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CHAPTER I

INTRODUCTION

Wireless Sensor Networks (WSNs) have been rapidly growing and enabling several

new approaches to collect environmental data such as works of Mainwaring et al. (2002),

Gui and Mohapatra (2004), Xu et al. (2004), He et al. (2004), and Choochaisri et al.

(2010). Such data, in particular event data, often associate with timestamps used for

sequencing chronological order of events. Therefore, many WSN systems usually require

sensor nodes to cooperate to have a common notion of time in order to accomplish tasks

with consistent results. Several protocols have been proposed to distributedly synchronize

the notion of time among sensor nodes in the systems (e.g., TPSN (Ganeriwal et al.

(2003)), FTSP (Maróti et al. (2004)), GTSP (Sommer and Wattenhofer (2009)), and

EGTSP (Apicharttrisorn et al. (2010))).

However, some systems simply require nodes to work at the same time without a

global notion of time; for example, a system that nodes only wake up at the same time to

relay packets, a system that nodes only sample data at the same time to take snapshots

of an environment. Inspired by firefly synchronicity, RFA (Werner-Allen et al. (2005)) is

the first protocol designed to achieve this requirement. Conversely, some systems require

nodes not to work at the same time without a global notion of time (i.e., to desynchro-

nize). Desynchronization organizes all accesses to a shared resource to be collision-free

and even equitable. A concrete example is a system using a Time Division Multiple Access

(TDMA) protocol. Nodes access the shared medium only in their time slots to send mes-

sages with no collision. In addition, desynchronization schedules duty cycles to improve

overall performance. For instance, in the sensing coverage problem, only some nodes wake

up to sense and their sensing ranges cover the overall region. Meanwhile, other nodes that

their sensing ranges are redundant can stay in idle or sleep mode to reduce their energy

consumption and prolong the network lifetime. These two sets of nodes can periodically

swap their tasks to preserve overall sensing coverage. Other potential applications are

techniques to increase a sampling rate in multiple analog-to-digital converters, to sched-

ule resource in multi-core processors, and to control traffic at intersections (Patel et al.

(2007)).
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To design an algorithm to solve the desynchronization problem, several challenges

are inevitable. First, in most of WSNs, there is no central control. If there is a central

master node, the master node can assign different starting points of time to different

nodes in a network to avoid the collision. Therefore, the problem becomes easier to

solve. However, without such a central master node, a desynchronization algorithm has

to process in a distributed manner to reach the global consensus.

Second, the problem becomes harder when there is no global time or a common

notion of time available in a network. Due to the nature of clock oscillators, the clock

skew and clock drift normally occurs; nodes perceive different local times and clocks run at

different speed (Apicharttrisorn et al. (2010)). With a time synchronization protocol, it is

able to divide a time period into the exact number of slots. Nodes can also cooperatively

determine the exact beginning of time slots to access the shared medium. However, many

WSN systems do not assume time synchronization for achieving the global time. Even

some systems assume time synchronization, the process to synchronize the time incurs

overhead and takes time.

Third, for multi-hop WSNs, the hidden terminal problem leads to packet collision.

A node cannot determine whether its second-hop neighbor is transmitting a packet to

the same receiver. If the node senses the wireless medium and does not aware of any

transmission while its second-hop neighbor is actually transmitting, their transmitted

packets can collide at the receiver. The RTS-CTS scheme proposed in the 802.11 standard

can avoid the problem. However, the RTS-CTS scheme incurs overhead and delay, and

reduces the overall throughput. Additionally, many manufacturers disable the RTS-CTS

function by default (Gollakota and Katabi (2008)).

Additionally, due to the characteristic of WSNs, most WSN devices are resource

limited. For example, TelosB, which is one of well-known WSN devices, provides 8 MHz

CPU, 10KB RAM, 1 MB external flash storage, and works on two AA-batteries. With

limited computational power, the algorithm should be simple. With limited memory,

only small data buffer is provided. With limited storage, a node should store data only if

necessary. With limited energy, the control overhead should be minimized.

Furthermore, the desynchronization problem is similar to the distributed graph

coloring problem (Motskin et al. (2009)). The graph coloring problem is known to be
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an NP-Hard problem. Additionally, the distributed graph coloring problem in a network

with uncertain environment is much harder.

Last but not least, a system running a desynchronization algorithm should converge

to the desynchrony state. The simulation and testbed evaluation can show the convergence

property of an algorithm for some specific scenarios. However, to mathematically prove

the convergence of the system is not trivial.

In this dissertation, we propose a novel physicomimetics desynchronization algo-

rithm for wireless sensor networks to solve such challenges. A physicomimetics algorithm

is the method that imitates the science of Physics. Herein, we imitate the idea of a force

field in a spatial domain from Physics and adapt this idea to be a technique for desynchro-

nization in a temporal domain. To the best of our knowledge, this dissertation is the first

that studies and applies physicomimetics to address the desynchronization problem. Our

high-level goal is to develop a physicomimetics desynchronization algorithm that solves

the mentioned challenges. A network system that applies the developed algorithm will

achieve the stability with the lower desynchronization error compared to previous works

on desynchronization.

1.1 Design Goals for a Physicomimetics Desynchroniation Algorithm

To develop a physicomimetics desynchronization algorithm, we first set our goals

that will be used as a guidance in designing such an algorithm throughout the dissertation.

Our physciomimetics desynchronization algorithm is aimed to be practical, distributed,

scalable, minimal, stable, fair without global time. More specifically:

• be practical, the proposed algorithm should be installable and successfully runnable

on real hardware.

• be distributed, the proposed algorithm has to work without a central master node.

Each node has no global neighbors’ information and independently decides its own

action based on only local information.

• be scalable, the proposed algorithm should scale well with network size.

• be minimal, the proposed algorithm should incur minimal overhead. Because wire-

less sensor nodes are resource-limited, the processing, memory, and transmission
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overhead should be minimized.

• be stable, in case a network is not over-saturated, the proposed algorithm should

be stable under small perturbation. The network system should converge to an

equilibrium.

• be fair without global time, the proposed algorithm has to work without global

time knowledge. All nodes in a system is not synchronized. Their local clocks

can be different in time. In other words, there is no common notion of global time.

However, the proposed algorithm should space nodes equivalently in the time domain

for single-hop networks and minimizes the deviation of channel utilization per node

in multi-hop networks.

1.2 Scope and Assumption

The scope of this dissertation is limited to the following:

• This dissertation considers the wireless sensor network that 1) there is no central

master node 2) nodes are not synchronized and lack of global time knowledge 3)

nodes are static (i.e., there is no mobile node).

• This dissertation proposes a desynchronization algorithm that is able to work on

both single-hop and multi-hop networks.

• The proposed algorithm does not rely on any global information.

• The proposed algorithm is runnable on both TOSSIM simulator (Levis et al. (2003))

and TelosB hardware platform.

• The number of neighboring nodes is limited to under 100 nodes for single-hop net-

works and under 30 nodes for multi-hop networks.

Additionally, in this dissertation, we assume the following:

• Each node attempts to periodically fire a message with the same time period.

• There is no mobile node in a network.

• There is no global time knowledge. Clocks are not synchronized. Local timestamps

of nodes can be the same or different.
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1.3 Summary of Contributions

The main contribution of this dissertation is a novel physicomimetics desynchroniza-

tion algorithm for wireless sensor networks. The proposed algorithm has several desirable

properties. First, the algorithm runs distributedly on each sensor node. Central master

node and global information is not required. Second, the algorithm works even nodes are

not synchronized and do not realize the global time. Third, the algorithm is able to work

for both single-hop and multi-hop networks. In addition, the algorithm is lightweight,

simple, and practical. The size of a compiled binary is less than 30 kilobytes. The re-

quired memory is less than 2 kilobytes. This property is desirable to implement, extend,

and apply for resource-limited wireless sensor nodes. Furthermore, the algorithm requires

only local 2-hop information and scales well with network size. Finally, the algorithm is

stable under small perturbation. We believe that the proposed algorithm can be a primer

for several applications such as TDMA protocol, packet collision avoidance, area sensing

coverage, cooperative data sampling, and other resource-sharing applications.

1.4 Dissertation Organization

The rest of the dissertation is organized as follows. The next chapter describes

desynchronization preliminaries to understand the problem and the traditional frame-

work. This chapter also reviews works in literature and describes the motivation of our

algorithm. Chapter 3 presents our desynchronization algorithm and performance eval-

uation on single-hop networks. In Chapter 4, we analyse the stability of the proposed

single-hop algorithm. Then, we extend the proposed algorithm to support multi-hop

networks and evaluate the algorithm on various topologies in Chapter 5. The stability

analysis of the multi-hop algorithm is presented in Chapter 6. Finally, Chapter 7 con-

cludes the dissertation and discusses the current limitations and directions for further

research.



CHAPTER II

PRELIMINARIES, RELATED WORK, AND

MOTIVATION

2.1 Desynchronization Preliminaries

Degesys et al. (2007) have introduced the desynchronization primitive and frame-

work for WSNs. The desynchronization framework is depicted as a time circle in Figure

2.1. The perimeter of a time circle represents a configurable time period T of nodes’

oscillators. The time position or phase of each node represents its turn to perform a task

(e.g., accessing a shared resource, sampling data, and firing a message). The system is

desynchronized when all nodes are separated in the time circle.

We define terms used in the desynchronization context as follows:

Definition 2.1 (Phase) A phase φi of node i is the time position on the circle of a time

period T , where 0 ≤ φi < T and T ∈ R+.

Definition 2.2 (Phase Neighbor) Node j is a phase neighbor of node i if node i per-

ceives the existence of node j at the phase φi + φi,j, where φi,j is the phase difference

between node j and node i,

φi,j =

 φj − φi if φj ≥ φi,

T − (φi − φj) if φj < φi.
(2.1)

Definition 2.3 (Next Phase Neighbor) Node j is the next phase neighbor of node i

if φi,j = mink∈S{φi,k}, where S is a set of node i’s neighbors.

Definition 2.4 (Previous Phase Neighbor) Node j is the previous phase neighbor of

node i if φi,j = maxk∈S{φi,k}, where S is a set of node i’s neighbors.

Definition 2.5 (Desynchrony State) The system is in the desynchrony state if φi 6= φj
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Figure 2.1: Desynchronization framework

for all i, j ∈ V and i 6= j, where V is a set of nodes in a network that cannot share the

same phase.

Definition 2.6 (Perfect Desynchrony State) The system is in the perfect desynchrony

state if it is in the desynchrony state and φi,j = T/N for all i ∈ V , j is i’s previous phase

neighbor, and N is the number of nodes in a network that cannot share the same phase.

We note that two nodes can share the same phase if they are not within the two-hop

communication range of each other.

2.2 Related Work

In this section, we review works in literature. We divide related works into two

categories. The first category is the works on desynchronization in a temporal domain.

The works in this category directly attempt to solve the desynchronization problem in

wireless networks. We compare our work directly to these previous works. The second

category is the works on robotic circular formation. The works in this category do not

explicitly attempt to solve the desynchronization problem in wireless networks. However,

their works can be abstracted as desynchronization on a spatial domain. These works are

the motivation of our desynchronization algorithm.

2.2.1 Desynchronization on a Temporal Domain in Wireless Networks

To the best of our knowledge, DESYNC (Degesys et al. (2007)) is the first to

introduce the desynchronization problem. In DESYNC, a node simply attempts to stay
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in the middle between its previous and next phase neighbors. By repeating this simple

algorithm, all nodes will eventually be spread out. However, the error from one phase

neighbor is also propagated to the other phase neighbors and indefinitely circulated inside

the network. Therefore, DESYNC’s error is quite high even after convergence. In contrast,

our work relies on all received neighbors information that is robust to the error from one

phase neighbor. In Degesys and Nagpal (2008), they describe how DESYNC works on

multi-hop networks and describe a future extension for DESYNC by exchanging 2-hop

neighbors information.

Designed to converge faster than DESYNC, INVERSE-MS (Patel et al. (2007)) is

an inverse algorithm of the synchronicity work by Mirollo and Strogatz (1990). At a

steady state, INVERSE-MS maintains a dynamic equilibrium (i.e., nodes keep changing

time positions while maintaining desynchronization). However, in INVERSE-MS, the

time period is distorted whereas our algorithm does not distort the time period.

In EXTENDED-DESYNC (Mühlberger and Kolla (2009)), they propose a desyn-

chronization algorithm that is similar to the extension proposed in Degesys and Nagpal

(2008). Each node sends its one-hop neighbors’ relative time information to all of its one-

hop neighbors. Then, the one-hop neighbors relay such information to two-hop neighbors.

Therefore, each node knows 2-hop relative time information. Consequently, each node

can presume that there are two-hop neighbors appearing on the time circle. Then, each

node uses time information of both one-hop and two-hop neighbors and processes with

the same algorithm as in DESYNC. Our multi-hop algorithm is partly based on the same

idea.

M-DESYNC (Kang and Wong (2009)) is a localized multi-hop desynchronization

algorithm that works on a granularity of time slots. The protocol estimates the required

number of time slots with a two-hop maximum degree. This estimation helps M-DESYNC

converge very fast. However, M-DESYNC requires that all nodes have a global notion of

time in order to share the common perception of time slots. Furthermore, M-DESYNC is

claimed to work only on acyclic graph networks. On the contrary, our algorithm does not

require a global notion of time and can work on both acyclic and cyclic graph networks.

Motskin et al. (2009) propose a simple, lightweight desynchronization algorithm

that is also based on a graph coloring model. Unlike M-DESYNC, the algorithm works
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on general graph networks and does not need the global time. To ensure that the selected

time slot does not overlap with others’, a node needs to listen to the media for a full time

period before claiming the slot. The listening mechanism can only avoid collision with

one-hop neighbors but cannot avoid collision with two-hops neighbors (i.e., the hidden

terminal problem). Furthermore, without a common notion of time, the starting time of

each slot is quite random. As a result, several time gaps are too small to be used as time

slots. This external fragmentation problem reduces resource utilization of the system.

Finally, to converge faster, their algorithm overestimates the number of required time

slots. Hence, several big time gaps are also left unused and the resource utilization is

undoubtedly low. In our work, nodes gradually adapt their phases to be separated from

each other as far as possible. Therefore, the external fragmentation problem is reduced.

In addition, our algorithm works well on multi-hop networks; each node can avoid collision

with two-hops neighbors.

In DESYNC-ORT (Taechalertpaisarn et al. (2011)), they propose an Orthodontics-

inspired desynchronization algorithm. In their work, they use information from all one-

hop neighbors and attempt to find nodes that are already in corrected time positions

and tie them up together. This method is similar to the Orthodontics method that

attempts to tie teeth which are already in corrected positions together. Their result is

better than DESYNC in the term of desynchronization error. However, to calculate the

correct positions, each node requires to know the total number of nodes in the system

in advance. Additionally, the algorithm does not propose to solve the problem in multi-

hop networks because nodes in two-hop neighbors can not be tied together with one-hop

neighbors. In contrast, our algorithm does not require the total number of nodes in

advance. Our algorithm can gradually adapt based on the current number of two-hop

neighbors. Additionaly, our algorithm works on multi-hop networks.

Recently, V-DESYNC (Settawatcharawanit et al. (2012)) has been proposed to

desynchronize nodes in vehicular ad-hoc networks. Their work has a different objective.

They do not focus on fairness (i.e., nodes are not necessary to be equitably separated)

because vehicular networks are highly dynamic. In our work, we focus in static wire-

less sensor networks and attempt to leverage fairness among sensor nodes in resource

utilization.
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Properties
Approach Period Time Equita- Multi- Conver- Error Scala- Over-

Synced ble hop gence ble head
Spaced

DESYNC Fixed No Yes No Moderate High Poor Zero

INVERSE-MS Distorted No Yes No Fast Low Good Zero

EXTENDED- Fixed No Yes Yes Moderate High Poor High
DESYNC

M-DESYNC Fixed Required No Yes Fast High Good Low

LIGHT- Fixed No No Yes Fast High Good Zero
WEIGHT
DESYNC- Fixed No Yes No Moderate Low Good Zero

ORT
V-DESYNC Fixed No No No No High Good Zero

Proposed Fixed No Yes Yes Moderate Low Good Zero/
Low

Table 2.1: Desynchronization Protocols Comparison

Table 2.1 summarizes the advantages and disadvantages of works in this category.

The overhead of the proposed algorithm depends on whether the algorithm works on

single-hop or multi-hop mode.

2.2.2 Desynchronization on a Spatial Domain in Robotics

In robotic pattern formation, multiple robots distributedly group and align them-

selves in geometric patterns such as circle, rectangle, and triangle. Without an explicit

argument, robotic pattern formation can be abstracted as desynchronization on a spatial

domain. Robots attempt to separate away from each other as far as possible to form such

patterns. In other words, robots desynchronize themselves spatially to avoid the collision

with each other in the spatial domain.

Several works have done in several pattern formations (Suzuki and Yamashita

(1996), Suzuki and Yamashita (1999)). However, the pattern formation that is similar

to desynchronization on the temporal domain is the formation on a closed ring. Figure

2.2 illustrates the robotic formation on a closed ring. In Figure 2.2a, initially, robots

are randomly placed on any position on the closed ring. The perfect configuration of the

formation is illustrated in Figure 2.2b. Robots are equivalently separated away on the
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Figure 2.2: Robotic pattern formation on a closed ring. (a) Robots are randomly placed on a
closed ring. (b) In the perfect configuration, robots are equitably separated from each other.
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Figure 2.3: Moving to the midpoint algorithm. (a) Each robot moves to the midpoint between
two nearest visible neighbors. (b) The algorithm converges to the perfect configuration.

ring.

Several previous works such as Souissi et al. (2004), Cohen and Peleg (2008), and

Flocchini et al. (2008) have proposed algorithms that are similar to each other for robotic

formation on a closed ring. These works assume robots have limited visibility range. Each

robot attempts to adjust its position to the middle between two nearest robots on its left

side and right side (Figure 2.3a). In these works, they prove that this simple algorithm

eventually converges to the perfect configuration (Figure 2.3b).

