CHAPTER II ## **PRELIMINARIES** Let S be a semigroup. If S contains an element 1 with the property that for all x in S, $$x1 = 1x = x,$$ then S is called a *monoid* and 1 is said to be the *identity element* of S. An element e of S is an *idempotent* of S if $e^2 = e$. The set of all idempotents of S is denoted by E(S). A nonempty subset T of S is called a *subsemigroup* of S if it is closed with respect to the operation on S. Let X be a set. A partial transformation of X is a map of a subset of X into X. The empty partial transformation is the map with empty domain. The set $\mathcal{P}(X)$ consisting of all partial transformations of X is a semigroup under composition acting on the right. Note that, for any $\alpha, \beta \in \mathcal{P}(X)$, $$Dom(\alpha\beta) = [Im\alpha \cap Dom\beta]\alpha^{-1},$$ $$\operatorname{Im}(\alpha\beta) = [\operatorname{Im}\alpha \cap \operatorname{Dom}\beta]\beta,$$ and $$\chi(\alpha\beta) = (\chi\alpha)\beta$$ for all $\chi \in \text{Dom}(\alpha\beta)$. The set $\mathcal{I}(X)$ consisting of all 1-1 partial transformations of X is a subsemigroup of $\mathcal{P}(X)$. It can be shown that $$E(\mathcal{I}(X)) = \{ 1_Y \mid Y \subseteq X \}$$ where 1_Y denotes the identity map on Y. An idea of great importance in semigroup theory is that of an *inverse* of an element. If a is an element of a semigroup, then we say that a' is an *inverse* of a if $$aa'a = a$$ and $a'aa' = a'$. In general, an element a may have more than one inverse. For example, let $X = \{1, 2, 3\}$. Considering $$\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 3 \end{pmatrix}, \quad \beta = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \quad \text{and} \quad \gamma = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$ which are elements in $\mathcal{P}(X)$, we have $$\alpha\beta\alpha = \alpha$$, $\beta\alpha\beta = \beta$, $\alpha\gamma\alpha = \alpha$ and $\gamma\alpha\gamma = \gamma$. This implies that β and γ are inverses of α . For a semigroup S, if each element a of S has a unique inverse, then we say that S is an *inverse semigroup*. The unique inverse of a is denoted by a^{-1} . Note here that, if a has an inverse, then $aa^{-1}, a^{-1}a \in E(S)$. A typical example of an inverse semigroup is $\mathcal{I}(X)$, the semigroup of all 1-1 partial transformations of X mentioned before. Let S and T be semigroups. A map $\phi: S \to T$ is said to be a homomorphism if $\phi(xy) = \phi(x)\phi(y)$ for all $x,y \in S$. An isomorphism from S to T is a homomorphism which is both surjective and injective. A homomorphism ϕ from a monoid M to a monoid M' is a semigroup homomorphism ϕ from M to M' such that $\phi(1) = 1'$. A congruence ρ on a semigroup S is an equivalence on S which is both left and right compatible; that is, for every $x, y, z \in S$, $x \rho y$ implies $zx \rho zy$ and $xz \rho yz$. Let ρ be a congruence on a semigroup S. Then the set $S/\rho = \{x\rho \mid x \in S\}$ is a semigroup under the operation defined by $(x\rho)(y\rho) = (xy)\rho$ for every $x, y \in S$ and it is called a *quotient* of S by ρ . Moreover, if S is a monoid, then so is S/ρ . Let S and T be semigroups and $\phi: S \to T$ a homomorphism. Then the relation on S defined by $\rho = \phi \circ \phi^{-1}$; that is, $$x \rho y \Leftrightarrow x \phi = y \phi$$ for all $x, y \in S$ is a congruence on S and $S/\rho \cong \text{Im } \phi$ by $x\rho \mapsto x\phi$. The relation ρ defined above is called the *kernel* of ϕ and it may be written by $Ker\phi$. J.A. Green introduced five equivalences which have played a fundamental role in the development of semigroup theory. In an arbitrary semigroup S and let $a, b \in S$, $$a\mathcal{L}b \Leftrightarrow S^1a = S^1b,$$ $a\mathcal{R}b \Leftrightarrow aS^1 = bS^1,$ and $a\mathcal{J}b \Leftrightarrow S^1aS^1 = S^1bS^1$ where S^1 is the semigroup S with an identity adjoined if necessary. It follows immediately that $$\mathcal{L} \subseteq \mathcal{J}$$ and $\mathcal{R} \subseteq \mathcal{J}$. We define \mathcal{H} as the intersection of \mathcal{L} and \mathcal{R} , and \mathcal{D} as the join of \mathcal{L} and \mathcal{R} ; that is, the smallest equivalence containing both \mathcal{L} and \mathcal{R} . Hence $\mathcal{D} \subseteq \mathcal{J}$. For $a \in S$, we denote the equivalence classes of a with respect to $\mathcal{L}, \mathcal{R}, \mathcal{J}, \mathcal{H}$ and \mathcal{D} by L_a, R_a, J_a, H_a and D_a , respectively. There is a natural partial ordering on the sets of classes of the relations $\mathcal{L}, \mathcal{R}, \mathcal{J}$ and \mathcal{H} . For example, $R_a \leq R_b$ if and only if $aS^1 \subseteq bS^1$, defines a partial ordering on the set of \mathcal{R} - classes. For the global description of S, the partial ordering on the set of \mathcal{I} - classes defined by $J_a \leq J_b$ if and only if $S^1aS^1 \subseteq S^1bS^1$ is the most important. We call the partially ordered set of \mathcal{I} - classes of S the frame of S. It is well-known that in a finite semigroup, $\mathcal{D} = \mathcal{I}$. Thus finite semigroups can be described in terms of their frame and of the local structure of the various \mathcal{D} - classes. However, by the definition of \mathcal{D} , $$a\mathcal{D}b \Leftrightarrow R_a \cap L_b \neq \varnothing \Leftrightarrow L_a \cap R_b \neq \varnothing.$$ Consequently, a \mathcal{D} -class D of S can be represented by the following egg-box diagram, in which each row represents an \mathcal{R} - class, each column represents an \mathcal{L} - class, and each cell represents an \mathcal{H} - class. | | | | L_a | | | |------------------|-----|---------|-------------|-------|-----| | | C | | | | | | | | 4 | | | | | $R_a\Big\{\Big $ | | | h , H_a | U | | | | ର ନ | rei ane | เทรีย | Meins | 15 | | | 91 | D O ITE | 7 7 1 0 | 10 11 | 1 0 | In this research, we focus on \mathcal{D} - classes of a finite subsemigroup of $\mathcal{I}(X)$. For this purpose, we characterize \mathcal{L} and \mathcal{R} equivalences on such a semigroup in term of domains and images of elements. Theorem 2.1. Let T be a finite inverse subsemigroup of $\mathcal{I}(X)$ and $\alpha, \beta \in T$. Then (i) $\alpha \mathcal{L}\beta$ if and only if Im $\alpha = \text{Im }\beta$ (ii) $\alpha \mathcal{R} \beta$ if and only if $Dom \alpha = Dom \beta$. *Proof.