CHAPTER 1

TNTRODUCT IOM

1.1 Fundamentais

In general, magnetism originates from the magnetic moment due
to the rotational motion of charged particles, both orbital motion and
spin. The origin of thi€ concept can be traced to the molecular current
theory of Ampere (1775¢1836)¢ / The magnetic moment due to the spin is

given by

b < dug <S> (1.1)

whefe g is Landé'g—factor, ug is the Bohr magneton and < 5 > is the
average spins of the system. ~This eguation was derived by Dirac's

relativistic quantum mechanics.

The magnetic properties of a material is characterized by the
magnetic susceptibility, x , which is the response to an applied

magnetic field{ K, and|the ‘relation ‘can be expressed by

M = xH ' (1.2)

where M is) called magnetization, which is the magnetic moment per unit
volume. The relative susceptibility is x , defined as
. x =X (1.3)
Hy .

Where ub;is—the permeability of vacuum,



(1)

1.2 Classification

The observed value of relative susceptibility ranges from
very weak magnetism to very strong magnetism. The behavior of the
susceptibility can be interpreted in terms of the magnetic structure
of material. Most materials can be classified as follow.

a) Diamagnetism is very weak magnetism and is
characterised by a negative susceptibility. This means that the
induced magnetic moment is opposite te the direction of the applied
field. This magnetism ordginates from the orbital motion of electrons
about nuclei induced by an external field. ihile all substances
consist of diamagnetic atoms or, ions, this type of mégnetism is so
weak that it can be covered cuompletely by the other types of magnetism.

b) .. Paramagnetism 1is the most common phenomenon.
The paramagnetic substances contain magnetic atoms or ions whose spins
are isolated from their magnetic environment and can freely change
their directions. The individaul atoms. or molecules have permanent
magnetic moments. The.susceptibility ds positive and temperature-
dependent since the spins can be thermally dgitated so that they take
at random orientation. * The ‘magnetic behavior 'or 'susceptibility
characteristic of this type of magnetism is inversely proportional to

(2)

the absolute temperature, i.e., x obeys the Curie law,

x = Ch ‘ (1.49)

where C is Curie constant.
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_ c) Ferromagnetism, the spins of this material are aligned
in paral]el‘to one another as a result of the strongly coupled dipole
moments and is a case of strong magnetism. At absolute zero, this
alignment is complete and has its maximum spontaneous mﬁgnetization.

As the température is increased, the sponténeous magnetization is
reduced by_the thermal agitation until it becomes zero at a characteris-
tic temperature known as the Curie tempeérature. Above the Curie point,
the susceptibility is given approximately by the Curie-Weiss law.(3)
. xd SN N (1.5)
where 0 is characteristic temperature of the material or Curie
temperature |
' | d) Ferrimagnetisms : For this case of magnetism, the
- Jattice of tﬁe material js characterized by having two kinds of magne-
tic ions occupying two sublattices called A and B. The spin on A sites
point in plus direction, while the other B sites align in the minus
direction. The'magnetization of different'subléttice does not have to
cancel each other. Thus there may exist-appreciable net spontaneous
magnetizafion at absolute, zero.. As.is in _the other cases, the
spbntaneous magnetization can be reduced by thermal agitation of the
spins-on;each sublattice.~ At.a certain, temperature, Néel or Curie
poiﬁt, the arrangement of the spins becomes complete1y.random and the .
spontaneous magnetization vanishes. Above the Néel pojnt, the

substance behaves like paramagnetism. However the Curie-Weiss law is

not to representative of the temperature dependen;e of magnetism.



b=
Instead, the temperature dependence of X is given by
1 _ a_ A
S = UT-0) -1 (1.6)

where a, b, ¢ are positive constants and @ is a negative Weiss constant.
e) Antiferromagnétism: This case may be treated as
special .case of ferrimagnetism. In materials exhibiting this type of
behavior, the lattice can.be considered to composed of two equivalent
interpenetrating nearest'neighbouring sublattices having the same spin
values but in antiparallel diréctions. .The net magnetic moment of the
spontaneous magnetization is zéro at al temperature, and has the maxi-
mum saturation magnetization at absolute zero and decrease:by thermai
agitation, until the spontaneous magnetization disappears at a tempera-
ture called the Néel point(3). Above the Néé] temperature, the varia-

tion of susceptibility is given by

£ Lo : (.7)

where 0 is negative, value.