In Boonpinon and Sudsang (2006), heterogeneous robots are distributedly grouped

into teams that are equally spread out to cover the monitored area. Each robot has no
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Figure 2.4: Results of Robotic Circular Formation. Robots with two different types form the
circle.

global knowledge of others’ absolute positions but can detect relative positions of the

others with respect to itself as well as the type of the others. To form a circle, an artificial

force is used as an abstraction for velocity adaptation of a robot. Robots of different types

have attracting forces to each other. Conversely, robots of the same type have repelling

forces. As a result, the circle of heterogeneous robots will be formed and robots are nicely

spaced on the circle (see Figure 2.4). This work inspires our desynchronization algorithm.

2.2.3 Others

Other works that are related to desynchronization protocols are distributed Time

Division Multiple Access (TDMA) protocols. Distributed TDMA protocols are similar

to M-DESYNC (Kang and Wong (2009)); their protocols work on a granularity of time

slots. As same as M-DESYNC, most of distributed TDMA protocols such as TRAMA

(Rajendran et al. (2006)), Parthasarathy Parthasarathy and Gandhi (2005), ED-TDMA

(Gong et al. (2010)), and Herman (Herman and Tixeuil (2004)) assume time is already

slotted or all nodes are synchronized to achieve the same global clock. In our work, we

do not require time synchronization and do not assume already slotted time.

2.3 Motivation

We observe that the desynchronization framework on the temporal domain is similar

to the robotic circular formation which can be abstracted as the desynchronization on the

spatial domain. In the desynchronization framework on the temporal domain, a node
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(like a robot) does not have a global notion of time but each node can measure relative

time differences with other nodes. The circle of robots is similar to our circle of the time

period. The distribution of robots can be mapped to the distribution of nodes on the

time circle. The robotic circular formation of Boonpinon and Sudsang (2006) inspires us

to design a novel desynchronization algorithm for wireless sensor networks based on an

artificial force field. If we abstract the nodes on a time circle as the robots of the same

type, the nodes will repel each other and keep time intervals from their neighbors as far

as possible. Once all received forces are balanced, nodes are equally spread out on the

time circle.

The desynchronization algorithm based on the artificial force field can be classified

as a Physicomimetics algorithm. A physicomimetics algorithm is an algorithm that imi-

tates principles of physics and can be called Artificial Physics or Virtual Physics (Spears

et al. (2005)). To the best of our knowledge, physicomimetics was introduced in Spears

and Gordon (1999) for distributed control of large collections of agents. Then, physico-

mimetics has been applied mostly in the field of robotics for geometric pattern formation

and optimizations such as in Ekanayake and Pathirana (2010), Wang et al. (2010), and

Boonpinon and Sudsang (2006). Due to the framework of desynchronization is similar

to the framework of robotic geometric pattern formation, we believe that the physicomi-

metics approach can also solve the desynchronization problem in the temporal domain as

well. Therefore, this dissertation presents how physics principles can be imitated to solve

the desynchronization problem for wireless sensor networks.



CHAPTER III

PHYSICOMIMETICS DESYNCHRONIZATION

ALGORITHM FOR SINGLE-HOP NETWORKS

3.1 Introduction

As we mentioned in the previous chapter, physicomimetics algorithms have been

widely used for the robotic pattern formation that can be abstracted as desynchronization

in the spatial domain. One of such algorithms is that of Boonpinon and Sudsang (2006).

In their work, robots are in an artificial force field. Robots with the same type repel each

other to form themselves into a circular shape.

Inspired by their work, in this chapter, we present a novel physicomimetics desyn-

chronization algorithm called DWARF (Desynchronization With an ARtificial Force field)

for single-hop wireless sensor networks. Each neighboring node has artificial forces to re-

pel other nodes to perform tasks at different time phases. Nodes with closer time phases

have stronger forces to repel each other in the time domain. Each node adjusts its time

phase proportionally to its received forces. Once the received forces are balanced, nodes

are desynchronized

DWARF has the following key contributions:

• DWARF is a distributed desynchronization algorithm using time phases of all neigh-

bors to achieve the desyncrhony state.

• DWARF uses only local information but achieves a global state.

• DWARF does not require time synchronization, does not assume already slotted

time, and does not incur any control message overhead.

• DWARF is simple due to low complexity in terms of computation and memory.

Therefore, it is suitable for resource-constraint networks, such as wireless sensor

networks. Additionally, message complexity is low because the algorithm relies on

the timing of the message, not information inside the message.
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• We have implemented and evaluated DWARF on TOSSIM, a simulator for wireless

sensor networks. Our results indicate that DWARF scales well with network size

and outperforms DESYNC significantly by achieving 10 - 63% reduction in desyn-

chronization error.

Therefore, we believe that DWARF can be a primer for various applications and can be

extended for multi-hop networks which will be later described in Chapter 5.

In the next section, we present the concept of an artificial force field which is the

crucial concept of our desynchronization algorithm.

3.2 Artificial Force Field

An artificial force field is an analogy to the circle of a time period. Nodes are in

the same force field if they can communicate with each other.

If node i and node j are on the same force field, they have repelling forces to push

one another away. A closer pair of nodes has a higher magnitude of force than a farther

pair does. The time interval between two nodes is derived from the phase difference

between them. If two nodes have a small phase difference, they have a high magnitude of

force and vice versa. In other words, a repelling force is an inverse of a phase difference

between two nodes:

fi,j = − 1

∆φi,j/T
,∆φi,j ∈ (−T

2
,
T

2
), (3.1)

where fi,j is the repelling force from node j to node i on a time period T and ∆φi,j is the

phase difference between node i and j. We note that ∆φi,j is not equal to 0 because if

two nodes fire at the same time, their firings collide and two nodes do not record other’s

firing. Additionally, at T/2 or −T/2, a node does not repel an opposite node because

they are balanced.

A repelling force can be positive (clockwise repelling) or negative (counterclockwise

repelling). A positive force is created by a node on the left half of the circle relative to the

considered node whereas a negative force is created by a node on the right half. Figure

3.1 represents a field of repelling forces on node 1.

Each node in the force field moves to a new time position or phase proportional to
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Figure 3.1: Artificial Force Field. Arrow lines represent repelling forces from node 2, 3, and 4
to node 1. A shorter and thicker line is a stronger force. A force from node 4 is a positive force
and two forces from node 2 and 3 are negative forces.

the total received force. Given n nodes in a force field, the total force on a node i is the

following:

Fi =

n∑
j=1
j 6=i

fi,j . (3.2)

Eventually, nodes reach an equilibrium state whereby the total force of the system is

close to zero and each pair of phase neighboring nodes has the same time interval. This

equilibrium state also indicates the perfect desynchrony state because all nodes are equally

spaced on the time circle.

3.3 Algorithm

We assume that, initially, nodes are not desynchronized. Each node sets a timer to

fire in T time unit. After setting the timer, each node listens to all neighbors until its

timer expires.

When receiving a firing message from its neighbor, the (positive or negative) re-

pelling force from that neighbor is calculated based on the phase difference. When the

timer expires, a node broadcasts a firing message to neighbors. Then, the node calcu-

lates a new time phase to move on the circle based on the summation of forces from all

neighbors and sets a new timer according to the new time phase.

Reasonably, one may wonder how far a node should move or adjust its phase. In
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our work, given the total received force Fi, the node i adjusts to a new time phase φ
′

i,

φ
′

i = (φi +KFi) mod T, (3.3)

where φi is the current phase of the node i.

Undoubtedly, the proper value of the coefficient K leads to the proper new phase.

The value of K is similar to a step size which is used in artificial intelligence techniques.

Therefore, if the value of K is too small, the system takes much time to converge. On

the other hand, if the value of K is too large, the system may overshoot the optimal

value and does not converge. We observe that, given the same time period, fewer nodes

in the system result in bigger phase difference between two phase neighbors. To be

desynchronized, nodes in sparse networks must make a bigger adjustment to their time

phases than nodes in dense networks must. Therefore, the same total received force should

have a bigger impact on a node in sparse networks than on a node in dense networks.

To reflect this observation, the coefficient K is inversely proportional to a power of the

number of nodes n,

K = c1 × n−c2 , where c1, c2 ≥ 0. (3.4)

Therefore, we have conducted an experiment to find the proper value of c1 and c2.

We set a time period T to 1000 and vary the number of nodes. In the specific

number of nodes, we first simulate to see the trend of the value K that leads to small

errors. Then, we select a range of good K values. After that, we simulate 100 times

to obtain the average desynchronization error for each K value. In each simulation, we

randomly set an initial phase of each node between 0 and T (period value). Finally, we

select the K value that results in the lowest error. After getting the proper K value for

each number of nodes, we plot the relation between K and the number of nodes (Figure

3.2) and use a mathematical tool to calculate the power regression. The obtained relation

function between K and n (the trendline in Figure 3.2) consists of c1 and c2 values as

follows:

K = 38.597× n−1.874.
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Figure 3.2: Relation of the coefficient K with a number of nodes n

However, this K value is derived by setting T equal to 1000. Therefore, for arbitrary T ,

K = 38.597× n−1.874 × T

1000
. (3.5)

Proof: From Equation 3.2 and 3.3, the phase of node j is adjusted by KFj =

K
∑n

i6=j fi,j =
∑n

i6=j Kfi,j . Therefore, we can analyze the value of K from only single

force fi,j .

For a time circle of a period Tp, let θp be an angle between two nodes on the circle

and Θp be an angle between the new adjusted phase and the old phase based on a single

force where θp,Θp ∈ (0, 2π). Hence,

θp
2π

=
∆φi,j

Tp
, (3.6)

and
Θp

2π
=

Kfi,j
Tp

. (3.7)

If θ1 of T1 equals to θ2 of T2, both of them should be adjusted with the same angle amount

Θ1 = Θ2. Thus, from Equation 3.7,

Θ1 = Θ2

K1fi,j(1)

T1
=

K2fi,j(2)

T2
.
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From Equation 3.1 and 3.6, fi,j = 1
∆φi,j/Tp

= 2π
θp

, consequently,

K12π

T1θ1
=

K22π

T2θ2
K1

T1
=

K2

T2

K2 = K1
T2

T1
. (3.8)

At T = 1000, we get K = 38.597 × n−1.874. Therefore, from Equation 3.8, for arbitrary

T ,

K = 38.597× n−1.874 × T

1000
.

All nodes in the artificial force field (in the period circle) iteratively run the same

algorithm until the force is balanced (i.e., all nodes are in the desynchrony state). The

pseudo-code of this algorithm is shown in Figure 3.3.

3.4 Evaluation

In this section, we evaluate the performance of our proposed algorithm and compare

with DESYNC (Degesys et al. (2007)) because DESYNC and our algorithm share the

same goal and requirements. Particularly, they do not require time synchronization,

do not assume already slotted time, do not need to look into the packet content, and

do not incur control packets but still achieve equivalent time spaces. Other protocols

(e.g., M-DESYNC (Patel et al. (2007)), Lightweight desynchronization (Motskin et al.

(2009))) assume different requirements. Therefore, we only discuss our differences with

such protocols in Chapter 2.

The performance metrics in this evaluation are desynchronization error and conver-

gence time. The former indicates how close the current state is to the perfect desynchrony

state. The latter indicates how fast the algorithm converges.
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1: Initialization
2: T = TimePeriod {Configurable Time Period}
3: n = 1 {Number of receiving messages including itself}
4: F = 0 {Force Summation}
5: lastF iringT ime = localT ime
6: currentPhase = localT ime modulo T
7: Set a firing timer to be T unit time

8: Upon timer firing
9: Broadcast a firing message to neighbors

10: lastF iringT ime = localT ime
11: currentPhase = localT ime modulo T
12: K = 38.597× n−1.874 × T

1000
13: newPhase = currentPhase+ (K ×F)
14: if newPhase < 0 then
15: newPhase = T + newPhase
16: end if
17: Set a firing timer to be fired at (newPhase modulo T )
18: F = 0
19: n = 1

20: Upon receiving a firing message
21: n = n+ 1
22: phaseDiff = localT ime− lastF iringT ime
23: if phaseDiff == 0.5T then
24: F = F + 0 {Balanced force}
25: else if phaseDiff < 0.5T then
26: F = F + | 1

phaseDiff/T | {Positive force}
27: else
28: F = F − | 1

(T−phaseDiff)/T | {Negative force}
29: end if

Figure 3.3: Pseudocode of DWARF algorithm

3.4.1 Evaluation Environment

We implement DWARF on TinyOS 2.1.2 (Levis et al. (2004)), an operating system

for wireless sensor networks and evaluate the protocol on TOSSIM (Levis et al. (2003)),

a TinyOS simulator. We vary the one-hop network size from 4 to 96 nodes. Each node

periodically fires a message that contains only application data with no extra control

overhead. This zero overhead is the advantage of both DWARF and DESYNC because,

to avoid collision, a node only needs to know the timing of the firing rather than the

control information inside a packet. In our simulation, for both DWARF and DESYNC,

we use a 2-byte node ID and a 2-byte counter as the data. However, we do use the regular

11-byte CC2420 header for TOSSIM. Therefore, we do not measure the overhead in our

evaluation. We set the time period to 1,000 milliseconds and compare our result with
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that of DESYNC. Initially, the phase of each node is random in a range of 0 to 1,000.

3.4.2 Varying Step Size in DESYNC

In Degesys et al. (2007), they choose the step size of DESYNC to be 0.95. In this

section, we begin by varying the step size of DESYNC to confirm that the step size 0.95

is a proper and fair value for DESYNC to compare with DWARF in our investigated

scenario. Figure 3.4, 3.5, and 3.6 show the results of varying step size from 0.10 to 0.95.

The result indicates that too small step size (0.10 to 0.35) leads to slow convergence

speed and high error. Increasing step size tends to lead to lower error. Step sizes from

0.65 to 0.95 do not result in much different in term of error but the larger value tends to

lead to faster convergence speed. However, increasing step size from 0.80 to 0.95 does not

significantly improve the performance. Therefore, we can use 0.95 which is the same value

used in Degesys et al. (2007) as the step size for DESYNC to compare with DWARF.

3.4.3 Desynchronization Error

To measure the desynchronization error, we run the simulation for 300 time periods.

In each network size, we run the simulation for 30 times. Then, we measure the average

root mean square error (RMSE). The error (ERR) is the measured phase difference minus

the perfect phase difference:

ERRi = ∆φi,j − T/n,

RMSE =

√∑n
i=1ERR2

i

n
,

where node j is the next phase neighbor of node i. ∆φi,j is the phase difference between

node i and node j on the time period T . Given that n is a total number of nodes, T/n

is the perfect phase difference.

However, a smaller absolute error in a dense network is not necessarily better than
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(a) α = 0.10

 0

 1

 2

 3

 4

 5

 6

 7

 0  10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

N
or

m
al

iz
ed

 r
oo

t m
ea

n 
sq

ua
re

 e
rr

or
Round

96 nodes
80 nodes
64 nodes
48 nodes
32 nodes
16 nodes

4 nodes

(b) α = 0.15
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(c) α = 0.20
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(d) α = 0.25

 0

 1

 2

 3

 4

 5

 6

 7

 0  10  20  30  40  50  60  70  80  90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

N
or

m
al

iz
ed

 r
oo

t m
ea

n 
sq

ua
re

 e
rr

or

Round

96 nodes
80 nodes
64 nodes
48 nodes
32 nodes
16 nodes

4 nodes

(e) α = 0.30
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(f) α = 0.35

Figure 3.4: DESYNC: Varying step size from 0.10 to 0.35
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(a) α = 0.40
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(b) α = 0.45
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(c) α = 0.50
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(d) α = 0.55
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(e) α = 0.60
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(f) α = 0.65

Figure 3.5: DESYNC: Varying step size from 0.40 to 0.65



24

 0

 1

 2

 3

 4

 5

 6

 7

 0  10  20  30  40  50  60  70  80  90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

N
or

m
al

iz
ed

 r
oo

t m
ea

n 
sq

ua
re

 e
rr

or

Round

96 nodes
80 nodes
64 nodes
48 nodes
32 nodes
16 nodes

4 nodes

(a) α = 0.70
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(b) α = 0.75
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(c) α = 0.80
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(d) α = 0.85
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(e) α = 0.90
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Figure 3.6: DESYNC: Varying step size from 0.70 to 0.95
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Figure 3.7: Root mean square error after 300 time periods
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Figure 3.8: Root mean square error normalized by perfect phase difference after 300 time periods

a bigger error in a sparse network because the perfect phase difference in a dense network

is also smaller than that in a sparse network. Thus, for a comparable view of each network

size, we also measure a normalized root mean square error (NRMSE) that is a ratio of

the root mean square error and the perfect phase difference of each network size. Figure

3.7 illustrate the result of absolute desynchronization error and Figure 3.8 illustrates

the result of the normalized desynchronization error in each network size after 300 time

periods.

The result indicates that, in all network sizes (4 - 96 nodes), DWARF achieves

significantly better desynchrony states than DESYNC does. Understandably, using in-

formation from all neighbors (as in DWARF) leads to lower errors than using information

from only two phase neighbors (as in DESYNC) does. Furthermore, DESYNC’s mech-

anism allows a phase error of a node to propagate to its phase neighbors. A part of

this error will propagate back and forth between two phase neighbors as well as circulate
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inside the network. As a result, DESYNC’s error after convergence is still quite large. In

contrast, DWARF is robust to this error propagation. Even though the error propagation

may still occur, the impact is not significant. Given that DWARF uses the sum of forces

from all neighbors, an error from one neighbor does not overwhelm the system.

We note that we show RMSE and NRMSE after 300 periods because, by that time,

the errors of all simulation scenarios seem to be stable. The actual convergence time in

most scenarios is much lower than 300 rounds (see the next section).

3.4.4 Convergence Time

In the desynchronization error evaluation, we only measure the performance after

300 time periods. However, the previous result does not indicate whether the protocols

have converged or not. Neither does it indicate how fast the protocols have converged.

