CHAPTER Il

THEORY

3.1 The ETBE Hybrid Etherification Process

The reaction system of the pervaporative membrane reactor in this

research is an etherification rea;:ti Wween ethanol (EtOH) and tert-butyl alcohol
(TBA). The reactions taking pl ot . @be summarized as follows

TBA { f ; r H20 (3.1)

(3.2)

(3.3)

The maijor sj the production of isobutene (IB)

gas. Although, IB can sifultan aét Et(A C form ETBE, the low operating
" ——
pressure in this study results ofdissolved IB in the liquid mixture.

Hence, the reverse reaction in.Ee ion in Eq. (3.3) can be neglected.

The [{31 and Eq. (3.2) and the

kinetic parameters can e exp
W

¥

ﬂUEJ’JVIEW]?‘(WEJ’Iﬂ‘i

r84%108 ~ Apr8Ep,0
=kl

ymasnstiumingdy
k = exp(3 55 -g) (3.6)

10

k, —exp(36 57—@) (3.7)
e T
K, =exp(16.16 + ﬁf) (3.8)

14580

K = exp(l 140 - +232.9InT+1.087T-1.114x 10T +5.538x 107 T*)

(3.9)

k, and k, are the. Stapts, while K, and K, are the water

(3.10)

cies 1 in the liquid mixture and Y

it
TMIIUUNINNGY

It is noted that the permeation of ETBE is negligibly small, thus, its

permeation was not included in the models (Assabamrungrat, 2003).

1

3.2 Neural Networks for Process Control

Artificial neural networks are the mathematical structures having a
capability to learn from the demonstrated examples. Neural networks acquired their
name from their similarity to the densely connected structure of the human nervous
system. The neural network paradigm emerged from attempts to simulate and

understand the works of the human brain which consists of the networks of about 10"

Neural 8" Wpica "."*. \sist Ofwa. umber of interconnected
processing elements or @éurg \\\ inter-neuron connections and

the natures of the connegfiong’g \ 2 network. How the strengths
h NN

of the connections aré adjéistall 1 a behavior of the network is

governed by the learnin@ algeriffims ':
2 ; J”

The applicati o ralf S cover a very board area. It would

take a long time to discuss all t eiworks. Therefore, theses sections are

is : arch.

e —

focused on the field-of pra

3.2.1 Neuron Mode

] f I

This sect!?n describes how a neural network calculates its output from

the basic uni r?/ Wcﬁ;ﬂ-ﬂq ﬂnﬂi:tures which are the
fighose simple basic eeme

combination o nts

LA A S URIINUAR o

most bakic type is the single-input neuron.

3.2.1.1 Single-Input Neuron

A configuration of single-input neuron is shown in Figure 3.1. The neuron

is composed of a summation unit (2) and a transfer function (f). The summation output

12

(n) is the product of the summation of b and the multiplication of w and p which are

defined as follows:
n=w'p+b (3.15)

n is the net input of transfer function unit for producing a transfer function

output (a) which is also the net output of neuron.

(3.16)

{ f"‘

euron are w and b. The

inputs are constants, .} d the bias input’is also the constant £1”.

Figure 3.1: Single-Input Neuron

13

3.2.1.2 Transfer Functions

In this research, the linear and log-sigmoid transfer functions are utilized.

The linear transfer function “purelin” is shown below:

Figure 3.2: Linear Transfe

The lineaf hio s#are ut x e output layer for outputs

expansion purpose, the
a = pureli - v ' (3.17)

According to the '.-.-_m--.,-f,-' e, the output values are the same as

the corresponding ingut e obtained from the adjustable

weights (w). 1 ;—7 .‘:d

The log: [gmoid transfer function is shown betow:

AUL INLNENLINS
QRIANN 426

Figure 3.3: Log-Sigmoid Transfer Function

The log-sigmoid transfer functions are utilized in the hidden layers for the

nonlinear behavior representation purpose, the calculation can be expressed as follows:

14

a= _lggsig (n)= 1+1e‘" B (3.18)

According to the expression above, the transfer function takes the input
and squashes the output into the limited range of 0 to 1: this is the reason why the linear

transfer functions are required in the output layer for the outputs expansion purpose.

