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##547 01754 21 : MAJOR ELECTRICAL ENGINEERING
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THANISSORN PANARUNGSUN : FOREGROUND REJECTION FOR
PARALLAX REMOVAL IN VIDEO SEQUENCE STITCHING. ADVISOR
: ASST. PROF. SUPATANA AUETHAVEKIAT, Ph. D., CO-ADVISOR :
DUANGRAT GANSAWAT, Ph.D., 86 pp.

Parallax is a key challenge that leads to inaccurate registration and ghosting
effect of objects in the result of panorama image stitching. A novel foreground
rejection method is proposed in this thesis to remove parallax in video sequence
stitching. Firstly, the global motion is estimated between two frames using SIFT
feature matching. The foreground is obtained by applying the logical OR operators to
the pixels that have high displaced frame difference. There are two groups of
foreground: the near-frames and the far-frames groups. Then, voting scheme is
applied in the way that only the near-frame foreground inside the area of far-frame
foreground is considered as the actual foreground. The extracted foreground at this
stage is mostly the edges of objects. Since the change of a foreground shape is very
small, 2D translation motion from tracking algorithm is used to project foreground
(edges) from other frames to the current frame. The edges from other frames are then
used to refine the edge in the current frame. The 2-stage rendering is then applied to
the extracted edge for the foreground area. The foreground area is refined by the
foreground area of other frames mapped to the current frames by 2D translation
model. The experimental results of 13 test video sequences indicated that the removal
of parallax objects by the proposed foreground rejection method led to (1) more
accurate registration, (2) the reduction of the ghosting effect, (3) sharper stitched
result and (4) more background information in the results.
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CHAPTER I

INTRODUCTION

1.1 Motivation and Problem Statement

Because of the parallax effect, when objects are located at different depths,
they appear at different location under different viewing direction. In this thesis,
parallax objects are defined as the objects located at different depths from the major
part of the image (background). The inclusion of parallax objects in image stitching
result leads to the shape distortion and/or ghosting effect (the partial appearance of an
object). Therefore the foreground rejection algorithm to remove a parallax object is
proposed in this project. The removal of the parallax object leads to the more accurate
image registration. The image stitching is performed only to the background; thus, the
stitched results appear more natural than the stitching with the inclusion of parallax

objects.

1.2 Literature Review

Video sequence stitching is the process of creating a panorama image from a
video sequence. Although there are no moving objects in each frame, objects may
appear to be moved if they lie in different depths (parallax effect). There are two
major approaches to solve the parallax effect in video stitching. The first one is to
search for the merging points such that the distortion is not clearly visible [1-3]. The
second one is to search for the effective blending method [4]. Hybrid method [5] is
also proposed.

Since parallax objects change the position relatively with the video frame, the
first solution leads to the distortion from the true image. The second solution requires
accurate image registration to convert all video frames to the reference coordinates.
The position change of the parallax object leads to a high error (outlier). The outlier

impedes the accurate registration, since the popular cost functions in an image



registration are the absolute and the squared errors, which are not robust against the
outliers [6]. The registration based on features (Harris corner [7], Scale-Invariant
Feature Transform (SIFT) [8][9], etc.) together with RANSAC [10] may reduce the
error. Nevertheless, as suggested by [11], more accurate registration is acquired if the
intensity based registration is applied after the feature based registration. The parallax
effect of objects in intensity based registration cannot be avoided.

Since parallax objects change the location along the video frames, they can be
considered as the foreground objects. Various foreground rejection algorithms have
been proposed in [12]. However, the requirement of the parallax object removal is
less strict than the one of conventional foreground rejection. Simpler algorithms can
be applied. The only additional requirement is that the algorithm must be able to

detect the foreground in the presence of a global motion.
1.3 Objectives

1. To propose the foreground rejection algorithm for background stitching in
a video sequence.
2. To develop the algorithm that is able to stitch the background in video

sequence so that the stitched result appears natural.

1.4 Scopes

1. The proposed foreground rejection method is for gray-scale video
sequences.

2. The stitching is done only to the background.

3. The motion model of background is the affine model.

4. There is only one parallax object in the video sequence.

5. The global motion can be approximated from the feature based motion
estimation.

6. The compositing surface is the flat plane.

7. The algorithm is performed off-line.

8. The merging filter is the median filter.



1.5 Research Procedure

1. Literature review on the topics that are relevant to the research works of
the dissertation.
1.1 Image stitching.
1.2 Image stitching with parallax objects.
1.3 Foreground rejection.
2. Develop the foreground rejection algorithm for video sequence stitching.
2.1 Detection of the foreground edge by logical operator and voting.
2.2 Simple rendering for the foreground object.
2.3 Tracking of the foreground objects to refine the results in 2.1 and
2.2.
3. Evaluate the proposed algorithm by visual inspection and compare the
results between the stitching with and without foreground rejection.
4. Check whether the conclusions meet all the objectives of the research
work of the dissertation.
5. Write the dissertation.

1.6 Contributions

1. Propose the foreground rejection algorithm for background stitching of the
video sequence.

2. Integrate the tracking algorithm into foreground rejection algorithm to
improve the rendering.

3. Develop the background stitching algorithm on flat surface.

1.7 Thesis Organization

e Chapter 1. Motivation and problem statement, literature review,
objectives, scopes, research procedure and contributions are discussed.
e Chapter 2. This chapter provides the survey on the algorithm for video

stitching and foreground rejection techniques.



e Chapter 3. The proposed method is presented in this chapter.

e Chapter 4. This chapter gives the preliminary results of the proposed
method. It also compares the results between with and without foreground rejection in
video sequence stitching.

e Chapter 5. This chapter concludes the thesis with the evaluation of the

proposed method and the recommendation for future work.



CHAPTER Il

BACKGROUND

Video stitching algorithms and foreground rejection methods are introduced in this
chapter. The video stitching consists of two main parts: (1) registration as described in
Section 2.1.1 and (2) merging as described in Section 2.1.2. In Section 2.1.1, 2D
linear motion models and motion estimation techniques are described. In Section
2.1.2, composites surfaces and the overview of merging techniques are introduced.
The foreground rejection methods are discussed in the next section: (1) pixel-based

rejection in Section 2.2.1 and (2) block-based rejection in Section 2.2.2.

2.1 Video stitching

Figure 2.1 shows the block diagram of the video stitching algorithm. In a
video sequence, each frame is taken at different viewing direction; therefore, their
reference axes locate at different location. The first step of video stitching is to align
(register) all frames to the same reference view. After that, information in all frames is
merged (stitched) to form one large panoramic image. Currently, there are several
applications of image stitching, such as digital maps, satellite photos and panorama

images.

2.1.1 Registration

In computer vision, image alignment, image registration and motion
estimation are related. The objective of the three algorithms is to find the motion
(mapping) of a source image (frame) to a target image (frame). There are several
mathematical motion models, both linear and non-linear. In this thesis, only 2D linear
motion models are considered as described in Section 2.1.1.1. There are two major
approaches for image registration: (1) direct or intensity based and (2) indirect or
feature based methods. The direct and indirect methods are discussed in Sections
2.1.1.2 and 2.1.1.3, respectively.
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Figure 2.1: The block diagram of the video stitching algorithm.

2.1.1.1 Motion model

The motion is described by the parameters in the motion models. There are
many type of parametric motion models, such as 2D translation, planar perspective,
3D camera rotations, the mapping to non-planar (e.g., cylindrical or spherical)
surfaces, etc. In this thesis, only the 2D linear models are considered. Three
commonly used 2D linear models are 1) translation, 2) rigid body and 3) affine

models.

1) Translation model
Translation model is used to represent the linear displacement in x and y
directions. It can be used to approximate general motion as long as the motion is
small. The translation model to transform the pixel at (x, y) to the one at (x ) is

new’ ynew

defined as follows.



Xoew 1 0 T, | x
ynew =0 1 Ty Y (2 . 1)
1 0 0 1|1

where T, and T, are the displacement in x and y direction, respectively.

2) Rigid body model
The rotation and scaling are added into the translation model to form the rigid
body model. The rigid body model describes more general motion than translation

model; however, it does not allow the change in object shape. It is defined as follows.

Xoew cosd sind T || X
Yoew |=S| —SIN@ cosd T ||y, (2.2)
1 0 0 1|1

where S and @are the scaling parameter and the rotating angle, respectively.

3) Affine model
Shearing is added to the rigid body model to form the affine model. The affine
model allows the change in the shape of an object as long as the parallelism is
preserved. It approximates the perspective model (pin holed camera), when the

camera is located at infinity. It is defined as follows.

(2.3)

P < X

where a, b, ¢, d, e and f are the affine parameters.

The affine model is selected as the transformation model in this thesis,
because it can describe the widest range of the motion types among 2D linear motion
models.



2.1.1.2 Direct method

In the direct method, the optimum motion would provide the mapping with the
least intensity difference between the source and the target images. The intensity may
be described in spatial domain or transformed domain. The estimation accuracy is
high, because it can use the (intensity) information of every pixel; however, its
capture length is small, i.e. the estimation is accurate when the motion between
frames is small. Furthermore, the intensity difference is often measured by either the

absolute or the squared difference; therefore, its tolerance against outlier is low.

Three popular direct methods are presented in this section. They are (1) optical
flow method, (2) block based method and (3) Bayesian method.

1) Optical flow method

Optical flow is the pattern of apparent motion of objects, surfaces, and edges
in a visual scene caused by the relative motion between images. Optical flow
estimation methods use the Optical Flow Equation (OFE) for finding the motion
parameters. The OFE provides the estimation of the motion by searching for the
change in intensity between frames. This technique finds the motion parameters from
the derivatives of the image intensity on space and time by considering the total
temporal derivatives. The main idea is that the intensity of the same object is the same

in every frame.

df. (% y.t) _ (2.4)
dt ’

where f (X, y,t) is the continuous space-time intensity distribution;

x and y are the coordinate of the object and are varied according to the
motion of the object;

t is the time variable.

