CHAPTER 11
THEORETICAL BACKGROUND

In this chapter, a brief concept of quantum mechanics (QM) in computational

chemistry is overviewed.

2.1 Introduction to Quantum Mechani

/)/&m “how much?”) and is first

ate"’the d quantities or amounts in

The word quantum co
used by Max Plank in 1

which energy can be emitig absorbed. “Mechaz 'cs” as used in physics is

traditionally the study of the®behavior of odies nnder the action of forces. The term
“quantum mechanics” is apparently used b of the Born-Oppenheimer
approximation) in 1924 Becatisg o ool ..;:u e nsisted of nuclei and electrons,
quantum chemistry deals ‘ " «0f electrons under the influence of the
electromagnetic force exerte hafae understanding of the behavior
of electrons in molecules, s ues 2 or molecules, reset on quantum

mechanics and in particular on the ‘gquantum chemistry, the Schrédinger

_Ze 3
equation.

Quantum mechanies
discrete packets of ma, qu
associated with ﬂi body radiation and
of the photoe]ec:@g ?Lam:;hﬁtﬂam classical to modern
physics. aﬁ:ﬁﬁ' vﬁ' t Maxwell’s
elecﬁoma&tﬁﬁx&éiﬁ i’jﬁ ﬁlﬁuﬁ‘gj;‘] ngl y away and

swiftly fall mto the nucleus. This problem is countered by Bohr’s quantum atom, in

absorbed and emitted in

e hv, where h is Plank s constant and v is the frequency

which an electron can orbit stably if its angular momentum is an integral multiple
of h/2n. However, the Bohr model contains several problems and works only for the
hydrogen atom. The deficiencies of the Bohr atom are surmounted by Schrodinger’s

wavefunction which is based on a combination of classical wave theory.



19

In summary, by solving the electronic Schrédinger equation at a variety of
geometry, one can find stable structure of molecule. The potential energy surfaces
(PES) are the solutions of the electronic Schrédinger equation. The interesting part of
PES is a nuclear arrangement which has the lowest energy. An example of such
surface is shown in Figure 2.1 which is a plot of one particle energy against two
geometrical coordinates. There appears to be three minima which corresponded to

geometries of stable molecular structures. The surface also displays two transition
structures connected to the three m;\ : ‘j'y d as transition structure A and B. It
can be observed that Figure PR\ )e energy surfaces, due to each

p
mﬁte number of excited-state

molecule has a ground-smrﬁmas well
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Figure 2.1 Two-dimensional potential energy surface shown local minima, transition

states and paths connected them [49].
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2.2 Solution of the Schridinger Equation of Molecular Systems
2.2.1 The Schridinger Wave Equation

The Schrodinger equation is a fundamental equation of quantum mechanics.

The solution to the Schrédinger equation is called wavefunctions.

HY = E¥ 2.1)

Here H is the Hamiltonian operat epres e total energy, E is the numerical
value of the energy of the,state in i stituent particles (nuclei and
electrons) are infinitely separated:And ast one, 't is the wavefunctions which

rticles but also on the spin

coordination. The square of efunc ' . ‘¥° | is.unterpreted as a measure of the

operator H , in general,
2.2)

where for a molecule,

(2.3)
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actﬂ on nuclei and electrons,

in which 4 and B referred to nuclei and i and j referred to electrons. The first and
second terms in equation 2.5 are the operators for the kinetic energy of the electrons
and nuclei, respectively. The third term is the electron-nuclear attraction where r,4 is

the distance between electron i and nucleus 4. The fourth term is the electron-electron
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repulsion where r; is the distance between electron i and j. The last term is the
nuclear-nuclear repulsion where R,z is the distance between nuclei 4 and B with
atomic number Z, and Zp, respectively. This formation is time-independent.
Additional terms can appear in the Hamiltonian operator where relativity or
interaction or fields are taken into account. Furthermore, small magnetic effects, for
example, spin-orbit coupling, spin-spin interactions, etc., are also omitted in this

Hamiltonian.

