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CHAPTER II

THEORETICAL CONSIDERATION

It has be'en\stateé eariier that the msin problem of this research
is to generate the arrivals and services of vehicles ;t the fntersection.
It is the concept of traffic situation that the wvehicles are random run
fnto the intersection with various form of grebsbili:y distributiors,
and there is tendency to be served by a quite specific form. It has
been accepted in the traffic £low rheoxy that the generation of some
continuous and discrete dlsttibﬁ:.ion functions are close to the real-
world of traffic flow. They have been obsexved and used for applying
fn simulatfons, especially in generation of tha ar‘:iﬁe!sﬂ and servicss of
vehicles. It is very WEsnﬁ to know that every generation for such
7 d-iséiribuiionria based en the ge:;étatér of random oumbers. It is Aheées;ia:;
since it is the control functicn of the gene:at_iﬁ in the computer program-
ming. This has already been prepaved for using in many systems of digital
computer. Because this research is astudied under the IEM 1130 computing
system, so & speciffc subroutine for generating the random numbers, called
RANDU fs going to be used, Some specificacions and detail about the usage
of this subroutine are listed in APPENDIX B.

The general ideas dnd techniques of gemerating the probability
distridutions which are to be used in the raegearch are explained in the

following section.
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Continuous Probability Distributions

. the Uniform Distribution Perhaps the stuplest centinucus probabf=
ity 6en9ity funetion is the one that i{s constont over the interval (s,b)
and is zero qthe:ﬁi:s'ex.L This density function defines what is knawn as
the uniform or rectangular clistribnti&én.; The uniform distribution mny
arise in the study of rounding errors when measurements are fecorded to &
certain accuracy, _E‘or example, if méamrements of wefghts are recorded
to the neurest gram, one might assuma that the difference in grams between
the actual weight and the Fecorded ueight is some number between +0.5 and
40.5 and that the error ig uniforuly diseribuced:throughout this interval.
The principal value of the ugi form diétﬁbutim for simulation techniques

lies in its simplicity and the fact that it can be used to simulste random

variables from almost any kind of probability distribution.
Mathematically the uniform density function is -’d?efineé as follows:

! - aslx<h , - {2.1)
£x) = { b=aa
o otheruise

Here X is & randon veriable defined over the interval (a,b). The graph of

the uniform distribution is fllustrated by Fig. 2-1.
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The cumulative distribution Emctim. P(x) for a unifomly_

distributed randec varfable X is

7 =
Flx) / ! g o E=® 2:2)
s b - a' b - &

O=F@E)< 1.
The expected value end varisnce ©f o uniformly distributed renden

varisble are given by,

. ; |
X = / ¥/ fhix) ANTRE (2.3)
a b/~ /al 2 '
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In actual aﬁiiééﬁiaﬁg’tbe parometers of the-uniform demsity .
function (2.1) (i.e., the mmerical value of & and b) may not neccssorily
be kneum directly. "!ypicauy, although not for uniform distributions,
we know only the expected volue and verfonce of the stotistics to be
‘gmmte&.. In thie case, the values of the parameters must be derived by
solving the equatfion system consisting of Bqo. é.a and 2.4 for a ond b,
since EX and VE ore dssutied to be knovn. This proceduressimilar to on
estination technique knmm in stotfstical literature as * the method
of moments " - provides the foliwing—. two expressions:

a = 8% -/ L - (2.5)

. b 2EX ~a (2.8)
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To simulate a unifotﬁ distridbution over some given domain (a,b)

we must first obtain the iﬂve:s,e,,transfﬁzmatiéniz for Eq. 2.2

x=a4+ - a)r | 0<r <, | (2.7:)
it is then generated a set of random rnumb_ers cﬁifx;.espanding to the range of
eﬁmulative probabilities, i.e., uniform random 'v_aria:ea defined over the
range O to 1. Each random number r determines uniquely a uniformly
dizstributed variate . '

A graphical explanagion will perhiaps serve to clarify the issues
here. Pig., 202 iilﬁstrates thoe esch generated value of r is associated
with éae and only one valte of x. For example, thé. specific value of thg
cumulative dfistribution Function at Ty fixes the value of x at Xqe |
Obviously, this procedure can be repested as many times as desired, each
time generating & new value of =, Cenerating random variates :h;qqgh_ﬂgeﬂ .
use of cumulative probabilities will also be followed ﬁn sim_.xlatingz '
s&era_l other distributions in this paper. Porthuermore this technique
serves as the basis for developing the more genersl Monte Carlo methods,
discussed ieter;. ‘

| Fipure 2-5 contains a flow chart of the logie that must be utilized
in simulating a uniform diatribdution. for a given range (a,b), iflit is to
be ptogr&med for use on & computer, The fliow chart has been formulated
in such a manner thet it ds .compatible with f:he-FOR*IBAR. subroutine, which
follows in Fip. 2-4. »

1. SUBROUTINE UNFIM ( A,B,X )

2. R = RND(R)

3.X=A4+ (B-A) *R

4, RETURN

Fig. 2-4 Ceneration of Uniform variates, FORTRAN subroutine

2 Thomas H. Naylor, Computer Simulation Techniques : " Generation of
Stochastic Variates for Simulation ', 1966, pp 70-73.




