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Chapter 1

Introduction

Let U be a non-empty open subset of C. Denote by HL2(U, α) the space of

all holomorphic functions on U which are square-integrable with respect to the

measure α(ω) dω.

For any t > 0, consider the Gaussian measure

dµt(z) =
1

πt
e−|z|

2/t dz.

Then the space HL2(C, µt) is called the Segal-Bargmann space. In this space, it

is well-known that a pointwise bound for any function f ∈ HL2(C, µt) is given by

|f(z)|2 ≤ e|z|
2/t‖f‖2

L2(C,µt)
. (1.1)

Indeed, for any space HL2(U, α), there exists a function K(z, ω) on U ×U , called

the reproducing kernel, such that

|f(z)|2 ≤ K(z, z)‖f‖2
L2(U,α) (1.2)

for any f ∈ HL2(U, α) and any z ∈ U . The pointwise bound (1.1) for HL2(C, µt)

follows from the following formula of the reproducing kernel for the Segal-Bargmann

space:

K(z, ω) = ezω/t. (1.3)
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In this work, we study a pointwise bound for a function in a more general

holomorphic function space. Note that ∆ (|z|2/t) is a positive constant, so we

first replace the Segal-Bargmann space HL2(C, µt) by HL2(C, e−ϕ), where ∆ϕ is

a positive constant. The technique used will be that of holomorphic equivalence.

Two holomorphic function spaces HL2(U, α) and HL2(U, β) are holomorphically

equivalent if there exists a nowhere zero holomorphic function φ on U such that

β(z) =
α(z)

|φ(z)|2 for all z ∈ U.

We will show that if HL2(U, α) and HL2(U, β) are holomorphically equivalent

spaces, then

α(z)Kα(z, z) = β(z)Kβ(z, z) (1.4)

where Kα and Kβ are their respective reproducing kernels. If ∆ϕ = c > 0, then

HL2(C, e−ϕ) is holomorphically equivalent to the Segal-Barmann spaceHL2(C, µt)

where t = 4/c. It follows from (1.2), (1.3) and (1.4) that

|f(z)|2 ≤ c

4π
eϕ(z)‖f‖2

L2(C,e−ϕ),

for any f ∈ HL2(C, e−ϕ) and any z ∈ C.

Next, we turn to the space HL2(C, e−ϕ), where ∆ϕ is positive and bounded,

i.e. 0 ≤ ∆ϕ ≤ M for some M > 0. This space is not holomorphically equivalent

to a Segal-Bargmann space, so we cannot apply the same technique here. Our

proof can be divided into the following steps:

First, at z = 0, we show that for any f ∈ HL2(C, e−ϕ),

|f(0)|2 ≤ Ceϕ(0)

∫

D(0,1)

|f(ω)|2e−ϕ(ω) dω

for some C depending only on M . Next, by translation to any point z ∈ C, we

have

|f(z)|2 ≤ Ceϕ(z)

∫

D(z,1)

|f(ω)|2e−ϕ(ω) dω.
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Finally, a pointwise bound for a function in HL2(C, e−ϕ) where 0 ≤ ∆ϕ ≤ M is

given by

|f(z)|2 ≤ Ceϕ(z)‖f‖2
L2(C,e−ϕ).

Here is a brief summary of this work. In Chapter 2, we study basic properties of

a holomorphic function space. After that, we introduce the concept of holomorphic

equivalence and establish a necessary and sufficient condition for two spaces to

be holomorphically equivalent in Chapter 3. In the remaining two chapters, we

estimate a pointwise bound for functions in some holomorphic function spaces. In

Chapter 4, we use some properties in Chapter 3 to estimate a pointwise bound for

a function in HL2(C, e−ϕ) where ∆ϕ is a positive constant. Finally, in Chapter 5,

we use the technique outlined above to estimate a pointwise bound for a function

in HL2(C, e−ϕ) where 0 ≤ ∆ϕ ≤ M for some M > 0.



Chapter 2

Holomorphic function spaces

Let U be a non-empty open subset of C. Denote by H(U) the space of all holo-

morphic functions on U . If α is a strictly positive function on U , let L2(U, α) be

the space of all functions on U which are square-integrable with respect to the

measure α(ω) dω. That is,

L2(U, α) =
{

f : U → C
∣∣∣

∫

C
|f(ω)|2α(ω) dω < ∞

}
.