' f) "tMetamagnetism:  This phenomenon can bé considered
as a transition from ferromagnetism tc antiferrcmagnetism. and vice versa,
which caused by the application of a strong field or change in tempera-

ture.

| g) Parasitic ferromagnetism: This behavior'is a weak
ferromagnetism accompanying antiferromagnetism. At the Néel point, the

spontaneous magnetizaiion is disappeared.
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(3)

1.3 The Weiss Molecular Field Theory

The 1idea that spontaneous magnetization is due to interac-
tions between magnetic atoms was first proposed by Pierre Weiss(4) in
1907. The Néiss molecular field approximation considers only one magnetic
atom and replaces its interaction with the.remainder of the crystal by

an effective field which-is proportional to the average net magnetic

moment of the crystal, that is

Hoge = WM " | (1.8)

where y is the Weiss/molecular field coefficient. Heisenberg(s) shbwed
that the interactions were quantum mechanical exéhange interaction in
drigin. The exchange interaction which expresses the difference in
Coulomb interaction energy of the system when the electron spins are
parallel or antiparallel, tends to corient the magnetic momenfs of the
atoms. The simplest example of this effect can be seen in the quantum
'mechanics_of a fwo—electron system. Sﬁppose that we have two electrons
subject to field derived from similar potential functions. The

* Hamitonian operator for the pair is then

o2
2 2
Hi= o5k Vr -ﬁvl+ UUR v(2) + &= _ (1.9)
M2 | ‘
= Ho + -e-g.—
12

. &

where numbers 1 and 2 refer to the spatial coordinates of the two

2lectrons and rlé is the separation of the two electrons, Meglecting the



interaction between the two electrons, we have a wave function of the

form
oy = E% ' {1.11)

which can be separated into independent wave equations involving each

electron. The solutions are

biml v (vs2) (1.12)

7/ .
£7 /= E1.+EJ. (1.13)

whére ¥y and ¢j are solutions for a single electron moving in the poten-
tial V. If we apply first order perturbation theory to calculate the

effect of the interactian, we find

m
1]

2
| * * e
_EF’ +f¢,-(1)¢j(2) 0, p; (1) wj(Z)dr (1.18)

m
"

E, + Cyy o -~ (1.15)

where cij has the physically reasonable interpretqtion as the average
Coulomb interaction of two electrons in state i and j, respectively. The
Pauli principle.  requires that the total wave function be antisymmetric
with respect to exchanging the space and spin coordinates of the two
electrons. The two spins of S = %—combine to give two states which may
be characterized by the total spin S'. The singlet state (S' = 0) is
antisymmetric and the triplet state (S' = 1) is symmetric in the spin

coordinates, the appropriate total wave functions are then



o

vg * ;%{w,(l)vj(z) + v(20v5(N]e, Eg = Ey + Ky (1.16)
w} = 7%[ *i“’?j(éj - vy(20y;(1)] ey s E] = E, + Ey (1.37)

where os.(S' = S] +S, = 0 and S' = 1)/is the spin function. When we
recalculate the first order perturbation-contribution to the enmergy, we

finq

= g0 :
Eg .E f ij~+ 313 | (1.18)
0 —_
Ep = E#chsdu | _ | | (1.19)
where J,, % /wa*(1)¢*(2) ¢ . (2. (1)d (f 20)
K gﬁ ——— ‘r Y

is the exchange energy of two electrons iﬁ_state i and §. As we see the
singlet and triplet energies are diffefent; whether the singlet state
(spins “antiparallel™) or triplet state (spins “paral]el*) has the lower
energy and is the ground state depends on the sign of Jij'

Ih 1928, piract® showed (that |for<the special case of
localized electrons in orthogonal orbits, the exchange interactions
* between sbins caused by two-body system ‘can be taken fnto account by
adding to the Hamiltonian of the form
S

——
54 - j

H, » -2t J
H j<i 13

-

(1.21)

—

wherefg;. Sj aré the total spins of atoms 1 and j, respectively. Jij is
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' the exchange integral and be positive or negative is favored according to
o —

whether parallel or antiparallel alignment of 5, and Sj. The operator

(1.9) is known as the Heisenberg Hamiltonian which was first deduced by

Dirac and was used first in magnetic theory by Van V]eck(7).