time intervals bﬁﬁfeem?!te occurences of disginet randon events. We receive
information about numerous events that take place in our envitment such as
births, deaths, accidents, and world conflicts en nhe;basis of & com=
pl.t;te'ly independent time schdule. If the probability that an event will
oceur in a small time iﬁtéﬂéllia very small,and if the occurence of this
type is exponentially distriduted.Whethar o stochastic process in the real
world actually yields exponential variotes or not is an -empiti.ea! queg=—
:ion,’who.se answer depends-on the degree to which the assumptions wnder=
Iying the exponential disezibution are sati;sfied. Specifically, the
following assumptions rtrust be saeis»fied. by exponential variates.

1. The probability that an event occurs during the time intéfval

[t. (e + At)|  isoAte

2. Q& ic & constant and ﬁﬂependeng of ¢ and other faccors, N

3@. The probebility that: ‘more than one eventiuin ‘occnr during
| t‘he time interval [e.(t + Ary) appro&che& 0 as \t—~0 and is of &
smallercorder cf sagnitudethen-OlAts

' curious'ly. encugh, the behavior of & nmumbef of time dependent processes

has been found to satfsfy these rather strong assumptions. For example,
the time interval bet&een_ gccidents in factory, the arrival of orders at
8 fxrm, ‘the arrival of patients in ﬁospital, and the arrival of vehicles
at intersectiims have been £ound to follow the exponential distribution.

A random variable X s saié to have an exponential diseribution

if its density function is &ezﬂned ag,

1 1739490k
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fx) = e OF (2.8)

- for X > 0and x > 0.

The cumulative distribution function of x is
%=

F(x) = / _ae“at dt = 1-e %% }2--9)‘\
- - ﬁ ‘

and the ezpeeted value and variance of X arc given by the following

formulas.

EX ==/ 2.‘5!&--0#&&_-”3,51:.--. Coe " (2.10)
. I == 1 - )
. -l= . dx = =4 = (EX) 2.11)
- VX / a Ae % 2 (EX) (2.11)

':f(”').! Y P L ?éx?

Graphically the exponentisl distribution appears as in Fig. 2=5.
Since the exponentfal distribution has only one parameter
it is possible to éxpreas as, | | |

1
EX

(2.12) -~
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The generation of exponential random variates can be accomplished in

a number of different ways. S;r;ce_- ?(ﬁ) g&:iscé i:{ exp-licvi‘_t. f‘orm.

.»tihe inverse transformation iechniqne provides a straightforward method,
Because of the symmetry of the uniform distribution, F(x) and 1-F(z)

are interchangeable. Therefore,

r=e %% N (2.13)
and conseqnently,_-' '
X == (_j_‘_) log r=-EX log ¥ . (2.14)
&

Thus for each value ©f the pseudotanﬁbm ﬁumbet r, a unique value
of x is determined, which uill take oniy nonnegative value (since log r <0,
for 0 <r <1) and will follow the exponential density function (2.8) with
expected value EX. Although this technique ssem very simple, the reader
is remined that the computation of the natural logaritlm on digital
computers includes a pdéwer series "eiapsnsion ¢ ox some equivalent approxi-
mation technique ) for each uniform variate generated. “

Fig. 2-6 contains a flow chart for generating ewponential variates,

and Fig. 2-7 contains the corresponding FORTRAN subroutine., The name of

the subroutine is EXPOL.

A significant number Ao—f probability distributions are defined on
random variates that only disu;—'gte, non-negative integer values,-
The cmw_létiir‘e probability distribution for a discrete random variable
X is defined as follow: |
X

P =R (X<x)= > £ (2.15)
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.where £(x) is the frequency function of X &éfinéd;fo:
. integer x values such that’
E(x) = P (X = x ) T _ ;§2;16)
for x = Og I, 2, besins _ 7 |
Discrete probabiliuy-distribntions -serve as stochastic models for
certain goun tigg processas over. either finite or infinite samples,where
;the presence.or absence of a. binary attrxbute is governed by chance.
_ Empirically, distretedxstributions may also occur as a resylt of roun&ing
. contintous meaSurements on 3 discrete-sca1e¢ Sﬁrietly speaking, however, |
3discrete probability-distributions are appruptiate‘models of random phenome-
na only if the values -of the random variates are-measurable by counting.

The follﬁwing section contain descriptions of techniques for gen~

”eratzng stochastic variates from whiﬂh,xs applicable for the research.

Poilson.Distrihutinn 1f e take: aéseries of'n’independEﬂt Bernoulii
7 ,.trials,:xn each of which there: s swall, probability p of ‘an event’
-_rogu;:ipgg,&hen'as n-gpproaches infinity, the p:obability of x occurences |

. is given by ﬁheigpissun-&ist:ibg;ion :

=0, 1,2 a7

-

f(x) )‘.!.’.\;.'