3.2.1.3 Multiple-Input Neuron

A neuron genera 2 f @" e, one input. The configuration of a

multiple-input neuron wnth R4

Figure 3.4: Multiple-Input Neur 159;: 5
;' Bwidual inputs p,, p,... pg

2 -4ulW, ¢ Of the weight matrix w
i¥

ﬂ%@ ABENINYANT e
q WT Ny EmIIngay o

Or otherwise,

which are weighted '| orre
|f

respectively.

N=W, e *Pre + D (3.20)

Where

15

p is the column vector of R inputs
P =[Py, Pyreres PRl T (3.21)
w is the row vector of R weights

W= W, W, W gl (3.22)

For the indices of the elémidnts in weight matrix, the first index indicates

the particular neuron destinatig ' gigit_and the second index indicates the
source of input signal tq _ wASUIoN tféh w,; indicate that this weight is

a=f(n) Y = | | | (3.23)

The arc ’ i in- i e more than one layer of
& ' h neuron has more than one
input. It would be obscured {0 i nej ppli€ations without the introduction of
simple structures. Thus, a single v ill be introduced in the next section.
And after that, a mulig =— gb-by-step.

' =)

3.2.1.4 A Layer of Né

'I
i¥

A numbeiﬁcH\eurons operatiwin parallel are call a “layer”. A single-

e rowo@f Soh o PR B Y LGB T390 m i 95 e

layer is compo$€d of a weight matrix, éhe summation umts the bias ve tor b, the transfer

funcua Lw;orﬁa «ﬂ ?ﬂj ﬁm‘g’% Mﬁ Ejs connected

to eacl’qneur e weight matrix w, each neuron has a bias b,, a summation

unit, a transfer function and an output a;, thus, every S neurons layers have S outputs.

16

az

f >
as

f —

contains a lot of details and
this manner because it has

much more details than thi s the es) ted notation for each individual

neuron is introduced as follows: *’WJ T

s

(7

ga

m‘.ﬁ P1 C//

UEINPEINENA]

AN
ARAINTE; &' NN

as

Il
1”/b

10

Figure 3.6: Single-Layer Network, the Simpler Confi iguration

17

RN

Where . represents each individual neuron and equivalent to

The input matrix p, the same as previously defined, is composed of the
individual inputs p,, p,...., p; which are connected to each neuron through the weight

matrix w which is now becoming an SxR matrix as defined below:

w=l" . ' . (3.24)

The in |cate as same as previously

defined. The bias b : \ e Sx1 column vectors as

follows:

(3.25)
2=l a, ot &\ | | (3.26)
The‘euron out ’ 3 2d as follows:
o A e T o)

0
3.2.1.5 Multiple Layer§“of Neurons

—
¢ a | 7 ,
LRI BRI B B rave v men
layers and onélbutput layer for eac?. but different number of neurons in the hidden
layers ﬁ ﬁﬁ] %ﬂ mﬁeﬁyer because
therH Wany a ﬁanon in myer it just receives the input signal, but some
authors did. However, each input is connected to every neurons in the next layer, thus, it
would be much clearer to define the input neurons as the white topological nodes for
each input and no matter how it is called a layer or not. The neurons in every layers else

are defined as the black nodes refer to the black box calculation. The multiple-layer

18

network shown in Figure 3.7 has R inputs. The first layer (hidden layer) has S1 neurons,
W1 weight“r-n.atrix; b1 .bias vector and a1 output vector whtchbecome the input for the
second layer. The second layer (hidden layer) has S2 neurons, W2 weight matrix, b2
bias vector and a2 output vector which become the input for the third layer. The third
layer (output layer) has S3 neurons, W3 weight matrix, b3 bias vector and a3 output

vector which is the output of network.