* Before proving the theorem, we will show that $$\beta^{-1}\beta = 1_{\text{Im}\beta}$$ and $\beta\beta^{-1} = 1_{\text{Dom}\beta}$. Since $\beta^{-1}\beta$ and $\beta\beta^{-1}$ are idempotents, they are identity maps on their domains (which are the same as images). Thus it remains to show that Im $$\beta^{-1}\beta = \text{Im }\beta$$ and Dom $\beta\beta^{-1} = \text{Dom }\beta$. Since $\beta\beta^{-1}\beta = \beta$, Im $\beta \subseteq \text{Dom } \beta^{-1}\beta$ and Im $\beta^{-1}\beta \subseteq \text{Im } \beta$. Hence $$|\operatorname{Im} \beta| \le |\operatorname{Dom} \beta^{-1}\beta| = |\operatorname{Im} \beta^{-1}\beta| \le |\operatorname{Im} \beta|.$$ Thus $|\operatorname{Im} \beta^{-1}\beta| = |\operatorname{Im} \beta|$. Since $\operatorname{Im} \beta^{-1}\beta \subseteq \operatorname{Im} \beta$ and $|\operatorname{Im} \beta^{-1}\beta| = |\operatorname{Im} \beta|$, we have $\operatorname{Im} \beta^{-1}\beta = \operatorname{Im} \beta$. It follows from $(\beta\beta^{-1})\beta = \beta$ that $\operatorname{Dom} \beta\beta^{-1} = \operatorname{Dom} \beta$. (i): It suffices to show that $\operatorname{Im} \alpha \subseteq \operatorname{Im} \beta$ if and only if there is $\gamma \in T$ such that $\alpha = \gamma \beta$. Assume that $\operatorname{Im} \alpha \subseteq \operatorname{Im} \beta$. Set $\gamma = \alpha \beta^{-1}$. Then $\gamma \in T$ and $$\gamma\beta = (\alpha\beta^{-1})\beta = \alpha(\beta^{-1}\beta) = \alpha 1_{\text{Im }\beta} = \alpha.$$ Conversely, assume that there exists $\gamma \in T$ such that $\gamma \beta = \alpha$. Then $$\operatorname{Im} \alpha = \operatorname{Im} \gamma \beta \subseteq \operatorname{Im} \beta.$$ (ii): It suffices to show that Dom $\alpha \subseteq \text{Dom } \beta$ if and only if there is $\gamma \in T$ such that $\alpha = \beta \gamma$. Assume that Dom $\alpha \subseteq \text{Dom } \beta$. Set $\gamma = \beta^{-1}\alpha$. Then $\gamma \in T$ and $$\beta \gamma = \beta(\beta^{-1})\alpha = (\beta\beta^{-1})\alpha = 1_{\text{Dom }\beta}\alpha = \alpha.$$ Conversely, assume that there exists $\gamma \in T$ such that $\beta \gamma = \alpha$. Then $$\mathrm{Dom}\ \alpha=\mathrm{Dom}\ \beta\gamma\ \subseteq \mathrm{Dom}\ \beta.$$ As a consequence of Theorem 2.1, if we denote the common cardinality of Dom α and Im α for any α in $\mathcal{I}(X)$ by rank α , then the next corollary follows immediately. Corollary 2.2. Let T be a finite inverse subsemigroup of $\mathcal{I}(X)$ and $\alpha, \beta \in T$. If $\alpha \mathcal{D}\beta$, then rank $\alpha = \operatorname{rank} \beta$. An alphabet A is a nonempty set whose elements are called *letters*. For each n, let A^n be the set of all sequences, called *words*, of length n; that is $$A^n = \{a_1 a_2 ... a_n \mid a_1, a_2, ..., a_n \in A\}.$$ Let $A^+ = \bigcup_{n=1}^{\infty} A^n$ and $A^* = A^+ \bigcup \{\varepsilon\}$ where ε denotes the empty sequence. Define an operation (concatenation) on A^* by $$(a_1a_2...a_n)(b_1b_2...b_m) = a_1a_2...a_nb_1b_2...b_m.