Hence, we also measure the absolute root mean square error and normalized root mean

square error for each time period.

In sparse networks (Figure 3.9a and 3.10a), both protocols converge with similar

small error but DWARF converges slightly faster. In dense networks (Figure 3.9b and

3.10b) and extremely dense networks (Figure 3.9c and 3.10c), both protocols still converge.

Even though DESYNC converges faster in such networks, it converges with a relatively

high error compared to that of DWARF. In addition, at the time when DESYNC has

converged and DWARF has not converged yet, DWARF’s error is already lower than

DESYNC’s. Furthermore, in dense and extremely dense networks, the normalized root

mean square errors of DESYNC after convergence is higher or equal to 1. This means that

the error is very large compared to the perfect phase difference. Conversely, the normal-

ized error of DWARF is lower than 1 even in the extremely dense networks. Therefore,

DWARF scales well with the network density whereas DESYNC does not.

In a denser network, the errors of DESYNC and DWARF are higher because the

probability of message collisions increases (see the next section).
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(c) Extremely Dense

Figure 3.9: Convergence time and absolute root mean square error
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Figure 3.10: Convergence time and root mean square error normalized by expected phase dif-
ference

3.4.5 Correlation of Packet Loss and Desynchronization Error

In this section, we investigate the correlation of packet loss and desynchronization

error. We only include the results of DWARF in networks of 16, 48, and 80 nodes for 300

time periods (Figure 3.11). However, in networks of 4, 32, 64, and 96 nodes, the results

are similar (not shown).

At the beginning, the network is far from the perfect desynchrony state and mes-

sages from different nodes are simultaneously fired. This results in lost packets and errors.

However, over time, nodes gradually adapt their time phases. Consequently, the number

of lost packets and the error also gradually drop.
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Figure 3.11: Correlation of packet loss and desynchronization error

3.5 Summary

In this chapter, we present DWARF, a novel desynchronization algorithm that en-

ables nodes in a system to perform tasks at different time. To the best of our knowledge,

DWARF is the first desynchronization algorithm that is based on the concept of elec-

tromagnetic fields, a foundation of physics. Our algorithm is completely distributed and

localized with no reliance on a centralized node or a global notion of time. Due to low

complexity in terms of computation, memory, and message overhead, DWARF is suitable

for traditional wireless networks as well as resource-constraint wireless sensor networks.

Our result indicates that DWARF can significantly outperform DESYNC by reducing 10

- 63% of the desynchronization error. In addition, DWARF scales well with network size

given that the normalized error is lower than 1 even in extremely dense networks.

The evaluation result of DWARF is promising. This result indicates that physico-

mimetics approach is viable for desynchronization. However, the evaluation has been

performed on single-hop networks. Typically, wireless sensor networks are multi-hop net-

works. There are several issues to be concerned in extending DWARF to such networks.

We cover such issues and present the multi-hop extension of DWARF in Chapter 5. Ad-

ditionally, the evaluation does not show the mathematical evidence that the algorithm

is stable and does not indicate why the algorithm converges. Therefore, we analyses the

stability of the algorithm in the next chapter.



CHAPTER IV

CONVEXITY AND STABILITY ANALYSIS OF THE

SINGLE-HOP ALGORITHM

In the previous chapter, we present DWARF, a physicomimetics desynchroniza-

tion algorithm. From the evaluation results, the algorithm is eventually stable with low

desynchronization error. However, it is not obvious that why DWARF is eventually stable

with low error. Therefore, in this chapter, we mathematically analyse the stability of the

algorithm.

We divide our analysis into two parts. First, we analyse the convexity of the force

function. If the force function is convex, the system contains one global minima and

no local minima. Therefore, the system could reach the perfect desynchrony state by

gradually reducing the overall force of the system. Second, we analyse the stability when

the system at the equilibrium. If the system is stable, it can be back to the equilibrium

under a small perturbation.

4.1 Convexity Analysis

In this section, our goal is to prove that the force function used in DWARF has one

global minima and no local minima. In other words, we will prove that the force function

is convex.

Let Fi be the force summation at node i and ∆i,j ∈ (−T
2 ,

T
2 ) is an interval between

node i and j. If ∆i,j > 0, the node j repels the node i in a positive direction. In contrast,

if ∆i,j < 0, the node j repels the node i in a negative direction.

Therefore, for n nodes, Fi can be formulated as the following equation,

Fi =

n∑
j=1
j 6=i

1

∆i,j
. (4.1)

The objective function E of the system is the summation of absolute received forces
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at all nodes,

E =

n∑
i=1

|Fi| =
n∑

i=1

∣∣∣∣∣∣∣∣
n∑

j=1
j 6=i

1

∆i,j

∣∣∣∣∣∣∣∣ (4.2)

To prove the function E is a convex function, we must prove that two following conditions

are satisfied; 1) the set of all ∆i,j is a convex set and 2) the Hessian matrix of E is positive

semidefinite.

Proposition 4.1 A set of all possible interval ∆i,j is a convex set.

Proof: A set of (−T
2 ,

T
2 ) is a line connecting between −T

2 and T
2 . Therefore, any

∆i1,j1 , ∆i2,j2 ∈ (−T
2 ,

T
2 ) and α ∈ R with 0 ≤ α ≤ 1,

α∆i1,j1 + (1− α)∆i2,j2 ∈ (−T

2
,
T

2
).

Proposition 4.2 The Hessian of the function E is positive semidefinite.

Proof: Let H be the Hessian matrix of the objective function E,

H =



∂2E
∂∆2

1,2

∂2E
∂∆1,2∂∆1,3

· · · ∂2E
∂∆1,2∂∆n,n−1

∂2E
∂∆1,3∂∆1,2

∂2E
∂∆2

1,3
· · · ∂2E

∂∆1,3∂∆n,n−1

...
... . . . ...

∂2E
∂∆n,n−1∂∆1,2

∂2E
∂∆n,n−1∂∆1,3

· · · ∂2E
∂∆2

n,n−1

.

For any ∆x,y, we derive the first-order derivative as follows,

∂E

∂∆x,y
=

∑n
j=1
j 6=x

1
∆x,j∣∣∣∣∑n

j=1
j 6=x

1
∆x,j

∣∣∣∣
(
− 1

∆2
x,y

)
.
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For the second-order partial derivatives, if we differentiate with the same ∆x,y,

∂2E

∂∆2
x,y

=

∑n
j=1
j 6=x

1
∆x,j∣∣∣∣∑n

j=1
j 6=x

1
∆x,j

∣∣∣∣
(

2

∆3
x,y

)
.

In the other hand, if we differentiate with other ∆u,v, where u 6= x or v 6= y,
∂2

∂∆u,v∂∆x,y
E = 0.

Therefore, the Hessian matrix of the function E is

H =


a1,2 0 · · · 0

0 a1,3 · · · 0
...

... . . . ...

0 0 · · · an,n−1

,

where ai,j =
ui

|ui|

(
2

∆3
i,j

)
and ui =

∑n
j=1
j 6=i

1
∆i,j

.

To show that the Hessian matrix of the function E is positive semidefinite, we show

that ~∆TH~∆ ≥ 0 for all ~∆ when ~∆ 6= 0.

~∆TH~∆ =
(
∆1,2 ∆1,3 · · · ∆n,n−1

)
H


∆1,2

∆1,3

...

∆n,n−1


=

n∑
i=1

n∑
j=1
j 6=i

ui
|ui|

(
2

∆i,j

)

= 2

n∑
i=1

ui
|ui|

n∑
j=1
j 6=i

1

∆i,j

= 2

n∑
i=1

ui
|ui|

ui = 2

n∑
i=1

|ui|

≥ 0
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Therefore, we conclude that ~∆TH~∆ ≥ 0 and the Hessian matrix of E is positive

semidefinite.

From Proposition 4.1 and 4.2, we derive the following lemma.

Lemma 4.3 the function E is a convex function.

From the above lemma, we finish our proof with the following theorem.

Theorem 4.4 The system force summation function of DWARF has one global minima

and no local minima.

4.2 Stability Analysis

To prove that the system is stable, we begin by transforming the system into a

non-linear dynamic system. The evenness of the number of nodes affects the analysis.

Therefore, we divide the non-linear dynamic system into two cases: when n is even and

when n is odd where n is the number of nodes.

1) when n is even: Figure 4.1a illustrates the equilibrium of a dynamic system when

the number of nodes is even. Noticeably, node 0 and n/2 are exactly at the opposite side

of each other. At the first snapshot of the system, node 0 adjusts its phase based on the

force function of DWARF. After adjustment, we re-label node 1 to 0, node 2 to 1, ...,

node n − 1 to n − 2, and node 0 to n − 1 for analysis at the next snapshot (see Figure

4.1b). Therefore, to transform into a difference equation, ∆1 in the next snapshot is ∆2

in the previous snapshot, ∆2 in the next snapshot is ∆3 in the previous snapshot, and so

on. However, ∆n−1 and ∆n in the next snapshot are ∆n and ∆1 in the previous snapshot

adjusted by the force function, respectively. Therefore, the non-linear dynamic system
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(a) (b)

Figure 4.1: Non-linear dynamic system when n is even. (a) The snapshot of the system at one
time step. (b) In next time step after node 0 adjusts its phase, node 1 in previous round is
re-labelled to 0, node 2 is re-labelled to 1, and so on.

when n is even can be expressed as the following difference equations:

∆1 =∆2

∆2 =∆3

...

∆n−2 =∆n−1

∆n−1 =∆n +KT

(
− 1

∆1
− 1

∆1 +∆2
− . . .− 1

∆1 +∆2 + . . .+∆n

2
−1

+
1

∆n
+

1

∆n +∆n−1
+ . . .+

1

∆n +∆n−1 + . . .+∆n

2
+2

)

∆n =∆1 −KT

(
− 1

∆1
− 1

∆1 +∆2
− . . .− 1

∆1 +∆2 + . . .+∆n

2
−1

+
1

∆n
+

1

∆n +∆n−1
+ . . .+

1

∆n +∆n−1 + . . .+∆n

2
+2

)
(4.3)

We note that the force from node n/2 in the previous snapshot is already balanced

when we consider node 0. Therefore, ∆n

2
and ∆n

2
+1 do not appear in the force equation
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(a) (b)

Figure 4.2: Non-linear dynamic system when n is odd. (a) The snapshot of the system at one
time step. (b) In next time step after node 0 adjusts its phase, node 1 in previous round is
re-labelled to 0, node 2 is re-labelled to 1, and so on.

for adjusting ∆n−1 and ∆n in the next snapshot.

2) when n is odd: Similarly, Figure 4.2 illustrates the non-linear dynamic system

when n is odd. The only difference from when n is even is that there is no node that is

opposite to node 0. Therefore, in the difference equations, only ∆dn

2
e from the previous

snapshot does not appear in the force equation for adjusting ∆n−1 and ∆n in the next

snapshot.

∆1 =∆2

∆2 =∆3

...

∆n−2 =∆n−1

∆n−1 =∆n +KT

(
− 1

∆1
− 1

∆1 +∆2
− . . .− 1

∆1 +∆2 + . . .+∆dn

2
e−1

+
1

∆n
+

1

∆n +∆n−1
+ . . .+

1

∆n +∆n−1 + . . .+∆dn

2
e+1

)

∆n =∆1 −KT

(
− 1

∆1
− 1

∆1 +∆2
− . . .− 1

∆1 +∆2 + . . .+∆dn

2
e−1
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+
1

∆n
+

1

∆n +∆n−1
+ . . .+

1

∆n +∆n−1 + . . .+∆dn

2
e+1

)

Due to the non-linear adaptation function, the standard linear dynamic system

analysis does not suffice. Therefore, we locally analyse stability of the system around a

fixed point which is the equilibrium point. We begin by linear approximation to find the

Jacobian at the equilibrium. Then, from the Jacobian, we find the bound of eigenvalues

which is the crucial part of stability analysis.

4.2.1 Linear Approximation

The Jacobian (J) of a difference equations system is defined as follows:

J =



∂∆1

∂∆1

∂∆1

∂∆2
· · · ∂∆1

∂∆n−1

∂∆1

∂∆n

∂∆2

∂∆1

∂∆2

∂∆2
· · · ∂∆2

∂∆n−1

∂∆2

∂∆n

...
... . . . ...

...
∂∆n−1

∂∆1

∂∆n−1

∂∆2
· · · ∂∆n−1

∂∆n−1

∂∆n−1

∂∆n

∂∆n

∂∆1

∂∆n

∂∆2
· · · ∂∆n

∂∆n−1

∂∆n

∂∆n


(4.4)

We consider the Jacobian when n is even and odd separately. In both cases, after

finding the Jacobian, we substitute each ∆i with T/n which is the phase interval between

each node at the equilibrium.

1) n is even:

For ∆i, 1 ≤ i ≤ n− 2, partial derivatives of ∂∆i/∂∆j , 1 ≤ j ≤ n are the followings:

∂∆i

∂∆j
=

 1 if j = i+ 1

0 otherwise
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For ∆n−1, we find its partial derivatives as follows:

∂∆n−1

∂∆1
=KT

(
1

∆2
1

+
1

(∆1 +∆2)2
+ · · ·+ 1

(∆1 +∆2 + · · ·+∆n

2
−1)2

)

=KT

(
n2

T 2

)(
1

12
+

1

22
+ · · ·+ 1

(n2 − 1)2

)
=

Kn2

T

n

2
−1∑

i=1

1

i2

∂∆n−1

∂∆2
=KT

(
1

(∆1 +∆2)2
+ · · ·+ 1

(∆1 +∆2 + · · ·+∆n

2
−1)2

)

=KT

(
n2

T 2

)(
1

22
+ · · ·+ 1

(n2 − 1)2

)
=

Kn2

T

n

2
−1∑

i=2

1

i2

...

∂∆n−1

∂∆n

2
−1

=KT

(
1

(∆1 +∆2 + · · ·+∆n

2
−1)2

)

=KT

(
n2

T 2

)(
1

(n2 − 1)2

)
=

Kn2

T

n

2
−1∑

i=n

2
−1

1

i2

∂∆n−1

∂∆n

2

=0

∂∆n−1

∂∆n

2
+1

=0

∂∆n−1

∂∆n

2
+2

=KT

(
− 1

(∆n +∆n−1 + · · ·+∆n

2
+2)2

)

=−KT

(
n2

T 2

)(
1

(n2 − 1)2

)
= −Kn2

T

n

2
−1∑

i=n

2
−1

1

i2

...

∂∆n−1

∂∆n−1
=KT

(
− 1

(∆n +∆n−1)2
− · · · − 1

(∆n +∆n−1 + · · ·+∆n

2
+2)2

)

=−KT

(
n2

T 2

)(
1

22
+ · · ·+ 1

(n2 − 1)2

)
= −Kn2

T

n

2
−1∑

i=2

1

i2

∂∆n−1

∂∆n
=1 +KT

(
− 1

∆2
n

− 1

(∆n +∆n−1)2
− · · · − 1

(∆n +∆n−1 + · · ·+∆n

2
+2)2

)

=1−KT

(
n2

T 2

)(
1

12
+

1

22
+ · · ·+ 1

(n2 − 1)2

)
= 1− Kn2

T

n

2
−1∑

i=1

1

i2

For ∆n, we find its partial derivatives which is similar to ∆n−1 as follows.
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∂∆n

∂∆1
=1− Kn2

T

n

2
−1∑

i=1

1

i2

∂∆n

∂∆2
=− Kn2

T

n

2
−1∑

i=2

1

i2

...

∂∆n

∂∆n

2
−1

=− Kn2

T

n

2
−1∑

i=n

2
−1

1

i2

∂∆n

∂∆n

2

=0

∂∆n

∂∆n

2
+1

=0

∂∆n

∂∆n

2
+2

=
Kn2

T

n

2
−1∑

i=n

2
−1

1

i2

...

∂∆n

∂∆n−1
=
Kn2

T

n

2
−1∑

i=2

1

i2

∂∆n

∂∆n
=
Kn2

T

n

2
−1∑

i=1

1

i2

Let
∑
s

stands for
n

2
−1∑

i=s

1
i2 , where s ∈ [1, n2 − 1] and let A = Kn2/T . The Jacobian

matrix of the system, when n is even, is
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J =



0 1 · · · 0 0 0 0 · · · 0 0

0 0
. . . 0 0 0 0 · · · 0 0

...
... . . . . . . ...

...
... . . . ...

...

0 0 · · · 0 1 0 0 · · · 0 0

0 0 · · · 0 0 1 0 · · · 0 0

0 0 · · · 0 0 0 1 · · · 0 0
...

... . . . ...
...

...
... . . . ...

...

0 0 · · · 0 0 0 0 · · · 1 0

A
∑
1

A
∑
2

· · · A
∑
n

2
−1

0 0 −A
∑
n

2
−1

· · · −A
∑
2

1−A
∑
1

1−A
∑
1

−A
∑
2

· · · −A
∑
n

2
−1

0 0 A
∑
n

2
−1

· · · A
∑
2

A
∑
1



.

(4.5)

2) n is odd:

Similarly, when n is odd, we can find its Jacobian with the same procedure as when

n is even. We obtain the similar Jacobian matrix as follows:

J =



0 1 · · · 0 0 0 · · · 0 0

0 0
. . . 0 0 0 · · · 0 0

...
... . . . . . . ...

... . . . ...
...

0 0 · · · 0 1 0 · · · 0 0

0 0 · · · 0 0 1 · · · 0 0
...

... . . . ...
...

... . . . ...
...

0 0 · · · 0 0 0 · · · 1 0

A
∑
1

A
∑
2

· · · A
∑
n

2
−1

0 −A
∑
n

2
−1

· · · −A
∑
2

1−A
∑
1

1−A
∑
1

−A
∑
2

· · · −A
∑
n

2
−1

0 A
∑
n

2
−1

· · · A
∑
2

A
∑
1



. (4.6)
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4.2.2 Finding Eigenvalues

After finding the Jacobian of the linear approximation at the equilibrium, we find

the eigenvalues by solving the equation |J−λI| = 0. If all eigenvalues lay on a unit circle,

the system is stable at the equilibrium. Therefore, we begin by finding the determinant of

the matrix J − λI. We use row operations to transform the determinant of |J − λI| into

the determinant of a triangular matrix. Then, the determinant of the triangular matrix

is the multiplication of diagonal entries.