The optical flow equation or the optical flow constraint is obtained by

applying the chain rule of differentiation to (2.4).



+8fc(x, y,t)

=0, (2.5)

(VI (% y,1).(T.T,))

T

where Vfc(x, y,t) — |:6fc (X, y,t) afc (X, y,t)}

OX oy

Tx and Ty, are the translated distance (motion) in x and y axes,

respectively;

(.,.) denotes the vector inner product.

Since the motion in OFE is described by two variables (T and Ty), (2.5) alone

is not enough to find the motion. Additional equation is added in term of the

additional assumption regarding the motion. Examples of the additional assumption

are as follows.

Second-order differential method. The second derivative of the spatial
image gradient is zero.

Block motion model. Only one motion exists in one block; thus, if there are n
pixels in a block, there are n equations for Ty and Ty. The accuracy depends on
the number of objects and the amount of features (edges, corners) in a block. If
the block consists of more than one object or has only a few features, the

motion is inaccurate.

Horn and Schunck method. There is no abrupt motion change among pixels.

The assumption of Horn and Schunck method can be described as follows.

min (|VTX(X, V[ + VT, (x y)r), (2.6)

where [T| is the magnitude of T. The motion near the boundary of an object is

smoothed and becomes less accurate.

The accuracy of OFE depends on the accuracy of the additional assumption.

OFE is often solved by gradient descend method; so the result may be the local
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minima. Generally, the calculation of OFE requires a derivative operation, which

leads to a noise enhancement.
2) Block-based method

Block-based motion estimation is among one of the most popular motion
estimation method. The main idea of the block based method is that there is only one
motion within a block. The block based method is applied in many techniques such as
MPEG-1, MPEG-2, etc. There are several techniques in this method such as the
phase-correlation method, the block-matching method, etc. In this thesis, only the

most popular block-matching method is discussed.

In a block-matching method, a pixel-domain (intensity) search procedure is
applied to estimate the motion. The source image is divided into blocks of MxN
pixels. The method tries to find the block in the target image corresponding to the
block in the source image. Figure 2.2 shows the example of mapping the block in the
source frame (Frame# K) to the area in the target frame (Frame#k'). If the search area
is not limited, the estimation must match the block in Frame# k to every part in
Frame# k' ; consequently, the computing cost is high. To reduce the computing cost,
the search window is used to limit the area in Frame#k' (dashed box in Figure 2.2).
The mapping is then done between the block in Frame# k to only the area within the
search window. In this method, there are two major considerations: 1) matching

criteria and 2) search procedures.

| e |

. N |
Block A,
Search window

Frame# k Frame# k'

Figure 2.2: The basic idea of the block matching method.
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Matching criteria

Matching criteria are used to measure the mapping quality. Most of them
measure the normalized correlation. Examples of the matching criteria are the
minimum Mean Square Error (MSE), the minimum Mean Absolute Difference
(MAD), maximum maximum cross-correlation, Matching Pel Count (MPC), etc.

e Minimum MSE

MSE is defined as

MSE (T)=—— 3" [ f (x k)= F (T, y).K) T, (27)

N1N2 (x.y)eB

where B is the given N; x N, block;
f (x,y,k) is the image intensity at (x, y) in the k —th frame;

T(x,y) is the corresponding coordinate in the k'—th frame for

(%, y) in the k —th frame. T is the function of the motion model.

The transformation acquired from minimum MSE is as follows.

T =arg mTin MSE(T) (2.8)
e Minimum MAD
MAD is defined as
1 '
MAD (T) === 3 [ f (xy.k) = F(T(x).K) (2.9)
NlNZ (xy)eB

The transformation acquired from the minimum MAD is as follows.

T =arg mTin MAD(T) (2.10)
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e Maximum phase-correlation

Phase-correlation method makes use of the phase shifting property of Fourier
transform. The phase of the signal in Fourier domain is shifted when there is the
displacement in spatial domain. Given the relationship between the intensity in the

k —th and the k’'—th frame as follows.
f(x,y,k)=f(x+T,y+T,,k) (2.11)
The relation between the k —th and the k' —th frame in Fourier domain is

F(f,, f,,k) =F(f, f,,K)exp{ j2z(fT, + ,T,)} (2.12)

where F (f, f,,k) is the signal in the Fourier domain at the frequency
(f, f)in k—th frame.

The normalized correlation of the transformed signal in the k—thand the

k' —th frame is as follows.

F(f, f,.k)

C(f, f,)= T oK) (2.13)
= exp{ j27(f,T, + szy)} : (2.14)
where C is the normalized cross correlation.
In spatial domain,
C(x,y)=6(x-T,y-T,), (2.15)

where C(x, y)is normalized cross correlation in spatial domain;

o is the delta-dirac function.

T, and T, can be calculated as follows.

(T,,T,) =argmax C(x, y) (2.16)
X,y
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e Maximum MPC

Each pel (pixel) within the block B is classified as either a matching pel or a

mismatching pel according to

1 if[f(xy. k)= FT(xy).K) <7

: (2.17)
0 ; otherwise

MP(x, y;T)={

where MP is the matching pel function which is 1 and 0 for matching and

mismatching pel, respectively;

7is a predetermined threshold.

Then the number of matching pels (MPC) within B is given by

MPC(T)= > MP(x,y;T) (2.18)
(x,y)eB
and
T =arg max MPC(T) (2.19)

The MPC criterion requires a threshold comparator. In case of the 2D

translation model, it requires a log, (N, x N,) counter.

Search procedures

There are several optimization methods to search for parameters that give the
best-matching block in motion estimation. Examples of popular block-based search
algorithms such as full search, three-step search, and cross search are described as

follows.
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e Full search

The full search algorithm evaluates the matching by applying every possible
motion parameter to T. For example, in 2D translation model for the image of u x v
pixels, the possible Ty and Ty are [ — 1, x— 1] and [-v — 1, v — 1], respectively.

This algorithm is extremely time-consuming.

The *“search window” can be applied to reduce the computing time. For the
searching windows of (2M;+1) x (2M,+1) centered at the block’s center, the possible
Tx and Ty, are [-M1, M1] and [-M,, M,], respectively. Though the computing cost is
reduced, it is still high for it requires (2M;+1) x (2M>+1) mappings for one block.

In practice, search procedure with lower computing cost is required. Heuristic
rule is often incorporated into the search procedure. Though the accuracy is reduced,
it is still good enough for general applications. The popular heuristic search are three-

step search and cross search.
e Three-step search

Three-step search is widely used because it is both simple and robust. It also
gives a near optimal performance. It searches for the best motion parameters from a
coarse to fine scale. Given that the block in the source frame, Bs, is centered at (X, y).
The algorithm of the three-step search to find 2D translation parameters are as follow.

1) Initialize the step sizes of the motion parameters (AT), TXpest aNd TYpest tO
4,0 and 0, respectively.

2) Compute the matching criterion between Bs and the block centered at
(x + Ty, y + Ty) in the target image; Tx € {TXpest —AT, TXpest, TXpest +AT},
Ty € {Typest —AT, T¥best, TYnest +AT}. Tx are Ty are the motions that Bs moves in x and
y axes, respectively.

3) AsSIgN TXpest and Typest to Tx and Ty giving minimum error in 2). Reduce
AT by half.

4) Resume Step 2)-3) until AT is less than 1.
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5) The motions of Bs from the source frame to the target frame in x and y

axes are Txpest and Typest, respectively.

@ © ©
16
@ 2000
T ©lOLE)
@ @@

Figure 2.3: lllustration of three-step search [13].

Figure 2.3 illustrates the three-step search that can be described as follows.

In the first step, the matching criterion is calculated between Bs centered at the
central D in the source frame and nine blocks centered at (D in the target frame. The
nine blocks corresponds to the mapping of Bs by (Tx, Ty) in Step (2) of the three-step
search. Choose (D giving the best matching as the best motion parameter (shown as
the bold () at the right edge) and the search continues with this motion as the search
center. AT is then halved to 2.

In the second step, the matching criterion is calculated between the given
block and the block whose center locates at 2). Choose @) giving the best matching as
the new search center (shown as the bold (2) at the top right corner). The distance of
the search is halved to 1.

In the third step, the matching criterion is calculated between the given block
and the block whose center locates at (3. Choose (@ giving the best matching as the
best motion (shown as the bold (3) at the right edge).

The number of iterations (steps) in the three-step search can be increased for

better resolution. For example, if 0.25 pixel resolution is desired, the number of
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iterations can be increased to 5 (4, 2, 1, 0.5 and 0.25). Furthermore, the search is
easily adapted to other motion models. The coordinate of the block in the target image

is the transformed coordinate of the pixels in Bs.
e Cross search

A cross search is another logarithmic search strategy. In case of the 2D
translation model, it differs from the three-step search as it searches only 5 positions
and the motion parameter will be halved only when the best position is at the center or
at the edge of the image. Given that the block in the source frame, Bs, is centered at
(%, y). The algorithm of the cross search for 2D translation parameters are as follow.

1) Initialize the step sizes of the motion parameters (AT), TXpest aNd TYpest tO
2, 0 and 0, respectively.

2) Compute the matching criterion between Bs and the block centered at
(x + Ty, y + Ty) in the target image; (Tx, Ty) € {(TXbest, TYbest), (TXoest —AT, TYhest),
(TXpest + AT, TYbest), (TXpests TYbest —=AT), (TXpest, TYpest TAT)}.

3) AsSIgN TXpest and Typest to T and Ty, giving minimum error in 2). If TXpest
and Typest are both 0 or x+TXpest AT OF Y+ TYpes AT is beyond the image boundary,
reduce AT by half.