A>o,
;whenip is allowed to-dpproach zeto in such a mdntie# [¢hat | X & np- remains
,';fiieﬁ%rlf is.knﬁwnvthat np is the expeétéd value of the. binomial distri-
;bution, and it can be shown that A is the expected value fo: the Poisson

';distzibution, In fact, hoﬁh the expeeted>value and the variance of Poisson

;fadisttibution are equal to A e IE can, be shown: that if xis a Poisson

\

. variable with.parameter )\ » then for Iarge valnes of Ay (AKZSIG )

i

.- . L,

e T . i
: i
i



the normal distribution with EX = A and VK = A can. be used to approximate
the distribution of x,

Poissou distributch*events frequently aceur in r.he real world
awenty-feur-hour period can be very large. Yet theprobabﬂity of an
“ an'crsft an:xving during a particular secen& is very small. nem:e,
we might expect the probability of 0 by 2, vose airctaft arriving in
a given perzod of time to follow a Poisson disttibution. The Poisson
distribution is particuﬁ&gly .us;,efulr in dealing with the occurence of
isolated events over a eontimuation of time, or when it is possible to .
prescribé. the number of times éﬁ evé:%t. oécurs bue noér the number ofr times
it does notoccur. 4 [ —= | .

'1'0 simula_s\/a Poison disttibution w:l.th a parameter )\ s it is taken

he advantage of the Well-immm relatimsth between the exponential and

Poisson. d:.s't:ributions. Ii: can be shmm that: if (1.)- t:-he total number of
7. events occun-i.ng during any given ti.me interval is indepéndent -of the
number of events that have already occurreli przor €0 the beginning of
the interval and (2) the probability of an cvent occurring in the inter
val t to t + At :I.s approxima&ély A At for. aI.l." vatueé?fl ﬁ.;;»'then, (a) the
density .fum:.t.i{cd of interval t between the occurence of consecutive

)\t

events is f(c) = Ae" 7, and (b) ithe probability of x events. occurring

eime‘é. is

£@) = N (An™ - forallxandt (2.18)
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Consider a time horizon ( beginning at reference point 0 ) that has
beeﬁ.dibi&ed into unit time intervals as illustrated in Fig. 2-8. Events
are assumed to occur along the time horizon and are denoted by the .symbol
. (/). The time interval t between events is assumed to have an exponenZ’. +—
tial distribntioa‘withcwith ezpected value equal uo‘lf)\_.;rhis implies
that the nnmber of events = occurring_during a unit time.interval follows
| a Poisson distribution with expected uvalue equal to )\ One method of

.generating Pbisson vatiates involves generating exponentially éistri-

. buted time intervals tl’ £, t3, .....‘with expected value equal to 1

These random.:ime intervals are accumulated as they are generated until
their sum exceeds.
In mathematical terms éhelroisson‘vafiatea_g.is}de;e:mined by the

.inequaiity A7
| :

Z ti < A < Z: ti . (x=0‘, -1, 2', ‘.’6.‘.0),’. (2.19)

_0 .

— . e — . — e -t —

._where the exponential variates ty-are generated by the formula

, t1=a log ri | P ;   -_ (2.20)

. with unit expectation, 4 faster method ofkgeneraﬁing Poigsom,varia:es'

. % call for rewriting of Eq: 2,19 _as’
'[[ > e > ]'[ 5 o (2.21)
=0 0 o 19 [94=0 5 G 01 A e -

The FORTRAN Subrontine for Pbisson disttibutiﬁn is not necessary

| for this research;81nce the Exponential distribution is capable for -

generating the arrivals. All explanation above leads to'the undetstanding

about the relation of Expanentiai distribution and Poisson &istribution.ouly.
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Empirical Discrete Distributions ' All distribution described :

before is concerning sbout the standaxrd probability distribution, now
tuin the point to somewhat more general method that can be ﬁsgd to simmlate:
1) any empirical distribution, (2) any distribution, and. (3) any
continuous. distribution that can be approximated by discrete distribution,
However, in general, it would not be used this method to generate variates
from the standard. probability distributions because one of the methods
ﬂescribed previously would be gxpected to.yield "better" results from the
ments. In other words ghe methiod propose in this section is a method to use
when no other altermative ds av—aila.hl'e. |

'_ Let £ be a discrete ran&ém va:iablé with P X = bi.)‘ '=; pys such as

the random variable in the following cable.

b P = bi) = pg
by 00273 |
- - - - - by o 0037
S Ly - T
Lo o
' by 0.124
b 9/ S Yeuoss
b, - - 0.062
by 0,151 §

by SRR X Y
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Clearly one method of generating % on a computer is to generate
a uniform (0,1) random var?iaie r and set x = bi if
Py ¥ eeerestp g < r gl p1 ¥+ eesse +py (2.22)
Although a m’mbe;" af seaxch techniques based on i:his method have
" been developed, most of them involves relatively compli;::at.‘ed programs
requiring excéssive computational time .

All of probability distrxibutions mwentioned, are applied to the!

subprograms named TEXPA, TNORS, DISCR znd UNFRM, The procedure will be
discussed in the next chapter, Tn addition fo making the comupter pro-
' gramming more efficient, somé techniques, described’ laiﬁ_er,. will be needed

to cambine{} with those FORTRAN subpregrans pfev_iéusly mentioned.
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