In summary, whenever the Ha i f does not depend on time, one can
solve the time-independent Schr fir @ irst and then obtain the time-
dependent equation when & E ifkn%case of molecular structure

Iy solve the full Schrodinger
‘depending on all of the

theory, it is a quite da
equation because it i

coordinates of the elec r these reason, there are

nuclear and electronic. plotions. This is ,: because the nuclear masses are much
nuch more slowly. As a
consequence, the electrons in a molecule adjust their dlﬂlbutlon to change nuclear
position rapidly. This make its.sreasonable ap ‘§txx1matlon to_suppose that the electron

asionccefl) o 1 TG FPLEL FFL e s oo e

velocities. The se;yratlon of general problem into two parts is freguency called the
st QU TRV T S it v o
Oppenheimér, who reveal that it is valid, provided that the mass ratio of electron to
nuclear is sufficiently. The approximation states that the Schrodinger equation for a
molecule may be separated into an electronic and nuclear equation. The Born-
Oppenheimer approximation is formulated by writing down the Schrédinger equation

for electrons in the field of fixed nuclei.
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H¥%@ %z, R)= EY (R)¥**(r,R) (2.6)

Here, W is the electronic wavefunction which depended on the electronic

coordinates, r, as well as on the nuclear coordinates, R. The electronic Hamiltonian,

H** , corresponds to motion of electrons only in the field of fixed nuclei and is

~ elec elec\/ 2 n elec Z elec
e SF L, Ty 2.7)

i Ty i<j r,J

The first part of equation 2.7 is.¢ %e kinetic energy of the electrons
eénuclei. The last term is the

only. The next term is the
T—

-’
repulsion between electrong, "

The main task of ] electror cture is to solve, at least

A quantum mechdanical : hi ot rely’ on calibration against
measured chemical parargcr is calle il tea ab initio is a Latin for
“from the beginning”. This is'an,approximate mathematical calculation which is based

on a ﬁmdmenmlﬁa%%}'ﬂat%} filclSchiodiiefr cabidtion) The nature of the

necessary approx1millons determines tl? level of the calculatlon T'Eg most common
et QIR EAHAANTN 7 ()

he HF approximation is the basis of molecular orbital theory, which posits
that each electron's motion can be described by a single-particle function (orbital)
which not depended on the instantaneous motions of the other electrons. The
calculation of Hartree wavefunctions and energy level of atom are prompted by the
impossible of analytic solution to polyelectronic systems. The Hartree method is to
write a plausible approximation polyelectronic wavefunction for an atom as the

product of one electron wavefunctions:
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¥, =y,y,2y,03)..y,(n) (2.8)

This function is called a Hartree product. Here y, is a function of the coordinates of
all the electrons in the atom, y,(1) is a function of the coordinates of electron 1,
¥,(2) is a function of the coordinates of electron 2, etc. The one-electron functions,
v,(1), v,(2), etc., are called atomic orbital. The first Hartree process applies to solve

-electron Schrédinger equation in which

f n 1 and an average smeared out
electrostatic field calculated ‘&" v,(n), due to all the other

electrons. The only movin e i is equation_is electron 1. Solving this
equation gives (1), an i g / " y,(1). The next solution for electron 2

is a one-electron Schridinger eghiation with electron ing in an average field due

Schrodinger equation for electron 1. A

the electron-electron repulsion c:

to the electron of y, (1) ,y on » moving in a field due
to w,(1),¥,(2), ..,y (n—1). e of calculation and given
2.9
Repetition of the cycle given
(2.10)

The process is continue@for k cycle C energy cm:ulated from y, that is

essentially the same as the.swavefunction hw‘ m the previous cycle (k-1).
s

fro
1 is “consisent i b predichd B0 ko o Yo Hakied bcedure is called e

self-consistent—ﬁel%rocedure, which is usually abbreviated as the §CF procedure.
YWIANNIUNRTIINYTIA Y

Ther¢ are problems with the Hartree producf. Electrons are indistinguishable
and have a property called spin, which not more than two electrons can occupy one
atomic or molecular orbital (this is one of the Pauli exclusion principle). If switch the
positions of two of the particles, i.e. exchange their coordinates, then a wavefunction
of the coordinates of indistinguishable particles must either unchanged or changed its
sign. If switch the coordinates of the two particles leave the function unchanged, it is

said to be symmetric with respect to particle exchange, while if the function changes
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its sign, it is said to be antisymmetric with respect to particle exchange. The
comparison between the prediction of theory and the results of experiment exposes
that electronic wavefunctions are actually antisymmetric with respect to exchange,
while Hartree product is symmetric rather than antisymmetric. These defects of the
Hartree are corrected by Fock and Slater. The Slater wavefunction is composed of
spin orbitals rather than just spatial orbitals. In the fact that Slater wavefunction is not

a simple product of one-electron wavefunctions, but rather a determinant which those

is the product of a spatial orbital and

&t enforces the Pauli exclusion
m—

w have all quantum numbers

etric since its sign is changed

principle, which forbids ?
the same, and it ensurestﬂ
by switch two electron

electrons, the general fi det ninant i the 2n x 2n determinant.