831

Output Layer

Inpyt L " Hidden Layer

s -

weighi) weight: W3s3xso
blﬂ b1s1x1 bias: b255x1 bias: b3s3x1
i o i i input: a2
' | 1 | g S2x1
AREINLIINGINT
foutput: algqx output: a2g5x1 output: a3g3x4

IRTEITT AN INGIAY

Each layer can be viewed as a single-layer network as follows:

The first hidden layer,

algper = F1 ([WG 0 Prey] +b1g,.,) (3.28)

19

The second hidden layer,

82, = 2 ([W2g,,q,"alg,,,] +02,,,) (3.29)
The output layer,

83531 = B ([W3g5.5,"82¢5,;] +03s.) . (3.30)

And the net output can be hwri in term of the net input as follows:

(3.31)

2 l parts of it can be replaced
by the simple calcula e neural network can be seen

clearly through the bz G ajicn y the simple mathematics. The

".

@

neural networks are the Black bg esbﬂt \

3.2.2 Neural Networks Trainic "F- b
f:f,{ By
To achieve the g #;- "W 7

an adjustment; the pre

. % 4 NI
introduce a tralmn AW ich is based on error

nd biases of neural networks require
Alearning”. This section will

gradient descent, ani then (he™'s 2 ore efficie f; algorithms including the

Levenberg-Marquardt algorithm which is useg in this research will be introduced. All of

PR VT MY S

weights and bides as shown in Flgur? 3.8 below:

ammﬂimumfmmaa

20

Plant Output
—»| Plant Lo

— 7 >

Neural

Neural Network
Prediction

Training
Algorithm
Figure 3.8: The Training
3.2.2.1 Neural Netwo
There ¢ e Je (ited Before trainifig as follows:

1. The data \ available model simulation or

the actual on-line process'dat is research s 22 ailable model simulation (white

— '
box model). The data are norma fi‘.’*r.. Ous sets as follows:

- The'initi

and span the operafiigfegion of " '

djfo train the network initially

T
4
- Thegross validation data set, which is utilized to access the

generalizatio ﬁ‘ jmlﬂm&wlmlmilar quality to the
training data’q sets to improve the
identification.

amaﬂnimummmaa

- The testing data set, which is unseen for the network, used for final

validation of the trained neural network.

To obtain an adequate model, the training input signal must be able to

represent the types of signal anticipated during the normal operation, must be a

21

particular frequency of excitation and appropriate magmtude of excitation especially for

nonlinear ldentlf catlon

2. Neural network creation, define the structure, number of layers and
number of neurons in each layer. In some cases, the users may define the special types

of connection. This research uses the standard type which each neuron is connected to

every neuron in the next layer.

ires the initial values of weights

oL be trained without the first run

3.2.2.2 Backpropagati ' ‘\\

or adjusting the weights and biases of
the neural networks in order to rf- Square error. This is done by changing

the values of the network irectiop. of steepest descent with

]

respect to error.

- .
Deriva >s of error (called delta vectors) are calculated for the network

output layer, and then pﬁmated back throligh the network until the delta vectors are

e BN D TINET S
B R IeyO e (1P

the rules

Aw

Ir*D*p’ (3.32)

Ab Ir'D (3.33)

22

Where, “Ir" is the learning rate.

Too large learning rate cause an unstable learning while too small
learning rate cause a long training time. The learning rate is constant through out the

whole period of training for the normal backpropagation algorithm.

Each pass through all of the training input and target vectors is called an

The maxi mberof f’ ne error goal are the criteria for
stop training if at least one of; 3_;':‘3;'_:,._72

3.2.2.3 Local and Global Minim: -’-—rf-!f

;;,‘——Ir‘; e local minimum. These
minima are not equal, j alleys In a mountain range may not
i (

i¥
be all the same height a ove the sea level.

