∪ B3) be such that

B1 ∪ B2 ∪ B3 ∪ B4 is a basis of W . It is easy to see that { v + F (α) | v ∈

B3 ∪ B4 } and { v + F (β) | v ∈B2 ∪ B4 } are bases of W/F (α) and W/F (β),

respectively. Since dimR(W/F (α)) and dimR(W/F (β)) are finite, so do |B3∪B4|

and |B2 ∪ B4| . Therefore |B2 ∪ B3 ∪ B4| is finite. Also, we can show that

{ v + (F (α) ∩ F (β)) | v ∈ B2 ∪ B3 ∪ B4 } is a basis of W/(F (α) ∩ F (β)) which

implies that dimR(W/(F (α) ∩ F (β))) is finite.

Note that, if dimR W is finite, then AMR(V,W ) = AER(V,W ) = AIR(V,W ) =

LR(V,W ) which has the zero element. It follows that AMR(V,W ), AER(V,W )

and AIR(V,W ) admit a ring structure when dimR W is finite.

Proposition 2.2.9. AMR(V,W ), AER(V,W ) and AIR(V,W ) have no zero ele-

ment if and only if dimR W is infinite.

Proof. It remains to show the converse. Let S(V,W ) be one of the semigroups

AMR(V,W ), AER(V,W ) and AIR(V,W ). Assume that dimR W is infinite, B is

a basis of W and B′ is a basis of V extended from B . For each u ∈ B , we define

αu ∈ LR(V,W ) by

αu =







(B′
r B) ∪ {u} v

0 v







v∈Br{u}

.
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Then αu ∈ S(V,W ) for every u ∈ B . If γ ∈ LR(V,W ) is such that βγ = γ for

every β ∈ S(V,W ), then for every u ∈ B , uγ = u(αuγ) = 0, so γ|W = 0. Thus

γ /∈ S(V,W ). This implies that S(V,W ) has no zero if and only if dimR W is

infinite.

Moreover, when dimR W is infinite we have that AMR(V,W ), AER(V,W )

and AIR(V,W ) are distinct semigroups.

Proposition 2.2.10. If dimR W is infinite, then AMR(V,W ) 6= AER(V,W ),

AMR(V,W ) 6= AIR(V,W ) and AER(V,W ) 6= AIR(V,W ).

Proof. Let B be a basis of W and B′ a basis of V extended from B . Since

dimR W is infinite, we can let B1 and B2 be disjoint subsets of B such that

|B1| = |B2| = |B| and B1 ∪ B2 = B . Then there exists a bijection ϕ : B1 → B .

Define α, β ∈ LR(V,W ) by

α =







B′
r B1 v

0 vϕ







v∈B1

and β =







B′
r B v

0 vϕ−1







v∈B

.

By Proposition 2.2.2 and Proposition 2.2.3, dimR(W/Im α|W ) = dimR(W/ 〈B〉) =

0, so α ∈ AER(V,W ). By such propositions, Ker α|W = 〈B2〉 . Hence α ∈

AER(V,W ) r AMR(V,W ). Then we will show that α /∈ AIR(V,W ). For each

v ∈ B2, v /∈ F (α), this implies that F (α) /∈ {v+F (α) | v ∈ B2} ⊆ W/F (α). Since

B2 is linearly independent, so does {v + F (α) | v ∈ B2} and we also have |B2| =

|{v + F (α) | v ∈ B2}| ≤ dimR(W/F (α)). Thus α ∈ AER(V,W ) r AIR(V,W ).

Next, we can see that Ker β|W = {0} , so β ∈ AMR(V,W ). By Proposition

2.2.2, Im β|W = 〈B1〉 . We can conclude that for each v ∈ B2, v /∈ F (β). By the

previous proof, we can show that β /∈ AIR(V,W ). Therefore β ∈ AMR(V,W ) r

AIR(V,W ).
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Then the proof is complete.

By a partial linear transformation of V into W , we mean a linear transfor-

mation from a subspace of V into W . Let PLR(V,W ) be the set of all partial

transformations of V into W , that is

PLR(V,W ) = {α : U → W | U is a subspace of V and

α is a linear transformation }.

Then PLR(V,W ) is a semigroup under the composition of linear transformations,

since for α, β ∈ PLR(V,W ),

Dom αβ = {v ∈ Dom α | vα ∈ Dom β},

v(αβ) = (vα)β for all v ∈ Dom αβ.

In addition, the notation PLR(V ) means PLR(V,W ) if V = W .

In this thesis, elements of PLR(V,W ) are usually written from linearly inde-

pendent vectors. Then we denote, for linearly independent vectors v1, v2, . . . , vn

in V and vectors w1, w2, . . . , wn in W , the notation

α =







v1 v2 . . . vn

w1 w2 . . . wn







means the linear transformation α from the subspace 〈v1, v2, . . . , vn〉 into W and

viα = wi for all i ∈ {1, 2, . . . , n} . If U is a subspace of V , let 1U and U0 denote

the identity map on U and the zero map which its domain is U , respectively.

Observe that

{0}0α = {0}0 and V0α = V0 for all α ∈ PLR(V,W ).

It follows that if dimR V > 0, then PLR(V,W ) does not have a zero.
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We obviously see that if V = W , LR(V,W ) = LR(V ) or we can say that

LR(V,W ) is defined from LR(V ) in order to generalize LR(V ). Similarly, all

the semigroups that we have previously mentioned are defined from semigroups

studied in [4], [1], [3] and [2]. Moreover, we can generalize their results.

In Chapter III, we deal with linear transformtion semigroups with zero. The

purpose is to characterize when the semigroups KR(V,W ), CIR(V,W ) and

IR(V,W ) admit the structure of a semihyperring with zero. Moreover, the semi-

groups K ′
R(V,W ), CI ′

R(V,W ) and I ′
R(V,W ) are also studied in the same matter.

In Chapter IV, we intend to deal with semigroups without zero. We provide the

sufficient and necessary conditions for AMR(V,W ), AER(V,W ) and AIR(V,W )

to admit the structure of an AC semiring with zero. In addition, necessary con-

ditions for PLR(V,W ) to admit such the structure are provided.

We can also see from Chapter III and Chapter IV that main results shown by

Kemprasit Y. and Chaopraknoi S. in [4], [1], [3] and [2] become our corollaries.



CHAPTER III

SEMIGROUPS ADMITTING THE STRUCTURE OF A

SEMIHYPERRING WITH ZERO

First, we recall that V is a vector space over a division ring R , W is a subspace

of V , LR(V,W ) is the semigroup of all linear transformations from V into W

under a composition and k is a cardinal number such that k ≤ dimR V . In this

chapter, we deal with some linear transformation semigroups given in Chapter II

as follow:

KR((V,W ), k) = {α ∈ LR(V,W ) | dimR Ker α ≥ k},

K ′
R((V,W ), k) = {α ∈ LR(V,W ) | dimR Ker α > k} where k < dimR V,

CIR((V,W ), k) = {α ∈ LR(V,W ) | dimR(V/Im α) ≥ k},

CI ′
R((V,W ), k) = {α ∈ LR(V,W ) | dimR(V/Im α) > k} where k < dimR V,

IR((V,W ), k) = {α ∈ LR(V,W ) | dimR Im α ≤ k} where k ≤ dimR W,

I ′
R((V,W ), k) = {α ∈ LR(V,W ) | dimR Im α < k} where 0 < k ≤ dimR W.

These semigroups contain the zero map. Moreover, the zero map is also the

zero element of each semigroup.