4) Resume Step 2)-3) until AT is less than 1.

In the above algorithm, the motion in Step 2) is set as the end of the (+)-shape
cross; however, it can be changed to the end of the (x)-shape cross where
(Tx, Ty) € {(TXpests TYpest), (TXbest =AT, TYbest—AT), (TXoesttAT, TYoest—AT), (TXpest—AT,
TYbesttAT), (TXpesttAT, TypesttAT)}.

The search with the (+)-shape cross is depicted in Figure 2.4 and can be
described as follows.
In the first step, the matching criterion is calculated between Bs centered at the

central D in the source frame and five blocks centered at (D in the target frame (at the

four corners and at the center). Choose (D giving the best matching as the best motion
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parameter (shown as the bold (1) at the right edge) and the search continues with this
motion as the search center. Since the best (D is not at the center, AT is keep at 2.

In the second step, the matching criterion is calculated between the given
block and the block whose center locates at ). Note that the motion that has already
been checked can be omitted. Choose @ giving the best matching as the new center
(shown as the bold (2) on the right). Since the best @) is not at the center, AT is keep
at 2.

In the third step, the search continues in the same manner as in the second
step. Because the best motion (shown as the bold (3) on the bottom) is not at the
center, AT for the fourth step is keep at 2.

In the fourth step, the best result (shown as the bold @ at right) has the search
area beyond the image boundary if AT is still kept at 2; thus, AT is halved to 1.

In the fifth step, the search continues in the same manner as the previous step
but with AT = 1 (the center of the block is shown as (). The search continues until

the best motion is at the center or reaches the edge of the image.

B
®
@

Figure 2.4: lllustration of the cross-search.
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3) Bayesian method

In Bayesian method, the motion estimation is considered as a maximum a
priori probability (MAP) estimation problem. The motion between the k—thand

k'—th frame is

T =argmax(p(T | F, F)) (2.20)
where  p(T | R, F) is a posterior pdf;
F is the image matrix of the k —th frame;

F is the image matrix of the k' —th frame;

T is the transformation operator to transform the coordinate between
k—thand k’'—th frame.

Bayes theorem is applied to Equation (2.20).

_ b, R.Fy)
P(F.F)
_ P(RIT.F)p(T,F)
P(F I F)p(Fy)
_P(RIT.F)p([F)
P(F I Fy)

p(T [ R, Fy)

(2.21)

Because F, and F. are given, p(F |F) can be considered as a constant.

The maximum of p(T|F,F,) is equivalent to the maximum of

P(F [T, F)p(T [Fy).

T =argmax(p(F |T,F¢)p(T [ Fy)) (2.22)
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The first term in the right-hand side of (2.22) is the likelihood model. It
measures the similarity between the k —thand k’—thframe under the transformation
T. Gaussian distribution with zero mean is often assumed for the likelihood model.

p(F, | T,F ) is defined as follows:

=2 [y, ) = f (T (%, y, KPP

1 )
ex ’ 2.23
(27[0'2)% P 20° ( )

p(Fk |T, Fk') =

where &2 is the distribution variance:

f (x,y,k) is the intensity at (x, y) in the k —th frame;
f (x,y,k") is the intensity at (X, y) in thek"—th frame.

The second term in the right-hand side of (2.23), p(T |F /) is a priori model.

Since prior information such as smoothness constraint can be included in this term,
Bayesian method is one of the most flexible and the most accurate motion estimation;
however, it has the high computing cost, because MAP estimation is often solved by
global optimization, such as simulated annealing, mean field annealing, highest
confidence first, etc. Furthermore, it requires the training phase in order to estimate

the parameters for the likelihood model and a priori model.
2.1.1.3 Indirect method

In the indirect method, features such as edges, corners, etc., that are extracted
from the images are used for matching. An estimation technique is applied to find the
motion parameters such that the position of the feature in one image agrees with the
position of the corresponding feature in the other image.

The accuracy of the indirect method depends on the quality of the features and
the accuracy of the feature matching. Its capture length is larger than the indirect
method; however, the accuracy is less, because the accuracy is limited by the
accuracy of the feature extraction. The problem of inaccurate feature can be reduced
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by having the features distribute all over the image. Furthermore, the features should
not changed position when the image is viewed at different direction (robust against
transform) or corrupted by noise [11]. There are various feature extraction techniques,
such as Harris [7], Scale Invariant Feature Transform (SIFT) [8][9], etc. SIFT is

implemented in this thesis, so its algorithm is described in more detail.
e Scale Invariant Feature Transform (SIFT) [8][9]

SIFT is a method for extracting distinctive invariant features from images. Its
underlying assumption is that good features are distinct across the scale space. The
SIFT feature point, defined as a keypoint, is robust to affine transformation and noise;
thus, it provides the reliable matching between images.

The scale space in SIFT is divided into octave. Images in the same octave
have the same size, but with different level of blurring. The image is blurred by the
convolution with the Gaussian function according to the following function.

L(x,y,0)=G(X,y,0)* f(X,y) (2.24)

where L(Xx,y,o) is the pixel at (x,y) in the scale space at the blurring level

(o).

G(x,y,0) is a variable-scale Gaussian filter and is defined as
follows.

G(x,Y,0) L0 Tg- RSP (2.25)
2no

The blurring level is thus determined by the Gaussian variance, o. At the next
higher octave, the size of the image is halved by subsampling. The SIFT scale space is
shown at the left column of Figure 2.5.

SIFT keypoints and their descriptions are extracted according to the following

four stages.
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i.  Scale-space extrema detection

The extrema is defined as the local maximum of the Different of Gaussian
(DoG) in scale space. DoG is the difference between the two nearby scale space as
shown in the right column of Figure 2.5. The pixel is the extrema if it has the highest
DoG among its neighborhood. Figure 2.6 shows the example of neighborhood where
pixels in the red square are the neighbor of the red pixel.

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)

Figure 2.5: Illustration of Difference of Gaussian (DoG) of scale space in each
octave [8].

Figure 2.6: lllustration of the neighborhood of the red pixel. The neighbor pixels
are located inside the red square [9].



22
ii.  Keypoint localization
The extrema satisfying the following criterion is defined as a keypoint.

(D, +D,,)? 3 (r +1)°
2 2.26
Dxnyy _(ny) r ( )

where D_ is the second derivatives of DoG in m and n direction; Dpy is
calculated at the extrema found in Step i.;

r is a constant which is defined by user. According to the experiment
in [8], the optimal r is 10.

iii.  Orientation assignment

The orientation of a keypoint is approximated from the orientation histogram
which is constructed from the magnitude and the angle of the intensity gradient as
follows. First, the magnitude and the angle of the pixel of L are estimated from the

following equations.

m(x, y) =4/(L)° +(L,)’ (2.27)

o(x,y) = arctan(%) (2.28)

X

where L and L, are the vertical and the horizontal gradient of L, respectively.

The histogram has 36 bins, where each bin corresponds to the orientation span
of 10°. Its input is pixels in the neighborhood of a keypoint. The neighborhood in this
step is located only in the same blurring level. The magnitude of each pixel to put into
the histogram is the weighted m. The weight is calculated according to the position of
the pixel to the keypoint and defined as the circular Gaussian function with the mean

at the position of the keypoint and the standard deviation of 1.5 (the blurring level of
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L). The orientation of the keypoint is defined as the angle of the bin having the
magnitude within 80% of the highest magnitude. Because the keypoint is defined not
only at the bin with the highest magnitude; therefore, some keypoints may have more

than one orientation.
iv.  Construction of the keypoint descriptor

The keypoint descriptor is used to match keypoints between images. It
provides the information of the area around the keypoint in the form of the set of 16
orientation histograms. With the help of Figure 2.7, the construction of the descriptor

is as follows.

Figure 2.7: The construction of the keypoint descriptor. The keypoint is shown as a
red point. [9]

I.  Let the descriptor window be the 16x16 block with the center at the
keypoint (the red point in the figure). Find the orientation and the
magnitude of the pixels by (2.27) and (2.28). Then, the orientation of each

pixel is rotated by the orientation of the keypoint.

ii.  Divide the descriptor window to the 16 blocks of 4x4 pixels (shown as the
green block in the figure). The 8-bin histogram is formed in the same
manner as Step iii with the standard deviation of the Gaussian weight of
24,

iii.  Order the histogram of each area into 128-D feature vector (see the figure)
and normalize the feature vector to reduce the effect of illumination

change.
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The matching between SIFT keypoints is performed on the descriptors. The
matching accuracy can be improved by statistic method such as RANSAC [10]. In
this thesis, the matching criterion of SIFT keypoints is the minimum Euclidean

distance, which is proposed as a good matching criterion in [8].
2.1.2 Merging

Merging is the process to stitch the registered images to create a panoramic
image. When image registration is already done, a final compositing surface will be
chosen. The registered images are placed on the compositing surface. At the
overlapped region (among images), intensities are merged together to form an

intensity for the panoramic image.
2.1.2.1 Compositing surface

A panoramic image is created by placing the registered image on the
compositing surface. The compositing surface can be flat, cylindrical, spherical, etc.
Flat compositing surface is the simplest surface, but the stitching is then limited to the
images with the field of view not exceeding 90° [11]. Cylindrical compositing surface
is commonly used for stitching the larger panorama and is the natural choice for the
rotating camera.