AL NN LD T 0

the network als%lmay get stuck by rolling into a h|g valley of error,gop local minimum,

AR ARNINGIRE

3.224 Learnlng with Momentum

Momentum allows the network to ignore small features in the error
surface. Without momentum, a network may get stuck in a shallow local minimum. With

momentum, a network can slide through such a minimum.

23

Momentum can be added to the backpropagation learning by making
weight changes equal to the sum of a fraction of the last weight change and the new
change suggested by the backpropagation rule. The magnitude of the effect that a last
weight change is allowed to have is mediated by a momentum constant, mc. When the
momentum constant is 0, a weight change is based solely on the gradient. When the
momentum constant is 1, the new weight change is set to equal the last weight change

and the gradient is totally ignored. Typiga

€ momentum constant is set to 0.95.

The backprogagation with mMdGaflu *an be expressed as follows:

AW, = me *y) « — (3.34)

The weig g ih AW, o \\ as change vector, Ab, must

bias change can then be uledifo tate '., - \ \ biases as follows:

V'and b, respectively. Then
ayer's current input p, the

delta vector D the lear

stant mc. These weight and

(3.35)

b _ (3.36)
.. '}

The new weig SJecten if they result in too large

d
increase in error, this p the momentum from pushing the parameters of a network out

of a deep va ﬁtﬁﬂﬂjﬁﬂloﬁj\nﬁm if the ratio of new
error to prevn u e e S OF rati m error ratio can be
any values greater or equal to 1, but sﬁilplcally sefio 1 ﬁ EJ ’_] a EI
3.2 2%‘ 1daptlve LeammgiaEe

The adaptive learning rate algorithm is to increase the learning rate

(typically multiply by 1.05) if the new error is less than the previous error and to

decrease the learning rate (typically multiply by 0.7) if the new error exceeds the

previous error by more than the predefined ratio (typically 1.04).

24

This procedure increase the learning rate only if a larger rate could result
in stable learning. When the learning rate is too high to guafantee a decrease in error, it

get decreased until stable learning resumes.

3.2.2.6 Levenberg-Marquardt Algorithm

The gradient descent is simply the technique where parameters, such as

weights and biases, are moved in the ite direction to the error gradient. Each step

by using an approximation of

Newton’s method called Leveabe ardt. Thistecl hnique is more powerful than the

gradient descent, but also €6 i 0 \
/ / 0\

Aw A B 5 - TS (3.37)

Where J S the Jagobian: of ‘derivatives of each error to each

weight, 1 is a scalar and € is afy e e scalar p is very 'Iarge, the above

expression approximates the.¢ it is small; the above expression

becomes the Gaus; b:.--.-r-...w.:.-—ﬁ_..m‘._.ﬁ_:'

wards the Gauss-Newton

od is faster and more

accurate near an e -'

method as quickly as™f SSIble Thus, p is decreased afte each successful step, and

increased onlﬁ Tjﬁﬁ*ﬁﬂ"ﬂ'ﬁ w Er] n ‘j

IS algorithm requnrei,the training parameters as follo s

A9 ANAIUIAAINYRE

- the error goal
- the minimum error gradient

- the initial value of n

25

- the multiplier for increasing p

- the multiplier for decreasing p

- the maximum value for p

The training continues until the error goal is reached, the minimum error

gradient occurs, the maximum value of y occurs, or the maximum

aining the neural network is called

overfitting. The error on tha#ffaiaing £¢ '_ \ all value, but when the new

data set is presented o e network has memorized the

training examples, buist hag r": jen \ ew situations.
. .ﬂdu.l \
The training thmss ok . . vagation, Backpropagation with

Adaptive Learning Rate and Backprops er:.‘f ith ‘i enberg-Marquardt Approximation
Lo d | o L
are sensitive to the number o ‘f i layers. While, in general, the more