3.1 The semigroups KR((V, W ), k) and K ′
R
((V, W ), k)

We shall provide some necessary conditions for KR((V,W ), k) to admit the struc-

ture of a semihyperring with zero. Since KR((V,W ), k′) = K ′
R((V,W ), k) if k′ is

the successor of k , we also obtain some necessary conditions for K ′
R((V,W ), k) to

admit such a structure.



18

Theorem 3.1.1. Let k be a cardinal number with k ≤ dimR V . If KR((V,W ), k)

admits the structure of a semihyperring with zero, then one of the following state-

ments holds.

(i) dimR V = k and dimR V is finite.

(ii) dimR(V/W ) ≥ k .

Proof. Assume that (K0
R((V,W ), k),⊕, ·) is a semihyperring with zero. We will

prove by contradiction. Then suppose that (i) and (ii) are false, so we have

(dimR V > k or dimR V is infinite) and (dimR(V/W ) < k ). These equivalent to

(dimR V > k and dimR(V/W ) < k ) or (dimR V is infinite and dimR(V/W ) < k ).

Then either (dimR(V/W ) < k < dimR V where dimR V is finite) or (dimR(V/W ) <

k where dimR V is infinite).

Case 1 : dimR(V/W ) < k < dimR V where dimR V is finite. Since dimR V is

finite, 0 ≤ dimR V − dimR W = dimR(V/W ) < k which implies that dimR W >

dimR V − k > 0. Then we can conclude that k > 0 and dimR W > 0. Let B be

a basis of W and B′ a basis of V extended from B . Since dimR V is finite and

B ⊆ B′ ,

|B′
r B| = |B′| − |B| = dimR V − dimR W < k.

We denote k − (dimR V − dimR W ) by n . Hence n ∈ N and dimR W − n =

dimR V − k > 0, that is |B| = dimR W > n . Therefore we can choose distinct

elements w1, w2, . . . , wn from B such that B r {w1, w2, . . . , wn} 6= ∅ . Let B1 =

(B′
r B) ∪ {w1, w2, . . . , wn} . Then

|B1| = |B′
r B| + |{w1, w2, . . . , wn}| = k − n + n = k,

since dimR V is finite and (B′
r B) ∩ {w1, w2, . . . , wn} = ∅ . Define
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α =







B1 v

0 v







v∈B′
rB1

and β =







w1 B′
r {w1}

w1 0






.

We can see that dimR Ker α = dimR〈B1〉 = k and Im α = 〈B′
rB1〉 ⊆ 〈B〉 = W ,

so α ∈ KR((V,W ), k). Since dimR Ker β = dimR〈B
′
r {w1}〉 = dimR V − 1 ≥ k

and Im β = 〈w1〉 ⊆ W , we have β ∈ KR((V,W ), k). By definitions of α and β ,

α2 = α, β2 = β, αβ = 0 and βα = 0,

which imply that α(α ⊕ β) = {α} and β(α ⊕ β) = {β} . Next, let γ ∈ α ⊕ β ⊆

KR((V,W ), k). Then αγ = α and βγ = β . It is obvious that

Im α = Im αγ ⊆ Im γ and Im β = Im βγ ⊆ Im γ.

Consequently, B′
r (B1 r {w1}) = (B′

r B1) ∪ {w1} ⊆ Im α ∪ Im β ⊆ Im γ .

Thus dimR Im γ ≥ |B′
r (B1 r {w1})| = |B′| − |B1 r {w1}| = dimR V − (k − 1).

Since dimR V is finite, dimR Ker γ = dimR V − dimR Im γ ≤ k − 1. Therefore

γ /∈ KR((V,W ), k), a contradiction.

Case 2 : dimR(V/W ) < k where dimR V is infinite. We clearly have 0 ≤

dimR(V/W ) < k . If we assume that dimR W < dimR V , then by Proposition

2.2.6, dimR V = dimR(V/W ) < k which is a contradiction. Hence dimR W =

dimR V. Let B be a basis of W and B′ a basis of V extended from B . Since

dimR W is infinite, we can let B1 and B2 be disjoint subsets of B such that

|B1| = |B2| = |B| and B1 ∪B2 = B . Note that B2 ⊆ B′
r B1 and B1 ⊆ B′

r B2 .

Define

α =







B′
r B1 v

0 v







v∈B1

and β =







v B′
r B2

v 0







v∈B2

.
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Then Ker α = 〈B′
rB1〉 ⊇ 〈B2〉 and Im α = 〈B1〉 ⊆ W , imply that dimR Ker α =

|B′
r B1| ≥ |B2| = dimR W = dimR V ≥ k . Hence α ∈ KR((V,W ), k). Sim-

ilarly, we have 〈B1〉 ⊆ 〈B′
r B2〉 = Ker β and Im β = 〈B2〉 ⊆ W . It fol-

lows that dimR Ker β = |B′
r B2| ≥ |B1| = dimR W = dimR V ≥ k . Hence

β ∈ KR((V,W ), k). It is easy to see that

α2 = α, β2 = β, αβ = 0 and βα = 0.

Then α(α⊕β) = {α} and β(α⊕β) = {β} . Next, let γ ∈ α⊕β ⊆ KR((V,W ), k).

Then αγ = α and βγ = β . Consequently,

vγ = (vα)γ = v(αγ) = vα = v for every v ∈ B1,

vγ = (vβ)γ = v(βγ) = vβ = v for every v ∈ B2.

So Im γ = W and γ|W = 1W . Let T = {x− xγ | x ∈ B′
r B} . Claim that Ker γ

⊆ 〈T 〉 . Let y ∈ Ker γ . Then y = a1s1 +a2s2 + . . .+amsm +b1t1 +b2t2 + . . .+bntn

for some a1, a2, . . . , am, b1, b2, . . . , bn ∈ R , s1, s2, . . . , sm ∈ B and t1, t2, . . . , tn ∈

B′
r B . Thus

0 = yγ

= (a1s1 + a2s2 + . . . + amsm)γ + (b1t1 + b2t2 + . . . + bntn)γ

= a1s1 + a2s2 + . . . + amsm + (b1t1 + b2t2 + . . . + bntn)γ.

So

a1s1 + a2s2 + . . . + amsm = −(b1t1 + b2t2 + . . . + bntn)γ.

Consequently,

y = −(b1t1 + b2t2 + . . . + bntn)γ + b1t1 + b2t2 + . . . + bntn

= b1(t1 − t1γ) + b2(t2 − t2γ) + . . . + bn(tn − tnγ),



21

this implies that y ∈ 〈T 〉 . To show that T is linearly independent. Let a1, a2, . . . , an

∈ R and x1, x2, . . . , xn be all distinct elements in B′
r B such that

a1(x1 − x1γ) + a2(x2 − x2γ) + . . . + an(xn − xnγ) = 0.

Then a1x1+a2x2+. . .+anxn = a1(x1γ)+a2(x2γ)+. . .+an(xnγ) ∈ 〈B′
r B〉∩〈B〉 =

{0} , hence a1x1+a2x2+. . .+anxn = 0. We therefore have a1 = a2 = . . . = an = 0.

This shows that T is linearly independent and x−xγ 6= y−yγ for distinct elements

x, y ∈ B′
rB . Since Ker γ ⊆ 〈T 〉 , dimR Ker γ ≤ |T | = |B′

rB| = dimR(V/W ) <

k . This yields a contradiction.

Therefore the proof is complete.