The objective of this thesis is to remove parallax objects for background
stitching. Flat compositing surface is used so that the effect of parallax will be clearly

seen.
2.1.2.2 Merging technique
The merging techniques can be categorized into three groups: 1) optimal seam
selection [1-3][14][15], 2) intensity blending [4][16][17] and 3) hybrid method [5].
1) Optimal seam selection

In the optimal seam selection, the algorithm searches for the line that gives the
least distortion when images are stitched along this line. The intensity information is
derived from one image and intensity blending is not required. Thus, the stitched

image does not contain the ghosting effect, which is the partial appearance of an
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object (see Figure 2.8 for one such example.). However, the parallax objects may be
distorted (the building in the yellow oval in Figure 2.9), because they are located at

different position, when the position of the camera is changed.
2) Intensity blending

In the intensity blending technique, the algorithm provides the rules to blend
the intensity in the overlapped region [18][19]. The average intensity is the easiest
blending rule; however, it neglects the effect of objects’ displacement (due to motion
and parallax effect) leading to the ghosting effect. Weighted average intensity, which
has the higher weight at the center of the image, can also be used as the blending rule.
However, the weighted averaged intensity still faces the problem of the ghosting
effect. Median intensity can be used to reduce the effect of the ghosting effect but
only when the motion of the parallax or moving object is high [20]. Other complex
blending methods, such as multi-resolution blending on Gaussian or Laplacian
pyramid [16], gradient domain blending [17], etc., are also proposed. However, the
problem of the ghosting effect is not entirely solved.

3) Hybrid method

In the hybrid method [5], the seam is selected and then the blending is applied
in the overlapped region where the intensity between images agrees with one another.
Since the seam and blending are applied to the area where intensity among frames is
similar, the ghosting effect can be avoided. However, the object may appear
incorrectly. Figure 2.10 shows one example of the stitched result from the hybrid

method. The person holding the balloons appeared twice.

In this thesis, the median filter is selected as the merging method to evaluate
the proposed system. Error due to the parallax effect will appear, when the parallax
objects are shown in more than half of the available data. The error is suppressed,
otherwise. This is under the assumption that the error found in more than half of the
available data is hard to reject, while the error appears only in a few data can be easily

rejected.
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Figure 2.8: The ghosting effect of the foreground.
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(c) The stitched result by optimal seam selection. The region in yellow circle was
distorted due to parallax effect.

Figure 2.9: The example of the panoramic image obtained by optimal seam selection [2].
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Figure 2.10: Result from Hybrid method [5].

2.2 Foreground rejection

Foreground rejection has the similar objective to foreground extraction,
background rejection and background extraction. In this thesis, foreground rejection is
used as the superset of all these four terms. Foreground rejection algorithms can be
divided into two major categories: the pixel-based and the block-based rejection. The
efficiency is evaluated based on rejection speed, memory requirement and rejection

accuracy.

Three conventional pixel-based rejection are presented in Section 2.2.1 and

two block-based rejection are presented in Section 2.2.2.
2.2.1 Pixel-based rejection

One of the simplest pixel-based foreground rejections is the running Gaussian
average technique [21]. The background intensity is estimated as the weighted

average between the intensity at the current frame and the mean intensity.
wo=af +Q-a)u, (2.29)
where . is the average intensity at time t.
a 1S a constant with the value is [0,1].

St is the pixel’s intensity.
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The pixel is the foreground if

| f, —yH| > ko, (2.30)

where g, is the standard deviation of the intensity distribution;

k is the pre-defined constant.

The running Gaussian average has the benefit of low computation (fast) and
low memory requirement. However, from (2.29) it has the drawback in that it always
update the mean (background) intensity with the intensity of the current frame even
when the current intensity belongs to the foreground. Koller et al. [22] added the
additional variable M to allow the update only when the pixel is defined as the

background. The update becomes

=My, +Q-M)af +1-a)y.,), (2.31)

where M is the binary variable with the value of 0 and 1 for the background
and the foreground pixel, respectively.

Even though a mean is a good representative, it is still not robust to noise. To
increase the noise robustness, the median [23][24] can be used in place of the mean at
the expense of higher computation cost. Furthermore, the memory requirement is
greater, because the buffer to holds n previous frames is necessary. It should also be
noted that the deviation from the median is more difficult to interpret than the

deviation from the mean.

In natural images, background may consist of textures changing with time,
such as leaves in the tree, ocean wave, etc. The mean or the median as used in the
already mentioned method is not appropriate, because it can represent only one type
of the background texture. In order to represent multiple textures, the mixture of
Gaussian is proposed as the background model in [25]. The algorithm requires the

training phase where the mean and the variance for each background texture is
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initially estimated. Afterwards, only the model that the pixel belongs to is updated.
Though the mixture of Gaussian provides the solution for the multiple texture
background, it has high computation.

Instead of finding the Gaussian pdf for each background model as in [25],
Elgammal et al. [24] uses the non-parametric method, where the background is
represents by n previous background intensity. n is in the order of 100. The
distribution of the deviation is assumed to be Gaussian. The probability that the

current pixel with the intensity f; belongs to the background can then be estimated as

1 n
P(ft):ﬁzn(ft—fi,q), (2.32)
i=1
where 7 is the Gaussian pdf;
f. is the i-th previous background intensity;

o, is the SD which can be estimated from the change of intensity
between frames.

The pixel is the foreground if P(f,) is lower than the predefined threshold.

The method in [24] has only one Gaussian distribution under the assumption
that if the background contains multiple textures, the change in intensity among frame
will be high leading to the higher deviation in Gaussian distribution. This method can
be improved by applying mean shift [27-29] to initialize the background intensity

[11]. Mean shift is not applied on-line because it requires high computation.
2.2.2 Block-based rejection

In block-based rejection, the intensity variation (to the temporal mean) can be
used to detect and reject foreground pixels. Furthermore, by using the block of pixels,
it is possible to model the variation in the neighborhood by Principal Component

Analysis (PCA) [30-32]. It has high rejection accuracy at the cost of the resolution.
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In [31], it is assumed that if the blocks belong to the same background, their
variation will be similar in the time domain. When the intensity variation is described
as the weighted sum of the principal components, two blocks of the same background
should have the same weight. Since the intensity variation is included into the model,
PCA based rejection provides a good result. However, the assumption of the same
variation does not hold at the boundary of the object, so a number of rejection errors
exist at the boundary. Another difficulty in implementation is that it is not well

specified when the principal components should be updated.

In [32], PCA is applied over an image to avoid the problem of object’s
boundary within a block. The principal components are extracted from n training
images. Since the foreground changes the position, it will not be well represented by
this set of principal component. Therefore, the foreground is extracted as the pixel
whose intensity cannot be well described by the principal components. The accuracy
depends on the quality of the training images. Similar to [31], it is not well specified
when the principal component should be updated.

PCA based algorithm is not suitable in a video sequence with the presence of
global motion, since the background is different among frame. Background can be
applied only at the overlapped region. The implementation becomes more complex.
Since PCA, itself, requires high computation, the additional complexity is to be
avoided.



CHAPTER Il

THE PROPOSED METHOD

In this chapter, the proposed foreground rejection method is presented. The overview
of the proposed method is described in Section 3.1. The method is divided into 2
stages: (1) edge extraction and (2) rendering. There are 2 substages in each stage. In
the edge extraction stage, the edge of the foreground (parallax object) is obtained by
applying logical OR operators and voting to the displaced frame difference. The edge
is then refined by tracking. The edge extraction and the edge refining are presented in
Sections 3.2 and 3.3, respectively. In the rendering stage, the foreground area is
detected by two-stage rendering. The foreground area is then refined by tracking.
Two-stage rendering and the foreground refining are described in Sections 3.4 and
3.5, respectively. The adaptation of intensity-based registration for the frames with its
foreground removed is presented in Section 3.6.

3.1 Overview

Figure 3.1 depicts the block diagram of the video stitching algorithm
implemented in this thesis. Because the camera is moving, the frame coordinates are
different for each frame. Thus, the frames are first aligned to the reference frame by
registration based on SIFT feature. Alignment is further refined by intensity based
registration. However, a foreground (moving objects, objects with parallax effect) is
an outlier and degrades the registration’s accuracy. Thus, in this thesis, a foreground

rejection method is applied before the intensity based registration.
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Input images

Registration
based on SIFT
feature

v

Foreground
rejection

Refind registration
based on intensity

v

Merging

v Panorama output

Figure 3.1: Block diagram of the video stitching algorithm implemented
in this thesis.

The demand for rejection accuracy in this thesis is not as severe as the general
background subtraction previously proposed in Chapter 1. There are two objectives in
the proposed foreground rejection algorithm. The first objective is to remove
sufficient foreground for accurate intensity based registration. The second objective is
to provide the merging algorithm images with less outliers (foreground) such that the
ghosting of the foreground is not apparent.

A parallax object appears at a different location in a different frame; hence, its
motion is different than the global motion. Its edge can be extracted as the pixel with
high Displaced Frame Difference (DFD) among aligned frames. Figure 3.2 shows the
block diagram of the proposed method. As the accuracy is not severely required, the
edge is extracted with the approximated location in the edge extraction stage. First,
the foreground edge is extracted by applying OR operator and voting to the pixels
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with high DFD. The edge obtained from this substage is noisy. The tracking is then
applied to refine the edge under the assumption that an object contains only one
motion. Edge pixels from other frame can be used to reject the false edge. After this

stage, most edge are obtained and sufficient for the subsequent rendering stage.

In the rendering stage, two-stage rendering is first applied to fill the area
between edges as the foreground area. Because some edge of an object may be
missing, tracking is used to fill the missing foreground. Tracking is also used to reject

the area of false foreground. The detected foreground is then removed.

DFD

DFD(1), DFD(2), ...

I

\
Edge extraction by
OR-operator and voting

- Edge extraction
‘ I(i)
stage

Edge refining by
tracking
I¢(i)

2-stage rendering

loni{i) Rendering stage

Area refining by

tracking
I

Panoramic image

Figure 3.2: Block diagram of the proposed method.
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3.2 Edge extraction by logical OR operator and voting

Assume that the set of images to be stitched is from a video sequence. The

edge extraction algorithm for the i—th frame is as follows.

