CHAPTER VI

CONCLUSIONS AND SUGGESTIONS

To study the polymerization of 1-hexene by iron-based non-metallocene catalysts, two diamine ligands [RHN(CH₂)₃NHR]; ligand (a) and RHN(CH₃)C=C (CH₃)C=NR; ligand (**b**) (R = 2.6^{-i} Pr₂C₆H₃)] and a Schiff's base ligand (salen); ligand (c) can be prepared and characterized readily by ¹H-NMR, ¹³C-NMR, FT-IR and UVvisible spectrophotometry and employed to prepare some iron (III) complexes via reaction with FeCl₃. Four iron (III) complexes were synthesized; cpx 1a, cpx 2b and cpx 3c. They were characterized by elemental analysis, FT-IR and UV-visible spectrophotometry. These complexes served as catalyst precursors for the polymerization of 1-hexene. A variety of cocatalysts (MAO, [Ph₃C][B(C₆F₅)₄] and [PhNMe₂H][B(C₆F₅)₄]) and alkylating agents (TIBA, MeMgBr and PhMgCl) can be used to activate the complexes. When activated with MAO; only cpx 1a and cpx 2b are active. Optimum conditions for 1-hexene polymerization using cpx 1a/different cocatalyst: MAO and borate were investigated. For cpx 1a/MAO system; the optimum condition found was 10.0x10⁻⁶ mole catalyst, 39.98 mmol 1-hexene, Al/Fe mole ratio 1000, T_p 50°C, t_p 24 h. For cpx 1a/[Ph₃C][B(C₆F₅)₄] system, the condition found was 10.0x10⁻⁶ mole catalyst, 1 equivalent of [Ph₃C][B(C₆F₅)₄], Al/Fe mole ratio 400, T_p 0°C, t_p 24 h. Three chain termination pathways have been proposed using ¹H-NMR and FT-IR techniques: (1) β-H transfer to metal resulting in vinylidene end group, (2) rearrangement resulting in internal double bond and (3) chain transfer to aluminum resulting in saturated end group. The information from GC-MS and ¹³C-NMR identified that the iron catalyst systems: cpx 1a and 2b produced dimer, trimer, pentamer and hexamer of 1-hexene with atactic tacticity. For comparison, rac-Et(Ind) ₂ZrCl₂ catalyst has been used in 1-hexene polymerization with [PhNMe₂H][B(C₆F₅)₄] cocatalyst. The polymerization condition was 5.0x10⁻⁶ mole catalyst. 1 equivalent of [PhNMe₂H][B(C₆F₅)₄], Al/Fe mole ratio 200, T_p 30°C, t_p 24 h. The results from ¹³C-NMR, GPC and DSC techniques identified that the white rubber-like product was isotactic poly(1-hexene) with molecular weight (Mw) of 48,600, molecular weight distribution (Mw/Mn) of 2.33 and glass transiton temperature (T_g) at -47°C.

SUGGESTIONS

The suggestions for future work are:

- Polymerization of ethylene using **cpx 1a** and **cpx 2b** as catalyst should be attempted.
- Using ligand (a) to synthesize Ni complex and use for other olefin polymerization should be tried.