The following corollary providing some necessary conditions for K ′
R((V,W ), k)

to admit the structure of a semihyperring with zero are obtained directly from

the previous theorem.

Corollary 3.1.2. Let k be a cardinal number with k < dimR V . If K ′
R((V,W ), k)

admits the structure of a semihyperring with zero, then one of the following state-

ments holds.

(i) dimR V − 1 = k and dimR V is finite.

(ii) dimR(V/W ) ≥ k′ where k′ is the successor of k .

Proof. Assume that K ′
R((V,W ), k) admits the structure of a semihyperring with

zero. Since k < dimR V , k′ ≤ dimR V and K ′
R((V,W ), k) = KR((V,W ), k′).

We have by Theorem 3.1.1 that either dimR V is finite and dimR V − 1 = k or

dimR(V/W ) ≥ k′ hold.

Moreover, the necessary conditions of some results mentioned in [4] become

our special cases as follow.
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Corollary 3.1.3. ([4]) Let k be a cardinal number with k ≤ dimR V . Then

KR(V, k) admits the structure of a semihyperring with zero if and only if either

(i) dimR V = k and dimR V is finite or

(ii) k = 0.

Corollary 3.1.4. ([4]) Let k be a cardinal number with k < dimR V . Then

K ′
R(V, k) admits the structure of a semihyperring with zero if and only if k + 1 =

dimR V and dimR V is finite.

Remark 3.1.5. (i) Assume that dimR V is finite. If k is a cardinal number

such that k ≤ dimR(V/W ), then KR((V,W ), k) = LR(V,W ). Next, let k1 be a

cardinal number such that dimR(V/W ) ≤ k1 ≤ dimR V . Since dimR V is finite,

we have dimR V − k1 ≤ dimR W . Then let B be a basis of W , B′ a basis of V

extended from B and B1 ⊆ B such that |B1| = dimR V − k1 . Define

α =







B′
r B1 v

0 v







v∈B1

,

so dimR Ker α = |B′
r B1| = dimR V − (dimR V − k1) = k1 . If k2 is a cardinal

number such that dimR(V/W ) ≤ k1 < k2 ≤ dimR V , then α ∈ KR((V,W ), k1) r

KR((V,W ), k2), implies that KR((V,W ), k1) ⊃ KR((V,W ), k2).

For each cardinal number l, k such that k ≤ dimR(V/W ) and l < dimR(V/W ),

we can conclude that

LR(V,W ) = KR((V,W ), k) = K ′
R((V,W ), l)

⊃ KR((V,W ), dimR(V/W ) + 1) = K ′
R((V,W ), dimR(V/W ))

⊃ KR((V,W ), dimR(V/W ) + 2) = K ′
R((V,W ), dimR(V/W ) + 1)

...

⊃ KR((V,W ), dimR(V )).
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(ii) Assume that dimR V is infinite and dimR V > dimR W . Then we have

KR((V,W ), k) = LR(V,W ) = K ′
R((V,W ), l) for all cardinal numbers k, l such

that k ≤ dimR V and l < dimR V .

(iii) Assume that dimR V = dimR W is infinite and k1, k2 are cardinal numbers

such that k1 < k2 ≤ dimR V. We will show that KR((V,W ), k1) ⊃ KR((V,W ), k2).

Let B be a basis of W and B′ a basis of V extended from B . Since k1 <

dimR V = |B′| = |B| , there exists B1 ⊂ B such that |B1| = k1 and by assumption,

we can assume that B1 have the property |B′
r B1| = |B′| . Let ϕ be a bijection

from B′
r B1 to B and define α ∈ LR(V,W ) by

α =







B1 v

0 vϕ







v∈B′
rB1

,

so dimR Ker α = |B1| = k1 . Thus α ∈ KR((V,W ), k1) r KR((V,W ), k2). This

implies that KR((V,W ), k1) ⊃ KR((V,W ), k2). Then we can conclude that

KR((V,W ), 0) ⊃ KR((V,W ), 1) = K ′
R((V,W ), 0)

⊃ KR((V,W ), 2) = K ′
R((V,W ), 1)

...

⊃ KR((V,W ), dimR V ).

3.2 The semigroups CIR((V, W ), k) and CI ′
R
((V, W ), k)

By Proposition 2.2.7, KR((V,W ), k) = CIR((V,W ), k) for every cardinal number

k with k ≤ dimR V if V is a finite dimensional vector space. However, it is

also shown in Proposition 2.2.8 that if dimR V is infinite, then KR((V,W ), k) 6=

CIR((V,W ), l) where k, l are cardinal numbers such that dimR(V/W ) < l ≤

dimR V and k ≤ dimR V . Then necessary conditions for CIR((V,W ), k) to admit

the structure of a symihyperring with zero can not be obtained from Theorem
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3.1.1, so we also characterize when CIR((V,W ), k) admits the structure of a

semihyperring with zero.

Theorem 3.2.1. Let k be a cardinal number with k ≤ dimR V . Then

CIR((V,W ), k) admits the structure of a semihyperring with zero if and only if

one of the following statements holds.

(i) dimR V = k and dimR V is finite.

(ii) dimR(V/W ) ≥ k .

Proof. To prove sufficiency, first assume that dimR V = k and dimR V is fi-

nite. Let α ∈ CIR((V,W ), k). Since dimR V is finite, dimR V − dimR Im α =

dimR(V/Im α) ≥ k = dimR V . This implies that dimR Im α = 0. We then

have CIR((V,W ), k) = {0} which admits a ring structure. Next, assume that

dimR(V/W ) ≥ k . We shall show that LR(V,W ) = CIR((V,W ), k). Let α ∈

LR(V,W ). Then dimR(V/Im α) ≥ dimR(V/W ) ≥ k. So α ∈ CIR((V,W ), k).

Hence CIR((V,W ), k) = LR(V,W ) which admits a ring structure.

Conversely, assume that CIR((V,W ), k) admits the structure of a semihyper-

ring with zero . Suppose that (i) and (ii) are false. Then we have 2 cases which

are the same as the proof of Theorem 3.1.1.

Case 1 : dimR(V/W ) < k < dimR V where dimR V is finite. Then we have

KR((V,W ), k) = CIR((V,W ), k). By Theorem 3.1.1, they do not admit the struc-

ture of a semihyperring with zero, a contradiction.

Case 2 : dimR(V/W ) < k where dimR V is infinite. We can see form case

2 in the proof of Theorem 3.1.1 that dimR V = dimR W and there exist sets

B1, B2 ⊆ B ⊆ B′ ⊆ V such that |B1| = |B2| = |B| , B is a basis of W and B′

is a basis of V . Moreover, the following linear transformations from V to W are

recalled,
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α =







B′
r B1 v

0 v







v∈B1

and β =







v B′
r B2

v 0







v∈B2

.

Since α ∈ LR(V,W ) and dimR(V/Im α) = dimR(V/〈B1〉) ≥ dimR(V/〈B′
r

B2〉) = |B′
r (B′

r B2)| = |B2| ≥ k . Hence α ∈ CIR((V,W ), k). Similarly,

dimR(V/Im β) = dimR(V/〈B2〉) ≥ dimR(V/〈B′
r B1〉) = |B′

r (B′
r B1)| =

|B1| ≥ k and Im β ⊆ W . Hence β ∈ CIR((V,W ), k). By the same case of the

proof of Theorem 3.1.1, we have γ ∈ CIR((V,W ), k) such that Im γ = W . Then

dimR(V/Im γ) = dimR(V/W ) < k , so this contradicts to γ ∈ CIR((V,W ), k).