Input: I (i + nk) : the aligned (i +nk)—th frame, where n<{0,1,2,3,4,5,6} and k
is the pre-defined step size. k is chosen such that the motion of the

foreground is apparent.

Output: .4 (i) : the edge of the foreground in the i —th frame

The number of frames is fixed to 7 by experiment to be presented in Chapter
IV. There are three steps in this algorithm: (1) extraction of intensity change regions
in Section 3.2.1, (2) extraction of the near-frame n Section 3.2.2 and the far-frame

foreground and (3) extraction of the foreground n Section 3.2.3.
3.2.1 Extraction of intensity change regions

The displaced frame difference (DFD) is the absolute difference between two

aligned frames and is defined as

DFD(m) = I (i) — I (i + mk)), 3.1)

where m={1,2,3,4,5,6}.

Pixels are classified into the intensity changing region if DFD is larger than
the threshold, i.e.

0; DFD(m)<T,

, (3.2)
1, DFD(m)>T,

CR(m) :{
where CR(m) is the matrix indicating the changing region between the i—th
and the (i + mk) —th frames and T, is the predefined threshold. This threshold can be

automatically chosen by the method such as the one given in [7].
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3.2.2 Extraction of the near-frame and the far-frame foreground

Even though foreground can be defined as the highly changing region, the
'1'- elements in CR do not always describe the complete foreground edge. More
complete foreground is acquired by combining CRof different m together. The

combination can be effectively done by the logical OR operator. Since CR(m)
consists of the foreground edge in the i—th frame and the one in the (i+mk)-th

frame, the removal of the combination of every CR leads to the excessive removal of

the background regions. The foreground is classified into 2 groups:

(1) The near-frame foreground is the foreground of the i—th frame and the

frames near the i—th frame. In this case, the (i+k)—th, (i+2k)-th and
(i + 3k) —th frames are considered as the near frame.

(2) The far-frame foreground is the foreground of the i —th frame and the frames
further away from the i—th frame. In this case, the (i +4k)—th, (i+5k)—th

and (i + 6k) —th frames are considered as the far frame.

The near-frame foreground (E,.,) and the far-frame foreground (E,, ) are

defined as follows.

E
E

= CR(1)) UCR(2) UCR(3)
— CR(4) UCR(5) UCR(6) ’

near

(3.3)

far

where v is the OR operation.

It should be noted that the number of frames for the near frame foreground and
far frame foreground may be changed. Furthermore, it is also possible to categorized
foreground into more than 2 groups. From the experiment to be presented in Chapter
IV, it was found that this configuration (2 groups, 3 frames in each group) was the
most optimal.

Morphological opening operator is applied to E., and E, to remove the

small (incorrect) foreground.
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3.2.3 Extraction of the foreground edge

The foreground of the i—th frame exists in both E,_,, and E. . However, due

near far *

to the simple extraction algorithm, the position in E_.. and E,  does not always

near far

agree with each other. Hence, voting is applied to check if the foreground in E

near IS

in the foreground region of E_ . The voting is described as follows.

far

i.  For each foreground pixel at (X,,Y,) in E count the number of the

near?’

foreground pixels located within the nxn windows in E._ . The square

far *

window has the top-left and the bottom-right corners at (X, —EJ Yo —EJ)

and (X, +EJ Yo +EJ) , respectively.

ii.  Define the pixel at (X,.Y,) as the foreground if the number of foreground

pixels within the nxn window in E, is larger than T,. From the experiment

far

given in Chapter IV, T, and nare set to 2 and 3, respectively.
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3.3 Foreground edge refining by tracking

The result of the extraction in Section 3.2 contains the edge of a foreground
and spurious background pixels (false edge) (See Figure 3.3 for one example). Since a
parallax object as the foreground does not change much of its shape in a video
sequence, its edges appear almost identical in every frame. It can be safely assumed
that one parallax object contains only one motion; thus, it is possible to track the
motion of the foreground edge. By mapping foreground edges of different frames to
the current frame, it is possible to distinguish the still background from the moving
foreground. In this substage, the foreground edge is tracked under 2D-translation
model and the process is described in Section 3.3.1. Then the edge of other frames is
mapped back to the current frame according to the motion in Section 3.3.1. The
spurious background is then removed. The removal of spurious background by

tracking is described in Section 3.3.2.
3.3.1 Tracking of foreground edges

The motion is approximated as 2D- translation and is estimated by the
variance of the 3-step search. The input are the extracted foreground in the i+m—th
frame, where m={0,1,2,...,n}. The number of n is determined according to the
perceived motion of the foreground. It is fixed at 4 in this thesis. The motion of the

foreground is estimated according to the following optimization problem:

(Tvaest,Ty‘best)z argmax Y > 1 (x+T,y+T,,i+k =Dl (x,y,i+k), (3.4)
(

ToTy) k=l (x.y)

where | (x,y,i) is the foreground edge at (x,y) coordinate in the i—th

frame; it is 1 and O for the foreground and the background pixel,

respectively;

(Tepest Typest) 1S the translation motion of the foreground;

X,best ?
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n is the predetermined constant and is fixed at 4 in this thesis;
« represents the dot operator.
The estimation procedure is as follows.

Initialization: define iteration=0, T T,...=0, Ax=10 and Ay =1. Note

x,best = y,best

that the step size in x axis (Ax) is much larger than the one in y axis (Ay)
because the major motion in most video sequence is the horizontal motion. Ax, Ay
can be changed to accommodate the motion characteristic.

Estimation for (T, o T, pest) :

(1) LEt Tx :{rx,best 7Tx,best + AX’Tx,best 3 AX} and Ty :{Ty,best 7Ty,best + Ay’Ty,best - Ay}

(2) Find the match between the edge extracted in frame# i+k-1 and

frame# i+k , where k ={1,2,...,n}, as follows.

match(T,,T,) = ; 31 (KT, Y+ T, i+ k=11, (x,y,i +K) (3:5)
=1 (xy)
(3) Update (T, ,o» T, pest) @ccOrding to
(Fbests Ty pest) = ar(gxq:?x match(T,,T,) (3.6)
AX Ay

3. Update system parameters: Ax = ORI Ay = N and iteration =iteration+1.

4. Termination: terminate if iteration =5; otherwise, go to 2.

This above process is designed under the assumption that there is only one

foreground object in an image. If there are more than one foreground, iteration is

required and the optimal motion is not guaranteed.
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3.3.2  Spurious background removal

In this step, the foreground edges of different frames are mapped back to the

current frame according to (T

X,best 1

T, ) 1N Section 3.3.1. Background pixels do not

move; hence, they are mapped to different locations. On the other hand, foreground
pixels move with approximately the same motion; thus, they are mapped to the same
location. Since the location of edge pixels are not accurate, the foreground is dilated

before pixel counting. The pixel at (x, y) inthe i—th frame is the foreground, if

D (X Y )l o (X—KT, s Y= KT e 1+ K) 2 T, (3.7)

k=1

where I, isthe I, dilated with the structure element of a 3x3 square;
T, is the pre-defined threshold.

The value n and T, are determined in accordance to the perceived motion of a

foreground. It is assumed that if more than half of n frames consider the pixel at

(x,y) as a foreground, it is a foreground. Since n is fixed at 4, T, is set to 2.

The remaining spurious background is removed by morphological opening

with a structure element of a 2x2 square.
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(a) Original image (b) Detected foreground

Figure 3.3: The example of extracted edges with spurious edges.

n

(@) Original image (b) Detected foreground

Figure 3.4: The example of the extracted foreground after Section 3.3.

3.4 Two-stage rendering

Figure 3.4 shows the example of the result of the refined foreground from
Section 3.3. The figure clearly shows that the extracted foreground was mostly the
edge. The object is extracted by the two-stage rendering which consist of (1) simple
rendering (described in Section 3.4.1) and (2) hole filling (described in Section 3.4.2).

3.4.1 Simple rendering

In the simple rendering, it is hypothesized that the edge extraction provides the
pair of the vertical edges (the left and the right edges) and/or the pair of the horizontal
edges (the top and the bottom edges). The rendering is to fill the area between the

horizontal and the vertical edges as the object.
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Input: I, (i) : the foreground edge extracted by the algorithm described in

Sections 3.2 and 3.3.

I. Initialization: set every element in 1 (i) to 0.

ii. Row rendering: for every row, do as follows.

(@) Initialization: set startPix, p and contFore to -1, 1 and 0, respectively.

(b) If the pixel at the p —th column is the foreground,
then
If contFore is 0,
then
If startPix is -1,
then
Set startPix to p.

else
If the rendering length is not greater than the threshold, T,.
render the pixel between the startPix and p to foreground.

Set startPix to -1.
end
Set contFore to 1.
else

Set contFore to 0.
end
(c) Increment p by 1.

(d) If pisnot larger than the image’s width, go to b. Otherwise, terminate.

iii. Column rendering

The procedure is similar to the row rendering. The algorithm in the row
rendering is changed to the column rendering as follows.
1) Replace the word ‘column’ with ‘row’ and ‘row’ with ‘column’ in Step
(b)
2) The stopping criterion in Step (d) is changed to “If p is not larger than

the image’s height, go to b. Otherwise, terminate.”
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The threshold in this stage is set in accordance with the size of a parallax
object. Figure 3.5 depicts one example of simple rendering. The white pixels are the
foreground pixels. T, is assumed to be infinite. The black (background) pixels
between the 3" to the 7" column is considered to be inside the object whose left and
right edges are at the 2" and the 8" column, respectively. The black pixels in the 10"
and 11™ column is considered to be between the edge of the different objects and is
considered background. With the similar reason to the ones between the 3 to the 7™

column, the pixel at the 14" column is considered foreground.

Right edge of the
Left edge of the 1+ object. 1t object. Left edge of the 22¢ object.

T 5 ——=10 4 15
T [ W W o
L'_I

Right edge of the 22¢ object.