¥,(2)B(Q2) |
v.(DBQ) | (2.11)
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wi(2m)a(2n) v, (2m)B( @mpn2) - y,(2n)B(2n)
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Again, the 'i‘v]‘J“ﬂllﬂ'-lllulllfl:;:‘_l--eln‘! ..... o e]y So]ve the electronic

Schrodinger equation. an be approximated by a

{l
single Slater determinant'tnade up of one spin orbital per €lectron. One limit of HF is

that it does not uﬁiwﬂﬂ vﬂ)ﬁ mle, each electron is
considered to mo@i ctrostatic-fie ﬁe ent :jt average positions of the
other electrons, whereas in fact elecffons avoid é@eh other bettéi-*'tg]: this model

predicts. 5! yledton [ schloby ailel dedsrah § b mb e

two electrons adjust their motion to minimize their interaction energy. Electron

icle and the

correlation is treated better in post-HF methods, such as Moller-Plesset perturbation
theory (MPn, where n is the order of correction), configuration interaction (CI) and
coupled cluster theory (CC), etc. Those methods avoid electron-electron interaction
energy by allowed the electron to reside not only in conventionally occupied

molecular orbitals, but also in formally unoccupied molecular orbitals.
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The main use of the HF methods is calculating molecular geometries,
energies, vibrational frequencies, spectra (IR, UV, and NMR), ionization potentials
and electron affinities. And properties like dipole moments, which are directly

connected with electron distribution, are also calculated.

2.4 Basis Sets

The approximate treatment

assigns individual electrons t

ectron-electron distribution and motion

g tion, termed spin orbital. These

L ular orbitals (MO), y,(x,y,2),
——

Wi (x,3,2) s ¥3(X,0,2), .. onents. The spin orbitals are

allowed complete free ; § _‘-\\‘\\n molecule. Their exact forms are
Fp N

determined to minimi v level of theory, a single

assignment of electron t ade by u \\». omic orbital wavefunction

based on the Schrﬁdinée i m he | \ tom. This is not a suitable
approach for molecular calcglation. This 1 ean be solved by representing MO
P 1

In practical calculatlon:I - orbitals w1, w2, .., are further

one-electron function

restricted to be linear,combinations of @ set oW

$(5,2,2)s a5 3,2), T Y |

et
AugTneiTieans

The functions ¢,, ¢ hich are defined in the édciﬁcation of the
c

model, aqm&&aﬁlﬁLMt&’lm ﬂs;] . The set of

basis functions is called basis set. If the basis functions are the atomic orbitals for the

atoms making up the molecule, function in equation 2.12 is often described as the
linear combination of atomic orbitals (LCAO). There are two types of basis function
which commonly used in the electronic structure calculations, Slater type orbitals

(STO) and Gaussian type orbitals (GTO).
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The Slater orbitals are primarily used for atomic and diatomic systems where
high accuracy is required and semiempirical calculations where all three- and four-

center integrals are neglected. The Slater type orbitals have the function form

b=Ae™ "1y, (6,4) (2.13)

where parameter n* and £ are chosen to make the larger part of the orbitals look like

atomic Hartree-Fock orbitals. There

t like hydrogen orbitals, but without the
complicated nodal structure. ’ /

The Gaussian type terms of polar or cartesian

coordinates

(2.14)

in which a, b, and ¢ are integ ¥ is-a parameter that is usually fixed. Primitive
Gaussian function is sh everal of these Gaussian
functions are summed t rbitals basis functions, as

shown below.