Therefore the proof is complete.

The following corollary is obtained from Theorem 3.2.1.

Corollary 3.2.2. Let k be a cardinal number with k < dimR V . Then

CI ′
R((V,W ), k) admits the structure of a semihyperring with zero if and only if

one of the following statements holds.

(i) dimR V − 1 = k and dimR V is finite.

(ii) dimR(V/W ) ≥ k′ where k′ is the successor of k .

Proof. Note that if dimR V is finite, then k′ = k+1. Assume that CI ′
R((V,W ), k)

admits the structure of a semihyperring with zero. Since k ≥ 0, k′ > 0 and

CI ′
R((V,W ), k) = CIR((V,W ), k′). We have by Theorem 3.2.1 that either dimR V

is finite and dimR V − 1 = k or dimR(V/W ) ≥ k′ holds.

Conversely, assume that dimR V − 1 = k and dimR V is finite. Then k′ =

dimR V , and thus by Theorem 3.2.1, CIR((V,W ), k′) admits the structure of a

semihyperring with zero. Since CI ′
R((V,W ), k) = CIR((V,W ), k′), we have that

CI ′
R((V,W ), k) admits the structure of a semihyperring with zero. Next, assume

that dimR(V/W ) ≥ k′ . Then by Theorem 3.2.1, CIR((V,W ), k′) admits the

structure of a semihyperring with zero, so does CI ′
R((V,W ), k).
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From the proof of Theorem 3.2.1 and Corollary 3.2.2, we can conclude that nec-

essary conditions of those theorems are CIR((V,W ), k) = LR(V,W ) or {0} and

CI ′
R((V,W ), k) = LR(V,W ) or {0} , respectively. Hence the following corollaries

are obtained directly.

Corollary 3.2.3. Let k be a cardinal number with with k ≤ dimR V . Then

CIR((V,W ), k) admits a hyperring [ring ] structure if and only if one of the fol-

lowing statements hold.

(i) dimR V = k and dimR V is finite.

(ii) dimR(V/W ) ≥ k .

Corollary 3.2.4. Let k be a cardinal number with with k < dimR V . Then

CI ′
R((V,W ), k) admits a hyperring [ring ] structure if and only if one of the fol-

lowing statements hold.

(i) dimR V − 1 = k and dimR V is finite.

(ii) dimR(V/W ) ≥ k′ where k′ is the successor of k .

In addition, if we set V = W in Theorem 3.2.1 and Corollary 3.2.2, then some

results mentioned in [4] become our special cases as follow.

Corollary 3.2.5. ([4]) Let k be a cardinal number with k ≤ dimR V . Then

CIR(V, k) admits the structure of a semihyperring with zero if and only if either

(i) dimR V = k and dimR V is finite or

(ii) k = 0.
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Corollary 3.2.6. ([4]) Let k be a cardinal number with k < dimR V . Then

CI ′
R(V, k) admits the structure of a semihyperring with zero if and only if k +1 =

dimR V and dimR V is finite.

Remark 3.2.7. (i) Assume that dimR V is finite. By Proposition 2.2.7, if k is

a cardinal number such that k ≤ dimR V , then CIR((V,W ), k) = KR((V,W ), k).

Then we have by Remark 3.1.5 that for each cardinal number l, k such that

k ≤ dimR(V/W ) and l < dimR(V/W ),

LR(V,W ) = CIR((V,W ), k) = CI ′
R((V,W ), l)

⊃ CIR((V,W ), dimR(V/W ) + 1) = CI ′
R((V,W ), dimR(V/W ))

⊃ CIR((V,W ), dimR(V/W ) + 2) = CI ′
R((V,W ), dimR(V/W ) + 1)

...

⊃ CIR((V,W ), dimR(V )).

(ii) Assume that dimR V is infinite and dimR V > dimR W . Then dimR(V/Im α)

≥ dimR(V/W ) = dimR V for all α ∈ LR(V,W ). This implies that CIR((V,W ), k)

= LR(V,W ) = CI ′
R((V,W ), l) for all cardinal numbers k, l such that k ≤ dimR V

and l < dimR V .

(iii) Assume that dimR V = dimR W is infinite. If dimR(V/W ) ≥ k , then

CIR((V,W ), k) = LR(V,W ). Let k1 be a cardinal number such that dimR(V/W )

≤ k1 ≤ dimR V . Let B be a basis of W and B′ a basis of V extended from B.

Since dimR W = dimR V is infinite and dimR(V/W ) ≤ k1 , there exists B1 ⊆ B

such that |B′
r (B r B1)| = k1 and |B r B1| = |B| . Define α ∈ LR(V,W ) by

α =







B′
r (B r B1) v

0 v







v∈BrB1

,
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so dimR(V/Im α) = |B′
r (B r B1)| = k1 . Hence if k2 is a cardinal number

such that k1 < k2 ≤ dimR V , then α ∈ CIR((V,W ), k1) r CIR((V,W ), k2) and

CIR((V,W ), k1) ⊃ CIR((V,W ), k2), respectively. Therefore for cardinal numbers

k, l such that dimR(V/W ) ≥ k and dimR(V/W ) > l ,

LR(V,W ) = CIR((V,W ), k) = CI ′
R((V,W ), l)

⊃ CIR((V,W ), dimR(V/W ) + 1) = CI ′
R((V,W ), dimR(V/W ))

⊃ CIR((V,W ), dimR(V/W ) + 2) = CI ′
R((V,W ), dimR(V/W ) + 1)

...

⊃ CIR((V,W ), dimR(V )).

3.3 The semigroups IR((V, W ), k) and I ′
R
((V, W ), k)

We have already shown in Proposition 2.2.8 if dimR W is infinite, we then have

KR((V,W ), l) 6= IR((V,W ), k) 6= CIR((V,W ), l)

for any cardinal number k ,l with k < dimR W and l ≤ dimR V . Contrasting

between this section and previous sections in this chapter will assure that what

we have mentioned above is true. In this section, we shall characterize when

IR((V,W ), k) and I ′
R((V,W ), k) admit the structure of a semihyperring with zero.

Theorem 3.3.1. Let k be a cardinal number with k ≤ dimR W . Then

IR((V,W ), k) admits the structure of a semihyperring with zero if and only if one

of the following statements holds.

(i) k = 0.

(ii) k = dimR W .

(iii) k is infinite.
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Proof. To prove sufficiency, assume (i), (ii) or (iii) holds. Since IR((V,W ), 0) =

{α ∈ LR(V,W )| dimR Im α ≤ 0} = {0} and IR((V,W ), dimR W ) = {α ∈ LR(V,W )

| dimR Im α ≤ dimR W} = LR(V,W ). Therefore if we have (i) or (ii), then

IR((V,W ), k) admits a ring structure. Next, we will show that if k is an infinite

cardinal number, then (IR((V,W ), k), +, ◦) is also a ring where + is the usual ad-

dition of linear transformations and ◦ is a composition. Let α, β ∈ IR((V,W ), k).

We know that Im (α + β) ⊆ Im α + Im β and Im β = Im (−β). Thus

dimR Im (α − β) ≤ dimR Im α + dimR Im β ≤ k + k = k.

Hence IR((V,W ), k) is a subring of LR(V,W ).