[T T T T T T T [ T ] afte

Figure 3.5: The example of simple rendering.

3.4.2 Hole filling

The foreground rendering in the previous stage may contain small holes
(See Figure 3.6 (a) for one such example). In this stage, the small background
engulfed by the foreground is rendered as background. The algorithm is easily
adapted from the simple rendering algorithm in Section 3.4.1. “set startPix to -1” in
Step (b) of simple rendering is removed. The thresholds in this stage are manually set
and are always smaller than the one in the first stage. Figure 3.7 depicts the example
of hole filling in a row. The white and the black pixels are the foreground and the
background, respectively. The maximum filling size (threshold) is set to 4. Since the
small background region at the 4™ and the 5" column is engulfed by the first and the
second objects, it is filled up and considered as foreground. On the other hand, the
large background region between the 9" and 15" column is left as it is. The rendered

foreground after hole-filling is shown in Figure 3.6 (b).
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(a) after simple rendering (b) after hole filling

Figure 3.6: The example of the rendered foreground.

1% object. 2% gbiject. 3 object.
| : ] 50 : 110 ‘_1?
HEE BEEEER | BpoL

LT T T T T T 1 I | e

Figure 3.7: The example of hole-filling.
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3.5 Foreground area refining by tracking

When a parallax object starts appearing from the edge of an image or goes out
of the field of view, its horizontal and its vertical edges may not appear in pair. Two-
stage rendering has no mechanism to decide which side of the edge the object belongs
to. The object area is not extracted. Furthermore, the remaining spurious background
leads to the mismatching edge. Consequently, the background is extracted as part of
the foreground. Since the parallax object appears in many frames with very little
change in shape, it is possible to use the parallax object in other frames to obtain the
missing foreground and to remove the background. The algorithm is similar to the one
in Section 3.3. The foreground motion can be taken from the result of Section 3.3.1.

The pixel at (x,y) is considered as foreground if

z Lo (X = KT, pegs Y = KT et 1+ K) 2 T, (3.8)
k=0

where T, is the pre-defined threshold;

n is the number of frame, similar to the one in Section 3.3.1.

The pixel is foreground if more than half of I, consider it as foreground. n is

set to 4 as in Section 3.3.1 so there are 5 frames in (8); hence, T, is set to 3.
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3.6 Registration with foreground rejection

Since foreground is an outlier and its exact location is not known, its
information should not be included in the registration. The MSE matching criterion is
changed to

MSE(T)=ﬁZ[f (xy.k)= F (T Y)K) MY T (), k K, (3.9)

| | (xy)

where - M (X, y,T (%, y). k. k') = (L= Lo (X, ¥, K)) (L= 1oy (T (%, y), K ));

|M|= Z M (XY, T(x,y) kK.

(x,y)

The remaining algorithm is the same as the registration without foreground

rejection.



CHAPTER IV

EXPERIMENT AND DISCUSSION

4.1 Experimental set-up
4.1.1 Hardware and software specification

The proposed algorithm was implemented using MATLAB R20011a on Dell
Studio 1458 notebook with the following environment:

- Operation system: Microsoft Windows 7 Ultimate 64 bits
- CPU: Intel Core 15-520m
- Memory: 4 GB

4.1.2 Setting

Thirteen video sequences were used to evaluate the proposed algorithm. In
each video sequence, there is only one parallax object between the camera and the
background. Twenty-one frames from the test video sequence were extracted and
stitched to create a panoramic image. The thirteenth video sequences had the vertical

motion as the major motion, so Ax and Ay in tracking algorithm (Sections 3.3 and

3.5) were swapped. The selected frames are summarized in Table 4.1. Every frame of
twelve video sequences was converted to a gray-scale image and rescaled to the size
of 320x240 pixels. In addition, the thirteenth video sequence was rescaled to the size
of 480x270. The characteristics of 13 video sequences are described in Table 4.2.

Sample frames of all thirteen video sequences are shown in Figures 4.1 - 4.13.

The experiment was divided into 4 parts. First, the configuration and the fixed
parameters as described in Chapter I11 were evaluated in Section 4.2. The parameters
related to the characteristics of a video sequence were not considered. Then the effect
of refining by tracking to the foreground rejection was evaluated in Section 4.3. After
that the effects of the foreground rejection to the registration accuracy and stitching

were investigated in Sections 4.4 and 4.5, respectively.
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Table 4.1: The selected frames in the test video sequence.

No. Totalf;t:nn;lzer of Start frame | Reference frame | Last frame isilfg:[le’ d2fran213§
1 340 10 160 310 (10 +15i) —th
2 350 50 150 250 (50+10i) —th
3 550 120 220 320 (120+10i) -th
4 400 120 220 320 (120+10i) —th
5 600 30 180 330 (30+15i) —th
6 290 90 140 190 (90+5i)—th
7 330 110 170 230 (110+6i)—th
8 420 155 235 275 155+ 6i)—th
9 305 10 110 210 (10+10i) —th
10 350 160 210 260 (160 +5i)—th
11 320 160 240 320 (160+8i)—th
12 550 120 220 320 (120+10i)—th
13 580 120 220 320 (120+10i) —th

Table 4.2: The characteristics of the test video sequences.
No. Major motion Type of background Shape of foreground object
(Translation Direction)
1 horizontal indoor square
2 horizontal indoor square
3 horizontal outdoor cylinder
4 horizontal indoor square
5 horizontal indoor square
6 horizontal indoor complex
7 horizontal indoor ellipse
8 horizontal indoor complex
9 horizontal indoor square
10 horizontal outdoor cylinder
11 horizontal outdoor cylinder
12 horizontal outdoor cylinder
13 vertical indoor square
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4.1.3 Evaluation method

The evaluation was done by visual inspection because there was no ground
truth. Median filter was used to stitch image as the error would not be easily

concealed and would be visible, when more than half of the available data were

incorrect.

-

(a) frame#10 (b) frame#130 (c) frame#235 (d) frame#310

Figure 4.1: Sample frames of the first video sequence.

(a) frame#50 (b) frame#130 (c) frame#200 (d) frame#250

Figure 4.2: Sample frames of the second video sequence.

= .;-'_r_-. =
frame#120

@) (b) frame#200 (c) frame#270 | (d) frame#3éo

Figure 4.3: Sample frames of the third video sequence.
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(a) frame#120 (b) frame#200 (c) frame#270 (d) frame#320

Figure 4.4: Sample frames of the forth video sequence.

(a) frame#30 (b) frame#150 (c) frame#255 (d) frame#330

Figure 4.5: Sample frames of the fifth video sequence.

(a) frame#90 (b) frame#130 (c) frame#165 (d) frame#190

Figure 4.6: Sample frames of the sixth video sequence.

(@) frame#110 (b) frame#158 (c) frame#200 (d) frame#230

Figure 4.7: Sample frames of the seventh video sequence.
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(a) frame#155 (b) frame#203 (c) frame#245 (d) frame#275

Figure 4.8: Sample frames of the eighth video sequence.

(a) frame#10 (b) frame#90 (c) frame#160 (d) frame#210

Figure 4.9: Sample frames of the ninth video sequence.

- |

(a) frame#160 (b) frame#200

TH e

(c) frame#235 (d) frame#260

Figure 4.10: Sample frames of the tenth video sequence.

(a) frame#160 (b) frame#224 (c) frame#280 (d) frame#320

Figure 4.11: Sample frames of the eleventh video sequence.
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(a) frame#120 (b) frame#200 (c) frame#270 (d) frame#320

Figure 4.12: Sample frames of the twelfth video sequence.

(a) frame#120

Pl

| I(c) frame#2 | frame#3

Figure 4.13: Sample frames of the thirteenth video sequence.

4.2 System parameter evaluation

The effect of voting window size and the threshold (T,) are investigated. In
Section 3.2.3, the window size is 3x3 and T, is fixed to be 3. In this section, the
window size was varied from 3x3, 5x5 and 7x7. The values of T, were varied

according to the percentage of the window size from 30% to 80% at the step of 10%.

The values of T, are summarized in Table 4.3.
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Table 4.3: T, used in the experiment.

Voting window The value of T,

size 30% 40% 50% 60% 70% 80%

3x3

9% 75~8 10 | 125~13 15 17.5~18 20
(25 pixels)

1 147~15 | 19.6~20 | 245~25 | 29.4~29 | 343~34 | 39.2~39
(49 pixels)

It is possible to categorize foreground edge differently than the one described
in Section 3.2.2. Edge pixels can be categorized into more than 2 groups (near-frame
foreground and far-frame foreground). Furthermore, the number of frame in each
group can be different. In this section, the effect of the number of groups (R) and the
number of frame (C) is investigated. Seven configurations were investigated. They
were 2R2C, 2R3C, 2R4C, 3R2C, 3R3C, 3R4C and 4R4C, where nRmC stands for n
groups and each group consists of m frames. The changing region (CR), as defined in
Equation (3.2), of frames within each group were combined together to form an edge

group. The i—th group in NnRMC configuration had its edge group (E,) defined as

follows.

E, = CR(im+1) UCR(im +2) U... UCR(im+m), (4.1)

where CR(k) is CR of the k —th frame;

v is an OR operator.

Table 4.4 shows the summarization of the above process.