The following procedure is to transform the determinant of |J −λI| into the deter-

minant of triangular matrix when n is even:

|J − λI| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 1 · · · 0 0 0 0 · · · 0 0

0 −λ
. . . 0 0 0 0 · · · 0 0

...
...

. . . . . .
...

...
...

. . .
...

...

0 0 · · · −λ 1 0 0 · · · 0 0

0 0 · · · 0 −λ 1 0 · · · 0 0

0 0 · · · 0 0 −λ 1 · · · 0 0

...
...

. . .
...

...
...

. . . . . .
...

...

0 0 · · · 0 0 0 0 · · · 1 0

A
∑
1

A
∑
2

· · · A
∑
n
2
−1

0 0 −A
∑
n
2
−1

· · · −A
∑
2

−λ 1−A
∑
1

1−A
∑
1

−A
∑
2

· · · −A
∑
n
2
−1

0 0 A
∑
n
2
−1

· · · A
∑
2

A
∑
1

−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(4.7)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 1 · · · 0 0 0 0 · · · 0 0

0 −λ
. . . 0 0 0 0 · · · 0 0

...
...

. . . . . .
...

...
...

. . .
...

...

0 0 · · · −λ 1 0 0 · · · 0 0
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where

B = 1−A
∑
1
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∑
2

−λ2A
∑
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− · · · − λ
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−2A

∑
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+λ
n

2
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∑
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2
−1

+ · · ·+ λn−2A
∑
2

.

(4.13)

Similarly, we use the same procedure to find the determinant of |J − λI| when n is

odd. The result matrix is the same as above except that

B = 1−A
∑
1

−λA
∑
2

−λ2A
∑
3

− · · · − λdn

2
e−1A

∑
n

2
−1

+λdn

2
e+1A

∑
n

2
−1

+ · · ·+ λn−2A
∑
2

.

(4.14)

We note that the difference between Equation 4.13 and 4.14 is the exponents of λ

at two middle terms.

The determinant of a triangular matrix is the product of diagonal terms. That is

|J−λI| =

−λ+
1

λn−2
+

B

A
∑
1
−λ

(
λ− 1

λn−2

) (−λ)(−λ) · · · (−λ)(−λ)

(
A
∑
1

−λ

)
= 0.

For terms −λ, it is obvious that we have repeated eigenvalues λ that are equal to

0 and lay on a unit circle.
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For the last term A
∑
1
−λ, the value of λ depends on n as follows:

A
∑
1

−λ = 0

λ = A
∑
1

λ = 0.038597n0.126

n

2
−1∑

i=1

1

i2
≥ 0.

In this case, λ ≥ 0, however, we have to find the least upper limit of n that leads

to λ ≤ 1. From the Reimann zeta function ζ(2) =
∑∞

i=1
1
i2 = π2/6 ≈ 1.645, so that∑n

2
−1

i=1
1
i2 6 1.645. We substitute

∑n

2
−1

i=1
1
i2 with 1.645 to find the least upper limit of n:

λ = 0.038597n0.126

n

2
−1∑

i=1

1
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0.038597n0.126(1.645) ≤1

n ≤3.178× 109. (4.15)

Therefore, if the number of nodes n is less than 3.178 × 109 nodes, the eigenvalue λ lies

between 0 and 1 in this case.

For the first term, −λ + 1
λn−2 + B

A
∑
1

−λ

(
λ−1
λn−2

)
, the λ must not be 0. If n is even,

we derive the polynomial of λ as follows:
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To get the eigenvalues, we have to solve the polynomial

feven(λ) = λn−Aλn−1
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(4.16)

Similarly, if n is odd, we have to solve the polynomial

fodd(λ) = λn−Aλn−1

12
−Aλn−2

22
−· · ·− Aλdn

2
e
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−Aλdn
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(4.17)

However, according to the Abel’s Impossibility theorem (or Abel-Ruffini theorem),

we cannot find a general algebraic solution to polynomial equations of degree five or higher

(Faucette (1996)). Therefore, instead of finding the exact values, we find the upper and

lower bound of the eigenvalues to ensure that they lay on a unit circle.
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4.2.3 The Bound of Eigenvalues

To find the bound of polynomial roots (i.e. our eigenvalues), we follow the following

theorem of Hirst and Macey (Hirst and Macey (1997)).

Theorem 4.5 (Hirst and Macey Bound) Given f : C → C defined by f(z) = zn +

an−1z
n−1 + . . . + a1z + a0, where a0, a1, . . . , an ∈ C, and n a positive integer. If z is a

zero of f , then

|z| ≤ max
{
1,

n−1∑
i=0

|ai|

}
.

Therefore, to bound all eigenvalues within a unit circle,
∑n−1

i=0 |ai| must be less than

or equal 1. From both Equation 4.16 and 4.17,
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where A = Kn2/T = 38.597n−1.874(T/1000)(n2/T ) = 0.038597n0.126.

For the first case, −1 + 2A
∑n

2
−1

i=1
1
i2 ≤ 2A

∑n

2
−1

i=1
1
i2 − 1 is always true regardless of

the number of nodes n. Therefore, we consider the second case:

2A

n

2
−1∑

i=1

1

i2
− 1 ≤ 1− 2A

n

2
−1∑

i=1

1

i2

4A

n

2
−1∑

i=1

1

i2
≤ 2

0.038597n0.126

n

2
−1∑

i=1

1

i2
≤ 1

2
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When n is large,
∑n

2
−1

i=1
1
i2 is approximately equal to the Reimann zeta function

ζ(2) =
∑∞

i=1
1
i2 = π2/6 ≈ 1.645. Therefore, we get the following:

0.038597n0.126(1.645) ≤ 1

2

n0.126 ≤ 7.87499981

n ≤ 1.29× 107. (4.20)

Thus, if the number of nodes n is less than 1.29 × 107 nodes, every eigenvalue

lies in a unit circle. Therefore, the non-linear dynamic system of the proposed desyn-

chronization algorithm is locally stable at the equilibrium. In other words, if there is a

small perturbation around the equilibrium, the system is able to converge back to the

equilibrium.

4.3 Summary

In this chapter, we prove that the force function used in DWARF for phase ad-

justment is convex. Due to convexity, there is only global minima and no local minima.

Therefore, one of the reasons that the system converges (nodes are nicely spread) is that

DWARF attempts to reduce the value of the objective function (i.e., the overall force in

the system) overtime and eventually reach a value near the global minima.

However, in practice, the system does not always converge. To converge, the system

must meet two criteria. First, the value of the step size K must be proper (see Section

3.3). Second, the number of nodes within a time period must not be too high. Otherwise,

the system may be over-saturated.

Then, we analyse the stability by transforming the system into a dynamic system.

However, the stability analysis of standard dynamic systems does not suffice because the

force function is non-linear and the transformation matrix to find the eigenvalues cannot

be formed. Therefore, we locally approximate the system at the equilibrium and analyze

the stability. The result is that the system is locally stable at the equilibrium under small

perturbation.



CHAPTER V

MULTI-HOP PHYSICOMIMETICS

DESYNCHRONIZATION ALGORITHM

5.1 Introduction

In Chapter 3, we present DWARF, a physicomimetics desynchronization algorithm

based on the artificial force field concept for wireless sensor networks. We have evaluated

and compared DWARF with other algorithms in a single-hop topology. The results are

promising.

In this chapter, we extend the artificial force field concept to multi-hop networks.

We begin by applying DWARF directly to a simple multi-hop topology and indicate how

the algorithm fails on such a topology in Section 5.2. Then, we propose two simple but

elegant resolutions to extend DWARF for multi-hop networks in Section 5.3. Section 5.4

explains the algorithm that applies such resolutions. Then, in Section 5.5, we evaluate and

compare our algorithm to other algorithms. We also propose the optimization to reduce

communication overhead and present the robustness to message loss of the algorithm in

this section. Finally, Section 5.6 summarizes the chapter.

5.2 First Multi-hop Experiment and Hidden Terminal Problem

To see how DWARF works on a multi-hop network, we set a simple 3-node chain

topology as illustrated in Figure 5.1. In this topology, node 1 can receive firing messages

from node 2 but cannot receive from node 3, node 2 can receive firing messages from both

node 1 and 3, and node 3 can receive firing messages from node 2 but cannot receive from

node 1.

1 2 3

Figure 5.1: A simple multi-hop network.
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Figure 5.2: Message collision on a 3-node multi-hop chain network. The period T is 1000
milliseconds. Node 1 is at phase 0 whereas node 3 is approximately at the same phase as node
1.
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Figure 5.3: The perfect desynchrony state of a 3-node multi-hop chain network, The period T
is 1000 milliseconds. Node 1 is at phase 0 whereas others are separated by T/3 milliseconds.

We have simulated DWARF by setting the period to 1000 milliseconds. Nodes

wake up randomly. The simulation result is shown in Figure 5.2. Node 2’s and node 3’s

phases are plotted relatively to the node 1’s phase (i.e., the node 1’s phase is relatively

plotted to itself at 0). The noisy vertical line is the wrapping-around phase of node

3. The result shows that node 1 and node 3 fire messages approximately at the same

phase. This causes the message collision at node 2. However, the expected result (i.e.

perfect desynchrony state) should be that three nodes are separated equivalently because

all nodes will interfere each other if they fire messages at the same phase. The expected

result is shown in Figure 5.3 where each node is equivalently separated from each other
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1 2 3

Figure 5.4: The hidden terminal problem.

approximately by 1000/3 milliseconds.

The problematic result is caused by the hidden terminal problem as demonstrated

in Figure 5.4; node 1 and node 3 are hidden to each other in this multi-hop topology.

While node 3 is firing a message, node 1 senses a wireless channel and does not detect

any signal from node 3 because the signal from node 3 is not strong enough within the

signal sensing range of node 1 and vice versa. Therefore, in DWARF, node 1 and node

3 notice only that there are two nodes, which are itself and node 2, in their perceived

networks. Therefore, node 1 and node 3 simultaneously attempt to adjust their phases

to the opposite side of node 2 in their time circles which are the same phase. As a result,

their firing messages collide at node 2.

The hidden terminal problem does not only affect the performance of DWARF but

also affect that of DESYNC. This is due to the fact that, in DESYNC, a node adjusts its

phase based on firing messages from its perceived phase neighbors. In Degesys and Nagpal

(2008) and Mühlberger and Kolla (2009), EXTENDED-DESYNC, which is the extension

of DESYNC, is proposed to solve the hidden terminal problem based on a relative time

relaying mechanism. Based on the similar idea, we extend DWARF to support multi-

hop topologies. However, only relative time relaying mechanism does not lead DWARF

to an optimal solution in some cases. Therefore, this dissertation also proposes a force

absorption mechanism for extending DWARF to support multi-hop networks.
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1 2 3

3 fires at 125 ms

1 fires at 750 ms

(a)

2

2

11

3
3
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(b)

Figure 5.5: A node includes its one-hop neighbors’ firing times into a firing message. (a) Node
2 fires a message containing node 1’s and node 2’s firing timestamps that it perceives. (b) Node
1 misunderstands the time phase of node 3 because local time of node 1 and local time of node
2 are different.

5.3 DWARF with Multi-hop Extension (M-DWARF)

5.3.1 Relative Time Relaying

The first idea to solve the hidden terminal problem is straightforward. If a node

does not know the firing times of its second-hop neighbors, its one-hop neighbors relay

such information. Therefore, instead of firing only to notify its firing time, each node

includes their one-hop neighbors’ firing times into a firing message.

However, due to our assumption that nodes’ clocks are not synchronized, relying on

second-hop neighbors’ firing timestamps from its one-hop neighbors could lead to wrong

phase adjustment. This problematic scenario is demonstrated in Figure 5.5. Figure 5.5a

illustrates the firing message of node 2 that contains timestamps of its one-hop neighbors.

Figure 5.5b shows the problem. The inner circle represents the local time of node 1 and

the outer circle represents the local time of node 2. The figure indicates that the local

reference times (at 0 millisecond) of node 1 and node 2 are different. Therefore, if node

1 uses the node 3’s firing time relayed by node 2, which is 125 milliseconds, node 1 will

misunderstand the exact time phase of node 3. The misunderstood phase of node 3 is

depicted as a dash circle.
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Figure 5.6: EXT-DWARF: A node includes its one-hop neighbors’ relative phases into a firing
message. (a) Node 2 fires a message containing node 1’s and node 2’s relative phases. (b) Node
1 marks the node 2’s phase as a reference phase and uses it as an offset for calculating the node
3’s phase. (c) Eventually, nodes are in the perfect desynchrony state.

This problem can be simply solved by using relative phases instead of actual local

times. Each node fires a message that includes relative phases of its one-hop neighbors.

A receiving node marks the firing phase of the firing node as a reference phase. Then,

the receiving node perceives its second-hop neighbors’ phases as relative phases offset by

the reference phase. Figure 5.6 shows how extended DWARF desynchronizes a 3-node

multi-hop chain network.

5.3.2 Force Absorption

As we mentioned earlier, DWARF with the relative time relaying mechanism does

not solve some cases. These cases are when there are at least two second-hop neighbors

that can share the same phase without interference. For example, in a 4-node chain

network illustrated in Figure 5.7a, node 2 and node 3 are physically far beyond two

hops. Therefore, they can fire messages at the same time phase as shown in Figure 5.7b.

However, in extended DWARF, node 0 perceives that node 2 and node 3 are at the same

phase. Therefore, there are two forces from node 2 and node 3 to repel node 0 forward but

there is only force from node 1 to repel node 0 backward. Consequently, node 0 cannot

stay at the middle between node 1 and the group of node 2 and 3 (see Figure 5.7c).

Therefore, we propose a novel force absorption mechanism for multi-hop desynchro-

nization based on the artificial force field. The objective of this mechanism is to absorb

the overwhelming force from at least two nodes that can fire at the same phase without



51

2 0 1 3

(a)

0

3 1

666.66 ms

0 ms

333.33 ms

2

(b)

0

3 1

600 ms

0 ms

200 ms

2

(c)

Figure 5.7: The problem of the single-hop DWARF algorithm. (a) A 4-node chain topology.
The transmission signal of node 2 does not interfere any receiver of node 3 and vice versa. (b) In
the node 0’s local view, the expected result is that node 2 and node 3 can share the same phase
without interference. (c) In extended DWARF, node 0 is not in the expected phase because there
are two forward repelling forces from node 2 and node 3 while there is one backward repelling
force from node 1.

interference.

The mechanism is as follows. A node receives a full repelling force from the next/

previous phase neighbor as in DWARF. However, a force from the second-next/second-

previous phase neighbor is partially absorbed by the next/previous phase neighbor. The

magnitude of the absorbed force depends on the phase interval between the next/previous

and the second-next/second-previous phase neighbors. The closer that the second-next/

second-previous phase neighbor moves to the next/previous phase neighbor results in

the lower magnitude of the absorbed force. Eventually, when the second-next/second-

previous phase neighbor moves to the same phase as the next/previous phase neighbor, the

additional force from the second-next/second-previous phase neighbor is fully absorbed.

Consequently, the magnitude of two forces repelling the considered node is approximately

equal to only magnitude of one force. This principle is applied recursively; the force

from the third-next/third-previous phase neighbor is absorbed by the second-next/second-

previous phase neighbor, the force from the fourth-next/fourth-previous phase neighbor

is absorbed by the third-next/third-previous phase neighbor, and so forth. Figure 5.8

illustrates this mechanism. In Figure 5.8a, the force from node 2 to node 0 is absorbed by

node 3 (the absorbed force is displayed in a blur line). Thus, from node 2, there is only

small magnitude of force left to node 0. Eventually, in Figure 5.8b, node 2 moves to the

same phase as node 3 because they do not interfere each other and the force from node 2

is fully absorbed. Consequently, the network can be in the perfect desynchrony state.
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Figure 5.8: EXT-DWARF with force absorption. The blur line represented an absorbed force.
(a) When node 2 and 3 are apart, the force from node 2 affects node 0 but the force is partly
absorbed. (b) When node 2 and 3 are at the same phase, the force from node 2 is fully absorbed.

Let fi,j be a full repelling force from node j to node i, f ′

i,j be an absorbed force

from node j to node i, T is the time period, and ∆φi,j is the phase difference between

node i and j. The force function for multi-hop networks is the following:

fi,j =
1

∆φi,j/T
,where ∆φi,j ∈ (−T

2
,
T

2
)

f
′

i,i+1 = fi,i+1

f
′

i,i−1 = fi,i−1

f
′

i,j = fi,x − fi,j ,where j /∈ {i− 1, i+ 1} and x = (j − ∆φi,j

|∆φi,j |
) mod n. (5.1)

For fi,x, if node j repels node i forward, x is j + 1. In contrast, if node j repels node i

backward, x is j − 1. At T/2 or −T/2, a node does not repel an opposite node because

they are balanced.

For example, in Figure 5.8, node 0 calculates the force from node 2 as the following:

f
′

0,2 = f0,3 − f0,2

=
1

∆φ0,3/T
− 1

∆φ0,2/T
.

Noticeably, if node 2 moves close to node 3, the value of ∆φ0,2 is close to the value
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of ∆φ0,3. Then, the magnitude of force f0,2 is reduced. Finally, when ∆φ0,2 is equal to

∆φ0,3 as in Figure 5.8b, the magnitude of force f0,2 becomes 0. In other words, the force

is fully absorbed.

5.4 M-DWARF Algorithm

The M-DWARF algorithm is similar to DWARF (see Chapter 3). However, M-

DWARF has two proposed mechanisms to support multi-hop topologies: relative time

relaying and force absorption. Initially, nodes are not desynchronized. Each node sets a

timer to fire in T time unit and listens to all one-hop neighbors.