Conversely, assume that (I0
R((V,W ), k),⊕, ·) is a semihyperring with zero. To

show that one of (i), (ii) and (iii) holds, suppose on the contrary that all of them

are false. Then 0 < k < dimR W and k is finite. Let B be a basis of W , B′ a

basis of V extended from B and B1 ⊆ B such that |B1| = k . Note that B1 is

not empty. Since k < dimR W , there exists an element u ∈ B r B1 . Define

α =







v B′
r B1

v 0







v∈B1

and β =







u B′
r {u}

u 0






.

Then Im α = 〈B1〉 ⊆ W and dimR Im α = |B1| = k . Hence α ∈ IR((V,W ), k).

Similarly, Im β = 〈u〉 ⊆ W and dimR Im β = 1 ≤ k , since k > 0. Hence

β ∈ IR((V,W ), k). It is clear that

α2 = α, β2 = β, αβ = 0 and βα = 0.

Thus α(α⊕ β) = {α} and β(α⊕ β) = {β} . Next, let γ ∈ α⊕ β ⊆ IR((V,W ), k).

Then αγ = α and βγ = β . Consequently, for every v ∈ B1 ,

vγ = (vα)γ = v(αγ) = vα = v, and

uγ = (uβ)γ = u(βγ) = uβ = u.
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Therefore Im γ ⊇ 〈B1 ∪ {u}〉 which implies that dimR Im γ ≥ |B1 ∪ {u}| = k + 1

> k , since k is finite. This contradicts the fact that γ ∈ α ⊕ β ⊆ IR((V,W ), k).

Hence the theorem is proved.

Corollary 3.3.2. Let k be a cardinal number with 0 < k ≤ dimR W . Then

I ′
R((V,W ), k) admits the structure of a semihyperring with zero if and only if one

of the following statements holds.

(i) k = 1.

(ii) k is infinite.

Proof. We know that I ′
R((V,W ), 1) = IR((V,W ), 0) = {0} which admits a ring

structure. Next, assume that k is an infinite cardinal number. Then k + k = k .

We shall show that (I ′
R((V,W ), k), +, ◦) is a ring where + is the usual addition

of linear transformations. If α , β ∈ I ′
R((V,W ), k), then dimR Im α < k and

dimR Im β < k , and hence

dimR Im (α − β) ≤ dimR Im α + dimR Im β < k + k = k.

Therefore the sufficiency is proved.

To prove necessity, suppose on the contrary that 1 < k and k is finite. Then

I ′
R((V,W ), k) = IR((V,W ), k − 1) where 0 < k − 1 < dimR W and k − 1 is finite.

It therefore follows from Theorem 3.3.1 that I ′
R((V,W ), k) does not admit the

structure of a semihyperring with zero.

The following corollaries are direct consequences of Theorem 3.3.1 and Corol-

lary 3.3.2.

Corollary 3.3.3. Let k be a cardinal number with k ≤ dimR W . Then

IR((V,W ), k) admit a hyperring [ring ] structure if and only if one of the following

statements holds.
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(i) k = 0.

(ii) k = dimR W .

(iii) k is infinite.

Corollary 3.3.4. Let k be a cardinal number with 0 < k ≤ dimR W . Then

I ′
R((V,W ), k) admits a hyperring [ring ] structure if and only if one of the following

statements holds.

(i) k = 1.

(ii) k is infinite.

Apart from two corollaries above, we also obtain some results mentioned in [4]

directly from Theorem 3.2.1 and Corollary 3.2.2.

Corollary 3.3.5. ([4]) Let k be a cardinal number with k ≤ dimR V . Then

IR(V, k) admits the structure of a semihyperring with zero if and only if one of

the following statements hods.

(i) k = 0.

(ii) k = dimR V .

(iii) k is infinite.

Corollary 3.3.6. ([4]) Let k be a cardinal number with 0 < k ≤ dimR V . Then

I ′
R(V, k) admits the structure of a semihyperring with zero if and only if either

(i) k = 1 or

(ii) k is infinite.
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Remark 3.3.7. Assume that k1, k2 are cardinal numbers such that k2 < k1 ≤

dimR W . Claim that IR((V,W ), k1) ⊃ IR((V,W ), k2). Let B be a basis of W

and B′ a basis of V extended of B . Since 0 < k1 ≤ dimR W , there exists B1 ⊆ B

such that |B1| = k1 . Define α ∈ LR(V,W ) by

α =







B′
r B1 v

0 v







v∈B1

,

so dimR Im α = |B1| = k1 . Hence α ∈ IR((V,W ), k1)rIR((V,W ), k2). If dimR W

is infinite, then

IR((V,W ), 0) = I ′
R((V,W ), 1) ⊂ IR((V,W ), 1) = I ′

R((V,W ), 2)

⊂ IR((V,W ), 2) = I ′
R((V,W ), 3)

...

⊂ IR((V,W ), dimR W ).



CHAPTER IV

SEMIGROUPS ADMITTING THE STRUCTURE OF

AN AC SEMIRING WITH ZERO

In this chapter, we recall that V is a vector space over a division ring R , W is a

subspace of V , LR(V,W ) denote the set of all linear transformations α : V → W

and F (α) = {v ∈ V | vα = v} . The following linear transformation semigroups

are considered.

AMR(V,W ) = {α ∈ LR(V,W ) | dimR Ker α|W < ∞},

AER(V,W ) = {α ∈ LR(V,W ) | dimR(W/(Im α|W )) < ∞},

AIR(V,W ) = {α ∈ LR(V,W ) | dimR(W/F (α)) < ∞},

PLR(V,W ) = {α : U → W | U is a subspace of V and

α is a linear transformation }.

For the first and second sections, we let B be a basis of W and B′ a basis of V

containing B . The following notations will be used and fixed.

GR(V,W ) ={α ∈ LR(V,W ) | α|W ∈ GR(W ) and α|
B′

rB
= 0}

where GR(W ) is the set of all isomorphisms on W,

1W =







v B′
r B

v 0







v ∈ B

.
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If u,w ∈ B are distinct, we define

(u,w)B =







u w v B′
r B

w u v 0







v ∈ Br{u,w}

and

(u → w)B =







u v B′
r B

w v 0







v ∈ Br{u}

.

We note here that 1W , (u,w)B , (u → w)B ∈ AMR(V,W ) ∩ AER(V,W ) ∩

AIR(V,W ) and 1W ,(u,w)B ∈ GR(V,W ) ⊆ AMR(V,W )∩AER(V,W )∩AIR(V,W ).

For the proof of main theorem, the properties

(u,w)
2

B = 1W and (u → w)
2

B = (u → w)B

are useful.

4.1 The semigroups AMR(V, W ) and AER(V, W )

We have shown in Proposition 2.2.9 and Proposition 2.2.10 that AMR(V,W ) and

AER(V,W ) are distinct semigroups without zero if dimR W is infinite. Otherwise,

they admit a ring structure. The purpose is to characterize when AMR(V,W )

and AER(V,W ) admit the structure of an AC semiring with zero, the following

lemmas are required. For the first lemma, recall that GR(V ) is the set of all

isomorphisms on V , LR(V ) be the semigroup of all linear transformations on

V under a composition. In this section, if α ∈ LR(V ) and a ∈ R , we define

aα ∈ LR(V ) by

v(aα) = a(vα)

for all v ∈ V .

Lemma 4.1.1. ([8]) Let α ∈ LR(V ) and assume that that αβ = βα for all

β ∈ GR(V ). Then there exists a ∈ C(R) such that α = a1V where C(R) is the

center of R .
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Lemma 4.1.2. Let α ∈ LR(V,W ) and assume that αβ = βα for all β ∈

GR(V,W ). Then there exists a ∈ C(R) such that α = a1W .