(2.15)

The coefficient§ .._.-..7;_‘;.._,:._.:.,;___:_..1,~ DSE {-‘ ake the basis functions
look as much like Slater @u .

to atomic wavefunctions but gquired excess&zf computer time more than Gaussian

functions, while ﬁgﬁﬂsﬁ&nﬁ:ﬁt}% %W’%ﬂ!ﬁnaﬁon to the nearly

ideal description &f an atomic wavefunctlon that Slater functlon provides. The

solution twmmm ag:m m a&:ﬂ Gaussians to
approxxmatql later tio lest v n Gaussian

functions are superimposed with fixed coefficients to form one-Slater type orbital.
Such a basis is denoted STO-nG,andn=3, 4, ..., etc

The limit of quantum mechanics involves an infinite set of basis function. This

ctﬁls are good approximation

is clearly impractical since the computational expanse of molecular orbital
calculations is proportional to the power of the total number of basis functions.
Therefore, ultimate choice of basis set size demands on a compromise between

accuracy and efficiency. The classification of basis sets is given below.
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2.4.1 Minimal Basis Sets

The minimum basis set is a selected basis function for every atomic orbital
that is required to describe the free atom. For hydrogen atom, the minimum basis set
is just one /s orbital. But for carbon atom, the minimum basis set consisted of a /s
orbital, a 2s orbital and the full set of three 2p orbitals. For example, the minimum
basis set for the methane molecule consists of 4 /s orbitals, one per hydrogen atom,

and the set of Is, 2s and 2p orbitals described above for carbon. Thus, total basis set
comprises of 9 basis functions. 'i

@nmon basis sets especially the

STO-nG basis sets because \ b]e all elements in the periodic

Several minimum basi
table. The most common g Tufin basis. s 1s_ STO-3G, where a linear

(STO). The individual

functions are called contra

STO Is orbitals do not gﬁe olecﬂar environment when the

Schroédinger equation is sol\‘edé.because electr&r‘} is attracted to both nuclei rather than

just one nucleus. F%ﬂ ﬂl@l%ﬁ%ﬁn%ﬁ@sﬂﬂ}e& of orbital appear

and they are mixedlin the ratio that glves the ]owest energy. The combmatlon of a

TS R T
size. The result orbi a size that or the molecular environment since it is

obtained from minimizing the energy. The advantage of this procedure is that the
mixing coefficients in the molecular orbitals appear in a linear function. This simple
dodge is equivalent to scaling the single minimal basis set orbitals. The minimum
basis set can scaled not only the valence orbitals of the minimal basis set (split
valence basis set), but also all the orbitals of the minimal basis set (double zeta

basis sets).
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a) Split the Valence Orbitals (Split Valence Basis Sets)

The split valence basis sets mean that each valence orbital is spited into
two parts, an inner shell and an outer shell. For example, the 3-21G basis set is
referred to basis function of the inner shell represented by two Gaussian functions and
that of the outer shell represented by one Gaussian function( hence the “217). The

core orbitals are represented by one basis function and each function composes of

e purpose of splitting the valence shell

i / in adjusting the contributions of
&;}'ng a more realistic simulated

three Gaussian functions (hence the “3”
is to give the SCF algorithm
the basis function to the mok

electron distribution.

b) Split a/

two functions. In this way b vale bi scaled in size. For some

heavier atoms, double zet  s€ts ' e slightl; than double the number of

Ga - Br have 7 rather than 8 s bas;j __ unctions, and,S rather than 6 p basis functions.

normal abbreviation for aﬂouble zeta ba wdt @also quite common to use

split valence basis sets where,the valence ogbitals are spitted into three functions.

Basis sets whereﬁiu fidn '}'ﬂlﬂﬂé}@swgﬁqd'ﬂi{é zeta functions and

referred to as TZ, TZP, TZ2P etc.

ama\mm URNINYIAY

2.4.3)Polarized Basis Sets

In the discussion on the scaling of the hydrogen orbitals in the H; molecule, it
is argued that the orbital on one atom in the molecule becomes smaller because of the
attraction of the other nucleus. However, it is also clear that the influence of the other
nucleus may distort or polarize the electron density near the nucleus. This problem
desires orbitals that have more flexible shapes in a molecule than the s, p, d, etc.,

shapes in the free atoms. This is best accomplished by add basis functions of higher
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angular momentum quantum number. Thus, the spherical /s orbital on hydrogen is
distorted by mixing in an orbital with p symmetry. The positive lobe at one side
increases the value of the orbital while the negative lobe at the other side decreases
the orbital. The orbital has overall “moved” sideways. It has been polarized.
Similarly, the p orbital can polarize if it mixes in an orbital of d symmetry. These
additional basis functions are called polarization functions. The polarization functions

are added to the 6-31G basis set as follows:

%mms in the first and second rows

oms in the first and second rows

/| \:-~.