Then L2(U, α) is a Hilbert space. Let HL2(U, α) = H(U) ∩ L2(U, α). Then

HL2(U, α) is a closed subspace of L2(U, α) and hence a Hilbert space. Moreover,

it is well-known that HL2(U, α) is separable.

Definition 2.1. A Segal-Bargmann space is the space HL2(C, µt), where

µt(z) =
1

πt
e−|z|

2/t

for some t > 0.

Theorem 2.2. Let z ∈ U and s > 0 be such that D(z, s) ⊂ U . Then

|f(z)|2 ≤ 1

(πs2)2

∥∥∥χD(z,s)
1

α

∥∥∥
2

L2(U,α)
‖f‖2

L2(U,α),

for all f ∈ HL2(U, α).
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Proof. Let z ∈ U and s > 0 be such that D(z, s) ⊂ U . We claim that

f(z) =
1

πs2

∫

D(z,s)

f(ω) dω.

Since f is holomorphic on U , we can expand f in a Taylor series at ω = z, that is,

f(ω) = f(z) +
∞∑

n=1

an(ω − z)n,

for all ω ∈ U . This series converges uniformly to f on the compact set D(z, s).

Thus

∫

D(z,s)

f(ω) dω =

∫

D(z,s)

f(z) dω +

∫

D(z,s)

∞∑
n=1

an(ω − z)n dω

= πs2f(z) +
∞∑

n=1

an

∫

D(z,s)

(ω − z)n dω.

If we use polar coordinates with the origin at z, then (ω − z)n = rneinθ. Hence,

for n ≥ 1,

∫

D(z,s)

f(ω) dω = πs2f(z) +
∞∑

n=1

an

∫ s

0

∫ 2π

0

rneinθr dθ dr

= πs2f(z) +
∞∑

n=1

an

∫ s

0

rn+1

∫ 2π

0

einθ dθ dr

= πs2f(z).

It follows that

f(z) =
1

πs2

∫

D(z,s)

f(ω) dω

=
1

πs2

∫

U

χD(z,s)(ω)
1

α(ω)
f(ω)α(ω) dω

=
1

πs2

〈
χD(z,s)

1

α
, f

〉
.

By the Schwarz inequality, we have

|f(z)|2 ≤ 1

(πs2)2

∥∥∥χD(z,s)
1

α

∥∥∥
2

L2(U,α)
‖f‖2

L2(U,α).
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By Theorem 2.2, we have that the pointwise evaluation is continuous. That is,

for each z ∈ U , the map that takes a function f ∈ HL2(U, α) to the number f(z)

is a continuous linear functional on HL2(U, α). Then, by the Riesz representation

theorem, this linear functional can be represented uniquely as an inner product

with some φz ∈ HL2(U, α). That is,

f(z) = 〈φz, f〉 =

∫

U

φz(ω)f(ω)α(ω) d(ω),

Define K(z, ω) = φz(ω) for any z, ω ∈ U . We call K the reproducing kernel for

the space HL2(U, α).

We summarize important properties of the reproducing kernel in the next the-

orem. The proof can be found in [H].

Theorem 2.3. Let HL2(U, α) be defined as above. Then there exists a function

K(z, ω), where z, ω ∈ U , with satisfies the following properties :

(i) K(z, ω) is holomorphic in the first variable and anti-holomorphic in the sec-

ond variable, and

K(z, ω) = K(ω, z).

(ii) For each f ∈ HL2(U, α),

f(z) =

∫

U

K(z, ω)f(ω)α(ω) dω.

(iii) For each f ∈ L2(U, α), the orthogonal projection of f onto HL2(U, α), de-

noted by Pf , is

Pf(z) =

∫

U

K(z, ω)f(ω)α(ω) dω.

(iv) For each z, u ∈ U ,

K(z, u) =

∫

U

K(z, ω)K(ω, u)α(ω) dω.
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(v) For each z ∈ U ,

|f(z)|2 ≤ K(z, z)‖f‖2
L2(U,α), (2.1)

and the constant K(z, z) is optimal in the sense that for each z ∈ U there

exists a nonzero function fz ∈ HL2(U, α) for which equality holds.

(vi) For each z ∈ U , if φz ∈ HL2(U, α) satisfies

f(z) =

∫

U

φz(ω)f(ω)α(ω) dω

for all f ∈ HL2(U, α), then φz(ω) = K(z, ω).