Proof. First we will show that {β|W | β ∈ GR(V,W )} = GR(W ). Obviously,

{β|W | β ∈ GR(V,W )} ⊆ GR(W ). Let γ ∈ GR(W ). Define γ ∈ LR(V,W ) by

γ =







v x

vγ 0







v ∈ B,x∈B′
rB

.

We can see that γ|W
= γ and γ ∈ GR(V,W ). By assumption and Proposition

2.2.4,

α|W β|W = β|W α|W for all β ∈ GR(V,W ).

Since {β|W | β ∈ GR(V,W )} = GR(W ), α|W β = βα|W for all β ∈ GR(W ). By

Lemma 4.1.1, α|W = a1W for some a ∈ C(R). Let y ∈ B′
rB and β ∈ GR(V,W ).

It follows from assumption that yαβ = yβα = 0α = 0. Thus yα ∈ Ker β . Since

yα ∈ W and Ker β|W = {0} , yα = 0. This shows that α = a1W .

Theorem 4.1.3. Let S(V,W ) be AMR(V,W ) or AER(V,W ). Then S(V,W )

admits the structure of an AC semiring with zero if and only if dimR W is finite.

Proof. As was mentioned, if dimR W is finite, then S(V,W ) = LR(V,W ) admits

a ring structure. Assume that S(V,W ) admits the structure of an AC semiring

with zero. Then there is an operation ⊕ on S0(V,W ) such that (S0(V,W ),⊕, ·)

is an AC semiring with zero 0 where · is the operation on S0(V,W ). Suppose

on the contrary that dimR W is infinite. Since 0 /∈ S(V,W ), so for α, β ∈

S0(V,W ), αβ = 0 implies α = 0 or β = 0. Let u,w be distinct elements of B .

Define α ∈ LR(V,W ) by

α =







{u,w} ∪ (B′
r B) v

0 v







v∈Br{u,w}

. (1)
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Then dimR Ker α|W = dimR〈u,w〉 = 2 and dimR(W/Im α|W ) = dimR(W/〈B r

{u,w }〉) = |{u,w}| = 2. We deduce that α ∈ S(V,W ). It is clear that (u,w)Bα =

α = α(u,w)B. Since β(1W ⊕1W ) = β⊕β = (1W ⊕1W )β for every β ∈ GR(V,W ),

we have by Lemma 4.1.2 that 1W ⊕ 1W = a1W for some a ∈ C(R). If a = 0, then

1W ⊕ 1W is the zero map which does not contain in S(V,W ). Then 1W ⊕ 1W = 0

and

0 = (1W ⊕ 1W )α = α ⊕ α = α ⊕ α(u,w)B = α(1W ⊕ (u,w)B)

which imply that 1W ⊕ (u,w)B = 0 and then

1W = 1W⊕0 = 1W⊕(1W⊕(u,w)B) = (1W⊕1W )⊕(u,w)B = 0⊕(u,w)B = (u,w)B,

a contradiction. Then a 6= 0. From (1), we have

(1W ⊕ (u,w)B)α = α ⊕ α = (1W ⊕ 1W )α = (a1W )α = aα. (2)

We have by (1) and (2) that

u(1W ⊕ (u,w)B)α = u(aα) = a(uα) = 0,

w(1W ⊕ (u,w)B)α = w(aα) = a(wα) = 0.

(3)

Since (u,w)B1W = (u,w)B and (u,w)
2

B = 1W , we can deduce that

(u,w)B(1W ⊕ (u,w)B) = 1W ⊕ (u,w)B

and

u(1W ⊕ (u,w)B) = u(u,w)B(1W ⊕ (u,w)B) = w(1W ⊕ (u,w)B).

By (3), it is obtained that

u(1W ⊕ (u,w)B) = w(1W ⊕ (u,w)B) ∈ Ker α|W = 〈u,w〉,

thus there exist b, c ∈ R such that

u(1W ⊕ (u,w)B) = w(1W ⊕ (u,w)B) = bu + cw . (4)
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Next, we define γ ∈ LR(V,W ) by

γ =







{u,w} v B′
r B

u + w v 0







v∈Br{u,w}

. (5)

Then Ker γ|W ⊆ 〈u,w〉 = Ker α|W and Im α|W = 〈B r {u,w}〉 ⊆ Im γ|W , so

γ ∈ S(V,W ). Since uγ(u,w)B = wγ(u,w)B = (u + w)(u,w)B = u + w, then

γ(u,w)B = γ, and hence

γ(1W ⊕ (u,w)B) = γ ⊕ γ = (1W ⊕ 1W )γ = aγ. (6)

Therefore

2bu + 2cw = (u + w)(1W ⊕ (u,w)B) from (4)

= wγ(1W ⊕ (u,w)B) from (5)

= w(aγ) from (6)

= a(u + w) from (5)

= au + aw.

Since u and w are linearly independent, 2b = 2c = a 6= 0. Consequently, charR 6=

2. Because −1W ∈ S(V,W ) and β(1W ⊕ (−1W )) = β ⊕ (−β) = (1W ⊕ (−1W ))β

for all β ∈ GR(V,W ), by Lemma 4.1.2, 1W ⊕ (−1W ) = a′1W for some a′ ∈ C(R).

If a′ = 0, then 1W ⊕ (−1W ) is the zero map contained in S0(V,W ). It is obvious

that S(V,W ) does not contain the zero map. Then 1W ⊕ (−1W ) = 0 and so

0 = (1W ⊕ (−1W ))α = α ⊕ (−α) = α ⊕ (−α(u,w)B) = α(1W ⊕ (−(u,w)B)).

We can conclude that 1W ⊕ (−(u,w)B) = 0, so 1W ⊕ 1W ⊕ (−(u,w)B) = 1W ⊕ 0.
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Hence −1W = −(u,w)B, which is a contradiction. This shows that a′ 6= 0. But

a′1W = 1W ⊕ (−1W )

= − 1W (1W ⊕ (−1W )) , since ⊕ is commutative

= − a′1W

= − a′1W + V0 ,

2a′1W = V0, and thus 2a′ = 0 since W 6= {0}. We have a contradiction directly

from the facts that a′ 6= 0 and charR 6= 2.

Corollary 4.1.4. Let S(V,W ) be AMR(V,W ) or AER(V,W ). Then S(V,W )

admits a ring structure if and only if dimR W is finite.

Moreover, the results given in [1] become our special cases as follow.

Corollary 4.1.5. ([1]) Let S(V ) be AMR(V ) or AER(V ). Then S(V ) admits

the structure of an AC semiring with zero if and only if dimR V is finite.

Corollary 4.1.6. ([1]) Let S(V ) be AMR(V ) or AER(V ). Then S(V ) admits a

ring structure if and only if dimR V is finite.

4.2 The semigroup AIR(V, W )

By Proposition 2.2.10, AIR(V,W ) is different from AMR(V,W ) and AER(V,W )

when dimR W is infinite. Moreover, by Proposition 2.2.9, AIR(V,W ) does not

contain the zero. We shall show that AIR(V,W ) admits the structure of an AC

semiring with zero if and only if dimR W is finite, the following lemma will be

used.

Lemma 4.2.1. Let (AI0
R(V,W ),⊕, ·) be an AC semiring with zero. If dimR W

is infinite, then 1W ⊕ 1W = 1W .
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Proof. Assume that (AI0
R(V,W ),⊕, ·) is an AC semiring with zero and dimR W

is infinite. Recall that 1W ∈ AIR(V,W ). We then have 1W ⊕ 1W ∈ AI0
R(V,W ).