The nomencla; glow ‘H\\

6-31G* - added a set (

. placed. The 6-31G* is called
6-31G(d), while the 6- if g *"rf (d.p). Tl
the possibility of adding .Jhus 6-31G(3df,pd) added 3
d-type GTOs and 1 f-type added 1 p-type and 1 d-type
function to H.

new nomenclature allows

2.4.4 Diffuse Function B3

In some cases (g normal™ ddgquate. This is particular

d in anie - tron@density is spread out more

the case in excited states : 7

over the molecule. This npdel has correctlUy using some basis functions which

themselves are nﬁwﬁ d’J Wﬁ%ﬁ Wnﬁl é%)ﬁ are added to GTOs.

These additional Basis functions are called diffuse functlons The dlﬂ’use functions

added“’“v’»i‘ﬂ“a]bﬂﬁﬂ‘ﬁ’m UANINYAY

6- 31+G - added a set of diffuse s and p orbitals to the atoms in the first and
second rows (Li-Cl).

6-31++G - added a set of diffuse s and p orbitals to the atoms in the first and
second rows (Li-Cl) and a set of diffuse s functions to hydrogen.
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Diffuse functions can be added along with polarization functions also.
Some examples of these functions are 6-31+G*, 6-31++G*, 6-31+G** and

6-31++G** basis sets.

2.5 Semiempirical Methods

Semiempirical calculations are set up with the same general structure as a HF

calculation in that they have Hamiltopian and wavefunction, but they have

approximated some information. For exe gcore electrons are not included in
the calculation and only a minimal basi order to correct for the errors

introduced by omitting

Parameters to estimate are obtamed by fitting the results to

erratic and fewer properties iably. If the molecule being computed

to parameterize the method, then the

is similar to the molecules in at

e
]

results may be very good: If comp

pirical calculations have
been very successful in ustry, where there are only

a few elements and, the sizés 6fmolecules arefioderate. Some semiempirical methods

have been devise p%&@on&ugowﬂm ::iemistry as well.

v ¢ o /
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The ab initio methods described above all start with the Hartree-Fock
approximation. The HF methods are widely used by quantum chemists but they have
limitations, in particular the computational difficulty of performing accurate
calculations with large basis sets on molecules containing many atoms. An alternative
to the HF methods that have been growing in popularity over the past decade is
density functional theory. In contrast to the methods described above, the concept of

DFT is the electron probability density. The basic idea behind DFT is that the energy
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of an electronic system can be written in terms of the electron probability density. The
electronic energy E is said to be a function of the electron density. The DFT is based
on Hohenberg-Kohn theorem, which states that the ground-state properties of an atom
or molecule are determined by its electron density function. An application of this
theory is developed by Kohn-Sham theory which formulates a method that has
structure similar to the HF method. In DFT formulation, the electron density is
expressed as a linear combination of a basis function similar in mathematical form to

the HF orbital. A determination isthe negd these function, called Kohn-Sham

orbital. It is electron density from this detefmiinélion of orbital that is used to compute

(2.16)
Where T, is described the d from a Slater determinant
E, 1) is the term accounting for  interactions, /[, is the Coulomb

integral and E,,; is

after subtraction of the i

Em

J“"[fl (TE s[p]) + ( ee[ p] ﬂ]) (2 1 7)

The first %(ul‘aq wqam jlm ’Jf,jsidered the Kkinetic
correlation_energy which me %ai s ;_\idﬁ m in!o(?linetic energy
due to co’rﬂl 1 nrliats Hﬁ;e seco er L@i ontains both

exchange and potential correlation energy. The first term is exchange-

correlation, E,,;,; which is the true interaction between two electrons and subtracting

the J,, operator gives the exchange energy.
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The advantage of using electron density is that the integrals of coulombic
repulsion are done only over the electron density, which is a three dimensional
function. Furthermore, at least some electron correlation can be included in the
calculation. This result is faster than HF calculation and more accurate as well. The
better DFT functions give results with accuracy similar to that of an MP2 calculation.