$$ Then A^* becomes a monoid (with identity ε), called the *free monoid* on the set A. A non-empty subset of A^* is called a *language* of A^* . Let $u, v \in A^+$. Then u is called a *left* (resp. right) factor of the word w in A^+ if w = uv (resp. w = vu). Let M be a moniod with identity 1. An M- automaton $\mathfrak A$ is a pair (S, f), where S is a non-empty set whose elements are called *states* and $f: S \times M \longrightarrow S$ is a mapping satisfying: (a) $$f(s,1) = s$$ for every $s \in S$ and (b) f(f(s,m),m')=f(s,mm') for every $s\in S$ and $m,m'\in M$. f is called the transition function of \mathfrak{A} . We usually denote f(s,u) by su. Let $\mathfrak{A}=(S,f)$ be an M- automaton. The mapping $\tau_{\mathfrak{A}}:M\to T(S)$ from M into the monoid of all transformations on S defined by $$s\tau_{\mathfrak{A}}(u) = f(s, u)$$ for all $s \in S$ and $u \in M$ is a monoid homomorphism. We denote $\tau_{\mathfrak{A}}$ by τ when there is no chance of ambiguity. $M/Ker\tau$ is a monoid, called the *transition monoid* of \mathfrak{A} where $$Ker\tau = \{(x, y) \in M \times M \mid s\tau(x) = s\tau(y) \text{ for all } s \in S\}.$$ We denote $M/Ker\tau$ by $T(\mathfrak{A})$. Note that $T(\mathfrak{A})$ is isomorphic to $\tau(M)$. For A^* -automaton $\mathfrak{A} = (S, f)$ with A^* being the free monoid on the alphabet A, the transition function f is entirely known when f is defined on $S \times A$. An A^* - automaton $\mathfrak{A} = (S, f)$ is called *monogenic* if there exists $s_0 \in S$ such that $f(s_0, A^*) = S$ (s_0 is called a *generator* of \mathfrak{A}). Monogenic A^* -automata are directly related to right congruence on A^* . If $\mathfrak{A}=(S,f)$ is an A^* -automaton generated by $s_0\in S$, we define $\gamma(\mathfrak{A})$ as follows: $$\gamma(\mathfrak{A}) = \{ (u, v) \in A^* \times A^* \mid f(s_0, u) = f(s_0, v) \}.$$ It is clear that $\gamma(\mathfrak{A})$ is a right congruence on A^* . Conversely, if ρ is a right congruence on A^* , denoting by \overline{w} the class of w modulo ρ , we define $\alpha(\rho)$, the automaton of ρ , by: $$\alpha(\rho) = (A^*/\rho, f) \quad \text{ with } \ f(\overline{w}, a) = \overline{wa} \ \text{ for all } w, a \in A^*.$$ A language $L \subseteq A^*$ is called *recognizable* if there exists an A^* -automaton $\mathfrak{A} = (S, f)$, with S finite, a state $s_0 \in S$ and a subset T of S such that $$L = \{ w \in A^* \mid f(s_0, w) \in T \}.$$ We also say that the finite A^* -automaton $\mathfrak A$ recognize L, or that L is recognized by $\mathfrak A$. We can show that L is recognizable if and only if L is a union of classes of a right congruence on A^* of finite index. Given any subset L of A^* , there is a largest right congruence $P_L^{(r)}$ for which L is a union of classes. It is defined by $$P_L^{(r)} = \{ (u, v) \in A^* \times A^* \mid uw \in L \Leftrightarrow vw \in L \text{ for every } w \in A^* \}.$$ Thus the A^* -automaton $\alpha(P_L^{(r)})=\mathfrak{A}$ is a minimal automaton recognizing L. It is called the *minimal automaton* of L. Let L be language of A^* . The syntactic congruence P_L is defined by $$P_L = \{(u, v) \in A^* \times A^* \mid xuy \in L \Leftrightarrow xvy \in L \text{ for all } x, y \in A^*\}.$$ The quotient monoid A^*/P_L is called the *syntactic monoid* of L, denoted by M(L). In addition, M(L) is isomorphic to the transition monoid of the minimal automaton $\alpha(P_L^{(r)})$ of L. Thus we can consider M(L) as the transition monoid of the minimal automaton of L. In this thesis, we are interested in a special type of language, a prefix code. A subset C of the monoid A^* is called a *code* if, for every $m, n \ge 1$ and $c_1, c_2, ..., c_m, c_1', c_2', ..., c_n' \in C$, $$c_1c_2...c_m = c_1^{'}c_2^{'}...c_n^{'} \Rightarrow m = n \text{ and } c_i = c_i^{'} \text{ for all } i = 1, 2, ..., m.