Since β(1W ⊕ 1W ) = (1W ⊕ 1W )β for all β ∈ GR(V,W ), by Lemma 4.1.2,

there exists a ∈ R such that 1W ⊕ 1W = a1W . Suppose on the contrary that

a 6= 1. It is obtained that F (1W ⊕ 1W ) = F (a1W ) = {0}. Hence we have

dimR(W/F (1W ⊕ 1W )) = dimR(W/{0}) = dimR W . Since dimR W is infinite,

1W ⊕ 1W /∈ AIR(V,W ), implies that 1W ⊕ 1W = 0. Let u,w ∈ W be dis-

tinct elements. Next, recall α from the proof of Theorem 4.1.3 and we can

see that dimR(W/F (α)) = dimR 〈u,w〉 = 2, so α ∈ AIR(V,W ). Note that

(u,w)Bα = α = α(u,w)B. We have

0 = (1W ⊕ 1W )α = α ⊕ α = α ⊕ α(u,w)B = α(1W ⊕ (u,w)B)

which imply that 1W ⊕ (u,w)B = 0 and then

1W = 1W⊕0 = 1W⊕(1W⊕(u,w)B) = (1W⊕1W )⊕(u,w)B = 0⊕(u,w)B = (u,w)B,

a contradiction.

Theorem 4.2.2. AIR(V,W ) admits the structure of an AC semiring with zero if

and only if dimR W is finite.

Proof. If dimR W is finite, then AIR(V,W ) = LR(V,W ) which admits a ring

structure. Conversely, assume that AIR(V,W ) admits the structure of an AC

semiring with zero. Then there is an operation ⊕ on AI0
R(V,W ) such that

(AI0
R(V,W ),⊕, ·) is an AC semiring with zero 0 where · is the operation on

AI0
R(V,W ). To show dimR W is finite, suppose on the contrary that dimR W

is infinite. By Lemma 4.2.1 , 1W ⊕ 1W = 1W . For every α ∈ AI0
R(V,W ), if

α|
B′

rB
= 0, we get

α ⊕ α = (1W ⊕ 1W )α = 1W α = α. (1)
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Recall the fact that (u,w)B, (u → w)B ∈ AIR(V,W ) for all distinct u,w ∈ B .

Next, let u and w be fixed distinct elements of B . We have

(u → w)
2

B = (u → w)B = (w → u)B(u → w)B

= (w → u)B(u,w)B = (u,w)B(u → w)B,

(w → u)
2

B = (w → u)B = (u → w)B(w → u)B

= (u → w)B(u,w)B = (u,w)B(w → u)B.

(2)

We therefore have from (2) that (w → u)B[1W⊕(u → w)B] = (w → u)B⊕(u → w)B

and (u → w)B[1W⊕(w → u)B] = (u → w)B⊕(w → u)B . Since ⊕ is commutative,

(w → u)B[1W ⊕ (u → w)B] = (u → w)B[1W ⊕ (w → u)B], (3)

and for each v ∈ B r {u},

v[1W ⊕ (u → w)B] = v(u → w)B[1W ⊕ (u → w)B]

= v[(u → w)B ⊕ (u → w)B] from (2)

= v(u → w)B = v from (1).

Let u[1W ⊕ (u → w)B] = au + bw +
n

∑

i=1

civi for some a, b, c1, c2, . . . , cn ∈ R and

distinct v1, v2, . . . , vn ∈ B r {u,w}. We therefore have

u = u(w → u)B

= u[(w → u)B ⊕ (w → u)B] from (1)

= u[1W ⊕ (u → w)B](w → u)B from (2)

= (au + bw +
n

∑

i=1

civi)(w → u)B

= au + bu +
n

∑

i=1

civi

= (a + b)u +
n

∑

i=1

civi
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which implies that a + b = 1 and ci = 0 for all i = 1, 2, . . . , n. Consequently,

v[1W ⊕ (u → w)B] = v if v ∈ B r {u},

u[1W ⊕ (u → w)B] = au + bw where a + b = 1.

(4)

By interchanging between u and w , from (4), there are a′, b′ ∈ R such that

v[1W ⊕ (w → u)B] = v if v ∈ B r {w},

w[1W ⊕ (w → u)B] = a′u + b′w and a′ + b′ = 1.

(5)

Case 1 : a 6= 0. Let v1, v2, . . . , vm ∈ Br{u} be distinct and let d0, d1, . . . , dm ∈ R

be such that (d0u +
m

∑

i=1

divi)[1W ⊕ (u → w)B] = 0. Then from (4),

d0au + d0bw +
m

∑

i=1

divi = 0,

so d0a = 0. Since a 6= 0, we have d0 = 0 which implies that di = 0 for all

i ∈ {1, 2, . . . ,m}, hence Ker (1W ⊕ (u → w)B)|W = {0} . This shows that

(1W ⊕ (u → w)B)|W is a one-to-one map. (6)

Since

[1W ⊕ (u → w)B]2 = 1W ⊕ (u → w)B ⊕ (u → w)B ⊕ (u → w)
2

B

= 1W ⊕ (u → w)B from (1) and (2),

by Proposition 2.2.4,

(1W ⊕ (u → w)B)|W (1W ⊕ (u → w)B)|W = ([1W ⊕ (u → w)B]2)|W

= ( 1W ⊕ (u → w)B)|W .

It follows from (6) that (1W ⊕ (u → w)B)|W = 1W and for every x ∈ B′
r B ,

x(1W ⊕ (u → w)B) = x((u,w)B(u,w)B ⊕ (u,w)B(u → w)B) from (2)

= x(u,w)B((u,w)B ⊕ (u → w)B)

= 0((u,w)B ⊕ (u → w)B) = 0.
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Consequently,

1W ⊕ (u → w)B = 1W . (7)

We therefore have

1W = (u,w)
2

B

= [1W (u,w)B]2

= [(1W ⊕ (u → w)B)(u,w)B]2 from (7)

= [(u,w)B ⊕ (w → u)B]2 from (2)

= (u,w)
2

B ⊕ (u,w)B(w → u)B ⊕ (w → u)B(u,w)B ⊕ (w → u)
2

B

= 1W ⊕ (w → u)B ⊕ (u → w)B ⊕ (w → u)B from (2)

= 1W ⊕ (u → w)B ⊕ (w → u)B from (1)

= 1W ⊕ (w → u)B from (7).

Replace (7) and 1W = 1W ⊕ (w → u)B in (3), we get (u → w)B = (w → u)B ,

a contradiction.

Case 2 : b′ 6= 0. From (5) and interchanging between u and w , we obtain as

case 1 that 1W ⊕ (w → u)B = 1W = 1W ⊕ (u → w)B. This implies by (3) that

(u → w)B = (w → u)B , a contradiction.

Case 3 : a = 0 = b′.

From (4) and (5), we have respectively that

1W ⊕ (u → w)B = (u → w)B and 1W ⊕ (w → u)B = (w → u)B. (8)
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Hence

(u → w)B = (w → u)B(u → w)B from (2)

= (w → u)B[1W ⊕ (u → w)B] from (8)

= (u → w)B[1W ⊕ (w → u)B] from (3)

= (u → w)B(w → u)B from (8)

= (w → u)B from (2)

which is a contradiction.

Therefore the theorem is proved.

Corollary 4.2.3. AIR(V,W ) admits a ring structure if and only if dimR W is

finite.