Table 4.4: The calculation of edge groups in nRmC configuration

Type 2R2C 2R3C 2R4AC 3R2C 3R3C 3R4C 4R4C
No. of groups 2 2 2 - 3 3 4
No. of frames in a 5 3 4 5 3 4 4
group
: CR@@)wWCR(2 CR@Q)UCR(2 CR@@)wCR(2 CR(1 R(2 R( R(2
Firstgroup | crayuCr(2) | CROVCRAY [ CROUCRRLT - o o) | CROUCR@U [ CROUCR@ U | CROUCRE2)w
o (E,) CR(3) CR(3)uUCR(4) CR(3) CR(3)UCR(4) CR(3)UCR(4)
>
o CR(4)UCR(5 CR(5) UCR(6 CR(4)UCR(5 CR(5
S, [ second grown | creycray | R VROV ROVCROIU | o o) gy | ROVCRE [ CREUCRE) | CRE)WCRE)
P (E,) CR(6) CR(7) UCR(8) CR(6) CR(7) UCR(8) CR(7) UCR(8)
2 | Third group CR(7) UCR(8)u | CR(9)UCR(10)u | CR(9)UCR(10)u
= CR(5) UCR6
; (E;) NIA NIA NAA DR ) CR(9) CR(11) UCR(12) CR(11) UCR(12)
o
L CR(13)UCR(14) v
Fourth group
(E.) N/A N/A N/A N/A N/A N/A CR(15) U CR(16)

Note:

CR(m) stands for the changing region as calculated between the i—th frame and the i+m—th frame (Section 3.2.1).

v stands for the logical OR operator.
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The edge groups were merged as follows.

1) Apply voting (Section 3.2.3) to (1) E, and E,, (2) E, and E; and (3) E, and
E,. (Omit the pair that contains E; with N/A)

2) Merge all the result by AND operator.

The evaluation matrices in this experiment are adapted from the accuracy [34]
and the sensitivity [35] measurement in binary classification which are defined as

follows.

accuracy =
number of true positives+number of true negatives [34] (4.2)
number of true positives + false positives+false negatives+true negatives

number of true positives

sensitivity= — -
number of true positives + number of false negatives

[35] (4.3)

Edge pixels were considered as positive pixels. The ground truth edge was
manually created. The true positive was the ground truth edge that was detected by
the algorithm in Section 3.2. The false positive pixels were the pixels incorrectly
detected as edge pixels (according to the ground truth). The true negative pixels were
the pixels correctly detected as non-edge pixels. The false negative pixels were the
ground truth edge pixels that the algorithm failed to detect. The number of the
background (negative) pixels was much larger than the number of the edge (positive)
pixels; therefore, the numbers of the true and false negative pixels were not included
in the accuracy calculation. In this experiment, the accuracy measurement defined in

(4.2) was calculated as follows.

number of true positives (4.4)

accuracy= — —
number of true positives + number of false positives
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The requirement of the good foreground detection is the high accuracy and the
high sensitivity. In the same algorithm, the accuracy can be increased at the expense

of the sensitivity, and vice versa.

The first to the forth video sequences were used in this investigation of the

accuracy and the sensitivity at different voting window size and T, for different

configuration. The average accuracy and the average sensitivity in percent were
presented in Tables 4.4 - 4.10. Each table shows the result at different R and C. The
size of the voting window had only a little effect on the accuracy and the sensitivity.
Except in the case of 4R4C, most of the best results were acquired with the voting

window of 3x3.

Table 4.12 shows the accuracy and the sensitivity when the voting size was

3x3. In most cases, the highest value was obtained when T, = 3. There were 5 cases

(2R3C, 2R4C, 3R2C, 3R3C and 3R4C), where the sensitivity was higher than 30%.
3R3C and 3R4C required more frames than the other three cases; however, they did
not provide much higher accuracy and sensitivity. Therefore, 3R3C and 3R4C were
ignored. 2R4C provided the lowest accuracy and used the highest number of frames
among the remaining three cases, so it was not optimal. Regarding 2R3C and 3R2C,
further investigation was required. Figures 4.14 and 4.15 show the extraction results
by 2R3C and 3R2C. In both cases, there were only a few edges extracted by 3R2C,
while almost complete edge was extracted by 2R3C. So 2R3C was considered as the

most optimal configuration.



Table 4.5: The accuracy and the sensitivity at different voting window size

and T, for 2R2C configuration.

T, in term of the percent of

Evaluation metrics

voting window size

window size. (%) 3x3 | 5x5 | 7x7
30% accuracy 29 29 29
sensitivity 29 29 29
40% accuracy 28 29 29
sensitivity 28 29 29
50% accuracy 27 27 27
sensitivity 28 27 27
60% aCCL.JI‘.a(.ly 27 23 24
sensitivity 27 21 21
20% aCCl_Jr_a(?y 23 23 22
sensitivity 20 20 19
80% aCCL_JI‘-a(-:y 22 22 19
sensitivity 19 19 13

Table 4.6: The accuracy and the sensitivity at different voting window size

and T, for 2R3C configuration.

T, in term of the percent of

Evaluation metrics

voting window size

window size. (%) 3x3 | 5x5 | 7x7
30% aCCL.JI‘.a(.ly 20 20 20
sensitivity 44 44 45
40% aCCl_Jr_ac_y 19 20 20
sensitivity 42 44 43
50% accm_Jr_agy 19 19 18
sensitivity 41 41 40
60% aCCl.Jr.ac.y 19 16 15
sensitivity 41 33 32
70% aCCl_Jr_aQV 16 15 14
sensitivity 32 31 29
80% accuracy 16 14 11

sensitivity

32 30 22
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Table 4.7: The accuracy and the sensitivity at different voting window size

and T, for 2R4C configuration.

T, in term of the percent of

Evaluation metrics

voting window size

window size. (%) 3x3 | 5x5 | 7xT
30% accuracy 16 16 17
sensitivity 52 52 53
40% accuracy 16 16 16
sensitivity 48 51 51
50% accuracy 15 15 15
sensitivity 47 47 46
60% aCCl:II‘.a(.ly 15 12 12
sensitivity 46 36 36
20% aCCl_Jr_a(?y 12 12 11
sensitivity 35 34 30
80% accgr_ac_y 12 11 8
sensitivity 34 32 21

Table 4.8: The accuracy and the sensitivity at different voting window size

and T, for 3R2C configuration.

T, in term of the percent of

Evaluation metrics

voting window size

window size. (%) 3x3 | 5x5 | Tx7
30% accm_Jr_ac?y 34 34 34
sensitivity 34 34 35
0% aCCl_Jr_ac_y 32 34 34
sensitivity 31 34 34
50% accm_Jr_agy 32 32 31
sensitivity 31 30 30
60% aCCL.JI‘.a(.:y 32 26 25
sensitivity 30 22 22
20% aCCl_Jr_a(?y 26 25 23
sensitivity 22 21 19
80% accm_Jr_agy 26 23 16
sensitivity 21 19 12
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Table 4.9: The accuracy and the sensitivity at different voting window size

and T, for 3R3C configuration.

T, in term of the percent of

Evaluation metrics

voting window size

window size. (%) 3x3 | 5x5 | 7x7
30% aCCL-JI‘-a(-:y 24 24 24
sensitivity 39 40 40
40% accuracy 23 24 24
sensitivity 36 39 39
50% accuracy 23 23 22
sensitivity 35 35 34
60% aCCl:II‘.a(.ly 23 19 19
sensitivity 35 27 27
20% aCCl_Jr_a(?y 19 19 18
sensitivity 26 26 23
80% aCCL-JI‘-a(-)y 19 18 12
sensitivity 26 24 17

Table 4.10: The accuracy and the sensitivity at different voting window size

and T, for 3R4C configuration.

T, in term of the percent of

Evaluation metrics

voting window size

window size. (%) 3x3 | 5x5 | 7x7
30% accn.Jr.at?y 16 16 16
sensitivity 46 47 47
40% aCCL-JI’-a(?y 15 16 16
sensitivity 42 46 46
50% aCCl-JI’-a(?y 15 15 15
sensitivity 41 40 40
60% aCCL.JI’.a(?y 15 12 11
sensitivity 40 30 29
20% aCCl_Jr_ac_y 11 11 10
sensitivity 28 28 25
80% accn.Jr.a(?y 11 10 7
sensitivity 27 25 16
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Table 4.11: The accuracy and the sensitivity at different voting window size
and T, for 4R4C configuration.

T, in term of the percent of Evaluation metrics | voting window size
window size. (%) 3x3 | 5x5 | 7x7
accurac
30% U _ _y 1 1 1
sensitivity 5 5 4

40% accuracy 2 1 1
sensitivity 8 6 6

r

5006 Acpuracy 2 | 2 | 3
sensitivity 8 8 8
accurac

60% e 2 | 4 | 4
sensitivity 8 11 11

10% T, [ 4 [ 2 | 4
sensitivity 10 11 11
accurac

80% i 4 4 5
sensitivity 10 11 12

Table 4.12: The accuracy and the sensitivity at different configuration and T,

when the size of the voting window was 3x 3. The cases with the highest accuracy
and the highest sensitivity are shown in gray.

T Evaluation Configuration
2 metrics (%) 2R2C | 2R3C | 2R4C | 3R2C | 3R3C | 3R4C | 4R4C

3 accuracy 29 20 16 34 24 16 1
sensitivity 29 44 52 34 39 46 5

4 accuracy 28 19 16 32 23 15 2
sensitivity 28 42 48 31 36 42 8

5 accuracy 27 19 15 32 23 15 2
sensitivity 28 41 47 31 35 41 8

6 accuracy 27 19 15 32 23 15 2
sensitivity 27 41 46 30 35 40 8

7 accuracy 23 16 12 26 19 11 4
sensitivity 20 32 35 22 26 28 10
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(€) 3R3C (f) 3RAC

(9) 4R4C

Figure 4.14: The extracted edge of the 120" frame of the third video sequence when the
number of the edge group and the number of frame per group are different. The voting
window size and T, are 3x3and 3, respectively. The foreground edge is shown in cyan.
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(€) 3R3C (f) 3RAC

(9) 4R4C

Figure 4.15: The extracted edge of the 175" frame of the tenth video sequence when the
number of the edge group and the number of frame per group are different. The voting
window size and T, are 3x3and 3, respectively. The foreground edge is shown in cyan.
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4.3 Effect of tracking

Figures 4.16 - 4.18 show the edge extracted before (left column) and after
(right column) edge refining by tracking. Most of the spurious background was
removed. Figures 4.19 — 4.31 show the foreground rejection before (left column) and
after (right column) area refining. The remaining spurious edges led to the incorrect
rendering where the large area of background was considered as foreground. Holes in
the foreground object could be ignored if it was small. By comparing the right column
to the left column, it was found that less background was deleted and less foreground

area was misdetected as background.