The simplest version of DFT is the local density approximation (LDA),
which treats the electron density as constant or only varying from point to point in an

atom or molecule. It has been rep thod which used gradient-corrected

(nonlocal) functions and assig bitals to a-spin electrons, and

> thisJatter“uniestsicted” assignment of electron

oximation (LSDAY. The results appear to come

another set of orbitals to f-
constituted the local spin i
from HF type exchange
[ arrent DFT method is the
used\the \B3LYP (Beck-three-Lee-
Yang-Parr) function. The 2 . i3 €5 DET egalculations can be poor to
‘ d density function.

from so-called hybrid
are included in Kohn-S
LSDA gradient-corrected

g
C 1O

fairly good, depending on the

Transition staté ~theory=ttSt)—assumes-that= ction proceeded from
one energy minimum to afother via ¢ fmum. The transition state

is the configuration whjcl} divides the reactant and product parts of surface.

For example, a PTIT:'JI v:j'c ( o Si state is continuing
to product. The qomeﬂ:al cngmmnvﬁglaximum is called
the transitio re, T ﬁ, )xmﬁq state and
transition s mpfﬁ ﬁﬂﬁm‘ﬁj&jo J nl '1}" E]nore refined

models. The direction of reaction coordinate is started from the reactant to product

along a path where the energies are as low as possible and the TS is the point where
the energy has a maximum. In the multidimensional case, TS is a first-order point on
the potential energy surface as a maximum in the reaction coordinate direction and

a minimum along all other coordinates, shown in Figure 2.2.
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Energy
AGF T
AG=0 +
AG,
Figure 2.2 Sghematic{
Transition state theory aigr J i1ibr) énergy distribution among all

,._'J'

possible quantum states-at ¢ ates. The probability of

finding a molecular in a_gi X ‘ e AE/ksT | \yhich is

Boltzman distribution. AE.\ming that the"molecule at th@l‘ S is in equilibrium with
the reactant, the macroscopi¢ rate constant cangbe expressed as

AUEINBNINEINT

k Te -AG® | RT

QW’]ﬂx‘iﬂ‘ifﬁW’l’mEﬂaH

in which AG‘e is the Gibbs free energy difference between the TS and reactant, T is
absolute temperature and kp is Boltzmann’s constant. It is clear that if the free
energy of the reactant and TS can be calculated, the reactant rate follows trivially. The
equilibrium constant for a reaction can be calculated from the free energy difference

between the reactant and product.

K, o~8Go / RT 2.19)
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The Gibbs free energy is given in terms of the enthalpy and entropy,
G =H-TS. The enthalpy and entropy for a macroscopic ensemble of particles
maybe calculated from properties of the individual molecules by means of statistical
mechanics. The difference between rate constant and equilibrium constant is shown

in Figure 2.3.

Free Energy

Figure 2.3 The difference :

2.8 Hammond's Pose JT]
The el TEARITINI 0T TaVa SR

reactions. However the vary nature of transition states means thatiit is not possible to

observe ae Wiﬂca Hainhond’s| Postulad allows 1 maing &sfuimption about the

structure Of transition states. In a publication in the Journal of the American Chemical

yand gquilibrium constant (K).

Society, Hammond postulated that “If two states, as for example a transition state and
an unstable intermediate, occur consecutively during a reaction process and have
nearly the same energy content, their interconversion will only involve a small
reorganization of molecular structure” /5/-52]. That is, along the reaction coordinate,
species with similar energies also have similar structures. Hammond postulated that in
highly exothermic reactions the transition state is structurally similar to the reactant,
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but that in highly endothermic reactions the product is a better model of the transition
state. The caution against using the postulate is that if reactions are more
thermoneutral or slightly exothermic reaction, the transition is resembled neither

reactant nor product.

TS1 TS3

Energy

' @-r\\\\g\ >

0 imond's postulate.

e following three scenarios,

Figure 2.4 The

Hammond's Postulate

according to Figure 2 4-*Case 1. if reaction 1s ¢ -n1ghiv en :-v’_‘,- [ elll[ic’ the structure Of
. LY
.- “Slightly exothermic with

TS1 resembles the f'-‘f;;
H ergy, the TS2 resemble neithéi ; eactant A nor product B.

relatively high activation
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ARIAN TN ING Y



	Chapter II Theory
	2.1 Introduction to Quantum Mechanics
	2.2 Solution of the Schrodinger Equation of Molecular Systems
	2.3 Ab Initio Methods
	2.4 Basis Sets
	2.5 Semiempirical Methods
	2.6 Density Functional Theory (DFT)
	2.7 Transition State Theory and Statistical Mechanics
	2.8 Hammond's Postulate


