Chapter 3
Methodology of Fitting

An appropriate transport equation for particles released from the Sun (as

,r d by the finite-difference method.

@etary Transport

The simulation p ers the effects of pitch-angle scattering,

mentioned in the previous chapter)

3.1 Simulation

(2 37). The distribution

osine of the pitch-angle), z

, and p (the momentum

of a particle). We split therig £ Hand sidesof the transport equation (2.37)

into individual terms and study the ev r-::; of the particle distribution from

--".-v"’.-e.»'
F(t, p, z,p) to F(t + Odhys 2,p)

1. We study ?3 : : #\“ tch-angle scattering,

focusing, and differentia convectlon from u to p + Ap.*The p-flux is given by

s (A NBASNEIRT -
awwammwﬁwﬁﬁaﬂ

(p(u) 8 vsecz,b) F(t, p, z,p)- (3.1)

We constrain ¢(u = %1) to zero, so that S,(u = £1) = 0 and particles

will not flow or diffuse into the unphysical region |u| > 1. The numerical method
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we used changed the distribution function, F', according to

Flu) « F(u) - (%) [Su(lf'+Aﬂ/2)A_“Su(lf'— Auﬂ)} (3.2)

At [Sulp+ Ap/2) — Su(p — Ap/2)
Fl)+ (71—5> [ Ap

where n is the integer number of times the process is repeated. The error of this

] CF@, (33

(3.4).

(35)
Td
We get
9 Rt i, ) (36)
and )

pF (tt, K, 2,p) = pe- s z,p@" ), (3.7)
e T Y S W
QUAENILET e e it

one z-grid point to another. From the equation for streaming an convection of
particles, i.e., the transport equation with only those terms on the right hand

side,

OF(t,p,2,p) 9
ot = _EZ'IJ"UF(ta Hy zap)_—a—z S 2 22_ vstGC’lpF(t, Hy z,p). (38)
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In previous work, when the distribution function was moved from one z-
grid point to another in integral increments of Az. However, the method yielded
an irregular distribution function and required a very small Az, so it used a long
run time. Now Nutaro et al. (2001) have developed a generalized total variation

diminishing (TVD) method for this step. We use the generalized TVD method

(3.9)

where | - e
UV = K sy K\k D) (3.10)
is the spatial velocity of iclés. ] hie TVD methodis an efficient numerical
: P (#,;. \
method that limits the a nungieric .‘\ \ ind avoids oscillations by
' S AZE
not creating any new mini naim 2 gi \ ep. A TVD method was
first presented by Harten 1988. Thep: ncip) TVD is

(3.11)

T C,—

F <

in which T'V is the total ﬁia ; by TV = [ |0F/0z|dz.

This expression has a numgrical (finite dlffe@ce) form of TV (F™) =) . |Ffy, —

rr, where + endf il Eb RN

The usual‘“FVD methods limit the Courant number, 7 szAt/ Az, to

o <R ARG LD W UL B i
which may lead to improved accuracy, although the condition of Az > v,At may
decrease the speed of the algorithm. Therefore, we want to able to set v > 1
and vary v with position, too. This was the motivation for the generalized TVD

algorithm (Nutaro et al. 2001).
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We consider that the distribution function, F', is first moved by an integral
number of steps, g (e.g., F' is moved from point [ — g to [) and then we consider
the remainder by defining 7' =y — g, with 0 <+ <1, so

At
Fi=F_4- Az [Szl+1/2 - 11—1/2] ) (3.12)

where S}, , is the flux of particles from

rid point [ to [ + 1 due to 7. S,+1/2
is defined as 'i

Stery2 = Vigry2Fi-g Bt — Fi,) o1, (3.13)

where ¢, is the flux li he consistency of the
generalized TVD metho@ ing Taylor geries expansions. The convergence
can be to first or second

These main steps an ting the transport of solar
energetic particles in the program:/=win 27 ; am will get the initial values

for simulating the event of interest fron lculate basic variables and

call other files (each ‘i'#------—-—-----_-_; _____ At ¢ '“““‘\ 51 ort equation) to run
for specific cases. m m
We compile and link.this program by calling other files. Some files have

ST DR TR e —

interest. The simlﬁmation gives the pasticle distribution as a function of time and
energy foa wcr] @ ﬂﬂl@m&jﬂm f] I] ﬂ EI f] a E]

We examine the characteristics of the energetlc heavy ions from solar
events of interest by comparing results from this simulation program with the
data from spacecraft. We use techniques for data fitting, including the linear

least squares method, as we will discuss in the next section.
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3.2 Least Squares Fitting