The Heisenberg model suggests that spontaneous magnetization
arises from a toup]ing of -the spin angular-momenta, §;, rather than the

total angular momenta, Ji. The crystal contains atoms with magnetic
moments associated with theiv spin angdlar momenta as in the relation

— ‘ el

L S (1.22)
vhere "B’s the Bohr magneton, ('!L19 The magnetic atoms are assumed to

interact in pairs according to (1. 9) and to be subjected to an external

applied field. Thus the Hamiltonian of the crystal becomes

Ro= W+ . (1.23)
0 =
= “2T 5. .5, -guH. L S (1.24)
jej W1 T3 TRy '

where the first term-is ‘the Heisenberg interaction energy and the
second termcis-the Zeemanm energy,in,an applied, field Ho directed a»long

the z-axis.

In Heisenberg model, we considered oh]y cases in which all
magnetic atoms are identical and all magnetic lattice sites are crystallo-
graphically equivalent. The model is not sufficiently general to allow

for anisotropic or antisymmetric exchange interactions.



.

T Y
In anisotropic exchange, the S . S term would have the form

J S, +J,5;, S, » with at least two of J J, and J,

J wa jx 1y jy iz 7§ y
unequal. An antisymmetric exchange interaction has the form D. (S X S ).

we-should now consider only crystals with a single kind of .
magnetic atom and assuﬁe ihat all magnetic lattice sites are equivalent.
Therefore all nearest neighbor pairs have identical interactions. As
exchange 1ntgractions arecexpected to fall off rabidly with increasing
distance, it seems likely that only a few sets of interactions need to be
considered. Considering the case 6f nearest neighbor exchange interac-
tions only, equation {1.24) becomes

Ho= RES, S.o55 %lguy R o © Siz (1.25)
where J is.positive, the exchange interaction favors a paraliel
alignment of the §pins, that is a ferromagnetic interaction. A negative

J gives an antibara]Tal spin alignment, or antiferromagnetic interaction,

Assuming Hi=0 andoextracting) thecsingle atom Hamiltonian
0

from (1.25) we get
. :
HO® =205 08 55 oIl (1.26)
=1 J .
3= -
where the sum is over the Z nearest neighbors of the dith atom.
Accbrding to the Weiss effective field approximation, The interaction of
the 1th atom with its 7 nearest neighbors can be replaced by an effective

field H The Hamiltonian for this ith atom is

eff*
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- —_ —— —
Bopg = i - Happ = -9 5y - Hogr (1.27)
Fquating (1.26) and (1.27), we find
—_— Z =
= _gg. £ S. (1.28)

Heff guB j=] il

In the spirit of the Weiss approximation(3), each §3 can be

replaced by its average value < §; > . As all magnetic atoms are

identica1 and equivalent, < §} s 45 related to the total magnetic moment

of the c¢rystal by

e

M o= Ngdp £ 5> - (.29)
then R - 20 ®x.,.. 2.y (1.30)
eff = guy i Z AR
B Ng uB

agrees with the Wetss molecular fiteld model if

Y = ?ng' : (1.31)
‘Ng g
1.4 The Two-Sublattice Model®3)

Historically, ‘the first theory of) antiférromagnetism was
developed by Néel. However, Landau was the first person to actually
predict a phase transition analcgous to that in ferromagnetism. In
Néel's theory, which is a generalization of the Weiss molecular field
theory, a‘complete]y ordered arrangement is predicted at absolute zero,
with the lattice of magnetic atoms divided into two spontaneocusly”

magnetized equivalent sublattices set antiparallel to each other. As
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the temperature increases, the spontaneous magnetization decreases and
vanishes at a transition temperature (the Néel point). Above the Néel

point the susceptibility follows the Curie-Weiss law with 0 = 'TN

The most obvious antiferromagnetic arrangement is a
lattice which can be subdivided into two equivalent, interpenetrating
sublattices, A and B, such that A atoms have only B atoms for nearest
neighbors and vice versag eventhough this is not possible for all
lattices. At any low tempervature, the A and B sublattices will beccme
spontaneously magnetized in opposite directions. Two different molecular
fields, Hop and Hog Which act on the A and B sublattices, as A or B

atoms interact only with B.or A atoms respectively. The relaticn is

-~ _ 8 e

HCA = m MB = ZYMB (] .32)
g “B

HeB = a—?~§-MA = ZYMA (1.33)
g ¥g

In the applied field Ho’ the .total fields acting on A and B atoms should

be
Hy = H + 2vig (1.34)
HB = Ho + ZTMA (1.35)

According to statistical mechanics, the magnetization of the sublattice

A is given by



(1.36)

_ S H
. 9
where XA = "'"“F__' is the ratio of the magnet1c and thermal, energies.