1T .
neurons in hidden layers, the betier'data the an fit, if far too many neurons are

used, Overﬁtting Gal_OCcur —And as aenerat—f—ta—+ oW ~neurons are examined,

X
ke I -
underfitting can occ

|

3.2.2.8 Neural Network Pmeance Improv

ﬂu&}ﬂﬂﬂﬁﬂi-wlﬂimm

stopping”. In thls technique, there ar€ three sets ofdata used as preVidusly introduced

R BARID U N B STETE D e o

graduen1 based on the training data set and updating the network weights and biases

v

which are randomly initialized. After the initial training, the trained weights and biases
are obtained. If the training is successful, these weights and biases would make the
network fit well with the training data set and these become the initial weights and

biases for the validation. The trick is in the validation, during the normal training based

26

on the validation data set, the performance of network on the tramlng data set is
monitored. blir]ng the validation, the error based on the vahdatlon data set will come
down from the beginning through the end. When the overfitting begins, the error based
on the training data set will begin to rise and this is an additional criterion for stopping
the validation, this is the reason why it is called “early stopping”. This technique can
improve the network by generalizing for two different data sets, not too fit for the only

one set which makes the performance @

s‘ , orse for the generalization.

Other meth ,_;:_ e daiespeebiacessing and postprocessing. The

input variables may have range variable will have the

largest error, the network
g O s,

/'u S ‘vaiiable and other variables are tend
to be ignored. To preve hE t reprocess s utilized for normalizing the

variables into the saff variables. And the data

postprocessing is to e actual values for using.

ed on neural network, each of

them have their own -,.;;:;:::v.: tages. For this research, the Nonlinear
AL
P AN

Internal Model Contipl ry consists of a Neural

Network Controller ;,*— "{,o’ robustness filter (F) as

shown in Figure 3.9. E

Figure 3.9: NIMC Topology

27

Where, e is the IMC error
u is the manipulated variable
Y, is the plant output

Yo is the neural model output

and vy, isthe cop ‘\' afiable set point

I//

There are | l etworksii ind NNM. NNC represent the
inverse model of the plant € lnverse exists %resent the forward model of
the plant. The error betweg olant qutput and NNM output is fed back and
subtracted from the contrgiiéd / SE dinto the robustness filter. The

net input for the filter is callgd “

(3.38)

In case o p eﬁw 1ct| is equal to Y, and e is

consequentially equal to v the ebntrolie | behave as a Direct Inverse

Controller. Thus the Direct InverseG @ et of the IMC.

In cap&et-errorbet I?’;ﬁ’ to y, which is typically

occurred from the di b 5 odelmismatches and the noisy
‘ : .I

e robustness filter, typtcally the first order exponential filter, is

ﬁ THINET IR AT

r other neural netwqgk control straﬂles they are ngt suitable for this

o AR TRV s

steps aflead for the optimization algorithm and a very accurate plant model which is

measurement signals.

obtained from the training with all of the possible plant inputs, all these inputs are not
available in some cases. The Direct Inverse Control (DIC) is very sensitive to noise and
disturbances and it is just a subset in the IMC as described previously. The Model

Reference Adaptive Control (MRAC) can not guarantee the stability of the controlled

28

variables. And the Adaptive Inverse Control requires the existence of a stable plant

inverse which is not available in some cases.

More details about the various neural network control strategies can be
found in (W. T. Miller, R. S. Sutton and P. J. Werbos, 1990: D. A. White and D. A. Sofge,
1992; K. J. Hunt, D. Sbarbaro, R. Zbikowski and P. J. Gawthrop, 1992; B. Widrow, D. E.
Rumelhart and M. A. Lehr, 1994; M. Brown and C. Harris, 1994; A. J. N. Van Breemen

Brickner and S. Rudolph, 20002 i . T@ Isermann, 2003; E. K. Juuso,
2005) for example. \

%

¥

AULINENINYINS
ARIAINTANNINGIAY

	Chapter III Theory
	3.1 The Etbe Hybrid Etherification Process
	3.2 Neural Networks for Process Control