The simulation gives the particle distribution function vs. time. The
spacecraft or ground-based data include the intensity and/or anisotropy of parti-
cles vs. time and their uncertainties. We use the techniques of linear least squares

and a piecewise linear injection function, along with our transport simulation re-

sults and optimization of the injection onse duration, to fit the data. This

type of problem can be called.2 inversi e choose a general, linear

] (3.14)

where X;(z),..., Xm(z {ax} are the parame-

ters to be fitted and M i . The x? value expresses

ac.v; 3 \
the difference between the i thie op T ogram and the spacecraft
(3.15)
pacecraft o@round-based data, o; is
the error of the it ﬁ eE ﬁaﬁeﬁﬁe{ ber of data pomts We minimize
x? by adjusting "l 1 the appropriate
injection mitah' rﬁw u ﬁﬂ édglunctlon as
discussed i néx eﬁﬁ) nmeg ngc eﬂﬂl f the data

(0;), as discussed in section (3.4). We find the parameters that give the best fit

where (z;, y;) is the ith @a point fro

to the data by setting:

o
aal
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o

Bog |

0x?

0L 3.16
%, 0 (3.16)

From equation (3.12), we get

0= -, M. (3.17)
=1
Finally, we get the va j } [from solving the matrix equation
(3.18)
in which
(3.19)
and
(3.20)
If the minimumax“/d. Fis close ¢ M—’ﬁ’ good fit, where d.f.
-V_ | X .
is the number of degreeg . r[j data points minus the
jl
number of parameters. I )G? /d.f. is much lar‘gjr than 1, this indicated a poor fit,
=9

w i <R B

too large error estitnates (03).

Tﬂ qu afﬁ[ﬂ w %J%g’%nﬁ}i%&l {;%ﬁ Bstrlbutlon
function vs. tlme for various A values that result from a delta-function (instanta-
neous) injection. We thus know the response function for the injection near the
Sun at a single instant in time. We model the injection function versus time near

the Sun as a piecewise linear function.
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3.3 Piecewise Linear Injection Function

We use specially developed techniques to deconvolve the effects of inter-
planetary transport for determining the injection profile near the Sun, in which
the best-fit values with the appropriate mean free path, ), together give the

injection function. We have an “inversion problem,”

(3.21)
where I(t') is the injection r.the Sun, G(t — t') is the
Green’s function, or the ction, and R(t) is the
response function, i.e., if T an ) ‘ mea ared by an observer near
the Earth. .

Our method find njection function, I(t'),
for a set of “joint times near function is a linear
combination of triangular funétions{Mai hew tlal. 1999, Pinsky 1998, Atkinson
1989), I;(t'). The proﬁle of each 4rit lar function starts from no injection at

declining linearly to 0 a | he en mﬂs the start time of the

next function, and the endstime becomes the peak time of the next function, as

seenlnFlgure(i”ﬂ)uEIq Wﬂﬂﬁ“ﬂ’]ni

We convolute G(t — t'), the transport simulation result for an instanta-
neous ng i b L) g i heorbd ol QR ) i i
(3.1b) due to each triangular injection. Thus the total response function, R(t),
is a linear combination of {R;(t)} (Figure 3.1d). Because the transport equation
(2.37) is linear in F'(t, 41, z, p), the response function, R(t), that corresponds to a

linear combination of triangular injection functions, I(t') = Y., a:fi(t'), (Figure



24

1.5 ; i SR R T S PRI R ¢ 03 o G THE G WD e 2 S5 ML TN G LR

Protons Injected Near Sun (1026 sr=! s=! MeV~1)

1.0

0 7‘.;;,— ! ;'.-'5 et
1300 00 D ~=0000 0500

UT, ‘I! July 20 981 July ;; July 21

‘a o
Figure 3.1: The de: %0&!1%? 1ﬂ|ﬂo§mﬂﬂmﬁglnjection function
near the Sun: a) ghows the triangutar injecti les, ows the response
functions, which result from the contolution of the Green’s fungtion with each

AR A RO YL
profile, and:d) is t edr ‘combi id line s ctions (dashed

lines).
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3.1c), is the same linear combination of each response function, R(t) =Y, a:Ri(1)
(Figure 3.1d). Finally, we find the best piecewise linear injection function, I(t'),
from the set of coefficients, {a;}, which give the best-fit result between R(t) and
the spacecraft or ground-based data. |

These relations concern our technique for fitting in that we can use linear

least-squares fitting to find the linear ination that minimizes the x? value
between R(t) and the data. N p n I (') has a peak of value
of 1, which is multiplied byt c1ent a; is thus the value
of the injection function at ‘

We use the result; ‘ nu ation pr he spacecraft data and
the set of joint times (see & .
If the starting time poin of the % . Atting tion is not the same as
the start time of the rise tofvasd & cak’ in“d a, then we can shift the
start time in the file of the sg

technique to find the ,, ima inction for a given set

¢l

of joint times. We will iscus

I

times in the following sec 1on

3.4 Auto%%gjﬁlmanﬁ mtﬂeﬂ[ﬂiitlon Func-
W‘*‘m‘%’ﬁ?ﬁ%ﬁfﬁﬁﬁ"ﬁ HEE

In t e previous section we described a deconvolution technique to find

thod to set the joint

the optimal piecewise linear injection function for a given set of “joint” times.
In previous work, one would input the set of joint times for the piecewise linear

injection function. In the present work, we have developed a new technique for
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setting the joint times, as well as an automatic truncation of the piecewise linear
injection function.