Corollary 2.4. Let K(z, ω) be the reproducing kernel for HL2(U, α). Then for

each z ∈ U ,

K(z, z) = sup
‖f‖L2(U,α)=1

|f(z)|2.

Proof. It follows from inequality (2.1) that

sup
‖f‖L2(U,α)=1

|f(z)|2 ≤ K(z, z).

Since for each z ∈ U there exists a nonzero function fz ∈ HL2(U, α) such that

|fz(z)|2 = K(z, z)‖fz‖2
L2(U,α),

we see that gz = fz

‖fz‖ ∈ HL2(U, α) satisfies

‖g‖L2(U,α) = 1 and |gz(z)|2 = K(z, z).

Hence,

K(z, z) = sup
‖f‖L2(U,α)=1

|f(z)|2.

By inequality (2.1), we obtain a pointwise bound for a holomorphic function

f ∈ HL2(U, α) from the reproducing kernel. Next, we express the reproducing

kernel K in terms of an orthonormal basis for the Hilbert space HL2(U, α).
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Theorem 2.5. Let {ei}∞i=0 be an orthonormal basis for HL2(U, α). Then for all

z, ω ∈ U ,
∞∑
i=0

∣∣∣ei(z)ei(ω)
∣∣∣ < ∞

and the reproducing kernel for this space is given by

K(z, ω) =
∞∑
i=0

ei(z)ei(ω). (2.2)



Chapter 3

Holomorphic equivalence

Definition 3.1. Holomorphic function spaces HL2(U, α) and HL2(U, β) are said

to be holomorphically equivalent spaces if there exists a nowhere zero holomorphic

function φ on U such that

β(z) =
α(z)

|φ(z)|2 for all z ∈ U.

Proposition 3.2. Let HL2(U, α) and HL2(U, β) be holomorphically equivalent

spaces and φ defined as above. Let Λ: HL2(U, α) → HL2(U, β) be defined by

Λf = φf . Then Λ is unitary.

Proof. Let g ∈ HL2(U, β). Then g/φ is holomorphic. Since

∫

U

|g(ω)|2
|φ(ω)|2α(ω) dω =

∫

U

|g(ω)|2β(ω) dω < ∞,

g/φ ∈ HL2(U, α). Thus Λ is onto. Then for any f ∈ HL2(U, α),

∫

U

|f(ω)|2α(ω) dω =

∫

U

|φ(ω)|2|f(ω)|2 α(ω)

|φ(ω)|2 dω

=

∫

U

|Λf(ω)|2β(ω) dω.

Hence, Λ is unitary.
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Theorem 3.3. LetHL2(U, α) andHL2(U, β) be holomorphically equivalent spaces.

Let Kα and Kβ be their respective reproducing kernels. Then for each z ∈ U ,

α(z)Kα(z, z) = β(z)Kβ(z, z).

Proof. Let {ei}∞i=0 be an orthonormal basis for HL2(U, α). Since any unitary map

preserves an orthonormal basis, {φei}∞i=0 is an orthonormal basis for HL2(U, β).

Then, by Theorem 2.5,

Kβ(z, ω) =
∞∑
i=0

φ(z)ei(z)φ(ω)ei(ω)

= φ(z)φ(ω)
∞∑
i=0

ei(z)ei(ω)

= φ(z)φ(ω)Kα(z, ω).

Hence,

Kβ(z, z) = φ(z)φ(z)Kα(z, z)

= |φ(z)|2Kα(z, z)

=
α(z)

β(z)
Kα(z, z).

Therefore, α(z)Kα(z, z) = β(z)Kβ(z, z).

The next goal in this chapter is to establish a necessary and sufficient condition

for two spaces to be holomophically equivalent. This is given in Theorem 3.8.

Before that, let us recall some facts from complex analysis.

Definition 3.4. Let z = x + iy ∈ C and f(z) be a complex-valued function in an

open set U such that fxx and fyy exist at every point of U . Then the Laplacian

of f is defined by

∆f = fxx + fyy.
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In the (z, z)-coordinate, the Laplacian is given by the formula

∆f =
4∂2

∂z∂z
f.

If f is continuous and ∆f = 0 at every point of an open set U , then f is said to

be harmonic on U .