Moreover, the results given in [3] become our special cases as follow.

Corollary 4.2.4. ([3]) AIR(V ) admits the structure of an AC semiring with zero

if and only if dimR V is finite.

Corollary 4.2.5. ([3]) AIR(V ) admits a ring structure if and only if dimR V is

finite.

4.3 The semigroup PLR(V, W )

The purpose of this section is to characterize when PLR(V,W ) admits the struc-

ture of an AC semiring with zero and the following lemmas will be used.

Lemma 4.3.1. If dimR W > 0 and (PL0
R(V,W ),⊕, ·) is an AC semiring with

zero, then the following statements are satisfied.

(i) There exists a ∈ C(R) r {0} such that 1W ⊕ (−1W ) = a1W .

(ii) If U is a subspace of W , then U0 ⊕ U0 = U0 .
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Proof. (i) Since dimR W > 0, so is dimR V . It follows from Chapter II that

PLR(V,W ) is a semigroup without zero. Thus W0 6= 0 and αβ = 0 implies α = 0

or β = 0 for all α, β ∈ PL0
R(V,W ). By assumption, 1W ⊕ (−1W ) ∈ PL0

R(V,W ).

Claim that 1W ⊕ (−1W ) 6= 0. Suppose on the contrary that 1W ⊕ (−1W ) = 0.

Consequently,

W0(W0 ⊕ {0}0) = W0 ⊕ W0

= (1W ⊕ (−1W ))W0

= 0.

Since W0 6= 0, W0 ⊕ {0}0 = 0 = W0 ⊕ W0 . Then we have

W0 = W0 ⊕ 0 = W0 ⊕ (W0 ⊕ {0}0) = (W0 ⊕ W0) ⊕ {0}0 = 0 ⊕ {0}0 = {0}0,

which contradicts to dimR W > 0. We conclude that 1W ⊕ (−1W ) ∈ PLR(V,W ).

Since W0(W0 ⊕ {0}0) = (1W ⊕ (−1W ))W0 , we have Dom(1W ⊕ (−1W ))=W. It

is obtained that α(1W ⊕ (−1W )) = α ⊕ (−α) = (1W ⊕ (−1W ))α for all α ∈

GR(W ). By Lemma 4.1.1, 1W ⊕ (−1W ) = a1W for some a ∈ C(R). If a = 0,

then 1W ⊕ (−1W ) = W0 and

{0}0 = {0}0W0 = {0}0(1W ⊕ (−1W ))

= (1W ⊕ (−1W )){0}0

= W0{0}0 = W0,

a contradiction. Hence a 6= 0.

(ii) Let U be a subspace of W . By (i),

U0 ⊕ U0 = U0(1W ⊕ (−1W )) = U0(a1W ) = U0.

Therefore the proof is complete.

Lemma 4.3.2. If dimR W > 0 and (PL0
R(V,W ),⊕, ·) is an AC semiring with

zero, then charR = 2.
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Proof. By Lemma 4.3.1, 1W ⊕ (−1W ) = a1W for some a ∈ C(R) r {0}. Then

a21W = (a1W )(a1W )

= (a1W )(1W ⊕ (−1W ))

= (−a1W )((−1W ) ⊕ 1W )

= (−a1W )(1W ⊕ (−1W )) , since ⊕ is commutative

= (−a1W )(a1W ) = − a21W ,

so 2a2(1W ) = W0 . Since a2 6= 0 and dimR W > 0, 2a2 = 0. This implies that

charR = 2.

Now, the proof of required lemmas are complete. The following theorem is our

main result.

Theorem 4.3.3. If the semigroup PLR(V,W ) admits the structure of an AC

semiring with zero, then either

(i) dimR W = 0 or

(ii) dimR W = 1 and charR = 2.

Proof. Assume that PLR(V,W ) admits the structure of an AC semiring with

zero. Then there is an operation ⊕ on PL0
R(V,W ) such that (PL0

R(V,W ),⊕, ·)

is an AC semiring with zero. Suppose on the contrary that dimR W > 1 or

(dimR W > 0 and charR 6= 2). By Lemma 4.3.2, dimR W > 0 and charR = 2

are impossible. Therefore dimR W > 1. It is obtained that PLR(V,W ) does not

have a zero and we have linearly independent elements u,w ∈ W. It is clear that






u

u






⊕







u

w






∈ PL0

R(V,W ). Now, we consider 3 cases as follow.
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Case 1:







u

u






⊕







u

w






= 0. By Lemma 4.3.1 (ii),

0 =













u

u






⊕







u

w












W0 =







u

0






⊕







u

0






=







u

0






∈ PLR(V,W ),

a contradiction.

Case 2:







u

u






⊕







u

w






= {0}0. By Lemma 4.3.1 (ii),

{0}0 = {0}0W0 =













u

u






⊕







u

w












W0 =







u

0






⊕







u

0






=







u

0






,

a contradiction.

Case 3:







u

u






⊕







u

w






= α for some α ∈ PLR(V,W ) with Dom α 6= { 0 }.

Since






u

u



















u

u






⊕







u

w












=







u

u






⊕







u

w






,

we have







u

u






α = α. Then Dom α = Dom













u

u






α






⊆ Dom







u

u






= 〈u〉, and

thus dimR Dom α ≤ dimR〈u〉 = 1. But Dom α 6= {0}, so Dom α = 〈u〉. Also,

since

α







u w

w u






=













u

u






⊕







u

w



















u w

w u







=







u

w






⊕







u

u







=







u

u






⊕







u

w






, since ⊕ is commutative

= α,
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we have Im α ⊆ 〈u,w〉 . Then there are a, b ∈ R such that uα = au + bw. This

implies that α =







u

au + bw






. Therefore







u

au + bw






= α = α







u w

w u






=







u

au + bw













u w

w u






=







u

aw + bu






.

Since u and w are linearly independent, a = b . Thus α =







u

a(u + w)






. Now,

we have






u

u






⊕







u

w






=







u

a(u + w)






. (1)

Consequently,







u

u + w






⊕







u

u + w






=













u

u






⊕







u

w



















u w

u + w u + w







=







u

a(u + w)













u w

u + w u + w






from (1)

=







u

a(u + w + u + w)







=







u

2a(u + w)







=







u

0






by Lemma 4.3.2. (2)

Since u and w are linearly independent, u+w 6= 0, and so Ker







u

u + w






= {0} .
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Hence

{0}0 ⊕ {0}0 =







u

u + w






{0}0 ⊕







u

u + w






{0}0

=













u

u + w






⊕







u

u + w












{0}0

=







u

0






{0}0 from (2)

=







u

0







which contradicts to Lemma 4.3.1.

Therefore the main theorem is complete.

Corollary 4.3.4. If PLR(V,W ) admits a ring structure, then dimR W = 0.

Proof. Assume that (PL0
R(V,W ),⊕, ·) is a ring. Suppose on the contrary that

dimR W > 0. By Theorem 4.3.3, dimR W = 1 and charR = 2. By Lemma 4.3.1

(ii),

W0 ⊕ W0 = W0.

Since (PL0
R(V,W ),⊕) is a group, W0 is a zero of PLR(V,W ), a contradiction.

If V = W , then we have PLR(V ) = PLR(V,W ). Therefore the following

corollary is obtained directly from Theorem 4.3.3.

Corollary 4.3.5. ([2]) If PLR(V ) admits the structure of an AC semiring with

zero, then either

(i) dimR V = 0 or

(ii) dimR V = 1 and charR = 2.
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