We set the joint times of the piecewise linear injection function to be

tO = tflare + 6 (3.22)

and
(3.23)
where dt is the time spacing of &he-data; and (dy€) are optimized automatically,
with a simple regularly space / Attern Tﬁn od first for a coarse and
then a finer spacing. No 3t f5th __; . time \ jection, and we set the
(later times) within | ;  the first value beyond

the second half—maximﬁ afpoint JO £ lata. Thi 1ethod is more systematic,
flexible, and automated tham'that | f;: Khumlumlert, and Youngdee (1998).

The truncation algorithir th 1573 ted in the present work was
described by Ruffolo, Khum d Youngdee (1998) who manually set

the joint times in the Guaes—fittine—based-on-the 4~ value between the
Vi i

simulation results and tﬁ co f joint times, i.e., given

¢ and € values, the least squares fitting yielis’the coefficients a; representing the

T

truncate by removmg the last joint time if any of the fitting coeffwynts {a;}, are
nesive il ﬂhﬁlmmm ol k] in 24 (.. o
s1gn1ﬁcantly different from zero). Then we cut the last joint time and refit the
data again.

From the automatic fitting program, we get the fitting result between

the spacecraft or ground-based data and the convolution of transport simulation
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Figure 3.2: Example of joint ti _‘ etion, determined by € and
3 . \\
results with the best-fit injécti : & o\ ean free path. The fitting

results give the details abo ¢,°0: {a;} and their uncertainties, determining

the injection function.

3.5 Proceduze f £
7 )

The author i erénce method to solve the

transport equation (Ruffokp 1995). We used the simulation program for fitting

L o

the events that welthose to study, e.g, changing some defined values or modifying
wome po PR HPEN FTU K SR AE) 2}

The results from the simulation program are the particle intensity and/or
anisotropy for various mean free paths that result from a delta-function injection.
We thus know the response function for an injection near the Sun at a single

instant in time. The injection function versus time near the Sun is modeled as a
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piecewise linear function, as a sum of triangular functions (Ruffolo, Khumlumlert,
and Youngdee, 1998). The output from the simulation program consist of 2
columns. The first column is time in minutes and the second column is the
intensity of particles in units of 10 sr—'s"'MeV~". We want to fit the simulation

results to the spacecraft or ground-based data by finding the optimal injection

function. The data file consist of the first column is the time in

minutes, the second column is th y X intensity of the particles
- . _d 4

and the third column is th (dlwore detail in the next

chapter). We must input 5 for mated fitting program

solar event.
2. The estimated st

3. The time at half ipgarrafter; cak of the spacecraft data.

% D % ’ : ‘

The time 1n_terval wid _g .1.« 74

The start valiefore_________

Fi
The Ae value$
. The number o values

e ﬁﬁﬁ%%ﬁﬂﬁﬂﬂﬂﬂi

. The staﬂ value for 4.

QRGN T NM’TW]EH@EI

11. The number of § values.

© ® N o o e

We used the output of the simulation, representing the response to the
delta-function injection for each mean free path, convoluted with each automati-

cally truncated and optimized triangular injection function to produce the fitting
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Data Simulation

'

The automatically truncated and
optimized triangular injection function

| [

Linear Least Squa

~aan
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Figure 3.3 #F1ow:chart of theffitting method
4 |1 [y \
.éﬁ‘f - ,‘
function for the linear least squargs‘y AT, > program fits the spacecraft or

ground-based data with an 2 ination of fitting functions to

find the coefficients {a deseribe-the-tRieehon-ot -=i.37‘ ar energetic particles
at each joint time. Fmalg we g 1neﬁ injection and x? value
for each mean free path. The.fitting result t&gt has the minimum x? is the best

. Ve U B N o i

flow chart of Flgure 3.3.

v@aﬂ&ﬂeﬁ\ﬁfﬂeﬁtﬂl&%} QEITTEY T
curve of 3 pomts (A, x?) from the 3 best fits performed We identify A at the
minimum x? among the fits performed (Asi;). We get the minimum x? value from
the parabolic curve A vs. x?, and we set A at the minimum point of the graph

t0 be Apes; and also derive the x? value (XZ.s) for Avese. We find A by finding
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A+ A) which have the x? value in the parabolic fit equal to the Xpe, +1.

We find the duration of the injection of solar energetic particles from the
fitting results. 'fhe fitting results report the injection coefficient a; at each joint
time of the piecewise linear injection function. We express the injection duration
of the event in terms of the full width at half maximum of the injection function.
From this fitting method, we obtain our €s te of the mean free path, Apest =AA,

: a file comparing the best-
e

fit response function and the"spacecraft of grov d data vs. time and their

uncertainties. Examples n, resul en in Appendix C.
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