However, the expression (1.36) can be reduced to the useful form
‘ N _ ‘
MA . 5705 8 B (Xy) (1.37)
Where'BS(X) is the Brillowin function,
| _25i+ 2s + 1

Bs(x) = S Coth {=——— X) Coth(igé - (1.38)

and similarly to the sublattice B
= N ' ' :
M =7 g Bsl¥p) (1.39)

Equations (1.37) and (7.39) are coupled by the fact-that H, depends on My
and HB on MA‘ Thus they must be solved simultaneously. Considering 6n1y

the high temperaiure approximation jinwhich, x <<~1 2

and Bo(X) = %g-] X (1.40)
T e g oy ST, o)
then Ma= 7o S 5 kT
= FE(H + 2vHg) | (1.41)
1
and ~ Mg = ?'T{Ho + 2rM,) (1.42)



~]15=-

Ng%ud s(s + 1) _
where C = | is Curie's constant. Moreover, the total

margnetic‘moment M= M, + My can be obtained by summing (1.41) and (1.42),

which reduces to

¥\l £
M o= o H 00904 (1.43)

o)
¢
o
[EhY
4W)

_ Hence the susceptibility is giVen'by

X/ 5 (curie-Weiss law) (1.44)

" where @ = Te = Cy = gg%{-(-Sﬂ-l((:urie temperature) {(1.45)

However, this number is negativé since J <0 .

Consequently, if X >> 1 then

R

As T+0, I?S(X) -+ land My = Mg = g-guB S which is the saturation
behavior where each atom has' the maximum 'z component of the magnetic

" moment, guBS.

To Tocate the transition temperature, we set Ho =0 in
equation (1.41) and (1.42). The condition required for My and My to have
non-zero. values 1is '

-

C - -
,% 1,M = My - (1.46)

{ 19687991



& - | *
or T, = -1, My = M : (1.47)

- The first condition is obviously that for a ferromagnet which will have
a negatiée transition temperature, the negative value indicates the
fgrromagnetism is unstable if J < 0/.+ The second condition give the
aptiferromagnetic arrangement, "A = -MB and a positive transition
temperature T" =« ]n_the ébsence of interactions between magnetic
atoms, the Curie-Weiss Taw with 8 = 0 redyce to thé Curie's law for
puré}y paramagnetic substances , x = C/T . However, a quantum mechani-
cal treatment showé that /at low temperature, a term independent of

temperature should be added to the Curie's )aw, and so we get

X s %+ N (D) (1.48)

—_

~ where J is the total angiitar momentum J =1 +5,

1.5 The Susceptibility Below The Née) Point(3)

In an antiferromagnet below the Néel point, each of the

- sublattices acquires a spontaﬁeous magnetization and the molecular field
becomes very large. This means that in.calculating the susceptibility
belbw the Néel point we canm no (JJongder use the approximation guBSH1 << kT

which leads to the Curie-Weiss law for T > TN .

In the two-sublattice model, below TN and in the absence of
any applied field, the magnetization of the two-sublattices are

’ ——
antiparallel. Whenever the external field Ho is applied along the axis
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of'ﬁ; and'ﬁg , this will increase the magnetization of one sublattice and
decrease’ the magnetization of the other, in figure 8(a). This susgepti-
bility is referred to as X171+ In the case of the field being perpendicu-
lar to their axis, the magnetizations will not be changed but will be
rotated slightly away from their axis into_the direction of the field, in
figure S(b)-This susceptibility is ca]fed‘of Yo - According to the
calculation by Van Vieck for.the simpTe A-B type antiferromagnet with
nearest neighbor interéctions onlysx, s constant for T < TN ; while |
X1 js zero at absolute zero and rises monotonically to Xy at T = TN .
This behavior is shown in figlire 9. ng x; > X3y the minimum energy
confriguration in a magnetic field will occur with the antiferromagnetic
axis perpendicular to Ho . Lonsequently, for the simple Heiseﬁberg model,
we should expect the moments to rotate until the perpendicular confrigura-
tion is achieved, so that the susceptibility observed for T < T will .
always be Xy - However, Nagamiya(B) has poinced ocut that such rotations
are opposed by an anisotropy field which tends to-keep the moments

aligned along a particular crystal axisc Jdt is not-until the applied
field reaches a critical value, mJ 2He Ha, where Ha is the anisotropy
field, that the moments suddenly flip fnto'ihé perpendicular confrigura-
tion. For powder -samples, some sort of average over possible orientations
is given by (in fig. 9)