When receiving a firing message from its one-hop neighbor, the receiving node

marks the current time to be the relative phase reference. Then, the node reads relative

phases of its two-hop neighbors which are included within the firing message. After that,

the node calculates their two-hop neighbors’ phases by using the relative phase reference

as the offset.

When the timer expires, the node broadcasts a firing message containing relative

phases of its one-hop neighbors. Then, the node calculates a new time phase to move on

the phase circle. The calculation is based on the summation of artificial forces from all

phase neighbors within two-hops where some forces are absorbed. Then, the node sets a

new timer according to the new calculated phase.

As same as DWARF, a node adjusts its phase as follows. Given the total received

absorbed force Fi, the node i adjusts to a new time phase φ
′

i,

φ
′

i = (φi +KFi) mod T, (5.2)

where φi is the current phase of the node i.

We choose the coefficient K as same as in DWARF:

K = 38.597× n−1.874 × T

1000
, (5.3)

where n is the number of phase neighbors within two hops and T is the time period.

We refer to Section 3.3 that proves and describes in details how we get the value of the
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coefficient K. In short, the value of the coefficient K is inverse proportional to the number

of nodes n and proportional to the time period T .

All nodes in the artificial force field (in the period circle) iteratively run the same

algorithm until the force is balanced. The pseudo-code of this algorithm is shown in

Figure 5.9.

5.5 Evaluation

In this section, we evaluate the performance of M-DWARF, EXTENDED-DESYNC

(Mühlberger and Kolla (2009)), and LIGHTWEIGHT (Motskin et al. (2009)). All of these

algorithms do not require time synchronization. We begin by measuring the desynchro-

nization error and convergence time on single-hop networks because the extension for

multi-hop networks should work on single-hop networks as well. Then, we evaluate on

several multi-hop topologies which are used in the previous work (Degesys and Nagpal

(2008)).

5.5.1 Evaluation Environment

We implement M-DWARF, EXTENDED-DESYNC, and LIGHTWEIGHT on Tiny-

OS 2.1.2 and evaluate them on the TOSSIM simulator. In our simulation, for all algo-

rithms, we use 2-byte sender node ID, and 2-byte neighbor ID. For M-DWARF and

EXTENDED-DESYNC, we use 2-byte relative phase for each one-hop neighbor. The

regular 11-byte CC2420 header is also used. The time period is set to 1000, 2000, and

3000 milliseconds. The step size (α) of EXTENDED-DESYNC is set to 0.95 as same as

in Chapter 3. The phase of each node is initially random in a range of 0 to the period

length

5.5.2 Single-hop Networks (Fully-connected Topology) Evaluation

We begin by evaluating M-DWARF on single-hop networks. In M-DWARF and

EXTENDED-DESYNC, each firing message contains relative phases of one-hop neighbors.

Therefore, to limit the size of a message, we vary the one-hop network size from 4 to 32

nodes.
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1: Initialization
2: T = TimePeriod {Configurable Time Period}
3: n = 1 {Number of neighbors within two hops including itself}
4: F = 0 {Force Summation}
5: phasesBuffer = Array {Buffer for phases of neighbors within two hops}
6: lastF iringT ime = localT ime
7: currentPhase = localT ime modulo T
8: Set a firing timer to be T unit time

9: Upon timer firing
10: Broadcast a firing message containing relative phases of one-hop neighbors
11: lastF iringT ime = localT ime
12: currentPhase = localT ime modulo T
13: K = 38.597× n−1.874 × T

1000
14: F = call Calculate total force
15: newPhase = currentPhase+ (K ×F)
16: if newPhase < 0 then
17: newPhase = T + newPhase
18: end if
19: Set a firing timer to be fired at (newPhase modulo T )
20: F = 0
21: n = 1

22: Calculate total force
23: sortedBuffer = Sort phasesBuffer
24: forwardForce = 1

(T−sortedBuffer[length−1])/T

25: backwardForce = 1
sortedBuffer[0]/T

26: for i in range of 1 to length of sorted phasesBuffer - 2 do
27: if phasesBuffer[i] > 0.5T then
28: forwardForce = forwardForce+ ( 1

(T−phasesBuffer[i+1])/T − 1
(T−phasesBuffer[i])/T )

29: else
30: backwardForce = backwardForce+ ( 1

phaseBuffer[i−1]/T − 1
phaseBuffer[i]/T )

31: end if
32: end for
33: return forwardForce− backwardForce

34: Upon receiving a firing message from nodeId
35: phaseDiff = localT ime− lastF iringT ime
36: phasesBuffer[nodeId] = phaseDiff
37: reference = phaseDiff
38: for each twoHopNodeId of two-hop neighbors in message do
39: if twoHopNodeId is not in phasesBuffer then
40: phasesBuffer[twoHopNodeId] = message[twoHopNodeId][relativePhase] +

reference
41: n = n+ 1
42: end if
43: end for

Figure 5.9: Pseudocode of M-DWARF algorithm

5.5.2.1 Desynchronization Error

We run the simulation for 300 time periods to measure the desynchronization error.

In each network size, we run the simulation for 30 times. Then, we measure the average
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Figure 5.10: (a) Root mean square error after 300 time periods. (b) Root mean square error
normalized by perfect phase difference after 300 time periods.

root mean square error (RMSE) and normalized root mean square error (see details in

Section 3.4.3). Figure 5.10a illustrates the result of absolute desynchronization error

and Figure 5.10b illustrates the result of the normalized desynchronization error in each

network size after 300 time periods.

The result indicates that, in all network sizes (4 - 32 nodes), M-DWARF achieves sig-

nificantly better desynchrony states than EXTENDED-DESYNC and LIGHTWEIGHT

do. The EXTENDED-DESYNC’s mechanism has the same pitfall as that of DESYNC

because they are based on the same mechanism. The pitfall is that the phase error of

a node propagates to its phase neighbors and this error will propagate back and forth

between two phase neighbors. This results in a large error after convergence. In contrast,

M-DWARF is robust to this error propagation as same as DWARF because both M-

DWARF and DWARF use the total received forces from all neighbors. An error from one

neighbor does not overwhelm the system. For LIGHTWEIGHT, the desynchronization

errors of small networks are extremely large because the algorithm randomly chooses the

free time slot without considering the equitably separation. However, when the network

size becomes larger, the error becomes lower because the perfect phase interval length is

reduced.
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Figure 5.11: Convergence time and absolute root mean square error
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Figure 5.12: Convergence time and root mean square error normalized by expected phase dif-
ference

5.5.2.2 Convergence Time

In this section, we measure the absolute root mean square error and normalized

root mean square error for each time period to investigate the convergence time. Figure

5.11a and 5.12a show the results of sparse networks whereas Figure 5.11b and 5.12b show

the results of dense networks.

In all network sizes, the convergence speed of M-DWARF is comparable to that of

EXTENDED-DESYNC. However, M-DWARF converges with the lowest desynchroniza-

tion error. For LIGHTWEIGHT, the algorithm converges fast and stable. However, due

to the random slot selection process, the desynchronization errors in all network sizes are
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Figure 5.13: Fluctuation in some cases of EXTENDED-DESYNC.

large.

We note that the errors of EXTENDED-DESYNC for 8-node and 16-node networks

are fluctuate. This is due to the fact that, in our 30 EXTENDED-DESYNC simulations,

there are some cases in 8-node and 16-node networks that the phases of some nodes are

highly fluctuate as depicted in Figure 5.13. These cases affect the average value. This

behaviour is caused by the mechanism of EXTENDED-DESYNC (and DESYNC) that

relies on only two phase neighbors information as described earlier in Chapter 3.

The result of single-hop networks indicates that M-DWARF that augments DWARF

with two mechanisms still performs very well on single-hop networks without loss of

generality.

5.5.3 Impact of Topologies

For multi-hop networks, we evaluate M-DWARF on several topologies including

star, chain, cycle, butterfly, and mesh topologies. In each topology, we simulate for

30 times and show the relative phase graph results. We show the phase graphs that

represent the average case and the problematic case of each algorithm. We note that,

in all topologies, LIGHTWEIGHT achieves the similar results. For LIGHTWEIGHT,

each node randomly chooses the beginning of a time slot by avoiding the collision with

one-hop neighbors. Therefore, on average, LIGHTWEIGHT causes several inequivalent

interval gaps between two consecutive phase neighbor nodes. Moreover, there are several

problematic cases that at least two nodes within two-hop communication choose the same
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(a) 6 nodes (b) 20 nodes

Figure 5.14: Star topology
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Figure 5.15: 6-node star topology evaluation (average case).
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Figure 5.16: 20-node star topology evaluation (average case).

beginning of a time slot because they cannot receive firing messages from each other.

Thus, in all topologies, we only describe the behaviour of M-DWARF and EXTENDED-

DESYNC.
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Figure 5.17: 6-node star topology evaluation (problematic case).
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Figure 5.18: 20-node star topology evaluation (problematic case).

5.5.3.1 Star Topology

The star topology is the simplest case for multi-hop desynchronization. There is one

center node that can transmit and receive messages with all other nodes in the network.

In contrast, other nodes can transmit and receive only with the center node. Figure 5.14

illustrates 6-node and 20-node star topologies that we use for algorithms evaluation. In

the star topology, every node is connected to each other within two-hop communication.

As a result, all nodes must use different time slots.

Figure 5.15 and 5.16 shows the simulation results of three algorithms on 6-node and

20-node star topologies respectively. Due to the relative phase relaying mechanism, both

M-DWARF and EXTENDED-DESYNC perceive relative phases of neighbors within two

hops, which are all nodes in the system. Consequently, both algorithms can separate 6

nodes into almost equivalent 6 time slots. However, M-DWARF achieves almost perfect

desynchony whereas EXTENDED-DESYNC slightly fluctuates in the sparse 6-node net-

work and highly fluctuates in the dense 20-node network. Figure 5.17 and 5.18 shows

the problematic cases. For M-DWARF, there is no problem in the sparse networks, but,

in the dense networks, nodes take more time to become stable. The reason is that, when
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(a) 3 nodes (b) 10 nodes

Figure 5.19: Chain topology
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Figure 5.20: 3-node chain topology evaluation (average case).
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Figure 5.21: 10-node chain topology evaluation (average case).

the network is dense, the usable time interval gap for each node is shortened. Therefore,

if several nodes start closely to each other at the initial configuration, forces are highly

absorbed. As a result, they takes more time to separate away from each other. In the case

of EXTENDED-DESYNC, the fluctuated error from one node can propagate throughout

the networks because each node relies on only information of two phase neighbors.

5.5.3.2 Chain Topology

The chain topology is one of the simplest topologies. Every node is lined up without

a loop. The 3-node and 10-node chain topologies are depicted in Figure 5.19. For 3

nodes, this case is simple because all three nodes cannot share the same phase. In most

cases as shown in Figure 5.20, both M-DWARF and EXTENDED-DESYNC perform very
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Figure 5.22: 3-node chain topology evaluation (problematic case).
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Figure 5.23: 10-node chain topology evaluation (problematic case).

well. All nodes are equivalently separated. However, M-DWARF is slightly smoother than

EXTENDED-DESYNC.

For 10 nodes, some nodes that are farther than two hops are able to use the same

phase. There are several optimal solutions. For exmaple, the first optimal solution is

that there are four groups of nodes that use different phases. Each node within the same

group can use the same phase. These four groups are {0, 3, 6, 9}, {1, 4, 7}, {2, 5, 8}, and

{6}. Another optimal solution is {0, 4, 9}, {1, 5, 8}, {3, 6}, and {2, 7}. We note that, in

our 30 simulations, M-DWARF could achieve the perfect desynchrony state with 4 slots

as in Figure 5.21a, but EXTENDED-DEESYNC never achieve the perfect desynchrony

state (there are 5 slots in Figure 5.21b because node 0 is at phase 0).

In some problematic cases, the phases of EXTENDED-DESYNC are slightly fluc-

tuate in the sparse networks (Figure 5.22b) and highly fluctuate in the dense networks

(Figure 5.23b). Additionally, for both EXTENDED-DESYNC and M-DWARF, each

node attempts to gradually adjust its phase in the range between previous and next

phase neighbors. Therefore, if the initial configuration is not proper, nodes may be not

able to adjust their phases over the range of such neighbors and the networks cannot get
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(a) 4 nodes (b) 10 nodes

Figure 5.24: Cycle topology
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Figure 5.25: 4-node cycle topology evaluation (average case).
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Figure 5.26: 10-node cycle topology evaluation (average case).

into the perfect desynchrony state. Figure 5.23a and 5.23b illustrate this problem.

5.5.3.3 Cycle Topology

The cycle topology is simlar to the chain topology. All nodes are lined up but the

first and last nodes are connected together to form a closed loop. Figure 5.24 depicts

4-node and 10-node cycle topologies.

For 4-node cycle networks, all nodes are within two hops from each other. There-

fore, every node knows phases of other nodes and no node shares the same phase. On

average, both M-DWARF and EXTENDED-DESYNC achieve the perfect desynchrony

state as shown in Figure 5.25a and 5.25b. For 10-node networks, some optimal solutions
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Figure 5.27: 4-node cycle topology evaluation (problematic case).
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Figure 5.28: 10-node cycle topology evaluation (problematic case).

are different from the optimal solutions in the case of the 10-node chain topology because

node 0 and 9 cannot share the same phase in the cycle topology. Both M-DWARF and

EXTENDED-DESYNCE can achieve the perfect desynchrony state in this case (see Fig-

ure 5.26a and 5.26b). However, again, the phases of EXTENDED-DESYNC are fluctuate.

In some problematic cases, the result is similar to the problematic result of the

chain topology with the same reason that the initial configuration affects how nodes

adjust theirs phases to the proper phases. Figure 5.27a, 5.27b, 5.28a, and 5.28b illustrate

the problem.

5.5.3.4 Dumbbell Topology

The dumbbell topology is commonly used in practice. It is one form of the transit-

stub networks. In a dumbbell network, there are a number of nodes connected to a single

relay node. The relay node is connected to another relay node at another side. Another

number of nodes are connected to that final relay node to create a dumbbell topology.

Figure 5.29 depicts 6-node and 20-node dumbbell networks.
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(a) 6 nodes (b) 20 nodes

Figure 5.29: Dumbbell topology
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Figure 5.30: 6-node dumbbell topology evaluation (average case).
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Figure 5.31: 20-node dumbbell topology evaluation (average case).

Obviously, a node at one end can share the same phase with another node at

the other end because they are far from each other beyond two hops. Therefore, for

6-node networks, the optimal solution requires 4 slots. Each slot interval is T/4. For

20-node networks, the optimal solution requires 11 slots. Each slot interval is T/11.

In Figure 5.30a and 5.30b, both M-DWARF and EXTENDED-DESYNC achieve the

optimal solution for 6-node networks. However, again, M-DWARF is more stable than
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Figure 5.32: 6-node dumbbell topology evaluation (problematic case).
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Figure 5.33: 20-node dumbbell topology evaluation (problematic case).

EXTENDED-DESYNC.

When the network is dense, EXTENDED-DESYNC is highly fluctuate. If one

node adapts their phase too fast, several nodes are affected because there are many two-

hop neighbors in the dumbbell networks as illustrated in Figure 5.33b. In contrast, in

M-DWARF, the fast adaptation of one node does not has high impact to other nodes

because nodes do not rely on only their two phase neighbors but use all information from

neighbors within two hops as the force function.

5.5.3.5 Mesh Topology

We use the 10-node mesh topology described in Degesys and Nagpal (2008) as

depicted in Figure 5.34. A solid line represents one-hop connectivity whereas a dash line

represents two-hop connectivity. In Degesys and Nagpal (2008), they state the best case

of this topology is that eight slots are required. However, in our simulation, we discover

the better solution that requires only six slots as illustrated in Figure 5.35a for M-DWARF

and Figure 5.35b for EXTENDED-DESYNC. The problematic case for bot M-DWARF

and EXTENDED-DESYNC is that the initial configuration is not proper. However, as
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Figure 5.34: 10-node multi-hop network. A solid line represents 1-hop connectivity. A dash line
represents 2-hop connectivity. Any two nodes that are connected within 2-hop connectivity can
interfere each other transmission.
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Figure 5.35: 10-node mesh topology evaluation (average case).
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Figure 5.36: 10-node mesh topology evaluation (problematic case).

expected, EXTENDED-DESYNCE is affected from highly fluctuation.

5.5.4 Impact of Period Length

In previous experiments, we set the time period to 1,000 milliseconds. In this

experiment, we vary the period from 1,000 to 3,000 milliseconds. To obviously see the

impact of period length, we use the star topology which is the multi-hop topology that all

nodes perceive all 2-hop neighbors and set the number of nodes to 30 nodes. With this
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Figure 5.37: Impact of period length (T ) in M-DWARF
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Figure 5.38: Impact of period length (T ) in EXTENDED-DESYNC

topology and the number of nodes, the network is saturated within the 1,000-millisecond

period.

Figure 5.37 and 5.38 show the phase graphs when varying period length of M-

DWARF and EXTENDED-DESYNC respectively. At the 1,000-millisecond period, the

network is saturated for 30 nodes. First, we notice that this result is different from 30

nodes in the single-hop networks that we evaluate in Chapter 3 which nodes are well-

spread in a time period. In the single-hop DWARF algorithm, a firing message does not

contain any overhead, whereas, in the multi-hop M-DWARF algorithm, a firing message

contains one-hop neighbors relative phases. Therefore, the firing message of multi-hop

M-DWARF takes longer firing time than that of single-hop DWARF. Consequently, the

time gap between two firing messages is reduced in M-DWARF.