The better foreground rejection would lead to better registration and more
information for merging. This experiment showed that the 2D translation model was
sufficient and the refining by tracking should be integrated to the foreground

rejection.

4.4 Effect of foreground rejection to the registration
accuracy

Figures 4.22 - 4.24 show the registration results with and without foreground
rejection. The first, the reference and the last frame are displayed in different color
channel. When an area contains the information from all three frames, the

misregistration is shown in color.

Figures 4.22 and 4.23 showed that the effect of the foreground rejection was
almost negligible when the foreground object was small. Figure 4.24 indicated that
when the parallax object was large, the foreground rejection led to better registration
accuracy. The ‘A’ letter was incorrectly registered and shown as the cyan shadow in
Figure 4.24 (f). Less misregistered area was achieved. Furthermore, the inclusion of
refining by tracking led to better registration and more crisp edges were obtained.
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4.5 Effect of foreground rejection to stitching

Figures 4.25 — 4.37 show the stitched images from 13 video sequences. In all
figures, (@) and (b) show the stitched images from the video stitching algorithm
without and with foreground rejection; (c) and (d) shows the enlarged area inside the

dashed window in (a) and (b), respectively.

The black areas in (b) and (d) of Figures 4.25 — 4.37 are the areas without the
background information. The differences between the stitched image with and without

foreground rejection are as follows.

1) The stitched image with foreground rejection had sharper and more
correct edge (Figures 4.25, 30, 31, 33, 34, 35 and 37).

2) The stitched image with foreground rejection had less ghosting effect
(Figures 4.26 - 4.29, and 4.36).

There was the loss of large background area in the stitched result with
foreground rejection of the 8" sequence (Figure 4.32). The rendering stage removed
too much background due to the spurious background pixels. Nevertheless, it could be
seen that the tape in the top right corner in Figure 4.32 (d) had the correct intensity;
whereas, it was wrong in the stitched result without foreground rejection (Figure 4.32

().

The results indicated that the proposed foreground rejection method improved
the visual quality of video stitching as less visible ghosting and crisper stitched image.

The intensity of the background was more similar to the actual one.
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Before After

(a) frame#50

(b) frame#130

(c) frame#200

(d) frame#250

Figure 4.16: The extracted edge before (left column) and after (right column) the edge
refining for the 2™ sequence. The foreground edge is shown in cyan.
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Before After

(a) frame#120

(b) frame#200

(c) frame#270

(d) frame#320

Figure 4.17: The extracted edge before (left column) and after (right column) the edge
refining for the 3 sequence. The foreground edge is shown in cyan.
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Before After

(a) frame#10

(b) frame#90

(c) frame#160

(d) frame#210

Figure 4.18: The extracted edge before (left column) and after (right column) the edge
refining for the 9™ sequence. The foreground edge is shown in cyan.
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Before After

(a) frame#50

(b) frame#130

(c) frame#200

(d) frame#250

Figure 4.19: The result of foreground removal before (left column) and after (right column)
the area refining for the 2™ sequence. The foreground area is shown in cyan.
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Before

(a) frame#120

(b) frame#200

(c) frame#270

(d) frame#320

Figure 4.20: The result of foreground removal before (left column) and after (right column)
the area refining for the 3" sequence. The foreground area is shown in cyan.
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Before After

(a) frame#10

(b) frame#90

(c) frame#160

(d) frame#210

Figure 4.21: The result of foreground removal before (left column) and after (right column)
the area refining for the 9™ sequence. The foreground area is shown in cyan.
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(@) original first frame (b) original reference frame (c) original last frame

(d) without foreground rejection (e) with foreground rejection
(f) enlarged image inside the dashed (9) enlarged image inside the dashed
window in (d). window in (e).

Figure 4.22: Composite color image showing the registration of the first (R-channel)
and the last frame (B-channel) to the reference frame (G-channel) in the 2™
sequence.
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(a) original first frame  (b) original reference frame (c) original last frame

(d) without foreground rejection (e) with foreground rejection

(f) enlarged image inside the dashed (g) enlarged image inside the dashed
window in (d). window in (e).

Figure 4.23: Composite color image showing the registration of the first (R-channel)
and the last frame (G-channel) to the reference frame (B-channel) in the 3"
sequence.



(@) original first frame (b) original reference frame (c) original last frame

(d) without foreground rejection (e) with foreground rejection
(F) enlarged image inside the dashed (9) enlarged image inside the dashed
window in (d). window in (e).

Figure 4.24: Composite color image showing the registration of the last (R-channel)
and the first frame (G-channel) to the reference frame (B-channel) in the 9"
sequence.
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(a) without foreground rejection (b) with foreground rejection

(c) enlarged image inside the dashed (d) enlarged image inside the dashed
window in (a). window in (b).

Figure 4.25: Stitched image from the first video sequence.

(a) without foreground rejection (b) with foreground rejection

i

(c) enlarged image inside the dashed (d) enlarged image inside the dashed
window in (a). window in (b).

Figure 4.26: Stitched image from the second video sequence.



(a) without foreground rejection

(c) enlarged image inside the dashed (d) enlarged image inside the dashed
window in (a). window in (b).

Figure 4.27: Stitched image from the third video sequence.

(b) with foreground rejection

(c) enlarged image inside the dashed (d) enlarged image inside the dashed
window in (a). window in (b).

Figure 4.28: Stitched image from the fourth video sequence.
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(a) without foreground rejection (b) with foreground rejection

(c) enlarged image inside the dashed window  (d) enlarged image inside the dashed
in (a). window in (b).

Figure 4.29: Stitched image from the fifth video sequence.

(a) without foreground rejection (b) with foreground rejection
(c) enlarged image inside the dashed (d) enlarged image inside the dashed
window in (a). window in (b).

Figure 4.30: Stitched image from the sixth video sequence.
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(a) without foreground rejection (b) with foreground rejection
(c) enlarged image inside the dashed (d) enlarged image inside the dashed
window in (a). window in (b).

Figure 4.31: Stitched image from the seventh video sequence.

(a) without foreground rejection (b) with foreground rejection
(c) enlarged image inside the dashed (d) enlarged image inside the dashed
window in (a). window in (b).

Figure 4.32: Stitched image from the eighth video sequence.
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(a) without foreground rejection (b) with foreground rejection
(c) enlarged image inside the dashed (d) enlarged image inside the dashed
window in (a). window in (b).

Figure 4.33: Stitched image from the ninth video sequence.

(a) without foreground rejection

(c) enlarged image inside the dashed (d) enlarged image inside the dashed
window in (a). window in (b).

Figure 4.34: Stitched image from the tenth video sequence.



78

(a) without foreground rejection (b) with foreground rejection
(c) enlarged image inside the dashed (d) enlarged image inside the dashed
window in (a). window in (b).

Figure 4.35: Stitched image from the eleventh video sequence.

(a) without foreground rejection (b) with foreground rejection
(c) enlarged image inside the dashed (d) enlarged image inside the dashed
window in (a). window in (b).

Figure 4.36: Stitched image from the twelfth video sequence.
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[
it s s
= e et WS

(a) without foreground rejection (b) with foreground rejection
 68/199
(c) enlarged image inside the dashed (d) enlarged image inside the dashed
window in (a). window in (b).

Figure 4.37: Stitched image from the thirteenth video sequence.



CHAPTER V

CONCLUSIONS

5.1 Conclusions

Parallax objects lead to inaccurate registration and ghosting effect of the
foreground objects in the stitched image, and should be removed. This thesis proposed
the foreground rejection for parallax removal in video sequence stitching. The
proposed method consists of (1) edge extraction and (2) rendering. The result in each

stage is refined using the motion found from tracking algorithm.

In the edge extraction stage, the logical OR-operator and voting are used to
classify foreground edge pixels. Tracking is applied to find the motion of the
foreground. The motion is then used to remove the spurious background pixels. After
that two-stage rendering is applied to extract the entire foreground. Finally, the

motion from the tracking algorithm is used to refine the foreground area.

From the experiments in Chapter 1V, the proposed foreground rejection

method improves the video stitching in the following aspects:

1) more accurate registration,
2) the reduction of the ghosting effect,
3) sharper stitched result,

4) more background information in the result.
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5.2 Future works

The proposed method is designed within the scope of one parallax object in
the fixed background. However, in practice, it is very difficult to have only one object
with the different depth in the fixed background. Thus, the following two topics

should be included in the future development.

1) The detection of changing region (CR) in the time-varying background (e.g.
leaves in a tree, wave in an ocean, etc.). The simple thresholding is used in the
CR detection in Section 3.2.1. To allow some intensity changes in the

background, adaptive thresholding should be considered.

2) The removal of multiple parallax objects. The current tracking assumption is
that there is only one foreground motion in a video sequence. The algorithm to

track multiple foregrounds should be used.

The rendering algorithm in the proposed method uses a fixed threshold to
reject the background that is incorrectly detected as the foreground. The spurious
background leads to the loss of the large background area. The mechanism to reject

the spurious background should also be included.

In this thesis, the proposed method was the offline method, because it was
implemented on MATLAB 2011a. The major processes inside the proposed method
are the logical operator (OR, AND), the voting (condition and summation) and 2D-
translation tracking and mapping. The first two processes have very low computing
load, and the third process can be implemented in real time by using hardware
programming. Consequently, it is possible to implement the proposed method for the

real time application.
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