Proposition 3.5. If a function f(z) = u(x, y) + iv(x, y) is holomorphic on an

open set U , then Ref and Imf are harmonic on U . Conversely, if u : U → R is

harmonic on a simply connected domain U , then there is a holomorphic function

f on U such that u = Ref .

Proposition 3.6. The following assertions are equivalent :

(1) U is an open simply connected set in C;

(2) If h ∈ H(U) and 1
h
∈ H(U), then there exists g ∈ H(U) such that h = eg;

(3) If h ∈ H(U) and 1
h
∈ H(U), then there exists f ∈ H(U) such that h = f 2.

Proof. See [R], page 274.

Lemma 3.7. Let U be an open simply connected set in C and α a strictly positive

smooth function on U . Then there exists a holomorphic function φ such that

|φ|2 = α if and only if log α is harmonic.

Proof. (⇒) Since φ ∈ H(U), by Proposition 3.6, there exists a function θ ∈ H(U)

such that φ = eθ. Let u = Re θ. Thus, |φ| = eu and hence α = e2u. Then

log α = 2u, which implies that ∆ log α = ∆2u = 0.

(⇐) Assume that u = log α is harmonic. Then, by Proposition 3.5, there exists

a holomorphic function f such that u = Ref . Then ef is also holomorphic.

Thus, by Proposition 3.6, there exists φ ∈ H(U) such that ef = φ2. Hence,

α = eu = |ef | = |φ2| = |φ|2.
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Theorem 3.8. Let U be an open simply connected set in C and α, β strictly pos-

itive smooth functions on U . Then HL2(U, α) and HL2(U, β) are holomorphically

equivalent spaces if and only if ∆ log α(z) = ∆ log β(z).

Proof. The following statements are equivalent :

HL2(U, α) and HL2(U, β) are holomorphically equivalent spaces

⇐⇒ ∃φ ∈ H(U) such that φ 6= 0 and |φ(z)|2 =
α(z)

β(z)

⇐⇒ log
α(z)

β(z)
is harmonic

⇐⇒ ∆(log α(z)− log β(z)) = 0

⇐⇒ ∆ log α(z) = ∆ log β(z).

This immediately implies the following corollary:

Corollary 3.9. A holomorphic function space HL2(C, α), where α is a strictly

positive smooth function on C, is holomorphically equivalent to one of the Segal-

Bargmann spaces if and only if ∆ log α = c < 0. In particular, if ϕ is a smooth

function and ∆ϕ is a positive constant, then the space HL2(C, e−ϕ) is holomoph-

ically equivalent to a Segal-Bargmann space.

Proof. Note that if

µt(z) =
1

πt
e−|z|

2/t,

then

∆ log µt(z) = −∆
|z|2
t

= −4

t

∂2

∂zz
(zz) = −4

t
< 0.

Thus if HL2(C, α) is holomorphically equivalent to the Segal-Bargmann space

HL2(C, µt), then ∆ log α = ∆ log µt < 0.
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Conversely, if ∆ log α = c < 0, then ∆ log α = ∆ log µt where t = −4/c. Therefore,

HL2(C, α) is holomorphically equivalent to the Segal-Bargmann spaceHL2(C, µt),

where t = −4/c.



Chapter 4

Pointwise bound for a function in

HL2(C, e−ϕ) where ∆ϕ is constant

In this chapter, we obtain a pointwise bound for any function in the holomorphic

function space HL2(C, e−ϕ), where ∆ϕ is constant. First, we recall the pointwise

bound for a Segal-Bargmann space. In [H], we have

{
zn

√
n!tn

∣∣∣ n ∈ N ∪ {0}
}

is an orthonormal basis for the Segal-Bargmann space HL2(C, µt). Then, by

Theorem 2.5,

K(z, w) =
∞∑

n=0

zn

√
n!tn

ωn

√
n!tn

=
∞∑

n=0

1

n!

(
zω

t

)n

= ezω/t.

Thus,

K(z, z) = e|z|
2/t.