With the same period length, there are more nodes in EXTENDED-DESYNC than

in M-DWARF that stay at the same phase and their firing messages collide. When

the period length is increased to 2,000 and 3,000 milliseconds, the free time gap is also

increased. Therefore, the number of collisions is reduced and nodes are better spread in

both algorithms.
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Figure 5.39: Average channel utilization of 30 and 40 node networks
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Figure 5.40: Average channel utilization of 50 and 60 node networks

5.5.5 Channel Utilization and Fairness

In this section, we measure the average channel utilization of M-DWARF and

EXTENDED-DESYNC. The channel can be utilized by one node if there is no colli-

sion during an amount of time between a node’s firing to another node’s firing. Figure

5.39 shows the results of networks with 30 and 40 nodes and Figure 5.40 shows the re-

sults of networks with 50 and 60 nodes. At the 1000-millisecond period, the average

channel utilizations of 30 to 60 nodes networks are almost the same because the network

are already saturated and there are several collisions. The number of colliding nodes are

also approximately the same for both algorithms. When the period length is increased,

M-DWARF performs better than EXTENDED-DESYNC because there are less collisions

in M-DWARF. However, we note that this benefit is not significant (only around 50

milliseconds improvement).

Then, we measure the fairness of nodes utilizing the channel. If we average the

channel utilization per node, the result is approximately the same for M-DWARF and

EXTENDED-DESYNC but M-DWARF is insignificantly slightly better (which is the rea-
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Figure 5.41: Average standard deviation of channel utilization per node of 30 and 40 node
networks
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Figure 5.42: Average standard deviation of channel utilization per node of 50 and 60 node
networks

son why the average channel utilization of M-DWARF is only slightly better). However,

to measure the fairness, we are interested in the value of the average standard deviation of

the channel utilization per node. If nodes fairly utilize the network, this value is low. The

results of 30 and 40 nodes networks are shown in Figure 5.41 and the results of 50 and 60

nodes networks are shown in Figure 5.42. In saturated networks (i.e. 1000-millisecond

period), the fairness of both M-DWARF and EXTENDED-DESYNC is approximately the

same when the time passes. However, the difference of fairness becomes significantly large

when the period length is increased. The average standard deviation of the channel uti-

lization per node of EXTENDED-DESYNC is 30 - 400% higher than that of M-DWARF.

Therefore, M-DWARF achieves better fairness. One of the main reasons that nodes in

M-DWARF fairly utilize a network is that the stability of M-DWARF is better than that

of EXTENDED-DESYNC which still has error-fluctuation (see Chapter 3).
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5.5.6 Overhead Optimization and Robustness to Loss

Due to the fact that the firing message contains relative phases of one-hop neighbors.

If there are too many neighbors, the algorithm incurs large overhead. Therefore, in this

evaluation, we attempt to reduce such overhead. We straightforwardly reduce the number

of relative phases broadcastings. We only periodically attach neighbors’ relative phases

in a firing message. Therefore, in most firing messages, relative phases are not included.

Each node keeps track of phase neighbors within two hops even it does not receive a new

firing message. We set a time-to-live for each record to 3 periods. If a node does not

receive the phase information from arbitrary node within 3 periods, it removes that node

from its records. To investigate how much we can reduce the overhead, we vary a saving

gain parameter β which is the frequency to exclude relative phases from a firing message;

for example, β = 0 means including relative phases in every firing message, β = 1 means

including relative phases in every two firing messages, β = 2 means including relative

phases in every three firing messages, and so on.

We evaluate this optimization scheme on the 10-node star topology. We vary the

saving gain β from 0 to 20. The result is shown in Figure 5.43. From the figure, we

find that, even we reduce the number of relative phases broadcastings, the system still

converges to the perfect desynchrony state in most cases. However, if the saving gain is

greater than 16, the system converges slowly or may not converge because the information

that a node keeps is removed. This result indicates two important insights. First, by

trading off with convergence speed, we can drastically reduce the overhead by a factor of

16 in our investigated scenario. Second, even each node does not receive relative phases

for many consecutive times. The algorithm still works. Therefore, the proposed algorithm

tolerates to packet loss.

5.6 Summary

This chapter presents M-DWARF, the multi-hop extension of DWARF which is

presented in Chapter 3. In multi-hop networks, the hidden terminal problem directly af-

fects the performance of desynchronization algorithms. M-DWARF solves such a problem

with two mechanisms: relative phase relaying and force absorption. The relative phase

relaying mechanism help nodes notice the presence of two-hop neighbors. The force ab-

sorption mechanism help reduce the force from two-hop neighbors that can stay at the
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Figure 5.43: Optimized M-DWARF: Varying saving gain from 0 to 20.
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same phase.

M-DWARF has several benefits. First, the algorithm runs distributedly on each

sensor node. No central master node is required. Second, the algorithm works even nodes

are not synchronized and do not realize global time. Third, the algorithm is able to work

for both single-hop and multi-hop networks. In addition, the algorithm is lightweight,

simple, and practical. The code size of the core algorithm is less than 500 lines of code.

The size of a compiled binary is less than 30 kilobytes. The required memory is less than 2

kilobytes. This property is desirable to implement, extend, and apply for resource-limited

wireless sensor nodes. Furthermore, the algorithm requires only local 2-hop information

and scales well with network size.

In the next chapter, we analyse the stability under small perturbation of M-DWARF.



CHAPTER VI

STABILITY ANALYSIS OF THE MULTI-HOP

ALGORITHM

The multi-hop stability analysis in this chapter is more complicated than the anal-

ysis of single-hop networks (Chapter 4) due to the connectivity and topology affect the

analysis. We begin by formalizing components of forces to a general form. Then, we

transform the system into a dynamic system equations and locally analyse at the equilib-

rium.

6.1 Definition

We first define several variables and notations to be used throughout the analysis

in this chapter.

We define n to be the number of nodes in the system and T be the time period.

We assume n is even. However, in the case of odd n, the system can be analysed with

the same procedure.

We define ci,j to be a connectivity status in two-hop communication from node j to

node i. If node i perceives the presence of node j (as a one-hop neighbor or by relaying

relative phase), ci,j is 1. Otherwise, ci,j is 0. For example, in a simple 3-node chain

network with node labelled 0, 1, and 2 respectively, if communication links are symmetry,

the values of c0,1, c1,0, c1,2, and c2,1 are 1 whereas the values of c0,2 and c2,0 are 0. We

assume that nodes are labelled sequentially in increasing order from 0 to n− 1 according

the the increasing phase in the global period ring.

We define the modulo notation [x]n to stand for x mod n for brevity.

We define ∆i to be a phase interval between node i and node [i + 1]n, where

∆i ∈ (0, T ].
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6.2 Force Component

To construct a dynamic system, we first analyse how force with the absorption

mechanism affects the system equations. As described in Chapter 5, a force can be

absorbed if it is not originated from the closest phase neighbor. Therefore, respect to

the node i’s point of view, some forces have no effect to node i whereas some forces do.

We classify forces that affect node i into three components: closest component, resistance

component, and absorption component. The final form of forces that affect node i will

be in the following form:

Fi =(closest component + resistance component − absorption component)positive

− (closest component + resistance component − absorption component)negative.

(6.1)

Closest component: Respect to the node i’s point of view, the closest component

is the force from the closest phase neighbor of node i and node i perceives its presence.

This force is not absorbed by any node. This force component from node j to node i

will appear in the equation if, between node j and node i, node i does not perceive the

presence of any node. In other words, node j is the closest perceived phase neighbor of

node i. We firstly define the closest component for node i by using the combination of

logic and algebraic expression as follows (we use it only for clarification purpose and we

will change it to pure algebraic expression later),(
(ci,[i+(n−1)]n)f

+
i,[i+(n−1)]n

+ (¬ci,[i+(n−1)]n ∧ ci,[i+(n−2)]n)f
+
i,[i+(n−2)]n

+ (¬ci,[i+(n−1)]n ∧ ¬ci,[i+(n−2)]n ∧ ci,[i+(n−3)]n)f
+
i,[i+(n−3)]n

+ · · ·

+ (¬ci,[i+(n−1)]n ∧ ¬ci,[i+(n−2)]n ∧ · · · ∧ ¬ci,[i+(n

2
+2)]n ∧ ci,[i+(n

2
+1)]n)f

+
i,[i+(n

2
+1)]n

)

−

(
(ci,[i+1]n)f

−
i,[i+1]n

+ (¬ci,[i+1]n ∧ ci,[i+2]n)f
−
i,[i+2]n

+ (¬ci,[i+1]n ∧ ¬ci,[i+2]n ∧ ci,[i+3]n)f
−
i,[i+3]n

+ · · ·

+ (¬ci,[i+1]n ∧ ¬ci,[i+2]n ∧ · · · ∧ ¬ci,[i+(n

2
−2)]n ∧ ci,[i+(n

2
−1)]n)f

−
i,[i+(n

2
−1)]n

)
,

(6.2)
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where f+
i,[j]n

is a positive (clockwise) force and f−
i,[j]n

is a negative (counter-clockwise) force.

We note that f+
i,[j]n

appears only when ci,[j]n = 1 and all ci,[k]n = 0, where j < k < i+ n.

Similary, f−
i,[j]n

appears only when ci,[j]n = 1 and all ci,[k]n = 0, where i < k < j.

Then, we convert the logic expression into the algebraic expression. For logical

negation, ¬ci,[j]n can be algebraically expressed as (1 − ci,[j]n). For logical and (∧), we

can express algebraically by using multiplication instead. For example, ci,[j]n ∧ ci,[k]n can

be expressed as ci,[j]nci,[k]n . Therefore, Equation 6.2 can be expressed algebraically as the

following,(
(ci,[i+(n−1)]n)f

+
i,[i+(n−1)]n

+ ((1− ci,[i+(n−1)]n)ci,[i+(n−2)]n)f
+
i,[i+(n−2)]n

+ ((1− ci,[i+(n−1)]n)(1− ci,[i+(n−2)]n)ci,[i+(n−3)]n)f
+
i,[i+(n−3)]n

+ · · ·

+ ((1− ci,[i+(n−1)]n)((1− ci,[i+(n−2)]n) · · · (1− ci,[i+(n

2
+2)]n)ci,[i+(n

2
+1)]n)f

+
i,[i+(n

2
+1)]n

)

−

(
(ci,[i+1]n)f

−
i,[i+1]n

+ ((1− ci,[i+1]n)ci,[i+2]n)f
−
i,[i+2]n

+ ((1− ci,[i+1]n)(1− ci,[i+2]n)ci,[i+3]n)f
−
i,[i+3]n

+ · · ·

+ ((1− ci,[i+1]n)((1− ci,[i+2]n) · · · (1− ci,[i+(n

2
−2)]n)ci,[i+(n

2
−1)]n)f

−
i,[i+(n

2
−1)]n

)

=

i+(n−1)∑
j=i+(n

2
+1)

f+
i,[j]n

ci,[j]n

i+n−(j+1)∏
k=1

(1− ci,[i+(n−k)]n)−
i+(n

2
−1)∑

j=i+1

f−
i,[j]n

ci,[j]n

j−1∏
k=1

(1− ci,[i+k]n).

(6.3)

Let R+
i,j be

∏i+n−(j+1)
k=1 (1−ci,[i+(n−k)]n) ∈ 0, 1 and R−

i,j be
∏j−1

k=1(1−ci,[i+k]n) ∈ 0, 1.

We derive the following form of the closet component to be used in our analysis,

i+(n−1)∑
j=i+(n

2
+1)

f+
i,[j]n

ci,[j]nR
+
i,j −

i+(n

2
−1)∑

j=i+1

f−
i,[j]n

ci,[j]nR
−
i,j . (6.4)

Resistance component: Respect to the node i’s point of view, there is a resistance

component originated from node j if the following criteria are satisfied:

• Node i perceives the presence of node j.
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• There is at least one node k following node j in the time period ring (in each force

direction).

• Node i perceives the presence of node k.

For example, respect to the node 0’s point of view, if node 1 is the closest phase neighbor

of node 0 and there is node 2 following node 1 in clockwise direction, and node 0 perceives

the presence of both node 1 and node 2, then, there is a force difference between node 1

and node 2 in the form of f0,1 − f0,2 (see Chapter 5). The part f0,1 is called resistance

component and the part f0,2 is called absorption component which we will describe later.

We note that, if there is no node following the closest phase neighbor in each direction,

there is no resistance and absorption components.

Therefore, we define the resistance component for node i by using the combination

of logic and algebraic expression as follows,

(
((ci,[i+(n−2)]n ∨ ci,[i+(n−3)]n ∨ · · · ∨ ci,[i+(n

2
+1)]n) ∧ ci,[i+(n−1)]n)f

+
i,[i+(n−1)]n

+ ((ci,[i+(n−3)]n ∨ ci,[i+(n−4)]n ∨ · · · ∨ ci,[i+(n

2
+1)]n) ∧ ci,[i+(n−2)]n)f

+
i,[i+(n−2)]n

+ · · ·+ ((ci,[i+(n

2
+1)]n) ∧ ci,[i+(n

2
+2)]n)f

+
i,[i+(n

2
+2)]n

)

−

(
((ci,[i+2]n ∨ ci,[i+3]n ∨ · · · ∨ ci,[i+(n

2
−1)]n) ∧ ci,[i+1]n)f

−
i,[i+1]n

+ ((ci,[i+3]n ∨ ci,[i+4]n ∨ · · · ∨ ci,[i+(n

2
−1)]n) ∧ ci,[i+2]n)f

−
i,[i+2]n

+ · · ·+ ((ci,[i+(n

2
−1)]n) ∧ ci,[i+(n

2
−2)]n)f

−
i,[i+(n

2
−2)]n

)
. (6.5)

Then, we convert the logical expression into the algebraic expression.

Let s+(v+i,k) be an algebraic or function to represent a logical or expression of

(ci,[i+(n−k)]n ∨ ci,[i+(n−k−1)]n ∨ · · · ∨ ci,[i+(n

2
+1)]n), where v+i,k = ci,[i+(n

2
+1)]n2

n

2
−1−k + · · ·+

ci,[i+(n−k−1)]n2
1 + ci,[i+(n−k)]n2

0.

Similarly, let s−(v−i,k) be an algebraic function to represent a logical or expression
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of (ci,[i+k]n ∨ ci,[i+(k+1)]n ∨ · · · ∨ ci,[i+(n

2
−1)]n), where v−i,k = ci,[i+(n

2
−1)]n2

n

2
−1−k + · · · +

ci,[i+(k+1)]n2
1 + ci,[i+k]n2

0.

We note that, if we write a binary string ci,[i+(n

2
+1)]n · · · ci,[i+(n−k−1)]nci,[i+(n−k)]n ,

v+k is an integer value in base 10 of this binary string where v+i,k ∈ {0, 1, · · · , 2
n

2
−k − 1}.

If all ci,[j]n = 0, then v+i,k = 0. The result is similar for v−i,k.

Let IA(x) be an indicator function as follows,

IA(x) =

1 if x ∈ A

0 if x /∈ A.

(6.6)

Therefore, s+(v+i,k) = IN−{0}(v
+
i,k) and s−(v−i,k) = IN−{0}(v

−
i,k).

From Equation 6.5, we derive the equivalent algebraic expression as follows,(
((s+(v+i,2))ci,[i+(n−1)]n)f

+
i,[i+(n−1)]n

+ ((s+(v+i,3))ci,[i+(n−2)]n)f
+
i,[i+(n−2)]n

+ · · ·+ ((s+(v+i,n
2
−1))ci,[i+(n

2
+2)]n)f

+
i,[i+(n

2
+2)]n

)

−

(
((s−(v−i,2))ci,[i+1]n)f

−
i,[i+1]n

+ ((s−(v−i,3))ci,[i+2]n)f
−
i,[i+2]n

+ · · ·+ ((s−(v−i,n
2
−1))ci,[i+(n

2
−2)]n)f

−
i,[i+(n

2
−2)]n

)
. (6.7)

Let S+
i,j = s+(v+i,i+n−j+1) ∈ {0, 1} and S−

i,j = s−(v−i,j−i+1) ∈ {0, 1}. We derive the

following form for the resistance component to be used in our analysis,

i+(n−1)∑
j=i+(n

2
+2)

f+
i,[j]n

ci,[j]nS
+
i,j −

i+(n

2
−2)∑

j=i+1

f−
i,[j]n

ci,[j]nS
−
i,j . (6.8)

Absorption component: Respect to the node i’s point of view, there is an absorption

component originated from node j if the following criteria are satisfied:

• Node i perceives the presence of node j.
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• There is at least one node k stays between node i and node j in the time period ring

(in each force direction).

• Node i perceives the presence of node k.

Therefore, we define the absorption component for node i by using the combination

of logic and algebraic expression as follows,

(
((ci,[i+(n−1)]n) ∧ ci,[i+(n−2)]n)f

+
i,[i+(n−2)]n

+ ((ci,[i+(n−1)]n ∨ ci,[i+(n−2)]n) ∧ ci,[i+(n−3)]n)f
+
i,[i+(n−3)]n

+ · · ·+ ((ci,[i+(n−1)]n ∨ ci,[i+(n−2)]n ∨ · · · ∨ ci,[i+(n

2
+2)]n) ∧ ci,[i+(n

2
+1)]n)f

+
i,[i+(n

2
+1)]n

)

−

(
((ci,[i+1]n) ∧ ci,[i+2]n)f

−
i,[i+2]n

+ ((ci,[i+1]n ∨ ci,[i+2]n) ∧ ci,[i+3]n)f
−
i,[i+3]n

+ · · ·+ ((ci,[i+1]n ∨ ci,[i+2]n ∨ · · · ∨ ci,[i+(n

2
−2)]n) ∧ ci,[i+(n

2
−1)]n)f

−
i,[i+(n

2
−1)]n

)
. (6.9)

Based on the same procedure deriving the resistance component, we derive the

following form for the absorption component to be used in our analysis,

i+(n−2)∑
j=i+(n

2
+1)

f+
i,[j]n

ci,[j]nT
+
i,j −

i+(n

2
−1)∑

j=i+2

f−
i,[j]n

ci,[j]nT
−
i,j , (6.10)

where T+
i,j and T−

i,j are the algebraic expressions of the logical or terms in Equation

6.9.