$$ A code C over the alphabet A is called a *prefix code* (resp. suffix code) if for every $u, v \in A^*$, uv and $u \in C$ implies $v = \varepsilon$ (resp. $u, v \in A^*$, uv and $v \in C$ implies $u = \varepsilon$); that is, a code C is a prefix code if no word in C is a proper left factor of other word of C. C is a biprefix code if it is both prefix and suffix. In [5], P. Udomkavanich studied a prefix code whose syntactic monoid is an inverse semigroup. Such a code was proved to be biprefix. Thus it is called an inverse biprefix code. The code $\{a^2, ab, b^2\}$ is an example of biprefix code on the alphabet $\{a, b\}$. The code $\{a^2, aba, ab^2, b\}$ is prefix which is not suffix. Defining the relation \leq_l on A^* by $u \leq_l v$ if v is a left factor of u, we see that \leq_l is a partial ordering on A^* . Hence $C \subseteq A^*$ is a prefix code if and only if for every $c \in C$, $u \in A^*$; $u \leq_l c$ and $u \neq c$ implies $u \in C$. Thus to obtain a prefix code, it suffices to select a subset C of A^* that will be endpoints for the relation \leq_l . For example the falling tree below gives the prefix code $C = \{ a^2, aba, ab^2, b \}$ over $\{a, b\}$. Let C be a prefix code over an alphabet A. To construct $P_{C^*}^{(r)}$, we denote by s the class of $P_{C^*}^{(r)}$ consisting of all words $u \in A^*$ such that $uA^* \cap C^* = \emptyset$. If $uA^* \cap C^* \neq \emptyset$, there exists a unique $c \in C^*$ and $z \in A^*$ such that u = cz and z is a proper left factor of a word in C (eventually $z = \varepsilon$). The prefix property of C implies $(u, z) \in P_{C^*}^{(r)}$ and for any two proper left factor z_1, z_2 of words in C we have $(u, z) \in P_{C^*}^{(r)}$ if and only if $(u, z) \in P_C^{(r)}$. Finally, for every $c \in C$, $(c, \varepsilon) \in P_{C^*}^{(r)}$. It follows that the minimal automaton of C^* is obtained by drawing the tree rep- resenting words in C. Then we label the top of the tree and the end points with $\mathbf{1}$, and intermediate points using the same name, if they have identical subtrees. **Example 2.1.** Let $A = \{a, b, c\}$ and $C = \{abcab, ba, bc, ca, c^2\}$ be a prefix code. The tree representing C is as shown: The minimal automaton of C^* has six states, denoted by 1, 2, 3, 4, 5 and 6. We have $$f(1,a) = 4$$, $f(1,b) = 3$, $f(1,c) = 3$, $f(2,a) = 5$, $f(4,b) = 6$, $f(3,c) = 1$, $f(3,a) = 1$, $f(5,b) = 1$ and $f(6,c) = 2$ The corresponding syntactic monoid $M(C^*)$ is generated by $$\tau(a) = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 1 \end{pmatrix} \qquad \tau(b) = \begin{pmatrix} 1 & 4 & 5 \\ 3 & 6 & 1 \end{pmatrix} \quad \text{and} \quad \tau(c) = \begin{pmatrix} 1 & 3 & 6 \\ 3 & 1 & 2 \end{pmatrix}$$ In the tree representation of C^* , a node labelled s is called the node associated with a left factor x of a word in C, if x is a path joining the top of the tree and the nodes s. Thus the nodes associated with x and x' are labelled with the same name if $x^{-1}C=(x')^{-1}C$, where $u^{-1}C=\{\ w\in A^*\mid uw\in C\ \}$.