By Theorem 2.3, we have a pointwise bound for functions in HL2(C, µt).
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Theorem 4.1. For any f ∈ HL2(C, µt) and any z ∈ C,

|f(z)|2 ≤ e|z|
2/t‖f‖2

L2(C,µt)
. (4.1)

Next, we will obtain a pointwise bound for a function in a holomorphic func-

tion space HL2(C, e−ϕ) where ∆ϕ is a positive constant. This is a generaliza-

tion of Theorem 4.1 since ∆|z|2/t = 4/t > 0. Note also that, by Corollary 3.9,

HL2(C, e−ϕ) is holomorphically equivalent to HL2(C, µt). Hence, we can obtain

a pointwise bound estimation for functions in HL2(C, e−ϕ) from the pointwise

bound estimation for functions in HL2(C, µt).

Theorem 4.2. Let ϕ be a smooth function such that ∆ϕ = c where c is a positive

constant. Then, for any f ∈ HL2(C, e−ϕ) and any z ∈ C,

|f(z)|2 ≤ c

4π
eϕ(z)‖f‖2

L2(C,e−ϕ). (4.2)

Proof. By Corollary 3.9, HL2(C, e−ϕ) is holomorphically equivalent toHL2(C, µt),

where t = 4/c.

Then, by Proposition 3.3,

Ke−ϕ(z, z) =
1
πt

e−|z|
2/t

e−ϕ(z)
e|z|

2/t

=
1

πt
eϕ(z)

=
c

4π
eϕ(z).

By Theorem 2.3, we have

|f(z)|2 ≤ c

4π
eϕ(z)‖f‖2

L2(C,e−ϕ),

for any f ∈ HL2(C, e−ϕ) and any z ∈ C.

Corollary 4.3. Let ϕ be a smooth function such that ∆ϕ = c where c is a positive

constant. Then, for any f ∈ HL2(C, c
4π

e−ϕ) and any z ∈ C,

|f(z)|2 ≤ eϕ(z)‖f‖2
L2(C, c

4π
e−ϕ).
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In the remaining of this chapter, we give an alternative proof of a pointwise

bound for a Segal-Bargmann space. This method uses the estimate in Theorem 2.2

and avoid an explicit formula for an orthonormal basis for HL2(C, µt). Although

this method usually gives a less sharp estimate, it is more applicable because in the

next chapter we will establish a pointwise bound for a wider class of holomorphic

function spaces and we generally do not have explicit formulas for orthonormal

bases of these spaces.

Lemma 4.4. Let U = D(0, 1). For any space HL2(U , µt), there exists a constant

C depending only on t such that for any f ∈ HL2(U , µt),

|f(0)|2 ≤ C

∫

D(0,1)

|f(ω)|2µt(ω) dω.

Proof. By Theorem 2.2, for any f ∈ HL2(U , µt) and s such that 0 < s < 1,

|f(0)|2 ≤ (πs2)−2
∥∥∥χD(0,s)

1

µt

∥∥∥
2

L2(U ,µt)
‖f‖2

L2(U ,µt)
.

Consider

∥∥∥χD(0,s)
1

µt

∥∥∥
2

=

∫

U

∣∣∣χD(0,s)
1

µt(ω)

∣∣∣
2

µt(ω) d(ω)

=

∫

D(0,s)

1

µt(ω)
dω

=

∫

D(0,s)

πte|ω|
2/t dω

= πt

∫ 2π

0

∫ s

0

er2/tr dr dθ

= 2π2t

∫ s

0

t

2
der2/t

= π2t2(es2/t − 1).

Let C = t2

s4 (e
s2/t − 1). If 0 < s < 1 is fixed, then

|f(0)|2 ≤ C‖f‖2
L2(U ,µt)

= C

∫

D(0,1)

|f(ω)|2µt(ω) dω,

for any f ∈ HL2(U , µt).
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Theorem 4.5. For any Segal-Bargmann space HL2(C, µt). There exists a con-

stant C depending only on t such that, for any f ∈ HL2(C, µt) and any z ∈ C,

|f(z)|2 ≤ Ce|z|
2/t‖f‖2

L2(C,µt)
. (4.3)

Proof. Let Kµt be the reproducing kernel for HL2(U , µt). By the previous lemma

and Theorem 2.4,

Kµt(0, 0) ≤ C.

Let z ∈ C and βz(ω) = 1
πt

e−|z+ω|2/t. Then ∆ |z+ω|2
t

= ∆ |ω|2
t

. Hence HL2(U , µt) and

HL2(U , βz) are holomorphically equivalent spaces. Let Kβz be the reproducing

kernel for HL2(U , βz). Then

Kβz(0, 0) =
µt(0)

βz(0)
Kµt(0, 0)

= e|z|
2/tKµt(0, 0)

≤ Ce|z|
2/t.