Therefore, respect to the node i’s point of view, the total force at node i is as

follows,

Fi =

 i+(n−1)∑
j=i+(n

2
+1)

f+
i,[j]n

ci,[j]nR
+
i,j +

i+(n−1)∑
j=i+(n

2
+2)

f+
i,[j]n

ci,[j]nS
+
i,j −

i+(n−2)∑
j=i+(n

2
+1)

f+
i,[j]n

ci,[j]nT
+
i,j
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−

i+(n

2
−1)∑

j=i+1

f−
i,[j]n

ci,[j]nR
−
i,j +

i+(n

2
−2)∑

j=i+1

f−
i,[j]n

ci,[j]nS
−
i,j −

i+(n

2
−1)∑

j=i+2

f−
i,[j]n

ci,[j]nT
−
i,j

 . (6.11)

In the next section, we analyse the stability of the M-DWARF algorithm based on

the derived total force.

6.3 Stability Analysis

As same as the analysis of single-hop networks, to prove that the system is stable,

we begin by transforming the system into a non-linear dynamic system.

Let f+
i,j and f−

i,j be the positive and negative forces from node j to node i respec-

tively,

f+
i,j =

T∑i−1
k=j ∆[k]n

and f−
i,j =

T∑j−1
k=i ∆[k]n

, (6.12)

where ∆k ∈ (0, T ] is the phase difference between node [k + 1]n and node k.

From Equation 6.11, the total force at node i is

Fi =

 i+(n−1)∑
j=i+(n

2
+1)

f+
i,[j]n

ci,[j]nR
+
i,j +

i+(n−1)∑
j=i+(n

2
+2)

f+
i,[j]n

ci,[j]nS
+
i,j −

i+(n−2)∑
j=i+(n

2
+1)

f+
i,[j]n

ci,[j]nT
+
i,j


−

i+(n

2
−1)∑

j=i+1

f−
i,[j]n

ci,[j]nR
−
i,j +

i+(n

2
−2)∑

j=i+1

f−
i,[j]n

ci,[j]nS
−
i,j −

i+(n

2
−1)∑

j=i+2

f−
i,[j]n

ci,[j]nT
−
i,j

 . (6.13)

Let ∆i be the current phase difference between node [i + 1]n and node i and ∆′
i

be the phase difference between node [i + 1]n and node i in the next time period. The

dynamic system of a multi-hop network running the M-DWARF algorithm is as follows:

∆′
0 = ∆0 +KF1 −KF0

∆′
1 = ∆1 +KF2 −KF1

...
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∆′
n−1 = ∆n−1 +KF0 −KFn−1 (6.14)

We write the transition of ∆i in a general form as the following,

∆′
i = ∆i +KF[i+1]n −KFi. (6.15)

Then, we linearly approximate the dynamic system at the equilibrium.

6.3.1 Linear Approximation

The Jacobian (J) of a difference equations system is defined as follows:

J =



∂∆′
0

∂∆0

∂∆′
0

∂∆1
· · · ∂∆0′

∂∆n−1

∂∆′
1

∂∆0

∂∆′
1

∂∆1
· · · ∂∆′

1

∂∆n−1

...
... . . . ...

∂∆′
n−1

∂∆0

∂∆′
n−1

∂∆1
· · · ∂∆′

n−1

∂∆n−1

 (6.16)

Therefore, from Equation 6.15, each element in a row of Jacobian is

∂∆′
i

∂∆p
=

∂∆i

∂∆p
+K

∂F[i+1]n

∂∆p
−K

∂Fi

∂∆p
, p ∈ {0, 1, · · · , n− 1}. (6.17)

For the first term, ∂∆i

∂∆p
is 1 if p = i. . If p 6= i, this term is zero. Formally,

∂∆i

∂∆p
=

1 if p = i

0 otherwise.
(6.18)

Then, we find ∂Fi

∂∆p
as follows:

∂Fi

∂∆i
= T

( i+(n

2
−2)∑

j=i+2

ci,[j]n(Ri,j + Si,j − Ti,j)

(
∑j−1

k=i ∆[k]n)
2
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+
ci,[i+(n

2
−1)]n(Ri,i+(n

2
−1) − Ti,i+(n

2
−1))

(
∑i+(n

2
−2)

k=i ∆[k]n)
2

+
ci,[i+1]n(Ri,i+1 + Si,i+1)

(∆i)2

)

∂Fi

∂∆[m]n

= T

( i+(n

2
−2)∑

j=m+1

ci,[j]n(Ri,j + Si,j − Ti,j)

(
∑j−1

k=i ∆[k]n)
2

+
ci,[i+(n

2
−1)]n(Ri,i+(n

2
−1) − Ti,i+(n

2
−1))

(
∑i+(n

2
−2)

k=i ∆[k]n)
2

)
,

for m = i+ 1, i+ 2, · · · , i+ (
n

2
− 3)

∂Fi

∂∆[i+(n

2
−2)]n

= T

(
ci,[i+(n

2
−1)]n(Ri,i+(n

2
−1) − Ti,i+(n

2
−1))

(
∑i+(n

2
−2)

k=i ∆[k]n)
2

)
∂Fi

∂∆[m]n

= 0, for m = i+ (
n

2
− 1), i+

n

2

∂Fi

∂∆[i+(n

2
+1)]n

= T

(
−

ci,[i+(n

2
+1)]n(Ri,i+(n

2
+1) − Ti,i+(n

2
+1))

(
∑i+(n−1)

k=i+(n

2
+1)∆[k]n)

2

)

∂Fi

∂∆[m]n

= T

(
−

m∑
j=i+(n

2
+2)

ci,[j]n(Ri,j + Si,j − Ti,j)

(
∑i−1

k=j ∆[k]n)
2

−
ci,[i+(n

2
+1)]n(Ri,i+(n

2
+1) − Ti,i+(n

2
+1))

(
∑i+(n−1)

k=i+(n

2
+1)∆[k]n)

2

)
,

for m = i+ (
n

2
+ 2), i+ (

n

2
+ 3), · · · , i+ (n− 2)

∂Fi

∂∆[i+(n−1)]n

= T

(
−

i+(n−2)∑
j=i+(n

2
+2)

ci,[j]n(Ri,j + Si,j − Ti,j)

(
∑i−1

k=j ∆[k]n)
2

−
ci,[i+(n

2
+1)]n(Ri,i+(n

2
+1) − Ti,i+(n

2
+1))

(
∑i+(n−1)

k=i+(n

2
+1)∆[k]n)

2

+
ci,[i+(n−1)]n(Ri,i+(n−1) + Si,i+(n−1))

(∆[i+(n−1)]n)
2

)
. (6.19)

For ∂F[i+1]n

∂∆p
, we can find by replacing i with i+1 in Equation 6.19. The result is as

follows:

∂F[i+1]n

∂∆[i+1]n

= T

( i+(n

2
−1)∑

j=i+3

c[i+1]n,[j]n(Ri+1,j + Si+1,j − Ti+1,j)

(
∑j−1

k=i+1∆[k]n)
2
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+
c[i+1]n,[i+

n

2
]n(Ri+1,i+n

2
− Ti+1,i+n

2
)

(
∑i+(n

2
−1)

k=i+1 ∆[k]n)
2

+
c[i+1]n,[i+2]n(Ri+1,i+2 + Si+1,i+2)

(∆[i+1]n)
2

)
∂F[i+1]n

∂∆[m]n

= T

( i+(n

2
−1)∑

j=m+1

c[i+1]n,[j]n(Ri+1,j + Si+1,j − Ti+1,j)

(
∑j−1

k=i+1∆[k]n)
2

+
c[i+1]n,[i+

n

2
]n(Ri+1,i+n

2
− Ti+1,i+n

2
)

(
∑i+(n

2
−1)

k=i+1 ∆[k]n)
2

)
,

for m = i+ 2, i+ 3, · · · , i+ (
n

2
− 2)

∂F[i+1]n

∂∆i+(n

2
−1)

= T

(
c[i+1]n,[i+

n

2
]n(Ri+1,i+n

2
− Ti+1,i+n

2
)

(
∑i+(n

2
−1)

k=i+1 ∆[k]n)
2

)
∂F[i+1]n

∂∆[m]n
= 0, for m = i+

n

2
, i+ (

n

2
+ 1)

∂F[i+1]n

∂∆[i+(n

2
+2)]n

= T

(
−

c[i+1]n,[i+(n

2
+2)]n(Ri+1,i+(n

2
+2) − Ti+1,i+(n

2
+2))

(
∑i+n

k=i+(n

2
+2)∆[k]n)

2

)
∂F[i+1]n

∂∆[m]n

= T

(
−

m∑
j=i+(n

2
+3)

c[i+1]n,[j]n(Ri+1,j + Si+1,j − Ti+1,j)

(
∑i

k=j ∆[k]n)
2

−
c[i+1]n,[i+(n

2
+2)]n(Ri+1,i+(n

2
+2) − Ti+1,i+(n

2
+2))

(
∑i+n

k=i+(n

2
+2)∆[k]n)

2

)
,

for m = i+ (
n

2
+ 3), i+ (

n

2
+ 4), · · · , i+ (n− 1)

∂F[i+1]n

∂∆i
= T

(
−

i+(n−1)∑
j=i+(n

2
+3)

c[i+1]n,[j]n(Ri+1,j + Si+1,j − Ti+1,j)

(
∑i

k=j ∆[k]n)
2

−
c[i+1]n,[i+(n

2
+2)]n(Ri+1,i+(n

2
+2) − Ti+1,i+(n

2
+2))

(
∑i+n

k=i+(n

2
+2)∆[k]n)

2

−
c[i+1]n,i(Ri+1,i + Si+1,i)

(∆i)2

)
. (6.20)

Consequently, from Equation 6.17, 6.18, 6.19, and 6.20, we find ∂∆′
i

∂∆p
as the following:

∂∆′
i

∂∆i
= 1 +KT

(
−

i+(n−1)∑
j=i+(n

2
+3)

c[i+1]n,[j]n(Ri+1,j + Si+1,j − Ti+1,j)

(
∑i

k=j ∆[k]n)
2

−
c[i+1]n,[i+(n

2
+2)]n(Ri+1,i+(n

2
+2) − Ti+1,i+(n

2
+2))

(
∑i+n

k=i+(n

2
+2)∆[k]n)

2
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−
c[i+1]n,i(Ri+1,i + Si+1,i)

(∆i)2

−
i+(n

2
−2)∑

j=i+2

ci,[j]n(Ri,j + Si,j − Ti,j)

(
∑j−1

k=i ∆[k]n)
2

−
ci,[i+(n

2
−1)]n(Ri,i+(n

2
−1) − Ti,i+(n

2
−1))

(
∑i+(n

2
−2)

k=i ∆[k]n)
2

−
ci,[i+1]n(Ri,i+1 + Si,i+1)

(∆i)2

)

∂∆′
i

∂∆[i+1]n

= KT

( i+(n

2
−1)∑

j=i+3

c[i+1]n,[j]n(Ri+1,j + Si+1,j − Ti+1,j)

(
∑j−1

k=i+1∆[k]n)
2

+
c[i+1]n,[i+

n

2
]n(Ri+1,i+n

2
− Ti+1,i+n

2
)

(
∑i+(n

2
−1)

k=i+1 ∆[k]n)
2

+
c[i+1]n,[i+2]n(Ri+1,i+2 + Si+1,i+2)

(∆[i+1]n)
2

−
i+(n

2
−2)∑

j=i+2

ci,[j]n(Ri,j + Si,j − Ti,j)

(
∑j−1

k=i ∆[k]n)
2

−
ci,[i+(n

2
−1)]n(Ri,[i+(n

2
−1)]n − Ti,i+(n

2
−1))

(
∑i+(n

2
−2)

k=i ∆[k]n)
2

)

∂∆′
i

∂∆[m]n

= KT

( i+(n

2
−1)∑

j=m+1

c[i+1]n,[j]n(Ri+1,j + Si+1,j − Ti+1,j)

(
∑j−1

k=i+1∆[k]n)
2

+
c[i+1]n,[i+

n

2
]n(Ri+1,i+n

2
− Ti+1,i+n

2
)

(
∑i+(n

2
−1)

k=i+1 ∆[k]n)
2

−
i+(n

2
−2)∑

j=m+1

ci,[j]n(Ri,j + Si,j − Ti,j)

(
∑j−1

k=i ∆[k]n)
2

−
ci,[i+(n

2
−1)]n(Ri,i+(n

2
−1) − Ti,i+(n

2
−1))

(
∑i+(n

2
−2)

k=i ∆[k]n)
2

,

)
,

for m = i+ 2, i+ 3, · · · , i+ (
n

2
− 3)

∂∆′
i

∂∆[i+(n

2
−2)]n

= KT

(
c[i+1]n,[i+(n

2
−1)]n(Ri+1,i+(n

2
−1) + Si+1,i+(n

2
−1) − Ti+1,i+(n

2
−1))

(
∑i+(n

2
−2)

k=i+1 ∆[k]n)
2

+
c[i+1]n,[i+

n

2
]n(Ri+1,i+n

2
− Ti+1,i+n

2
)

(
∑i+(n

2
−1)

k=i+1 ∆[k]n)
2

−
ci,[i+(n

2
−1)]n(Ri,i+(n

2
−1) − Ti,i+(n

2
−1))

(
∑i+(n

2
−2)

k=i ∆[k]n)
2

)
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∂∆′
i

∂∆i+(n

2
−1)

= KT

(
c[i+1]n,[i+

n

2
]n(Ri+1,i+n

2
− Ti+1,i+n

2
)

(
∑i+(n

2
−1)

k=i+1 ∆[k]n)
2

)
∂∆′

i

∂∆[i+n

2
]n

= 0

∂∆′
i

∂∆[i+(n

2
+1)]n

= KT

(
ci,[i+(n

2
+1)]n(Ri,i+(n

2
+1) − Ti,i+(n

2
+1))

(
∑i+(n−1)

k=i+(n

2
+1)∆[k]n)

2

)

∂∆′
i

∂∆i+(n

2
+2)

= KT

(
−

c[i+1]n,[i+(n

2
+2)]n(Ri+1,i+(n

2
+2) − Ti+1,i+(n

2
+2))

(
∑i+n

k=i+(n

2
+2)∆[k]n)

2

+
ci,[i+(n

2
+2)]n(Ri,i+(n

2
+2) + Si,i+(n

2
+2) − Ti,i+(n

2
+2))

(
∑i+(n−1)

k=i+(n

2
+2)∆[k]n)

2

+
ci,[i+(n

2
+1)]n(Ri,i+(n

2
+1) − Ti,i+(n

2
+1))

(
∑i+(n−1)

k=i+(n

2
+1)∆[k]n)

2

)

∂∆′
i

∂∆[m]n

= KT

(
−

m∑
j=i+(n

2
+3)

c[i+1]n,[j]n(Ri+1,j + Si+1,j − Ti+1,j)

(
∑i

k=j ∆[k]n)
2

−
c[i+1]n,[i+(n

2
+2)]n(Ri+1,i+(n

2
+2) − Ti+1,i+(n

2
+2))

(
∑i+n

k=i+(n

2
+2)∆[k]n)

2

+

m∑
j=i+(n

2
+2)

ci,[j]n(Ri,j + Si,j − Ti,j)

(
∑i+(n−1)

k=j ∆[k]n)
2

+
ci,[i+(n

2
+1)]n(Ri,i+(n

2
+1) − Ti,i+(n

2
+1))

(
∑i+(n−1)

k=i+(n

2
+1)∆[k]n)

2

)
,

for m = i+ (
n

2
+ 3), i+ (

n

2
+ 4), · · · , i+ (n− 2)

∂∆′
i

∂∆[i+(n−1)]n

= KT

(
−

i+(n−1)∑
j=i+(n

2
+3)

c[i+1]n,[j]n(Ri+1,j + Si+1,j − Ti+1,j)

(
∑i

k=j ∆[k]n)
2

−
c[i+1]n,[i+(n

2
+2)]n(Ri+1,i+(n

2
+2) − Ti+1,i+(n

2
+2))

(
∑i+n

k=i+(n

2
+2)∆[k]n)

2

+

i+(n−2)∑
j=i+(n

2
+2)

ci,[j]n(Ri,j + Si,j − Ti,j)

(
∑i+(n−1)

k=j ∆[k]n)
2

+
ci,[i+(n

2
+1)]n(Ri,i+(n

2
+1) − Ti,i+(n

2
+1))

(
∑i+(n−1)

k=i+(n

2
+1)∆[k]n)

2

+
ci,[i+(n−1)]n(Ri,i+(n−1) + Si,i+(n−1))

(∆[i+(n−1)]n)
2

)
. (6.21)

At this point, we already get the general form of each row of the Jacobian matrix.
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To locally approximate at the equilibrium, we have to substitute ci,j , Ri,j , Si,j , Ti,j , and

∆i for all i, j ∈ 0, 1, · · · , n− 1 where j 6= i with the value at the equilibrium state. Then,

we have find the maximum value of n that bounds the eigenvalues within a unit circle to

guarantee the stability. However, such values depend on the topology. For example, the

connectivity ci,j depends on whether node i can perceive the presence of node j or not.

If node i and j are within two-hop communication, this value is 1, otherwise, this value

is 0.

In this dissertation, we prove the stability of the multi-hop star topology as an

example because this topology is less complicated to prove and may be the easiest example

for the reader to follow the proof. For other topologies, we conjecture that the local

stability can also be assured as well.