AL ThE T (1.49)

By using Van Vleck's calculation for the two-sublattice model,

. we c¢an genera]iied the molecular field treatment for the susceptibility of



"a single-axis antiferromagnet below the Néeel point. For an applied field
small in comparison to the molecular field, the magnhetization of each
sublattice is not very different from the spontaneous value and can

‘therefore be written as

Y

M, = MOow sl

h = €1.50)

which is the same as the'magmétization of sublattice B. However, when Ho
is applied perpendicular to/the antiferromegnetic axis, the sublattice
magnetizations will rotated through a small angle o until the decrease in
2eemann energy is counterbalanced by the increase in exchange energy.

Thus the total magnetization is given by
H(1-0/T,) = CH/T, (1.51)

Then the susceptibility x and X171 which-are-reduced from the generalized

field theory are

x(Tg) o7 g (1.52)

35(s+1)7 BL(X )
TL38(s+1) T eBl (x )

X1 {(1.53)

.which goes to zero at absolute temperature.

In general, the experimental data tends to resemble the
curve for GITN = -1 . Some experimental data shows two deviations from

the molecular field predictions; the perpendicular susceptibility is not
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quite témperature independent and X;, does not vanish at absolute zero.

(3)

f.s QOther More Advanced Theories‘“’

In the molecular field theory, all thé exchange interactions
in the crystal are replaced by an'efféctive field, the detailed properties
of the spin-Spin interacfion are completely lost. Since the discussion of
magnetism on'the microscopic level is unmanageable if all exéhange
~ interactions are takensinto account, one usually looks only at the
_interactions present in a small _volume of the magnetic material and
approxihate all the interactions occuring“in this volume by a limited
number of interactions. The simplest approach is the.Oguchi method. Here
we consider a pair of neérest neighbor atoms selected at random. The
exchange coupled pair in an effective field is proportional to the average

magneiization of the sample

Ha = M ' (1.54)

2(Z-1)4
Ng Ha

where Y = is the molecular-field coefficient . This coefficient

differs from Weiss’only with Z' is replaced by (Z-1) because each atom in
the pair has one.interaction treated exactly and (Z-1) interattions

' treqted in the molecular field approximation. As the pair is chosen
arbitrarily, the average magnetic moment per atom must be the same as that

of any other pair, Consequently, we have

M ='g-guB<S"!> (1.55)
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' . +S.
<S5z %355,

v
n

where T« Sé

rTr{(Siz + sz) exp ('Hp/kT)} | (1.56)

%p

here Hp is the Hamiltonian for such a pair and zp is the partition function.

For the special case of spin %—atom,-above the transition

temperature, the parahagnetic susceptibility is

4
=2 L3 2(Z)j

' M C
X =4 — o = (]-57)
" He T | .

where j = J/kT,

For antiferromagnetic solution below the Néel point and the

applied field being zero, we have

Hy = -Hg Ho = O | (1.58)
. MA
. - < =
where SA SAZ > T—;'—— | (1.59)
Z0°'8
: Mg ,
Sg = Sz * - | (1.60)
7z QuB _
Thus the Dgu¢h1(9) molecular field approximations for HA and Hg are :
. 2AZ-1J's
H, —éﬁg-lf Sg . - 0.e)
oy = 2z21) S o (1.62)



-22-
The antiferromagnetic condition requires that

[1-(z-1)2 (5p- S)2 1% (e3 + cosh B) + (z-1)sinh § = 0 (1.63)
The above equation can be solved to give (SA- SB) as a function of 7. At

the Néel point (S, = -Sg = 0}y p = 2 JWe have

e = -dz—+—f N (1.54)

which shows that there is no Neel point unlessZ > 2 .

" At temperature below the Neel point, the Oguchi method gives
results for the susceptibility similar to thase of the Weiss theory.
Therefore, x, is nearly constant but decreases by a few percentage points

in going from TN to 0%k, and the parallel susceptibility is given by

&y

2
T (He"J cosh %) - (Z-1)]

X1 (1.65)
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