Let f ∈ HL2(C, µt) and gz(ω) = z + ω. Then gz ∈ H(C) and f ◦ gz ∈ H(C).

Hence, h = f ◦ gz

∣∣
U ∈ HL2(U , βz). Then

|f(z)|2 = |f ◦ gz(0)|2 = |h(0)|2 ≤ Ce|z|
2/t‖h‖2

L2(U ,βz)

= Ce|z|
2/t

∫

D(0,1)

|h(ω)|2 1

πt
e−|z+ω|2/t dω

= Ce|z|
2/t

∫

D(0,1)

|f ◦ gz(ω)|2 1

πt
e−|z+ω|2/t dω

= Ce|z|
2/t

∫

D(0,1)

|f(z + ω)|2 1

πt
e−|z+ω|2/t dω

= Ce|z|
2/t

∫

D(z,1)

|f(ω)|2 1

πt
e−|ω|

2/t dω

≤ Ce|z|
2/t

∫

C
|f(ω)|2 1

πt
e−|ω|

2/t dω

= Ce|z|
2/t‖f‖2

L2(C,µt)
.



Chapter 5

Pointwise bound for a function in

HL2(C, e−ϕ) where 0 ≤ ∆ϕ ≤ M

We recall that the function Γ defined by

Γ(z) =
1

2π
log |z|

is the fundamental solution for the Laplace’s equation on R2. Thus if ψ ∈ C∞
c (C),

then

Φ(z) = Γ ∗ ψ(z) =

∫

C
Γ(ζ)ψ(z − ζ) dζ

satisfies ∆Φ = ψ.

Proposition 5.1. Let K be a compact subset of C and O an open set containing

K. Then there exists a function g ∈ C∞
c (C) such that 0 ≤ g ≤ 1, g = 1 on K and

g = 0 outside O.

Proof. See [F], page 245.

Lemma 5.2. Let ϕ ∈ C∞(C) satisfying 0 ≤ ∆ϕ ≤ M . Then there exists a

constant C depending only on M such that for any f ∈ HL2(C, e−ϕ),

|f(0)|2 ≤ Ceϕ(0)

∫

D(0,1)

|f(ω)|2e−ϕ(ω) dω.
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Proof. By Proposition 5.1, there exists a function g ∈ C∞
c (C) such that g = 1 on

D(0, 1) and g = 0 outside D(0, 2). Let ψ = g ·∆ϕ. Then ψ ∈ C∞
c (C), ψ = ∆ϕ on

D(0, 1) and ψ = 0 outside D(0, 2). Thus Φ = Γ ∗ ψ satisfies

∆Φ(z) = ψ(z) = ∆ϕ(z) (5.1)

for all z ∈ D(0, 1). Let h ∈ HL2(U , e−Φ). It follows from Theorem 2.2 that for all

0 < s < 1,

|h(0)|2 ≤ (πs2)−2
∥∥χD(0,s)e

Φ
∥∥2

L2(U ,e−Φ)
‖h‖2

L2(U ,e−Φ).

Let 0 < s < 1 and ω ∈ D(0, s). Then

Φ(ω) =

∫

C
Γ(ζ)ψ(ω − ζ) dζ

=

∫

D(ω,2)

Γ(ζ)ψ(ω − ζ) dζ

=

∫

D(ω,2)\D(0,1)

Γ(ζ)ψ(ω − ζ) dζ +

∫

D(0,1)

Γ(ζ)ψ(ω − ζ) dζ

≤
∫

D(ω,2)\D(0,1)

Γ(ζ)ψ(ω − ζ) dζ

≤
∫

D(ω,2)\D(0,1)

MΓ(ζ) dζ

= M

∫

D(ω,2)\D(0,1)

Γ(ζ) dζ

=
M

2π

∫

D(ω,2)\D(0,1)

log |ζ|dζ.