For the multi-hop star topology, the time interval between arbitrary two consecu-

tive nodes is T/n at the equilibrium. Therefore, each row of the Jacobian matrix from

Equation 6.21 is changed by substituting all ∆k with T/n and re-indexing the summation

as follows,

∂∆′
i

∂∆i
= 1 +

Kn2

T

(
−

c[i+1]n,[i+(n

2
+2)]n(Ri+1,i+(n

2
+2) − Ti+1,i+(n

2
+2))

(n2 − 1)2

−
c[i+1]n,[i]n(Ri+1,i + Si+1,i)

12

−

n

2
−2∑

j=2

c[i+1]n,[i+(n+1−j)]n(Ri+1,i+(n+1−j) + Si+1,i+(n+1−j) − Ti+1,i+(n+1−j))

j2

−

n

2
−2∑

j=2

ci,[i+j]n(Ri,i+j + Si,i+j − Ti,i+j)

j2

−
ci,[i+(n

2
−1)]n(Ri,i+(n

2
−1) − Ti,i+(n

2
−1))

(n2 − 1)2

−
ci,[i+1]n(Ri,i+1 + Si,i+1)

12

)

∂∆′
i

∂∆[i+1]n

=
Kn2

T

( n

2
−2∑

j=2

c[i+1]n,[i+1+j]n(Ri+1,i+1+j + Si+1,i+1+j − Ti+1,i+1+j)

j2

+
c[i+1]n,[i+

n

2
]n(Ri+1,i+n

2
− Ti+1,i+n

2
)

(n2 − 1)2
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+
c[i+1]n,[i+2]n(Ri+1,i+2 + Si+1,i+2)

12

−

n

2
−2∑

j=2

ci,[i+j]n(Ri,i+j + Si,i+j − Ti,i+j)

j2

−
ci,[i+(n

2
−1)]n(Ri,i+(n

2
−1) − Ti,i+(n

2
−1))

(n2 − 1)2

)

∂∆′
i

∂∆[m]n

=
Kn2

T

( n

2
−2∑

j=m−i

c[i+1]n,[i+1+j]n(Ri+1,i+1+j + Si+1,i+1+j − Ti+1,i+1+j)

j2

+
c[i+1]n,[i+

n

2
]n(Ri+1,i+n

2
− Ti+1,i+n

2
)

(n2 − 1)2

−

n

2
−2∑

j=m−i+1

ci,[i+j]n(Ri,i+j + Si,i+j − Ti,i+j)

j2

−
ci,[i+(n

2
−1)]n(Ri,i+(n

2
−1) − Ti,i+(n

2
−1))

(n2 − 1)2

)
for m = i+ 2, i+ 3, · · · , i+ (

n

2
− 3)

∂∆′
i

∂∆[i+(n

2
−2)]n

=
Kn2

T

(
c[i+1]n,[i+(n

2
−1)]n(Ri+1,i+(n

2
−1) + Si+1,i+(n

2
−1) − Ti+1,i+(n

2
−1))

(n2 − 2)2

+
c[i+1]n,[i+

n

2
]n(Ri+1,i+n

2
− Ti+1,i+n

2
)

(n2 − 1)2

−
ci,[i+(n

2
−1)]n(Ri,i+(n

2
−1) − Ti,i+(n

2
−1))

(n2 − 1)2

)
∂∆′

i

∂∆[i+(n

2
−1)]n

=
Kn2

T

(
c[i+1]n,[i+

n

2
]n(Ri+1,i+n

2
− Ti+1,i+n

2
)

(n2 − 1)2

)
∂∆′

i

∂∆[i+n

2
]n

= 0

∂∆′
i

∂∆[i+(n

2
+1)]n

=
Kn2

T

(
ci,[i+(n

2
+1)]n(Ri,i+(n

2
+1) − Ti,i+(n

2
+1))

(n2 − 1)2

)
∂∆′

i

∂∆[i+(n

2
+2)]n

=
Kn2

T

(
−

c[i+1]n,[i+(n

2
+2)]n(Ri+1,i+(n

2
+2) − Ti+1,i+(n

2
+2))

(n2 − 1)2

+
ci,[i+(n

2
+2)]n(Ri,i+(n

2
+2) + Si,i+(n

2
+2) − Ti,i+(n

2
+2))

(n2 − 2)2

+
ci,[i+(n

2
+1)]n(Ri,i+(n

2
+1) − Ti,i+(n

2
+1))

(n2 − 1)2

)
∂∆′

i

∂∆[m]n

=
Kn2

T

(
−

c[i+1]n,[i+(n

2
+2)]n(Ri+1,i+(n

2
+2) − Ti+1,i+(n

2
+2))

(n2 − 1)2
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−

n

2
−2∑

j=i+n−m+1

c[i+1]n,[j−n

2
+2+m]n(Ri+1,j−n

2
+2+m + Si+1,j−n

2
+2+m − Ti+1,j−n

2
+2+m)

j2

+

n

2
−2∑

j=i+n−m

ci,[j−n

2
+2+m]n(Ri,j−n

2
+2+m + Si,j−n

2
+2+m − Ti,j−n

2
+2+m)

j2

+
ci,[i+(n

2
+1)]n(Ri,i+(n

2
+1) − Ti,i+(n

2
+1))

(n2 − 1)2

)
,

for m = i+ (
n

2
+ 3), i+ (

n

2
+ 4), · · · , i+ (n− 2)

∂∆′
i

∂∆[i+(n−1)]n

=
Kn2

T

(
−

c[i+1]n,[i+(n

2
+2)]n(Ri+1,i+(n

2
+2) − Ti+1,i+(n

2
+2))

(n2 − 1)2

−

n

2
−2∑

j=2

c[i+1]n,[i+
n

2
+1+j]n(Ri+1,i+n

2
+1+j + Si+1,i+n

2
+1+j − Ti+1,i+n

2
+1+j)

j2

+

n

2
−2∑

j=2

ci,[i+n

2
+j]n(Ri,i+n

2
+j + Si,i+n

2
+j − Ti,i+n

2
+j)

j2

+
ci,[i+(n

2
+1)]n(Ri,i+(n

2
+1) − Ti,i+(n

2
+1))

(n2 − 1)2

+
ci,[i+(n−1)]n(Ri,i+(n−1) + Si,i+(n−1))

12

)
.

Then, for the star topology, nodes perceive the presence of all two-hop neighbors.

Therefore, all terms ci,j , Ri,j , Si,j , and Ti,j are 1. Consequently, the row of the Jacobian

matrix at the equilibrium is the following:

∂∆′
i

∂∆i
= 1 +

Kn2

T

(
−

n

2
−2∑

j=2

1

j2
− 0− 2

12
−

n

2
−2∑

j=2

1

j2
− 0− 2

12

)

= 1− 2Kn2

T

(
1 +

n−2∑
j=1

1

j2

)

∂∆′
i

∂∆[i+1]n

=
Kn2

T

( n

2
−2∑

j=2

1

j2
+ 0 + 2−

n

2
−2∑

j=2

1

j2
− 0

)
=

2Kn2

T

∂∆′
i

∂∆[m]n

=
Kn2

T

( n

2
−2∑

j=m−i

1

j2
+ 0−

n

2
−2∑

j=m−i+1

1

j2
− 0

)
=

Kn2

T (m− i)2

for m = i+ 2, i+ 3, · · · , i+ (
n

2
− 3)
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∂∆′
i

∂∆[i+(n

2
−2)]n

=
Kn2

T

(
1

(n2 − 2)2
+ 0− 0

)
=

Kn2

T (n2 − 2)2

∂∆′
i

∂∆[i+(n

2
−1)]n

= 0

∂∆′
i

∂∆[i+n

2
]n

= 0

∂∆′
i

∂∆[i+(n

2
+1)]n

= 0

∂∆′
i

∂∆[i+(n

2
+2)]n

=
Kn2

T

(
− 0 +

1

(n2 − 2)2
+ 0

)
=

Kn2

T (n2 − 2)2

∂∆′
i

∂∆[m]n

=
Kn2

T

(
−

n

2
−2∑

j=i+n−m+1

1

j2
− 0 +

n

2
−2∑

j=i+n−m

1

j2
+ 0 =

Kn2

T (i+ n−m)2
,

for m = i+ (
n

2
+ 3), i+ (

n

2
+ 4), · · · , i+ (n− 2)

∂∆′
i

∂∆[i+(n−1)]n

=
Kn2

T

(
−

n

2
−2∑

j=2

1

j2
− 0 +

n

2
−2∑

j=2

1

j2
+ 0 +

2

12

)
=

2Kn2

T
. (6.22)

The result of the Jacobian matrix at the equilibrium is the circulant matrix as

shown below:



D0 2A · · · A
(n

2
−2)2 0 0 0 A

(n

2
−2)2 · · · A

22 2A

2A D0 · · · A
(n

2
−3)2

A
(n

2
−2)2 0 0 0 · · · A

32
A
22

...
... . . . ...

...
...

...
... . . . ...

...
A

(n

2
−2)2

A
(n

2
−3)2 · · · D0 2A A

22
A
32

A
42 · · · 0 0

0 A
(n

2
−2)2 · · · 2A D0 2A A

22
A
32 · · · 0 0

0 0 · · · A
22 2A D0 2A A

22 · · · A
(n

2
−2)2 0

0 0 · · · A
32

A
22 2A D0 2A · · · A

(n

2
−3)2

A
(n

2
−2)2

A
(n

2
−2)2 0 · · · A

42
A
32

A
22 2A D0 · · · A

(n

2
−4)2

A
(n

2
−3)2

...
... . . . ...

...
...

...
... . . . ...

...
A
22

A
32 · · · 0 0 A

(n

2
−2)2

A
(n

2
−3)2

A
(n

2
−3)2 · · · D0 2A

2A A
22 · · · 0 0 0 A

(n

2
−2)2

A
(n

2
−3)2 · · · 2A D0



,

(6.23)
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where the diagonal entry D0 = 1− 2A

(
1 +

∑n−2
j=1 1/j

2

)
and A = Kn2/T .

We can find each eigenvalue of a circulant matrix with a general solution presented

in Gray (2001). However, we only need to guarantee that all eigenvalues lay on a unit

circle. Therefore, we find the bound of eigenvalues instead.

6.3.2 The Bound of Eigenvalues

To find the bound of an n × n matrix, we use the Gershgorin’s Circle Theorem

(Brakken-Thal (2007); Gershgorin (1931)).

Theorem 6.1 (Gershgorin’s Theorem Round 1) Every eigenvalue λ of n×n matrix

A satisfies:

|λ−Ai,i| ≤
∑
j 6=i

|Ai,j |, i ∈ 0, 1, · · · , n− 1

In other words, every eigenvalue lies within at least one of Gershgorin discs centered

at Ai,i with radius
∑

j 6=i |Ai,j |, where Ai,i is the diagonal entry of a matrix.

In our circulant matrix, all diagonal entries and the sums of elements in each row and

each column are the same. Therefore, in our matrix, all Gershgorin’s discs are centered

at D0 = 1−2A(1+
∑n−2

j=1 1/j
2) with radius r = 2A(1+

∑n

2
−2

j=1 1/j2), where A = Kn2/T .

Then, we find the maximum number of nodes n that guarantees the Gershgorin’

discs are in a unit circle.

Let ~D be a vector drawn from the origin (0, 0) to the center of the Gershgorin’s disc

(1−2A(1+
∑n−2

j=1 1/j
2), 0). Due to the imaginary part of ~D is zero, the magnitude | ~D| is

|1−2A(1+
∑n−2

j=1 1/j
2|. Therefore, we derive the following to guarantee the Gershgorin’s

discs are in a unit circle:
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| ~D|+ r ≤ 1∣∣∣∣∣1− 2A

(
1 +

n−2∑
j=1

1

j2

)∣∣∣∣∣+ 2A

(
1 +

n

2
−2∑

j=1

1

j2

)
≤ 1

∣∣∣∣∣1− 2Kn2

T

(
1 +

n−2∑
j=1

1

j2

)∣∣∣∣∣+ 2Kn2

T

(
1 +

n

2
−2∑

j=1

1

j2

)
≤ 1. (6.24)

From the M-DWARF algorithm, we substitute K with 38.597× n−1.874 × T/1000.

Additionally, when n is large, the value of
∑n−2

j=1 1/j
2 and

∑n

2
−2

j=1 1/j2 converge to the

Reimann zeta function ζ(2) =
∑∞

i=1 1/i
2 = π2/6 ≈ 1.645. From Equation 6.24, we get

the following:

∣∣∣∣∣1− 0.077194n0.126(1 + 1.645)

∣∣∣∣∣+ 0.077194n0.126(1 + 1.645) ≤ 1∣∣∣∣∣1− 0.20417813n0.126

∣∣∣∣∣+ 0.20417813n0.126 ≤ 1

−(1− 0.20417813n0.126) ≤ 1− 0.20417813n0.126 ≤ 1− 0.20417813n0.126

(6.25)

The condition 1−0.20417813n0.126 ≤ 1−0.20417813n0.126 is always true regardless

of the number of nodes n. Then, we consider the following condition:

−(1− 0.20417813n0.126) ≤ 1− 0.20417813n0.126

2(0.20417813n0.126 − 1) ≤ 0

n0.126 ≤ 1

0.20417813

n ≤ 299, 307

(6.26)

Therefore, if the number of nodes is less than 2.99× 105 nodes, every eigenvalue is

guaranteed to lay in a unit circle. In other words, the non-linear dynamic system for the
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multi-hop star topology is locally stable at the equilibrium. If there is a small perturbation

around the equilibrium, the system is able to converge back to the equilibrium.

To prove the stability of other topologies, we can substitute ∆i and ci,j in the

Jacobian matrix with the value at the equilibrium of each topology. Then, finding the

eigenvalues of the substituted Jacobian matrix. If we can bound that every eigenvalue

lies in a unit circle, the algorithm is locally stable for such topologies. We conjecture that

the proof of other topologies is similar to the proof of the star topology with the similar

procedure.

6.4 Summary

In this chapter, we analyse the stability of M-DWARF, a multi-hop physicomimetics

desynchronization algorithm. We transform the system into a dynamic system and locally

analyse at the equilibrium. However, to find eigenvalues to guarantee stability depends

on connectivity and topology. In this dissertation, we derive the Jacobian to be used

for a general topology and provide an in-depth stability proof by bounding eigenvalues

for multi-hop star topology as an instance. We conjecture that, with a similar proof, the

proposed algorithm is also stable for other multi-hop topologies at the equilibrium as well.



CHAPTER VII

CONCLUSION

7.1 Dissertation Summary

In the beginning of this dissertation, we study and analyse the desynchronization

problem. Desynchronization is useful for scheduling nodes to perform tasks at different

time. This property is desirable for resource sharing, TDMA scheduling, and collision

avoiding. However, to desynchronize nodes in wireless sensor networks is difficult due

to several limitations. This dissertation focuses on wireless sensor networks that sensor

nodes lack of global time knowledge (i.e., clocks are not synchronized). Without global

time knowledge, nodes perceive different local times. The beginning of time slots and

the exact number of time slots are difficult to determine. In addition, due to the hidden

terminal problem, a node cannot sense a transmission signal from two-hop neighboring

nodes. If two nodes transmit messages simultaneously, two messages collide at a middle

receiver node.

To solve such problems, this dissertation proposes a novel physicomimetics desyn-

chronization algorithm. Inspired by robotic circular formation and Physics principle, the

proposed algorithm creates an artificial force field for wireless sensor nodes. Nodes with

closer time phases have stronger forces to repel each other in the time domain. Each

node adjusts its time phase proportionally to the total amount of received forces. Once

the received forces are balanced, nodes are desynchronized. The proposed algorithm has

several benefits. First, the algorithm runs distributedly on each sensor node. No central

master node is required. Second, the algorithm works even nodes are not synchronized

and do not realize global time. Third, the algorithm is able to work for both single-hop

and multi-hop networks. In addition, the algorithm is lightweight, simple, and practical.

The size of a compiled binary is less than 30 kilobytes. The required memory is less than

2 kilobytes. This property is desirable to implement, extend, and apply for resource-

limited wireless sensor nodes. We also demonstrate that the algorithm is runnable on

both simulation and real hardware. Furthermore, the algorithm requires only local 2-hop

information and scales well with network size.
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We also mathematically analyse the convexity and stability of the proposed physico-

mimetics algorithm. The analysis reveals that the force function used in the algorithm

is a convex function in the case of single-hop networks. Therefore, there is only global

minima and no local minima. The analysis also proves that the algorithm is stable un-

der small perturbation at the equilibrium which is also another desirable property of

desynchronization.

7.2 Discussion on Limitations and Future Works

Despite of several benefits, there are limitations that should be mentioned.

First, the proposed algorithm does not always lead to perfect desynchronization

on multi-hop networks even if the algorithm performs very well on single-hop networks

and outperforms previous works on both single-hop and multi-hop networks. On multi-

hop networks, to achieve the perfect desynchrony state depends on topology and initial

network configuration.

Second, even, in single-hop networks, the proposed algorithm does not incur any

message overhead, the multi-hop algorithm incurs overhead because it includes one-hop

neighbors’ relative phases in firing messages. We present the optimization scheme that

reduces the frequency to include relative phases in firing messages. However, there is a

trade-off between message overhead and convergence speed. There is room for further

optimization. One feasible approach is that each node is not necessary to include all

relative phases of one-hop neighbors because this dissertation shows that the algorithm

tolerates to packet loss. With this approach, the multi-hop algorithm is not limited to a

small number of neighbors.

Third, in stability analysis, this dissertation analyses the stability of the dynamic

system only at the equilibrium. This is due to the fact that the dynamic system of our

approach is non-linear dynamic and the standard linear dynamic system analysis does not

suffice. We conjecture that the full proof of stability can be achieved with the advance

mathematical analysis based on the Lyapunov stability theorem.

In addition, the proper value of step size K that is used in this dissertation is

derived from the empirical experiments on the simulation environment. This value works
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very well on both simulator and real devices in our investigated scenarios. However, it

should be tuned for a proper value for each actual operating environment to maximize

the performance of a system.

Last but not least, this dissertation provides a fundamental mechanism to desyn-

chronize nodes. Future works on application development based on our mechanism are

viable. Developing an application could lead to new ideas to improve the proposed algo-

rithm.

7.3 Concluding Remark

To the best of our knowledge, this dissertation is the first to introduce a physico-

mimetics desynchronization protocol for wireless sensor networks that is based on the

concept of electromagnetic fields, a foundation of physics. We believe that this disser-

tation could be a primer for further studies in physicomimetics approaches for wireless

networks and could be extended to support several applications.
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