Because
∫

D(ω,2)\D(0,1)
log |ζ| dζ is a function which is bounded above on D(0, 1)

and so is Φ. Let C1 = supω∈D(0,1) Φ(ω). We note that C1 depends only on M . It

follows that

∥∥χD(0,s)e
Φ
∥∥2

L2(U ,e−Φ)
=

∫

D(0,s)

eΦ(ω) dω

≤
∫

D(0,s)

eC1 dω

= eC1πs2.
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Thus

|h(0)|2 ≤ eC1

πs2
‖h‖2

L2(U ,e−Φ)

for all h ∈ HL2(U , e−Φ). Therefore, by Theorem 2.4,

Ke−Φ(0, 0) ≤ eC1

πs2

where Ke−Φ is the reproducing kernel for HL2(U , e−Φ).

Let Ke−ϕ be the reproducing kernel for HL2(U , e−ϕ). Then, by equation (5.1)

and Theorem 3.8, HL2(U , e−ϕ) and HL2(U , e−Φ) are holomorphically equivalent

and hence, by Theorem 3.3,

Ke−ϕ(0, 0) =
e−Φ(0)

e−ϕ(0)
Ke−Φ(0, 0)

≤ eC1

πs2
e−Φ(0)eϕ(0).

Let C = eC1

πs2 e−Φ(0). Thus

|h(0)|2 ≤ Ceϕ(0)‖h‖2
L2(U ,e−ϕ),

for any h ∈ HL2(U , e−ϕ).

It remains to show that C depends only on M . Now, consider

Φ(0) =

∫

C
Γ(ζ)ψ(−ζ) dζ

=

∫

D(0,2)

Γ(ζ)ψ(−ζ) dζ

=

∫

D(0,1)

Γ(ζ)ψ(−ζ) dζ +

∫

D(0,2)\D(0,1)

Γ(ζ)ψ(−ζ) dζ

≥
∫

D(0,1)

Γ(ζ)ψ(−ζ) dζ (5.2)

≥ M

∫

D(0,1)

Γ(ζ) dζ (5.3)

= −M

4
. (5.4)
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For inequality (5.2), we use the fact that
∫

D(0,2)\D(0,1)
Γ(ζ)ψ(−ζ) dζ ≥ 0. For

inequality (5.3), we use the fact that Γ is negative on D(0, 1) and 0 ≤ ψ ≤ M on

D(0, 1). Equation (5.4) follows from the computation below:

∫

D(0,1)

Γ(ζ) dζ =
1

2π

∫

D(0,1)

log |ζ| dζ

=
1

2π

∫ 2π

0

∫ 1

0

r log r dr dθ

=

∫ 1

0

r log r dr

=

∫ 1

0

d

(
r2

2
(log r − 1

2
)

)

=

(
1

2
(log 1− 1

2
)− lim

t→0

t2

2
(log t− 1

2
)

)

= −1

4
.

Thus e−Φ(0) depends only on M and so does C.

Let f ∈ HL2(C, e−ϕ) and h = f
∣∣
U . Then h ∈ HL2(U , e−ϕ) and

|f(0)|2 = |h(0)|2

≤ Ceϕ(0)

∫

D(0,1)

|h(ω)|2eϕ(ω) dω

= Ceϕ(0)

∫

D(0,1)

|f(ω)|2eϕ(ω) dω.

Theorem 5.3. Let ϕ ∈ C∞(C) satisfying 0 ≤ ∆ϕ ≤ M . Then there exists a

constant C depending only on M such that for any f ∈ HL2(C, e−ϕ) and any

z ∈ C,

|f(z)|2 ≤ Ceϕ(z)‖f‖2
L2(C,e−ϕ).
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Proof. Let z ∈ C and gz(ω) = z + ω. Then 0 ≤ ∆(ϕ ◦ gz) ≤ M . Let f ∈
HL2(C, e−ϕ) and h = f ◦ gz. Then h ∈ HL2(C, e−ϕ◦gz) and by Lemma 5.2,

|f(z)|2 = |f ◦ gz(0)|2

= |h(0)|2

≤ Ceϕ◦gz(0)

∫

D(0,1)

|h(ω)|2e−ϕ◦gz(ω) dω

= Ceϕ(z)

∫

D(0,1)

|f ◦ gz(ω)|2e−ϕ◦gz(ω) dω

= Ceϕ(z)

∫

D(0,1)

|f(z + ω)|2e−ϕ(z+ω) dω

= Ceϕ(z)

∫

D(z,1)

|f(ω)|2e−ϕ(ω) dω

≤ Ceϕ(z)

∫

C
|f(ω)|2e−ϕ(ω) dω

= Ceϕ(z)‖f‖2
L2(C,e−ϕ).
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